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Abstract

Smoke from biomass burning (both wildfires and prescribed and agricultural burns) is important
for atmospheric chemistry and composition, air quality, and climate. These impacts are
associated with substantial societal implications such as large detrimental health burdens, lost
work and school days, and diminished visibility and ability to use the outdoors. However, there
are large uncertainties in the magnitude and characteristics of smoke, stemming from
considerable unknowns in all parts of the fire system, and thus in our representation of this in
models. This thesis aims to address many of these uncertainties with a multipronged approach
using models and observations across scales.

The scope of the research completed herein is introduced and described in Chapter 1. Chapter 2
focuses on how smoke emissions uncertainties carry through to air quality and radiative impacts
with an emphasis on North America using four commonly used smoke inventories, a chemical
transport model, and observational constraints, including surface networks, aircraft, and
satellites. We show that two of the inventories (GFED4s and GFAS) direct the model closest to
observations. While most air quality and climate studies only use one smoke inventory, we find
that there is a large range across the inventories in health-relevant surface smoke concentrations
and climate-relevant direct radiative effects. Chapter 3 investigates carbonaceous aerosol and its
absorption properties from fires in two large fire source regions, the western US and Africa,
using observations from three aircraft campaigns focused on fires. We find that smoke from
African fires is more absorbing than that in the western US and thus that global climate models
need to represent regional heterogeneity in absorption properties. We also show that a 1-day
whitening lifetime of brown carbon matches observations well and substantially decreases the
warming contribution of biomass burning. Chapter 4 expands the model representation of non-
methane organic gases (NMOGs) from fires and investigates how important fires are for
atmospheric reactivity. This is the first global estimate of the impact of fire on atmospheric
reactivity. Chapter 5 focuses on two quantifiable human levers (human-ignited wildfires and
agricultural fires) on smoke particulate matter under 2.5 microns in the US. We calculate that
these two human drivers account for over 80% of important health metrics (population-weighted
exposure and premature mortality) associated with fires, suggesting large mitigation potential of
smoke impacts. Finally, Chapter 6 summarizes the work completed in this thesis.
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Chapter 1 Introduction

Fires have occurred on earth over the last several millennia, increasing and decreasing in
response to different natural and human factors. Three major factors control fires and their
extent: ecosystem productivity (fuel), climate (e.g., fire weather or wet vs. dry conditions and
ignition potential), and humans (colonization; land use; industrial, agricultural, and domestic
combustion; fire suppression; and fire ignition) (Bowman et al., 2011). The relative importance
of these drivers has changed over time, and climate, land use, and demography will all impact
future fires. For example, Kloster et al., (2012) showed that overall global future (2075-2099)
fire emissions will increase by 17-62% with climate responsible for increases of 22-66%; harvest
and land use for decreases of 5-20%; human ignition for increases of 20%; and fire management

(suppression) for decreases of 6%.

Fires (wildfires as well as prescribed and agricultural burns) emit a large suite of both primary
gas and particle phase chemicals into the atmosphere, including CO, CO», NOy, volatile organic
compounds (VOCs), black carbon (BC), and primary organic aerosol (POA). Many of these
species can then react with each other to form secondary pollutants, ozone (O3) and secondary
particulate matter under 2.5 microns (PMz5). The magnitude and properties of many of these
emitted and formed species remain challenging to fully capture because they depend on

underlying fuel and fire type.

Smoke (which comprises a complex mixture of these chemicals) impacts air quality, health,
climate, and beyond (e.g., visibility, the economy, and our ability to use the outdoors). Because
of their small size and associated ability to lodge deeply in lungs, PMa s can have significant
health impacts (respiratory infections, asthma, cardiovascular disease, and lung cancer) (e.g.,
Pope and Dockery, 2006; Brook et al., 2010), especially the high levels of PM» s from fires (Liu
et al., 2015a; Reid et al., 2016; Williamson et al., 2016). Ozone can cause similar respiratory
health problems and, in particular, aggravate asthma especially in vulnerable populations (CDC,
2022). Fire PM2 s can also impact the climate system via absorbing and scattering radiation
(Bond et al., 2013); BC deposition on ice lowers the surface albedo; and gases from fires (e.g.,

CO», CO, and CHy) can lead to warming.



However, nearly all components of the fire system in addition to their subsequent impacts are
uncertain. The modelling of fires themselves is complex, including their prediction, detection,
and spread (Pham et al., 2020); risks associated with wildfire drivers and impacts (Oliveira et al.,
2021); and interactions with the atmosphere (Bakhshaii and Johnson, 2019). The advent of
satellites has provided much finer spatial and temporal scale observations of fire activity, burned
area, and other indirect fire variables globally in the last several decades (van der Werf et al.,
2017). This has enabled the development of global smoke emissions inventories for use
representing smoke in air quality and climate models. Fires and their smoke are a global problem
with regional differences and effects, and so this work attempts to bridge scales and provide

insights that are globally relevant and regionally specific as appropriate.

Both the air quality and climate research communities need to represent fires and the resulting
smoke accurately. However, uncertainties abound, and most studies do not use observations to
constrain the model that they then use to inform decision making. Most air quality studies rely on
only one smoke emissions inventory without considering the implications of their choice. The
assessment of the radiative forcing impacts of fires relies on the attribution of human vs. natural
fires, which is complex and challenging to quantify. The Intergovernmental Panel on Climate
Change reports prior to the most recent, the Sixth Assessment Report (AR6), only used one
stitched together fire inventory. Using this one fire dataset, the [IPCC estimated that the biomass
burning component of aerosol radiative forcing hovers right around zero but with large
uncertainty bars (Intergovernmental Panel on Climate Change, 2014). For AR®6, a fire modeling
intercomparison systematically compared a number of models, providing a better representation
of the uncertainty in emissions (Rabin et al., 2017). In addition, the underlying models used in
the IPCC generally do not consider that a subset of POA (brown carbon or BrC) can absorb
incoming radiation, leading to potentially additional warming. Field observations suggest that
this BrC can photochemically whiten in the atmosphere, but this is poorly understood. While we
know that fires emit a complex mixture of organics, chemical transport models (CTMs) typically
include a very limited subset of fire emissions — limited by both knowledge of their emissions
and their chemical fate in the atmosphere. The limited representation of NMOGs suggests that
models are likely unable to capture secondary pollutant formation (i.e., Oz and SOA) from fires.

In this dissertation, we use models (smoke inventories; a global chemical transport model,



GEOS-Chem; and a radiative transfer model, RRTMG) and observations across scales (lab
experiments, surface networks, aircraft and tower campaigns, and satellites) to constrain, inform,
and improve our representation of smoke (e.g., emissions, chemical and physical processes, and

optical properties) and its air quality and climate impacts.

This thesis begins in Chapter 2 by quantifying how uncertainty in our fire particle emission
estimates carries through to air quality and climate impacts and delves into where some of this
uncertainty comes from. Further, we constrain the model, driven by four different smoke
inventories, with available observations in North America and show that two inventories
(GFED4s and GFAS1.2) drive GEOS-Chem closest to observations. A subsequent study showed
that GFED also drives the ACCESS-UKCA model closest to observations (Desservettaz et al.,
2022). Chapter 3 explores how the magnitude and properties of carbonaceous aerosol (BC and
OA) differ in two large fire regions (the western US and central Africa), the absorption and

whitening of brown carbon, and the global implications of what we learn.

In Chapter 4, we explore fire non-methane organic gases (NMOGs) and provide a first estimate
of the importance of fires for atmospheric reactivity. We update and expand the emissions
factors and improve the chemistry of NMOGs from fires in the model and constrain these
updates with available observations from large fire regions (US, boreal Canada, Amazon, and
Africa). We ultimately show that fires are responsible for a large contribution of surface

atmospheric reactivity both near source regions (> 75%) and broadly across the globe (~25%).

In Chapter 5, we explore two quantifiable human levers (agricultural fires and human ignited
wildfires) on smoke PM> 5 in the contiguous US (CONUS). Through this work, we show that
humans are responsible for a large portion of smoke and its impacts in specific regions and
across CONUS (>80% of fire-associated population-weighted PM; 5 exposure and premature
mortality come from these two human levers). Thus, there is a large mitigation potential for

lessening associated air quality impacts.

Chapter 6 summarizes the conclusions of this work, briefly discusses two studies complementary

to my thesis, and provides an outlook on future research needs.



Chapter 2. How emissions uncertainty influences the distribution

and radiative impacts of smoke from fires in North America

Adapted from: Carter, T.S., C.L. Heald, J.L. Jimenez, P. Campuzano-Jost, Y. Kondo, N. Moteki,
J.P. Schwarz, C. Wiedinmyer, A.S. Darmenov, A.M. da Silva, and J.W. Kaiser (2020) How

emissions uncertainty influences the distribution and radiative impacts of smoke from fires in

North America, Atmos. Chem. Phys., 20, 2073—-2097, https.//doi.org/10.5194/acp-20-2073-2020.

2.1 Introduction

Biomass burning (BB), which includes wildfires in addition to agricultural and other prescribed
burning, emits a variety of trace gases and aerosols, including carbon dioxide, oxides of nitrogen,
VOCs, and PM> 5 (Akagi et al., 2011) with large associated air quality and climate impacts.
Particulate matter from fires (or smoke) is dominated by carbonaceous aerosol (BC and OA)
(Akagi et al., 2011; Bond et al., 2013). As these emissions are transported through the
atmosphere, they deteriorate air quality in a variety of ways. Because of their small size and
associated ability to lodge deeply in lungs, aerosols can have significant health impacts
(respiratory infections, asthma, and lung cancer) and increase cardiovascular disease (e.g., Brook
et al., 2010; Pope and Dockery, 2006), especially the high levels of PM from fire events (Liu et
al., 2015; Reid et al., 2016; Williamson et al., 2016). Deep penetration of the lungs and most
acute health impacts are generally associated with the fine PM (under 2.5 microns) fraction of
PM. Biomass burning aerosols (BBA) can also impact the climate system via absorbing and
scattering radiation (Bond et al., 2013). In an era of increasing wildfire activity in the western US
(Westerling, 2016; Westerling et al., 2006), there is a pressing need to understand how smoke

from fires impacts air quality and alters atmospheric radiation.

Globally, BB is responsible for roughly 30% of BC and nearly 90% of primary OA emissions
(POA), contributing an estimated 34 Tg yr'!' of aerosol to the atmosphere annually (Bond et al.,
2013). In addition, fires may be an important source of secondary organic aerosol (SOA), which
form from the oxidative aging of gas-phase organics emitted during combustion. Our current

understanding of SOA formation is incomplete. Recent studies demonstrate that there is no clear



consensus on the magnitude of SOA from fires, with estimates that range from virtually none to
95 Tg yr'! (Shrivastava et al., 2017; Vakkari et al., 2018). Much of this spread comes from
diverging results from field versus laboratory studies: the majority of field studies have reported
no secondary aerosol formation (above dilution-corrected POA concentrations; Hodshire et al.,
2019) or even a decrease in OA (Akagi et al., 2012; Collier et al., 2016; Forrister et al., 2015;
Garofalo et al., 2019; Jolleys et al., 2014; Liu et al., 2015b; May et al., 2014, 2015), while a few
field studies observed significant SOA formation from biomass burning emissions (Vakkari et
al., 2014, 2018; Yokelson et al., 2009). Laboratory studies, to the contrary, almost always report
substantial SOA formation from fires (Grieshop et al., 2009; Hennigan et al., 2011; Lim et al.,
2019; Ortega et al., 2013; Tkacik et al., 2017). The reasons for the discrepancy across studies are
not understood (Hodshire et al., 2019; Shrivastava et al., 2017) and should be the focus of further

research.

Biomass burning aerosols (BC, POA, and SOA) can have major impacts on radiation. Black
carbon has a strong warming or positive direct radiative effect (DRE) (instantaneous radiative
impact), both globally and regionally, and some studies suggest its warming direct radiative
forcing (DRF) (the change in DRE from pre-industrial to present day, not including climate
feedbacks) (Heald et al., 2014) is second only to CO> (Bond et al., 2013). Black carbon from BB
and gas flares also lowers the snow and ice albedo in the Arctic, leading to additional warming
(Stohl et al., 2013). Organic aerosol, because it scatters radiation, has a negative or cooling DRE
(Bond et al., 2013). It is therefore the sum of the warming from absorption and the cooling from
scattering that dictates the climate effect of BBA, leading to uncertainty in even the sign of the
net radiative effect of fires. Previous estimates of BBA DRE range from -0.01 to 0.13 W/m?
(Rap et al.,, 2013; Ward et al., 2012). Furthermore, when quantifying BBA impacts on radiation,
differentiating anthropogenic and natural fires is central to quantifying the climate forcing, or the
DRF of fires which reflects human influence (e.g. via ignition, suppression or changes in fuel

availability). The uncertainty in fire radiative impacts has not been assessed in detail.
North America, in particular the western US, is one of the few regions in the world where more

intense and frequent wildfires have been directly tied to climate change impacts (e.g., hotter

temperatures and less snowpack) (Abatzoglou and Williams, 2016; USGCRP, 2017). In addition
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to climate change, historical fire suppression efforts in the US have led to increased fuel loads
for fires (Marlon et al., 2012). Consequently, BBA emissions there are likely to increase in future
decades (Yue et al., 2013). Already, boreal forest fires are responsible for only 2.5% global
burned area but 9% of global BBA emissions (van der Werf et al., 2017). Biomass burning in
Alaska has also accelerated in the last decade through increases in both burned area and fire
frequency leading to increases in carbon loss associated with late-season burning (Turetsky et al.,
2011). Both relative and total impacts of BB on air quality and climate forcing are expected to
increase as controls continue to reduce fossil fuel emissions and a changing climate potentially
leads to more fires (Fuzzi et al., 2015; Val Martin et al., 2015). It is, therefore, becoming
increasingly important to have models and emission inventories that can accurately characterize
the impact that current and future fires and their emitted aerosols have on the environment,
climate, and human health. Several recent laboratory studies (e.g., Jolleys et al., 2014; Levin et
al., 2010; McMeeking et al., 2009), including the recent NOAA Fire Lab 2016 experiments in
Missoula, MT (e.g., Jen et al., 2018; Koss et al., 2018; Selimovic et al., 2018), have explored the
BB of North American fuels, providing key constraints on smoke emissions, aging, and

properties.

Because BBA emissions cannot routinely be measured directly, a variety of global fire emission
inventories have been developed over the last decade(s) based on satellite observations. These
inventories use different empirical approaches and underlying data to represent gas and aerosol
emissions from fires - each with inherent uncertainties. Aerosol emissions from these inventories
often vary by large factors depending on the region, do not agree spatially, and sometimes do not
reflect observations of concentrations and AOD well either when integrated into a model
(Petrenko et al., 2012; Reddington et al., 2016, 2019). In this analysis, we focus on four
commonly used, but theoretically distinct inventories: the Global Fire Emissions Database
version 4 (GFED4s) (van der Werf et al., 2017) with small fires, the Fire INventory from NCAR
version 1.5 (FINNL1.5) (Wiedinmyer et al., 2011), the Quick Fire Emissions Database version 2.4
(QFED2.4) (The Quick Fire Emissions Dataset (QFED) — Documentation of versions 2.1, 2.2
and 2.4, NASA Technical Report Series on Global Modeling and Data Assimilation, NASA TM-
2013-104606, 2020), and the Global Fire Assimilation System version 1.2 (GFAS1.2) (Kaiser et
al., 2012). The two main approaches are a fire detection/burned area (FD/BA) method that relies
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upon burned area, which GFED4s uses, or active fire counts, which FINN1.5 uses, and the fire
radiative power (FRP) approach, which relies upon fire radiative energy observations, an
approach which both QFED2.4 and GFAS1.2 use. Comparisons among these different types of
inventories suggest that there is significant variability in the amount of dry matter burned
associated with an individual active fire detection, which is one explanation for why FD/BA and
FRP inventories do not align (van der Werf et al., 2017 and references therein). Studies using
AOD to interrogate BB emission inventories give varied results but suggest that FD/BA BBA
estimates are roughly a factor of 3 too low in large BB regions (e.g., boreal North America,
South America, southern Africa, and equatorial Asia) and globally (Johnston et al., 2012; Kaiser
et al., 2012; Petrenko et al., 2012; Tosca et al., 2013). In this study we will refer to the spread
across these inventories as the “uncertainty” in emissions; however, we note that additional
factors, not represented by any of these inventories, may increase the true uncertainty in the

estimated emissions.

Here we use the GEOS-Chem chemical transport model and a suite of fire emission inventories
to investigate the emissions uncertainties associated with impacts of BBA on air quality and
radiation. We explore the interannual and geographic variability of fire emissions and dry matter
(DM) consumed from 2004-2016 across inventories and discuss how the uncertainty in
emissions carries forward to concentrations, exposure, aerosol optical depth (AOD), and DRE
with a focus on 2012 - 2014. We also explore the impact of a new model parameterization for

SOA from fires.

2.2 Model and observations descriptions
2.2.1 The GEOS-Chem model

We use GEOS-Chem (www.geos-chem.org), a global chemical transport model, coupled with

the rapid radiative transfer model for global circulation models (RRTMG, lacono et al., 2008), a
configuration known as GC-RT (Heald et al., 2014), to explore the air quality and climate
impacts of BBA. GEOS-Chem is driven by assimilated meteorology from the Modern-Era
Retrospective analysis for Research and Applications, Version 2 (MERRA-2) at the NASA
Global Modeling and Assimilation Office (GMAOQO). We run version 12.0.0 of GEOS-Chem
(https://doi.org/10.5281/zenodo.1343547) with a horizontal resolution of 2x2.5° and 47 vertical

12



levels with a chemical timestep of 20 minutes and a transport timestep of 10 minutes and with
six month spin up simulations prior to the time periods of interest, 2012-2014 and June-July
2008. We also perform nested simulations over North America at 0.5x0.625° (with boundary
conditions from the global simulation) for comparison against observations (IMPROVE and
aircraft campaigns, see Sect. 2.3) with transport and chemistry timesteps of 5 and 10 minutes,

respectively.

GEOS-Chem employs SO4>~NO3;—NH4" thermodynamics (Fountoukis and Nenes, 2007)
coupled to an 0zone—VOC-NOx—oxidant chemical mechanism (Chan Miller et al., 2017; Mao et
al., 2013; Travis et al., 2016) with integrated CI-Br-I chemistry (Sherwen et al., 2016). The
model includes schemes for fine and coarse sea salt aerosols (Jaeglé et al., 2011) and mineral
dust in four size bins (Fairlie et al., 2007; Ridley et al., 2012). The standard simulation of BC in
GEOS-Chem is described in Park et al., (2003). We update this simulation per Wang et al.
(2014), as follows: we update the initial hydrophilic fraction from BB to 70% based on field
observations (Wang et al., 2014 and references therein). Fossil-BC is aged from hydrophobic to
hydrophilic using the Liu et al. (2011) BC aging scheme with dynamic [OH] and [SO:] per
Wang et al. (2014), and biofuel/biomass-BC is aged with an e-folding time of 4 hours. For
hydrophilic BC, we use an absorption enhancement from coating of BC of 1.1 for fossil-BC and
1.5 for biofuel/biomass-BC. We also update the BC properties for optical calculations per Wang
et al. (2014).

The standard POA simulation emits 50% of POA as hydrophilic and ages hydrophobic POA to
hydrophilic POA with an atmospheric lifetime of 1.15 days (Chin et al., 2002; Cooke et al.,
1999). We use an organic matter (OM) to OC ratio of 1.4 for hydrophobic OC and 2.1 for
hydrophilic. The baseline model formation of SOA from BB follows the simple scheme
implemented by Kim et al. (2015) based on field results from six large campaigns summarized
by Cubison et al. (2011). This emits 0.013g SOA precursor (SOAP) per g CO emitted, which
then forms non-volatile SOA on a fixed timescale of one day. SOAP is not lost by dry or wet
deposition. Recent laboratory results from the NOAA Fire Lab 2016 campaign suggest much
greater SOA formation from the burning of North American fuels (Lim et al., 2019); however,

we note that, as previously discussed, uncertainties surrounding this source of SOA remain large.
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Based on this study, we perform a sensitivity analysis for a new parameterization for SOA
production from fires, where SOAP is estimated as POA fire emissions scaled by a factor of
2.48. We note that this is 13 times larger than the field-based estimate of Cubison et al. (2011),
which combines the effects of POA evaporation and SOA formation (see Sect. 5 for further

details).

Anthropogenic emissions (including fossil and biofuel sources) of both BC and POA follow the
CEDS global inventory (Hoesly et al., 2018) with regional inventories used when available,
including NEI2011v1 over the US (Air Pollutant Emissions Trends Data, 2020), APEI over
Canada, and DICE-Africa over Africa (Marais and Wiedinmyer, 2016). Trash burning emissions
are from Wiedinmyer et al. (2014). Aircraft emissions are from the AEIC inventory (Simone et
al., 2013; Stettler et al., 2011). Global annual anthropogenic emissions are 4.5 Tg yr'! of BC and
8.7 Tg yr'! of POA in 2012. Biogenic emissions are calculated online from the MEGANv2.1

emissions framework (Guenther et al., 2012).

Fire emission inventories (GFED4s, FINN1.5, QFED2.4, and GFAS1.2) are specified on a daily
timescale, the frequency at which all four inventories were available. The standard version of
GEOS-Chem, which we use, emits all fire emissions from the surface into the boundary layer.
Diurnal scale factors from the Western Regional Air Partnership (WRAP, 2005) were applied to
all inventories per Kim et al. (2015). Additional information on each fire inventory is provided in

Sect. 2.2.

We quantify simulated AOD at 550 nm, assuming that aerosols are externally mixed with a fixed
lognormal size distribution for each species and that AOD is a function of relative humidity to
account for hygroscopic growth, which also varies by species (Martin et al., 2003). Aerosol
optical properties are from the Global Aerosol Data Set (GADS) database (Kopke et al., 1997)
with updates from Drury et al. (2010) and Wang et al. (2014). RRTMG calculates both longwave
and shortwave atmospheric radiative fluxes. When coupled to GEOS-Chem, this calculation is
performed every 3 hours. Long and shortwave DRE at the top of the atmosphere are summed and

reported as total DRE.
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2.2.2 Description of fire emission inventories

Here we describe the differences and similarities of the four fire emission inventories
investigated in this study: two FD/BA approaches (GFED4s and FINN1.5) and two FRP-based
(QFED2.4 and GFAS1.2). GFED4s is the most widely used of fire emission inventories (other
inventories are sometimes scaled to it), and it employs a FD/BA approach based on the Moderate
Resolution Imaging Spectroradiometer (MODIS)-observed burned area complemented by the
Carnegie—Ames—Stanford Approach (CASA) biogeochemical model. CASA provides estimated
biomass factors (i.e., combustion completeness and fuel load) in a variety of carbon pools (e.g.
leaves, grasses, litter, etc.), depending on pool-specific and environmental conditions, which are
combined with emission factors (EFs) and MODIS burned area to produce emissions (van der

Werf et al., 2017). GFED4s therefore estimates emissions as:

Mg =AxpxyxEF, (1)

where M is the mass of the species of interest (g), A is burned area (m?), y is combustion
completeness (%), p is fuel load (kg DM/m?), and EFs is the species-specific emission factor (g
species’kg DM).

The fourth and most recent version of GFED (GFED4s) provides emissions at a 0.25° resolution
from 1997 in near real time, and boosts emissions to include small fires (Randerson et al., 2012).
Burned area estimates from 2000 onwards are from the MODIS MCD64A1 500m burned area
maps aggregated at 0.25° resolution and a monthly time step (Giglio et al., 2013). Because of
measurement limitations, EFs, in general, are very uncertain (see Sect. 3), but GFED4s employs
a recent compilation of EFs (Akagi et al., 2011) with some updates, such as for the temperate
forest biome. GFED4s emissions are available monthly with scalars also available to distribute

emissions over daily or three-hour intervals. These scalars are only available from 2003 onwards.

FINN1.5 follows the same FD/BA approach as GFED4s but with some differences, including:
burned area is estimated from active fire detection identified with the MODIS Thermal
Anomalies Product (Giglio et al., 2006), EFs are based on the 2015 updates from Akagi et al.
(2011) (http://bai.acom.ucar.edu/Data/fire/), and different land cover maps are used. FINN1.5
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emissions uncertainty comes from the use of fire hot spots, assumed area burned (each fire hot
spot is equivalent to 1km? burned area except grasslands, which are 0.75 km?), land cover maps,
biomass consumption estimates, and EFs (Wiedinmyer et al., 2011). The original emission
estimates are available at 1 km? spatial resolution and from 2002 — 2016 at both daily and
monthly mean temporal resolution. Within the GEOS-Chem model, FINN1.5 input files are
available at 0.25°, and CO; emissions are produced with FINN1.5 and then other emitted species

are scaled based on emission factors and land cover type.

QFED2.4 and GFASI1.2 employ an FRP-based method, which estimates emissions using satellite

observations of fire radiative power (FRP), relying upon the following theoretical approach:

M, = ax EF, x FRE = a x EF, x [ FRP(t)dt, 2
t1

where o is the emission coefficient (kg DM J), EFs is the species-specific emission factor (g
species’kg DM), and FRE in joules (is fire radiative energy or the integral of fire radiative power

(FRP in J s!) over time.

This FRP-based approach takes advantage of an empirically derived linear relationship between
the energy released as thermal radiation (FRE) and the mass of fuel or DM consumed during
combustion (Ichoku and Kaufman, 2005; Wooster, 2002; Wooster et al., 2005). This basic
relationship is supported by the fact that the energy released by burning the same amount of a
fuel is similar regardless of vegetation type (Wooster et al., 2005). The energy from combustion
processes not transferred into the environment (through conductive, evaporative, and convective
processes) is released as infrared radiation, which is then assumed to be proportional to the total
energy produced during combustion. One can then relate the amount of fuel burned with the
time-integrated FRE using an emission coefficient (a). In laboratory studies, the coefficient
appears to be universal, i.e. independent of fuel type (Wooster et al., 2005). For satellite-
observed FRE, however, different values are associated with different broad classes of fire types

(Kaiser et al., 2012).

QFED?2.4 uses the MODIS Active Fire Level 2 product (MOD14 and MYD14) and the MODIS
Geolocation product (MODO03 and MYDO03) for FRP and the location of fires. A linear
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regression between the QFED?2.4 dataset, starting with an emission coefficient (o) from Kaiser
et al. (2009), and version 2 of GFED was used to calculate the a used in QFED2.4. The location
of the fire in addition to a vegetation land type mask was used to assign the FRP to a QFED2.4
vegetation type, which was based on an aggregated version of the International Geosphere-
Biosphere Programme (IGBP) vegetation mask with four basic classes: tropical forest,
extratropical forest, savanna, and grassland. GFAS1.2 also uses the MOD14 fire product.
GFAS1.2 utilizes land cover maps based on the dominant vegetation type from GFED3 and
additional organic soil and peat maps (Kaiser et al., 2012). GFAS1.2 also derives conversion
factors linking FRP and the GFEDv3.1 dry matter combustion rates based on linear regressions

between the two.

QFED2.4 and GFAS1.2 utilize EFs from Andreae and Merlet (2001). An update to this EF
compilation is now available (Andreae, 2019) but is not yet used in these inventories. QFED2.4
scales its aerosol emissions to better represent MODIS-observed AOD, using biome-dependent
strength factors. It should be noted that these enhancement factors were based on the GEOS
model, and depend on the underlying model configuration, most importantly, the single assumed
OM:OC ratio of 1.4, but also the specific anthropogenic emissions and the radiative properties of
aerosols in the model. Thus, these enhancement factors that scale to AOD could differ
substantially in a model that treats these factors differently. To our knowledge, these differences
have not been accounted for in previous model studies that have used QFED (e.g., Kim et al.,
2015; Lu et al., 2015; Marais et al., 2016; Saide et al., 2016; Zhang et al., 2014). We make no
effort to re-derive the biome-specific enhancement factors for GEOS-Chem. In an effort to
ensure that global totals of emitted BC and OA are consistent with those reported by QFED2 .4,
we scale down emissions by a uniform factor of 0.69 (1.4/average OM:OC ratio in GEOS-Chem
in 2012). QFEDV2.4 provides daily mean emissions and is available at 0.1° resolution from 2003
—2016. GFAS1.2 provides daily mean emissions and is available from 2003 — 2019 at 0.1°

resolution.
Some advantages of QFED2.4, GFASI1.2, and other FRP-based inventories are that the uncertain

factors used in FD/BA inventories to convert burned area to DM consumed (fuel load and

combustion completeness) can be bypassed, and that FRP observations are more sensitive to
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small fires than burned area observations (MODIS has detection limits of ~SMW and 50m?,
respectively). However, FRP-based approaches face significant challenges associated with the
sparse temporal coverage of the underlying polar-orbiting MODIS observations of FRP. The
daytime overpass of Terra and Aqua (10:30 LT and 13:30LT, respectively), generally miss the
period of peak fire activity in the western US and Canada. In addition, active fire observations
(both active fire counts and FRP) can only detect fires during the burning phase, while the
accumulated burned area can be detected for an extended period of time after the burning phase.
FRP-based emission estimates therefore contain errors due to assumptions on undetectable fire
activity under cloud cover and between satellite overpasses (for low-earth orbiting instruments
like MODIS). Smouldering and peat fires are difficult to quantify with both methods: FRP-based
approaches suffer from weak thermal signatures and uncertain emission coefficients (Darmenov
and da Silva, 2013), and FD/BA-based approaches suffer from missing information on burn

depth and thus combustion completeness.

2.2.3 In-situ observations

The ARCTAS (Arctic Research of the Composition of the Troposphere from Aircraft and
Satellites) summer airborne campaign surveyed large swaths of the Arctic with an emphasis on
probing forest fire smoke plumes using the NASA DC-8 aircraft from June 18 to July 13, 2008
(Jacob et al., 2010) (see Fig. 2.1 for flight tracks). Black carbon mass concentrations were
measured with a single particle soot photometer (SP-2, Schwarz et al., 2008). For ARCTAS, the
SP-2 detection range for particle diameter is 80-860nm, and the uncertainty is estimated to be
10% (Kondo et al., 2011). Organic aerosol was measured using a high-resolution time-of-flight
aerosol mass spectrometer (CU-Boulder Aerodyne HR-ToF-AMS, Canagaratna et al., 2007,
Cubison et al., 2011; DeCarlo et al., 2006) with a 2c estimated uncertainty of 38% for OA
(Bahreini et al., 2009) and a size detection limit extending down to 35nm vacuum aerodynamic
(about 25 nm geometric diameter for typical BBOA densities) (DeCarlo et al., 2006, 2008).
Concentration detection limits for OA for 1 min. data are ~0.16 ug m= (DeCarlo et al., 2006;
Dunlea et al., 2009), several orders-of-magnitude lower than typical field BBOA concentrations
(>= 10 ug m). The model structural and emission uncertainties for fire OA likely far outweigh
measurement uncertainties, and thus, these measurement uncertainties are not germane to the

analysis presented here. Acetonitrile, a useful tracer for BB, was measured using a Proton-
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Transfer-Reaction Mass-Spectrometer (PTR-MS, Hansel et al., 1995; Wisthaler et al., 2002) and

used as a filter to help isolate BB influence.

— ARCTAS
— DC3

Figure 2.1 Flight tracks of the ARCTAS and DC3 aircraft campaigns. The red box indicates the
boreal region of the ARCTAS flights used here.

Observations from the Deep Convective Clouds and Chemistry (DC3) campaign are also
included in our analyses. DC3 focused on thunderstorms and their impact on the chemical
composition of the troposphere and documented BB plumes and their interactions with deep
convection in the Southern Great Plains, the Colorado Front Range, and the southeastern US.
Flights occurred from May 18 to June 22, 2012 (Barth et al., 2015) (Fig. 2.1). As in ARCTAS,
BC was measured using the SP-2, and OA was measured using an HR-ToF-AMS. The detection
range for BC mass from the SP-2 corresponds to 90-550 nm volume equivalent diameter,
assuming 1.8 g cm density, with + 30% total uncertainty in the accumulation mode BC mass
mixing ratio (Schwarz et al., 2013). Acetonitrile was again measured using a PTR-MS (Hansel et
al. 1995; Wisthaler et al. 2002). For comparison with airborne measurements, the model was
sampled to the nearest grid box both temporally and spatially to each flight track using 1-minute

aircraft data. We then average both the model and the observations to the model grid box.

As the spatial and temporal coverage of aircraft campaigns is limited, we also include surface

observations from 168 sites in the contiguous United States (CONUS) that are part of the
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IMPROVE aerosol network (Interagency Monitoring of Protected Visual Environments,

http://vista.cira.colostate.edu/improve/) from 2012 and compare against 24-hour averaged model
results. Black carbon and OC are measured using a PM> s size-selective filter-based thermal
method in this network (Chow et al., 2007). We use a conversion factor of 1.8 from OC to OA
mass (Malm and Hand, 2007), which is the average of fresh and more aged OA in the model, to
represent average surface conditions (note that the same OM:OC is applied to the model

simulation when compared against IMPROVE).

2.2.4 MODIS AOD observations

Aerosol optical depth (AOD), the column total aerosol extinction, is directly proportional to the
total mass concentration of aerosol in an atmospheric column (Levy et al., 2007, 2010) and is
commonly measured by satellites. AOD measurements capture all aerosol contributions and,
therefore, do not provide a unique quantitative constraint on BBA, but they can be a used to

understand spatial and interannual BB patterns.

We use the MODIS Collection 6 level 3 daily product of satellite AOD retrievals at 550nm and
10km resolution (Levy et al., 2013; Sayer et al., 2014) from the Aqua platform and re-grid
MODIS AOD from 1x1° to the model grid of 2x2.5° for further comparison with GEOS-Chem
AOD. AOD retrievals from Aqua are used because the cross-over time of Aqua (early afternoon)
typically coincides with peak burning activity and a well-mixed boundary layer. We use a
merged AOD product (Dark Target-Deep Blue Combined Mean) from the Collection 6 MODIS
data that combines ocean and vegetated land surface retrievals (Dark Target) and bright land
surface retrievals (Deep Blue) to maximize coverage. Retrieved AOD (7) is estimated to be
accurate to £0.03 = 0.05t over the ocean (Remer et al., 2005), to £0.05 £ 0.157 over dark land
surfaces (Levy et al., 2010), and to £0.05 £+ 0.20t over bright surfaces (Hsu et al., 2006; Sayer et
al., 2014). The model was sampled at the satellite overpass time (1330 local time). In addition,
we filter out AOD values from both MODIS and the model for which the cloud fraction from

MODIS is greater than 80% to eliminate potential cloud contamination.

2.3 Underlying emissions and dry matter uncertainty

20



Figure 2.2 demonstrates the large differences in total annual BBA emissions estimated by the
four different fire emission inventories from 2004-2016 for boreal North America (BONA,
Canada and Alaska), the contiguous US (CONUS), and the globe. Emission totals over other
large BB regions that are not the focus of this study (Amazon, Africa, and Asia) are shown in
Fig. 2.S1. We focus on BC and OC (note that inventories provide OC, not OA) emissions in our
analysis, but also provide a summary of CO for context, which generally follows the trends
observed for OC (as does NOy, not shown). Globally, emissions of BC and OC are highest in
QFED2.4 (3.1Tg yr! and 28.3Tg yr'!, respectively), but emissions are also most variable in this
inventory (i.e., more variability from 2004-2016 as evidenced by the wider range between the
25" and 75" percentiles) (Fig. 2.2). Average global annual emissions are smallest in GFED4s for
BC, and, for OC and CO, FINN1.5 emissions are smallest — though very similar to GFED4s for
OC and similar to QFED for CO. Global mean total annual BC emissions differ by roughly a
factor of 2.3 across the inventories while mean total annual OC emissions differ by less (~ a
factor of 1.7). The inventories show a smaller range in mean total annual CO emissions (~ a

factor of 1.1): from GFAS1.2 (360Tg yr'') to FINN1.5 (327Tg yr!).
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Figure 2.2 Boxplot summaries of each inventory's total annual emissions of BC, OC, and

CO globally and for boreal North America and CONUS from 2004 to 2016. Diamonds indicate
means. The horizontal bar is the median. The box shows the 25th to the 75th percentile, and the
whiskers show 1.5 times the interquartile range. Points outside 1.5 times the interquartile range
are shown as dots. GFED4s emissions are in red, FINN1.5 emissions are in orange, QFED2.4

emissions are in light blue, and GFAS1.2 emissions are in dark blue.
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The spread in BBA emissions across North America is larger than that seen globally. In BONA,
mean annual BC and OC emissions show a factor of roughly five and four range, respectively,
from the smallest, FINN1.5 (0.02Tg yr'! and 0.4Tg yr'!, respectively), to the largest, GFAS1.2
(0.1Tg yr! and 1.7Tg yr'!, respectively). The relative magnitudes of the four inventories are
consistent across species for CONUS with QFED2.4 largest (0.09Tg yr'! and 1.3Tg yr'!, for BC
and OC respectively), followed by GFAS1.2 (0.04Tg yr'! and 0.5Tg yr*!, for BC and OC
respectively), and then FINN1.5 (0.03Tg yr! and 0.2Tg yr'!, for BC and OC respectively) and
GFED4s (0.01Tg yr'!and 0.3Tg yr'!, for BC and OC respectively) — where the exception is that
the mean OC emissions from GFED4s are slightly larger than those of FINN1.5. The range of
values is very similar for BC and OC in CONUS (a factor of ~7 for BC and ~6 for OC). For
CONUS, GFED4s, GFAS1.2, and QFED2.4 show similar spatial patterns; FINN1.5 continues to

show very little fire influence.
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Figure 2.3 Emissions factors in g species per kg DM (shown only for vegetated land) for each

inventory over North America; BC is shown on the left, and OC is shown on the right.

Emission factors across inventories and vegetation types (g species per kg dry matter)

Types BC oC
GFED4s  FINN1.5 QFED24AM  GFAS1.2AM GFED4s  FINN1.5 QFED2.4AM  GFAS1.24M
Temperate forest 0.54M 5640 252 0.56 0.56 9.6AM 7 6An 28.38*  9.14 9.1
Boreal forest 0.54M g Me 252 056 0.56 9.6AM  7gMe 28.38*  9.14 9.1
Savanna, grass, shrub ~ 0.378K 037 (SGy  0.86 048 0.46 2628 262 (SGAK/  422% 340 3.2
0.5 (WS)AK 6.6 (WS)Me

Tropical forest 0.528k (524K 1.65 0.66 0.57 4718k 4714k 897* 520 4.3
Agricultural 0.758k  0,69AM - 0.42 2,38k 3.3AM - - 4.2
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Table 2.1 Emissions factors used in each inventory. Superscripted AM is from Andreae and
Merlet (2001), Ak is from Akagi et al. (2011), An is Andreae and Rosenfeld (2008), and Mc is
McMeeking et al. (2009). Note that QFED2.4 and GFAS1.2 EFs shown here for BC and OC are
entirely from Andreae and Merlet (2001). * The first QFED2.4 column shows the underlying EFs
(shown in the second QFED2.4 column) multiplied by their biome-specific enhancement factor.
We also adjust this factor down by the ratio of 1.4 (the OM : OC ratio used in the GEOS model)
to the average OM : OC ratio used in GEOS-Chem in 2012 (see Sect. 2.2 for details).

Multiple studies (e.g., Akagi et al., 2011; Alvarado et al., 2010; Urbanski et al., 2011) have
identified uncertainties in EFs as a large source of uncertainty in BB emissions. Table 2.1
confirms that there are large differences in the EFs used in the four inventories explored here in
North America, particularly in boreal and agricultural regions. For example, OC boreal forest
EFs range from 7.8 to 9.6 g/kg DM and BC from 0.2 to 0.56g/kg DM. The EFs used in each
inventory are shown spatially over North America in Fig. 2.3. Updated EFs have also become
recently available — from a large recent EF compilation (Andreae, 2019) to multiple studies
focused on western fuels because of recent field intensives there. Some of this work has
suggested that the PM EFs for western US fuels may be higher than those used in the inventories
explored in this work (Liu et al., 2017). For example, the OA EFs measured by Liu et al. 2017
are roughly a factor of 1.5 to 4 larger than those used by the four inventories in this work. The
uncertainty in EFs is associated with: measurement technique, variation in the experimental
conditions used to measure species’ EFs in a laboratory, post-processing and aging that can
change smoke composition rapidly but is likely not yet fully mechanistically understood, and
poorly characterized combustion and fire types (Akagi et al., 2011). Measured EFs vary
considerable from different fuels (Jolleys et al., 2014; McMeeking et al., 2009); however, only
coarse vegetation types (e.g., boreal forests) are typically delineated in emission inventories,
making it difficult to apply laboratory-measured EFs. Of relevance to this study, relatively few
measurements of BB have been made in temperate regions, such as large portions of the US,
where much of the BB is prescribed for land management but controlled to protect air
quality(Akagi et al., 2011), conditions which may lead to substantially lower BBA emissions(Liu
et al., 2017). Another potential source of uncertainty in EFs is that experimentally-derived OC

EFs may represent SOA as well as POA; EFs presented in compilations (Akagi et al., 2011;
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Andreae and Merlet, 2001) are generally calculated from fresh smoke where the quantity of SOA

production is not well constrained.
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Figure 2.4 Boxplot summary of each inventory's underlying total annual dry matter (DM)
globally and for boreal North America and CONUS. The conventions of this boxplot are
described in Fig. 2.2. GFED4s DM emissions are in red, FINN1.5 emissions in orange, QFED2.4
effective DM emissions in light blue, and GFAS1.2 effective DM emissions in dark blue.

We quantify how the range in EFs contributes to the overall spread in BBA emissions. First, we
divide emissions by the applied EFs to estimate the underlying dry matter (DM) consumed
across inventories in the same regions and years as our emissions analysis (Fig. 2.4) to isolate the
importance of EFs. We note that the two-FD/BA inventories (GFED4s and FINN1.5) quantify
DM consumption in the construction of the inventory; however, for the FRP-based inventories
(QFED2.4 and GFAS1.2) this division results in an effective DM consumed (FRE multiplied by
an emission coefficient). We show DM calculated from BC emissions except for QFED?2.4,
where we use the effective DM calculated from the CO emissions so as to avoid any
confounding issues with the aerosol strength scaling factors discussed briefly in Sect. 2.2.2.
Across all regions, the range in DM tracks very closely the range observed across emissions,
suggesting that the uncertainty in the underlying DM, not EFs, is the predominant factor in

emissions uncertainty. We note that the large range in the DM consumed globally alongside the
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similar global CO emissions indicates that large differences in the EFs of CO and different

vegetation classifications offset the DM differences for this species.

To further illustrate the role of EFs, Fig. 2.5 shows the time series of total annual emissions from
2004-2016 for GFED4s, alongside the estimated emissions obtained by applying the GFED4s
EFs to the estimated DM for the other three original inventories (applied using each inventories’
respective vegetation mask). We then compare total annual emissions from the original
inventories (dashed lines) with their GFED4s-EF counterparts (solid lines) and with the original
GFED4s inventory from 2004-2016 (Fig. 2.5). While eliminating the variation in assumed EFs
does constrict the range in emissions across the inventories across North America and globally,
there remain substantial differences. This suggests that EFs are important but that underlying
DM burned is the largest source of fire emissions uncertainty — consistent with previous work
(Van Leeuwen et al., 2014). One reason for this is that substantial uncertainties are associated
with using biome-averaged values to represent DM consumed for whole biomes (Van Leeuwen
et al., 2014; Veraverbeke et al., 2015) and that satellite products and assumptions used to capture

fuel burned vary significantly (van der Werf et al. 2017 and references therein).
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Figure 2.5 Annual emissions scaled to GFED4s emissions factors from 2004 to 2016. The
original inventory emissions from FINNI1.5 (orange), QFED2.4 (light blue), and GFAS1.2 (dark
blue) are shown as dashed lines, while their annual values using GFED4s (red) emissions factors

are shown as solid lines. The year 2012 is marked with a gray rectangle.

Furthermore, assuming that the EFs used in the four inventories are all equally reasonable values,
we can estimate a much larger range in plausible fire emissions by multiplying the minimum and
the maximum DM consumed across the inventories by the smallest and largest EFs (Table 2.1)

using the GFED4s vegetation mask. Globally, this calculation suggests a plausible range that
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spans a factor of 24 for BC and 18 for OC compared to the inventory spread of 2.3 and 1.7,
respectively. This suggests that using the range across these four inventories may be a modest

estimate of the uncertainty in fire emissions.

Interannual differences, especially in North America, are fairly consistent across the inventories
except for 2014 (Fig. 2.5) where QFED2.4 trends down while the other three increase. It should
be noted that an updated version of QFED (v2.5r1) does not show this decreasing trend in 2014.
Globally and in CONUS, GFED4s, GFAS1.2, and QFED2.4 show similar interannual
differences while FINN1.5 shows the greatest interannual variability and different maximum and
minimum years. We note that 2012 is a fairly typical fire year (see Fig. 2.5), and much of the

following analysis will focus on this year.
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Figure 2.6 Seasonal mean BC and OC emissions from 2004 to 2016 for boreal North America,
CONUS, and the globe. GFED4s emissions are in red, FINN1.5 emissions are in orange,
QFED2.4 emissions are in light blue, and GFAS1.2 emissions are in dark blue.

We also explore the seasonality of BC and OC emissions represented in the inventories for
BONA, CONUS, and globally across the same 13 years (Fig. 2.6). The seasonality, including
relative magnitude, is generally consistent across regions and species. Some seasonal features
(e.g., the October-November enhancement in BONA and the springtime enhancement in

CONUSY) are only visible in the three inventories that rely on active fire counts or FRP —
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FINN1.5, QFED2.4, and GFAS1.2 — which is consistent with work suggesting that these
methodologies pick up small fires better than GFED4s (Kaiser et al. 2012). The fall peak in the
boreal region is driven by fires in eastern British Columbia. The seasonal CONUS springtime
peak is primarily associated with small fires (as identified in GFED4s), likely linked to

agricultural and prescribed burns in the southeastern US.

2.4 How emissions uncertainty impacts mass concentrations and AOD

Given the large range in fire emissions, we use observations to try to assess which, if any,
inventory is most realistic. We use IMPROVE surface observations and two airborne campaigns
to compare with model simulations driven by each inventory. As another constraint on aerosol

abundance, we also compare model AOD with MODIS-observed AOD in North America.

30



West East

IMPROVE [ 0.4l
0.3 GFED
_ |
€
o 0.3 |
502'
=
Q
§ 0.2-
0.1
0.1-
0.0
6 8-

Organic aerosol (ugm™)

J FMAMUIJASOND J FMAMUJJASONDPD
Figure 2.7 The 2012 monthly comparison of simulated and observed median surface
concentrations at IMPROVE sites in CONUS split between east and west at —104° W longitude.
Observations in black are compared with concentrations simulated using GFED4s in red,
FINN1.5 in orange, QFED2.4 in light blue, GFAS1.2 in dark blue, and a simulation with no
biomass burning (noBB) in gray. Error bars show the 25th to 75th percentile range of

observations. Note the different scales among panels.
We test the model against IMPROVE observations of surface concentrations across the US and

find significant variation in model skill across the inventories with QFED2.4 generally biased

high and FINN1.5 low (Fig. 2.7 & 2.8). Seasonal comparisons of IMPROVE surface
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concentrations with simulated concentrations driven by the four different inventories show
similar patterns across aerosol species but significant differences between the western and
eastern US (Fig. 2.7). This is likely related to how well the inventories capture the differences in
burning regimes in the western (predominantly wildfires) and eastern (mostly prescribed and
agricultural burns) US (Brey et al., 2018a). The southeastern US, in particular, is of interest to
the public health and policy communities because a prevalence of agricultural and prescribed
burning there, which dominates burned surface area (Nowell et al., 2018), may have a stronger
impact on low altitude air quality in a relative sense than large wildfires that inject higher into
the air. We also analyse the western and eastern US separately because, in the east, the
magnitude of fire emissions is lower and BC, in particular, is dominated by anthropogenic
sources. In the western US, GFED4s and GFAS1.2-driven concentrations of both BC and OA
match the seasonality and magnitude of IMPROVE observations well. QFED?2.4 is biased high,
particularly during the peak in the wildfire season (August-September). FINN1.5-based
concentrations are biased low and are virtually indistinguishable from simulations with no BB. In
the eastern US, because fire is a smaller relative source of carbonaceous aerosol, there is less of a
spread between the simulations. All inventories other than QFED2.4 do a reasonable job
capturing observations with a general tendency for simulated BC and OA to be a bit too high,
suggesting an overestimate in anthropogenic emissions in the eastern US. However, the 25™ to
75™ percentile bars on the observations show that across the US for BC and in the west for OA,
virtually all the simulations fall within this range of the measurements. QFED2.4 overestimates
OA well beyond the 25" to 75" percentile range in the eastern US, starting with the northern
hemispheric wildfire season in May and continuing the overestimate through the end of the

calendar year.
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Figure 2.8 Fire season (May—September) 2012 mean surface BC and OA concentrations in
CONUS with the model driven by each inventory. The circles show the mean observed surface

concentrations at IMPROVE sites.
Figure 2.8 illustrates the ability of these simulations to capture the spatial distribution of

observed surface concentrations during the fire season (May-September). Similar skill is seen

across both aerosol species for GFED4s and GFAS1.2 (R? for BC, 0.25 and 0.24, respectively,
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and, for OA, 0.36 and 0.29, respectively), but FINN1.5 matches observed BC somewhat better
than OA (R? of 0.23 and 0.034, respectively) and QFED2.4 matches OA somewhat better than
BC (R? of 0.46 versus 0.20). Consistent with the seasonal IMPROVE analysis, simulations
driven by GFED4s, QFED2.4, and GFAS1.2 have greater skill in the western US than the eastern
US while the FINN1.5-driven simulation performs better in the east. QFED2.4 is generally
biased high, especially in the Pacific Northwest and, to some extent, in the southeastern US.
However, QFED2.4 also has the highest skill in reproducing the spatial patterns of the highest
concentrations when compared against the 95" percentile of observed concentrations (not

shown).
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Figure 2.9 The median vertical profiles of BC and OA mass concentrations (shown in 0.5 km
bins) from the DC3 campaign. Observations (black) are compared with simulations using the
four fire inventories — GFED4s (red), FINN1.5 (orange), QFED2.4 (light blue), and GFAS1.2
(dark blue) — and a simulation with no fire emissions (noBB) in gray. Error bars show the 25th—
75th percentile range of measurements averaged in each vertical bin. The number of observations
in each bin is given on the right side of each panel. Panels (a, ¢) show total results for the
campaign. Panels (b, d) show results filtered for the top 25th percentile of observed acetonitrile.

Note the different scale between BC panels.
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The ability of models to accurately represent aerosol concentrations aloft is also important for
both air quality and climate, and we use two fire-influenced aircraft campaigns, DC3 and
ARCTAS, to explore the model skill in this dimension. These campaigns provide observations
from two very different fire regimes across North America (See Sect. 2.2.3) — DC3 in the
central/southeastern US and a subset of ARCTAS focusing on boreal Canada. In addition to
median vertical profiles for both BC and OA for each campaign, we also show median vertical
profiles filtered by the top 25 percentile of acetonitrile (equivalent to a concentration cut off of
167 ppt for DC3 and 213 ppt for boreal ARCTAS), a useful BB tracer that allows us to

investigate the most BB-influenced data.
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Figure 2.10 The median vertical profiles of BC and OA mass concentrations (shown in 0.5 km
bins) from the boreal part of the ARCTAS campaign. Observations (black) are compared with
simulations using the four fire inventories — GFED4s (red), FINN1.5 (orange), QFED2.4 (light
blue), and GFAS1.2 (dark blue) — and a simulation with no fire emissions (noBB) in gray. Error
bars show the 25th—75th percentile range of measurements averaged in each vertical bin. The
number of observations in each bin is given on the right side of each panel. Panels (a, ¢) show
total results for the campaign. Panels (b, d) show results filtered for the top 25th percentile of

observed acetonitrile. Note the different scale among panels.
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We find that concentrations driven by the various inventories perform somewhat differently
against each of the campaigns (Fig. 2.9 & 2.10). Across both campaigns, QFED2.4-driven
modelled concentrations are generally biased high, particularly towards the surface, while
FINN1.5 simulations are nearly always biased low (Fig. 2.9 & 2.10). QFED2.4 has been
constrained to observed AOD, so one could assume that it would perform best. We find that after
adjusting the QFED2.4 emissions downward to account for our different OM:OC ratio, QFED2.4
simulations of OA do match observed concentrations fairly well; however, BC concentrations
remain much too high. This suggests that the QFED2.4 biome-specific adjustment factors should
not be applied to BC and that the scaling factor applied in this inventory to match AOD
constraints may be accounting for errors in other properties (i.e. optical properties or background
aerosol), not fire emissions. This is consistent with recent work showing that even when
observed and modelled concentrations agree in the Amazon, observed and modelled AOD
sometimes do not (Reddington et al., 2019). Over the continental US (Fig. 2.9) QFED2.4
emissions result in the highest concentrations of OA and BC; however, in the boreal region (Fig.
2.10), simulations driven by GFAS1.2 (as well as GFED4s to a lesser extent) produce more
smoke than QFED2.4, consistent with the relative emissions magnitudes shown for these regions
in Figures 2.2 & 2.5. As a result, both GFAS1.2 and GFED4s significantly overestimate both BC

and OA concentrations towards the surface in the boreal region.

In DC3, all four inventories, and even the noBB run, overestimate the BC median vertical
profile, suggesting that anthropogenic emissions are overestimated in the southeastern US,
consistent with the IMPROVE analysis. This is reinforced by the DC3 BC vertical profile
filtered for fire influence where three of the inventories (GFED4s, FINN1.5, and GFAS1.2 to a
lesser extent) match observations quite well. Similarly, in boreal ARCTAS, all the inventories

but FINN1.5 overestimate BC concentrations, especially towards the surface.

This analysis suggests that anthropogenic emissions of BC may be overestimated throughout the
U.S., that the two FRP-based inventories and GFED4s, to some extent, may overestimate boreal
emissions, and that FINN1.5 emissions are too low throughout, but particularly in boreal regions.

In concert with the analysis at IMPROVE sites, this indicates that GFED4s-driven simulations
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generally provide the best match to observations, but with substantial under/over-estimates in

some regions and species.

Our comparisons with in situ mass concentrations, both at the surface and aloft, consistently
suggest that the FINN1.5 inventory substantially underestimates fires over North America.
Scaling relationships between fire activity and dry matter consumed should be re-visited for this
inventory for North American fuels. One likely cause of the underestimation of North American
fires by FINN1.5 is that the MODIS Land Cover Type (LCT) data used to define burned
ecosystems assigns shrubs where other classifications assign forest, leading to lower fuel burned
estimates. A second likely contributor to this underestimate is that the way in which burned area
is calculated from active fire counts underestimates large wildfires, which is particularly relevant
for the western US. This underestimation was also seen in earlier work by Pfister et al. (2011),

using FINN1.5 to explore CO from fires in California.

Some of the disagreement aloft with the baseline model across inventories may be related to the
model failure to capture injection heights for some fires which loft aerosols above the boundary
layer. This is not represented in the simulations shown here, but typical approaches put too much
aerosol at the top of boundary layer (~2km) (Zhu et al., 2018) (See Fig. 2.S3 for an injection
height sensitivity test). It is also worth noting that sampling in the DC3 campaign was biased
towards convective outflow given campaign goals, and it is possible that the model may also

have errors in convection and convective removal.
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Figure 2.11 The mean Northern Hemispheric fire season (May—September) simulated AOD at
550 nm sampled to and compared with daily MODIS-observed AOD from the Aqua satellite for
2012 and 2014.



Figure 2.11 shows the spatial distribution of average AOD over North America during the
northern hemispheric fire season (May — September) in both 2012 and 2014 compared to
MODIS-observed AOD. In general, the model simulation underestimates observed AOD, which
may result from a combination of errors in model optics, background aerosol, or cloud
contamination in the MODIS product. We note that Reddington et al. (2019) similarly show that
their model underestimates AOD, even when it captures the observed mass concentrations of PM
over the Amazon. Here we focus on the fire-driven AOD features. Across both years, FINN1.5
AQOD is low compared to MODIS in CONUS and does not capture the fires in BONA. GFED4s
and GFAS1.2-driven AOD look quite similar to each other across years and include the large fire
signatures in BONA that MODIS observes. AOD driven by QFED?2.4 identifies the boreal, and
potentially Pacific Northwest, fire signatures in 2012 but misses the large boreal hot spot in 2014
that is evident in both MODIS-observed and GFED4s and GFAS1.2 AOD.

2.5 Secondary organic aerosol from biomass burning and its implications

Previous simulations in Sect. 2.4 included the GEOS-Chem default minor source of SOA from
fires. The recent NOAA Fire Lab 2016 experiment (Lim et al., 2019) reported large increases in
OA mass when fire emissions were oxidatively aged, as have many other laboratory studies;
though, this has not been observed in the majority of field campaigns (see Sect. 2.2.1). While
uncertainties on this potential source of additional OA mass are large, we test the sensitivity of
our results to this additional source. The default scheme ((0.013 times CO emissions) (Cubison
etal., 2011; Kim et al., 2015)) results in a mean annual global source of BB SOA (~5 Tg yr'!)
from GFED4s, which is at the lower range of potential annual global fire SOA source amounts
reported in Shrivastava et al. (2017). We implement a new parameterization from the NOAA
Fire Lab 2016 lab studies for SOA production from BB based on Lim et al. (2019) (2.48 times
POA emissions). This new scheme produces a mean annual global GFED4s source of BB SOA
of ~41 Tg yr'!, which is roughly in the middle of estimates reported in Shrivastava et al. 2017. In
principle, such a large additional source of OA should be distinguishable from observations.
However, our previous analysis using the default scheme demonstrates that the range in
estimated POA is so large that it is challenging to say how much additional OA mass from SOA

from BB would be consistent with the observations. In particular, even with negligible SOA the
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model already matches observed OA with at least one inventory (QFED2.4). With this new
parameterization, we show a roughly order of magnitude increase in the BB SOA burden (and
thus more than a doubling of total OA) from GFED4s in 2012 with similar increases across the
other inventories. Figure 2.12 shows how this new SOA impacts model-observation agreement
with the DC3 and ARCTAS campaigns. The QFED2.4 simulations now overestimate OA across
campaigns while FINN1.5 simulations improve against observations modestly, consistent with
its smaller BB OA burdens to start with. It is possible that the AOD-based scaling of QFED2.4
emissions previously compensated for underestimated SOA. With the new SOA parametrization,
GFED4s and GFAS1.2 simulations are better able to capture the magnitude of the mean
concentrations observed during DC3. However, for boreal ARCTAS, GFED4s and GFAS]1.2-
driven simulations with the default scheme captured observed OA concentrations and indeed

overestimated (Fig. 2.10); thus, this new large source of fire SOA exacerbates this overestimate.
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Figure 2.12 Bar plots of mean OA mass concentrations from the DC3 (a) and boreal

ARCTAS (b) campaigns. Observations (black) are compared with simulations using the four fire
inventories: GFED4s (red), FINN1.5 (orange), QFED2.4 (light blue), and GFAS1.2 (dark blue).
The hatched version of each inventory denotes OA mass concentrations using the baseline fire
SOA scheme while the full color of each shows OA with the new SOA from fire

parameterization.

Our analysis of observations over North America can neither preclude nor confirm the presence

of a large source of SOA from fires, given the uncertainty in POA emissions over the region.
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This additional SOA source is not included in the assessment of air quality and radiative impacts

of fires in Sections 2.6 and 2.7.

2.6 How emissions uncertainty translates to air quality and fire PM exposure

We next explore how uncertainty in fire emissions affects estimates of air quality impacts. We
show the differences in fire PM; 5 (calculated as the sum of the BB-only BC and OA mass
fractions for aerosol under 2.5 microns) exposure spatially (Fig. 2.S5) and quantify the range in
population-weighted fire PM> 5 exposure in 2012 across North America (Canada and CONUS
only) given by the four inventories. We calculate fire PM2 s exposure by averaging surface
concentrations of the sum of BC and OA from BB across North America in 2012. We then
calculate population-weighted annual fire PM> s for each inventory by using population data from
the Gridded Population of the World, Version 4 (GPWv4), created by the Center for
International Earth Science Information Network (CIESIN) and available from the
Socioeconomic Data and Applications Center (SEDAC) (Accessed 6 February 2019). We
linearly interpolate the gridded UN-adjusted population count dataset, which has a native
resolution of 30 arc-seconds and provides population estimates for 2000, 2005, 2010, 2015, and
2020, to 2012 and grid the data to the GEOS-Chem nested grid (0.5x0.625°). Figure 2.13 shows
that the range in BBA emissions carries forward to uncertainty in 2012 North America fire
annual mean PM, s exposure with a range of 0.5 — 1.6pg m=. The World Health Organization
(WHO) air quality guidelines for annual mean PM; s are 10 pg m=, and the US EPA annual
standard for PM,sis 12 ug m=. Thus, the range in fire PM> s exposure across the inventories in
North America is equivalent to roughly 10% of these air quality standards. The population-
weighted mean PM» s exposure due to fires in North America varies by about a factor of two
between different years, reflecting the location and intensity of different fire events (see Fig.

2.S6 and 2.S7 for an analysis of 2012 — 2014 at 2x2.5°).
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Figure 2.13 Bar plots of the 2012 annual mean population-weighted fire PM» s exposure across
the four inventories (GFED4s in red, FINN1.5 in orange, QFED2.4 in light blue, and GFAS1.2
in dark blue) across North America (Canada and CONUS only) at nested resolution. See Figure
2.S6 for an analysis from 2012 to 2014 and for bar plots split out for Canada and the US
at 2x2.5°.

Because the 24-hour average PMa s reflects acute exposure, we also looked at the differences in
this metric when driven by each inventory. Over the United States, the simulated daily PM> 5
from fires in 2012 ranges up to 1778 pg m™ as simulated by QFED2.4 while FINN1.5-driven
simulations show the smallest maximum BBA concentration at 55 ug m=. A number of regions
experience well over the PM, 5 daily standard (35 pg m™) due to fires alone for more than ten
days a year, and in some locations for several weeks (see Fig. 2.S8), highlighting smoke as a
major cause for air quality degradation in the United States. These regions and the magnitudes of

daily fire influence are highly variable year to year.

2.7 Impacts on the direct radiative effect

Across North America and globally, we compare the mean annual top-of-atmosphere (TOA) all-
sky DRE of BB-only BC and OA driven by each of the inventories with the OA DRF reported in
the Fifth Assessment Report (ARS) of the Intergovernmental Panel on Climate Change (IPCC).
We quantify the annual mean BBA DRE in 2012 (Fig. 2.14) and the Northern Hemispheric fire
season (May — September) average DRE in each year from 2012 to 2014 (Fig. 2.S9) to

investigate interannual variability. The differences across inventories seen in the sections above
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translate to the large ranges in DRE estimated for BONA and CONUS with smaller, but still

significant, ranges seen globally.

For 2012, GFAS1.2-driven global DRE is largest in absolute magnitude for BBA (-0.11 W/m?)
with FINN1.5 smallest (-0.048 W/m?) (See Table 2.S1 for underlying values). These values are
significantly more negative than previous estimates of BBA DRE, which ranged from -0.01 to
0.13 W/m? (Rap et al., 2013; Ward et al., 2012). Previous work suggests that the whitening of
fire-generated brown carbon (BrC) may limit the global absorption from BrC (Forrister et al.,
2015; Wang et al., 2016). Wang et al. (2018) estimate a modest global mean DRE of BrC of
+0.048 Wm™ when accounting for this whitening; however, uncertainties on the magnitude and
the evolution of absorption of BrC remain large. We treat OA as scattering here, which may lead
to a positive bias in the total DRE of carbonaceous aerosol from smoke; thus we focus on the
range in values associated with the use of various fire inventories rather than the absolute
magnitude of the DRE. The range across the 2012 annual global mean inventory-driven BBA
DRE is -0.062 W/m?, which is comparable to the magnitude of the direct radiative forcing of OA
(-0.09 W m™?) reported in the in AR5 (Intergovernmental Panel on Climate Change, 2014). Only
some fires contribute to the DRF, but we have shown here that the uncertainty in BBA DRE as
represented by the spread in values driven by different inventories is on a comparable scale to the
anthropogenic influence on OA forcing. While we have not assessed the annual global mean
BBA DRE across other years, we have quantified the northern hemispheric fire season BBA
DRE from 2012-2014, which show generally similar trends across years with some variability;
larger boreal fire years generally affect the DRE driven by GFED4s and GFAS1.2 the most (see
2014 in Fig. 2.S9). 2014 also appears to be an outlier year where GFED4s and GFAS1.2-driven
OA DRE is larger than QFED2.4-driven DRE across both BONA and CONUS and also globally,
consistent with our emissions analysis (See Fig. 2.5).The IPCC estimate of aerosols’
contributions to the DRF only includes one set of historical fire emissions and one for each RCP
— this choice allows for better intermodal comparisons but masks underlying uncertainty from

fire emissions, which we have shown here to be important.

45



Boreal North America CONUS Global

£ 0217 (g b C
AL (b) I © .
= 0.07 -
go.oo__--.I memEH mmE
i l
02| |
=
=
= 04 |
o
< | GFED
FINN
-0.6 | QFED
| GFAS
08 |

(e)

(d) (f)

Figure 2.14 Top-of-atmosphere all-sky direct radiative effect of BB-only BC (a—¢) and OA (d—f)
averaged over 2012 in BONA, CONUS, and globally. GFED4s is shown in red, FINN1.5 is
orange, QFED2.4 is light blue, and GFAS1.2 is dark blue (the size of BC versus OA panels is not

to scale).

2.8 Conclusions

Most models do not test basic uncertainty associated with fire emissions both in air quality and
climate studies — our work suggests that this uncertainty is large and may substantially impact
our understanding of fire impacts. We note that, while we refer to the spread across these

inventories as the “uncertainty” in emissions, additional factors, not represented by any of these
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inventories, may increase the true uncertainty in the estimated emissions beyond what we have
shown in this work. We provide an evaluation of this uncertainty by comparing multiple,
commonly-used fire emission inventories (GFED4s, FINN1.5, QFED2.4, and GFAS1.2) that
have become available in the last five to ten years. We show that the four inventories perform
differently depending on species, location, and season. We also calculate that average BC and
OC emissions differ by roughly a factor of five and four, respectively, across the inventories in
BONA. The range in BC and OC emissions in CONUS is even larger (a factor of ~7 and 6,
respectively). Global ranges in BC emissions are smaller than those in North America (~2.3)
with a somewhat more modest spread (~1.7) in OC emissions, possibly because of emission
factor differences. We also show that dry matter, not emission factor, differences are the driving

force for emissions variation across inventories.

With such large differences in emissions, we test which of these inventories drives model
simulations closest to observations over North America. We show that modeled concentrations
both at the surface and aloft show variable skill across inventories when compared to in situ
observations (IMPROVE, DC3 and ARCTAS campaigns) with FINN1.5 biased low for BC and
OA and QFED?2.4 biased high against observed BC. GFED4s and GFAS1.2-driven AOD also do
a better job matching MODIS-observed AOD over the regions, in general and with specific
features, than FINN1.5 and QFED2.4. QFED2.4 emissions may be biased high because they
were scaled up to ensure that the GEOS model AOD simulation matches satellite-observed
AQOD, potentially mis-attributing biases in aerosol extinction efficiency and SOA formation in
the GEOS model to emission; MODIS AOD has also been shown to be high in some
environments (Lapina et al., 2011). That these enhancement factors are too high is further
reinforced by the fact that, after adjusting the QFED2.4 emissions downward to account for our
different OM:OC ratio, QFED2.4 simulations of OA match observed concentrations fairly well
across campaigns — while BC concentrations remain much too high. The assumptions that
FINNI.5 uses to compute burned area from active fire counts likely contribute to its low bias and
should be revisited, especially for regions with large wildfires (e.g., boreal Canada and the
western US). We also show that a laboratory-based parameterization for fire SOA, scaled from

fire POA emissions, does improve model agreement with observations in some regions.
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However, from our comparisons, the range in POA emissions makes it challenging to discern

whether SOA from fires is significant.

This range in fire emissions also carries through to uncertainties in the air quality and radiation
impacts of fires, which we have shown to be large and significant. Over North America
depending on the inventory used, large differences in both the spatial extent and magnitude of
BBA-only annual and daily surface concentrations and also in population-weighted annual fire
PM2.5 exposure (0.5 - 1.6 ug m™ for 2012) arise. We have also shown that fire emissions
uncertainty produces a considerable envelope in global BBA DRE (-0.062 W m™2), roughly
comparable to the direct radiative forcing of OA (-0.09 W m2) reported in ARS5.

Additional evaluation of satellite-based fire emission inventories, particularly in other large BB
source regions, would help to provide insight into fire emissions uncertainty. Observations at all
scales (surface, aloft, and satellite) are needed to better constrain our understanding of fire
emissions and processing. To bridge fire emissions and subsequent impacts, additional
investigation of uncertainties in fire aerosol aging and processing (e.g., injection heights, mixing
state, SOA formation, etc.) is needed. Our work suggests that emissions uncertainty is a major
factor in our ability to model the air quality and climate impacts of fires and should be

incorporated into modeling studies of both.
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Chapter 3. Investigating Carbonaceous Aerosol and its Absorption
Properties from Fires in the western US (WE-CAN) and southern
Africa (ORACLES and CLARIFY)

Adapted from: Carter, T.S., C.L. Heald, C. D. Cappa, J. H. Kroll, T. L. Campos, H. Coe, M. L.
Cotterell, N. W. Davies, D. K. Farmer, C. Fox, L. A. Garofalo, L. Hu, J. M. Langridge, E. J.T.
Levin, S. M. Murphy, R. P. Pokhrel, Y. Shen, K. Szpek, J. W. Taylor, H. Wu (2021), Investigating
Carbonaceous Aerosol and its Absorption Properties from Fires in the western US (WE-CAN)
and southern Africa (ORACLES and CLARIFY), J. Geophys. Res.,126, ¢2021JD034984.

3.1 Introduction

Biomass burning (BB), both wildfires and prescribed burns, emits large quantities of PM> s
globally (Akagi et al., 2011) with air quality and climate impacts across regional to global scales.
Air quality degradation from smoke impairs visibility and is detrimental to human health
(Johnston et al. 2012; Liu et al. 2015; O’Dell et al. 2020; Reid et al. 2016; Williamson et al.
2016) with substantial associated economic costs (e.g., Jones, 2017). Climate impacts of BB
emissions include heating and cooling of Earth’s atmosphere and surface caused by aerosol-
radiation and aerosol-cloud interactions, as well as a decrease in planetary albedo associated with
BC deposition on snow (Bond et al. 2013). These impacts remain uncertain and poorly
constrained — in large part because the magnitudes and characteristics of different BB aerosol

(BBA) species from varied fire and fuel types are not well understood.

Particulate matter from BB is dominated by carbonaceous aerosol; previous work has estimated
that BB adds between ~16 — 34 Tg yr'!' of aerosol to the atmosphere (Akagi et al., 2011; Bond et
al., 2013; Carter et al., 2020). Globally, BB is responsible for roughly one third of all BC
emissions and between 65 — 90% of OA emissions (Bond et al., 2013; Carter et al., 2020).
However, uncertainties on these emissions are high; for example, estimates of BBA from the
four most commonly used fire emissions inventories differ by roughly a factor of two globally
with larger differences regionally (Carter et al., 2020). Important BB source regions can have

both very different dominant combustion types and also fuel types - both of which are difficult to
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globally characterize, and thus are not adequately captured by emission inventories, particularly

at high spatial and temporal resolution.

Biomass burning aerosol has three major carbonaceous constituents, which interact directly with
radiation in different ways: BC, which is largely absorbing; POA, which generally scatters but
which may also absorb, and which is then referred to as brown carbon (BrC); and SOA, which
has been shown to mostly scatter (Laskin et al., 2015). Inorganic, non-carbonaceous components
are also present in BBA, but in relatively small quantities (typically <15% of total submicron
aerosol in fresh wildfire emissions) (Garofalo et al. 2019). Unlike BC, which is also emitted in
low quantities (typically ~2 — 10 % of submicron mass) (Garofalo et al., 2019), these non-
carbonaceous components play a minor role in radiative effects beyond direct light scattering and
are not considered here. The net radiative impact of smoke is thus a complex combination of the
different abundance and properties of BBA species. Previous work has reported a large spread
with uncertainty in even the sign of the possible direct radiative effect (DRE or the instantaneous
radiative impact) (Heald et al., 2014) of BBA from —0.01 to +0.13 W m~2 (Rap et al., 2013;
Ward et al., 2012). The IPCC Fifth Assessment report concludes that the absorption and
scattering from fires effectively offset each other, but the underlying models used do not

generally have an explicit representation of BrC (IPCC, 2014).

Recent work on BBA absorption properties has provided key insights, but further work is needed
to better constrain the DRE of BBA. The ability of a species to absorb light is commonly
represented by the mass absorption coefficient (MAC, the absorption cross-section per unit mass
with a unit of m? g'!), which depends on the molecular form ( Liu et al., 2020) of the absorbing
species as well as aerosol shape and size. Bond & Bergstrom (2006) determined that the MAC of
BC from combustion sources is 7.5 m? g*!' at a wavelength of 550 nm for uncoated particles
based on an average of ~20 measurements. This translates to a MAC of 6 m? g! at a wavelength
of 660 nm, assuming an absorption Angstrom exponent (AAE) of 1. Wang et al. (2014) showed
that the direct radiative forcing (DRF) of BC had been previously overestimated due to an
overestimate of the BC lifetime and an incorrect attribution of BrC absorption to BC. Wang et al.
(2018) discussed how representing BBA as externally mixed (i.e., that the majority of OA is

externally mixed with BC) is reasonable considering the low BC:OA emission ratio from BB and
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biofuel and typical coating thickness (Moffet & Prather, 2009; Perring et al., 2017; Schwarz et
al., 2008b). Based on several field studies (Cappa et al., 2012; Lack et al., 2012; Moffet &
Prather, 2009; Schwarz et al., 2008a; Schwarz et al., 2008b), Wang et al. (2014) showed that
applying different absorption enhancement (AE, i.e., the MAC of the internally mixed BC with
coating species such as OA and inorganics, relative to the MAC of the corresponding uncoated
BC) factors for the hydrophilic components of BB-emitted BC (1.5) and fossil fuel (FF)-derived
BC (1.1) could help approximate the mixing state of BC and OA and thus lensing effects, and
improve agreement with observations. The so-called lensing effect is when a coated BC particle
with a non- or weakly-absorbing shell (in fire emissions, this shell is generally composed of OA)
absorbs more than the BC core alone (Bond et al., 2006; Fuller et al., 1999; Jacobson, 2000). The
AE is assumed to result from coatings on BC, distinct from absorption by BrC. Other recent
work that focused on combustion of fuels native to the western US and primary particles emitted
found AE factors of 1.2 to 1.5 for BB BC (McMeeking et al., 2014) and no larger than 1.19
(McClure et al., 2020), suggesting that the assumption of Wang et al. (2014) (used in this work)
is at the high end of the estimated range. However, given that the studies cited here are mostly
focused on North and central America, it is possible that the AE for smoke from Africa (where
BC:OA is higher) may differ from that in the western US. A recent study of observations
downwind of Africa reported AE factors as high as 1.85 (Taylor et al. 2020).

Substantial uncertainties exist around the emission, production, and absorption properties of BrC.
Biomass burning POA has been shown to be the dominant source of BrC globally. Laboratory
work has shown that some SOA can also absorb (Laskin et al., 2015). Palm et al. (2020) showed,
with a combination of lab and field data, that the contribution of nitroaromatics, specifically
nitrocatechol, to aerosol absorption is outsized compared to its mass. However, in general, SOA
has been found to be considerably less absorbing than BB POA (see for example Figure 1 in
Wang et al. (2014)). Some work has suggested that BrC absorption may constitute up to ~40% of
total absorption of carbonaceous aerosol, but there is a large range for this value and that of BrC
DRE (+0.03 to +0.6 W m™) in the literature (Feng et al., 2013; Lin et al., 2014; Wang et al.,
2014; Wang et al., 2018). The MAC of OA is smaller than that of BC (e.g., OA MAC at 550 nm
is estimated to be 0.35 m? g! versus 7.5 m? g! for uncoated BC discussed above (Bond &

Bergstrom, 2006; Wang et al., 2018)). However, BrC absorption has a strong wavelength
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dependence with increasing absorption in the UV; studies show a range in OA MAC from 0.65
to 5.01 m? g at 365 nm (Jo et al., 2016; Wang et al., 2018). Brown carbon may also undergo
whitening (a decrease in absorptivity over time); limited field work to date suggests that this

occurs with an e-folding time of ~ 1 day (Forrister et al., 2015; Wang et al., 2016).

Biomass burning aerosol emitted from fires with various fuel and combustion types has been
shown to have different absorption characteristics (e.g., more flaming fires may lead to more
absorbing BrC (McClure et al., 2020; Saleh et al., 2014)). However, global modeling studies
have typically assumed globally uniform properties independent of combustion phase (Chung et
al., 2012; Feng et al., 2013; Jo et al., 2016; Park et al., 2010; Wang et al., 2014). In addition, very
little work has been done to validate model simulations of aerosol absorption, particularly from
BrC (Liu et al., 2020). Challenges exist with the measurement techniques used for BBA
absorption that would subsequently be used to constrain models (Liu et al., 2020). Filter-based
techniques like aethalometers (Hansen et al., 1983), particle soot absorption photometers
(PSAPs) (Bond et al., 1999), and continuous light absorption photometers (CLAPs) (Ogren et al.,
2017) are commonly used measurement techniques but are susceptible to a variety of biases
(Davies et al., 2019; Lack et al., 2008), including multiple scattering within the filter and
loadings on saturated filters leading to nonlinear responses and backscatter variability due to
particle size distributions (Foster et al., 2019 and references therein). An alternative approach to
measuring absorption is to take the difference between extinction and scattering, as done by the
cavity-attenuated phase shift PM single-scattering albedo (CAPS PMssa) instrument. The CAPS
PMssa has high accuracy and precision but only when measured aerosol has a low single
scattering albedo (Foster et al., 2019). Alternatively, photoacoustic spectroscopy (PAS), has been
shown to be an unbiased and sensitive approach to measuring the absorption of dry aerosol but
requires a more complex calibration (Cotterell et al. 2020, 2021; Davies et al. 2018; Foster et al.

2019 and references therein).

In the last few decades, burned area has decreased globally by 25%, but increased in some
important BBA source regions like southern Africa and the western US (Andela et al., 2017).
Previous work has suggested that future trajectories in fire impacts will vary across regions (e.g.,

Ford et al., 2018; Val Martin et al., 2015; Yue et al., 2013). Thus, with different fire and fuel
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properties leading to varying smoke absorption properties and with BB regions already
experiencing a range of fire trends, it is essential that we better understand the quantity of BBA

and its absorption properties globally, with at least regional granularity.

In this study, we use the GEOS-Chem chemical transport model, satellite observations, and data
from three aircraft campaigns that surveyed very different fire regimes (western US and southern
Africa) to contrast the abundance and properties of carbonaceous aerosol from fires in two

important BB source regions and to test the model representation of these properties.

3.2 Model and Observation Descriptions
3.2.1 The GEOS-Chem model
We use GEOS-Chem (https://geos-chem.org, last access: April 24, 2019), a global chemical

transport model, coupled with the rapid radiative transfer model for global circulation models
(RRTMG, Iacono et al., 2008), a configuration known as GC-RT (Heald et al., 2014), to explore
BBA and its absorption properties in the western US and off the coast of southern Africa. GEOS-
Chem is driven by assimilated meteorology from the Modern-Era Retrospective analysis for
Research and Applications, Version 2 (MERRA-2), at the NASA Global Modeling and
