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Abstract

Convolutional neural networks (CNNs) exploit translational invariance within images.
Group equivariant neural networks comprise a natural generalization of convolutional
neural networks by exploiting other symmetries arising through different group ac-
tions. Informally, a linear map is equivariant if it transfers symmetries from its input
space into its output space. Equivariant neural networks guarantee equivariance for
arbitrary groups, reducing the system design complexity. Motivated by the theoreti-
cal/experimental development of quantum computing, in particular with the quantum
advantage derived from other quantum algorithms/subroutines for group theoretic
and linear algebraic problems, we explore the potential of quantum computers to
realize these structures in machine learning. This work reviews the mathematical
machinery necessary from group representation theory, surveys the theory of equiv-
ariance, and combines results in non-commutative harmonic analysis and geometric
deep learning. Convolutions and cross-correlations are examples of functions which
are equivariant to the actions of a group. We present efficient quantum algorithms
for performing linear finite-group convolutions and cross-correlations on data stored
as quantum states. Potential implementations and quantizations of the infinite group
cases also discussed.
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Chapter 1

Introduction

Preface. The motivation of my study on quantum machine learning dates back to

a conversation I had with my supervisor during my last year of undergraduate de-

gree while performing the final experiments for my senior project on superconducting

qubits. When I asked for his opinion on quantum machine learning he asked whether

I meant “ML for quantum” or “quantum for ML”? I have found this distinction fasci-

nating ever since: the first question has wide experimental application – how do we

use machine learning to understand quantum mechanics better? – and the second

question explores an entire field – how can quantum mechanics enhance our ability

to find patterns in data?

Motivation. Machine learning (ML) encompasses a wide variety of algorithms,

and modeling, classifying and categorizing tools for data processing tasks, becom-

ing a predominant apparatus in most scientific disciplines in recent years. In fact,

there are many examples of research cross fertilization between ML and the physical

sciences, where applications of ML methods have simplified observations in experi-

mental physics, and developments in ML have been driven by physical insights [5].

In the fields of quantum engineering we find instances where classical ML has aided

quantum by speeding up parameter tuning, quantum device simulation and control in

several qubit realizations such as superconducting qubits [22], quantum dots, nitrogen

vacancy (NV) diamond centers and ion traps [17].

Machine learning also has the ability to provide approximate simulations of sys-
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tems in nature, by learning models of a system and predicting the system’s behavior.

While machine learning is a rapidly expanding field fueled by the rapid progression

of computer power, quantum systems produce atypical patterns that are hard to pro-

duce and recognize classically. Similarly, quantum information processors potentially

have the ability to recognize patterns that are hard to recognize classically. Quan-

tum computers can process information differently from classical computers on the

basis of non-classical effects such as quantum coherence and entanglement. To this

end, quantum machine learning encompasses the techniques of quantum software that

could enable machine learning that is more powerful than what can be performed on

classical computers; although its progress is currently constrained by hardware and

software interaction limitations.

A quantum algorithm is a set of instructions to be performed on a quantum com-

puter for solving a particular problem. In quantum machine learning, quantum al-

gorithms are used as subroutines of larger implementations to classify and sample

classically inaccessible systems. Speedups in machine learning are currently charac-

terized as a function of measures from complexity theory: query complexity and gate

complexity. Query complexity quantifies the queries to the information source for

the algorithm. Gate complexity quantifies the number of elementary quantum opera-

tions (or gates) required to obtain the desired result. A quantum algorithm exhibits

a quantum speedup by having lower query complexity, gate complexity, or both, in

comparison to its classical counterpart.

Most quantum machine learning algorithms involve the loading of classical data

into a quantum system, which remains an outstanding challenge. Theoretically, a

qRAM (quantum Random Access Memory) uses 𝑛 qubits to address any quantum

superposition of 𝑁 = 2𝑛 memory cells: its architecture exponentially reduces the

requirements for a memory call by requiring entanglement among exponentially less

gates [25]; yet no functioning implementations exist as of today. There is also hope

on platforms such as quantum annealers and programmable quantum optical arrays,

as specific-purpose quantum information processors that can realize deep learning

architectures [1]. While fault tolerant universal quantum computers are still years
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away, there is still a growing interest in the community for quantum machine learning

on near-term quantum devices.

Overview The main contributions of this thesis are

1. A concrete quantum algorithm for equivariant transformations (group convolu-

tions and cross-correlations) on finite groups.

2. Setting the grounds to quantize the spherical CNNs – useful for rotationally

equivariant data, i.e., data whose classification and analysis is invariant under

𝑆2 → 𝑆𝑂(3), a compact non-abelian group.

3. Discussing the prospects for quantum equivariant neural networks, and their

conceptual role in the context of geometric unification of ML problems.

Structure This thesis is organized as follows. Chapter 2 presents the math-

ematical background through rigorous definitions and illustrations on group theory,

representation theory, harmonic analysis and geometric deep learning. Equivariant

neural networks are a subset of the broader topic of geometric deep learning, i.e.,

learning with data from the perspectives of symmetry and invariance. We also pro-

vide some background on quantum computing as well as existing quantum algorithms

that will prove useful later on.

The body of the thesis begins in chapter 3, where we present our recent results on

efficient quantum algorithms for performing linear finite group convolutions and cross-

correlations on data stored as quantum states. Convolutions and cross-correlations

provide a means to apply linear equivariant transformations. In chapter 4, we explore

the case of infinite locally compact groups, such as SO(3). We present an overview of

existing classical equivariant architectures; then, using the theoretical framework of

[11], we propose a pathway to quantize spherical CNNs, SO(3) group cross-correlations

with quantum oracles in the higher layers of a spherical CCNs – useful for rotationally

equivariant data.

Then in chapter 5 –discussion and conclusions– we explore how our mathemat-

ical machinery can be a step towards the construction quantum equivariant neural
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networks. Furthermore, we discuss implementations: existing libraries of quantum

CNNs, prospects of existing software to run QML programs and inherent limitations

of QML. Finally, we provide a summary of the results and conclusions.
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Chapter 2

Mathematical background

This thesis touches on group representation theory, quantum algorithms, harmonic

analysis and geometric deep learning. In this chapter, we introduce some mathe-

matical background that will be necessary for understanding the main results and

conjectures.

2.1 Group theory

Equivariance, as the focus of study of this thesis, requires definition of groups and

homogeneous spaces.

Definition 1 (group [20]). A group (𝐺, ·) is a set endowed with an associative binary

operation 𝐺×𝐺 → 𝐺, an identity element 𝑒, and where each element 𝑔 ∈ 𝐺 has an

inverse 𝑔−1 also in the set, which satisfies 𝑔𝑔−1 = 𝑒 = 𝑔−1𝑔.

• when · is commutative, 𝐺 is abelian

• when the set is endowed with a topology where · and the inverse map are con-

tinuous, 𝐺 is a topological group

• when such topology is compact, 𝐺 is a compact group

• when 𝐺 is a smooth manifold and · and the inverse map are smooth, 𝐺 is a Lie

group
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Examples. The following groups will be either illustrative of or relevant to our

study.

1. The additive group of Z/𝑛Z: the integers modulo 𝑛. Every finite cyclic group

of order 𝑛 is isomorphic to Z/𝑛Z.

2. The dihedral group 𝐷𝑛: the group of symmetries of the regular 𝑛-gon in the

plane. 𝐷𝑛 consists of reflections and rotations by 2𝜋/𝑛. The dihedral group 𝐷𝑛

is of order 2𝑛 and is represented by 𝐷𝑛 = Z/𝑛Z ⋊ Z/2Z.

3. SO(3): the group of rotations in 3D, a compact, non-abelian Lie group.

Definition 2 (subgroup). A subgroup (𝐻, ·) of a group (𝐺, ·) is a group such that

𝐻 ⊆ 𝐺 and is denoted by 𝐻 ≤ 𝐺.

Definition 3 (coset space). Given a subgroup 𝐻 and an element 𝑔 of a group 𝐺, the

left coset is defined as 𝑔𝐻 = {𝑔ℎ|ℎ ∈ 𝐻}. The set of left cosets partitions 𝐺 in the

left coset space 𝐺/𝐻. The definitions for right cosets 𝐻𝑔 and the right coset space

𝐻∖𝐺 are analogous.

2.2 Representation theory

Group representation theory studies groups by how they act on vector spaces: el-

ements of the group are represented as linear maps between vector spaces. Repre-

sentations of a group translate the action of groups onto matrix operations. Group

representations (i) represent actions on vector spaces, and (ii) form bases for spaces

of functions on groups.

A group homomorphism between groups 𝐺 and 𝐻 is a map 𝑓 : 𝐺 → 𝐻 such

that 𝑓(𝑔1𝑔2) = 𝑓(𝑔1)𝑓(𝑔2). If 𝑓 is a bijection (one-to-one and onto), then 𝑓 is an

isomorphism.

The group action on a space is a group homomorphism 𝜑 of a given group into

the group of transformations of the space. The set of elements 𝑥 ∈ 𝐺 such that 𝜙(𝑥)

is the identity is the kernel of 𝜙, Ker 𝜙. The kernel and image of a homomorphism

𝜙 are always subgroups, Ker 𝜙 ≤ 𝐺 and Im 𝜙 ≤ 𝐺.

18



Definition 4 (homogeneous space). The action of a group 𝐺 is transitive on a space

𝒳 if for any pair of elements 𝑥, 𝑦 ∈ 𝒳 there exists an element 𝑔 ∈ 𝐺 s.t. 𝑦 = 𝑔𝑥. A

homogeneous space 𝒳 of a group 𝐺 is a space where the group acts transitively.

Definition 5 (representation [20]). Let 𝐺 be a group and 𝒱 a vector space over some

field. A linear representation is a group homomorphism 𝜌 : 𝐺 → 𝐺𝐿(𝒱), the general

linear group 1. If 𝒱 is an inner product space and 𝜌 is continuous and preserves the

inner product, it is called a unitary representation.

Example 1. Consider the multiplicative group 𝐺 = 𝑈(1) of numbers of the form

𝑔𝜃 = 𝑒𝑖𝜃. Let 𝜌 be the map

𝜌(𝑒𝑖𝜃) =

⎛⎝ cos 𝜃 sin 𝜃

− sin 𝜃 cos 𝜃.

⎞⎠ (2.1)

𝜌 is a representation of 𝐺 on R2. It is straightforward to verify that 𝑔𝜃1𝑔𝜃2 = 𝑔𝜃1+𝜃2

and 𝜌(𝑒𝑖(𝜃1+𝜃2)) = 𝜌(𝑒𝑖𝜃1)𝜌(𝑒𝑖𝜃2).

Example 2. [52] Consider the finite group 𝑍6. Its group action was modular

arithmetic, which is not linear. There are multiple representations for cyclic groups.

In this case, we can form a 2D vector representation through the space, using rotation

matrices of 2𝜋
6

. The 𝑘th representation is

⎛⎝cos 𝑘2𝜋
6

− sin 𝑘2𝜋
6

sin 𝑘2𝜋
6

cos 𝑘2𝜋
6

⎞⎠ , 𝑘 ∈ {0, 1, 2, 3, 4, 5} (2.2)

It is straightforward to verify that this is a representation by checking that 𝑟𝑘·𝑟6−𝑘 = 𝑒.

The group action is done by repeated application to the point (1, 0), which rotates

around the circle.

A representation is unitary if 𝜌(𝑔) is a unitary matrix, i.e., 𝜌(𝑔)−1 = 𝜌†(𝑔)2 for all

𝑔. A representation is irreducible if it contains no proper invariant subspaces with
1for finite dimensional 𝒱 and 𝑚 = dim𝒱, 𝐺𝐿(𝒳 ) is the space of 𝑚×𝑚 invertible matrices
2𝜌†(𝑔) is the adjoing of the matrix = transpose and complex conjugate
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respect to the action of the group. On the contrary, a representation is reducible if

it decomposes as a direct sum of irreducible subrepresentations. We will often be

interested in obtaining the irreducible representations of a group, i.e., decomposing a

representation in its irreducible parts.

Definition 6 (irreducible representations). Let 𝜌 : 𝐺 → 𝐺𝐿(𝒱) be a representation

of 𝐺 on a vector space 𝒱, and a vector subspace 𝒲 of 𝒱. When 𝒲 is invariant

under the action of 𝐺 (i.e. 𝜌(𝑔)(𝑤) ∀𝑔 ∈ 𝐺, 𝑤 ∈ 𝒲), the restriction of 𝜌 to 𝒲 is a

representation of 𝐺 on 𝒲, called a subrepresentation. We can call 𝜌 an irreducible

representation when the only subrepresentations of 𝜌 are 𝒱 itself and the zero vector

space.

The main idea is that decomposable unitary representations matrices can be

formed upon smaller irreducible matrix blocks, i.e., 𝜌𝑖(𝑔),

𝜌(𝑔) = S−1

⎛⎜⎜⎜⎜⎜⎜⎝
𝜌0(𝑔) 0 . . . 0

0 𝜌1(𝑔) . . . 0
...

... . . . ...

0 0 . . . 𝜌𝑘(𝑔)

⎞⎟⎟⎟⎟⎟⎟⎠S, (2.3)

this notation works for a generic 𝑔. It satisfies that 𝜌(𝑔1)𝜌(𝑔2) gives back an element

in 𝐺− 𝜌(𝑔′), with the same block matrix structure. Also, in direct sum notation,

𝜌(𝑔) = 𝜌0(𝑔)⊕ 𝜌1(𝑔)⊕ · · · ⊕ 𝜌𝑘(𝑔). (2.4)

These irreducible representations form orthonormal basis functions analogous to basis-

vectors from Hilbert spaces. The Peter-Weyl theorem [14] states that these irreducible

representations can be arranged to form a complete basis-set for integrable 𝐿2 func-

tions.

We will take into account the following facts about irreducible representations

(irreps) further down in the main work.

Theorem 7 (Maschke’s theorem). Let 𝑉 be a representation of the compact group
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𝐺. If 𝑈 is a subrepresentation of 𝑉 , then there exists a subrepresentation 𝑊 of 𝑉

such that 𝑉 = 𝑈 ⊕ 𝑉 .

In particular, every representation of a finite group is a direct sum of irreps.

• Unirreps. Every finite-dimensional unitary representation of a compact group

is a direct sum of unitary irreducible representations.

• The sum of the dimensions squared of all the irreducible representation of a

group 𝐺 equals group size 𝐺 :
∑︀

𝜎 |𝑑𝜎|2 = |𝐺|.

For abelian groups, the irreducible representations all have dimension equal to one.

For non-abelian groups, there is at least one irreducible representation which has

dimension greater than one. Remarkably, for finite groups, unitary irreducible repre-

sentations always exist.

2.3 Theory of equivariance

Theoretically, a symmetry of a system is a transformation that leaves a certain prop-

erty of such system or object unchanged. The symmetry on the set Ω underlying

the space 𝒳 (Ω) will influence the structure of the functions defined on such space.

To prevent further confusion for the reader, it is important to distinguish between

the properties of invariance and equivariance, since both terms are ubiquitous in the

related literature. A function 𝑓 : 𝒳 (Ω) → 𝒴 is 𝐺-invariant if 𝑓(𝜌(𝑔)𝑥) = 𝑓(𝑥) for all

𝑔 ∈ 𝐺 and 𝑥 ∈ 𝒳 (Ω), i.e., its output is unaffected by the group action on the input.

A function 𝑓 : 𝒳 (Ω) → 𝒴 is 𝐺-equivariant if 𝑓(𝜌(𝑔)𝑥) = 𝜌(𝑔)𝑓(𝑥) for all 𝑔 ∈ 𝐺, i.e.,

group action on the input affects the output on the same way.

In other words, a mapping ℎ(·) is invariant to a set of transformations 𝐺 if when

we apply any transformation 𝑔 to the input of ℎ, the output remains unchanged by

𝑔. A mapping ℎ(·) is equivariant to a set of transformations 𝐺 if when we apply any

transformation 𝑔 to the input of ℎ, the output is also transformed by 𝑔.
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Definition 8 (Equivariance [32]). Let 𝐺 be a group and 𝒳1, 𝒳2 be two sets with

corresponding 𝐺-actions

𝑇𝑔 : 𝒳1 → 𝒳1 𝑇 ′
𝑔 : 𝒳2 → 𝒳2 (2.5)

Let 𝑉1 and 𝑉2 be vector spaces with basis elements labeled by elements of 𝒳1 and 𝒳2

respectively, and let 𝐿𝑉1(𝐿𝑉2) be the set of functions mapping 𝒳1(𝒳2) to 𝑉1(𝑉2). Let

T and T′ be the induced actions of group elements onto 𝑉1 and 𝑉2 respectively (e.g.,

permutations). A map 𝜑 : 𝐿𝑉1 → 𝐿𝑉2 is equivariant if

𝜑(T𝑔(𝑓)) = T′
𝑔(𝜑(𝑓)) ∀𝑓 ∈ 𝐿𝑉1 . (2.6)

A linear map is equivariant if it transfers symmetries from the function’s input

space into its output space. In other words, a map (for example, a neural network 𝜓)

is equivariant if the result of 𝜓[T𝑔𝑓(𝑥)] – the network acting on the transformed input

function, is equivalent to T2𝜓[𝑓(𝑥)] – the transform acting on the network output.

The property of equivariance can be visualized as a commutative diagram:

𝐿𝑉1 𝐿𝑉1

𝐿𝑉2 𝐿𝑉2

T𝑔

𝜑 𝜑

T′
𝑔

(2.7)

Following this definition, CNNs are checked to be equivariant by comparing the

results of transforming the input function and the output function. Refer to Appendix

A: a network will be G-equivariant if the output looks the same by applying the

rotation before or after.

2.4 Harmonic analysis

To begin our exploration of quantum algorithms for equivariance, we first look at

harmonic analysis in the form of the Fourier transform. The quantum Fourier trans-
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form (QFT) is one of the principal algorithmic tool and sources of speedup underlying

most efficient quantum algorithms.

Let us begin with the Fourier transforms over finite Abelian and non-Abelian

groups. The definitions for the following two subsections are paraphrased from [8].

Some of the proofs of the main statements in this section are deferred to Appendix

A.

2.4.1 Abelian Quantum Fourier Transform

Recall the group Z/𝑛Z, the additive group of integers modulo 𝑁 . The quantum

Fourier transform, QFT for short, is a unitary operation 𝐹Z/𝑛Z.

Fourier transform over finite Abelian groups Let 𝜔𝑁 := 𝑒𝑖2𝜋/𝑁 be the 𝑁th

root of unity. The action of the unitary 𝐹Z/𝑛Z on a basis state |𝑥⟩ ∈ Z/𝑛Z is

𝐹Z/𝑛Z : |𝑥⟩ → 1√
𝑁

∑︁
𝑦∈𝐹Z/𝑛Z

𝜔𝑥·𝑦
𝑁 |𝑦⟩ . (2.8)

Following up with the last section that a finite Abelian group 𝐺 has |𝐺| distinct

one-dimensional irreducible representations 𝜌 ∈ �̂�. Recall that such representations

are functions 𝜌 : 𝐺 → C such that 𝜌(𝑔1 + 𝑔2) = 𝜌(𝑔1)𝜌(𝑔2) 𝑔1, 𝑔2 ∈ 𝐺, where additive

notation is used for Abelian groups. The quantum Fourier transform (QFT) is defined

as follows:

Quantum Fourier transform 𝐹𝐺 over 𝐺

𝐹𝐺 : |𝑥⟩ → 1√︀
|𝐺|

∑︁
𝜌∈�̂�

𝜌(𝑥) |𝜌⟩ (2.9)

for each 𝑥 ∈ 𝐺.

Let the shift operator 𝑃𝑠 for 𝑠 ∈ 𝐺, be defined as 𝑃𝑠 : |𝑥⟩ → |𝑥+ 𝑠⟩ for any 𝑠 ∈ 𝐺.

It can be shown that measurements in the Fourier basis produce the same statistics
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for pure states |𝜓⟩ as for its shift 𝑃𝑠 |𝜓⟩,

𝐹𝐺𝑃𝑠𝐹
†
𝐺 =

∑︁
𝜌∈�̂�

𝜌(𝑠) |𝜌⟩ ⟨𝜌| (2.10)

i.e., a 𝐺-invariant mixed state is diagonalized by 𝐹𝐺.

Below, we will use the following

Theorem 9 (Fundamental theorem of finite abelian groups [18]). Every finite abelian

group 𝐺 is a direct product of cyclic groups whose orders are prime powers uniquely

determined by the group.

𝐺 ∼= (Z/𝑝𝑟11 Z)× . . .× (Z/𝑝𝑟𝑘𝑘 Z) (2.11)

Remark. As a consequence, it can be shown later on that the QFT over 𝐺 can be

decomposed as the tensor product of QFTs as

𝐹Z/𝑝𝑟11 Z ⊗ . . .⊗ 𝐹Z/𝑝𝑟𝑘𝑘 Z. (2.12)

The matrix representation of the Fourier transformation over Z/𝑁Z from the basis

of states {|𝑥⟩ : 𝑥 ∈ 𝐺} to the basis {|𝜌⟩ : 𝜌 ∈ �̂�},

𝐹Z/𝑁Z =
1√
𝑁

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 . . . 1

1 𝜔𝑁 𝜔2
𝑁 . . . 𝜔𝑁−1

𝑁

1 𝜔2
𝑁 𝜔4

𝑁 . . . 𝜔2𝑁−2
𝑁

...
...

... . . . ...

1 𝜔𝑁−1
𝑁 𝜔2𝑁−2

𝑁 . . . 𝜔
(𝑁−1)(𝑁−1)
𝑁

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(2.13)

expressing it in the basis state,

𝐹Z/𝑁Z =
1√
𝑁

∑︁
𝑥,𝑦∈Z/𝑁Z

𝜔𝑥·𝑦
𝑁 |𝑦⟩ ⟨𝑥| , (2.14)

𝐹Z/𝑁Z is a unitary transformation since 𝐹Z/𝑁Z𝐹
†
Z/𝑁Z = 𝐹 †

Z/𝑁Z𝐹Z/𝑁Z = 1.
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Proof. Assume that 𝑁 = 2𝑛, and represent the integer 𝑥 ∈ Z/𝑁Z as 𝑥0, 𝑥1, . . . , 𝑥𝑛−1

where 𝑥 =
∑︀𝑛−1

𝑗=0 2
𝑗𝑥𝑗. Let us rewrite the Fourier transform of |𝑥⟩ as

𝐹Z/2𝑛Z |𝑥⟩ =
1√
2𝑛

∑︁
𝑦∈{0,1}𝑛

𝜔
(
∑︀𝑛−1

𝑗=0 2𝑗𝑦𝑗)

2𝑛 |𝑦0, . . . , 𝑦𝑛−1⟩

=
1√
2𝑛

𝑛−1⨂︁
𝑗=0

∑︁
𝑦𝑗∈{0,1}

𝑒𝑖2𝜋𝑥·𝑦𝑗/2
𝑛−𝑗 |𝑦𝑗⟩

=
𝑛−1⨂︁
𝑗=0

|0⟩+ 𝑒𝑖2𝜋
∑︀𝑛−1

𝑘−0 2𝑗+𝑘−𝑛𝑥𝑘 |1⟩√
2

=:
𝑛−1⨂︁
𝑗=0

|𝑧𝑗⟩ .

(2.15)

thus the Fourier transform of |𝑥⟩ can in fact be written as the tensor product of 𝑛

qubits.

2.4.2 Non-Abelian Quantum Fourier Transform

We now turn to the non-Abelian Fourier transform.

The Fourier transform of the basis vector |𝑥⟩ corresponding to a given 𝑥 ∈ 𝐺 is a

weighted superposition over a complete set of irreps �̂�,

|�̂�⟩ = 1√︀
|𝐺|

∑︁
𝜌∈�̂�

𝑑𝜌 |𝜌, 𝜌(𝑥)⟩ , (2.16)

where |𝜌(𝑥)⟩ is a normalized state with entries given by the 𝑑𝜌 × 𝑑𝜌 matrix

𝜌(𝑥)/
√︀
𝑑𝜌,

|𝜌(𝑥)⟩ := (𝜌(𝑥)⊗ 𝐼𝑑𝜌)

𝑑𝜌∑︁
𝑗=1

|𝑗, 𝑗⟩√︀
𝑑𝜌

=

𝑑𝜌∑︁
𝑗=1

𝜌(𝑥)𝑗, 𝑗√︀
𝑑𝜌

|𝑗, 𝑘⟩ .

(2.17)

The quantum Fourier transform over𝐺 returns a state also composed by a weighted
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superposition over the irreps,

𝐹𝐺 :=
∑︁
𝑥∈𝐺

|�̂�⟩ ⟨𝑥|

=
∑︁
𝑥∈𝐺

∑︁
𝜌∈�̂�

√︃
𝑑𝜌
|𝐺|

𝑑𝜌∑︁
𝑗,𝑘=1

𝜌(𝑥)𝑗,𝑘 |𝜌, 𝑗, 𝑘⟩ ⟨𝑥| .
(2.18)

𝐹𝐺 is a unitary transformation, and is also precisely the transformation that block

-diagonalizes the left and right regular representations, simultaneously. For the left

regular representation 𝐿 of 𝐺 : 𝐿𝑖 |𝑗⟩ = |𝑖𝑗⟩ ∀ 𝑖, 𝑗 ∈ 𝐺, we have that ([8], Eq. 123)

�̂�𝑖 = 𝐹𝐺𝐿𝑖𝐹
†
𝐺 =

∑︁
𝑗∈𝐺

|𝑖𝑗⟩ ⟨�̂�| =
⨁︁
𝜌∈�̂�

(︀
𝜌(𝑖)⊗ 𝐼𝑑𝜌

)︀
. (2.19)

Analogously, for the right regular representation 𝑅 of 𝐺 : 𝑅𝑖 |𝑗⟩ = |𝑗𝑖−1⟩ ∀ 𝑖, 𝑗 ∈

𝐺, yielding,

�̂�𝑖 = 𝐹𝐺𝑅𝑖𝐹
†
𝐺 =

⨁︁
𝜌∈�̂�

(︀
𝐼𝑑𝜌 ⊗ 𝜌(𝑖)*

)︀
. (2.20)

These identities will be key when convolving filters and inputs in the convolutions

and cross correlations operations over non-abelian group which require matrix multi-

plication over irreps, and where diagonalization is non-trivial.

2.4.3 Generic Quantum Fourier Transform

The method of [40] has given rise to the first subexponential-size quantum circuits for

the QFT over the linear groups GL𝑘(𝑞), SL𝑘(𝑞), the finite Lie groups, for any prime

power 𝑞.

2.5 Geometric deep learning

Equivariant Neural Networks are part of a broader topic of geometric deep learn-

ing. The field encompasses all learning methods with data that has some underlying

geometric relationships.
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This symmetry-based effort at unification is reminiscent to the symmetry princi-

ples allowing to unify the fundamental forces of nature with the exception of gravity

in the Standard Model. Conjectured by the “5G” paper – Grids, Groups, Graphs,

Geodesics, and Gauges [4], the current state of deep learning is reminiscent of the

situation of geometry in the XIXth century: Euclidean, projective, hyperbolic and

elliptic geometry were finally unified by the breakthrough insight of Felix Klein to

define geometry as the study of invariants, structures preserved under symmetry

transformations.

Such a “geometric unification” endeavour in the spirit of the Erlangen Program

serves the purpose of, on one hand, providing a common mathematical framework to

study the most successful neural network architectures, such as CNNs, RNNs, GNNs,

and Transformers. On the other, it gives a constructive procedure to incorporate

prior physical knowledge into neural architectures and provide principled ways to

build future architectures yet to be invented.

2.6 Quantum algorithms

Quantum computers achieve speedup over classical computers by exploiting the prop-

erties of interference and entanglement between quantum amplitudes. Quantum me-

chanics is known by the ability to represent a large number of amplitudes in a few

qubits = quantum bits. A lot of quantum algorithms – including Shor’s algorithm,

obtain the exponential interference property leading to a quantum speedup orches-

trated by the unitary operation of the quantum Fourier Transform (QFT), which is

an algebraic operation.

The main motivation for this work derives from the study of quantum algorithms

for algebraic problems and linear algebra. The focus of study of this work mainly

arises from implementations of equivariant transformations in deep learning in the

context of group convolutional neural networks [10]. While each section will present

the particular pieces of related work that are directly related to each topic, we summa-

rize here the current of quantum algorithms for related problems. We classify them in
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(1) quantum algorithms for group theory, (2) quantum algorithms for linear algebra

and finally, (3) classical results on Equivariant and Convolutional Neural Networks.

Recall that the quantum Fourier Transform (QFT), which is an algebraic operation.

The exposition of these points is inspired by the exposition presented in [6].

2.6.1 Quantum algorithms in group theory

The pioneering efforts for solving group theoretic problems in quantum computing

dates back to quantum algorithms aimed at solving the hidden subgroup problem

[8]. The algorithm proposed by [50] for solving the hidden shift problem, employed

group deconvolution on quantum states storing a superposition of queried function

values. These ideas have been further developed in [45, 46]. For instance, an algo-

rithm provided by [40], performs generic group Fourier transforms on a quantum

computer which is a basis of interest for further transformations performed in this

work. In the context of quantum circuit analysis, group convolution has been used

to analyze rates of convergence of ensembles of unitaries [19, 13].

2.6.2 Quantum algorithms in linear algebra

Most of the core methods of this study are first formulated on algorithms for per-

forming linear algebraic operations on a quantum computer. We employ methods for

block encoding unitary operators [36, 24] and applying linear combinations of

unitary matrices [33, 26] vert extensively in our algorithms.

Prior quantum algorithms have proposed efficient methods for performing matrix

multiplication and solving linear systems of equations for dense matrices. The

most related papers are those for applying circulant 3 or Toeplitz matrices [51, 55, 37].

From an applied perspective, some related work achieves tp pre-condition matrices

using circulant matrices or implementing Green’s functions by taking advantage of

symmetries in a problem [49, 47].

3Circulant matrices are a specific instance of the more general form of group cross-correlation
matrices studied here.
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2.6.3 Equivariant and group convolutional neural networks

In the past few years, many algorithms for equivariant neural networks have been

proposed and analyzed [32, 29, 10, 44]. These algorithms employ and analyze weight

sharing schemes that are inherent in equivariant transformations. This work has

motivated a long line of research aiming to take advantage of symmetries in data

[54, 15, 53] with applications particularly in physics and chemistry [3, 48, 31, 9].

Many quantum algorithms have converted machine learning algorithms into quan-

tum algorithms that are related to convolutions. For example, [28] constructs a

quantum algorithm that mimics the operation of a classical convolutional neural net-

work (e.g., for image recognition). Quantum versions of convolutional neural net-

works which parameterize convolutions as quantum gates have also been proposed

[12, 34, 42].
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Chapter 3

Quantum algorithm for finite group

equivariant transformations

Preliminaries

Neural Networks In general, deep neural networks can be represented as a chain

of operations 𝑊𝑖 with optimized parameters, and interleaved with nonlinearities 𝜎𝑖 –

e.g., the ReLU(𝑥𝑖) = max(𝑥𝑖, 0),

𝑓out = 𝑊𝑛(. . . 𝜎2(𝑊2(𝜎1(𝑊1𝑓in))) . . . ) (3.1)

In Convolutional Neural Networks (CNNs), these operations are convolutions.

Equivariant neural networks leverage properties of equivariance and symmetries of

certains types of data to reduce model complexity. While there exist different types

of network depending on the group, whether equivariance applies on the local or

global transformations, and whether the feature maps are scalar or general fields [20].

In the very case of our study, we focus on finite groups where convolution is reduced

to summing over elements of the group.
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3.1 Introduction

Convolutions and cross-correlations are examples of functions which are equivariant

to the actions of a group. In fact, [32] proves that a feedforward neural network

layer is equivariant to the action of a group if and only if each layer of the neu-

ral network performs a generalized form of convolution or cross correlation. In this

section we overview the group equivariant transformations of group convolution and

cross-correlation and present our recent published work [6] on efficient quantum al-

gorithms for these linear group operations on data stored as quantum states. For the

remaining of this chapter, we restrict ourselves to finite groups where the exposition

of representations and group Fourier transforms is simpler.

3.2 Preliminaries

Given functions 𝑓 and 𝑔 which map group elements 𝑢 ∈ 𝐺 to complex or real numbers,

a convolution over a group 𝐺 is defined as

(𝑓 ⊛ 𝑔)(𝑢) =
∑︁
𝑣∈𝐺

𝑓(𝑢𝑣−1)𝑔(𝑣). (3.2)

Similarly, cross-correlation is defined as

(𝑓 ⋆ 𝑔)(𝑢) =
∑︁
𝑣∈𝐺

𝑓(𝑣𝑢−1)𝑔(𝑣). (3.3)

Convolutions and cross-correlations are linear operations, and thus they can be con-

verted into matrix formulations.

3.2.1 Converting group convolution to a linear algebraic for-

mulation

Given two functions that map group elements to complex numbers 𝑚,𝑥, : 𝐺 → C –

the filter and input, we vectorize these functions over group elements by associating
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every group element to a basis of the vector space. Denote these vectors of dimension

|𝐺| as �⃗� (filter )and �⃗� (input). Any convolution or cross-correlation can be converted

into a matrix weighted sum of the left and right regular representations 𝐿𝑢 and 𝑅𝑢,

respectively.

Note that, for convolution (𝑚⊛ 𝑥)(𝑢)

(𝑚⊛ 𝑥)(𝑢) =
∑︁
𝑣∈𝐺

𝑚(𝑢𝑣−1)𝑥(𝑣)

=
∑︁
𝑣∈𝐺

𝑚(𝑣−1)𝑥(𝑣𝑢)

=
∑︁
𝑣∈𝐺

𝑚(𝑣)𝑥(𝑣−1𝑢)

=
∑︁
𝑣∈𝐺

𝑚(𝑣) [𝐿𝑣�⃗�]𝑢 ,

(3.4)

where the notation [·]𝑖 indicates the 𝑖-th component of the vector within the brackets.

In the second and third lines above, we re-order the sum over all group elements by

transforming 𝑣 → 𝑣𝑢 and 𝑣 → 𝑣−1 respectively. Converting the above into a vector

form over the output, we have the final result:

�⃗�⊛ �⃗� =
∑︁
𝑖∈𝐺

𝑚𝑖𝐿𝑖�⃗� =𝑀⊛�⃗� ;𝑀⊛ =
∑︁
𝑖∈𝐺

𝑚𝑖𝐿𝑖 (3.5)

noting that the others require similar steps. The results are summarized in the fol-

lowing lemma.

Lemma 10 (Group operations as matrices). Given a group 𝐺, let �⃗� ∈ C|𝐺| and

�⃗� ∈ C|𝐺| be the filter and input for a group operation. Then, group convolutions

and cross-correlations correspond to matrix weighted sums of the left or right regular

representations.
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(𝑚⊛ 𝑥)(𝑢) =
∑︁
𝑣∈𝐺

𝑚(𝑢𝑣−1)𝑥(𝑣)
convolution⇐⇒ �⃗�⊛ �⃗� =𝑀⊛�⃗�, 𝑀⊛ =

∑︁
𝑖∈𝐺

𝑚𝑖𝐿𝑖

(𝑚⊛𝑅 𝑥)(𝑢) =
∑︁
𝑣∈𝐺

𝑚(𝑣−1𝑢)𝑥(𝑣)
right convolution⇐⇒ �⃗�⊛𝑅 �⃗� =𝑀𝑅⊛�⃗�, 𝑀𝑅⊛ =

∑︁
𝑖∈𝐺

𝑚𝑖𝑅𝑖

(𝑚 ⋆ 𝑥)(𝑢) =
∑︁
𝑣∈𝐺

𝑚(𝑣𝑢−1)𝑥(𝑣)
cross−correlation⇐⇒ �⃗� ⋆ �⃗� =𝑀⋆�⃗�, 𝑀⋆ =

∑︁
𝑖∈𝐺

𝑚𝑖𝐿
−1
𝑖

(𝑚 ⋆𝑅 𝑥)(𝑢) =
∑︁
𝑣∈𝐺

𝑚(𝑢−1𝑣)𝑥(𝑣)
right cross−correlation⇐⇒ �⃗� ⋆𝑅 �⃗� =𝑀𝑅⋆�⃗�, 𝑀𝑅⋆ =

∑︁
𝑖∈𝐺

𝑚𝑖𝑅
−1
𝑖

(3.6)

For each of the operations above, we also have a corresponding convolution theo-

rem which applies the operation in the Fourier domain of the group.

For standard convolution, we have:

̂(𝑚⊛ 𝑥)(𝜌) =
∑︁
𝑢∈𝐺

𝜌(𝑢)
∑︁
𝑣∈𝐺

𝑚(𝑢𝑣−1)𝑥(𝑣)

=
∑︁
𝑢∈𝐺

∑︁
𝑣∈𝐺

𝜌(𝑢)𝜌(𝑣−1)𝜌(𝑣)𝑚(𝑢𝑣−1)𝑥(𝑣)

=
∑︁
𝑣∈𝐺

∑︁
𝑢∈𝐺

𝑚(𝑢𝑣−1)𝜌(𝑢𝑣−1)𝑥(𝑣)𝜌(𝑣)

=
∑︁
𝑣∈𝐺

[︃∑︁
𝑢∈𝐺

𝑚(𝑢𝑣−1)𝜌(𝑢𝑣−1)

]︃
𝑥(𝑣)𝜌(𝑣)

=
∑︁
𝑣∈𝐺

�̂�(𝜌)𝑥(𝑣)𝜌(𝑣)

= �̂�(𝜌)�̂�(𝜌).

(3.7)

Since (𝑚 ⊛𝑅 𝑥)(𝑢) = (𝑥 ⊛ 𝑚)(𝑢), then the above argument can also be applied to

show that ̂(𝑚⊛𝑅 𝑥)(𝜌) = �̂�(𝜌)�̂�(𝜌).
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For standard cross-correlation, we similarly can show that:

̂(𝑚 ⋆ 𝑥)(𝜌) =
∑︁
𝑢∈𝐺

𝜌(𝑢)
∑︁
𝑣∈𝐺

𝑚(𝑣𝑢−1)𝑥(𝑣)

=
∑︁
𝑢∈𝐺

∑︁
𝑣∈𝐺

𝜌(𝑢)𝜌(𝑣−1)𝜌(𝑣)𝑚(𝑣𝑢−1)𝑥(𝑣)

=
∑︁
𝑣∈𝐺

∑︁
𝑢∈𝐺

𝑚(𝑣𝑢−1)𝜌(𝑢𝑣−1)𝑥(𝑣)𝜌(𝑣)

=
∑︁
𝑣∈𝐺

[︃∑︁
𝑢∈𝐺

𝑚(𝑣𝑢−1)𝜌(𝑣𝑢−1)†

]︃
𝑥(𝑣)𝜌(𝑣)

=
∑︁
𝑣∈𝐺

�̂�(𝜌)†𝑥(𝑣)𝜌(𝑣)

= �̂�(𝜌)†�̂�(𝜌).

(3.8)

Since (𝑚 ⋆𝑅 𝑥)(𝑢) = (𝑥 ⋆ 𝑚)(𝑢), similarly the above argument can be applied to

show that (𝑚⊛𝑅 𝑥)(𝜌) = �̂�(𝜌)�̂�(𝜌)†.

Lemma 11 (Convolution theorems [23]). Given a group 𝐺, let �⃗� ∈ C|𝐺| and �⃗� ∈ C|𝐺|

be the filter and input for a group operation. Let �̂�(𝜌) and �̂�(𝜌) indicate the value of

the Fourier transform of the filter and input for irreducible representation 𝜌. Then,

one can perform group operations in the Fourier regime by applying the corresponding

convolution theorem.

(𝑚⊛ 𝑥)(𝑢) =
∑︁
𝑣∈𝐺

𝑚(𝑢𝑣−1)𝑥(𝑣)
convolution⇐⇒ ̂(𝑚⊛ 𝑥)(𝜌) = �̂�(𝜌)�̂�(𝜌)

(𝑚⊛𝑅 𝑥)(𝑢) =
∑︁
𝑣∈𝐺

𝑚(𝑣−1𝑢)𝑥(𝑣)
right convolution⇐⇒ ̂(𝑚⊛𝑅 𝑥)(𝜌) = �̂�(𝜌)�̂�(𝜌)

(𝑚 ⋆ 𝑥)(𝑢) =
∑︁
𝑣∈𝐺

𝑚(𝑣𝑢−1)𝑥(𝑣)
cross−correlation⇐⇒ ̂(𝑚 ⋆ 𝑥)(𝜌) = �̂�(𝜌)†�̂�(𝜌)

(𝑚 ⋆𝑅 𝑥)(𝑢) =
∑︁
𝑣∈𝐺

𝑚(𝑢−1𝑣)𝑥(𝑣)
right cross−correlation⇐⇒ ̂(𝑚 ⋆𝑅 𝑥)(𝜌) = �̂�(𝜌)�̂�(𝜌)†

(3.9)

The reader can find examples of these concepts and the application of the convo-

lution theorems on Appendix B.
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3.2.2 Equivariance

Here, we show explicitly that convolution and cross-correlation are equivariant ac-

tions. Let 𝐺 be a group and 𝒳1,𝒳2 be two sets with corresponding 𝐺-actions

𝑇𝑔 : 𝒳1 → 𝒳1 𝑇 ′
𝑔 : 𝒳2 → 𝒳2.

Let 𝑉1 and 𝑉2 be vector spaces with basis elements labeled by elements of 𝒳1 and

𝒳2, respectively, and let 𝐿𝑉1 , (𝐿𝑉2) be the set of functions mapping 𝒳1(𝒳2) to 𝑉1(𝑉2).

Convolution. Let 𝜑𝑚 : 𝐿𝑉1 → 𝐿𝑉2 be the map performing convolution with a fixed

filter �⃗� on an input 𝑓 ,

𝜑𝑚(𝑓) = �⃗�⊛ 𝑓.

Let 𝑇𝑔, 𝑇 ′
𝑔 denote the right actions of the group,

𝑇𝑔, 𝑇
′
𝑔 : 𝑢→ 𝑢𝑔, (3.10)

and let T𝑔 and T′
𝑔 be the induced actions of group elements onto 𝑉1 and 𝑉2 respectively.

From definition 1.1, the map 𝜑𝑚 : 𝐿𝑉1 → 𝐿𝑉2 is equivariant to the action of 𝑇𝑔 since

𝜑𝑚(T𝑔𝑓) = T′
𝑔(𝜑𝑚(𝑓)).

Proof. Recall the convolution definition from 3.9

[︁
𝜑𝑚(𝑓)

]︁
𝑢
=

[︁
�⃗�⊛ 𝑓

]︁
𝑢
=

∑︁
𝑣∈𝐺

𝑚(𝑢𝑣−1)𝑓(𝑣)

Let 𝜑𝑚 act on T𝑔𝑓 ,

[︁
𝜑𝑚(T𝑔𝑓)

]︁
𝑢
=

[︁
�⃗�⊛ T𝑔𝑓

]︁
𝑢
=

∑︁
𝑣∈𝐺

𝑚(𝑢𝑣−1)
[︁
T𝑔𝑓

]︁
𝑣

=
∑︁
𝑣∈𝐺

𝑚(𝑢𝑣−1)𝑓(𝑣𝑔)
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Now redefine the sum above over 𝑣′ = 𝑣𝑔, and now we have 𝑣−1 = 𝑔(𝑣′)−1,

∑︁
𝑣∈𝐺

𝑚(𝑢𝑣−1)𝑓(𝑣𝑔) =
∑︁
𝑣′∈𝐺

𝑚(𝑢𝑔𝑣′−1)𝑓(𝑣′)

=
[︁
�⃗�⊛ 𝑓

]︁
𝑢𝑔

=
[︁
𝜑𝑚(𝑓)

]︁
𝑢𝑔

=
[︁
T′

𝑔(𝜑𝑚(𝑓))
]︁
𝑢

∀ 𝑢 ∈ 𝐺.

(3.11)

We conclude that 𝜑𝑚(T𝑔𝑓) = T′
𝑔(𝜑𝑚(𝑓)); hence convolution is equivariant to the

right actions of the group.

Cross-correlation. Let 𝜑𝑚 : 𝐿𝑉1 → 𝐿𝑉2 be the map performing cross-correlation

with a fixed filter �⃗� on an input 𝑓 ,

𝜑𝑚(𝑓) = �⃗� ⋆ 𝑓.

Let 𝑇𝑔 and 𝑇 ′
𝑔 denote the right actions of the group,

𝑇𝑔, 𝑇
′
𝑔 : 𝑢→ 𝑢𝑔

Let T𝑔 and T′
𝑔 be the induced action of group elements onto 𝑉1 and 𝑉2. From definition

1.1, the map 𝜑𝑚 : 𝐿𝑉1 → 𝐿𝑉2 is equivariant to 𝑇𝑔 since

𝜑𝑚(T𝑔𝑓) = T′
𝑔(𝜑𝑚(𝑓)).

Proof. Recall the cross correlation definition from 3.9

[︁
𝜑𝑚(𝑓)

]︁
𝑢
=

[︁
�⃗� ⋆ 𝑓

]︁
𝑢
=

∑︁
𝑣∈𝐺

𝑚(𝑣𝑢−1)𝑓(𝑣).
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Let 𝜑𝑚 act on T𝑔𝑓 ,

[︁
𝜑𝑚(T𝑔𝑓)

]︁
𝑢
=

[︁
�⃗� ⋆ T𝑔𝑓

]︁
𝑢
=

∑︁
𝑣∈𝐺

𝑚(𝑢𝑣)
[︁
T𝑔𝑓

]︁
𝑣

=
∑︁
𝑣∈𝐺

𝑚(𝑣𝑢−1)𝑓(𝑣𝑔)

Now redefine the sum above over 𝑣′ = 𝑣𝑔, and now we have 𝑣 = 𝑣′𝑔−1,

∑︁
𝑣∈𝐺

𝑚(𝑣𝑢−1)𝑓(𝑣𝑔) =
∑︁
𝑣′∈𝐺

𝑚(𝑣′𝑔−1𝑢−1)𝑓(𝑣′)

=
[︁
�⃗� ⋆ 𝑓

]︁
𝑢𝑔

=
[︁
T′

𝑔(𝜑𝑚(𝑓))
]︁
𝑢

∀𝑢 ∈ 𝐺.

Concluding that 𝜑𝑚(T𝑔𝑓) = T′
𝑔(𝜑𝑚(𝑓)); hence cross-correlation is equivariant to the

right actions of the group.

We observe in this subsections that there are two methods for performing group

convolution or cross-correlation on a quantum computer. The first is as a weighted

sum of matrices, as described in Lemma 10. The second is to perform Fourier trans-

forms to inputs, perform convolution in the Fourier regime through multiplication

as described in Lemma 11. The second method – the method of our choice in the

quantum algorithm, leverages the advantages of group Fourier transforms, which are

efficiently performable on a quantum computer [8, 40].

3.2.3 Block encodings

Throughout this study, we employ the block encoding framework to implement linear

transformations on a quantum computer [36]. In this framework, a desired linear but

not necessarily unitary transformation 𝐴 ∈ C2𝑤×2𝑤 bounded in the spectral norm by

‖𝐴‖ ≤ 1 is encoded in a unitary operator 𝑈 ∈ C2(𝑤+𝑎)×2(𝑤+𝑎) with 𝑎 ancilla qubits

such that the top left block of 𝑈 is precisely 𝐴.
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𝑈 =

⎛⎝𝐴 ·

· ·

⎞⎠ , (⟨0𝑎| ⊗ 𝐼𝑤)𝑈 (|0𝑎⟩ ⊗ 𝐼𝑤) = 𝐴, (3.12)

where 𝐼𝑤 is the identity operation on the 𝑤 qubits encoding 𝐴, i.e., applying the

unitary 𝑈 to a quantum state |0𝑎⟩ |𝜓⟩ and post-selecting on the measurement outcome

|0𝑎⟩ on the ancilla qubits is equivalent to applying the operation 𝐴 on |𝜓⟩. We can

write

𝑈 |0𝑎⟩ |𝜓⟩ = |0𝑎⟩𝐴 |𝜓⟩+ |garbage⟩ , (3.13)

where |garbage⟩ is the “remaining” state that is orthogonal to the subspace |0𝑎⟩ (i.e.,

[⟨0𝑎| ⊗ 𝐼𝑤] |garbage⟩ = 0). The probability of successfully post-selecting |0⟩𝑎 is equal

to ‖𝐴 |𝜓⟩ ‖22.

3.2.4 Quantum implementation as sum of unitaries

Let 𝑤 = ⌈log2 |𝐺|⌉ indicate the number of qubits needed to block encode a given

group operation. In the quantum case, we assume that we have access to either of

the below oracles, 𝒜𝑚 or 𝑂𝑚, as well as their inverses, which provide values of the

convolution filter as 𝑏-bit descriptions or amplitudes of a quantum state:

𝒜𝑚 : |0𝑤⟩ → 1√︀
‖�⃗�‖1

∑︁
𝑖∈𝐺

√︀
|𝑚𝑖| |𝑖⟩ ,

𝑂𝑚 : |𝑖⟩ |0𝑏⟩ → |𝑖⟩ |𝑚𝑖⟩ .
(3.14)

Digital to analog oracle conversion

Given oracle 𝑂𝑚, our goal is to construct 𝒜𝑚. Here, we assume that 𝑂𝑚 returns

values normalized such that the magnitude of the maximum value of 𝑚𝑖 is equal to

1. This is chosen to maximize the success probability of oracle conversion which can

be performed by following the steps below.

1. Beginning with the state |0𝑤⟩ |0𝑏⟩, obtain an equal superposition of states in the
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support of 𝑚.

|0𝑤⟩ |0𝑏⟩ → 1√︀
| supp(𝑚)|

∑︁
𝑖∈supp(𝑚)

|𝑖⟩ |0𝑏⟩ , (3.15)

where supp(𝑚) returns the set of basis states in the support of 𝑚. If the filter

𝑚 has full support, then this is equivalent to applying Hadamard gates to each

qubit.

2. Call oracle 𝑂𝑚 and perform (classical) transformations to obtain the magnitude

of the filter resulting in

1√︀
| supp(𝑚)|

∑︁
𝑖∈supp(𝑚)

𝑂𝑚 |𝑖⟩ |0𝑏⟩ → 1√︀
| supp(𝑚)|

∑︁
𝑖∈supp(𝑚)

|𝑖⟩ ||𝑚𝑖|⟩ . (3.16)

3. Append a qubit and conditionally rotate the qubit by
√︀
|𝑚𝑖|.

1√︀
| supp(𝑚)|

∑︁
𝑖∈supp(𝑚)

|𝑖⟩ |𝑚𝑖⟩ |0⟩ →

1√︀
| supp(𝑚)|

∑︁
𝑖∈supp(𝑚)

|𝑖⟩ |𝑚𝑖⟩
(︁√︀

|𝑚𝑖| |0⟩+
√︀
1− |𝑚𝑖| |1⟩

)︁
.

(3.17)

4. Measuring the last appended register, the oracle conversion is successful when

the outcome of the measurement is |0⟩. We note, that this register need not be

measured right away and can be included in the block encoding to be measured

later.

The runtime of this procedure depends on the probability of successfully measuring

the |0⟩ state in the last step. This probability is | supp(𝑚)|−1
∑︀

𝑖∈supp(𝑚) |𝑚𝑖| and is

equal to the average value of |𝑚𝑖|. If values of 𝑚𝑖 are Θ(1) and do not decay with the

dimension of the group, then this success probability is also Ω(1). Finally, additional

gates are needed to obtain an equal superposition over states in the support of 𝑚

as in step 1. This, in most cases, requires a number of operations that scale poly-

logarithmically with the dimension of the state. For example, for filters with support

over all states, this is equivalent to applying Hadamard gates to each qubit.
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Lemma 12 (Linear combination of unitaries, paraphrased from Lemma 2.1 of [33]).

Let 𝑉 =
∑︀

𝑖 𝑎𝑖𝑈𝑖 be a linear combination of unitary matrices 𝑈𝑖 with 𝑎𝑖 > 0. Let

𝐴 be a unitary matrix that maps |0𝑤⟩ to 1√
𝑎

∑︀
𝑖

√
𝑎𝑖 |𝑖⟩ where 𝑎 :=

∑︀
𝑖 𝑎𝑖. Let 𝑈 :=∑︀

𝑖 |𝑖⟩ ⟨𝑖| ⊗ 𝑈𝑖, then 𝑊 := 𝐴†𝑈𝐴 satisfies for any state |𝜓⟩

𝑊 |0𝑤⟩ |𝜓⟩ = √
𝑝 |0𝑤⟩𝑉 |𝜓⟩+ |Ψ⊥⟩ , (3.18)

where 𝑝 = 𝑎−2 and the unnormalized state |Ψ⊥⟩ (depending on |𝜓⟩) satisfies (|0𝑤⟩ ⟨0𝑤|⊗

𝐼) |Ψ⊥⟩ = 0. In other words, 𝑊 is a block encoding of the matrix 𝑉 [24].

Lemma 13. (Block encoding of group convolution or cross-correlation) Given oracle

access to a filter �⃗�, where ‖�⃗�‖ = 1, we can block encode the matrix 𝑀 =
∑︀

𝑖𝑚𝑖𝑈𝑖

corresponding to group convolution or cross-correlation (Lemma 10 outlines corre-

sponding choice of 𝑈𝑖 ∈ {𝐿𝑖, 𝑅𝑖 + inverses}). This is achieved by two calls to the

oracle 𝒜𝑚, one call to the oracle 𝑂𝑚, and efficient (classical) circuits for permuta-

tions based on group operations 𝑈𝑖.

Note. The normalization ‖�⃗�‖ = 1 is required to ensure that the largest singular

value of the linear operation is bounded by 1. This can be derived via the triangle

inequality, e.g., for convolution

‖𝑀⊛‖ = ‖
∑︁
𝑖∈𝐺

𝑚𝑖𝐿𝑖‖ ≤
∑︁
𝑖∈𝐺

|𝑚𝑖| = ‖�⃗�‖. (3.19)

This allows for block encoding a matrix within a larger unitary matrix.

Proof. We choose 𝑈𝑖 ∈ {𝐿𝑖, 𝑅𝑖 + inverses} accordingly to the desired operation, such

permutations can be performed efficiently on a classical circuit. We make a call to

𝑂𝑚 and apply a phase transformation to 𝑈𝑖 proportional to the phase of 𝑚𝑖. Finally,

we apply the results of Lemma 12: setting 𝐴 to 𝒜𝑚 and the corresponding 𝑈𝑖.

We can combine the facts derived above to apply group operations to an input

state, stated below,
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Proposition 14 (Applying group operations to an input state). Given an input

state |𝑥⟩ =
∑︀

𝑖 𝑥𝑖 |𝑖⟩ containing the input state �⃗� normalized such that ‖�⃗�‖2 = 1 and

oracle access to the convolution filter �⃗�, we can construct a state |𝑚 ∘ 𝑥⟩, equal to the

normalized output of �⃗� ∘ �⃗�, where ∘ corresponds to the four equivariant operations.

The runtime scales as 𝑂(𝑇𝐵‖�⃗� ∘ �⃗�‖−1
2 ) where 𝑇𝐵 is the runtime of the block encoding

of Lemma 13.

Proof. Let matrix 𝑀 correspond to the linear operator where �⃗�∘ �⃗� =𝑀�⃗� for a given

group operation. From Lemma 12, we get the state

|0𝑤⟩𝑀 |𝑥⟩+ |𝑥⊥⟩ (3.20)

where |𝑥⊥⟩ is the “garbage” projected state. The probability of success – measuring

the first register and obtaining |0⟩, is equal to ‖�⃗� ∘ �⃗�‖22.

Runtimes of these operations are constrained by the term ‖�⃗� ∘ �⃗�‖ to be small,

which is bounded by the condition number of the corresponding matrix. These matri-

ces are diagonalized for abelian groups, and block-diagonalized for non-abelian groups

by the group Fourier transform as discussed in the next section. These results can be

used to derive the condition number of any given linear operation.

If the group 𝐺 is a cyclic gorup, then the cross-correlation operation over the group

produces a circulant 1 matrix. As of now, there are previous quantum algorithms for

performing matrix operations on circulant matrices [55, 51].

3.3 Quantum implementations via Convolution The-

orems

There is an important distinction between abelian and non-abelian groups that arises

from the property of the irreducible representations of each class of groups, which

stands out when performing group operations in the Fourier regime. Abelian groups
1a circulant matrix is an 𝑛× 𝑛 matrix whose rows are composed of cyclically shifter versions of

a list of length 𝑛. They have applications on digital image processing.
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have the nice property that all of their irreducible representations are scalars. Fur-

thermore, the Fourier transform for an abelian group can be easily obtained given the

fact that any finite abelian group is a direct product of cyclic groups per the following

theorem.

Theorem 15 (Fundamental theorem of finite abelian groups [18]). Every finite

abelian group is a direct product of cyclic groups whose orders are prime powers

uniquely determined by the group.

Given this convenient theorem, the algorithm for performing abelian group oper-

ations is rather simple and we consider that case first. Then, we will generalize to

the case of non-abelian groups which requires more detail.

3.3.1 Block encoding for abelian groups

Based on the fundamental theorem of finite abelian groups, one can form the Fourier

transform for a finite abelian group by taking tensor products over the corresponding

Fourier transform (DFT matrix) for the groups in the direct product. For example,

if an abelian group 𝐺 is isomorphic to 𝑘 cyclic groups of dimension 𝑑𝑖 respectively,

then

𝐹𝐺 =
𝑘⨂︁

𝑖=1

𝐹𝑑𝑖 (abelian groups), (3.21)

where 𝐹𝑑 is the discrete Fourier transform matrix of dimension 𝑑. This provides a

direct means for diagonalizing convolutions and cross-correlations. For example, for

convolution over an abelian group, we can form a matrix with the corresponding

eigenvalues and eigenvectors.

𝐹𝐺𝑀
⊛�⃗� =

√︀
|𝐺|(𝐹𝐺�⃗�)⊙ (𝐹𝐺�⃗�)

=
√︀
|𝐺| diag(𝐹𝐺�⃗�)𝐹𝐺�⃗�,

(3.22)

where the ⊙ is entry-wise multiplication. This implies that
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𝑀⊛ = 𝐹 †
𝐺 diag(

√︀
|𝐺|𝐹𝐺𝑚)𝐹𝐺, (3.23)

where the eigenvalues of 𝑀⊛ are the entries of
√︀

|𝐺| 𝐹𝐺𝑚 and the eigenvectors are

the columns of 𝐹𝐺. Note, that in the above, we assume the 𝐹𝐺 are normalized to

be unitary and hence we have the additional factor of
√︀

|𝐺| not typically seen in the

convolution theorem. Since outputs are quantum states, this additional factor will be

removed due to the normalization of the state.

Assume we are given access to an oracle 𝑂ℱ𝑚 which returns entries of �̂�𝑖 =

diag(
√︀
|𝐺|𝐹𝐺𝑚)𝑖𝑖 in a separate register:

𝑂ℱ𝑚 : |𝑖⟩ |0𝑏⟩ → |𝑖⟩ |�̂�𝑖⟩ . (3.24)

This oracle can be efficiently constructed if the entries 𝑚𝑖 are efficiently computable

with a classical circuit, e.g. when 𝑚 is sparse or when the group Fourier transform

can be analytically computed.

Any finite abelian group 𝐺 of size 𝑛 is isomorphic to a direct product of 𝑐 cyclic

groups of dimension 𝑛1, . . . , 𝑛𝑐. Therefore, the Fourier transform for a finite abelian

group is simply 𝐹𝐺 = 𝐹𝑛1⊗· · ·⊗𝐹𝑛𝑐 where 𝐹𝑚 is the standard unitary discrete Fourier

transform matrix of dimension 𝑚. To apply a convolution matrix, we need to apply

the Fourier transform, a diagonal matrix, and an inverse Fourier transform (see 3.23).

We use a block encoding to perform the diagonal matrix operation diag(
√︀

|𝐺|𝐹𝐺𝑚)

as below.

Lemma 16 (Block encoding of diagonal matrix [55]). Let 𝐴 ∈ C2𝑤×2𝑤 be a diagonal

matrix and each entry of 𝐴 has entries ≤ 1. Given access to the oracle 𝑂𝐴 such that,

𝑂𝐴 : |𝑖⟩ |0𝑏⟩ → |𝑖⟩ |𝐴𝑖𝑖⟩ , (3.25)

where 𝐴𝑖𝑖 is a binary description of the 𝑖th diagonal element on 𝑏 bits. One can

implement a unitary block encoding 𝑈 such that ‖𝐴− (⟨0𝑤+3|⊗ 𝐼)𝑈(|0𝑤+3⟩⊗ 𝐼)‖ ≤ 𝜖
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with 𝑂(polylog 1
𝜖
+ 𝑤) gates and two calls to 𝑂𝐴.

Furthermore, the block encoding for a given group operation is a direct application

of the Fourier transforms and Lemma 16.

Lemma 17 (Fourier block encoding of abelian convolution or cross-correlation). For

an abelian grouo 𝐺, let 𝑤 = ⌈log2(|𝐺|)⌉. Assume we are given oracle access 𝑂ℱ𝑚

to the convolution filter �̂� in the Fourier regime. Assume the filter is normalized

such that |�̂�(𝜌)| ≤ 1 for all entries. One can obtain the block encoding of the group

operation in the shape of the unitary operator 𝑈 , e.g., for convolution ‖𝑀⊛−(⟨0𝑤+3|⊗

𝐼)𝑈(|0𝑤+3⟩ ⊗ 𝐼)‖ ≤ 𝜖, with 𝑂(polylog 1
𝜖
+ 𝑤) additional gates and application of the

(inverse) group Fourier transform, and two calls to the oracle 𝑂ℱ𝑚.

Proof. Look at 3.23: we implement 𝐹𝐺 and 𝐹 †
𝐺 through the proper quantum Fourier

transforms for the corresponding dimensions of the group. For the diagonal matrix

multiplication of 𝐴 = diag
√︀
|𝐺|𝐹𝐺�⃗�), we block encode 𝐴 into 𝑈 using oracle 𝑂ℱ𝑚

and Lemma 16.

3.3.2 Block encoding for non-abelian groups

Unlike the abelian case, irreducible representations of non-abelian groups are matrices,

and convolution applied in the Fourier regime requires matrix multiplication over the

irreducible representation. In this setting, we now assume oracle access to 𝑂ℱ𝑚

which provides matrix entries of the Fourier transform of a convolution filter in a

given irreducible representation,

𝑂ℱ𝑚 : |𝜌, 𝑎, 𝑏⟩ |0⟩ → |𝜌, 𝑎, 𝑏⟩ |�̂�(𝜌)𝑎𝑏⟩ , (3.26)

where 𝜌 ∈ �̂� indexes the irreducible representations and �̂�(𝜌)𝑎𝑏 is the 𝑎, 𝑏-th entry of

the matrix �̂�(𝜌).

Quantum algorithms efficiently perform group Fourier transforms over many non-

abelian groups (e.g., dihedral and symmetric groups) [40, 8]. The quantum group

Fourier transform for a group 𝐺 returns a state containing a weighted superposition
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over irreducible representations [8]:

𝐹𝐺 =
∑︁
𝑥∈𝐺

|�̂�⟩ ⟨𝑥|

=
∑︁
𝑥∈𝐺

∑︁
𝜌∈�̂�

√︃
𝑑𝜌
|𝐺|

𝑑𝜌∑︁
𝑗,𝑘=1

𝜌(𝑥)𝑗,𝑘 |𝜌, 𝑗, 𝑘⟩ ⟨𝑥| ,
(3.27)

where |�̂�⟩ is the group Fourier transform of a given basis vector |𝑥⟩ and �̂� is the set of

irreducible representations of 𝐺 and the factor
√︀
𝑑𝜌/|𝐺| enforces 𝐹𝐺 to be unitary. As

discussed earlier on in chapter 2, 𝐹𝐺 has the ability of block diagonalizing the left and

right regular representations into the irreps, e.g., for the left regular representation

[8],

�̂�𝑖 =
∑︁
𝑗∈𝐺

⟨𝑖𝑗| �̂� = 𝐹𝐺𝐿𝑖𝐹
†
𝐺 =

⨁︁
𝜌∈𝐺

𝜌(𝑖)⊗ 𝐼𝑑𝜌 (3.28)

.

Over non-abelian groups, convolutions and cross-correlations require matrix mul-

tiplication over irreps, thus we cannot diagonalize the state above as in the abelian

case. Instead, to convolve �⃗� with �⃗�, we need to apply a matrix in this form,

�⃗�⊛ �⃗� = 𝐹−1
𝐺

⎡⎣⨁︁
𝜌∈�̂�

�̂�(𝜌)⊗ 𝐼𝑑𝜌

⎤⎦𝐹𝐺�⃗�, (3.29)

where �̂�(𝜌) is the Fourier transformed matrix for irrep 𝜌 with dimensionality 𝑑𝜌.

Lemma 18 (Fourier block encoding of general group convolution or cross-corre-

lation). For a group 𝐺 with irreducible representations of dimension ≤ 𝑑max, let

𝑤 = ⌈log2(|𝐺|)⌉. Assume oracle access 𝑂ℱ𝑚 to the convolution filter �̂� in the Fourier

regime, where the filter �̂� is normalized such that |]�̂�(𝜌)𝑎𝑏| ≤ 1 ∀ 𝑎, 𝑏. We can ob-

tain a unitary operator 𝑈 that is a block encoding of the group operation. For group

convolution, ‖𝑀⊛−𝑑max(⟨0𝑤+3|⊗𝐼)𝑈(|0𝑤+3⟩⊗𝐼)‖ ≤ 𝜖; with one application of the (in-

verse) group Fourier transform, two calls to the oracle 𝑂ℱ𝑚, and 𝑂(polylog 𝑑max

𝜖
+𝑤)

additional gates.

Proof. Let us consider the example of group convolution, one must perform the fol-
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lowing three operations

𝐹 †
𝐺

⎡⎣⨁︁
𝜌∈�̂�

�̂�(𝜌)⊗ 𝐼𝑑𝜌

⎤⎦𝐹𝐺. (3.30)

Let |𝐺| ≤ 2𝑤 so we can encode the data in 𝑤 qubits. To form the block encoding

we follow methods in [24]. For our block encoding, we construct a data register of

𝑤 qubits and ancillary registers of 𝑤 + 3 qubits where the |0⟩ measurement in this

register corresponds to the location of the block encoding. We first apply the group

Fourier transform to the data register. The middle operation
[︁⨁︀

𝜌∈�̂� �̂�(𝜌)⊗ 𝐼𝑑𝜌

]︁
is a

block diagonal matrix which we block encode using Lemma 48 of [24]. Each row or

column of the matrix is at most 𝑑max sparse. Note, this lemma also requires oracles

that provide the locations of each sparse entry in a given row or column of the matrix;

in our case, since matrices are block diagonal, locating these entries is easy. Applying

this operation up to error 𝜖 in operator norm requires two calls to the oracle 𝑂ℱ𝑚 and

𝑂(poly log 𝑑max

𝜖
) additional gates [24]. Finally, one applies an inverse group Fourier

transform 𝐹 †
𝐺 to the data register to obtain the given encoding.

Remark. 𝑑max corresponds to the maximum sparsity of any row or column of the block

diagonal matrix in our block encoding. The number of irreducible representations of

a group is equal to the number of conjugacy classes of the group, so groups with many

conjugacy classes tend to have lower dimensional irreducible representations. For all

abelian groups, 𝑑max is trivially equal to 1. For many non-abelian groups, 𝑑max is also

strictly bounded, e.g., 𝑑max = 2 for dihedral groups 𝐷2𝑛 for all 𝑛 [8].

3.3.3 Linear group operations on quantum states

With the block encodings described above, we can apply linear group operations to an

input state |𝑥⟩ and leverage the runtime benefits of the quantum group Fourier trans-

form to efficiently perform linear group operations. First, we show how to perform

group convolution directly on an input state.

Proposition 19 (Applying group convolution to |𝑥⟩). For a group 𝐺 with irreducible

representations of dimension ≤ 𝑑max, let 𝑤 = ⌈log2(|𝐺|)⌉. Assume oracle access 𝑂ℱ𝑚
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to the convolution filter �̂� in the Fourier regime, where the filter �̂� is normalized

such that |]�̂�(𝜌)𝑎𝑏| ≤ 1 ∀ 𝑎, 𝑏. Given a quantum state |𝑥⟩ =
∑︀

𝑖 𝑥𝑖 |𝑖⟩ with the input

state �⃗� such that ‖�⃗�‖2 = 1, we can construct a state |𝑦⟩ such that

‖ |𝑦⟩ − |�⃗� ∘ �⃗�⟩ ‖ ≤ 𝜖 (3.31)

i.e., |𝑦⟩ is 𝜖-close to the true normalized desired output. The runtime of this operation

scales as 𝑂(𝑇𝐵𝜅𝑑max/‖𝑀‖) for 𝑇𝐵 runtime of the block encoding of Lemma 16 or

Lemma 18 and 𝜅 is the condition number of 𝑀 .

Proof. We first apply the general block encoding to a state with the data encoded in

the register. The measurement is successful when ancillary registers are measured in

the |0⟩ basis. The least of singular values of the linear operation is ‖𝑀‖/𝜅 and the

block encoding has a normalization factor of 𝑑max. The worst-case success probability

is of
(︀
𝜅𝑑max

‖𝑀‖

)︀−1.

Definition 20 (Condition number). The condition number 𝜅 can be calculated by

analyzing the norms of the diagonal or block diagonal matrices in the block encoding.

For example, for abelian groups,

𝜅 =
max𝜌∈�̂� |�̂�(𝜌)|
min𝜌∈�̂� |�̂�(𝜌)|

. (3.32)

For non-abelian groups, we analyze the singular values of the Fourier transform over

its irreducible representations. Let 𝑠𝑚𝑖𝑛(𝑀) and 𝑠𝑚𝑎𝑥(𝑀) be the smallest and largest

singular values of a matrix 𝑀 , then for non-abelian groups,

𝜅 =
max𝜌∈�̂� 𝑠max(�̂�(𝜌))

min𝜌∈�̂� 𝑠min(�̂�(𝜌))
. (3.33)

3.3.4 Inverse group operations: deconvolution

It has been shown [24] that given group operations in the format of block encodings,

we can efficiently perform polynomial transformations to the singular values of the

block encoded matrix. We can use this fact to apply inverse convolutions or cross-
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correlations, i.e., deconvolution.

Problem setup Given the state |𝑦⟩ containing the output of �⃗� = �⃗� ∘ �⃗�, where ∘

corresponds to convolution or cross-correlation. One would like to reconstruct the

input �⃗� to the group operation as a quantum state |𝑥⟩.

In the proposition below, we provide an algorithm for deconvolution given the

block encoding using oracle 𝑂𝑚 from Lemma 13.

Proposition 21 (Deconvolution). For a group 𝐺, assume we are given oracle access

𝑂𝑚 for the convoluion filter 𝑚. Given a quantum state |𝑦⟩, containing �⃗� = �⃗� ∘ �⃗�,

such that ‖�⃗�‖2 = 1, one can construct a state |�̄�⟩, 𝜖-close to the true normalized input

�⃗�, and ∘ corresponds to any of the four equivariant operations 10. Deconvolution as

of this algorithm has a runtime of 𝑂
(︀
𝑇𝐵

𝜅2

‖𝑀‖polylog
𝜅2

‖𝑀‖𝜖

)︀
where 𝑇𝐵 is the runtime of

the block encoding of Lemma 13 and 𝜅 is the condition number of the linear group

operator 𝑀 .

On the other hand, when performing deconvolution in the Fourier regime using the

block encoding of Lemma 18, the runtime of the operation scales as 𝑂
(︀

𝑇𝐵

𝑑max

𝜅2

‖𝑀‖polylog
𝜅2

‖𝑀‖𝜖

)︀
.

See [6] for proofs and the formal statement.

3.4 Discussion

Our results allows us to structure a framework and methodology for performing group

convolutions and cross-correlations on a quantum computer. In well-conditioned

cases, the runtimes of the equivariant operations scale logarithmically with the di-

mension of the group. Our algorithms output quantum states storing the vectorial

output of the operations, which can be later post-processed or analyzed through var-

ious schemes, e.g. [35, 30, 39, 27].

As mentioned earlier on in the chapter, it has been shown in machine learning

literature that group equivariant neural networks can be decomposed into layers of

group convolutions followed by nonlinear activation functions [32].
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Though classical algorithms exist for approximately performing equivariant trans-

formations over infinite dimensional groups [21, 31, 41, 11], we leave this case for

conceptual treatment in the following chapter.
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Chapter 4

Quantization of Spherical CNNs

Preliminaries

Convolutional Neural Networks (CNNs) are the standard method when it comes to

learning with 2D planar images by exploiting the translationally invariant structures

within images. However, planar Convolutional Neural Networks are not capable of

analyzing spherical images, which are of interest to a number of problems in metheo-

rology, astrophysics and in the development of omnidirectional computer vision. Pla-

nar projections of these spherical images for analysis with conventional CNNs would

not be successful due to the space dissortions that such projections would cause on

the images since we are working with different group actions; therefore, a new math-

ematical framework is required. In the last chapter we discussed some results after

expanding to more general classes of group actions through the study of equivariance.

Our algorithms of the last section are constrained to finite groups and both the space

of the sphere and the group of rotation are infinite.

By definition, the object of final interest would be a network capable of recognizing

patterns in the spherical space regardless of rotations, instead of shifts. This requires

a different mathematical framework. Spherical CNNs have been introduced by [11]

as a CNN where inputs are spherical functions 𝑓 in 𝑆2 that are lifted to functions on

SO(3), through spherical cross-correlation with a filter 𝑘, 𝑓 ⋆𝑘. Note that 𝑓 and 𝑘 are

functions on 𝑆2, while 𝑓 ⋆ 𝑘 is a function on SO(3), as discussed below. The interest
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of this author is to first provide a literature review of the aforementioned framework,

and propose potential quantizations for spherical CNNs. We assume oracle access to

the convolution filter, and drawing the block encoding ideas from our original work in

last chapter and motivated by the expression for equivariant convolutions on compact

groups [52], [32], we would like to treat the infinite rotation group through a direct

sum of finite-dimensional irreducible representations, i.e., the core object present in

our earlier formulations.

4.1 Introduction

Motivation Infinite groups such as SO(3) –the group of 3D rotations, can be treated

by working with a direct sum of the finite-dimensional irreducible representations.

This requires converting the input data through to the irreducible representation. It

is complex in general to deal with nonlinear features of maps and data, and imple-

mentations typically must be worked out on a per-group basis. In this study we work

in the framework of the theory of spherical CNNs presented in [11]. We exploit the

similarities of their formulations by working with group equivariant transformations

and using the language of representation theory.

Setup As discussed earlier, planar projections of the spherical signals are deemed

to fail due to the structural differences between the plane, the sphere and the groups

of 2D translations and 3D rotations, respectively. We can start by highlighting the

aforementioned structural differences between the plane and the sphere: the space

for 2D translations is itself isomorphic to the plane; while the group of 3D rotations

𝑆𝑂(3) is not isomorphic to the sphere 𝑆2 on which the group acts. The sphere 𝑆2 is for

instance not a group, but a homogeneous space upon which SO(3) acts transitively.

As we know, Convolutional Neural Networks can be represented as a chain of

operations – i.e., convolutions – with optimized parameters and interleaved nonlin-

earities. With the structural differences in mind, we can discuss how convolutions

and cross-correlations are defined on the planed and the sphere. While our work in

the last chapter included the equivariant operations of convolution, cross-correlations
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and their right counterparts, in spherical CNNs cross-convolutuons are used in the

forward pass, thus we focus on this operation for the rest of the chapter.

While in planar convolution, the output feature map at 𝑥 ∈ Z2 is computed as the

inner product between the input feature map and a filter, shifted by 𝑥; in spherical

convolution, the output feature map at 𝑅 ∈ SO(3) is computed as the inner product

between the input feature map and a filter, rotated by 𝑅. The output feature map

is indexed by a rotation: a function on SO(3). Below, we introduce the SO(3) group

and the required mathematical terminology for the model of spherical CNNs.

4.1.1 SO(3) group

The special orthogonal group 𝑆𝑂(3)1, is the group of all rotations about the origin

of three-dimensional Euclidean space. The group is non-abelian because rotations in

3D are not commutative. The group order is infinite, because you can rotate in this

group by any continuous angle (or sets of angles). The group action is the product

of three 3D rotation matrices 𝑅𝑧(𝛼)𝑅𝑦(𝛽)𝑅𝑧(𝛾) where 𝛼, 𝛾 ∈ [0, 2𝜋], 𝛽 ∈ [0, 𝜋] (Euler

angles) and

𝑅𝑧(𝜃) =

⎡⎢⎢⎢⎣
cos 𝜃 − sin 𝜃 0

sin 𝜃 cos 𝜃 0

0 0 1

⎤⎥⎥⎥⎦ ; 𝑅𝑦(𝜃) =

⎡⎢⎢⎢⎣
cos 𝜃 0 sin 𝜃

0 1 0

− sin 𝜃 0 cos 𝜃

⎤⎥⎥⎥⎦ (4.1)

It is known that the SO(3) correlation/convolution satisfies a Fourier theorem

with respect to the SO(3) Fourier transform, and the same is true for our definition

of S2 correlation/convolution. Hence, the 𝑆2 and SO(3) correlation/convolution can

be implemented efficiently using generalized FFT algorithms. Technically, the two-

sphere 𝑆2 is not a group and therefore does not have irreducible representations.

However, 𝑆2 is a quotient of groups SO(3)/SO(2) and satisfies the relation 𝑌 𝑙
𝑚 =

𝐷𝑙
𝑚0|𝑆2 .

1𝑆𝑂(3) is represented as the 3× 3 matrices of determinant one
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4.1.2 Terminology

Spherical Signals Spherical images and filters can be modeled as continuous func-

tions 𝑓 : 𝑆2 → R𝐾 , where 𝐾 is the number of channels.

Rotations Points on the sphere are represented as 3D unit vectors 𝑥 and rotations

are performed by the matrix-vector product 𝑅𝑥.

Rotation of Spherical signals The spherical correlation requires point rotation

for 𝑥 ∈ 𝑆2 and also filter rotation for functions 𝑓 on the sphere. Let us introduce 𝐿𝑅

as the rotation operator that takes a function 𝑓 and produces a rotated function 𝐿𝑅𝑓

by composing 𝑓 with the rotation 𝑅−1:

[𝐿𝑅𝑓 ](𝑥) = 𝑓(𝑅−1𝑥). (4.2)

Due to the inverse on 𝑅 we have 𝐿𝑅𝑅′ = 𝐿𝑅𝐿𝑅′ .

Inner products The inner product on the vector space of spherical signals is de-

fined as

⟨𝜓, 𝑓⟩ =
∫︁
𝑆2

𝐾∑︁
𝑘=1

𝜓𝑘(𝑥)𝑓𝑘(𝑥)𝑑𝑥 (4.3)

The integration measure 𝑑𝑥 denotes the standard rotation invariant measure on the

sphere, 𝑑3𝑥 = 𝑑𝛼 sin 𝛽𝑑𝛽/4𝜋, in spherical coordinates. The invariance of the measure

ensures that ∫︁
𝑆2

𝑓(𝑅𝑥)𝑑𝑥 =

∫︁
𝑆2

𝑓(𝑥)𝑑𝑥, (4.4)
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for any rotation 𝑅 ∈ SO(3). Using this fact, we can prove that 𝐿𝑅−1 is adjoint to 𝐿𝑅,

and thus 𝐿𝑅 is unitary:

⟨𝐿𝑅𝜓, 𝑓⟩ =
∫︁
𝑠2

𝐾∑︁
𝑘=1

𝜓𝑘(𝑅
−1𝑥)𝑓𝑘(𝑥)𝑑𝑥

=

∫︁
𝑆2

𝐾∑︁
𝑘=1

𝑘(𝑥)𝑓𝑘(𝑅𝑥)𝑑𝑥

= ⟨𝜓,𝐿𝑅−1𝑓⟩.

(4.5)

The value of the output feature map evaluated at rotation 𝑅 ∈ SO(3) is computed

as an inner product between the input feature map and a filter, rotated by 𝑅. Since

the output feature map is indexed by a rotation, the output feature map is modelled

as a function on SO(3).

Spherical correlation For spherical signals 𝑓 and 𝜓, we can define the correlation

as:

[𝜓 ⋆ 𝑓 ](𝑅) = ⟨𝐿𝑅𝜓, 𝑓⟩ =
∫︁
𝑆2

𝐾∑︁
𝑘=1

𝜓𝑘(𝑅
−1𝑥)𝑓𝑘(𝑥)𝑑𝑥. (4.6)

As we know, the output of the spherical correlation is a function on SO(3), conterin-

tuitive to the conventional definition of spherical convolution which otherwise gives a

function on the sphere but where the filter is constrained to be circularly symmetric

about the Z axis, which greatly limits the expressive capacity of the network.

Rotation of SO(3) signals We need to generalize the rotation operator 𝐿𝑅 so that

it can act on signals defined on SO(3). For 𝑓 : SO(3) → R𝐾 , and 𝑅,𝑄 ∈ SO(3):

[𝐿𝑅𝑓 ](𝑄) = 𝑓(𝑅−1𝑄) (4.7)

The term 𝑅−1𝑄 denotes the composition of rotations.
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Rotation Group Correlation Using the same analogy as before, we can define

the correlation of two signals on the rotation group, 𝑓, 𝜓 : SO(3) → R𝐾 , as follows

[𝜓 ⋆ 𝑓 ](𝑅) = ⟨𝐿𝑅𝜓, 𝑓⟩ =
∫︁
SO(3)

𝐾∑︁
𝑘=1

𝜓𝑘(𝑅
−1𝑄)𝑓𝑘(𝑄)𝑑𝑄. (4.8)

The integration measure 𝑑𝑄 is the invariant measure on SO(3), which may be ex-

pressed in ZYZ-Euler angles as 𝑑𝛼 sin (𝛽)𝑑𝛽𝑑𝛾/(8𝜋2).

Equivariance Correlation is defined in terms of the rotation operator 𝐿𝑅 which

naturally acts on the input space of the network, but equivariance –a property shared

by all kinds of convolution and correlation– allows to operate with 𝐿𝑅 on the second

layer and beyond.

A layer Φ is equivariant if Φ ∘ 𝐿𝑅 = 𝑇𝑅 ∘ Φ, for some operator 𝑇𝑅. Using the

definition of correlation and the unitarity of 𝐿𝑅,

Proof.

[𝜓 ⋆ [𝐿𝑄𝑓 ]](𝑅) = ⟨𝐿𝑅𝜓,𝐿𝑄𝑓⟩ = ⟨𝐿𝑄−1𝑅𝜓, 𝑓⟩ = [𝜓 ⋆ 𝑓 ](𝑄−1𝑅) = [𝐿𝑄[𝜓𝑓 ]](𝑅).

this proof is valid for spherical correlation, 𝑆2 and rotation group correlation SO(3).

4.1.3 Equivariant convolutions on compact groups

Recall the equivariant convolution layer equation for a general group 𝐺

𝜓(𝑓) = (𝑓 ⋆ 𝑤)(𝑢) =

∫︁
𝐺

𝑓 ↑𝐺 (𝑢𝑔1)𝑤 ↑𝐺 (𝑔)𝑑𝜇(𝑔) (4.9)

Motivated by the fact that the convolutional integral becomes a product of ir-

reducible representations, just like the convenient theorems where convolutions in
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Fourier space become products. The expression simplifies to

𝜓(𝑓) = 𝑓0𝑤0 ⊕ 𝑓1𝑤1 ⊕ . . .⊕ 𝑓𝑘𝑤𝑘, (4.10)

thus we multiply the irreps by weights without mixing across irreps.

4.1.4 Irreducible representations on SO(3)

Nonlinearity There is an important equation for equivariant nonlinearity in SO(3),

the Clebsch-Gordan tensor product and enables mixing between irreps. Let CG𝑗,𝑘,𝑖

be the Clebsch-Gordan coefficients

𝑓 ′
𝑖 =

∑︁
𝑗

∑︁
𝑘

CG𝑗,𝑘,𝑖 · 𝑓𝑗𝑓𝑘, (4.11)

It can also be written as CG𝑗,𝑘,𝑖𝑓 ⊗ 𝑓 , they maintain equivariance after multiplying

all irreducible representations with all irreducible representations after a change of

basis.

4.1.5 Spherical harmonics

The spherical harmonics 𝑌 𝑙
𝑚 : 𝑆2 → C are a complete orthogonal family of functions.

The spherical harmonics are related to the Wigner D functions by 𝐷𝑙
𝑚𝑛(𝛼, 𝛽, 𝛾) =

𝑌 𝑙
𝑚(𝛼, 𝛽)𝑒

𝑖𝑛𝛾, so that 𝑌 𝑙
𝑚(𝛼, 𝛽) = 𝐷𝑙

𝑚0(𝛼, 𝛽, 0).

The inverse SO(3) Fourier transform is defined as

𝑓(𝑅) =
𝑏∑︁

𝑙=0

(2𝑙 + 1)
𝑙∑︁

𝑚=−𝑙

𝑙∑︁
𝑛=−𝑙

𝑓 𝑙
𝑚𝑛𝐷

𝑙
𝑚𝑛(𝑅) (4.12)

4.2 Discussion

Spherical CNNs are important for many applications in the applied and pure sciences.

For instance, omnidirectional vision for drones, robots, and autonomous cars, climate

modelling and weather predictions. In chemistry, spherical symmetries are crucial
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when modeling molecules and predicting molecular design properties. In astrophysics

and cosmology, data is naturally equipped with spherical geometry. A quantization

of the CNNs could achieve a good number of important realizations for quantum

computers, such as virtual drug screening.
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Chapter 5

Discussion and conclusions

This thesis presented a set of quantum algorithms for group convolution, cross-

correlation, and equivariant transformations. These quantum algorithms run in time

logarithmic in the dimension of the symmetry group, and are thus exponentially faster

than the corresponding classical algorithms.

Our algorithms provide a path towards quantizing the linear operations in group-

equivariant neural networks [10, 32, 44, 38] and exploring potential quantum speedups

in these machine learning models. Furthermore, one can apply our framework in a

variational algorithm where a quantum circuit is parameterized and optimized as a

convolutional filter [7]. More generally, our work provides a means to speed up linear

operations for kernel matrices in the form of convolutions or cross-correlations com-

monly found in algorithms for machine learning and numerical methods [43, 16, 2].

This generalizes results from previous quantum algorithms for implementing circu-

lant or Toeplitz matrices [51, 55] and calculating Green’s functions via convolutional

formulations [49] using our algorithms for inverting group convolutions.

In the context of geometric deep learning, our results and observations on applying

quantum mechanics to equivariance can be seen the context of geometric learning as

part the current attempt of unification of a broad class of problems in deep learning

from the perspectives of symmetry and invariance.
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5.1 Implementation on software

PennyLane is an open-source software framework built around the concept of quan-

tum differentiable programming, based on the integration of classical ML libraries

with quantum hardware and simulators that allows the user to train quantum cir-

cuits. It can be a resource in the development of quantum machine learning and

variational quantum circuits.

TensorFlow Quantum is a library for hybrid quantum-classical machine learn-

ing. (TFQ) is a quantum machine learning library for rapid prototyping of hybrid

quantum-classical ML models. Research in quantum algorithms and applications can

leverage Google’s quantum computing frameworks, all from within TensorFlow.

TensorFlow Quantum focuses on quantum data and building hybrid quantum-

classical models. It integrates quantum computing algorithms and logic designed in

Cirq1, and provides quantum computing primitives compatible with existing Tensor-

Flow APIs, along with high-performance quantum circuit simulators. TensorFlow

Quantum (TFQ) provides layer classes designed for in-graph circuit construction.

5.2 Relevant Publication

• G. Castelazo, Q. T. Nguyen, G. De Palma, D. Englund, S. Lloyd, B.T. Kiani,

“Quantum algorithms for group convolution, cross-correlation, and equivariant

transformations” quant-ph. Phys. (2021); arXiv:2109.11330v1.

1Cirq is a Python library for writing, manipulating, and optimizing quantum circuits and running
them against quantum computers and simulators.
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Appendix A

Equivariant Neural Networks

A.1 Example on G-Equivariant Convolutions on Fi-

nite Groups

We play with a simulation [52] to build a classical equivariant network for an example

finite group, in this case, 𝑍6 of vertices on a hexagon.

Finite Group 𝑍6. Group of rotations of a hexagon. This group is indexed by the

vertex coordinates {0, 1, 2, 3, 4, 5}. We can view rotation 𝑟𝑛 as the operation (𝑥+ 𝑛)

mod 6. The group is indeed closed and we have {𝑒, 𝑟, 𝑟2, 𝑟3, 𝑟4, 𝑟5}. The Cayley table

of 𝑍6 is

Recall the definition of the group convolution operator *, for a linear map 𝜓

𝑒 𝑟 𝑟2 𝑟3 𝑟4 𝑟5

𝑒 𝑒 𝑟 𝑟2 𝑟3 𝑟4 𝑟5

𝑟 𝑟 𝑟2 𝑟3 𝑟4 𝑟5 𝑒
𝑟2 𝑟2 𝑟3 𝑟4 𝑟5 𝑒 𝑟
𝑟3 𝑟3 𝑟4 𝑟5 𝑒 𝑟 𝑟2

𝑟4 𝑟4 𝑟5 𝑒 𝑟 𝑟2 𝑟3

𝑟5 𝑟5 𝑒 𝑟 𝑟2 𝑟3 𝑟4

Table A.1: Cayley table of 𝑍6
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Figure A-1: A network will be G-equivariant if the output looks the same by applying
the rotation transformation T𝑔 before or after.

𝜓(𝑓) = (𝑓 ⋆ 𝜔)(𝑢) =
∑︁
𝑔∈𝐺

𝑓(𝑢𝑔−1)𝜔(𝑔) (A.1)

where 𝑓 : 𝐻 → R𝑛 and 𝜔𝐻 ′ → R𝑛 are functions of quotient spaces 𝐻 and 𝐻 ′.

In this example, it can be verified by comparing the results of transforming the

input function and the output functions.

• We first compute 𝜓[T𝑔𝑓(𝑥)] – the network map acting on the transformed input

function.

• Secondly, we compute T𝑔𝜓[𝑓(𝑥)] – the transform acting on the network output.

The example shown above is to show the reader the effects of equivariance in a

classical simulation and we are reproducing the code of the reference [52].
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Appendix B

Convolution theorem over 𝐷3

B.1 Representations of 𝐷𝑛

Dihedral groups The dihedral group 𝐷𝑛 is the group of symmetries of the regular

𝑛-gon in the plane. The dihedral group 𝐷𝑛 is of order 2𝑛 and is represented by

𝐷𝑛 = Z/𝑛Z ⋊ Z/2Z, with the group law

(𝑥, 𝑎) · (𝑦, 𝑏) = (𝑥+ (−1)𝑎𝑦, 𝑎+ 𝑏),

for 𝑥, 𝑦 ∈ Z/𝑛Z and 𝑎, 𝑏 ∈ Z/2Z.

The dihedral group 𝐷𝑛 with 2𝑛 elements is isomorphic to a semidirect product

of the cyclic groups Z/𝑛Z and Z/2Z. Let 𝑟 be the generator of Z/𝑛Z and 𝑠 be the

generator of Z/2Z, then the dihedral group 𝐷𝑛 can be written compactly as

⟨𝑟, 𝑠|𝑠2 = 𝑒, 𝑟𝑛 = 𝑒, 𝑠𝑟𝑠−1 = 𝑟−1⟩. (B.1)
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Irreducible representations of 𝐷𝑛 For 𝑛 even, we have the following 1-dimensional

irreducible representations

𝜎𝑡𝑡((𝑥, 𝑎)) = 1

𝜎𝑡𝑠((𝑥, 𝑎)) = (−1)𝑎

𝜎𝑠𝑡((𝑥, 𝑎)) = (−1)𝑥

𝜎𝑠𝑠((𝑥, 𝑎)) = (−1)𝑥+𝑎.

(B.2)

For 𝑛 odd, we have 𝜎𝑡𝑡 and 𝜎𝑡𝑠 only. The 2-dimensional irreducible representations

are of the form

𝜎ℎ((𝑥, 0)) =

⎛⎝𝑒2𝜋𝑖ℎ𝑥/𝑛 0

0 𝑒−2𝜋𝑖ℎ𝑥/𝑛

⎞⎠ 𝜎ℎ((𝑥, 1)) =

⎛⎝ 0 𝑒2𝜋𝑖ℎ𝑥/𝑛

𝑒−2𝜋𝑖ℎ𝑥/𝑛 0

⎞⎠ , (B.3)

for ℎ ∈ {1, 2, . . . , ⌈𝑛
2
⌉ − 1}. The sum of the squared dimensions of the irreducible

representations is equal to 2𝑛, which is the size of the group:

∑︁
𝜎

|𝑑𝜎|2 = 2𝑛 = |𝐺|.

B.1.1 Representations of 𝐷3

The dihedral group 𝐷3 is obtained by composing the six symmetries of an equilateral

triangle. The dihedral group 𝐷3 and the cyclic group 𝐶6 are the only two groups that

have order 6. Unlike 𝐶6 (which is abelian), 𝐷3 is non-abelian. Products of group

elements of 𝐷3 are shown in the Cayley table shown in B.1.

Like all dihedral groups, group elements of 𝐷3 are generated by 𝑠 and 𝑟, where 𝑠

is a rotation by 𝜋 radians about an axis passing through the center and one of the

vertices of a regular 𝑛-gon and 𝑟 is a rotation by 2𝜋/𝑛 about the center of the 𝑛-gon

(see B-1).
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Figure B-1: The dihedral group 𝐷3 is the symmetry group of an equilateral triangle,
that is, it is the set of all transformations such as reflection, rotation, and combinations
of these, that leave the shape and position of this triangle fixed.

1 𝑟 𝑟2 𝑠 𝑟𝑠 𝑟2𝑠

1 1 𝑟 𝑟2 𝑠 𝑟𝑠 𝑟2𝑠
𝑟 𝑟 𝑟2 1 𝑟𝑠 𝑟2𝑠 𝑠
𝑟2 𝑟2 1 𝑟 𝑟2𝑠 𝑠 𝑟𝑠
𝑠 𝑠 𝑟2𝑠 𝑟𝑠 1 𝑟2 𝑟
𝑟𝑠 𝑟𝑠 𝑠 𝑟2𝑠 𝑟 1 𝑟2

𝑟2𝑠 𝑟2𝑠 𝑟𝑠 𝑠 𝑟2 𝑟 1

Table B.1: The Cayley table of 𝐷3.

Left and right regular representations of 𝐷3. The regular representations of𝐷3

are obtained by associating a basis vector to each element of the group {1, 𝑟, 𝑟2, 𝑠, 𝑟𝑠, 𝑟2𝑠}.

�⃗�1 =
(︁
1 0 0 0 0 0

)︁
�⃗�𝑟 =

(︁
0 1 0 0 0 0

)︁
�⃗�𝑟2 =

(︁
0 0 1 0 0 0

)︁
�⃗�𝑠 =

(︁
0 0 0 1 0 0

)︁
�⃗�𝑟𝑠 =

(︁
0 0 0 0 1 0

)︁
�⃗�𝑟2𝑠 =

(︁
0 0 0 0 0 1

)︁
(B.4)
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For all 𝑢 ∈ 𝐷3, the left regular representations 𝐿𝑢 are:

𝐿1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
𝐿𝑟 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 1

0 0 0 1 0 0

0 0 0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(B.5)

𝐿𝑟2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0

0 0 1 0 0 0

1 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
𝐿𝑠 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0

0 0 0 0 0 1

0 0 0 0 1 0

1 0 0 0 0 0

0 0 1 0 0 0

0 1 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(B.6)

𝐿𝑟𝑠 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1 0

0 0 0 1 0 0

0 0 0 0 0 1

0 1 0 0 0 0

1 0 0 0 0 0

0 0 1 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
𝐿𝑟2𝑠 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 1

0 0 0 0 1 0

0 0 0 1 0 0

0 0 1 0 0 0

0 1 0 0 0 0

1 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(B.7)

For all 𝑢 ∈ 𝐷3, the right regular representations 𝐿𝑢 are:

𝑅1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
𝑅𝑟 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(B.8)
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𝑅𝑟2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0

0 0 1 0 0 0

1 0 0 0 0 0

0 0 0 0 0 1

0 0 0 1 0 0

0 0 0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
𝑅𝑠 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(B.9)

𝑅𝑟𝑠 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 1 0 0

0 0 1 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
𝑅𝑟2𝑠 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 1

0 0 0 1 0 0

0 0 0 0 1 0

0 1 0 0 0 0

0 0 1 0 0 0

1 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(B.10)

Irreducible representations of 𝐷3 Since 𝐷3 is a non-abelian group, at least one

of its irreducible representations is a matrix. B.2 shows the irreducible representations

of 𝐷3, obtained from B.2 and B.3, noting that ℎ ∈ {1, 2, . . . , ⌈𝑛
2
⌉ − 1} = {1}.

B.2 The Group Fourier Transform and the Convolu-

tion Theorem over 𝐷3

The group Fourier transform table (i.e. 𝐹𝐺) for 𝐷3 can be constructed by aligning

the elements of the 2-dimensional representation 𝜌3 elementwise (𝜌311 , 𝜌312 , 𝜌321 , 𝜌322),

yielding a 6× 6 transformation matrix.

The normalized (unitary) Fourier transformation matrix 𝐹𝐺 is defined as [8]

𝐹𝐺 =
∑︁
𝑥∈𝐺

|�̂�⟩ ⟨𝑥| =
∑︁
𝑥∈𝐺

∑︁
𝜌∈�̂�

√︃
𝑑𝜌
|𝐺|

𝑑𝜌∑︁
𝑗,𝑘=1

𝜌(𝑥)𝑗,𝑘 |𝜌, 𝑗, 𝑘⟩ ⟨𝑥|

where �̂� is the set of irreducible representations and the
√︁

𝑑𝜌
|𝐺| factor enforces 𝐹𝐺 as
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Table B.2: Irreducible representations of 𝐷3

𝜌1 𝜌2 𝜌3
𝜎𝑡𝑡((𝑥, 𝑎)) 𝜎𝑡𝑠((𝑥, 𝑎)) 𝜎1((𝑥, 𝑎))

(0,0) 1 1
(︂
1 0
0 1

)︂

(1,0) 1 1
(︂
𝜔1 0
0 𝜔−1

)︂

(2,0) 1 1
(︂
𝜔2 0
0 𝜔−2

)︂

(0,1) 1 -1
(︂
0 1
1 0

)︂

(1,1) 1 -1
(︂

0 𝜔1

𝜔−1 0

)︂

(2,1) 1 -1
(︂

0 𝜔2

𝜔−2 0

)︂

unitary. For 𝐷3, we have:

𝐹𝐺 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1/
√
6 1/

√
6 1/

√
6 1/

√
6 1/

√
6 1/

√
6

1/
√
6 1/

√
6 1/

√
6 −1/

√
6 −1/

√
6 −1/

√
6

1/
√
3 𝜔1/

√
3 𝜔2/

√
3 0 0 0

0 0 0 1/
√
3 𝜔1/

√
3 𝜔2/

√
3

0 0 0 1/
√
3 𝜔−1/

√
3 𝜔−2/

√
3

1/
√
3 𝜔−1/

√
3 𝜔−2/

√
3 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (B.11)

Let 𝑚 and 𝑓 be functions that map group elements of 𝐺 to complex numbers, if

we associate each element 𝑢 ∈ 𝐺 to a basis vector 𝑒𝑢 in some vector space 𝑉 , we can

represent 𝑚 and 𝑓 as vectors,

�⃗� =
∑︁
𝑢∈𝐺

𝑚(𝑢)𝑒𝑢, 𝑓 =
∑︁
𝑢∈𝐺

𝑓(𝑢)𝑒𝑢.
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As an example, we take

�⃗� = 𝑓 =
(︁
1 𝜔1 𝜔2 0 0 0

)︁
, (B.12)

where we have chosen 𝑒𝑢 to be the standard basis of C|𝐺|.

Calculating the Fourier transform through matrix multiplication on �⃗� and 𝑓 we

obtain ̂︀𝑚 = ̂︀𝑓 = 𝐹𝐺�⃗� = 𝐹𝐺𝑓 =
(︁
0 0 0 0 0

√
3
)︁

(B.13)

Note that 1+𝜔1 +𝜔2 = 0 since the cube root of unity (i.e. 𝜔3 = 1) can be factorized

as

𝜔3 − 1 = (𝜔 − 1)(𝜔2 + 𝜔 + 1) = 0.

In the following we compare the computation of the Fourier transform of �⃗�⊛𝑓 by

two different methods: (1) through direct calculation of the convolution and applying

the Fourier transform, and (2) by computing the individual Fourier transforms of �⃗�

and 𝑓 via the convolution theorem.

First, we complete case (1). Recall the definition of a convolution over a group 𝐺

(𝑚⊛ 𝑓)(𝑢) =
∑︁
𝑣∈𝐺

𝑚(𝑢𝑣−1)𝑓(𝑣)

Calculating the convolution expansion over the indexed elements of𝐷3, where 1, 2, 3, 4, 5, 6

correspond to (refer to B.1 for group element multiplication 𝑢𝑣−1)

(𝑚⊛ 𝑓)(1) = 𝑚(1) · 𝑓(1) +𝑚(3) · 𝑓(2) +𝑚(2) · 𝑓(3) +𝑚(4) · 𝑓(4) +𝑚(5) · 𝑓(5) +𝑚(6) · 𝑓(6)

(𝑚⊛ 𝑓)(2) = 𝑚(2) · 𝑓(1) +𝑚(1) · 𝑓(2) +𝑚(3) · 𝑓(3) +𝑚(5) · 𝑓(4) +𝑚(6) · 𝑓(5) +𝑚(4) · 𝑓(6)

(𝑚⊛ 𝑓)(3) = 𝑚(3) · 𝑓(1) +𝑚(2) · 𝑓(2) +𝑚(1) · 𝑓(3) +𝑚(6) · 𝑓(4) +𝑚(4) · 𝑓(5) +𝑚(5) · 𝑓(6)

(𝑚⊛ 𝑓)(4) = 𝑚(4) · 𝑓(1) +𝑚(5) · 𝑓(2) +𝑚(6) · 𝑓(3) +𝑚(1) · 𝑓(4) +𝑚(3) · 𝑓(5) +𝑚(2) · 𝑓(6)

(𝑚⊛ 𝑓)(5) = 𝑚(5) · 𝑓(1) +𝑚(6) · 𝑓(2) +𝑚(4) · 𝑓(3) +𝑚(2) · 𝑓(4) +𝑚(1) · 𝑓(5) +𝑚(3) · 𝑓(6)

(𝑚⊛ 𝑓)(6) = 𝑚(6) · 𝑓(1) +𝑚(4) · 𝑓(2) +𝑚(5) · 𝑓(3) +𝑚(3) · 𝑓(4) +𝑚(2) · 𝑓(5) +𝑚(1) · 𝑓(6).
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In particular, for 𝑚 and 𝑓

(𝑚⊛ 𝑓)(1) =1 · 1 + 𝜔2 · 𝜔1 + 𝜔1 · 𝜔2 + 0 · 0 + 0 · 0 + 0 · 0 = 3

(𝑚⊛ 𝑓)(2) =𝜔1 · 1 + 1 · 𝜔1 + 𝜔2 · 𝜔2 + 0 · 0 + 0 · 0 + 0 · 0 = 3𝜔1

(𝑚⊛ 𝑓)(3) =𝜔2 · 1 + 𝜔1 · 𝜔1 + 1 · 𝜔2 + 0 · 0 + 0 · 0 + 0 · 0 = 3𝜔2

(𝑚⊛ 𝑓)(4) =(𝑚⊛ 𝑓)(5) = (𝑚⊛ 𝑓)(6) = 0.

Written in vector form,

�⃗�⊛ 𝑓 =
(︁
3 3𝜔1 3𝜔2 0 0 0

)︁
,

calculating the Fourier transform of �⃗�⊛ 𝑓 through matrix multiplication with 𝐹𝐺,

𝑚⊛ 𝑓 = 𝐹𝐺(�⃗�⊛ 𝑓) =
(︁
0 0 0 0 0 3

√
3
)︁
.

Now, we overview case (2). Recall the convolution theorem (3.9)

(𝑚⊛ 𝑓)(𝜌𝑖) = ̂︀𝑚(𝜌𝑖) ̂︀𝑓(𝜌𝑖). (B.14)

First we compute the group Fourier transform of 𝑚 and 𝑓 over the irreducible

representations,

̂︀𝑚(𝜌1) = ̂︀𝑓(𝜌1) = 0 ̂︀𝑚(𝜌2) = ̂︀𝑓(𝜌2) = 0 ̂︀𝑚(𝜌3) = ̂︀𝑓(𝜌3) =
⎛⎝0 0

0 3

⎞⎠ (B.15)

Applying the convolution theorem, we have

𝑚⊛ 𝑓(𝜌1) = ̂︀𝑚(𝜌1) ̂︀𝑓(𝜌1) = 0

𝑚⊛ 𝑓(𝜌2) = ̂︀𝑚(𝜌2) ̂︀𝑓(𝜌2) = 0

𝑚⊛ 𝑓(𝜌3) = ̂︀𝑚(𝜌3) ̂︀𝑓(𝜌3) =
⎛⎝0 0

0 3

⎞⎠
(B.16)
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Aligning the elements of 𝑚⊛ 𝑓(𝜌𝑖) in order for all the irreps 𝜌𝑖 on a 6-dim vector

on the same standard basis we obtain

𝑚⊛ 𝑓 =
(︁
0 0 0 0 0 9

)︁
(B.17)

Note that B.2 and B.17 differ by a factor of normalization
√︀
𝑑𝜌/|𝐺| since in method

(1) 𝐹𝐺 is already forced to be unitary, while method (2) is based on purely classical

calculations.

Alternatively, we can also perform the group Fourier transform in the block en-

coding form of 3.29,

𝑚⊛ 𝑓 =
[︁⨁︁

𝑣∈𝐺

̂︀𝑚(𝜌𝑖)⊗ 𝐼𝑑𝜌

]︁ ̂︀𝑓

=

⎛⎝[︁
0
]︁
⊕

[︁
0
]︁
⊕

⎡⎣0 0

0 3

⎤⎦⊗ 𝐼2

⎞⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0

0

0
√
3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0

0

0

3
√
3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(B.18)

which already includes the normalization factor on 𝐹𝐺.

The example shown above is also included in our published paper [6], it was

designed and written in its entirety by the author of this thesis.
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