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Abstract

We consider a wireless network with a base station broadcasting and collecting time-
sensitive data to and from spatially distributed nodes in the presence of wireless
interference. The Age of Information (AoI) is the time that has elapsed since the most-
recently delivered packet was generated, and captures the freshness of information.
In the context of broadcast and collection, we define the Age of Broadcast (AoB) to
be the amount of time elapsed until all nodes receive a fresh update, and the Age of
Collection (AoC) as the amount of time that elapses until the base station receives an
update from all nodes. We quantify the average broadcast and collection ages in two
scenarios: 1) instance-dependent, in which the locations of all nodes and interferers
are known, and 2) instance-independent, in which they are not known but are located
randomly, and expected age is characterized with respect to node locations. In the
instance-independent case, we show that AoB and AoC scale super-exponentially with
respect to the radius of the region surrounding the base station. Simulation results
highlight how expected AoB and AoC are affected by network parameters such as
network density, medium access probability, and the size of the coverage region.
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Chapter 1

Introduction

Collection and broadcast of fresh information over spatially-distributed wireless nodes

is important for proper functioning of real-time systems, such as search-and-rescue

drones or environmental monitoring using IoT sensors [30]. Dynamic environments

and the lack of wired infrastructure necessitate deployment of highly-distributed, ad-

hoc network of sensors to gather and send information updates wirelessly, where nodes

must communicate with minimal coordination overhead using simple random access

schemes.

Such networks must also operate under wireless communication constraints, in-

cluding interference, fading, and path loss. Ensuring broadcast and collection of the

freshest information possible in such a setting is a considerable challenge.

A popular paradigm for measuring the freshness of information observed from a

process is the Age of Information (AoI) [23, 18, 17]. The literature addressing AoI

and wireless networks is extensive. Average and peak AoI in wireless networks were

first characterized in [2]. Optimal wireless link scheduling was studied in [8, 9, 10, 11],

relying on a centralized scheduler that is able to coordinate link activations, and the

authors of [12] considered scheduling policies that minimize AoI in wireless networks

with packets randomly arriving and queueing at the base station. In addition, the

authors of [13] studied scheduling with random packet arrivals in a random access

setting. Several works have addressed AoI and broadcast. In particular, the authors

of [16, 14] found optimal centralized scheduling policies for broadcast from a base sta-

13



tion to a number of nodes, minimizing functions of AoI such as Expected Weighted

Sum AoI. In [31] the authors investigated AoI in multicast and broadcast networks

with i.i.d. exponential (continuous-time) inter-packet delivery times. Works such

as [15] investigated network scheduling to minimize AoI under general wireless chan-

nel unreliability, while [11] studied scheduling policies with random arrivals, modeling

the problem as a Markov Decision Process. From an information theoretic perspec-

tive, [1] explored the effect of coding on the AoI in two-user broadcast networks, and

[25] addressed AoI for Broadcast in CSMA/CS wireless networks, assuming network

connectivity follows the Protocol Model [6]. The authors of [4] explored AoI in all-

to-all broadcast wireless networks, deriving average and peak AoI using fundamental

properties of graphs.

More recently, AoI in spatially-distributed networks has been investigated. The

authors of [24] investigated data dissemination and gathering, modeling spatial sepa-

ration as edges on a mobility graph. The authors of [19, 20], deployed stochastic geom-

etry analysis to capture the spatiotemporal statistics of AoI in networks where nodes

are distributed as a homogeneous point process. The authors of [28, 29] optimized

network parameters such as the medium access probability to minimize average and

peak AoI, leveraging knowledge of the interference statistics of Poisson-distributed

wireless networks. While AoI has been considered in spatially-distributed wireless

networks, the important cases of wireless broadcast and collection in a spatially dis-

tributed network have not been addressed.

Our main contribution in this work is to introduce the notion of Age to the

broadcast and collection of information. We define two metrics – the age of broadcast

(AoB) and the age of collection (AoC) – that characterize the amount of time elapsed

since all receivers successfully receive an update in the broadcast case or all trans-

mitters successfully deliver a packet to the base station in the collection case. We

consider both the instance-dependent, and the instance-independent AoB and AoC.

In the instance-dependent scenario, the locations of all interferers, transmitters and

receivers are fixed and known. In the instance-independent scenario, the positioning

of nodes and interferers is unknown but is distributed according to a Poisson point

14



process.

The rest of the thesis is organized as follows. In Section 1.1, we introduce the

system model and define AoB and AoC. We then detail preliminaries in Section 1.2.

In Chapter 2, we characterize the expected AoB, then characterize AoC in Section 3.1.

Numerical results from simulation are presented in Section 4.1, and concluding re-

marks and future directions are stated in Section 5.1.

1.1 System Model

We now introduce the network model, the traffic model, as well as AoI before formally

defining AoB and AoC.

Notation: Common notation can be found in Table 1.1. Whenever necessary for

clarity, the expected value operator with respect to the distribution of some random

element 𝑋 will be denoted by E𝑋 [·]. The spatial point process models in this work

are simple point processes, meaning node positions are distinct almost everywhere.

Therefore, the convention will be that a node located at position 𝑦 ∈ R2 will simply

be referred to as node 𝑦. The ℓ-2 norm will be denoted by ‖ · ‖. Random elements

will generally be represented with an uppercase letter, a realization of which will be

represented with a lowercase letter. For example, a realization of a point process Φ is

𝜑. For some set 𝒲 , the operator [·]𝑘 produces [𝒲 ]𝑘 = {𝐴 ⊆ 𝒲 s.t. |𝐴| = 𝑘}, the set

of subsets of 𝒲 with cardinality 𝑘.

1.1.1 Network Model

Consider a base station, denoted by 𝒪, in the Euclidean plane situated at the origin,

with a finite set of nodes randomly distributed in a disk 𝑏2(0, 𝑟) of finite radius 𝑟.

The nodes are distributed within a disk as a homogeneous Poisson Point Process

with intensity 𝜆, denoted by Φ𝑁 . Interferers are also distributed according to a

homogeneous Poisson Point Process Φ𝐼 that is distributed across R2 with intensity 𝜆

15



Common notation

Notation Description

Φ
Poisson Point process in R2 composed of
two independent processes Φ

Δ
= Φ𝑁 ∪ Φ𝐼

𝜆 Intensity of Φ𝐼 and Φ𝑁

𝑏2(𝑥, 𝑟) Disk in R2 centered at 𝑥 with radius 𝑟

𝐻𝑖𝑗
Channel fading coefficient between a
transmitter 𝑖 and receiver 𝑗

𝜇Φ𝐼
𝑗𝑖

Probability of successful delivery of packet
from 𝑗 to 𝑖 in the presence of interferers Φ𝐼

𝜃 SIR threshold value; 𝜃 > 1

𝑝
medium access probability common to all
nodes and interferers, including the base
station when broadcasting

𝛽 Path loss exponent
𝒪 Base station situated at the origin; 𝒪 = (0, 0)

𝑋𝑖[𝑡]
Inter-packet reception duration for the packet
reception process of receiver 𝑖 at time 𝑡

𝐴𝑗𝑖(𝑘) AoI at receiver 𝑖 transmitted from 𝑗

ℓ(𝑥)
Path loss function
ℓ(𝑥) = ‖𝑥‖−𝛽, 𝑥 ∈ R2

Table 1.1
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Figure 1-1: Example of a spatial realization 𝜑𝑁 of nodes (black circles), confined to a
disk 𝑏2(0, 𝑟), and interferers (crosses) 𝜑𝐼 , distributed across the Euclidean plane, with
the base station (black triangle) in the center
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(see Figure 1-1). We denote the combined point process of nodes and interferers by

Φ
Δ
= Φ𝑁 ∪ Φ𝐼 . (1.1)

This spatial model captures a scenario in which the base station may be one of many

broadcast and collection nodes in a spatially-large wireless network, and where the

base station is only interested in communicating with nodes within its vicinity. Each

information update consists of a single, timestamped packet. When broadcasting, the

base station attempts transmission of a packet to all nodes in the disk; the packet

is successfully received at a receiver if the signal-to-interference ratio (SIR) exceeds

a fixed threshold 𝜃 > 1. Similarly, during collection, the base station successfully

receives a packet from a given transmitter when the SIR exceeds 𝜃. All transmission

attempts occur at the start of discrete time-slots, the packet duration and the slot

length both normalized to 1. Therefore, time 𝑡 is defined to be discrete, denoting

the 𝑡th slot. Medium access is granted to a transmitter – including the base station

when transmitting– via an ALOHA-type random access scheme with a fixed common

medium access probability (MAP) of 𝑝. That is, in any given time-slot the probability

that a given transmitter attempts transmission is 𝑝, independent of all other time-slots

and users in the network. In all subsequent sections we assume the packet delivery

process is at steady state, having started at time 𝑡 = −∞.

The transmission power from every transmitter, including interferers, is fixed and

normalized to 1. The wireless channel experiences Rayleigh fading and path loss

attenuation. The fading loss random variable 𝐻 is i.i.d. exponentially distributed

with mean 1. For a transmission from a transmitter 𝑥 to a receiver 𝑦, the path loss

is defined to be

ℓ(𝑥− 𝑦)
Δ
= ‖𝑥− 𝑦‖−𝛽 .

The path loss exponent 𝛽 is generally chosen to be in the interval (2, 4). At

time-slot 𝑡 the medium access indicator random variable 𝑍𝑥[𝑡] is 1 if a transmitter 𝑥

attempts transmission and 0 otherwise. Given the realization of node and interferer

locations 𝜑 and including medium access probability, transmission power, fading, and

18



path loss, we may represent the signal power observed at receiver 𝑦 for a broadcast

from the base station to be

𝑆𝜑𝐼

𝒪𝑦[𝑡] = 𝑍𝒪[𝑡]𝐻𝒪𝑦[𝑡]ℓ(𝑦).

Similarly, the interference observed at 𝑦 is given by

𝐼𝜑𝐼

𝒪𝑦[𝑡] =
∑︁
𝑥∈𝜑𝐼

𝑍𝑥[𝑡]𝐻𝑥𝑦[𝑡]ℓ(𝑥− 𝑦) .

Therefore, the SIR is given by the ratio of 𝑆𝜑
𝒪𝑦[𝑡] and 𝐼𝜑𝒪𝑦[𝑡],

𝑆𝐼𝑅𝜑𝐼

𝒪𝑦[𝑡] =
𝑆𝜑𝐼

𝒪𝑦[𝑡]

𝐼𝜑𝐼

𝒪𝑦[𝑡]
=

𝑍𝒪[𝑡]𝐻𝒪𝑦[𝑡]ℓ(𝑦)∑︀
𝑥∈𝜑𝐼

𝑍𝑥[𝑡]𝐻𝑥𝑦[𝑡]ℓ(𝑥− 𝑦)
. (1.2)

For collection, the transmission signal from a transmitter 𝑥 in 𝜑𝑁 is subject to

interference from both the field of interferers as well as other transmitters in 𝜑𝑁 .

Therefore, the SIR is

𝑆𝐼𝑅𝜑
𝑥𝒪[𝑡] =

𝑍𝑥[𝑡]𝐻𝑥𝒪[𝑡]ℓ(𝑥)∑︀
𝑦∈𝜑∖𝑥 𝑍𝑦[𝑡]𝐻𝑦𝒪[𝑡]ℓ(𝑦)

.

In the following subsection, we formally define the AoI metric, which will then be

used to define AoB and AoC.

1.1.2 Age of Information

AoI is denoted by 𝐴[𝑡]. Let 𝐺[𝑡] be the time stamp of the most recent packet success-

fully received as of time 𝑡. The time evolution of AoI is then defined in Equation (1.3):

𝐴[𝑡+ 1] =

⎧⎪⎨⎪⎩𝐴[𝑡] + 1, if no reception

min {𝑡−𝐺[𝑡], 𝐴[𝑡]}+ 1, if reception
. (1.3)

The AoI at a receiver 𝑥 and at time 𝑡 corresponding to information updates from

some node 𝑦 is denoted by 𝐴𝑦𝑥[𝑡].

19



𝐴𝐴 𝑥𝑥
(𝑡𝑡

)

Time (𝑡𝑡)𝑡𝑡1 𝑡𝑡2 𝑡𝑡3
Figure 1-2: Age evolution over discrete time-slots

We assume any information source node can generate an update at-will, i.e. at

each time 𝑡, an information update packet is instantaneously generated and transmit-

ted with probability 𝑝. Therefore, the time stamp associated with a packet transmit-

ted at time 𝑡 will always be 𝑡, and Equation (1.3) becomes

𝐴[𝑡+ 1] =

⎧⎪⎨⎪⎩𝐴[𝑡] + 1, if no reception

1, if reception
. (1.4)

An example of the age evolution over time is provided in Figure 1-2.

1.1.3 AoB and AoC

Having defined AoI and the network model, we now define Age of Broadcast and Age

of Collection.

20



Age of Broadcast

The AoB 𝐵𝜑𝑁

𝒪 [𝑡] with respect to some realization of the receiver locations 𝜑𝑁 and

base station 𝒪 at time-slot 𝑡 is defined as

𝐵𝜑
𝒪[𝑡]

Δ
= max

𝑖∈𝜑𝑁

𝐴𝜑𝐼

𝒪𝑖[𝑡] . (1.5)

Given the base station begins broadcasting at 𝑡 − 𝐵𝜑
𝒪[𝑡], the time until all receivers

get an update cannot be less than 𝐵𝜑
𝒪[𝑡]. Moreover, at least one base station has an

update that is no greater than 𝑡−𝐵𝜑
𝒪[𝑡].

Age of Collection

The AoC 𝐶𝜑
𝒪[𝑡] with respect to the base station 𝒪 and the realization of node and

interferer locations 𝜑 at time 𝑡 is defined as

𝐶𝜑
𝒪[𝑡]

Δ
= max

𝑗∈𝜑𝑁

𝐴𝜑
𝑗𝒪[𝑡] . (1.6)

For a given time 𝑡, the base station will have received at least one update from all

but one transmitter since 𝑡− 𝐶𝜑
𝒪[𝑡].

In both broadcast and collection settings, we adopt the convention that if 𝜑𝑁 = ∅,
then AoB and AoC is 0 for all time. Having defined AoB and AoC, we establish

preliminary results that are used in subsequent sections to analyze AoB and AoC.

1.2 Preliminaries

When broadcasting, the probability the base station successfully delivers an update to

an arbitrary receiver 𝑦 given the locations of the interferer positions 𝜑𝐼 is determined

by the medium access probability and the channel characteristics. Since transmission

attempts from transmitters and interferers alike are i.i.d. and Bernoulli in each time

slot, the probability of successful delivery to 𝑦 is time-invariant and the time index 𝑡

can be dropped. Given the spatial realization of interferers 𝜑𝐼 , the success probability
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is given by,

𝜇𝜑𝐼

𝒪𝑦 = P (𝑆𝐼𝑅𝒪𝑦 > 𝜃) . (1.7)

Averaging over the channel fading and the random access, and given the spatial

realization 𝜑𝐼 , the conditional reception success probability at a receiver 𝑦 is given by

𝜇𝜑𝐼

𝒪𝑦 = P
(︁
𝑆𝐼𝑅𝜑𝐼

𝒪𝑦 > 𝜃
⃒⃒
Φ𝐼 = 𝜑𝐼

)︁
= 𝑝

∏︁
𝑥∈𝜑𝐼

(︃
1− 𝑝

1 + 𝜃 ℓ(𝑦)
ℓ(𝑥−𝑦)

)︃
. (1.8)

The derivation of Equation (1.8) can be found in Appendix A.1 and is similar to the

analysis in [27] Lemma 1. Through an identical line of reasoning, the conditional

success probability during collection with respect to transmitter 𝑥 ∈ 𝜑𝑁 is given by

𝜇𝜑
𝑥𝒪 = 𝑝

∏︁
𝑦∈𝜑∖𝑥

(︃
1− 𝑝

1 + 𝜃 ℓ(𝑥)
ℓ(𝑦)

)︃
. (1.9)

where the sources of interference are both 𝜑𝐼 and 𝜑𝑁 ∖ 𝑥; thus success probability

is conditioned on 𝜑 instead of 𝜑𝐼 .

Note that 𝜇𝜑𝐼

𝒪𝑦 and 𝜇𝜑
𝑥𝒪 are dependent on the realization 𝜑. Thus, when not given

𝜑, the reception success probability is a random variable.

Next, we de-condition Equation (1.8) and Equation (1.9) on Φ𝐼 by taking the

average over all realizations of the interferer locations. The packet reception success

probability from the base station 𝒪 to a receiver 𝑦 is then given by

𝜇(‖𝑦‖) = 𝑝 exp
(︀
−𝑝𝜆𝜋𝐶‖𝑦‖2

)︀
, (1.10)

where

𝐶 ≜ Γ(1 + 𝛿)Γ(1− 𝛿)𝜃𝛿 (1.11)

and the gamma function Γ(·) is defined as Γ(𝑥)
Δ
=
∫︀∞
0

𝑡𝑥−1𝑒−𝑡 𝑑𝑡, and 𝛿 = 2
𝛽
.

The proof is in Appendix A.2 and is similar to the analysis in [7] (see Section
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3.2.3). Note that 𝜇 no longer depends explicitly on node or interferer geometry and

is instead only a function of the distance between 𝒪 and 𝑦. Thus, in the instance-

independent analysis we will express the success probability purely as a function of

distance between the base station and the node.

Conditioned on Φ𝑁 , we find the success probability in the collection case de-

conditioning on Φ𝐼 to be

𝜇𝜑𝑁

𝑦𝒪 = P

⎛⎝𝐻𝑦𝒪 ≥
𝜃
(︁
𝐼𝜑𝐼

𝑦𝒪 + 𝐼
𝜑𝑁∖{𝑦}
𝑦𝒪

)︁
ℓ(𝑦)

⎞⎠ (1.12)

= E

[︃
exp

(︃
−
𝜃𝐼𝜑𝐼

𝑦𝒪

ℓ(𝑦)

)︃]︃
· E
[︃
exp

(︃
−
𝜃𝐼

𝜑𝑁∖{𝑦}
𝑦𝒪

ℓ(𝑦)

)︃]︃
(1.13)

= 𝑝 exp
(︀
−𝑝𝜆𝜋𝐶‖𝑦‖2

)︀
·
∏︁

𝑗∈𝜑𝑁∖{𝑦}

(︃
1− 𝑝

1 + 𝜃 ℓ(𝑦)
ℓ(𝑗)

)︃
(1.14)

= 𝜇(‖𝑦‖) ·
∏︁

𝑗∈𝜑𝑁∖{𝑦}

(︃
1− 𝑝

1 + 𝜃 ℓ(𝑦)
ℓ(𝑗)

)︃
, (1.15)

where 𝐼
𝜑𝑁∖{𝑦}
𝑦𝒪 denotes the interference induced by the transmission of the nodes in

𝜑𝑁 ∖ {𝑦}. Having established packet reception probabilities results in both instance-

dependent and instance-independent cases, we leverage this insight in deriving AoB

and AoC in the following chapters, starting with broadcast.
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Chapter 2

Broadcast

In this section we characterize the Expected AoB (EAoB), the expectation taken with

respect to the ALOHA network traffic. In the instance-dependent case, we analyze

EAoB given perfect knowledge of node and interferer locations. In the instance-

independent case, node and interferer locations are unknown, so we find EAoB in

expectation over the node and interferer point processes.

2.1 Instance-dependent (BD)

We assume the locations of all interferers and receivers are known. Interferers are

located according to a realization of Φ𝐼 , denoted 𝜑𝐼 . Receivers are also distributed

according to a realization of Φ𝑁 and is denoted 𝜑𝑁 . Recall that the network is at

steady state, having started at 𝑡 = −∞. Therefore, the AoB process is stationary

and EAoB, defined as E
[︁
𝐵𝜑

𝒪[𝑡]
]︁
, is the same for all finite 𝑡 and the dependence on

time can be dropped to give E
[︁
𝐵𝜑

𝒪

]︁
.

To determine the EAoB, it is helpful to connect average broadcast age to the

average broadcast delay, a related-yet-distinct metric [26]. For each receiver 𝑦 ∈ 𝜑𝑁 ,

define 𝑋𝜑𝐼

𝒪𝑦[𝑡] to be the time elapsed until successful reception of the next packet at

receiver 𝑖 since time 𝑡. Broadcast delay 𝐷𝜑
𝒪[𝑡] is then the time elapsed from time 𝑡
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Time𝑡𝑡

𝐵𝐵𝒪𝒪
𝜙𝜙[𝑡𝑡]

𝐴𝐴 𝒪𝒪𝜙𝜙
𝑡𝑡

𝑟𝑟𝑥𝑥1
𝑟𝑟𝑥𝑥2
𝑟𝑟𝑥𝑥3

(a)

Time𝑡𝑡

𝐵𝐵𝒪𝒪
𝜙𝜙[𝑡𝑡]

(b)

Reverse Time𝑡𝑡𝑡

𝐷𝐷𝒪𝒪
𝜙𝜙[𝑡𝑡𝑡]

𝑟𝑟𝑥𝑥1
𝑟𝑟𝑥𝑥2
𝑟𝑟𝑥𝑥3

(c)

Figure 2-1: An illustrative example supporting Claim 1, where (a) is the age evolution
of three receivers that form the set 𝜑𝑁 , (b) describes the packet arrival process up to
time 𝑡, and (c) is the reverse of the process in (b).
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until the time at which all receivers in 𝜑𝑁 have received the next packet. That is,

𝐷𝜑
𝒪[𝑡] ≜ max

𝑦∈𝜑𝑁

𝑋𝜑𝐼

𝒪𝑦[𝑡] (2.1)

Since the packet reception process is stationary – by virtue of the ALOHA random

access and i.i.d. fading – the average broadcast delay E
[︁
𝐷𝜑

𝒪[𝑡]
]︁

is the same for all

finite 𝑡 and the dependence on 𝑡 can be dropped to give E
[︁
𝐷𝜑

𝒪

]︁
. We now reason that

the average broadcast delay is equivalent to EAoB. This is evident by observation

of the reverse packet reception process (see Figure 2-1). Consider the instantaneous

AoB at time 𝑡, which is the maximum AoI in 𝜑𝑁 , and is exactly the time that elapsed

between the current time point and the first time point in the past since which all

receivers in the receiver set have successfully received at least one information update

(see Figure 2-1b). Now consider the broadcast delay, given by Equation (2.1) and

shown in Figure 2-1c. Since the packet reception process’s evolution in the forward

direction is identical in distribution to that of its reverse process looking back in time,

we may conclude the average broadcast delay must be equal to the EAoB. The formal

claim is outlined below.

Claim 1.

E
[︁
𝐵𝜑

𝒪

]︁
= E

[︁
𝐷𝜑

𝒪

]︁
. (2.2)

Proof. For any time 𝑡 the packet reception vector 1⃗𝜑𝐼

𝒪 [𝑡] =
{︁
1
𝜑𝐼

𝒪𝑖

}︁|𝜑𝑁 |

𝑖=1
can take values

from a finite set of states 𝒩 of cardinality 2|𝜑𝑁 |. Therefore, the packet reception

process over time is a discrete-time Markov Chain. Since the packet reception process

is stationary and time-invariant by virtue of the ALOHA transmissions and i.i.d

fading, this Markov Chain is irreducible, aperiodic, and positive recurrent. We denote

the probability that the process is in state 𝑢 ∈ 𝒩 to be 𝑝𝑢. WLOG, we denote the

probability that the process transitions from state 𝑗 ∈ 𝒩 at time 𝑡 to 𝑘 ∈ 𝒩 at

time 𝑡+ 1 to be 𝑝𝑗𝑘 for any time 𝑡 ≥ 0. By Kolmogorov’s criterion for Markov chain
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time-reversibility, the process is time-reversible if and only if the condition

𝑝𝑗1𝑗2𝑝𝑗2𝑗3 . . . 𝑝𝑗𝑛−1𝑗𝑛𝑝𝑗𝑛𝑗1 = 𝑝𝑗1𝑗𝑛𝑝𝑗𝑛𝑗𝑛−1 . . . 𝑝𝑗3𝑗2𝑝𝑗2𝑗1 (2.3)

is satisfied for all finite sequences of states 𝑗1, 𝑗2, . . . , 𝑗𝑛 ∈ 𝒩 .

Since the event the process is in state 𝑗 at time 𝑡 is independent of the event

it is in state 𝑘 at time 𝑡 + 1 for all time 𝑡 ≥ 0, the condition in Equation (2.3)

holds, establishing that the packet reception process is time-reversible. As shown

in Figure 2-1, for any time 𝑡, the AoB 𝐵𝜑
𝒪[𝑡] is shown to be equivalent to 𝐷𝜑

𝒪(𝑡
′), the

broadcast delay of the time-reversed process starting from the same time slot. Since

time-reversibility implies that expectations with respect to forward time are the same

as that over reverse time, coupled with the fact that E
[︁
𝐷𝜑

𝒪[𝑡]
]︁
= E

[︁
𝐷𝜑

𝒪

]︁
, we may

conclude that

E
[︁
𝐵𝜑

𝒪

]︁
= E

[︁
𝐷𝜑

𝒪

]︁
.

This equivalence between the average broadcast delay and average AoB facilitates

an analytical derivation of expected AoB. We begin by first defining the joint distri-

bution of packet reception at each time 𝑡. Assuming knowledge of the locations of all

nodes in 𝜑𝐼 and 𝜑𝑁 , at time slot 𝑡, the joint distribution of packet reception for all

the receivers, i.e. the joint distribution of
{︁
1
𝜑𝐼

𝒪𝑖[𝑡]
}︁

𝑖∈𝜑𝑁

, the packet reception indica-

tor random variables, can be obtained. Using this joint distribution, it is possible to

determine the average broadcast age explicitly.

We partition the receivers into Ξ[𝑡] = {𝑖 ∈ 𝜑𝑁 |1𝒪𝑖[𝑡] = 1} and Ψ[𝑡] = {𝑗 ∈
𝜑𝑁 |1𝒪𝑗[𝑡] = 0}, the set of receivers that successfully received a packet at time 𝑡 and

the set that did not receive a packet, respectively. Defining the probability of the set

of receivers ℛ all successfully receiving a packet at time slot 𝑡 as the following,

𝜇𝜑𝐼

𝒪ℛ[𝑡] = P
(︁
∩𝑖∈ℛ

{︁
𝑆𝐼𝑅𝜑𝐼

𝒪𝑖[𝑡] > 𝜃
}︁)︁

= P
(︁
∩𝑖∈ℛ

{︁
1
𝜑𝐼

𝒪𝑖[𝑡] = 1
}︁)︁

, (2.4)

and conversely 𝑤𝜑𝐼

𝒪ℛ[𝑡] as the probability of the set of receivers ℛ NOT receiving a
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packet at time slot 𝑡 as

𝑤𝜑𝐼

𝒪ℛ[𝑡] = P
(︁
∩𝑖∈ℛ

{︁
𝑆𝐼𝑅𝜑𝐼

𝒪𝑖[𝑡] ≤ 𝜃
}︁)︁

= P
(︁
∩𝑖∈ℛ

{︁
1
𝜑𝐼

𝒪𝑖[𝑡] = 0
}︁)︁

. (2.5)

We next determine the probability rule of
{︁
1
𝜑𝐼

𝒪𝑖[𝑡]
}︁

𝑖∈𝜑𝑁

, which is equivalent to finding

the probability rule for Ξ[𝑡] without loss of generality. By the inclusion-exclusion

property, the probability rule for Ξ[𝑡] can be established.

The inclusion-exclusion principle formula represents the probability of the union

of a set of events 𝐴 = {𝐴1, 𝐴2, . . . , 𝐴𝑛} by the probabilities of intersections of its

subsets:

P (∪𝑛
𝑖=1𝐴𝑖) =

𝑛∑︁
𝑗=1

(−1)𝑛−1
∑︁

𝐿∈[𝐴]𝑘

P (∩𝑖∈𝐿𝐴𝑖) , (2.6)

where [𝐴]𝑘 denotes the set of subsets of 𝐴 with cardinality 𝑘. Therefore, the proba-

bility rule for Ξ[𝑡] is

𝑝 (Ξ[𝑡]) = P
(︁{︁

∩𝑖∈Ξ1
𝜑𝐼

𝒪𝑖[𝑡] = 1
}︁⋂︁{︁

∩𝑗∈Ψ1
𝜑𝐼

𝒪𝑗[𝑡] = 0
}︁)︁

(2.7)

= P
(︁
∩𝑖∈Ξ

{︁
1
𝜑𝐼

𝒪𝑖[𝑡] = 1
}︁)︁

(2.8)

− P
(︁
∪𝑗∈Ψ

{︁
1
𝜑𝐼

𝒪𝑗[𝑡] = 1
}︁
∩
{︁
∩𝑖∈Ξ1

𝜑𝐼

𝒪𝑖[𝑡] = 1
}︁)︁

(2.9)

= 𝜇𝜑𝐼

𝒪Ξ[𝑡] +

|Ψ|∑︁
𝑘=1

(−1)𝑘
∑︁

𝐿∈[Ψ]𝑘

𝜇𝜑𝐼

𝒪{Ξ∪𝐿}[𝑡] . (2.10)

Without loss of generality, we may define the probability rule starting at time

𝑡 = 0 for broadcast delay 𝐷𝜑
𝒪[0]. For the broadcast delay to be 𝜏 , at least one

receiver must receive a packet at time 𝑡 = 𝜏 − 1. Moreover, of all the receivers that

received a packet at time 𝜏 − 1, at least one must have received no packets for times

𝑡 ∈ {0, . . . , 𝜏 −2}, i.e. given non-empty Ξ[𝜏 −1], there exists some non-empty subset

𝐽 ⊆ Ξ[𝜏 − 1] such that 𝐽 ⊆ ∩𝜏−2
𝑖=0Ψ[𝑖]. Therefore, 𝑝𝜑𝐷(𝜏), the probability that the
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broadcast delay is equal to 𝜏 , is given by

𝑝𝜑𝐷(𝜏) =
∑︁

Ξ∈2Φ𝑁 ∖{∅}

𝑝(Ξ[𝜏 − 1]) · P(∪𝐽∈2Ξ[𝜏−1]∖{∅}{𝐽 ⊆ ∩𝜏−2
𝑖=0Ψ[𝑖]})⏟  ⏞  

(*)

(2.11)

=
∑︁

Ξ∈2Φ𝑁 ∖{∅}

𝑝(Ξ[𝜏 − 1]) ·

⎛⎝ |Ξ|∑︁
𝑛=1

(−1)𝑛+1
∑︁

𝐽∈[Ξ]𝑛

𝜏−2∏︁
𝑢=0

𝑤𝜑𝐼

𝒪𝐽 [𝑢]

⎞⎠
⏟  ⏞  

(†)

, (2.12)

where 2{·} denotes the power set of some set {·}, and (†) is the inclusion-exclusion

formula applied to (*). Finally, we use Claim 1 to find EAoB given by

E
[︁
𝐵𝜑

𝒪[𝑡]
]︁
= E

[︁
𝐷𝜑

𝒪

]︁
= E

[︁
𝐷𝜑

𝒪[0]
]︁
=

∞∑︁
𝑘=1

𝑘 · 𝑝𝜑𝐷(𝑘) . (2.13)

While this representation of average broadcast age is complete, a more intuitive

characterization can be developed in the form of bounds on the average broadcast

delay. We begin with an empirical observation. Based on simulation results, we

observe that the average broadcast age is bounded above by the average broadcast age

of an alternate packet reception process in which all packet reception indicators were

independent random variables, albeit preserving the same distribution (see Figure 2-

2). Recall that 𝑋𝜑𝐼

𝒪𝑖[𝑡] denotes the time elapsed since time 𝑡 until the next packet

reception. The conjecture based on this observation is formalized as follows.

Conjecture. The EAoB is bounded above by

E
[︁
𝐵𝜑

𝒪

]︁
≤ E

[︁
�̃�𝜑

𝒪

]︁
= E

[︂
max
𝑖∈𝜑𝑁

�̃�𝜑𝐼

𝒪𝑖[0]

]︂
,

where �̃�𝜑𝐼

𝒪𝑖[0]
𝑑
= 𝑋𝜑𝐼

𝒪𝑖[0] and
{︁
�̃�𝜑𝐼

𝒪𝑖[0]
}︁

𝑖∈𝜑𝑁

are independent.

The conjecture would hold if
{︁
𝑋𝜑𝐼

𝒪𝑖

}︁
𝑖∈𝜑𝑁

are associated random variables [3]. For-

mally, two sets of random variables S and T are associated random variables if for

30



all non-decreasing pairs of functions 𝑓, 𝑔,

Cov (𝑓(S,T), 𝑔(S,T)) ≥ 0 .

While in general it is difficult to determine association, for the case of |𝜑𝑁 | = 2 it is

readily established.

Claim 2. Given |𝜑𝑁 | = 2 with receivers 𝑥 and 𝑦,

max
(︁
𝑋𝜑𝐼

𝒪𝑥, 𝑋
𝜑𝐼

𝒪𝑦

)︁
≤ max

(︁
�̃�𝜑𝐼

𝒪𝑥, �̃�
𝜑𝐼

𝒪𝑦

)︁
(2.14)

Proof. We begin proof of the above claim by determining association of the packet

reception indicator random variables of each receiver. Consider 1𝜑𝐼

𝒪𝑥[𝑘] and 1𝜑𝐼

𝒪𝑦[𝑗]:

1. Case 1: 𝑘 ̸= 𝑗 Since packet reception at different time slots 𝑘 and 𝑗 are in-

dependent, 1𝜑𝐼

𝒪𝑥[𝑘] and 1𝜑𝐼

𝒪𝑦[𝑗] are independent and are thus associated random

variables [3].

2. Case 2: 𝑘 = 𝑗 As shown in [3], if the covariance of two binary random variables

is non-negative, then they are associated. In the following the covariance is

derived for 𝑘 = 𝑗. The time index as well as the dependence on 𝜑𝐼 and 𝒪 is

dropped for convenience :

Cov(1𝑥,1𝑦) = E [1𝑥1𝑦]− E [1𝑥]E [1𝑦]

=
∏︁
𝑖∈𝜑𝐼

⎡⎣ 𝑝(︁
1 + 𝜃 ‖𝑥‖𝛽

‖𝑖−𝑥‖𝛽

)︁(︁
1 + 𝜃 ‖𝑦‖𝛽

‖𝑖−𝑦‖𝛽

)︁ + 1− 𝑝

⎤⎦
⏟  ⏞  

𝐴

−

∏︁
𝑖∈𝜑𝐼

⎛⎝ 𝑝

1 + 𝜃 ‖𝑥‖𝛽
‖𝑖−𝑥‖𝛽

+ 1− 𝑝

⎞⎠⎛⎝ 𝑝

1 + 𝜃 ‖𝑦‖𝛽
‖𝑖−𝑦‖𝛽

+ 1− 𝑝

⎞⎠
⏟  ⏞  

𝐵

We now compare a factor of 𝐴 and a factor of 𝐵 with respect to a single common

interferer 𝑖 to determine inductively if 𝐴 > 𝐵, resulting in positive covariance.
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We define 𝑐 to be

𝑐
Δ
= 1 + 𝜃

‖𝑥‖𝛽
‖𝑖‖𝛽

and 𝑑 to be

𝑑
Δ
= 1 + 𝜃

‖𝑥‖𝛽
‖𝑖‖𝛽

for some 𝑖 ∈ 𝜑𝐼 . We may then represent the factor associated with interferer 𝑖

in 𝐴 as

𝑝

𝑐𝑑
+ 1− 𝑝 ,

and in 𝐵 as

𝑝2

𝑐𝑑
+

𝑝((1− 𝑝)

𝑐
+

𝑝(1− 𝑝)

𝑑
− (1− 𝑝)2 .

We may determine if the factor in 𝐴 associated with 𝑖 is greater than the factor

in 𝐵 associated with 𝑖 by subtracting the two factors and see if the result is

non-negative. If so, we may conclude that the factor in 𝐴 associated with 𝑖 is

always at least as large as the factor in 𝐵 associated with 𝑖, and therefore 𝐴 is

larger than 𝐵. Note that each factor of 𝐴 is non-negative and lies in the interval

[0, 1]. This is also the case for each factor of 𝐵.

Subtracting the latter from the former,

𝑝

𝑐𝑑
+ 1− 𝑝− 𝑝2

𝑐𝑑
− 𝑝((1− 𝑝)

𝑐
− 𝑝(1− 𝑝)

𝑑
− (1− 𝑝)2 (2.15)

= (1− 𝑐)(1− 𝑑)𝑝− (1− 𝑐)(1− 𝑑)𝑝2 ≥ 0 , (2.16)

since the MAP parameter 𝑝 is always less than or equal to 1. This implies that

for any 𝑖 ∈ 𝜑𝐼 , its contribution to A is at least as large as the corresponding

factor in B. Therefore,

𝐶𝑜𝑣(1𝜑𝐼

𝒪𝑥,1
𝜑𝐼

𝒪𝑦) ≥ 0 ,

leading us to conclude that 1𝜑𝐼

𝒪𝑥[𝑘] and 1𝜑𝐼

𝒪𝑥[𝑗] are associated random variables
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for all 𝑘, 𝑗 ≥ 0.

Having established association for the packet reception indicators associated

with 𝑥 and 𝑦, we may determine association of 𝑋𝜑𝐼

𝒪𝑥 and 𝑋𝜑𝐼

𝒪𝑦.

The inverse of the packet reception indicatorsO𝜑𝐼

𝒪𝑥 = 1−1𝜑𝐼

𝒪𝑥 andO𝜑𝐼

𝒪𝑦 = 1−1𝜑𝐼

𝒪𝑦

are a set of associated random variables as well [3].

We may then represent 𝑋𝜑𝐼

𝒪𝑥 as a function of the inverse packet reception indi-

cator random variables of receiver 𝑥 as

𝑋𝜑𝐼

𝒪𝑥[𝑡] = min
𝑘

{︃
1 +

𝑡+𝑘−1∑︁
𝑖=𝑡

(O𝜑𝐼

𝒪𝑥[𝑖]) s.t.

O
𝜑𝐼

𝒪𝑥[𝑖] = 1 ∀ 𝑖 ∈ {𝑡, . . . , 𝑡+ 𝑘 − 1}
}︃
, (2.17)

and 𝑋𝜑𝐼

𝒪𝑦[𝑡] can be represented similarly. The right-hand expression in Equa-

tion (2.17) is a non-decreasing function of the indicator random variablesO𝜑𝐼

𝒪𝑥[𝑖].

Since 𝑋𝜑𝐼

𝒪𝑥[𝑡] and 𝑋𝜑𝐼

𝒪𝑦[𝑡] can be represented as non-decreasing functions of a set

of associated random variables, they must be associated (See [3] (𝑃4)).

A useful property of associated random variables, which we state without proof

(see [22] Appendix A), is that the maximum over a set of associated random

variables 𝑋1, . . . , 𝑋𝑛 is bounded above by the following,

max {𝑋1, . . . , 𝑋𝑛} ≤ max
{︁
�̃�1, . . . , �̃�𝑛

}︁
,

where 𝑋𝑖
𝑑
= �̃�𝑖 and

{︁
�̃�1, . . . , �̃�𝑛

}︁
are independent random variables. Since we

have already proven 𝑋𝜑𝐼

𝒪𝑥[𝑡] and 𝑋𝜑𝐼

𝒪𝑦[𝑡] to be associated, we may invoke this

property and conclude the proof.

Figure 2-2 Illustrates the conjecture stated, plotting the simulated broadcast delay

and the broadcast delay expected if all packet reception processes were independent,
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Figure 2-2: Simulation of Broadcast age compared against the maximum of indepen-
dent random variables. The actual simulation’s EAoB is consistently less than the
independent random variable counterpart.
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maintaining the same packet reception distributions.

Having established an explicit formulation of EAoB as well as a conjectured upper

bound, we may turn to the more general, instance-independent regime. Upper bounds

are pursued in the instance-independent scenario, as outlined in the following section.

2.2 Instance-independent (BI)

In Section 2.1 we considered a particular instantiation of the nodes. Here, we take the

expectation with respect to node and interferer positions. An upper bound can be

found with a differential equation approach. Consider the squared ordered distances of

the 𝑖 nearest receivers to 𝒪 denoted 𝑅2
1 ≤ 𝑅2

2 ≤ . . . ≤ 𝑅2
𝑖 . In two-dimensional Poisson

Point Processes such as Φ𝑁 , the squared ordered distances have the same distribution

as that of the arrival times in a one-dimensional Poisson Process Φ′
𝑁 ⊂ R+ of intensity

𝜆′ = 𝜆𝜋 [21]

Focusing on this one-dimensional point process, consider a small interval in R+

given by (𝑥, 𝑥 + ∆] for very small ∆. A receiver 𝑦 ∈ Φ𝑁 exists in the point process

Φ′
𝑁 in the interval (𝑥, 𝑥 + ∆] ⊂ R+ with probability 𝜆′∆. We define the EAoB over

the set of receivers in Φ𝑁 that map to (0, 𝑢] ∈ R+ to be 𝐵(𝑢). If a receiver does not

exist in (𝑥, 𝑥 + ∆] ⊂ R+, then the EAoB 𝐵(𝑥 + ∆) would be the same as 𝐵(𝑥). If

a receiver 𝑦 does exist in the interval, either 𝑦 receives a packet after all the other

receivers in (0, 𝑥] with probability 𝜍 or it does not with probability 1− 𝜍. By setting

the probability of 𝑦 getting a packet after the rest of the receivers to 𝜍 = 1, we upper

bound the time to broadcast to all receivers that are in (0, 𝑥 + ∆], as shown in the

following:

𝐵(𝑥+∆) = (1− 𝜆′∆)𝐵(𝑥) + (𝜆′∆)

(︃
𝐵(𝑥) + 𝜍

1

𝜇
(︀√

𝑥+∆
)︀)︃ (2.18)

= 𝐵(𝑥) + (𝜆′∆)𝜍
1

𝜇
(︀√

𝑥+∆
)︀ (2.19)

≤ 𝐵(𝑥) + (𝜆′∆)
1

𝜇
(︀√

𝑥+∆
)︀ , (2.20)

35



where 𝜇(·) is given by Equation (1.10). As mentioned before, we upper bound in Equa-

tion (2.20) by setting 𝜍 to 1. The average packet reception delay 1

𝜇(
√
𝑥+Δ)

is readily

found by taking the reciprocal of 𝜇(
√
𝑥+∆) as given by Equation (1.10) since the

packet reception process is i.i.d Bernoulli. By bringing 𝐵(𝑥) over to the left-hand side

of the equation, dividing both sides by ∆ and taking the limit as ∆ → 0, we arrive

at the following:

lim
Δ→0

𝐵(𝑥+∆)−𝐵(𝑥)

∆
≤ lim

Δ→0

𝜆′

𝜇
(︀√

𝑥+∆
)︀ (2.21)

𝑑𝐵

𝑑𝑥
≤ 𝜆′

𝜇 (
√
𝑥)

=
𝜆𝜋

𝑝
exp (𝑝𝜆𝜋𝐶𝑥) (2.22)

𝑑𝐵

𝑑𝑟
=

𝑑𝐵

𝑑𝑥

𝑑𝑥

𝑑𝑟
≤ 𝜆′

𝜇 (𝑟)
· 2𝑟 = 2𝜆𝜋𝑟

𝑝
exp

(︀
𝑝𝜆𝜋𝐶𝑟2

)︀
(2.23)

Solving the differential equation in Equation (2.23) with the initial condition

𝐵(0) = 0, we obtain

𝐵(𝑟) ≤ 1

𝑝2𝐶

(︁
𝑒𝑝𝜆𝜋𝐶𝑟2 − 1

)︁
(2.24)

In addition to the differential approach, a worst-case upper bound on EAoB can

also be found. Analyzing broadcast with a common source of random interference

is analytically complicated and motivates an approximating assumption that will

be made through the remainder of this section. In particular, we assume that the

packet reception process at each receiver is independent of all other receivers. This

assumption serves to de-couple dependencies between nodes that make it difficult to

calculate AoB but still preserves the dependence of AoB on node positions, and is

similar to the mean-field approximation in [27].

We now state the worst-case upper bound, outlined in Claim 3.

Claim 3. The average AoB for a set of receivers Φ𝑁 situated in 𝑏2(𝒪, 𝑟) is bounded

above by

EΦ

[︀
𝐵Φ

𝒪
]︀
≤ (1− 𝑒−𝜆𝜋𝑟2) (Γ(0, 𝜆𝜋𝑟2) + log(𝜆𝜋𝑟2) + 𝛾)

− log(1− exp (−𝑝𝜆𝜋𝐶𝑟2))
+ 1
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Figure 2-3: Instance-Independent AoB scaling

where 𝐶 is as defined in Equation (1.11), Γ(𝑠, 𝑥) is the upper incomplete gamma

function defined as Γ(𝑠, 𝑥) ≜
∫︀∞
𝑥

𝑡𝑠−1𝑒−𝑡 𝑑𝑡, and 𝛾 is the Euler-Mascheroni constant.

To begin the proof, we first need the following lemma:

Lemma 2.2.1. E𝑁 [𝐻𝑁 ] = Γ(0, 𝜁) + log(𝜁) + 𝛾 for 𝑁
𝑑
= Pois(𝜁)

Proof. We first establish a convention that 𝐻0 = 0, since
∑︀0

𝑘=1
1
𝑘

is a vacuous sum-

mation. 𝐻𝑁 is generally represented to be

𝐻𝑁 =
𝑁∑︁
𝑘=1

1

𝑘
.

An alternate representation is

𝐻𝑁 = −
∞∑︁
𝑘=1

(︂
𝑁

𝑘

)︂
(−1)𝑘

𝑘
.
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Using this representation,

E𝑁 [𝐻𝑁 ] = −
∞∑︁
𝑛=0

𝑛∑︁
𝑘=1

𝑒−𝜁𝜁𝑛

𝑛!
(−1)𝑘

(︂
𝑛

𝑘

)︂
1

𝑘
= −1

∞∑︁
𝑘=1

(−𝜁𝑘)

𝑘! · 𝑘
∞∑︁
𝑛=1

𝑒−𝜁𝜁𝑛−𝑘

(𝑛− 𝑘)!

(*)
= Γ(0, 𝜁) + log(𝜁) + 𝛾 ,

where (*) comes from the fact that
∑︀∞

𝑛=1
𝑒−𝜁𝜁𝑛−𝑘

(𝑛−𝑘)!
= 1 and −1

∑︀∞
𝑘=1

(−𝜁𝑘)
𝑘!·𝑘 is equivalent

to the entire exponential integral function defined as Ein(𝑥) =
∫︀ 𝑥

0

(1−𝑒−𝑡)
𝑡

𝑑𝑡 = 𝛾 +

ln(𝑥) + Γ(0, 𝑥) for 𝑥 > 0.

Using Lemma 2.2.1 and conditioning on the the number of receivers in the disk

and the positions, we proceed to prove Claim 3.

E
[︀
𝐵Φ

𝒪 | |Φ𝑁 | = 𝑛
]︀
=

𝑛∑︁
𝑘=1

(−1)𝑘+1
∑︁

𝐴∈[𝐴]𝑘

(︃
1−

𝑘∏︁
𝑗=1

(1− 𝜇(‖𝑗‖))
)︃−1

This equation stems from the broadcast delay equivalence outlined in Section 2.1.

The expression for average broadcast delay can be found in [26], where the maximum

of a set of random variables can be expressed using the maximum-minimums identity

(See Equation (3.3)). Now, replacing 𝜇(‖𝑗‖) with the actual success probability, and

taking the distance of all receivers to be the farthest possible, i.e. the perimeter of

the disk of radius 𝑟, we get the following inequality

≤
𝑛∑︁

𝑘=1

(−1)𝑘+1
∑︁

𝐴∈[Φ𝑁 ]𝑘

(︃
1−

𝑘∏︁
𝑗=1

(1− 𝜇(𝑟))

)︃−1

=
𝑛∑︁

𝑘=1

(−1)𝑘+1

(︂
𝑛

𝑘

)︂(︃
1−

𝑘∏︁
𝑗=1

(1− 𝜇(𝑟))

)︃−1

(𝑎)

≤ 𝐻𝑛
1

− log(1− 𝜇(𝑟))
+ 1 =⇒ E|Φ𝑁 |

[︀
E
[︀
𝐵Φ

𝒪 | |Φ𝑁 | = 𝑛
]︀]︀

(𝑎)

≤ E|Φ𝑁 |

[︂
𝐻𝑁

1

− log(1− 𝜇(𝑟))
+ 1

]︂

=

(︁
1− 𝑒−𝜆𝜋𝑟2

)︁
(Γ(0, 𝜆𝜋𝑟2) + log(𝜆𝜋𝑟2) + 𝛾)

− log(1− 𝜇)
+ 1

Where (a), once gain, is an upper bound for broadcast delay given geometric
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𝑟𝑟22

𝑟𝑟12

𝑟𝑟42

𝐿𝐿1 𝐿𝐿2 𝐿𝐿3 𝐿𝐿4

ℝ+

a)

b)

𝑓𝑓𝐿𝐿𝑖𝑖 𝑥𝑥 = exp −𝜆𝜆𝜆𝜆𝑥𝑥 ∀ 𝑖𝑖 ∈ 𝜙𝜙𝑁𝑁

Figure 2-4: The squared ordered distances of receivers from the base station (shown
in (a)) form a 1D Poisson Process. In (b), the “inter-distances” 𝐿1, . . . , 𝐿4 of the
squared distances is distributed according to an exponentially-distributed random
variable with parameter 𝜆′ = 𝜆𝜋.

inter-packet reception times at each receiver [26]. The final equality is a result of

finding the expectation E|Φ𝑁 |[𝐻𝑛], the derivation of which can be found in the Ap-

pendix, Lemma 2.2.1.

An informal sketch of the proof is as follows. In comparison to any instantiation

of the receiver set 𝜑𝑁 , the worst case placement of the receivers is such that all

receivers are the maximum distance away from the origin, i.e. ‖𝑖‖ = 𝑟 ∀ 𝑖 ∈ 𝜑𝑁 . The

mean broadcast age is readily found for this worst-case scenario, thereby producing

an upper bound on the average broadcast age.
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Claim 3 is intuitive and provides a worst-case bound on the EAoB.

Figure 2-3 compares the upper bound through the differential analysis above

against simulation.

In the next section we characterize the collection problem and find bounds on the

performance.
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Chapter 3

Collection

3.1 Collection

In the collection problem, the base station acts as a receiver situated at the origin, with

a set of transmitters 𝜑𝑁 positioned within 𝑏2(0, 𝑟) sending updates to the base station.

We characterize the expected age of collection (EAoC), defined as E
[︁
𝐶𝜑

𝒪[𝑡]
]︁
. As in

the broadcast section, the collection age is characterized in both instance-dependent

and instance-independent regimes.

3.1.1 Instance-dependent (CD)

We begin the instance-dependent analysis by connecting AoC with a metric we denote

as collection delay. For each transmitter 𝑖 ∈ 𝜑𝑁 , define 𝑌 𝜑
𝑖𝒪[𝑡] to be the time elapsed

between the current time 𝑡 and the successful reception of the next packet transmitted

by 𝑖 to the base station after time 𝑡. The collection delay 𝒦𝜑
𝒪[𝑡] is defined as

𝒦𝜑
𝒪[𝑡]

Δ
= max

𝑖∈𝜑𝑁

𝑌 𝜑
𝑖𝒪[𝑡]

Since the packet reception process is i.i.d. over time and the AoC process is

stationary since the network began at 𝑡 = −∞, the time index can be dropped. By
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an identical line of reasoning as that in Claim 1, we conclude that

E
[︁
𝐶𝜑

𝒪

]︁
= E

[︁
𝒦𝜑

𝒪

]︁
. (3.1)

Since 𝜃 > 1, the event of a packet reception at time 𝑡 at the base station from

transmitter 𝑥 is disjoint from the event of a packet reception in the same time slot

from transmitter 𝑗 ̸= 𝑥. That is, due to the threshold setting being larger than 1,

only a single packet can be received at the receiver in a single time slot. When packet

reception events from different transmitters are disjoint and the packet reception

process is time invariant, we observe that the update collection process resembles a

coupon collection process.

In the classical Coupon Collector Problem, there are 𝑛 distinct coupons that are

to be collected. Coupons are drawn randomly at each time step. At any time, the

probability of drawing any one of 𝑛 coupons is uniformly 1
𝑛
, independent of all other

time steps, and so the resulting average time it takes to draw all 𝑛 distinct coupons

at least once is 𝑛𝐻𝑛, where 𝐻𝑛 denotes the 𝑛th harmonic number 𝐻𝑛 =
∑︀𝑛

𝑘=1
1
𝑘
.

The variant of the CCP in the collection scenario is one in which |𝜑𝑁 | distinct

coupons need to be drawn but do not have a uniform probability of being drawn by

the base station [5]. Additionally, there is the possibility of drawing an unwanted

NULL coupon – the event where no packet is successfully received – which occurs if

either no transmitter attempts a transmission or all attempted transmissions failed

to exceed 𝜃.

The expression for the average collection can be found, expressed in Claim 4.

Claim 4. Given knowledge of the node and interferer locations 𝜑 the EAoC is given

by

E
[︁
𝐶𝜑

𝒪

]︁
= E

[︂
max
𝑖∈𝜑𝑁

𝑌 𝜑
𝑖𝒪[0]

]︂
=

𝑛∑︁
𝑖=1

(−1)𝑖+1
∑︁

𝐴∈[𝜑𝑁 ]𝑘

1∑︀
𝑢∈𝐴 𝜇𝜑

𝑢𝒪
. (3.2)

Proof. Since we have established the equivalence of EAoC and expected collection

delay in Equation (3.1), we focus on the expected collection delay. We invoke the
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maximum-minimums identity to represent max𝑖∈𝜑𝑁
𝑌 𝜑
𝑖𝒪 as a sum of the minima of the

non-empty subsets of 𝜑𝑁 . The maximum-minimums identity states that for a finite

set of numbers 𝐴 with cardinality 𝑛,

max𝐴 =
𝑛∑︁

𝑘=1

(−1)𝑘+1
∑︁

𝐿∈[𝐴]𝑘

min𝐿 . (3.3)

Applying the identity to max𝑖∈𝜑𝑁
𝑌 𝜑
𝑖𝒪,

E
[︂
max
𝑖∈𝜑𝑁

𝑌 𝜑
𝑖𝒪

]︂
=

|𝜑𝑁 |∑︁
𝑘=1

(−1)𝑘+1
∑︁

𝐴∈[𝜑𝑁 ]𝑘

E
[︂
min
𝑗∈𝐴

𝑌 𝜑
𝑗𝒪

]︂
. (3.4)

Due to the disjointedness of packet reception events between any transmitters in a

time slot 𝑡, the random variable min𝑗∈𝐴 𝑌 𝜑
𝑗𝒪 is a geometric random variable with

parameter
∑︀

𝑗∈𝐴 𝜇𝜑
𝑗𝒪. Thus,

E[max
𝑖∈𝜑𝑁

𝑌 𝜑
𝑖𝒪] =

|𝜑𝑁 |∑︁
𝑘=1

(−1)𝑘+1
∑︁

𝐴∈[𝜑𝑁 ]𝑘

1∑︀
𝑗∈𝐴 𝜇𝜑

𝑗𝒪
, (3.5)

and the proof is complete.

We proceed to find bounds on the EAoC in the instance-independent case in the

following subsection.

3.1.2 Instance-independent (CI)

In this scenario, the locations of the transmitters are no longer assumed to be known,

distributed according to the Poisson Point Process Φ𝑁 . We begin with an upper

bound on EAoC. Conditioning on the size of Φ𝑁 to be 𝑛, the nodes are distributed

i.i.d. uniform in the disk 𝑏2(𝒪, 𝑟). Based on this conditioning, and assuming no nodes

are present within a small distance 𝜖 of the base station, an upper bound for EAoC

is outlined in the following claim:

Claim 5. Conditioned on the number of transmitters |Φ𝑁 | = 𝑛 in the disk 𝑏2(𝒪, 𝑟)

43



the EAoC is bounded above as given by

E
[︁
𝐶𝜑

𝒪
⃒⃒
|Φ𝑁 | = 𝑛

]︁
≤ (𝜇)−1𝐻𝑛 , (3.6)

where

𝜇 =

(︃
1− 𝑝

1 + 𝜃
(︀
𝜖
𝑟

)︀𝛽
)︃𝑛−1

· 𝜇(𝑟) (3.7)

Proof. The most disadvantaged transmitter in terms of successful delivery probability

is one situated at a distance 𝑟 from the base station, while the remaining 𝑛 − 1

transmitters are close enough to the base station to observe no path loss, i.e. at

distance 𝜖. The success probability of this disadvantaged transmitter is

(︃
1− 𝑝

1 + 𝜃
(︀
𝜖
𝑟

)︀𝛽
)︃𝑛−1

· 𝜇(𝑟) , (3.8)

since each of the other transmitters contribute equally to the interference observed

at the base station.

If all transmitters have this same pessimistic delivery probability, the EAoC would

be that of a classical CCP, the resulting EAoC given in Claim 5.

We now present numerical simulations that highlight the interplay between broad-

cast and collection.
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Chapter 4

Numerical Analysis

4.1 Numerical Results

We examine EAoB and EAoC with different network parameter settings using nu-

merical simulation. Unless stated otherwise, the default network parameter settings

for simulation are provided in Table 4.1. The EAoB and EAoC for each parameter

settings is determined using Monte Carlo simulation, simulating 250000 time slots

per trial.

In Figure 4-1, the scaling behavior of EAoB and EAoC combined is shown as the

radius of 𝑏2(𝒪, 𝑟) is increased. The scaling behavior is super-exponential in both cases,

with EAoC consistently larger than EAoB for the same radius. This is expected, since

in the collection scenario at most one packet can be delivered to the base station in

Simulation Parameter Settings

Parameter Default Value

𝜆 1.0e−2
𝜃 5
𝑟 10
𝛽 4.0
𝑝 0.2

Table 4.1: Table of default parameter values when held constant as part of the nu-
merical simulation
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Figure 4-1: Instance-independent Age scaling with radius 𝑟 going from 10 to 15.5
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Figure 4-2: Instance-independent EAoB scaling with radius 𝑟 going from 10 to 14
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Figure 4-3: Instance-independent EAoC scaling with radius 𝑟 going from 10 to 14
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Figure 4-4: Instance-independent EAoB and EAoC scaling, with intensity 𝜆 going
from 1𝑒− 3 to 1𝑒− 1.
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a given time slot, whereas when broadcasting, it is possible for multiple receivers to

get a packet simultaneously. Moreover, the interference observed at the base station

in the collection case is, in expectation, larger since both Φ𝐼 and Φ𝑁 are sources of

interference when collecting. Figures 4-2 and 4-3 plot EAoB and EAoC versus radius

for different values of the medium access probability, showing that a greater value of

𝑝 result in larger age for these parameter settings. In Figure 4-4, the density is varied

on a logarithmic scale. The figure depicts the exponential growth of EAoB and EAoC

with respect to node and interferer intensity 𝜆.
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Chapter 5

Conclusion and future work

5.1 Conclusion

We defined AoB and AoC as information freshness metrics suitable for the cases of

broadcast and collection, respectively, in spatially-distributed wireless networks. We

characterized the expected AoB and AoC when the locations of nodes and interferers

are known and unknown. When the locations are known and the packet transmis-

sion process is stationary, we showed that expected AoB and AoC were equivalent to

the expected broadcast delay and collection delay, respectively. Upper-bounds were

found in the instance-independent scenario: the AoB upper-bound is a solution to a

differential equation, and the AoC upper-bound uses the solution to the worst-case

packet delivery success probability given a small exclusion radius 𝜖. We demonstrated

through numerical simulation the relation between AoB and AoC and network pa-

rameters such as density and medium access probability. Future work could introduce

mobility by allowing nodes in the disk to change positions each time slot. Simultane-

ous broadcast and collection could also be investigated, where the base station may

act as a transceiver and switch randomly between broadcast and collection in each

time slot.
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Appendix A

Proofs

A.1 Conditional Probability of Successful Packet Re-

ception

Proof. Recall that the SIR conditioned on Φ𝐼 is defined in Section 1.1.1 Equation (1.2).

Substituting Equation (1.2) for the SIR,

𝜇𝜑𝐼

𝒪𝑦

(𝑎)
= 𝑝 · P

(︂
𝐻𝒪𝑦 > 𝜃

∑︀
𝑥∈𝜑𝐼

𝑍𝑥𝐻𝑥𝑦ℓ(𝑥− 𝑦)

ℓ(𝑦)

)︂
(A.1)

(𝑏)
= 𝑝 · E

[︂
exp

(︂
−𝜃

∑︀
𝑥∈𝜑𝐼

𝑍𝑥𝐻𝑥𝑦ℓ(𝑥− 𝑦)

ℓ(𝑦)

)︂]︂
(A.2)

(𝑐)
= 𝑝

∏︁
𝑥∈𝜑𝐼

E𝐻

[︂
𝑝 · exp

(︂
−𝜃

𝐻𝑥𝑦ℓ(𝑥− 𝑦)

ℓ(𝑦)

)︂
+ 1− 𝑝

]︂
(A.3)

(𝑑)
= 𝑝

∏︁
𝑥∈𝜑𝐼

(︃
𝑝

1 + 𝜃 ℓ(𝑥−𝑦)
ℓ(𝑦)

+ 1− 𝑝

)︃
, (A.4)

where (a) is a result of taking expectation with respect to 𝑍𝒪, (b) follows from

the complementary cumulative distribution function (CCDF) of 𝐻𝒪𝑦 which is 1 −
𝐹𝐻𝒪𝑦

(ℎ) = 𝑒−ℎ, (c) follows from the independence and identical distribution of the

fading variables and the expectation with respect to 𝑍𝑥, and (d) is the result of taking

expectation with respect to the fading variables 𝐻𝑥𝑦. Equation (1.8) is an algebraic
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simplification of Equation (A.4).

A.2 Proof of the success probability calculation

Proof. Given the conditional success probability is defined as the probability that the

SIR exceeds 𝜃, the success probability averaged over Φ𝐼 is given by

𝜇(‖𝑦‖) = EΦ𝐼

[︀
𝜇Φ𝐼
𝒪𝑦

]︀
= 𝑝EΦ𝐼

[︃
P

(︃
𝐻𝒪𝑦 >

𝜃𝐼Φ𝐼
𝒪𝑦

ℓ(𝑦)

)︃]︃
(A.5)

= 𝑝EΦ𝐼

[︃
exp

(︃
−
𝜃𝐼Φ𝐼

𝒪𝑦

ℓ(𝑦)

)︃]︃
⏟  ⏞  

𝐴

. (A.6)

Note that the multiplicative term 𝐴 is the Laplace transform of the interference

𝐼Φ𝐼
𝒪𝑦 evaluated at 𝑠 = 𝜃/ℓ(𝑦). The Laplace transform for interference given Rayleigh

fading and power-law pathloss is given in [7], Equation (3.20), to be

ℒ𝐼(𝑠) = exp
(︀
−𝑝𝜆𝜋Γ(1 + 𝛿)Γ(1− 𝛿)𝑠𝛿

)︀
(A.7)

substituting 𝜃𝑟𝛽 provides the desired result.
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