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Abstract 
The humoral immune response is comprised of vast libraries of polyclonal antibodies 
capable of recognizing a myriad of targets and directing a spectrum of innate immune 
functions. The complex heterogeneity in antibody profiles across both populations and 
diseases makes defining mechanisms of protection difficult. Understanding these 
mechanisms and the factors that influence them is essential to defining immunity and 
helps inform the design of vaccines and therapeutics. Thus, in this thesis, I describe five 
studies that present the development of experimental and computational methods, and 
machine learning approaches for investigating the mechanisms, dynamics, and 
determinants of pathogen-specific humoral immunity. 
 
The first study introduces an assay for probing antigen-specific antibody mediated 
primary monocyte phagocytosis, that is capable of capturing subsequent downstream 
functions. The second study describes a machine learning approach for defining the 
correlates of upper and lower respiratory protection against RSV and methods for 
evaluating vaccine designs. The third study uses machine learning methods to uncover 
signatures of humoral protection against SARS-CoV-2. The fourth study presents a 
method for longitudinally modelling humoral immunity that was used to investigate the 
temporal dynamics of antibody features across individuals with varying COVID-19 
severity. Finally, the last study describes a genome-wide association screen of 
pathogen-specific polyclonal antibody characteristics and functions that was then 
validated with transcriptomics data. Ultimately, the methods described in this thesis 
present new approaches for investigating underlying phenomena related to pathogen-
specific humoral immunity. 
 
 
Thesis Supervisors: Douglas A. Lauffenburger | Galit Alter 
Title: Ford Professor of Engineering, MIT | Professor of Medicine at Harvard Medical 
School 
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Chapter 1 
 
Introduction 
1.1 The immune response against infection and vaccination 
The immune response is the mechanism by which the body protects itself from foreign 
invasion. It has evolved in an ‘arms race’ alongside pathogens resulting in a complex and 
elegant system of recognizing, protecting against, and remembering infection1. The two 
branches of the immune system are comprised of innate and adaptive immunity. The 
innate immune system is the first line of defense against infection and consists of 
monocytes, macrophages, neutrophils, dendritic cells, natural killer cells, and many 
other cell types each uniquely responsible for different tasks in the overall response. 
The general responsibilities of the innate immune system include sensing the presence 
of foreign pathogens, pathogen killing, coordinating the broader immune response 
through cytokine release, and triggering the adaptive immune response.  

Adaptive immunity is capable of recognizing a vastly larger range of antigens in 
contrast to the innate immune system that relies on pattern recognition receptors (PPR) 
that identify pathogen-associated molecular patterns (PAMPs). This results in a tailored 
response that can optimally eliminate pathogens or pathogen-infected cells, and post-
infection is capable of forming a memory response. Adaptive immunity is comprised of 
both cellular and humoral components. Cellular immunity is optimally capable of 
eliminating pathogen-infected cells through the help of T cells. The humoral immune 
system on the other hand protects against infection through the generation of 
antibodies, proteins capable of targeting different parts of pathogens, and either 
disrupting their interactions with host cell receptors or triggering innate immune 
function. A disadvantage of natural active acquired immunity is that the adaptive 
immune system requires several days in order to generate a substantial response. 
Alternatively, immunity can be artificially and safely induced with vaccines which 
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function by exposing the immune system to either an inactivated pathogen or the 
individual components of a pathogen (i.e., proteins). 

1.2 Polyclonal antibody composition impacts disease Outcome 
At present, there are 26 pathogenic diseases for which at least one vaccine is licensed2. 
However, despite ongoing efforts to develop vaccines for lower respiratory infections, 
diarrheal diseases, Tuberculosis, Malaria, and Human immunodeficiency virus (HIV) 
infectious diseases remain the leading cause of death in low-income countries and the 
4th leading cause of death worldwide3. Current vaccine approaches are guided by 
rational design. They rely on preexisting knowledge about pathogenesis and host 
interactions for the selection of delivery methods and immunogens likely to elicit 
effective responses4. Historical, efficacious humoral responses were evaluated based 
on high titers and capacity to neutralize. However, neutralization and titer are 
insufficient to provide immunity to most clinical vaccines, and alone mechanistically 
cannot drive protection5,6. Rather, a broader spectrum humoral features and mediated 
functions are attributed to conferring protection to HIV7–11, Influenza12,13, Herpes 
Simplex Virus14,15, Ebola16, and Malaria17,18. Though overlaps exist correlates of immunity 
and susceptibility can differ across both population and disease. For example, antibody 
sialyation upon administration of the influenza vaccine determines efficacy through 
driving affinity maturation19. In contrast, antibodies enhanced for FcγRIIIA binding drive 
disease severity to dengue20.  

Correlates of immunity driven by the properties and functions of polyclonal 
antibodies are still being revealed in many disease contexts and populations. However, 
despite insight into the primary implications of certain polyclonal properties the 
underlying mechanisms that drive separation across populations are not well 
understood. Mechanistic findings have the ability to further inform vaccine approaches, 
provide new targets for immunomodulatory therapies, and could be used as diagnostic 
markers prior to infection. 

1.3 Antibody characteristics and mediated functions 
Antibodies vary either through affinity or structure. The antigen-binding region (Fab) 
determines the target epitope (i.e. antigenic region), and the binding affinity. The 
fragment crystallizable (Fc) region is the antibody’s structural component and includes 
IgG, IgA, IgM, and IgE secreted isotypes. These isotypes are further delineated into 
subclasses including four IgG 1-4, and IgA 1-2. In addition, antibodies have a single N-
linked glycan attached to asparagine 297 (Asn297) on the Fc region. There are 36 
possible glycan structures that can occur on Asn297 which result in differences in 
structure21. The structural components of antibodies are important because they act as 
binding ligands to Fc receptors (FcR) on immune cells. Each FcR propagates signaling 
through either tyrosine-based activation motifs (ITAM), tyrosine-based inhibitory motifs 
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(ITIM), or decoy motifs and results in distinct mediated phenotypes. There are three 
main classes of FcRs ones that bind IgG (Fcγ), IgE (Fcε), and IgA (Fcα).   

In contrast to monoclonals, polyclonal pools contain a large diversity of Fab/Fc 
unique antibodies that range in abundance. This diversity provides advantages over 
monoclonal antibodies. For one, altered expression and epitope-specific mutations are 
common pathogen immunoevasion techniques. By targeting different antigenic regions 
there is a better chance of clearance through mitigating escape. As mentioned before 
neutralization, a function mediated by affinity alone is insufficient for protection to many 
diseases. Antibodies mediate many important immune functions such as phagocytosis, 
complement deposition, natural killer (NK) cell degranulation, and cytokine and 
chemokine secretion. In addition to FcRs functions can also be mediated by 
complement receptors (CR) on immune cells like complement receptors CR1 and CR2. 
Therefore, Fc diversity improves the resolution of immune phenotypes allowing for 
optimal and custom pathogen-specific responses which can also be altered easily 
through glycosylation21.  

1.4 Current suite of serological assays for profiling antibody properties 
There exist robust methods of measuring polyclonal properties such as isotype and 
subclass abundancy to different antigens, and enhanced binding to FcRs using Luminex 
based assays22. Mediated functions are measured by incubating antigen covered 
fluorescent beads with polyclonal antibodies, introducing effectors (i.e. immune cells or 
complement), and recording phenotypes. However, though it has been shown that 
phagocytosis and complement assays can be multiplexed more validation and 
development is required before multiplexing can be fully adopted23–25. 

System serology techniques are composed of fluorescent beads-based assays 
used to measure isotype and subclasses abundance, binding to various Fc receptors, 
the ability to trigger phagocytosis, complement deposition, and more. Isotypes and 
subclasses are measured through carboxy coupling either as pure antigens, a mixture of 
antigens, lysates, or whole intact pathogens to Luminex beads. Different pathogen 
coated beads can then be pooled and incubated with serum to form immune complexes. 
Using secondary fluorescent antibodies isotypes and subclasses are detected and 
readout with flow cytometry. Fc receptor binding is measured in a similar fashion, but 
instead of using secondary antibodies as detectors fluorescent recombinant FcRs are 
used26. Collectively, these methods are used to measure IgG1, IgG2, IgG3, IgG4, IgA1, 
and IgM abundancy and enhanced binding to FcRγIIA, FcRγIIB, FcRγIIIA, and FcRγIIIB. 
However, all other system serology techniques are not multiplexable which would 
ultimately accommodate larger cohort sizes.   

Antibody-dependent phagocytosis is tested with primary human neutrophils 
(ADNP), and monocytes (ADMP). Each cell type has unique sets of FcRs and different 
roles in the overall response. Therefore, it is not uncommon that phagocytosis is mediate 
better in one cell type over another. Recent work has showed that multiplexing a 
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phagocytosis assay with THP-1s was possible23. However, further characterization is 
required in order to address concerns about signal loss and cross-reactivity. 
Furthermore, monocyte phagocytosis is currently only performed with THP-1, a 
monocytic cell line. In order to capture information that is closer to underlying biology 
the assay can be performed with human primary monocytes. This would enable the 
study of phagocytosis in various monocyte subsets such as CD14+CD16- classical, CD14-

CD16+ non-classical, and CD14+CD16+ intermediate monocytes as well as downstream 
functions. 

Antibody-dependent complement deposition (ADCD) like the phagocytosis 
assays is measured by first forming immune complexes as described above. Then, 
guinea pig complement is incubated with the complexes and detected with a fluorescent 
anti-C3 secondary antibody24. However, unlike the phagocytosis assays, ADCD is not a 
cell-based assay and can be performed using the Luminex platform25. This would allow 
samples to be profiled with higher throughput.    

1.5 Current computational methods for defining correlates of protection 
Both applied machine learning approaches and specific computational techniques have 
previously been employed in order to understand the role of humoral immunity against 
many infectious diseases. This analytic framework is composed of both non-supervised 
and supervised machine learning methods. Customarily, after the data is processed 
through a normalization method (i.e., z-scoring), exploratory data analysis (EDA) is used 
to summarize univariate trends. Then, unsupervised methods such as hierarchical 
clustering and principal component analysis (PCA) are employed to inform on any inherit 
underlying structure in the data as well as evaluating the existence of any confounding 
variables. Next, supervised machine learning regression and classification methods are 
used in order to maximize variance due to a specific outcome of interest (i.e., protection 
against infection). With systems serology data, full rank datasets are very common, 
therefore a feature reduction technique is coupled with the machine learning methods 
of interest. Most commonly, the least absolute shrinkage and selection operator (Lasso) 
regression is used. Furthermore, popular classifiers include support vector machines 
(SVM) and partial least squares-discriminant analysis (PLS-DA). The robustness of these 
modelling approaches are evaluated in a repeated five-fold cross validation and then 
visualized with PLS-DA. However, there are many multi-level and structured study 
designs for which this framework does not fit, and therefore the development of 
additional computational methods is needed. 

1.6 Development of the humoral response 
B cells are responsible for the composition and quality of polyclonal antibodies. The 
major source of antibody binding diversity is driven by gene rearrangement27. During 
early B cell development cellular machinery recombines V(D)J segments resulting in 
cell-specific B cell receptors (BCR). BCRs are membrane anchored immunoglobins that 
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upon activated triggers the set of events responsible for the overall humoral response28. 
B cells upon maturation leave the bone marrow and traffic to secondary lymphoid tissue 
in search of stimulation from foreign antigens. B cells with unique BCRs are constantly 
generated, and if not stimulated within a time window parish.  

B cells can be activated in either a T cell independent or dependent manner. In 
both cases specialized antigen-presenting cells (APC) such as macrophages and 
follicular dendritic cells (FDC) display antigens either to B cells directly or to CD4+ T 
helper cells29. Activation of the BCRs results in proliferation followed by differentiation 
into germinal center (GC) B cells, short-lived plasma cells (SLPC), long-lived plasma cells 
(LLPC), or memory cell (Bmem). Multi signal integration from T helper cells, APCs, and 
many other signaling events determine the route of differentiation. Within germinal 
centers B cells undergo affinity maturation and class switching. During this process 
more SLPC, LLPC, and Bmems are produced as GC B cells leave. The process of 
generating polyclonal antibodies against pathogens involves dynamic and complex 
signaling decisions. Mechanistic links between B cell biology and composite humoral 
properties are still being discovered30.  

1.7 Immunogenetics of the humoral response 
Polyclonal pools can vary within an individual to different pathogens as well as across 
populations for a given pathogen. This range of variability in humoral characteristics and 
responses gives rise to subpopulations of individuals that control specific diseases 
differentially7–18. These findings lend to the notion that humoral traits developed through 
selective pressure via the host-pathogen relationship and therefore enriching sets of 
genes responsible for favorable outcomes. Population genetics studies the genetic and 
environmental contributions to trait determination (i.e., heritability) as well as allelic 
variance across populations. Two of the main approaches for studying these effects are 
through estimating heritability with familial study designs and identifying specific single 
nucleotide polymorphisms (SNP) that associate with traits using gene wide association 
studies (GWAS). Increasing evidence from heritability studies and GWAS highlight the 
influences that genetics can have on both antibody binding and structure.     

1.7.1 The genetic influences behind antibody repertories 

During the early development of B cells gene recombination occurs in segments V 
(variable), D (diversity), and J (joining) known as V(D)J recombination. These gene 
segments encode the antibody repertoire and are considered the main source of 
antigen-binding diversity. The diversity of repertoires within individuals and across 
populations has been of great interest, but prohibitively difficult due to the massive 
sequence size, ability to sample B cells, and small cohorts31. Within a single individual, 
the amount of information encoded by a repertoire exceeds the human genome by four 
orders of magnitude. However, with improvements in sequencing capabilities, recent 
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studies are starting to identify important features of repertoires and provide insight on 
commonality and genetic influence. 
 The process of gene segment selection during recombination is mostly random, 
although some segments are used more often than others. Studies have shown multiple 
mechanisms that account for biases in repertoires including preferred segments, and 
distance-based bias between V, D, and J segments32,33. MZ twin studies have also shown 
similarities in CDR3 length, and though the mechanisms are unknown genetic 
contributions have been attributed to the usage of gene segments, clonal expansion, 
and clonal sequence diversity34–38. Additionally, the influence of heritable factors on the 
recombination process has been confirmed to propagate from naïve to the memory 
compartments as well39. Therefore, though repertoires are highly individualized and very 
diverse unknown genetic biases underscore how binding repertoires are formed28. 

Studying repertoires informs on the variation of possible sequences against a 
pathogen but does not necessarily capture all aspects of polyclonal antibodies. For one, 
sequence does not necessarily inform on the clonal abundance of certain antibodies. 
There is emergent effort to leverage computational tools to predict antibody-antigen 
binding complexes from repertoires, but much development is need for this approach 
can be scaled and implementable40,41. Furthermore, binding complexes only have the 
compacity to inform on neutralization and say nothing about Fc dynamics. 

1.7.2 The influence of genetics on antibody Fc regions 

Heritability studies are a general approach to estimating the impact of genetics on 
determining a trait. They are advantageous because they do not make assumptions 
about the types of genetic interactions and therefore directly to relate to phenotypes. 
Multiple studies have estimated high heritability of titers to various childhood vaccine 
(Table S1)42. These estimates make no assumptions about sequences like the 
approaches mentioned above. In addition, the online GWAS Catalog contains over 24 
studies of IgG titers to various infectious diseases for which multiple SNPs have been 
associated. Therefore, there is evidence of highlighting heritability and specific genetic 
markers for IgG titers to various pathogens. However, despite IgG being the dominant 
isotype present in the blood other classes can have substantial impact especially in 
different compartments of the body. With exception to bulk IgG glycosylation, the 
genetic contributions and molecular components that influence antibody characteristics 
and mediated functions have yet to be systematically studied across pathogens43.  

1.8 Overview of thesis 
This thesis has focused on developing experimental techniques, computational 
methods, and machine learning approaches for investigating how properties of 
polyclonal antibodies shape response to infection. Understanding the properties and 
mechanisms by which antibodies provide protection is essential to defining immunity. 
Although neutralizing antibodies have been proposed as a potential key mechanism of 
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protection against many pathogens, antibodies mediate additional immune functions 
that may have both protective and pathological consequences. The aim of this work has  
been to expand the repertoire of experimental techniques capable of capturing antibody 
mediated effector functions, develop machine learning approaches for uncovering 
antibody correlates of protection and evaluating vaccine designs, develop 
computational methods to longitudinally model the development of early humoral 
immunity, and construct a genomic analysis pipeline to define the genetic mechanisms 
that determine pathogen-specific polyclonal antibody characteristics and functions. 
Collectively, these works provide novel experimental methods and computational 
models which have contributed to the body of knowledge of how polyclonal antibody 
composition shapes disease outcomes. Ultimately, these tools can be applied to future 
studies and ultimately aid in improving future vaccine designs and informing clinical 
management. 
  



17 
 

 
 
Chapter 2 
 
A multifaceted high-throughput assay 

for probing antigen-specific antibody-

mediated primary monocyte 

phagocytosis and downstream 

functions 
 
 
 
 
The contents of this chapter were published as:  
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Lauffenburger, and Galit Alter. “A multifaceted high-throughput assay for probing 
antigen-specific antibody-mediated primary monocyte phagocytosis and downstream 
functions”. J. Immunol. Methods. (Accepted) 
See the online publication for any references to supplementary material not included in this thesis.  
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2.1 Abstract 
Monocytes are highly versatile innate immune cells responsible for pathogen clearance, 
innate immune coordination, and induction of adaptive immunity. Monocytes can 
directly and indirectly integrate pathogen-destructive instructions and contribute to 
disease control via pathogen uptake, presentation, or the release of cytokines. Indirect 
pathogen-specific instructions are conferred via Fc-receptor signaling and triggered by 
antibody opsonized material. Given the tremendous variation in polyclonal humoral 
immunity, defining the specific antibody-responses able to arm monocytes most 
effectively remains incompletely understood. While monocyte cell line-based assays 
have been used previously, cell lines may not faithfully recapitulate the full biology of 
monocytes. Thus, here we describe a multifaceted antigen-specific method for probing 
antibody-dependent primary monocyte phagocytosis (ADMP) and secondary responses. 
The assay not only reliably captures phagocytic uptake of immune complexes, but also 
detects unique changes in surface markers and cytokine secretions profiles, poorly 
detected by monocytic cell lines. The assay captures divergent polyclonal-monocyte 
recruiting activity across subjects with varying SARS-CoV-2 disease severity and also 
revealed biological nuances in Fc-mutant monoclonal antibody activity related to 
differences in Fc-receptor binding. Thus, the ADMP assay is a flexible assay able to 
provide key insights into the role of humoral immunity in driving monocyte phenotypic 
transitions and downstream functions across many diseases.  

2.2 Introduction 
Monocytes constitute approximately 5-12% of white blood cells in healthy 
individuals44,45. Monocyte development begins in the bone marrow. Once mature, 
monocytes enter circulation into the bloodstream, and ultimately migrate into tissues. 
During homeostasis, monocytes enter tissues without many cellular changes and 
eventually undergo apoptosis46. However, during infection, monocytes drastically alter 
their basal phenotypes and can differentiate to either monocyte-derived macrophages 
(MDMs) or monocyte-derived dendritic cells (moDCs). These mononuclear phagocytes 
(MPs) drive pathogen clearance47,48, contribute to the induction of adaptive immunity 
through antigen presentation49, and coordinate innate immune functions through 
cytokine release50. MPs play a critical role in driving protection against a multitude of 
bacterial51, viral52,53, fungal54, and parasitic infections55. However, dysregulation and 
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overactivity of MPs can also have detrimental effects against infection leading to chronic 
infection, pathology, and enhanced disease severity 56–58. 

Monocytes mediate their functions either directly following non-specific 
recognition of pathogens or indirectly following interactions with opsonins such as 
complement proteins or antibodies that decorate the surface of pathogens. Direct 
engagement occurs non-specifically through pattern recognition receptors (PRR) such 
as toll-like receptors (TLR) and C-type lectin receptors (CLR) which recognize pathogen 
associated molecular patterns (PAMP). In addition to PRRs, monocytes and monocyte-
derived cells also express Fc-receptors (FcR) and complement receptors (CR) that allow 
these cells to bind to opsonized material59,60. Thus, antigen-specific antibodies can form 
immune complexes that can then trigger FcRs or CRs on the surface of monocytes to 
drive clearance, pathogen control, and cellular activation. Following FcR engagement 
monocytes are able to engulf foreign material, produce oxygen and nitrogen reactive 
species, generate anti-bacterial proteases, and release DNA to trap and eliminate 
pathogens61,62. FcRs bind to different antibody isotypes, subclasses, and Fc-
glycosylation profiles with different affinities63. Monocytes and monocyte-derived cells 
can express FcαRI, FcγRI, FcγRIIa, FcγRIIb, and FcγRIIIa depending on the level of 
cellular activation, maturation, phenotypic state, or organ location64,65. Therefore, 
variation in the composition of antigen specific antibodies likely leverage monocytes 
differentially, contributing to distinct levels of pathogen clustering, uptake, destruction, 
signaling, and presentation.  

Previous efforts to quantify antibody dependent cellular phagocytosis (ADCP) has 
focused on the use of bead-based assays using THP-1 cells66, a monocytic cell-line67. 
The assay has been used to investigate the role of ADCP against many diseases58,68–70. 
Although the ADCP assay has been useful for identifying differences in antibody 
mediated phagocytosis, monocytes can also respond to infection through distinct 
functions, not currently captured by the ADCP assay, including downstream functions, 
changes in activation, maturation, cytokine secretion, and antigen presentation. 
Therefore, an adapted antibody dependent phagocytosis assay, performed with human 
primary monocytes, could provide key insights into the role of humoral immunity in 
modulating monocyte activity more broadly. 

Here we describe a multifaceted antibody dependent human monocyte 
phagocytosis (ADMP) assay using antigen-coupled fluorescent beads for investigating 
ADMP and downstream functions against any given antigen. This high-throughput assay 
measures antibody mediated phagocytosis by monocytes as well as secondary 
responses. Comparison of the ADMP assay to the ADCP assay showed superior 
sensitivity and identified additional unique secondary effects of immune complexes not 
identifiable by ADCP. 
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2.3 Results 
2.3.1 Developing an Antibody-dependent primary monocyte phagocytosis assay 

The ADMP assay can be split into three main parts: 1) the formation of immune 
complexes, 2) the isolation of monocytes, and 3) the phagocytic uptake of immune 
complexes by monocytes (Fig. 2-1A). First antigens were biotinylated, and any unbound 
biotin was washed off. Then biotinylated antigens were coupled to fluorescent 
neutravidin coated beads, and any excess antigen was washed off. Following antigen-
bead coupling, immune complexes were formed by incubating either monoclonal 
antibodies or plasma with the antigen coated fluorescent beads. In addition, no antibody 
or other non-specific control antibodies were used as negative controls to capture 
background phagocytosis mediated by primary monocytes. During the formation of 
immune complexes primary monocytes were isolated from healthy donors. Following 
immune complex formation unbound antibodies were washed off and then co-cultured 
with the primary human monocytes during which phagocytic uptake took place. After 
phagocytosis, supernatants were collected for downstream analysis, beads that were 
not phagocytosed were washed off, and cells were stained and fixed.  

Antibody-mediated phagocytosis by primary monocytes and relative changes in 
surface marker abundance were then quantified by flow cytometry. First, single cells 
were gated (FSC-A/FSC-H) and then monocytes were identified by size (FSC-A/SSC-A) 
and either CD14 or CD16 expression (Fig. 2-1B). Phagoscores (PS) were then 
determined by calculating the percent of cells that internalized beads multiplied by the 
geometric mean fluorescent intensity (gMFI), which corresponds to the average bead 
uptake. Relative changes in surface expression of maturation/activation markers were 
also captured by comparing relative changes in sample conditions compared to antibody 
controls, and thus providing additional insights into subsets of phagocytosing cells and 
downstream consequences of phagocytosis. 

To define potential differences in phagocytic activity between primary monocytes 
and THP-1 cells, the ADMP assay was first optimized using 27 serum samples from 
healthy individuals profiled against the influenza HA antigen. First, incubation time was 
optimized, reported as a phagocytic score (PS) over a no antibody control condition 
(background) providing an assay signal-to-noise (SNR) ratio (Fig. 2-1C). This revealed 
that the four-hour time point provided the best SNR for the ADMP assay. Moreover, with 
viabilities >97%, the 4-hour window showed ideal performance (Fig. 2-S1A). Although 
significant differences were observed between monocytes incubated with both antigen-
coated beads and antibodies compared to those only incubated with antigen-coated 
beads (no antibody) or uncoated beads (no antigen), effect sizes were negligible (<1%). 
The optimal serum dilution for Influenza HA1 responses using the ADMP was next 
determined by performing serial dilutions ranging from 1:256 to 1:32768 (Fig. 2-1D). 
This revealed the dose dependent manner of ADMP and pointed to the lowest dilution 
as the optimal dilution for maximizing separation across samples. Serial dilutions with 
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the ADCP assay showed a narrower range of dilutions that were able to distinguish 
samples compared to ADMP, and by a dilution of 1:4096 only the ADMP assay was able 
to distinguish most samples (Fig. 2-1D and Fig. 2-S1B). However, the optimal dilution 
for the ADMP assay could vary across antigen and sample set and should be predefined 
accordingly. 

Bead and cell concentrations were next optimized using two different serum 
pools across three donors and two replicates (Fig. 2-1E). The condition with the lowest 
cell concentrations, 25,000 cells/well, and the highest bead concentration showed the 
highest signal to noise ratio (SNR) of approximately 15. This same condition when 
repeated with the ADCP assay yielded an SNR of 5.3, a three-fold decrease (Fig. S-1C). 
To evaluate the robustness of the assay, PS correlations among donors were determined 
(Fig. 2-1F and Fig. 2-S1D-E). This revealed that although phagoscores shifted slightly 
across donors (Fig. 2-1E), their signals were highly concordant. Regardless, a minimum 
of at least two donors should be used to profile ADMP to ensure that a specific donor 
does not exhibit a discordant effect. Additionally, from a single buffy coat approximately 
4000 samples can be profiled. Although the ADCP assay is not limited by donor cell 
number constraints, the vast majority of functional primary cell-based assays are limited 
by the number of effector cells that can be acquired for functional analysis. In contrast, 
4000 conditions provide an opportunity to run a considerable number of samples, or 
multiple dilutions for each sample, and far exceeds the numbers of conditions that can 
currently be run with traditional primary Natural Killer cell assays. Thus, this assay is 
considered high-throughput compared to other primary cell based assays, albeit it is 
medium-throughput compared to cell-line based assays.  

Finally, prior to flow cytometry, trypsin-EDTA was used to resuspend monocytes 
which strongly adhere to plates. Trypsin has previously been shown to digest certain 
sensitive surface proteins71. Therefore, although the treatment of trypsin-EDTA was 
brief, its effect on CD14 and CD16 was evaluated to ensure that the short incubation 
would minimally impact the gMFI of tested surface markers (Fig. 2-S1F). However, for 
additional markers, a rapid analysis should be included to ensure that the trypsin-EDTA 
does not affect additional surface markers. Ultimately, these results highlight the 
development and overall performance of the ADMP assay. 
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Figure 2-1. Antibody dependent human monocyte phagocytosis assay (ADMP) 
process and optimization 
(A) Schematic illustrating the ADMP assay process. First, antigen is biotinylated, coupled to fluorescent 
neutravidin beads, and then immune complexes are formed with an antibody sample. In parallel, primary 
monocytes are isolated from donor buffy coats. Finally, cells and immune complexes are incubated 
together. (B) Gating strategy and ADMP readouts. Events are first gated for single cells with FSC-A and 
FSC-H, then monocytes are first gated on FSC-A and SSC-A and then confirmed with either CD14 or CD16 
expression. This yields antigen-specific monocyte features which include a phagoscore (PS), and surface 
expression changes and cytokine secretion due to immune complex stimulation. (C) The effect of different 
monocyte and immune complexes incubation times on PS. Each bar is comprised of Influenza HA1 
responses from 9 healthy individuals which were averaged over 2 technical replicates and 2 donor 
replicates. The y-axis represents phagoscores over a no serum control (background), error bars depict +1 
SD from the mean, and significance was determined by a Mann–Whitney U Test (p<0.005: **). (D) Serial 
dilutions of 9 different samples against HA1 ranging from 1:256 (2-8) to 1:32768 (2-15). All curves were 
first background subtracted and then min-max normalized. Each color represents a different individual. 
(E) PS over background of different cell and bead conditions consisting of 2 different sera pools across 3 
donors, showing an average of 2 technical replicates. The color of the dots corresponds to the donors, and 
the number of cells and beads correspond to the amount suspended in each 200µL well of a 96 well plate. 
(F) Donor correlation of PS from 24 different samples. Each PS is the average of 2 technical replicates. 
The data was fit with a linear regression model. The shadowed area represents the 96% confidence 
interval and the Pearson correlation coefficient (ρ) with the corresponding significance are reported 
(p<1e-6: ***). 
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2.3.2 Anti-spike SARS-CoV-2 antibodies trigger changes in surface marker 
expression in hospitalized individuals 

Beyond the ability to quantify differences in phagocytic activity across plasma samples, 
primary monocytes also provide an opportunity to analyze the downstream 
consequences of phagocytosis, via the examination of cellular activation or maturation. 
To begin to define whether the ADMP assay would be suitable to a more comprehensive  
monocytic profiling, we focused on a sample set from Coronavirus Disease 2019 
(COVID-19) patients, 40 of which experienced mild disease and 20 that experienced 
severe disease72. This cohort was chosen as it had previously been shown to exhibit 
significantly different ADCP activity across the groups using the traditional THP-1 assay. 

Using primary monocytes, the ability of antibodies from COVID-19 patients to 
drive phagocytosis and alter the surface expression of CD14, CD16, CD68, and CCR2 on 
monocytes, following immune complex activation, was assessed. As previously 
observed, PS activity against the SARS-CoV-2 spike antigen was significantly higher in 
the hospitalized group (Fig. 2-2A), consistent with previous ADCP data72. Furthermore, 
although hospitalized individuals exhibited higher relative antibody levels, they did not 
correlate with ADMP phagoscores (Fig. 2-S2A), pointing to qualitative changes in the 
SARS-CoV-2 specific humoral immune response, rather than quantitative differences as 
a key determinant of ADMP activity. Conversely, antibody levels and phagoscores were 
correlated among non-hospitalized individuals, pointing to disease-state specific 
differences in antibody functionality. Additionally, CD14, CD16, and CD68 upregulation 
was observed in in the presence of antibodies from hospitalized individuals (Fig. 2-2B). 
However, CCR2 displayed a distinct profile, marked by lower levels in the setting of 
plasma from hospitalized patients. The data collectively suggest that antibody levels 
alone represent an incomplete predictor of ADMP and downstream activating potential.  

Although, striking differences were noted in phagocytic activity as well as CD16 
and CD68 across both the ADMP and ADCP assays, more robust separation in patient-
profiles were observed with the ADMP assay (Fig. 2-2C). Yet, only the ADMP assay, using 
primary monocytes, detected differences in altered CD14 and CCR2 expression across 
the two groups. Additionally, immune complex stimulation and phagocytosis resulted in 
opposite shifts in CD14 and CCR2 expression highlighting discordant behavior of THP-1 
cells and primary monocytes. Thus, the use of primary monocytes may provide 
additional insights on immune complex mediated cellular activation, capturing 
downstream consequences of immune complex-uptake and stimulation. 
 To further understand the relationships between features captured by each of the 
assays, pairwise spearman correlations were drawn between PS and alternations in 
surface marker expression (Fig. 2-2D). THP-1 mediated phagocytosis was strongly 
correlated to changes in CD68 expression and fairly correlated to CD16 levels. 
Conversely, THP-1 mediated PS was inversely correlated to CD14 levels and CCR2 
expression (Fig. 2-2D). However, monocyte mediated PS, in the ADMP assay, was 
strongly correlated with changes in CD14, CD16, and CD68 as well as strongly inversely 
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correlated to CCR2 expression. To summarize the relationship between features across 
the assays, spearman correlations were used, highlighting concordance across PS, 
CD68, but more variability across CD14 and CCR2 (Fig. 2-2E). Therefore, the ADMP 
assay may more sensitively capture coordinated changes in response to antibody-
activation on monocytes compared to THP-1 cells. 
 

 
 
Figure 2-2. Unique surface expression differences in SARS-CoV-2 hospitalized 
individuals by ADMP  
(A) Phagoscores (PS) and (B) shifts in surface expression of CD14, CD16, CD68, and CCR2 from 
20 hospitalized and 40 non-hospitalized SARS-CoV-2 infected individuals profiled against the 
spike protein. Each response is an average across 3 donors and 2 technical replicates. PS were 
background subtracted using the no serum control, and surface expression differences are 
represented as log2 fold changes over the no serum control. The solid gray line represents the 
baseline, the dashed black line a no stimulation control, and the dashed orange line a 100 ng/mL 
LPS stimulation control. Significance was determined by a Mann–Whitney U Test (p<1e-3: *, and 
p<1e-6: **). (C) Paired dotted plot illustrating differences in readouts across the ADMP and ADCP 
assays. The pink and green dots represent hospitalized and non-hospitalized individuals 
respectively, and the dashed gray line represents the baseline. (D) Heatmap of ADCP (left) and 
ADMP (right) intra-assay spearman correlations between PS, and changes in surface marker 
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expression. (E) Spearman correlation heatmap of ADCP and ADMP PS and fold change surface 
expression across assays. Statistical significance is indicated by the white asterisks and was 
corrected for multiple hypotheses with the Bonferroni method (p<1e-4: *). Panels C and D were 
visualized with the data shown in A and B and therefore were normalized in the same manner. 

2.3.3 Downstream ADMP activity distinguishes hospitalized SARS-CoV-2 patients 

Given the surface marker differences between THP1 cells and primary monocytes, we 
next aimed to determine whether additional components of downstream activation 
could be resolved using the ADCP or ADMP assays. Following phagocytosis, immune 
complexes may trigger a network of Fc-receptors, resulting in signaling cascades, that 
may lead to cellular activation and cytokine or granule release.  

Thus, to determine whether downstream activation could be captured across the 
monocyte assays we utilized samples from 28 individuals infected with SARS-CoV-2 
who experienced mild disease (non-hospitalized), and 12 samples from individuals that 
experienced severe disease (hospitalized). Analysis of supernatants at 16 hours 
following co-culture with SARS-CoV-2 spike specific immune complexes revealed little 
to no cytokine secretion using the THP-1 ADCP assay (Fig. 2-3A). Conversely, THP-1 
cells did release cytokines following LPS stimulation (Fig. 2-S2B). In contrast, robust 
cytokine secretion was noted in the ADMP assay, and revealed significantly higher IL-6 
and MIP-1β production in the presence of plasma samples from hospitalized individuals 
compared to non-hospitalized individuals (Fig. 2-3B). Moreover, the majority, but not all, 
cytokine levels were enhanced in the presence of antibodies compared to the no 
antibody controls, albeit the levels were not as strong as those observed with LPS 
stimulation (Fig. 2-3B). These data ultimately highlight a role for antibodies in 
monocyte-driven cytokine secretion. 

In order to determine whether a multivariate set of features measured by each 
assay was able to distinguish hospitalized and non-hospitalized individuals a partial 
least square discriminant analysis (PLS-DA) was used. A minimal set of features 
consisting of cytokine secretion profiles, surface marker expression, and phagocytosis 
were able to resolve hospitalized and non-hospitalized COVID-19 patients across both 
the ADCP and ADMP assay (Fig. 2-3C and D), albeit the data from the ADMP assay 
provided stronger resolution (Fig. 2-3D). Using the ADCP assay, variable importance in 
projection (VIP) scores selected PS as the feature which best differentiated the 2 
groups, enriched among hospitalized individuals (Fig. 2-3C). Additionally, IL-1β and 
myeloperoxidase (MPO) were enriched in non-hospitalized patients and were also used 
for resolving the 2 groups based on data collected from the ADCP assay.  Conversely, 
chemokine receptors, Fc-receptors, and cytokine levels were critical discriminators of 
patient groups using data collected in the ADMP assay (Fig. 2-3D). To investigate the 
relationship between PS, surface marker changes, and antibody mediated cytokine 
secretion pairwise spearman correlations were used and revealed weak correlations 
among most of the ADCP features (Fig. 2-3E). The ADMP assay was alternatively marked 



26 
 

by robust correlations between several LASSO selected features and cytokine levels in 
the ADMP assay (Fig. 2-3F). 

We next aimed to examine whether particular classes of data from the ADCP or 
ADMP assay were more discriminatory across the groups. This was achieved through 
cross validation while maintaining the same training and test set identity for all models 
during each iteration to determine differences in classification accuracy (Fig. 2-3G). This 
revealed that ADMP models built on either cytokine or surface marker features both 
greatly outperformed their ADCP model counterparts. Additionally, the selected model 
built on the ADMP features outperformed the ADCP assay. Ultimately, these analyses 
highlighted the utility of the ADMP assay which provided enhanced insight into post 
phagocytic immune consequences and was able to better distinguish clinical groups.   

 

 
Figure 2-3. ADMP assay provides greater spectrum of post phagocytic detail     
Post-phagocytic cytokine analysis of 12 hospitalized and 28 non-hospitalized SARS-CoV-2 
infected individuals. (A) Heatmap depicting cytokine secretion of hospitalized and non-
hospitalized individuals across the ADCP and ADMP assays, and (B) boxplots depicting the ADMP 
cytokine differences among hospitalized and non-hospitalized individuals. The dashed black line 
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represents the no stimulation control and the dashed orange line the 100 ng/mL LPS stimulation 
control. (C) Cross validated lasso selection models based on ADCP features and (D) ADMP 
features respectively. The scores plot of the PLS-DA scores plots are based on the final lasso 
selected features with green corresponding to the non-hospitalized and purple to the 
hospitalized groups. (E) Spearman correlation heatmap of PS, surface expression, and cytokine 
features for ADCP and (F) ADMP respectively. Statistical significance is indicated by the white 
asterisks and was corrected for multiple hypotheses with the Bonferroni method (p<1e-4: *). (G) 
Cross validated classification accuracy of PLS-DA models built on different sets of features. 
Models were either built using either lasso selected, all cytokine, all surface marker, or all 
features. Cross validation sets were synced across models and statistical significance was 
defined by exact P values of the tail probabilities of the ADMP distributions within the ADCP 
distributions. All cytokine concentrations were converted using a standard curve, and then log10 
transformed. Additionally, A and C-G were z-scored. Each response is an average of 2 technical 
replicates. 

2.3.4 The ADMP assay reveals distinct differences in Fc-variant performance 

Recent studies have shown that monoclonal Fc-variants can selectively trigger specific 
effector functions73,74, likely due to their ability to bind and signal differentially via Fc-
receptors63. While attention has been paid to the ability of antibodies to trigger 
phagocytosis through flow cytometry or microscopy66,75. These assays have focused 
largely on uptake, failing to capture potential additional differences in Fc-induced 
monocyte and macrophage activation that may also be key in therapeutic activity. Thus, 
we aimed to determine whether the ADMP assay, with the added downstream readouts, 
could further define differential monoclonal antibody Fc-activities. To this end, an Fc-
engineered library of the SARS1 antibody CR3022, which is cross-reactive to the 
receptor binding domain  of SARS-CoV-2 was used76, as it has previously been shown to 
drive ADCP74.  

Comparison of phagocytic activity of the wildtype antibody was first assessed 
across both the ADCP and ADMP assays and showed stronger phagocytic activity in the 
ADMP assay (Fig. 2-4A). Moreover, significant differences were observed across surface 
markers and assays with higher CD14 and CD86 expression and lower overall CCR2, 
CD16, CD32, CD64, and CCR2 in the ADMP assay compared to the ADCP assay. 
Additionally, cytokine secretion also revealed additional nuances across the Fc-variants 
in the ADMP assay. Despite the limited cytokine secretion in the ADCP assay, robust 
cytokine secretion was still observed in both assays following LPS treatment (Fig. 2-S3). 
Integration of all phenotypic and cytokine responses in the ADMP assay resolved distinct 
differences in Fc-variant driven activation of primary monocytes (Fig. 2-4B). Specifically, 
hierarchical clustering of the variants revealed distinct groups that were able to trigger 
phagocytosis, change surface marker expression, and alter various cytokine secretion 
profiles. As expected, LALA PG, a relatively inert variant, clustered with other negative 
controls, and showed the lowest levels of phagocytosis and cytokine secretion. In 
addition, clusters of variants with high, medium, and low phagocytic scores with various 
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cytokine secretion profiles were observed. Of note, SDIEGA-LS showed the strongest 
phagocytosis and cytokine secretion. Conversely, IgG1, the unaltered variant, showed 
one the lowest phagoscores but a strong cytokine secretion profile. These data therefore 
highlight opportunities of exploring Fc-engineering to selectively drive phagocytosis 
with or without specific activation. Collectively, these profiles provide a map for various 
responses induced by changes in Fc-structure only observable through the ADMP assay. 
Ultimately, the ADMP assay provides a distinct assay able to capture monocyte changes 
that are induced by immune complex stimulation. 

 

 
Figure 2-4. CR3022 Fc-variants illicit unique post-phagocytosis responses 
(A) Differences in phagocytosis and surface expression of CD14, CD68, CD86, CCR2, CD16, 
CD32, and CD64 are depicted with each dot representing 1 of 20 different CR3022 monoclonal 
Fc-variants targeting the receptor binding domain (RBD) of the SARS-CoV-2 virus. Phagoscores 
were background subtracted using no serum controls, and surface expression is represented as 
log10 of the geometric mean fluorescent intensity (gMFI). Significance was determined by a 
Mann–Whitney U Test and corrected for multiple hypotheses with the Bonferroni method (p<1e-
3: *). (B) The heatmap and dendrogram depicts the hierarchical clustering of the different 
variants using phagoscore (PS), surface expression, and cytokine data. Clustering was 
performed using a correlation distance metric with an ‘average’ linkage method. Prior to 
clustering all data was z-scored and is an average of 2 technical replicates. 

2.4 Discussion  
Fc-effector functions, including antibody dependent cellular cytotoxicity (ADCC)77, 
antibody dependent complement deposition78, and antibody dependent phagocytosis79, 
have been implicated in protective immunity across both infectious80–82 and non-
infectious disease83–85. Specifically, ADCP has been linked to protection against simian 
immunodeficiency virus (SIV) in non-human primate studies (NHP)68, and has been 
linked to natural resolution of COVID-1958. However, human primary monocytes are 
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heterogeneous and highly plastic and can differ both in phenotype and function under 
distinct inflammatory conditions as well as in different compartments86,87. For simplicity, 
ADCP assays often exploit monocytic cell lines, including the THP-1 cell line67 that may 
not fully recapitulate the heterogeneity of potential immune functions that may emerge 
from monocytes in vivo. Thus, given the critical role of monocytes, as key innate immune 
effector cells, an assay using primary cells able to capture monocyte activity more 
broadly could provide novel insights into mechanisms of protection to guide therapeutic 
or vaccine design.  
 The ADMP assay provided several distinct advantages over the traditional ADCP 
assay. First, primary monocytes showed enhanced sensitivity and greater dynamic 
range when measuring antibody mediated phagocytosis across samples. This 
improvement in sensitivity could be utilized to spare both plasma samples and antigenic 
material. Furthermore, although differences in phagocytosis between hospitalized and 
non-hospitalized SARS-CoV-2 individuals were detectable by both assays, this may not 
be the case for cohorts with more nuanced disease phenotypes. Additionally, the 
surface expression of many markers have previously been shown to differ between THP-
1s and primary monocytes87. Phagocytosis is a multi-stage process which is initiated by 
phagocytic receptors which are often engaged cooperatively88. Fc-receptors in 
particular play an important role in shaping cellular responses89,64,61, and  although 
primary cells and THP-1s have been shown to express FcγRI and FcγRII, the expression 
and signaling via these markers differ on primary monocytes. While differences in Fc-
receptor expression may not necessarily alter the ability to phagocytose (Fig. 2C), 
changes in Fc-receptor expression and engagement appear to alter the downstream 
consequences after phagocytosis, including the ability to secrete cytokines, react to 
stimuli, and alter surface expression of specific markers (Fig. 2C and 3A). Thus, the 
ADMP assay can both provide information regarding enhancement of antibody mediated 
phagocytosis, but also drive changes in surface markers and cytokine profiles that more 
accurately represent mechanisms in situ. 

In addition to improved sensitivity and the ability to describe downstream 
consequences of phagocytosis, the use of primary monocytes also allows for the 
investigation of disease-associated states and whether certain perturbations alter 
responses to immune complexes. Perturbed monocytic states have been previously 
associated with many diseases45,90,91, and although donor variability was low among 
healthy donors (Fig. 1F and Fig. S1D-E) ADMP assays performed with perturbed 
monocytic cell states could provide different results. Therefore, monocytes isolated 
from donors which exhibit disease-specific characteristics could uniquely respond to 
immune complexes and thus provide additional novel mechanistic insights into disease 
specific immunopathology.  
 Beyond, differences across polyclonal sera the ADMP assay also highlighted 
unique responses to monoclonal Fc-variants. Monoclonal therapies in the past decade 
have become an important modality in the treatment of cancer92 and against many 
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infectious diseases93–95. The therapeutic effects of antibodies are linked to both the 
antigen binding region (Fab) and the constant region (Fc) of the antibodies, the latter 
that can be engineered to selectively trigger specific Fc-effector functions96,97. However, 
while particular Fc-variants have been identified with enhanced ADCP activity, how 
these variants affect primary monocyte maturation and activation is not well 
understood. Using a panel of 20 Fc-variants of the CR3022 monoclonal antibody that 
recognizes SARS-CoV-2, a number of Fc-variants were identified that could drive 
enhanced phagocytosis, but also tune monocyte biology (Fig. 4B). Interestingly, the 
wildtype IgG1 induced relatively poor phagocytosis but potent inflammatory cytokine 
secretion. This observation highlighted the capacity of certain structural variants to 
uniquely trigger cytokine profiles and phagocytosis independently. This could prove to 
be useful in certain cancer therapeutic contexts where monocyte and macrophage 
function could be tuned to enhance the elimination of tumor cells. Thus, the ADMP assay 
could provide a new method for evaluating the efficacy of monoclonal therapies.   
 Additionally, the ADMP assay being a bead-based assay allows for the 
multiplexing of antigens98. While multi-bead uptake has been shown to recapitulate 
single-plex signals, offering a sample-sparing approach to perform multiplexed ADCP 
assays, competition assays with antigens of interest are also possible. Therefore, the 
ADMP assay may be further modified to capture individual antigen responses, 
multiplexed activity, and even competitive responses. Moreover, the assay may be 
modified to used cryo-preserved monocytes, that if thawed properly monocyte viability, 
phagocytic activity, morphology, migration, adherence, and other functions  minimally 
impact monocyte activity99–103. Therefore, the use of cryopreserved monocytes could 
provide additional flexibility when fresh monocytes are not available such as in the case 
of when profiling perturbed monocytes from non-healthy donors. 
 Ultimately, the ADMP platform described here provides a method for 
reproducibly probing antibody mediated primary monocyte function and is distinct from 
the traditional ADCP assay66. This methodology could enable improved vaccine design, 
the development and evaluation of monoclonal therapeutics, and enhance the 
understanding of the mechanisms of humoral protection by probing both the level of 
antibody mediated immune complex clearance as well as the downstream 
consequences of this activity. 

2.5 Methods 
2.5.1 Source of samples and monocytes 

Primary human monocytes were isolated from the buffy coats of 20 healthy volunteers 
at the Ragon Institute of MGH, MIT, and Harvard. Serum samples from 27 orthogonal 
healthy individuals were also obtained from the Ragon Institute of MGH, MIT, and 
Harvard and were used as a source of antibodies for assay optimization. Additionally, 
serum samples from 40 non-hospitalized SARS-CoV-2 infected outpatients and 20 
previously hospitalized SARS-CoV-2 infected inpatients were profiled. The cohort 
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consisted of 60 adults, over the age of 18, collected at Harborview Medical Center, 
University of Washington Medical Center or at Northwest Hospital (Seattle, Washington, 
USA) between 24- and 74-days following symptom onset72. Samples were collected as 
part of a prospective longitudinal study or as part of a protocol for expanded access to 
convalescent plasma treatment of COVID-19 (ClinicalTrials.gov, NCT04338360), and is 
further explained in104. This study was conducted in accordance with the World Medical 
Association's Declaration of Helsinki, was approved by the MGH Institutional Review 
Board, and all volunteers – across all sample collections - provided informed consent. 

2.5.2 Monoclonal antibodies 

Twenty CR3022 Fc-variants were created by designing gene blocks containing the Fc 
domain of IgG1 with Fc point-mutant selected based on known differences in binding to 
Fc receptors73,74,97,105,106. First, pUC donor plasmids encoding various Fc regions, a 
variable heavy chain, a furin P2A sequence, and variable light chain flanked by BsaI at 
each site were designed. Then, a destination vector was cloned that included a kappa 
light chain sequence, an IL-2 secretion signal, and the ccdB suicide gene by BsaI sites. 
Finally, donor and destination plasmids were digested and ligated with Golden Gate 
cloning which could produce IgG proteins with the same antigen-binding (Fab) region 
but differences in Fc regions. Monoclonal Fc variants were produced in 293F suspension 
cells grown in FreeStyle 293 Expression media (Gibco, Thermo Fisher Scientific). 293F 
cells were transfected with Polyethylenimine (PEI; Polysciences) at 1 μg/μL in a ratio of 
3:1 μg of PEI to DNA. After transfection, cells were incubated for 5 days after which 
supernatants were collected and then purified with protein G magnetic beads 
(MilliporeSigma). Assays that were performed using monoclonal antibodies were run at 
a concentration of 2.5 μg/mL. 

2.5.3 Isolation of primary human monocytes 

Primary human monocytes were obtained from the buffy coats of healthy donors (MGH 
blood donor center). Buffy coats were diluted 1:4 in 2% fetal bovine serum (FBS; Sigma) 
in a phosphate buffered saline (PBS; Sigma-Aldrich) by volume and set at room 
temperature overnight. Then using sepmate tubes (Stemcell) and following the 
manufacturer’s instructions peripheral blood mononuclear cells (PBMCs) were isolated. 
PBMCs were then pelleted by centrifugation (300 x g, 8 min) at room temperature and 
then washed with 2% FBS in PBS. If any residual erythrocytes remained, cells were 
diluted in 1:10 ratio of ammonium-chloride-potassium (ACK) lysis buffer (150mM 
NH4Cl, 10mM KHCO3, 0.1 mM Na2EDTA, pH 7.4) by volume and was incubated for 5 
min at room temperature. To wash off any residual lysis buffer, cells were pelleted with 
centrifugation (500 x g, 5 min) at room temperature, and the buffer was poured off and 
replaced with 2% FBS in PBS. The wash step was repeated to ensure the removal of any 
residual lysis buffer. PBMCs were then adjusted to a concentration of 50 x 106 cells/mL 
in cold 2% FBS and 1mM EDTA in PBS and using the human monocyte isolation kit 



32 
 

without CD16 depletion (Stemcell) monocytes were isolated. The purified monocytes 
were then finally diluted in R10 media (RPMI-1640 media (Sigma) with 10% FBS, 
2 mM L-Glutamine and 100 U/mL penicillin/streptomycin) 

2.5.4 Antigen coupling to fluorescent beads 

The SARS-CoV-2 spike, SARS-CoV-2 receptor binding domain (Lake Pharma), or 
influenza hemagglutinin (HA) (California H1N1 2009, Immunetech) antigens were 
biotinylated with sulfo-NHS-LC-biotin (Thermo Scientific) using the manufacturer’s 
instructions. Then Zeba spin desalting columns (Thermo Fisher) were used to remove 
unbound biotin through buffer exchange to PBS. Biotinylated antigens were then 
separately coupled to blue 1.0 μm fluorescent neutravidin beads (Thermo Fisher) at a 
ratio of 10µg of biotinylated antigen to 10µL of the neutravidin beads. Beads and 
biotinylated antigens were coupled at 37ºC for 2 hours in low-binding microcentrifuge 
tubes (Corning). Beads were then washed twice with 0.1% PBS-BSA through 
centrifugation (16,000 x g, 5 min) at room temperature to remove unbound antigen. The 
antigen-coupled fluorescent beads were resuspended 1:200 in 0.1% PBS-BSA by 
volume and stored for up to no more than a week at 4ºC in the dark.  

2.5.5 Immune complex formation 

First, to form immune-complexes, in each well of a 96-well ultra low attachment round 
bottom microplate (Corning) 20µL of samples were diluted 1:200 in 0.1% PBS-BSA and 
incubated with 20µL of the antigen coupled beads for 2 hours at 37ºC. Profiling of 
CR3022 Fc-variants was performed using 20µL the monoclonals at 2.5 µg/mL diluted in 
0.1% PBS-BSA. Additionally, a PBS no antibody control, a no bead control, and a 100 
ng/mL bacterial lipopolysaccharide (LPS) control were included in each experiment. 
After the formation of immune complexes, 200 µL of 0.1% PBS-BSA was added to each 
well, pelleted (1000 × g, 10 min), and the supernatant was removed to clear unbound 
antibodies. 

2.5.6 Antibody dependent cellular phagocytosis assay 

The antibody dependent cellular phagocytosis (ADCP) assay was performed as 
previously described in66. Antigen-bead conjugation, and immune complex formation 
was performed in the manner described above. THP-1 cells (ATCC), a monocyte cell line, 
was adjusted to a concentration of 1.25 x 105 cells/mL in R10, and 200µL (25,000 
cells/well) of cells were added to each well. The immune complexes and cells were 
incubated at a ratio of 1:76 (cells/beads), the equivalent of 2.4 million cells per 10µL of 
the bead stock solution, for 16 hours at 37ºC in a humidified incubator (5% CO2). After 
phagocytosis cells were pelleted (500 x g, 5 min). Downstream analysis of antibody 
specific cytokine secretion profiles was performed on supernatants that were collected 
into a separate 96-well round bottom microplate (Corning), centrifuged at 4ºC (1000 x 
g, 15 min), and then stored at -80ºC until use. For cellular analysis, cells were first 
washed with 50µL of Trypsin-EDTA (0.25%, Thermo Fisher) and set for 5 min at 37ºC. 
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Next, 150µL of 2mM EDTA was added to each well, pelleted (500 x g, 5 min), and washed 
twice more with 200µL of 2mM EDTA. Cells were then incubated in 20µL of Fc-block 
(Miltenyi Biotec) which was previously diluted 1:10 in 0.1% PBS-BSA by volume and set 
for 15 min in darkness. Subsequently, cells were stained for CD14 and CD16 expression 
at room temperature for 30 min in the dark. Additional stains including maturation 
markers (CD86 and CD68), Fc-receptors (CD32 and CD64), and a chemokine receptor 
(CCR2) were included depending on the experiment. Following staining, cells were 
washed twice with 2mM EDTA in PBS (500 x g, 5 min), fixed with 4% paraformaldehyde 
(PFA; Alfa Aesar), and washed twice more to remove any residual PFA. Cell analysis was 
performed on a BD LSR Fortessa flow cytometer, and analyzed using FlowJo (FlowJo, 
LLC). THP-1 cells were gated by size (FSC/SSC) and singlets (FSC-A/FSC-H). 
Phagoscores were calculated by taking the geometric mean fluorescence intensity 
(gMFI) of the bead positive monocytes, multiplying by the percent of bead positive 
monocytes, and dividing by an arbitrary factor for interpretability. Changes in expression 
were reported as log2 MFIs over PBS controls. Cytokine secretion by monocytes upon 
immune complexes stimulation was analyzed by using the previously collected 
supernatants which were thawed on ice and measured with a customized multiplex 
luminex bead panel (Thermo Fisher) following the manufacturer’s protocol.  

2.5.7 Antibody dependent primary monocyte phagocytosis assay 

The antibody dependent primary monocyte phagocytosis (ADMP) assay was performed 
by first purifying primary monocytes, described above. The monocyte concentration was 
adjusted to a concentration of 1.25 x 105 cells/mL in R10, and 200µL (25,000 cells/well) 
of cells were added to each well. The immune complexes and cells were incubated at a 
ratio of 1:76 for 4-16 hours at 37ºC in a humidified incubator (5% CO2). For the analysis 
of surface marker expression and phagocytosis incubation periods of 4 hours were used, 
and for cytokine and chemokine secretion incubation times of 16 hours were used.   

After cells were pelleted, supernatants were collected as described above. To 
ensure all cells were detached 50µL of Trypsin-EDTA (0.25%, Thermo Fisher) was added 
to each well and set for 5 min at 37ºC. Following detachment, 150µL of 2mM EDTA was 
added to each well, pelleted (500 x g, 5 min), and washed twice more with 200µL of 
2mM EDTA. Cells were then incubated in 20µL of Fc-block (Miltenyi Biotec) which was 
previously diluted 1:10 in 0.1% PBS-BSA by volume and set for 15 min in darkness. 
Subsequently, cells were stained for CD14 and CD16 expression at room temperature 
for 30 min in the dark. Additional stains including maturation markers (CD86 and CD68), 
Fc-receptors (CD32 and CD64), and a chemokine receptor (CCR2) were included 
depending on the experiment. Following staining cells were washed twice with 2mM 
EDTA in PBS (500 x g, 5 min), fixed with 4% paraformaldehyde (PFA; Alfa Aesar), and 
washed twice more to remove any residual PFA. Cellular analysis was performed on a 
BD LSR Fortessa flow cytometer, and analyzed using FlowJo (FlowJo, LLC). Primary 
monocytes were first gated by size (FSC/SSC), singlets (FSC-A/FSC-H), and either 
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expression of CD14 or CD16 (Fig. 1B). Phagoscores were then calculated by taking the 
geometric mean fluorescence intensity (gMFI) of the bead positive monocytes, 
multiplying the percent of bead positive monocytes, and dividing by an arbitrary factor 
for interpretability. Changes in expression were reported as log2 MFIs over PBS controls 
and were assessed by comparing all gated monocytes. Cytokine secretion by monocytes 
upon immune complexes stimulation was analyzed in the same manner as described 
above with a customized multiplex luminex bead panel (Thermo Fisher) following the 
manufacturer’s protocol. 

2.5.8 Statistical analyses 

All analyses were performed using python version 3.6.8. Classification models were 
trained to distinguish hospitalized and non-hospitalized SARS-CoV-2 infected 
individuals. Prior to classification all samples were subtracted for background levels 
based on the PBS control conditions across all features, and all data was scaled and 
centered. Correlations between technical and donor replicates were determined using 
Pearson correlations and between different conditions using Spearman correlations. 
Statistical differences among different conditions were determined by a Mann–Whitney 
U Test and were multiple hypothesis corrected with the Bonferroni method. ADCP and 
ADMP models were separately constructed based on either all features, only surface 
marker features, only cytokine features, or on features selected by a cross validated 
least absolute shrinkage and selection operator (LASSO) using a partial least squares 
discriminant analysis (PLSDA) classifier. Final models were then visualized using scores 
plots and feature variable of importance in projection (VIP) was determined. 
Classification accuracy was then determined for all models with multiple iterations of 
fivefold cross-validation, while maintaining the same training and test set identities for 
all models during each iteration. Models were generated 100 times, and outcomes were 
then compared to determine accuracy. Statistical significance between ADMP and ADCP 
models was defined by exact P values of the tail probabilities of the ADMP distributions 
within the ADCP distributions. Reported are the median p-values over the course of 
every repetition68,107.  
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2.6 Supplementary figures 
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Figure 2-S1. Primary monocyte viability, ADCP benchmarking, and donor 
correlations 
(A) Boxplots depict the viability of primary monocytes following exposure to immune complexes (Sample), 
to no antibody controls (No Ab), or are unperturbed (No Ag). Each boxplot is composed of 4 donors and 
profiled across 20 samples and 2 technical replicates, and statistical significance was assessed using the 
Mann–Whitney U Test (p<0.001: *) (B) (Left) Dilution curves of 9 different samples against HA1 from 1:256 
(2-8) to 1:4096 (2-12). All curves were background subtracted and then min-max normalized. Each color 
represents a different individual and is an average of 2 technical replicates. (Right) Normalized PS of ADCP 
and ADMP assays across the ADMP and ADCP assays at dilution 1:4096 (2-12). The color of the dots 
corresponds to a different sample. (C) PS over background of different cell and bead conditions consisting 
of two different sera pools across 2 technical replicates. The color of the dots corresponds to the replicate, 
and the number of cells and beads correspond to the amount suspended in each 200µL well of a 96 well 
plate. (D) Distribution of phagoscore (PS) by Pearson correlations (ρ) among different donors. Each 
correlation consists of 20 different samples and is an average of 2 technical replicates and profiled against 
the Influenza HA1 antigen. (E) Visualization of the univariate pairwise correlations among the 4 donors 
are shown below and their relationship is represented by a linear regression model. The shadowed area 
represents the 96% confidence interval and the corresponding ρ and significance is reported (p<1e-6: 
***). (F) Boxplots depict the count and log10 geometric mean fluorescence intensity (gMFI) of ADMP 
following treatment with different dissociation agents and is composed of 9 samples. 
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Figure 2-S2. Antibody mediated cytokine secretion against the spike protein of 
SARS-CoV-2 across ADMP and ADCP assays  
(A) Spearman correlations between relative antibody levels and ADMP phagoscores among 20 
hospitalized and 40 non-hospitalized SARS-CoV-2 infected individuals. Relative antibody levels were 
determined by taking the mean percentiles of the isotype and subclass levels across each individual 
captured by Luminex. Each value is an average of 2 technical replicates, the relationships are represented 
by a linear regression model, the shadowed area represent the 96% confidence interval, and the 
corresponding spearman correlation coefficient (ρ) and significance are reported (p<1e-6: ***). (B) The 
supernatants of 12 hospitalized and 28 non-hospitalized SARS-CoV-2 infected individuals were selected 
for post-phagocytic cytokine analysis across ADMP and ADCP assays. Distributions depicting the cytokine 
secretion of hospitalized and non-hospitalized individuals across the ADCP and ADMP assays. Cytokine 
concentrations were converted by a standard curve, and then log10 transformed. Each response is an 
average of 2 technical replicates. The solid black line represents the median, and the dashed orange line 
a 100 ng/mL LPS stimulation control. 
 

 
 
Figure 2-S3. CR3022 Fc-variants induced cytokine secretion across ADMP and ADCP 
assays  
Cytokine secretion following ADMP with monoclonal Fc-variants targeting the receptor binding domain 
(RBD) of the SARS-CoV-2 are depicted with each dot representing 1 of 20 different CR3022 variants 
across each assay. Cytokine concentrations were converted by a standard curve, and then log10 
transformed. Each response is an average of 2 technical replicates. The solid black line represents the 
median, the dashed orange line a 100 ng/mL LPS stimulation control, and the dashed blue line the no 
stimulation control. 
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3.1 Abstract 
Respiratory syncytial virus (RSV) infection is a major cause of respiratory illness in 
infants and the elderly. Although several vaccines have been developed, none have 
succeeded in part due to our incomplete understanding of the correlates of immune 
protection. While both T cells and antibodies play a role, emerging data suggest that 
antibody-mediated mechanisms alone may be sufficient to provide protection. 
Therefore, to map the humoral correlates of immunity against RSV, antibody responses 
across six different vaccines were profiled in a highly controlled nonhuman primate-
challenge model. Viral loads were monitored in both the upper and lower respiratory 
tracts, and machine learning was used to determine the vaccine platform-agnostic 
antibody features associated with protection. Upper respiratory control was associated 
with virus-specific IgA levels, neutralization, and complement activity, whereas lower 
respiratory control was associated with Fc-mediated effector mechanisms. These 
findings provide critical compartment-specific insights toward the rational development 
of future vaccines. 

3.2 Introduction 
It is estimated that respiratory syncytial virus (RSV) causes approximately 33.8 million 
new infections annually, with the highest mortalities in developing countries108. It is 
estimated that most children become infected during the first few years of life, and 
although most cases of RSV result in mild disease, a certain proportion of cases go on to 
develop bronchiolitis, pneumonia, and broad inflammation of the respiratory tract109. 
RSV is considered to be the most common cause of childhood acute lower respiratory 
infections and account for one-third of deaths during the first year of life108,110. Moreover, 
emerging data suggest that older adults represent an additionally vulnerable population 
accounting for nearly 200,000 infections and greater than 10,000 deaths annually in the 
US alone111. Currently, RSV is mainly treated with respiratory supportive care such as 
supplemental oxygen and ventilators, and though neutralizing monoclonal antibody 
(mAb) prophylactics exist, use is largely restricted to the treatment of premature infants 
which are at highest risk. However, despite the clear need to combat RSV infections 
globally, vaccine development has failed in part due to the limited understanding of the 
correlates of immunity required to prevent infection and disease, and the challenge of 
inducing immunogenic responses in newborns with developing immune systems that 
are in the presence of maternal antibodies. 
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Substantial evidence highlights the critical role of the humoral immune response 
in protection against RSV. Prophylaxis with neutralizing monoclonal antibody 
therapeutics has been associated with a reduction in hospitalizations, with higher 
neutralizing antibody titers associated with the greatest reduction in disease112,113. 
Additionally, recent meta-analyses integrating data related to titers, neutralization, T 
cell immunity from various prophylactic mechanisms found neutralization as predictor 
of protection against RSV, although prediction does not imply mechanistic causality. 
However, even though several RSV vaccines have been developed over the years that 
are able to induce neutralizing antibodies, no vaccine is currently available, perhaps 
related to the strict focus on antibody titers and neutralizing antibodies. Instead, 
emerging data point to the importance of both neutralizing and non-neutralizing a-
ntibody functions, in protection across several infectious diseases114–118, however, the 
precise mechanisms of protection against RSV remain incompletely understood. 

Recent studies have emphasized the importance of Fc-mediated antibody activity 
against RSV infection119. Reduced NK cell numbers, even in the presence of high-
maternally transferred antibodies have been noted in infants that acquire RSV pointing 
to a potential importance of NK cell mediated ADCC in protection against RSV120. 
Moreover, multiple studies have highlighted the ability of antibodies to the RSV G-
antigen, a dominant viral-surface antigen involved in attachment, in inducing efficient 
ADCC in vitro121 and in vivo122. Monoclonal antibodies 1812A2B and 1C2, both directed 
at RSV-G, have been shown to significantly reduce viral load and provide protection in 
vivo in the setting of intact Fc-effector function, suggesting that Fc-dependent innate 
effector functions in protection in vivo is critical123–125. Additionally, N-glycan structure 
variants of palivizumab with improved Fcγ receptor binding have been associated with 
reduced viral lung titers126. Furthermore, enhanced disease has been noted in 
complement deficient mice123, pointing to the potential importance of additional Fc-
mechanisms in protection against RSV127. However, the precise anti-viral humoral 
mechanisms of protection against RSV remain unknown, hampering the ability to 
advance a protective vaccine.  

Here, we sought to determine potential antibody correlates of protection against 
RSV in a unique setting of controlled RSV-infection and immunity. Specifically, using 
non-human primates immunized with disparate vaccine strategies, each showing a 
unique antibody-vaccine induced profile and striking differences in protection from 
infection in both the upper and lower respiratory tracts, we were able to perform a 
unique correlates analysis. Using systems profiling of the antibody response and 
machine learning, unique antibody features were associated with viral loads in the upper 
and lower respiratory tracts over time following challenge, with a dominant role of IgA 
and neutralization in the upper respiratory tract, and a critical role for Fc-effector 
functions in the lungs. These data highlight important differences in potential immune 
correlates of protection against RSV infection at different sites within the respiratory 
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system, agnostic of the vaccine platform, providing a glimpse into highly desirable target 
immune profiles that provide important insights into vaccine design. 

3.3 Results 
3.3.1 Striking heterogeneity in RSV restriction across vaccine strategies 

Monoclonal antibody studies have clearly illustrated the critical role of antibodies in 
protection against RSV112,122,125,127. Moreover, antibody titers and neutralization have 
been implicated in protection, but alone represent incomplete correlates of immunity 
against RSV in both infants128 and in the elderly population129. Conversely, emerging data 
demonstrate a role for antibody-effector functions, beyond neutralization in the control 
of RSV119,123,127, thus, here we aimed at systematically probing the functional role of 
antibodies against RSV.  

We elected to focus on a controlled challenge model, specifically focusing on a 
group of African Green Monkeys (AGM) that received 1 of 6 different vaccine constructs. 
In addition, to the six different vaccine platforms, one group was given an empty lipid 
nanoparticle (LNP) vaccine, delivered intramuscularly (negative control) and a second 
group was administered an attenuated strain of RSV A2, intranasally (RSV-A2). Three 
groups were given differently formulated F protein-based DS-Cav1 vaccines130. Two of 
three were administered intranasally, using 20% nanoemulsion at a dose of 125µg in a 
volume of either 0.1mL (DS-Cav1-LV) or 0.25mL (DS-Cav1-HV), and one was 
administered intramuscularly with 500 µg of Adju-Phos®, an aluminum phosphate 
adjuvant, at a dose of 125µg and volume of 0.5mL (DS-Cav1-AD). Two additional groups 
were given RSV F nanoparticle vaccines intramuscularly at a dose of 135µg in a volume 
of 0.5 mL either with (RSV-F-AD) or without the Adju-Phos® adjuvant (RSV-F)131. The final 
group was given an mRNA/LNP vaccine encoding the membrane bound version of DS-
Cav-1 which was delivered intramuscularly at a dose of 125µg and a volume of 0.5mL 
(mDS-Cav1)132 (Figure 3-1A). This mRNA vaccine, also referred to as mRNA-1777 
(V171), was recently evaluated in a phase 1, randomized, placebo-controlled study to 
evaluate the safety and immunogenicity in healthy younger and older adults133. All the 
vaccines delivered the RSV F protein, implicated as a critical target for both neutralizing, 
and protective antibodies130. Three doses of vaccine were administered to each animal 
at Day 0, 29 and 56 and then the animals were challenged with RSV A2 both intranasally 
and intratracheally on day 70. Serum samples were collected prior to each vaccination 
and at the time of challenge.  

Following challenge, nasal swabs were collected daily for 15 days and 
bronchoalveolar lavage fluid (BAL) were collected on days 3, 5, 7, 9 and 14 to assess for 
viral loads (Figure 3-1B and Figure 3-1C). While differences were noted in BAL viral loads 
across the groups (Figure 3-1C), complete control of nasal viral loads was only observed 
with intranasal attenuated RSV-A2 immunization (Figure 3-1B). All other vaccine 
modalities shifted the kinetics of the nasal viral loads. Furthermore, attenuated RSV-A2 
and mDS-Cav1 alone showed complete restriction of viral loads in the BAL, with delayed 
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and attenuated peak viral loads across the groups. With the exception of vaccine groups 
DS-Cav1-HV and DS-Cav1-LV variation in viral loads among non-human primates within 
groups were low for both the nasal cavity and the BAL. RSV-A2 exhibited the best overall 
control followed by mDS-Cav1, and then DS-Cav1-AD highlighting a clear hierarchy in 
vaccine induced protection against RSV and pointing to differences in capacity of vaccine 
induced immune responses to reduce viral load across the upper and lower respiratory 
tracts. 
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Figure 3-1. Study design, efficacy, and antibody responses with dosage 
(A) 32 macaques were split into eight groups, six of which were administrated different vaccine 
modalities, one administrated an empty lipid nanoparticle control, and one group vaccinated with an 
attenuated RSV strain. Each group was dosed at day 0, 29, 56, and then challenged at day 70. (B) Viral 
loads were captured days 0-15 after challenge in the nasal cavity. On the left are the mean trajectories 
for with every line representing a specific group, and on the right are the individual non-human primate 
trajectories for each condition. The diamonds at each time point correspond to the mean for that group 
and corresponding time point. (C) Viral loads were captured days 3-15 after challenge in the BAL and 
represented in the same manner as panel B for both the graph on the left and the right. (D) Humoral 
evolution of IgM and total IgG titers, (E) IgA titers against pre and post RSV fusion protein at day 70, and 
(F) enhanced Fc-receptor binding along three doses and prior to challenge. (G) Development of 
neutralization titers through three doses and prior to challenge. (H) Functional humoral evolution of 
antibody mediated responses including complement deposition (ADCD), (I) phagocytosis by monocytes 
(ADCP) and by neutrophils (ADNP), and (J) natural killer (NK) cell degranulation by CD107a, IFNγ, and 
MIP-1β. All panel expect D, F, and I were min max normalized providing relative mean fluorescent 
intensities (rMFI) or corrected scores. Panels D and F are represented as log2 titers, and panel I as the 
percent of NK cells positive for each degranulation marker. Error bars show one standard deviation from 
the mean. Colors correspond to the vaccine strategies and control. 

3.3.2 Robust Pre-F vaccine responses observed across different modalities  

To define whether differences in vaccine induced antibody profiles were associated with 
differential challenge outcome, we next compared both the biophysical and functional 
profiles across the vaccine groups over the course of the study. Limited IgM levels were 
observed across most vaccine groups except for DS-Cav1-HV and mDS-Cav1 which 
showed moderate levels. Conversely, RSV IgG and IgA titers were induced across all 
vaccinated animals with the strongest responses in DS-Cav1-AD, DS-Cav1-HV, DS-
Cav1-LV, and mDS-Cav1 (Figure 3-1D and 1E). Intermediate titers were also observed 
for RSV-F, RSV-F-AD, and RSV-A2. Interestingly, Total IgG and Pre-F IgA levels were 
similar across the groups, but Post-F levels were higher in the mDS-Cav1 and DS-Cav1-
AD groups. Concordant with IgG titer changes, Fcγ-receptor binding antibodies, to both 
FcγR2A and FcγR3A, followed the same levels as observed with IgG titers, albeit 
disproportionately higher Fcγ-receptor binding was observed in the RSV-F-AD group 
early on (Figure 3-1F). Similar to the development of IgG and IgA titers, robust 
neutralization titers were also observed in DS-Cav1-AD, DS-Cav1-HV, DS-Cav1-LV, and 
mDS-Cav1 vaccine groups followed by intermediate responses by RSV-A2 and RSV-F-
AD. Interestingly, unlike IgG and IgA the mDS-Cav1 and DS-Cav1-AD groups showed 
even higher neutralization titers than other groups (Figure 3-1G). 

In contrast to titers and Fc-receptor binding profiles, antibody-effector function 
showed greater heterogeneity across vaccine arms. For example, while the DS-Cav1-AD 
arm exhibited the earliest evolution of antibody dependent complement deposition 
(ADCD), DS-Cav1-HV and mDS-Cav1 immunized animals exhibited the highest 
magnitude responses over the study period (Figure 3-1H). Nearly all arms developed 
antibody dependent cellular phagocytosis (ADCP), with similar levels of ADCP were 
observed in the mDS-Cav1, DS-Cav1-LV, DS-Cav1-HV, DS-Cav1-AD, and RSV-F-AD 
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vaccinated animals that exhibited lower antibody titers (Figure 3-1I). These data 
suggest that the functional quality of the humoral immune response may not be strictly 
determined by the quantity of the antibody. Interestingly, antibody dependent 
neutrophil phagocytosis (ADNP) was only observed in the DS-Cav1-AD- and mDS-Cav1-
vaccinated animals. Similar trends were observed with antibody dependent NK cell 
degranulation (CD107a upregulation), cytokine secretion (IFNγ), and MIP-1β secretion 
(Figure 3-1), with highest levels in the DS-Cav1-AD group, followed by mDS-Cav1 and 
then DS-Cav1-HV. Ultimately, these data point to qualitatively distinct humoral immune 
responses across vaccine groups, but to confirm specific quantitative differences across 
platforms studies with improved sample size are needed.  

To explore the unique profiles induced across the vaccine humoral profiles at a 
multivariate level, we performed a principal component analysis (PCA) (Figure 3-2A). 
Despite the small numbers of animals in each vaccine arm, each arm separated, 
highlighting the different antibody-profiles induced by each vaccine (Figure 3-2A, left). 
The first principal component, PC1, marked substantial quantitative and qualitative 
differences across weakly immunogenic vaccines and vaccines that elicited robust 
humoral immune responses, with loadings scaled along PC1 (Figure 3-2A, right). 
However, loadings along the second principal component, PC2, provided contrast 
between the quality of the vaccine induced profiles. For example, PC2 segregated 
vaccines able to induce robust levels of NK cell activation, ADNP, neutralization and IgA 
(at the top of PC2) from those that induced more robust ADCP, IgM, Fc-receptor binding 
(at the bottom of PC2), providing comprehensive functional resolution of the overall 
functional quality of the vaccine induced humoral immune responses induced by distinct 
vaccine platforms.  

Furthermore, to capture temporal differences between the vaccine induced 
immune responses, a PCA analysis was performed longitudinally, using a phase portrait 
(Figure 3-2B). The phase portrait highlighted the unique mean path taken by each 
vaccine following immunization. A unique directionality was observed for the DS-Cav1-
AD and mDS-Cav1 vaccine groups. A shared directionality was observed for the DS-
Cav1-LV and DS-Cav1-HV vaccines, similar trajectories emerged across the RSV-F-AD 
and RSV-A2 vaccinated profiles, and common paths were followed by the less-robust 
antibody inducing RSV-F, that overlapped with the empty control group (Figure 3-2B). 
Collectively, these data point to the distinct development of antiviral-responses in the 
setting of differences between qualitative antibody profiles of the vaccine groups.  
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Figure 3-2. Unique composite differences in response dynamics among vaccine 
strategies 
(A) PCA with responses before challenge and the corresponding loadings plot. Colors in all panels 
correspond to each group. (B) Phase portrait decomposing humoral responses over day 29, 56, and 70 
across all NHPs. Each line represents a trajectory of a single NHP with the larger size dots corresponding 
to later time points. On the right the mean path of each group is depicted over time. All data was scaled 
and centered within each time point prior to decomposition. Colors correspond to the vaccine strategies 
and control. 

3.3.3 Antibody functions are more strongly linked to protection than neutralization 

Given the robust, albeit heterogeneous, induction of functional antibody responses 
following vaccination with the distinct platforms, we next aimed to determine whether 
particular vaccine induced antibody properties tracked with protection against RSV. 
Thus, we explored the individual relationship between antibody functions, titers, Fc-
receptor binding capacity, neutralization, and IgA and viral loads at a univariate level 
(Figure 3-3). After correction for multiple comparisons, fewer significant correlations 
were noted in the nasal profiles, although IgG titers, FcγR3a binding antibody levels, and 
Pre-F antibody titers were all significantly correlated with protection at day three, and 
IgM alone remained significantly associated with protection at day five in the nasal 
samples. Conversely, many features of the vaccine induced humoral immune response 
were linked to enhanced viral control in the BAL. Of note, ADCP and IgM correlated 
poorly with protection in the BAL, post-F IgA titers were only correlated with viral load 
control at day five, and neutralization was only associated with viral load control at day 
three. Moreover, the correlation coefficients were stronger for NK cell-activating 
antibodies, ADNP, Fc-receptor binding and Pre-F IgA levels compared to neutralization, 
providing novel resolution into the platform-independent antibody properties that may 
be key to protection against RSV.  
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Figure 3-3. Antibody feature correlations to protection 
The correlation heatmap depicts Spearman correlations of individual antibody features with viral loads 
across compartments (nasal and swab) and time points (days 3 and 5). Statistical significance is indicated 
by white asterisks with Holm-Bonferroni correction for multiple hypothesis testing (p < 0.001). Negative 
correlations are indicated in blue, and positive correlations are denoted in red. 

3.3.4 Mechanism of humoral protection in the nasal cavity and BAL 

Given the naturally inter-related induction of antibody titers, function, and 
neutralization, we next aimed to determine the cross-vaccine platform minimal humoral 
correlates of immunity against RSV. Data from all vaccine groups, excluding control 
groups, were integrated and partial least square discriminant analyses (PLS-DA) were 
used to determine a minimal multivariate set of humoral correlates of immunity that 
tracked with early restriction of viral replication. Control groups were excluded because 
they did not elicit robust humoral responses. Antibody profiles at day 70 were used for 
correlates analyses, and models were constructed comparing protected and non-
protected NHPs, defined by a viral loads below 20 pfu/mL at day three and five for both 
the nasal (Figure 3-4A) and lung (Figure 3-4C) compartments following viral challenge.  

Both day three and five nasal cavity models were able to accurately predict 
protection with cross-validation accuracies of 84% and 95% respectively (Figure 3-4A 
and Figure 3-S1). As few as three antibody features of the total 13 captured, were able 
to accurately separate animals with viral loads past the lower limit in the nasal cavity. 
The top features selected in the day three model were all enriched in the protected 
animals, including complement deposition (ADCD), Pre-F IgA responses, and 
neutralizing antibody titers. Interestingly, each feature had high univariate predictive 
power as quantified as the area under (AUC) of the receiving operation curve (ROC) 
(Figure 3-4B), with early IgA levels ranking as the top predictor of protection followed 
closely by complement activity that was highly enhanced in protected animals, and 
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neutralizing titers following closely behind. Day five features changed slightly, with 
conserved preF-IgA titers still a key correlate of protection, however IgM titers were also 
included as correlates of protection. In these animals however, ADNP levels were 
elevated in infected, rather than protected animals (Figure 3-4A). Day five IgM levels 
possessed complete univariate predictive power, followed closely by IgA and ADNP 
(Figure 3-4B). However, given the importance of IgM in driving complement activation, 
these data suggest that IgM and complement as well as IgA are potential correlates of 
immunity in the upper nasal tract. Thus, strict neutralization with complement activating 
activity may be sufficient to delay viral infection in the upper respiratory tract.  

Since more striking viral control was observed in the lungs (Figure 1B), we next 
probed whether RSV-specific antibody effector profiles were distinct among protected 
and unprotected animals. A near complete split was observed in antibody profiles at day 
three across the animals, linked to just three antibody features that were all enriched in 
the protected animals, with a cross-validation accuracy of 91% (Figure 3-4C and Figure 
3-S1). The three features included antibody dependent NK cell-chemokine secretion 
(MIP-1β), complement deposition, and vaccine specific IgA levels, each with 
consistently high individual predictive accuracies (Figure 3-3D). Day five BAL profiles 
remained distinct across protected and infected animals with a cross-validation 
accuracy of 85% (Figure 3-4C and Figure 3-S1). The day five model contained five 
features, including NK cell chemokine (MIP-1β) and cytokine (IFNγ) secretion, ADNP, 
and IgA and IgM titer. Apart from IgM titers most of the selected features showed high 
univariate predictive accuracies (Figure 3-4D). This more complex signature points to 
the critical interaction between multiple functions and isotypes in the control of RSV 
infection. To confirm whether similar complex signatures were consistent seven days 
out in BAL a similar analysis was performed (Figure 3-4E). This analysis of protection 
revealed similar correlates of protection, namely IgA titers and NK degranulation were 
that were consistent seven days out. Interestingly, ADCD appeared as a new correlate 
of protection specific to day 7 and may be necessary for suppressing infection seven 
days out. Although neutralization was not selected as a correlate of immunity by the 
models, neutralization was clearly associated with reduced viral loads by univariate 
analysis on day three in the BAL (Figure 3-3), suggesting that neutralization may play a 
supportive mechanistic role in protection in the lung, particularly early on in infection. 
Thus, this wholistic agnostic analysis suggests that NK cells, complement, and 
neutrophil phagocytosis may play a dominant role in containment of RSV in the lower 
respiratory tract.  
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Figure 3-4. CR3022 Fc-variants illicit unique post-phagocytosis responses 
A) On top, the scores plots of the PLS-DA classification models, predicting protection in the nasal cavity 
for days 3 and 5 after challenge, are shown with green corresponding to the unprotected and purple to 
the protected groups. Below the scores plots, the variable importance in protection (VIP) scores are 
shown. (B) Area under the receiver operating characteristic curve (ROC) are displayed for the model 
selected features of days 3 and 5 after challenge in the nasal cavity. (C) Scores plot of the PLS-DA 
classification models predicting protection in the BAL for days 3 and 5 after challenge are shown on top 
with the VIP scores below. (D) Area under the ROC of the model selected features of days 3 and 5 after 
intratracheal challenge in the BAL are displayed. (E) Scores plot of the PLS-DA classification models, 
predicting protection in BAL for day 7 after challenge, is shown to the left with the VIP scores to the right. 
(F) Area under the ROC for the model selected feature 7 days after intratracheal challenge is shown. 
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3.3.5 Collective correlates of immunity are selectively induced by vaccine regimens 

To gain further insights into the relationship of the humoral correlates of immunity and 
additional antibody functions, a correlation network with all the selected features was 
constructed (Figure 3-5A). The network revealed relationships between all protective 
features, apart from IgM, highlighting the specific humoral immune functions that co-
evolve in animals that exhibited the most robust protection. Specifically, selected 
features were tightly co-induced with one another, with a critical co-evolution between 
neutralization, IgA, NK cell activation, and the activation of neutrophils. This tight linkage 
between Fc-functions and neutralization points to a collaborative role between the Fc 
and Fab of the antibody in limiting RSV infection.  

To further visualize common and distinct features selected by the time-based 
compartment models the features selected by each model were summarized in a table 
(Figure 3-5B). IgA titers were important across all compartments and days post 
challenge. Interestingly, in both compartments, ADCD was selected at day three. 
Conversely, IgM titers emerged as correlates in the day five models pointing to a 
potentially expanded role for IgM, able to also drive phagocytic clearance of particles in 
the lungs. Finally, neutralizing antibody levels to RSV was a robust correlate of immunity 
early in the nasal cavity but was less apparent over time and in the lower respiratory 
tract.  These data suggest that strict neutralization may only be key to protection early 
in upper respiratory protection, complement mediated activity may be key on day three 
across compartments, whereas NK cells and neutrophils appear to act later in the 
antiviral response, providing protection strictly in the lower respiratory tract.  

Finally, we sought to explore vaccine platform specific responses across each of 
the correlates that were selected in more one of the models (Figure 3-5C). All correlates 
were robustly induced by the mDS-Cav1 vaccine arm. A more NK and ADNP biased 
response was observed in the DS-Cav1-AD group. A robust IgA and ADCD shifted 
response were noted in the DS-Cav1-HV group. Thus, while the distinct regimens 
showed differences, all vaccine arms exhibited some capacity to elicit immunity (Figure 
3-1). However, limited correlates were observed across the other vaccine groups, 
providing potential mechanistic insights into the lack of protection observed against 
RSV. 
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Figure 3-5. Vaccine strategies and humoral feature composition 
(A) Spearman correlation network illustrating features that are significantly correlated with biomarkers 
that track with protection in time point and compartment models. Purple corresponds to high positive 
correlation while gray corresponds to less positively correlated edges. The orange nodes represent 
features selected in at least one of the models. (B) Table summarizing the features chosen by each 
compartment and time post-challenge model. The colors correspond with protection, with green being an 
average higher value in the unprotected and the purple in the protected group. (C) The heatmap depicts 
the mean Z scored responses of features that were chosen by more than one model across the different 
vaccine modalities. First vaccine groups, excluding controls, were Z scored for each feature and the 
responses were averaged for a given vaccine group. Red corresponds with higher values and gray with 
lower values. 

3.4 Discussion  
Despite several attempts to develop a protective vaccine against RSV134, no vaccine is 
currently available. Neutralization has been linked to protective immunity in some, but 
not all studies135. Likewise, ADCC activity has been associated with protection against 
RSV in animal models but has yet to be defined as robust correlates of immunity in 
humans122. While neutralization may provide some protection, antibodies have the 
capacity to leverage a broader array of antiviral functions beyond neutralization and 
ADCC that may act in a coordinated manner to confer the most robust protective profile. 
Thus, to capture wholistic humoral correlates of immunity against RSV and gain 
mechanistic insight, we profiled the humoral immune response in a highly controlled 
African Green Monkey (AGM) challenge model, across animals vaccinated with an array 
of distinct vaccines. AGMs, which are semi-permissive for RSV replication, are one of 
several animal models that have been used to evaluate RSV vaccine candidates136. 
However, despite many advantages non-human primate models also provide some 
inherent difficulties due to the small sample sizes. Furthermore, the RSV challenge 
model used here (RSV introduced into the nose and lung) may represent a stringent 
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albeit extreme model of infection. Yet despite these differences to natural human 
infection, striking differences in humoral profiles were observed in the upper and lower 
respiratory tracts associated with viral restriction. Neutralization and ADCD driven 
immunity correlated with superior control in the upper respiratory tract. In contrast, 
cellular based mechanisms were associated with protection in the lower respiratory 
tract. Ultimately, these data highlight a composite correlate of immunity which may 
confer a greater level of protection against RSV.  

While antibodies represent the primary correlate of immunity following most 
licensed vaccines, antibody titer alone has been insufficient for providing critical insights 
needed to guide vaccine development against many pathogens114–117. Mounting data 
highlights the importance of antibody function rather than magnitude as a critical 
mechanistic correlate of immunity. Consequently, correlates of immunity may be 
distinct from vaccine to vaccine, providing unique profiles of immunity that can emerge 
with the use of different adjuvants, platforms, or routes of immunization, but may all 
leverage a common mechanism of protective immunity 137–139. Therefore, defining 
common correlates, rather than vaccine-specific correlates of immunity may reveal key 
insights required to design an effective vaccine. Here, we assessed vaccines 
representing different platforms, adjuvants, and routes of administration that provided 
an opportunity to both examine as well as define common correlates of immunity. Using 
this agnostic approach, a minimal set of features emerged highlighting the different 
mechanisms potentially involved in protection in the upper and lower tracts: while 
neutralization and ADCD corresponded to viral control in the upper respiratory tract, IgG 
mediated Fc-effector functions were important for lower respiratory viral restriction. 
These differences in correlates provide interesting clues related to the distinct 
immunological mechanisms that may be essential to restricting infection in each and 
both compartments, including early and delayed mechanisms of protection. Thus, 
vaccine platforms able to deploy these combinations of effector functions may be more 
likely to provide robust protection against the virus, even if the pathogen escapes early 
restriction from neutralization.  

RSV infection initially begins in the upper respiratory tract, migrating rapidly to 
the lower respiratory tract, where the virus largely causes disease140. Critically, the 
upper and lower respiratory tracts are composed of distinct cellular components, 
representing unique immunological landscapes of potential effectors that may be 
leveraged in response to viral infection141. Thus, immune correlates of protection against 
infection may vary across compartments, representing different antibody effector 
functions required to restrict protection at the portal of entry compared to the 
predominant site of viral replication and disease. Therefore, IgA-mediated 
neutralization with complement activation may relate to the unique local environment 
of the upper respiratory tract. Given that complement has not only been implicated in 
driving opsonophagocytic uptake, but also virolysis142 and enhanced neutralization, 
these data point to the importance of a collaboration between neutralization and Fc-
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effector function as a key early mechanism of pathogen blockade, lysis, and clearance. 
If restriction does not take place in the upper respiratory tract, neutralization appears to 
be less critical than cellular functions such as neutrophil phagocytotic activity and NK 
cell degranulation. This is likely due to mechanisms that rely on opsonized-viral and 
infected-cell clearance as previously noted against other viral infections143. Thus 
collectively, both initial restriction in the upper respiratory tract and reserved lower 
respiratory tract control mechanisms may contribute to enhanced restriction against 
RSV.  

PreF-specific IgA emerged as a correlate of immunity across both upper and 
lower respiratory compartments, and is consistent with previous animal studies144. IgA 
is important for protection against many respiratory illnesses, as individuals with IgA 
deficiencies are generally more susceptible to RSV re-infection145. The intranasally 
administrated DS-Cav1-HV vaccine induced robust IgA responses. RSV-A2 was also 
introduced intranasally and led to strong protection, however as with live-attenuated 
RSV vaccines viral replication levels and the magnitude of humoral responses are linked 
which could limit durability. The mDS-Cav1 vaccine also showed good viral restriction 
and robust IgA levels in addition to the correlates of protection. Intranasal 
immunizations have also previously been proposed to induce higher IgA titers, via the 
induction of immunity in nasopharyngeal-associated lymphoid tissue where IgA class 
switching is thought to mainly take place 146,147. However, whether mRNA vaccination 
could lead to complete protection if administered intranasally remains unclear. 

The mRNA vaccine technology has gained tremendous attention due to its recent 
application to SARS-CoV-2 vaccine development148. The unique profiles observed from 
the mRNA vaccine platform may be related to its potential self-adjuvating capacity and 
putative MHC-I and MHC-II presentation149. Strikingly, the mRNA vaccine modality 
provided the most consistent and balanced response and exhibited superior control 
across both compartments. It is well established that T cells also contribute to the 
control of RSV, and likely explains how the attenuated A2-virus was able to control 
infection while inducing lower neutralizing antibody titers150. Furthermore, resident T 
cells have previously been shown to play an important protective role against RSV 
infection151,152. Therefore, it is possible that vaccination could preferentially enhance 
tissue resident T cell immunity as well. Importantly, while none of the vaccine modalities 
evaluated in the current study elicited robust RSV F specific CD4+ and CD8+ T cells 
responses measured in peripheral blood, the mRNA/LNP vaccine did drive the strongest 
CD4+ T cell responses (data not shown). Thus, improved viral containment with the 
mRNA platform may also be attributable to enhanced CD8+ and CD4+ T cells responses, 
which has been observed following mRNA vaccination149. 

Ultimately, these findings highlight the advantage of probing functional antibody 
differences, beyond neutralization and binding titers, for the selection of protective 
vaccines. The data suggest that mRNA vaccination, may drive the broad compartment-
specific humoral and cellular immune responses potentially required for protection 
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against RSV. However, both the high volume intranasal nanoemulsion and adjuvated 
vaccines also illustrated the capacity to induce humoral responses associated with 
protection. Given that the high volume nanoemulsion vaccine provided substantially 
stronger responses than the low dose alternative, which has previously has been shown 
to impact viral restriction in both nasal and lung compartments in both African green 
monkeys and cotton rats153, further optimization of antigen dose-levels and/or dose 
volumes could also provide improved protection. Additionally, future efforts in 
formulation optimization, able to induce long-lived humoral correlates of immunity 
across the age-spectrum, could lead to the ultimate development of a highly protective 
RSV-vaccine. Collectively, these data point to a set of potential humoral correlates of 
immunity that provide mechanistic insights into the specific immunological functions 
that may be key to protective immunity against RSV. Therefore, defining compartment 
specific mechanisms, across vaccine platforms, provides exciting insights into common 
mechanisms that may guide vaccine development for future vaccines able to fully 
leverage the humoral immune response against RSV and beyond. 

3.5 Limitations of study 
There are two main limitations associated with this study. The first main limitation of 
this study is the need for testing in non-human primates. Although non-human primates 
are advantageous animal models, they cannot guarantee how and to what extent 
findings will translate to humans. Furthermore, the need for an RSV vaccine is greatest 
for infants under 6 months of ages and the elderly. One of the reasons that vaccine has 
been unsuccessful until now is due to the difficultly of developing a vaccine that is 
immunogenic in newborns that have unique developing immune systems. Therefore, 
future studies performed with neonatal non-human primates would aid in attaining a 
better understanding of correlates of protection specific to neonates. The second 
limitation of this study revolves around the assays used to capture antibody-dependent 
functions. The correlates of protection based on antibody-dependent functions were 
measured ex vivo, and although they attempted to best capture functional responses, 
they cannot completely account for all the environmental factors present in vivo. 
Moreover, it is possible that not all humoral correlates of protection are detectable by 
peripheral blood. For example, is possible that the humoral landscape of mucosal 
environments is composed of antibodies which contain different characteristics and 
functions and should be further investigated. Finally, it is also possible both cellular and 
humoral immunity are necessary in order to fully understand mechanisms of protection 
against RSV. Therefore, further investigation into correlates of protection with improved 
animal models and adapted assays are necessary in order to best inform RSV vaccine 
design.   
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3.6 Methods 
3.6.1 African Green Monkey vaccination  

African Green Monkeys were maintained at New Iberia Research Center (NIRC) of 
University of Louisiana at Lafayette, New Iberia, LA, USA. Monkeys of either sex, with an 
average weight of 2.4 kg were used in this study. The animal study was approved by the 
University of Louisiana at Lafayette Institutional Animal Care and Use Committee 
(IACUC) and conducted in accordance with the US Public Health Service (PHS) Policy on 
Humane Care and Use of Laboratory Animals. A cohort of 32 African green monkeys that 
were RSV antibody-negative by RSV neutralization assay were split into eight groups of 
four and immunized with various RSV vaccine modalities or controls (Figure 3-1A). One 
group was immunized intramuscularly with 125µg of mDS-Cav1 mRNA vaccine in a lipid 
nanoparticle (LNP) formulation. The mRNA/LNP vaccine was prepared as described 
previously132. Three groups were given 125µg DS-Cav1 protein formulated with different 
adjuvants. Two of the three were administered intranasally, using 20% nanoemulsion154 
in a volume of either 0.1mL or 0.25mL, and the third was administered intramuscularly 
with 500µg of Adju-Phos® (InvivoGen, San Diego, CA), in a volume of 0.5mL. The DS-
Cav1 protein was expressed and purified as described previously155. Two of the groups 
were vaccinated intramuscularly with 135µg RSV F nanoparticle vaccine prepared as 
described in131 one of which was given with 500µg of Adju-Phos®. In addition to the six 
vaccine groups, two control groups were included in the study. One group was given 5.5 
Log10 pfu RSV A2 intranasally in 0.25mL, and the other was given empty lipid 
nanoparticles at a dose equivalent to that used to deliver 125µg of mRNA, by the 
intermuscular route. Collectively, vaccines cover different routes of administration, 
adjuvant use, and vaccine type.  

Three doses of vaccine were administered to each animal at Day 0, 29 and 56. 
Serum samples were collected on Day 0, 29, 56 and 70 to assess immune responses. 
After receiving a complete vaccination series, each animal was challenged with RSV A2 
(2 x 5.5 Log 10 pfu) on day 70 to assess efficacy against RSV infection. The challenge 
dose was administered both intranasally and intratracheally, resulting in a very stringent 
challenge, with virus entering both the nose and lung. Nasopharyngeal swabs were 
collected daily for 15 Days post challenge and lung lavage samples were collected on 
Days 3, 5, 7, 10 and 14 post challenge to test for viral replication. 

3.6.2 Primary Immune Cells 

Fresh peripheral blood was collected by the MGH Blood bank from healthy human 
volunteers. All volunteers gave signed consent and were over 18 years of age, and all 
samples were de-identified before use. The study was approved by the MGH 
Institutional Review Board. Human NK cells and Neutrophils were isolated from fresh 
peripheral blood and maintained at 37˚C, 5% CO2 in RPMI with 10% fetal bovine serum, 
L-glutamine, penicillin/streptomycin. 
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3.6.3 Cell lines 

THP-1 cells (ATCC), a monocytic leukemia cell line, were maintained in RPMI 
supplemented with 10% fetal bovine serum, L-glutamine, penicillin/streptomycin, 
HEPES, and beta-mercaptoethanol. THP-1 cells were grown at 37˚C, 5% CO2. 

3.6.4 RSV RT-qPCR of African-Green monkey nasopharyngeal samples. 

A Maxwell® 16 Viral Total Nucleic Acid Purification Kit (Promega) was used to extract 
RNA from 300uL of NP samples of African-Green Monkey on an automated extraction 
instrument called the Maxwell® 16 instrument (Promega). Samples were processed 
according to the kit’s manufacturer’s instructions.  The kit contains all the necessary 
reagent in a convenient prefilled cartridge format.  Briefly, the samples and lysis solution 
are mixed together and heated for 10 minutes. The lysates are added to the cartridge 
and loaded into the Maxwell® 16 instument. Purified RNA was then tested in the RSV 
Quantitative Reverse Transcriptase PCR assay. RSV RT-qPCR assays were perfomed 
using the Stratagene® Mx3005P instrument and Qiagen Quantitect® Probe RT-PCR kit.  
The assay was designed to allow for RSV strain typing and genome quantification by 
using the Nucleoprotein (N) gene as the target.  Primers were designed to the conserved 
region of the N gene and the probe for RSV A is the probe contained the fluorescent 
reporter dye 6-carboxyfluorescein (FAM) at the 5′-end and the fluorescent quencher dye 
6-carboxytetramethylrhodamin (TAMRA) at the 3′-end.  Standard curves for 
quantification were generated by designing primer pairs to the N gene of RSV_MRKp17.  
Each sample was tested in duplicate and carried out in the Stratagene® Mx3005P 
instrument.  The sensitivity of the assay is 10 copies. 

3.6.5 Plaque assay of African-Green monkey BAL samples  

Lung samples were determined via plaque assay on HEp-2 cells. Briefly, samples were 
series diluted and added in duplicate to 96-well plates as previously described156. Virus 
was incubated with samples for 1h at 37C in 5% CO2 incubator, then Hep2 cells was 
added into the virus/sample mixture and incubated for another hour. The plates were 
centrifuged at 300g x 10minutes. 1% methylcellulose was added into wells after 
centrifugation. Following 3 days incubation at 37 °C with 5% CO2, plaques were 
visualized by immunostaining using a cocktail of anti-F and anti-N antibodies (Merck, in 
house).  Primary antibodies were incubated with the fixed cells for 1 h before anti-mouse 
IgG Alex488 conjugated secondary antibodies (Invitrogen) were added. Viral plaques 
were then imaged and counted using an EnSight imager reader 2.02 (PerkinElmer). Virus 
titers were expressed as pfu/g of tissue. 

3.6.6 Quantification of antibody subclasses, isotypes, and Fc-receptor binding 

Antibody subclasses, isotypes, Fc-receptor (FcR) binding levels were measured in a  
customized multiplexed Luminex assay, as previously described157. The assay enabled 
the assessment relative antibody quantification against VRC04 (provided by Merck & 
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Co., Inc., Kenilworth, NJ, USA) the RSV pre-fusion F glycoprotein. Briefly, the was first 
covalently cross-linked to fluorescent carboxyl- modified microspheres (Luminex) via 
NHS-ester bonds with EDC and Sulfo-NHS (Thermo Scientific). Then the antigen 
complexed beads were washed and followed by subsequent blocking prior to the 
addition of plasma at dilutions (IgG1 - 1:500, FcRs - 1:1000, and 1:100 for all other 
readouts). Following an overnight incubation at 4Cs shaken at 700rpm, immune 
complexed microspheres were then washed using a Tecan automatic plate washer with 
0.1% BSA 0.02% Tween-20. Antigen-specific antibody quantification was detected with 
a PE-coupled antibody stains detection antibody for each respective subclass and 
isotype (Southern Biotech). Fc-receptors were quantified through fluorescently labeled 
with PE prior to the addition of the immune complexes (Duke Protein Production facility). 
Readouts were acquired using the iQue (Intellicyt) flow cytometry, and gating was 
preformed using the ForeCyt software. The gating strategy was first gating fluorescent 
bead regions and determining the median fluorescent intensity (MFI) of the PE channel 
and is the readout for antigen-specific antibody titers. 

IgA titers were determined against prefusion or postfusion F protein essentially 
as described in155. Ninety-six-well ELISA plates (NUNC) were coated with 2 μg/mL 
purified recombinant RSV F disulfide (DS) cavity-filling (Cav1) protein DS-Cav1 or 
purified recombinant postfusion RSV F protein as described in130 and158, respectively, 
and incubated at 4 °C overnight. The plates were then washed and blocked for 1 h at 
room temperature with 3% non-fat milk dissolved in PBS-T. Sera from AGM’s was 
serially diluted 4-fold in blocking buffer, transferred to the RSV F coated plates, and 
incubated for 2 h at room temperature. The plates were then washed three times with 
PBS-T. Following the plate wash, HRP conjugated goat anti-AGM IgA secondary 
antibody (Invitrogen), diluted at 1:3000 in blocking buffer, was added to the plates and 
incubated for an additional 1 h. Plates were washed again and developed with SuperBlu 
Turbo TMB (Virolabs). The reaction was stopped after 5 min and absorbance was read 
at 450 nm on a VersaMax ELISA microplate reader (Molecular Devices). Endpoint titers 
were defined as the reciprocal of the end point dilution at which the serum sample has 
an optical density (OD) signal greater than or equal to two (2×) times that of the 
background. 

3.6.7 Effector functional assays 

Three bead based functional assays were performed during the study including 
antibody-dependent cellular phagocytosis (ADCP), antibody-dependent neutrophil 
phagocytosis (ADNP) and antibody-dependent complement deposition (ADCD)159–162. 
Both phagocytosis assays were performed with yellow fluorescent neutravidin (Thermo 
Fisher) beads which were first conjugated to biotinylated antigen and followed then 
incubated with diluted plasma samples (1:100) at 37C for 2 hours which provides the 
formation of immune complexes. For ADCP THP-1s (ATCC), monocyte cell line, were 
incubated with immune complexes at 125,000 cells/mL at 37˚C for 16 hours. After the 



58 
 

incubation period, cells were fixed with fixed with 4% paraformaldehyde (Alfa Aesar). 
For ADNP, following the formation of immune complexes white blood cells from healthy 
donors were added at 125,000 cells/mL at incubated at 37˚C for one hour. White blood 
cells were isolated from ACD-treated whole blood through lysis of red blood cells by 
incubating whole blood for 5 min in ACK lysis buffer followed by multiple sequent 
washes with PBS. Afterwards, neutrophils were stained with an anti-CD66b Pacific blue 
antibody (Biolegend) and fixed with 4% paraformaldehyde (Alfa Aesar). For 
quantification of antibody-dependent deposition of C3, first red fluorescently 
neutravidin beads (Thermo Fisher) were coupled to the antigens and immune 
complexed were formed in the same process as for ADCP and ANDP. Then, lyophilized 
guinea pig complement (Cedarlane) was reconstituted according to manufacturer’s 
instructions and diluted 1:50 in gelatin veronal buffer with calcium and magnesium 
(GBV++) (Boston BioProducts). Afterwards, C3 was detected with an anti-C3 
fluorescein-conjugated goat IgG fraction detection antibody (Mpbio). 

In addition to the three bead-based assays described above, antibody-
dependent NK cell activity was measured through an ELISA-based assay, as previously 
described163. In short, plates were first coated with 3µg/mL of antigen followed by 
blocking overnight at 4˚C. the following day NK cells were isolated from healthy donors 
via RosetteSep (Stem Cell Technologies) and set overnight in 1 ng/mL of IL-15 
(Stemcell) at 150,000 cells/mL. The following day, diluted plasma samples (1:100) were 
added to the antigen-coated plates and incubated for 2h at 37˚C. Then, NK cells were 
stained with CD107a PE-Cy5 (BD), Golgi stop (BD) and Brefeldin A (BFA, Sigma Aldrich) 
at 250,000 cells/mL for 5h at 37˚C. Next, cells were fixed (Perm A, Life Tech) and 
stained for with anti-CD16 APC-Cy7 (BD), anti-CD56 PE-Cy7 (BD) and anti-CD3 PacBlue 
(BD). Following staining, cells were permeabilized using Perm B (Life Tech) and 
intracellularly stained with an anti-MIP-1β PE (BD).  

All effector function assays were acquired with the iQue (Intellicyt) flow 
cytometer. ADCP, was gated on singlets and bead-positive cells, and neutrophils on 
singlets, CD66b, and bead positive cells. A phagocytosis score was determined as the 
percent of bead-positive cells times the MFI of bead-positive cells divided by 10000. 
ADCD was determined as the MFI of C3 deposition, and NK cells were gated as CD3-, 
CD16+ and CD56+ and the percentage of cells positive for CD107a, MIP-1β, and IFNγ 
were reported. 

3.6.8 Neutralization  

Serum neutralization assays were conducted as described in164. Briefly, AGM sera were 
heat inactivated and serially diluted into a 96-well plate. The sera were combined with 
RSV (Long) at a final concentration of 100 pfu/well. HEp-2 cells were added to each well 
and the plates were incubated at 37 °C for 72 h. Cells were then washed and fixed with 
acetone. Each well was then incubated with a combination of two RSV anti-F mouse 
mAbs followed by biotinylated horse anti-mouse IgG antibody (Vector laboratories). The 
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signal was developed by adding a cocktail of IRDye 800CW Streptavidin (Li-Cor 
Biosciences, 1:1000 final dilution), Sapphire 700 (Li-Cor Biosciences, 1:1000 dilution) 
and 5 mM DRAQ5 solution (Biostatus Ltd, 1:10,000 dilution) in assay diluent. Plates 
were read on an Aerius® Automated Imaging System. Titers were calculated by four-
parameter curve fit using GraphPad Prism® 7 software. 

3.6.9 Quantification and statistical analysis 

All analyses were performed using python version 3.6.8. Raw data and custom code are 
available in Supplementary Information. Networks were visualized in Cytoscape. 

3.6.10 Principal component analysis and phase portraits 

Principal component analysis for a given period was performed by first scaling and 
centering all features and then decomposing data into two principal components. Scores 
were then visualized on both principal component one and two will reporting the 
variance explained by each component. The loadings plot was constructed using each 
feature’s weight on each component and was visualized as vectors corresponding to 
their weight in each dimension. The phase portraits were constructed by decomposing 
each time point separately to ensure sample independence. Prior to the principal 
component analysis (PCA) features were scaled and centered with respect to a given 
time point. Then using the first two principal components from each time point the paths 
for the sample were visualized. The mean path of a vaccine group was determined by 
averaging the vectors for each sample component-wise.  

3.6.11 Classification of compartment specific protection 

The classification models were trained to distinguish NHPs that were protected and 
unprotected at days three and five post challenge with a minimal set of features, to avoid 
overfitting. Protection was defined as viral loads below 20 pfu/mL. Only vaccinated 
NHPs were included, and PBS controls were subtracted from all features, and all data 
was scaled and centered. The models were constructed on the whole dataset using a 
partial least squares discriminant analysis (PLS-DA) classifier and recursive feature 
elimination based on feature variable of importance in projection (VIP), and a final model 
was chosen based on classification accuracy165,166. The performance and robustness of 
the final model was then assessed by contrasting a negative control null model built on 
permuted data, with multiple iterations of fivefold cross-validation used to generate 
classification accuracies. Models were generated 100 times, and the permuted control 
was generated in the same process as above shuffling labels randomly for each 
repetition. Predicted and true outcomes were then compared to determine accuracy. 
Performance was defined as the exact P values of the tail probabilities of the true 
distributions within the control distributions. Reported are the median p-values over the 
course of every repetition107. 
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3.6.12 Spearman correlation network 

The correlation network was constructed to visualize the additional humoral immune 
features that were significantly linked to the selected minimal biomarkers, to provide 
enhanced insights into the biological mechanisms by which antibodies may provide 
protection following infection. In brief, antibody features that were significantly 
correlated with a Holms-Bonferroni correction to the final selected PLS model selected-
features were defined as co-correlates. Significant spearman correlations above a 
threshold of |r| > 0.75 were visualized within the networks 
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3.7 Supplementary figures 

 
Figure 3-S1. Timepoint and compartment model performance 
The violin plots show the distributions of repeated classification accuracy tests for each time 
point and compartment model using the actual data and shuffled labels highlighting the 
performance of the model based on the final selected features of that model. The green squares 
indicate the median accuracies, and exact P values are defined as the tail probabilities of the 
true distributions within the control distributions. 
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4.1 Abstract 
As SARS-CoV-2 infections and death counts continue to rise, it remains unclear why 
some individuals recover from infection whereas others rapidly progress and die. While 
the immunological mechanisms that underlie different clinical trajectories remain poorly 
defined, pathogen-specific antibodies often point to immunological mechanisms of 
protection. Here, we profiled SARS-CoV-2–specific humoral responses on a cohort of 22 
hospitalized individuals. Despite inter-individual heterogeneity, distinct antibody 
signatures resolved individuals with different outcomes. While no differences in SARS-
CoV-2-specific IgG levels were observed, spike–specific humoral responses were 
enriched among convalescent individuals, whereas functional antibody responses to the 
nucleocapsid were elevated in deceased individuals. Furthermore, this enriched 
immunodominant S-specific antibody profile in convalescents was confirmed in a larger 
validation cohort. These results demonstrate that early antigen-specific and qualitative 
features of SARS-CoV-2-specific antibodies, point to differences in disease trajectory, 
highlighting the potential importance of functional antigen-specific humoral immunity 
to guide patient care and vaccine development.  

4.2 Introduction 
SARS-CoV-2 is the newest coronavirus to cross into the human population167,168. Millions 
of infections have been diagnosed (WHO); however, the number of asymptomatic 
carriers is likely to far exceed these numbers169. While the rapid spread of SARS-CoV-2, 
even during the asymptomatic phase of this infection, is alarming, more harrowing is our 
inability to predict disease trajectories among symptomatic individuals. In the absence 
of therapeutics and vaccines as countermeasures for this infection, there is an urgent 
need to begin to map the evolution of immunity to the pathogen to guide patient care 
and future immune interventions.  

Although both antibody responses and T cells have been linked to disease 
resolution170, and neutralizing antibodies have been demonstrated to block infection in 
small animal models171, little is known about the antibody features that are important 
for protection. Neutralizing antibodies develop in the majority of SARS- and MERS-
infected individuals172,173; however, the virus can mutate to overcome these antibody 
responses174,175. Passive immunization studies with both neutralizing and poorly 
neutralizing antibodies have shown protection in lethal MERS infection in 
mice176,177suggesting that both the neutralizing and extra-neutralizing functions of 
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antibodies may play a critical role in control and resolution of disease. Moreover, recent 
studies have found lower neutralization titers in younger individuals and higher 
neutralization among individuals with severe disease178,179, suggesting that antibodies 
may depend on additional mechanisms to clear the virus.  

Antibody dynamics during the acute window of infection have been linked to 
differential outcomes across infections, including HIV180, influenza181, and Ebola virus 
infection182. Specifically, the selection of specific antibody subclasses and functional 
profiles is heavily influenced by inflammatory cascades and may not only forecast 
disease outcomes but also point to antibody mechanisms of action vital in early 
pathogen control and clearance. However, whether identifiable antibody functional 
profiles across SARS-CoV-2 antigen-specificities evolve early following infection that 
track differentially with disease outcome is unknown. In this study, we assembled two 
cross-sectional sample sets of SARS-CoV-2-infected individuals at the time of hospital 
admission to begin to comprehensively profile the evolution of the early SARS-CoV-2 S-
specific response and to define antibody features that are predictive of disease 
outcome. Through this analysis, we found that deceased and convalescent individuals 
present different humoral profiles, with a more S-focused response in individuals who 
convalesced and a stronger N-specific response in individuals who succumbed to 
disease. 

4.3 Results 
4.3.1 Early SARS-CoV-2 antibody profiles in individuals that ultimately convalesce 
or pass away 

Across infectious diseases, pathogen-specific antibodies can serve as biomarkers of 
infection and aid in the early control and clearance of infection by blocking host-
pathogen interactions and/or recruiting innate immune functions183. In order to 
investigate whether early SARS-CoV-2-specific humoral immune responses differ 
across individuals that ultimately recover or die from infection, a cohort of 22 
hospitalized SARS-CoV-2-infected individuals, of whom 12 recovered and 10 died, was 
profiled. Samples were collected at hospital admission, all recruited within the first 20 
days following symptom onset (Table 1 and Figure S1) at the University of Washington, 
Seattle, one of the earlier epicenters in the US184. Population demographics largely 
resemble those previously reported185, including elevated numbers of elderly men in the 
subset that died.  

To profile the SARS-CoV-2-specific humoral immune response, we performed 
Systems Serology to determine the biophysical and functional characteristics of SARS-
CoV-2-specific antibodies that recognize the SARS-CoV-2 spike (S), the S-derived 
receptor binding domain (RBD), and the nucleocapsid (N). The titers of SARS-CoV-2-
specific isotypes and subclasses, the Fcγ-receptor binding profiles, neutralization, as 
well as antigen-specific innate effector functions were measured. Heterogeneous 
responses were observed across both populations (Figure 1A and Figure S2), and 
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convalescents did not appear to possess quantitatively superior immune responses that 
could explain their different later disease course. Univariate analyses further confirmed 
that no significant differences were observed in SARS-CoV-2-specific IgG1 or IgA1 titers 
across S, RBD, and N (Figure 1B-C, and Figure S2). Conversely, subtle distribution 
differences were observed for SARS-CoV-2-specific IgM responses, with a slight shift 
towards higher S-specific IgM among survivors, and a trend towards increased N-
specific IgM responses among individuals who died (Figure 1C). Functional antibody 
profiles displayed similar distributions across the cohorts for antibody dependent 
cellular phagocytosis (ADCP) (Figure 1D) and neutralization (Figure 1G). Surprisingly, 
RBD-specific antibody-mediated NK cell degranulation (NKD) and antibody dependent 
neutrophil phagocytosis (ADNP), both driven through related Fcg-receptors FcR3A and 
FcgR3B, respectively, trended towards increases among individuals who died (Figure 
1D-F). Antibody measurements were minimally influenced by time since symptom onset 
(Figure S1), suggesting equivalent evolution of humoral immune responses across 
groups. However, no single antibody feature could discriminate between the groups. 
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Table 4-1. Demographics of SARS-CoV-2 cohort from Seattle 
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Figure 4-1. Heterogeneity in antibody responses across SARS-CoV-2 antigens in 
individuals that recover or pass away 
22 plasma samples from SARS-CoV-2 infected individuals were profiled at the time of hospitalization 
against SARS-CoV-2 S, RBD and N antigens. (A) The heatmap shows the humoral immune responses 
across individuals that later passed away (deceased) or recovered (convalescent). The heat-map is split 
by SARS-CoV-2 S, RBD and N antigens. Rows correspond to individuals. Columns correspond to antibody 
features (background subtracted and z-scored) including neutralization, isotype, subclass, and antibody 
effector functions. High responses are shown in red and low responses are depicted in blue. (B-G) Violin 
plots show the distribution of each antibody feature split across convalescent (purple) and deceased 
(orange) individuals across antigens. The dashed gray line indicates the median value of each distribution. 
A two-sided Mann-Whitney U test was used to calculate uncorrected p- values, shown in the figure. No 
significance was detected after a Holm-Bonferroni correction for multiple hypothesis testing.  

4.3.2 Differences in antibody profile coordination between groups 

Beyond univariate differences, emerging data point to a critical role for humoral immune 
response coordination as a predictor of protection in some infections137,186. Given the 
polyclonal nature of the early humoral immune response, multiple functions or features 
may simultaneously contribute to differential control and clearance of infection. 
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Correlation matrices split by group were used to examine the relationships between 
antibody isotypes or subclasses and antibody-dependent effector functions across the 
groups (Figure 2A). Within both groups, isotypes and subclasses were highly correlated. 
Conversely, the relationship between isotype or subclass and functions differed across 
the two populations. Stronger correlations between titers and functions were observed 
in convalescent individuals (Figure 2A). Disparities were observed in both NK cell and 
neutralizing antibody coordination between the two groups. Though not significant, 
individuals who died exhibited correlated isotype or subclass responses with monocyte 
and neutrophil phagocytosis, but negative and generally poorer correlations of NK cell 
activating and complement recruiting antibody responses with all other functions 
(Figure 2A), suggesting that individuals who pass away develop a functionally biased 
humoral immune response. While IgG1 responses were associated with all functions 
across the individuals that later went on to die, diversified isotype and subclass 
responses were largely inversely correlated with antibody-dependent complement 
deposition (ADCD) and natural killer cell (NK) NK functions. This observation suggests 
that these individuals leverage isotype and subclass diversification in a manner that may 
preclude the full deployment of the humoral immune response. 

Conversely, convalescents overall displayed a more uniform correlation profile 
across subclass and isotype responses and antibody effector function. However, while 
neutralizing antibody responses were co-induced with isotype and subclass and effector 
functions among individuals who died, neutralizing antibody responses were largely 
inversely correlated to all antibody responses among individuals that went on to recover, 
suggesting a divergent evolution of the antigen-binding and constant domain of the 
antibody across these populations. These data highlight multiple early functional 
differences in SARS-CoV-2 specific humoral immunity between the groups. 

To further probe the overall humoral profile between groups, the mean percentile 
of each antibody metric was determined across SARS-CoV-2-antigen specificities for 
both populations (Figure 2B). The nightingale rose plots reveal that deceased individuals 
exhibited a more N-focused humoral immune response compared to the S-centric 
response elicited among convalescents. In particular, higher S-specific ADCD, ADNP,  
ADCP and enhanced IgG1, IgA1, and IgM responses were observed among survivors. In 
contrast, S-specific NK cell activating responses were enriched in deceased. 
Unexpectedly, RBD-specific responses were largely enriched among individuals that 
went on to pass away, with the exception of RBD-specific monocyte phagocytosis which 
was enriched among individuals that went on to survive.  These data point to both 
antigen-specific and antibody-effector differences early in infection that differ by clinical 
trajectory.  
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Figure 4-2. Deceased Individuals show less coordinated and N-directed antibody 
responses.  
(A) The correlation heatmap shows pairwise spearman correlation matrices of antigen-specific antibody 
titers and effector functions for convalescent (left) and deceased (right) patients. For each feature 
analyzed, the bar covers the S, RBD, and N antigens, shown in the legend on the right. Statistical 
significance is indicated by gray asterisks with Holm-Bonferroni correction for multiple hypothesis testing 
(p<0.001). Negative correlations are indicated in blue, and positive correlations are denoted in red. B: The 
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nightingale rose plots show the mean percentile of antibody features within the deceased (top) and 
convalescent (bottom) groups. Plots represent the S, RBD, and N-specific responses across in deceased 
(top) and convalescent (bottom) individuals. Each wedge represents a SARS-CoV-2 antibody feature. The 
size of the wedge depicts the magnitude of the value. The colors represent the type of feature: orange-
antibody functions and purple-antibody isotypes and subclasses. 

4.3.3 Defining signatures that differentiate disease trajectory 

Given the unique correlation and immunodominance profiles across the groups (Figure 
2A and B), we next aimed to define whether a minimal set of features could be identified 
that could segregate individuals with different clinical outcomes. To this end, feature 
down-selection was performed to avoid overfitting, followed by partial least squares 
discriminant analysis (PLSDA) to visualize differences (Lau et al., 2011). Despite the 
small numbers, separation was observed across the groups (Figure 3A). All antibody 
features as well as sex and interventions (Table 1) were included in the analysis, and as 
few as 5 features were sufficient to drive separation across the subjects (Figure 3A and 
B). S-specific IgM and IgA1 responses were enriched in survivors, whereas N-specific 
complement activity (ADCD), IgM, and IgA1 titers were enriched in individuals who died. 
These data likely relate to the immunodominant shift towards S in convalescent 
individuals and towards N in deceased individuals (Figure 2B). Model performance was 
evaluated using leave-one-out cross validation, to test that significance of the model 
using different sets of subjects and to test outlier effects. The model clearly 
outperformed (Cliff’s ∆) permuted and size-matched random controls (Figure 3C). 
Moreover, sensitivity analysis, evaluating model performance with the removal of 
individual outliers, highlighted the minimal impact of any given individual (Figure S3A).  
Furthermore, individual model features only possessed modest predictive power in 
resolving the groups, but collectively, combining all 5 features -in Latent Variable 1 
(LV1)- exhibited improved predictive accuracy (Figure 3D).  Confounding features, such 
as days since symptom onset, sex, age, and viral load were also over-layed on the PLSDA 
scores plot (Figure S3B-F), highlighting the limited capacity of any of these features to 
distinguish individuals into those who convalesced or died. Furthermore, at individual 
levels, these demographic factors were poorly predictive of disease outcome, 
underperforming classification compared to the LV1 classification model (Figure S3G). 
Thus, a minimal set of SARS-CoV-2 humoral profiles, rather than demographic 
information, appear to significantly resolve individuals who later went on to die from 
those who recover.  
 Given that the feature down-selection algorithm selects a minimal set of features 
to avoid overfitting, a co-correlates network was used to explore additional features that 
may distinguish these two groups (Figure 3F). A larger set of co-correlates can help 
provide mechanistic clues related to the immunologic mechanisms by which antibodies 
contribute to control and clearance of infection. Thus, a co-correlate network was built 
highlighting the relationship of model-selected features (large nodes) with additional 
highly correlated features (smaller nodes). Features enriched among individuals who 



71 
 

later died, included N-specific IgM and IgA2, that were linked to a large number of 
additional N- and RBD-specific poorly functional antibody features. For example, 
correlates of risk were linked to the induction of less-functional IgG subclasses, IgG2 
and IgG4, pointing to the early rise of dysregulated or less functional humoral immune 
responses as biomarkers or even drivers of ineffective control or clearance of infection. 
Conversely, S-specific IgM titers, enriched in convalescent individuals, were correlated 
with functional S-specific IgG3 responses, RBD-specific IgM, and S-specific monocyte 
and neutrophil phagocytosis. Moreover, S-specific IgA1 responses, also enriched among 
convalescents, were linked to RBD-specific complement activation (ADCD) and S-, RBD-
, N-specific FcγR2A binding, the Fcγ-receptor involved in phagocytosis. Given our 
emerging appreciation for the role of complement and phagocytosis in vaccine mediated 
protection against SARS-CoV-2 (Yasui et al., 2014), these data potentially argue for a 
similar role for these functions in natural protection against disease. Moreover, the data 
also highlight the potential importance of a less N-focused, but more functional S-
specific phagocytic response as an early correlate of recovery from infection.  

 
Figure 4-3. Select antibody features distinguish convalescent and deceased 
individuals  
(A) The PLSDA scores plot shows the degree of discrimination that was achievable across the groups 
following feature-down selection. Each dot represents an individual: convalescent (purple) and deceased 
(orange). Ellipses correspond to the 95% confidence intervals for each group. (B) The line graph shows 
the variable importance in projection (VIP) score of the selected features. As few as 5 features were 
required to separate the groups. The magnitude indicates the importance of the feature in driving 
separation in the model. The color of the feature corresponds to the group in which the feature is enriched. 
(C) The violin plots show the distributions of repeated classification accuracy tests using the actual data, 
shuffled labels, and randomly selected size-matched features illustrating the performance and 
robustness of the model. Green squares indicate the median accuracies. (D) The predictive power of the 
model built on the selected features is shown in the LV1 column. In addition, the predictive power of each 
individual selected feature is represented in grey. The predictive power is illustrated as the AUC of the 
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ROC curves for the model (LV1) or each feature alone. (E) The radar plot shows the z-scored univariate 
values of the selected features across both groups. (F) The correlation network illustrates the co-
correlated features (small nodes) that are significantly correlated with the Model-selected features (large 
nodes). Edge transparency corresponds to correlation strength. Antigens are indicated by different colors 
(S: teal, N: grey, and RBD: black). 

4.3.4 Validation of the skewed S-specific response in convalescents 

Collectively, the data point to a shift in immunodominance of spike versus nucleocapsid 
functional antibody responses. To test this hypothesis, we next compared the overall 
ratio of Spike(S):Nucleocapsid(N)-specific antibody isotype, subclasses, and functions 
across the groups (Figure 4A and Figure S4A). As expected, several antibody features 
were selectively biased towards S-immunity in the convalescents compared to 
individuals that later died, including IgM, ADCP, ADNP, and ADCD. Whether these effects 
were exclusive to this group of individuals from Seattle or could be generalized was next 
addressed in a second larger cohort of acutely infected individuals from Boston, of which 
20 individuals convalesced and 20 died. Similarly, to the Seattle cohort, Boston samples 
were profiled in the first 20 days following symptom onset (Table 2). Similar to the 
Seattle discovery cohort, though differences were observed in S- and N-specific immune 
responses at a univariate level none passed multiple hypothesis correction (Figure S4B). 
Yet, when S:N ratios were compared across features, convalescent individuals exhibited 
a bias towards elevated S-specific humoral immunity compared to N-specific immunity 
in contrast to individuals who went on to later pass away (Figure 4B and Figure S4C). 
Thus, to ultimately capture the extent of S:N skewing across the groups, the number of 
features that had greater S than N responses were summed across convalescents and 
deceased individuals and compared within each cohort (Figure 4A and B). In both 
cohorts, a significant enrichment of S:N immunity was observed in convalescents (Figure 
4C). Therefore, these findings suggest that a consistent overall shift in S:N immunity 
early in SARS-CoV-2 infection may have a protective role and aid in recovery from severe 
disease.  
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Figure 4-4. Converging shift in immunity across a second acute infection cohort 
The nightingale rose plots show the mean percentile of the Spike:Nucleocapsid (S:N) ratio of each read-
out are depicted for the (A) Seattle or Discovery cohort and the (B) Boston or Validation cohort for the 
convalescents (left) and the deceased (right). Titers are shown as pink wedges and functions as blue 
wedges. (C) The whisker box plots show the number of S-features which are greater than their N-
counterparts for all individuals in the Seattle or Discovery cohort (left) and the Boston or Validation cohort 
(right). Differences across the 2 groups were assessed using a one-sided Mann-Whitney U test. 

 

Table 4-2. Demographics of SARS-CoV-2 cohort from Boston 

4.4 Discussion  
Both cellular and humoral immune responses have been linked to protection against 
several coronaviruses187. Importantly, antibodies represent pathogen-specific markers 
of exposure, serve as powerful biomarkers of disease activity, and often point to 
immunological mechanisms of protection able to guide therapeutic or vaccine 
development183. By deeply profiling the SARS-CoV-2 humoral immune response early in 
infection, here, we defined a unique SARS-CoV-2-specific humoral signature associated 
with later disease outcomes. A combination of five SARS-CoV-2-specific antibody 
measurements were sufficient to distinguish individuals with different disease 
trajectories in a cohort from Seattle, including antibody measurements to S and N, with 
an overall enhanced S-centric response in individuals who recovered from infection. S-
specific phagocytic and complement activity were enriched early in individuals that 
recovered from infection. This signature was confirmed in a second, larger SARS-CoV-2 
infection cohort from Boston, where convalescent individuals exhibited a higher S:N 
ratio in their humoral immune response. These data point to early diverging humoral 
immune responses that may mark more effective immunity and suggest that functional 
antibodies directed against S might be beneficial for SARS-CoV-2 disease trajectory.  

In SARS-CoV-1 and SARS-CoV-2 infection, N is highly immunogenic, with N-
specific humoral immune responses arising concurrently with S-specific humoral 
immunity188–190. However, immunization of hamsters with a vector expressing N offered 
no protection against SARS-CoV-2 challenge despite a strong anti-N response, whereas 
immunization with the same vector expressing S protected hamsters against 
challenge191. It is estimated that 100 copies of S and 1000 copies of N are incorporated 
into each virion192, suggesting that 10-fold more N may be produced compared to S 
during infection to effectively generate viral progeny. Due to the high amounts of 
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nucleocapsid, N-directed responses may be indicative of higher disease burden and 
increased antigen exposure. However, the similarity in viral loads between the 
individuals who recovered and those who died does not support this hypothesis. Rather, 
the data point to compromised evolution of S-immunity in individuals that later pass 
away. The potential beneficial role of S-targeted immunity in viral control is reinforced 
in new studies in non-human primates (NHP), demonstrating elevated and robust 
functional humoral immune responses to S, rather than RBD and N, following primary 
infection that were associated with protection upon re-exposure to the virus193.  

It is well known that timing of sampling may influence humoral profiles, where 
sampling time could result in the comparison of immature versus mature immune 
responses. Despite the sampling differences in the group, comparable titers were 
observed across the convalescents and individuals that ultimately passed away. 
Moreover, similar overall functional profiles were also observed, suggesting that the 
humoral immune responses were comparable in magnitude across the two groups. 
Additional analysis of the influence of sampling time on the spread of the antibody 
profiles in the PLSDA highlighted a minimal influence of time from symptoms on overall 
antibody profile variation and the time of sampling exhibited a minimal predictive power 
in classifying individuals into convalescents or deceased. Yet, longitudinal analyses will 
be illuminating providing further information on the evolving humoral immune response 
that tracks with protection from infection.   

Emerging data point to higher mortality among the elderly and across the 
genders194. Along these lines, individuals who passed away were on average older than 
those who convalesced. Age can have a profound effect on immune function, and though 
this study was not suited to explore the relationship between age, outcome, and 
humoral responses, future larger studies across age groups could provide insights on 
the differential susceptibility among the elderly. However, the impact of age, sex, and 
viral loads illustrated a minimal influence of each of these variables on the overall 
variability of the humoral immune responses. Additionally, the individual predictive 
power of these demographic variables were lower than the predictive power of the 
model selected antibody features (LV1).   

While S-specific antibodies able to recruit NK cell activity were expanded in 
individuals that went on to pass away, pointing to a potentially negative influence of NK 
cells, coordination of NK and phagocytic activity was enriched among convalescents. 
These seemingly contradictory data point to the potential importance of synergy 
between innate immune effector functions. While NK cells have been implicated both in 
protection119,162,195 and pathology143, it is possible that the evolution of antibodies able to 
harness the cytotoxic power of NK cells to eliminate infected or phagocytic cells may 
play a critical role in elimination and clearance of the infection. Interestingly, this 
coordination was associated with the synergistic evolution of a broader isotype and 
subclass specific response among convalescents. However, whether additional changes 
in antibody-Fc-glycosylation also contribute to this unique functionalization of antibody 
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isotypes and subclasses, enabling coordination, remains unclear but could point to 
promising target immune profiles that may confer the greatest level of protection 
against the virus.  

4.5 Limitations of study 
There are a number of limitations in this study. First, because these samples were 
collected early during the COVID-19 pandemic in the US, the Seattle study included a 
small number of participants, and the groups were not age or sex matched. Confounding 
factors such as timing of sampling, sex and age are all known to influence SARS-CoV-2 
infection and disease trajectory. While antibody profiles clearly segregated individuals 
that survived compared to that did not survive, more limited variation in antibody 
profiles were observed across age, sex, viral load and days from symptom onset. 
However, among the co-morbidities, age was the second major driver of variation in 
antibody profiles, pointing a potentially critical role for age-associated defects in Fc-
variation that may contribute to altered antiviral immunity to SARS-CoV-2 and beyond. 
The larger validation cohort from Boston identified a similar humoral signature that 
discriminated survivors from non-survivors, highlighting the conserved nature of this 
immunological signature, independent of demographic characteristics. Whereas this 
study only attempted to understand the humoral disparities between convalescent and 
deceased individuals in a cohort of severly infected individuals, further studies may 
attempt to define humoral profiles able to further classify individuals aross the clinical 
trajectory spectrum ranging from asymptomatic to severe disease.   

Collectively, the data presented here argue for the evolution of distinct antigen-
specific and functional humoral immune responses early in SARS-CoV-2 disease. While 
further analysis on longitudinal cohorts may provide further mechanistic insights on the 
specific role of antibodies in control and clearance of infection, here we validated an 
early functional humoral immune signature that appears to predict disease progression 
across two distinct cohorts. Linked to emerging animal model experiments, the 
correlates defined here may provide key mechanistic insights to guide therapeutic and 
vaccine design efforts. 
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4.6 Methods 
4.6.1 Sample set 

Plasma samples from 22 SARS-CoV-2 patients from Seattle were profiled for anti-SARS-
CoV-2 antibody responses (Table 1). Patients who tested positive for SARS-CoV-2 by 
real-time reverse-transcriptase–polymerase-chain-reaction (RT-PCR) of a 
nasopharyngeal swab were enrolled in the study upon hospital admission, and samples 
after admission were included in this study (Figure S1). All enrolled participants gave 
written, informed consent. The enrolled hospitalized 22 individuals were monitored over 
the course of their stay, and final outcomes were reported. 12 individuals convalesced 
and were healthy enough to be discharged, whereas 10 individuals died. Demographic 
information including age, race, and interventions are summarized across the two 
groups (Table 1 and Data S1).  

As a validation cohort, a cohort of 40 individuals from MGH in Boston were 
enrolled, all participants tested positive for SARS-CoV-2 by RT-PCR and they were 
monitored over their hospital stay. Samples at time of hospitalization were included in 
this study. Outcomes were reported as deceased or discharged. Demographics and 
clinical data for the validation cohort are summarized in Table 2.  

All experimental data was performed in two technical and two biological (for 
primary cell assays) replicates and the average value was used throughout the study. 
This study was approved by the University of Washington Human Subjects Division 
Institutional Review Board. 

4.6.2 Primary immune cells 

Primary immune cells were isolated from fresh peripheral blood from healthy human 
volunteers collected by the MGH Blood bank or the Ragon institute. The study was 
approved by the MGH Institutional Review Board. All subjects were over 18 years of age 
and provided informed consent. All samples were completely de-identified prior to use. 
Human NK cells and neutrophils isolated from fresh peripheral blood were cultured in 
RPMI supplemented with 10% fetal bovine serum, L-glutamine, penicillin/streptomycin 
and maintained at 37˚C, 5% CO2. 

4.6.3 Cell lines 

THP-1 cells (ATCC) were grown at 37˚C, 5% CO2 in RPMI supplemented with 10% fetal 
bovine serum, L-glutamine, penicillin/streptomycin and 0.01% b-mercaptoethanol. 

4.6.4 Luminex 

Antigen-specific antibody subclass, isotype, sialic acid, galactose and Fcγ-receptor 
(FcγR) binding levels were assessed using a 384-well based customized multiplexed 
Luminex assay, as previously described196. Relative antibody concentration was 
measured against a panel of SARS-CoV-2 antigens (Data S1). SARS-CoV-2 RBD (kindly 
provided by Aaron Schmidt), SARS-CoV-2 nucleocapsid (N) protein (Aalto Bio Reagents), 
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and SARS-CoV-2 spike protein (S) (kindly provided by Bing Chen) were used to profile 
the SARS-CoV-2-specific humoral immune response. Briefly, antigens were coupled by 
covalent NHS-ester linkages via EDC and NHS (Thermo Scientific) to fluorescent 
carboxyl- modified microspheres (Luminex). Antigen-coupled microspheres were then 
washed with an automated plate washer (Tecan) and incubated with plasma samples at 
an appropriate sample dilution (1:500 for IgG1 and all Fcγ- receptors, and 1:100 for all 
other readouts). Detection of antigen-specific antibody titers occurred using a PE-
coupled detection antibody for each subclass and isotype (IgG, IgG1, IgG2, IgG3, IgG4, 
IgA1 and IgM, Southern Biotech), and Fc-receptors were fluorescently labeled with PE 
before addition to immune complexes (FcγR2A, 2B, 3A, Duke Protein Production 
facility). For detection of sialic acid and galactose, fluorescein-labeled plant-based 
lectin detects, SNA and RCA (Vectorlabs) were added as detection reagents at a 1:100 
(SNA) and 1:500 dilution (RCA). Plasma samples were acquired via flow cytometry, 
using an iQue (Intellicyt) and S-Lab robot (PAA). Analysis was done using ForeCyt 
software by gating on fluorescent bead regions and PE median fluorescent intensity 
(MFI) is reported as readout for antigen-specific antibody titers. 

4.6.5 Functional profiling 

For the functional analysis of plasma samples, bead-based assays were used to quantify 
antibody-dependent cellular phagocytosis (ADCP), antibody-dependent neutrophil 
phagocytosis (ADNP) and antibody-dependent complement deposition (ADCD), as 
previously described 160(Data S1). Fluorescent streptavidin beads (Thermo Fisher) were 
coupled to biotinylated antigen SARS-CoV-2 RBD, N and S and incubated with diluted 
plasma (ADCP and ADNP 1:100, ADCD 1:10). For ADCP, THP-1 cells were added to the 
immune complexes and incubated for 16h at 37˚C. For ADNP, primary neutrophils were 
isolated via negative selection (Stemcell) from whole blood. After 1h incubation at 37C, 
neutrophils were stained with an anti-CD66b PacBlue detection antibody (Biolegend). 
For the ADCD assay, lyophilized guinea pig complement (Cedarlane) was resuspended 
according to manufacturer’s instructions and diluted in gelatin veronal buffer with 
calcium and magnesium (Boston BioProducts). Post incubation, C3 was detected with 
Fluorescein-Conjugated Goat IgG Fraction to Guinea Pig Complement C3 (Mpbio). 

For detection of antibody-dependent NK cell activity, an ELISA-based approach 
was used, as described197. Briefly, plates were coated with 2 μg/mL of antigen (as 
mentioned above) and samples were added at a 1:50 dilution and incubated for 2h at 
37˚C. NK cells were isolated the day prior via RosetteSep (Stem Cell Technologies) from 
healthy buffy coats and rested overnight in 1 ng/ml IL-15 (Stemcell). NK cells were 
incubated with immune complexes for 5h at 37˚C with a staining cocktail containing 
CD107a PE-Cy5 (BD), Golgi stop (BD) and Brefeldin A (BFA, Sigma Aldrich). Post NK cell 
incubation, cells were fixed (Perm A, Life Tech) and stained for surface markers with 
anti-CD16 APC-Cy7 (BD), anti-CD56 PE-Cy7 (BD) and anti-CD3 PacBlue (BD) while 
fixing. Post permeabilization with Perm B (Life Tech) and anti-MIP-1β PE (BD) antibodies 
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were used for intracellular staining. All assays were acquired via flow cytometry with an 
iQue (Intellicyt) and an S-Lab robot (PAA). For ADCP, events were gated on bead-
positive cells, whereas neutrophils were defined as CD66b positive followed by gating 
on bead-positive neutrophils. A phagocytosis score was calculated for ADCP and ADNP 
as (percentage of bead-positive cells) x (MFI of bead-positive cells) divided by 10000. 
ADCD was reported as MFI of C3 deposition. NK cells were defined as CD3-, CD16+ and 
CD56+. Data were reported as percentage of cells positive for CD107a or MIP-1β. 

4.6.6 Pseudovirus neutralization antibody assay 

The 2019-nCoV pseudoviruses expressing a luciferase reporter gene were generated as 
described previously (Data S1)198. Briefly, the packaging construct psPAX2 (Cat# 11348, 
AIDS Reagent), luciferase reporter plasmid pLenti-CMV Puro-Luc (Cat# 17447, 
Addgene) and Spike protein expressing pcDNA3.1-SARS CoV-2.SΔCT were co-
transfected into HEK293T cells at ratio of 1:1:0.5 by Calcium phosphate transfection 
method. The supernatants containing the pseudotype viruses were collected 48 hours 
post-transfection and filtered by 0.45-µm filter. The viruses were stored at -80°C freezer 
till use. To determine the neutralization activity of the antisera from vaccinated animals, 
HEK293T cells were firstly transfected with pcDNA3.1(-)-hACE2 (Cat# 1786, Addgene). 
12 hours post transfection; the HEK293T/hACE2 cells were seeded at 96-well tissue 
culture plate at density of 2.00E+04 cells/well overnight. Heat (56°C, 30 min) 
inactivated antisera were twofold serial diluted and mixed with 50µl of pseudoviruses. 
The mixture was incubated at 37°C incubator for 1 hour before adding into 
HEK293T/hACE2 cells in 96-well plates. Six hours after infection, the cell culture 
medium was replenished with fresh DMEM (supplemented with 2% FBS). Forty-eight 
hours after infection, cells were lysed in Steady-Glo Luciferase Assay (Promega). A 
standard quantity of cell lysate was used in a luciferase assay with luciferase assay 
reagent (Promega) according to the manufacturer’s protocol. 

4.6.7 Quantification and statistical analysis 

All analyses were performed using python version 3.6.8 with statistical and machine 
learning packages199. Networks were visualized in Cytoscape. Raw data are available in 
supplementary information. 

4.6.8 Classification of convalescent and deceased groups 

The classification models were trained to distinguish convalescent and deceased groups 
with a minimal set of features, to avoid overfitting. PBS controls was subtracted from all 
features, Fc array features were log transformed, and all data was scaled and centered. 
Antibody features including sex and interventions (Table 1) were included the selection 
process, and covariates were binarized and scaled and center prior to analysis.  

The models were built using a backward feature elimination for selection and 
then classified using the minimal set of features which maximize accuracy165,166. Models 
were trained and tested in a fivefold cross-validation framework using random stratified 
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sampling to ensure that both groups are represented in each group. Within each fold, 
samples were further subdivided into four sets for each iterative fold-specific 
elimination. A partial least squares discriminant analysis (PLS) classifier was then 
trained using the fold-specific selected features to predict the test set. Multiple 
iterations of fold specific feature selections were performed to obtain a single model. 
This process was repeated over twenty replicates and convergent correlates were 
observed137.  

Performance and robustness of the model was contrasted with negative control 
models constructed from permuted data and randomly selected size-matched features, 
with multiple iterations of fivefold cross-validation used to generate classification 
accuracies. These control models were generated 100 times. The permuted control was 
generated in the same process as above shuffling labels randomly for each repetition. 
Size-matched features were chosen at random for each cross-validation step within 
each repetition. Predicted and true outcomes were compared to determine accuracy. 
Robustness was defined as the effect size of the distributions (Cliff’s ∆), and the exact P 
values of the tail probabilities of the true distributions within the control distributions. 
Reported are the median p-values across twenty independent cross-validation 
replicates107. 

4.6.9 Correlation networks 

Correlation networks were constructed to visualize the additional humoral immune 
features that were significantly linked to the selected minimal biomarkers, to provide 
enhanced insights into the biological mechanisms by which antibodies may provide 
protection following infection. In brief, antibody features that were significantly 
correlated with a Holms-Bonferroni correction to the final selected PLS model selected-
features were defined as co-correlates. Significant spearman correlations above a 
threshold of |r| > 0.5 were visualized within the networks. 

4.6.10 Sensitivity analysis 

Using the selected features from the original model a new PLSDA model was trained 
excluding a single outlier at a time in a fivefold cross validation framework. This process 
was repeated three times, each time generating a unique ROC curve as the top 3 
individual outliers were removed. Using these cross validated ROC curves the mean 
performance and variation were assessed and are summarized as area under curve.  

4.6.11 Ratio based analyses 

In order to evaluate S vs N ratios, first ratios for each feature were defined separately by 
simply dividing S-responses over N-responses for every given feature. S:N ratios were 
visualized by log2 transformation for ease of interpretation. Differences across 
convalescents and deceased were then tested with a one-sided Mann-Whitney U test 
and a Holm-Bonferroni multiple hypothesis correction criterion. In order to address 
whether the overall S-response was enriched over N-responses in the convalescents 
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across all features tested, all data was background corrected and z-score normalized. 
Then the number of S-features which were greater than their N-counterparts across 
every feature were summed. This analysis yielded a distribution of individual S greater 
than N scores for each group and statistical differences were assessed using a one-sided 
Mann-Whitney U test.  
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4.7 Supplementary figures 

 
Figure 4-S1. Individual antibody dynamics over time, related to Figure 4-1 
The dot plots show the relationship of antibody titers against IgG1, IgA1, and IgM and the 
estimated time of collection from onset of symptoms across SARS-CoV-2 antigens. 
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Figure 4-S2 Individual antibody distributions, related to Figure 4-1 
The split violin plots show the distribution of subclass, isotype, and Fc-receptor binding profiles 
across convalescent (purple) and deceased (orange) individuals. A Mann-Whitney U test was 
used to calculate p values. No significance was detected after a Holm-Bonferroni correction for 
multiple hypothesis testing. 
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Figure 4-S3. Sensitivity analysis, model performance, and potential influence of 
confounders, related to Figure 3. 
(A) Using the selected features from the original model, outliers were removed one at a time and 
ROC curves based on scores generated multiple times in a 5-fold cross validation framework 
were generated. In orange is the average performance and the grey shading represents one 
standard deviation. The gray dashed line represents the threshold of a random process. The AUC 
of the ROC curves and uncertainties are listed at the bottom of each graph. (FPR: false positive 
rate, TPR: true positive rate). (B) The original PLSDA scores plot is plotted based on the final 
antibody feature selection. (C) The same scores plot was recolored to highlight the distribution 
of the individuals based on days of symptom onset. The size and intensity of the dots from bright 
green to dark blue correspond to shorter- to-longer times, and x markers represent samples for 
which information was not available. (D) The same original scores plot was colored to reflect 
differences in ages across the subjects, with increased dots size and color (light blue to dark 
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gray) showing increasing age. (E) The original scores plot was recolored to show the influence of 
sex on distributions, with males shown as dark squares and females as light gray triangles. (F) 
The original scores plot was recolored to show viral loads, with larger dots and increasing 
darkness (green to black) highlighting higher viral loads. (G) The bar graph shows the predictive 
power (as ROC AUC) of the original model latent variable 1 (LV1) compared to the univariate 
predictive power of individual demographic confounders, including sex, time to collection, age, 
and viral loads. 

 
Figure 4-S4. Univariate Spike:Nucleocapsid ratios across the Seattle/Discovery and 
Boston/Validation cohorts, related to Figure 4. 
The whisker plots show the log2 ratio of Spike to Nucleocapsid (S:N) in the (A) Seattle/Discovery 
cohort for IgG1, IgA1, IgM, antibody dependent cellular phagocytosis (ADCP), antibody 
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dependent neutrophil phagocytosis (ADNP), antibody dependent complement deposition 
(ADCD), and antibody dependent NK cell activation (ADNKA) by degranulation (CD107a) and 
chemokine secretion (MIP1b) (from left to right). (B) The violin plots highlight the distributions 
of antibody features captured in the Boston/Validation cohort of IgG1, IgA1, IgM titers, ADCD 
from left to right on the top line; as well as ADCP, ADNP, and ADNKA by degranulation CD107a 
or MIP1b, from left to right on the bottom row. Responses are shown for Spike (S) and 
Nucleocapsid (N) for each read out for the convalescents (blue) and the deceased (yellow). The 
dashed line represents the median of the distribution. (C) The whisker plots show the log2 ratio 
of Spike to Nucleocapsid (S:N) in the Boston/Validation cohort with the same features as in (A). 
For both A and C the hatched line represents the point where ratios are enriched in S over N and 
differences were tested with a one-sided Mann-Whitney U test. 
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5.1 Abstract 
The urgent need for an effective SARS-CoV-2 vaccine has forced development to 
progress in the absence of well-defined correlates of immunity. While neutralization has 
been linked to protection against other pathogens, whether neutralization alone will be 
sufficient to drive protection against SARS-CoV-2 in the broader population remains 
unclear. Therefore, to fully define protective humoral immunity we dissected the early 
evolution of the humoral response in 193 hospitalized individuals ranging from 
moderate-to severe. Although robust IgM and IgA responses evolved in both survivors 
and non-survivors with severe disease, non-survivors showed attenuated IgG 
responses, accompanied by compromised Fcɣ-receptor binding and Fc-effector activity, 
pointing to deficient humoral development rather than disease-enhancing humoral 
immunity. In contrast, individuals with moderate disease exhibited delayed responses 
that ultimately matured. These data highlight distinct humoral trajectories associated 
with resolution of SARS-CoV-2 infection and the need for early functional humoral 
immunity. 

5.2 Introduction 
The majority of individuals infected with SARS-CoV-2 develop mild symptoms, however 
a small but significant proportion of the population develop more severe disease, a 
fraction of which pass away200. The rapid spread of infection and unpredictable evolution 
of disease severity in some infected individuals has overwhelmed hospitals. While a 
number of comorbidities have been linked to mortality201,202, emerging data suggest that 
inflammatory markers and cellular activation track with severity of disease203,204 pointing 
to a generalized activation of the immune response with progressive infection. 
Moreover, antibody levels and neutralizing antibody activity increase with the rapid 
expansion of plasmablast populations in the setting of more severe disease 203, raising 
the possibility that the humoral immune response may contribute to pathology rather 
than protection205. However, recent data from vaccine studies point to protective effects 
of antibodies against SARS-CoV-2 infection and disease193. It is still unclear whether 
qualitatively distinct antibodies evolve in individuals who survive severe infection or 
whether antibody functions track with differential disease severity. Understanding how 
antibody functions, beyond neutralization, evolve during infection and contribute to 
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recovery rather than pathology may provide key insights for vaccine and therapeutic 
design to avoid detrimental enhancement and provide highly effective humoral defense. 

The acute humoral immune response to SARS-CoV-2 is marked by the rapid 
evolution of multi-isotype specific humoral immunity206, likely involved in the highly 
compartmentalized antiviral response within the respiratory tract. However, whether 
specific antibody functional profiles explain the variation seen in viral control remains 
unclear. Thus, here we comprehensively profiled the humoral immune response to 
SARS-CoV-2 over the first three weeks following symptom onset in depth and used 
complementary modelling approaches to define whether distinct humoral immune 
responses evolve among individuals with different degrees of disease severity. A total 
of 193 hospitalized individuals were included in the study, stratified by disease severity 
and outcome into three groups: inpatients with moderate infection that recovered, 
inpatients with severe infection that recovered, and inpatients whose underlying cause 
of death was COVID-19. Humoral maturation was observed across all three groups, with 
more rapid and robust evolution in individuals that survived severe infection, with an 
early and vigorous functional response to S2, just days after symptom onset. Despite 
comparable evolution of IgM and IgA responses among survivors and non-survivors with 
severe disease, non-survivors failed to fully deploy a highly functional IgG response able 
to coordinate Fc-receptor binding and elicit innate immune effector function. While 
neutralizing antibody activity did not differ across the groups, no signatures of antibody 
enhancement were noted among individuals with severe infection. Conversely, delayed 
evolution of functional humoral immunity was also observed in individuals with 
moderate disease, albeit the IgG response continued to evolve overtime. Thus, the data 
point to the potential importance of early and continued evolution of IgG-recruiting Fc-
effector function in antiviral control and clearance beyond host defense. 

5.3 Results 
5.3.1 Distinct weekly evolution of antibody features 

The humoral immune response to SARS-CoV-2 evolves rapidly following infection in 
individuals with symptomatic infection, evolving weeks after symptom onset206. 
Significant heterogeneity in the magnitude of the humoral immune response has been 
observed across individuals who have survived infection207. While neutralizing 
antibodies have been linked to protection following vaccination in non-human primates 
(NHP)118,208, antibodies may contribute to antiviral control and clearance through various 
additional mechanisms, via their capacity to interact and leverage the anti-pathogen 
functions of the innate immune system209,210. Preliminary data point to early differences 
in the immunodominance of the humoral immune response among individuals with 
different clinical outcomes211. However, whether distinct antibody profiles develop over 
time in individuals with different clinical trajectories remains unclear but could point to 
immune mechanisms of convalescence. Thus, here we profiled the humoral immune 
response across three hospitalized cohorts: a group of 82 individuals who did not require 
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admission to the intensive care unit (ICU) and were eventually discharged with 
moderate disease, a group of 76 individuals who required ICU care but survived severe 
disease, and group of 35 individuals with severe disease that died due to COVID-19 
regardless of type of care (Figure 5-1A and Table 5-S1). Individuals were sampled 1-8 
times during the first month of infection. These data collectively provided a population 
level temporal landscape that could be used to define differences in the trajectories of 
antibody features across disease outcomes (Data 5-S1).  

A week after onset of symptoms, similar SARS-CoV-2 antigen specific IgM and 
IgA titers were observed in all three groups with slightly higher IgA1 S-specific titers in 
severe disease survivors. (Figure 5-1B and Figure 5-S1A). Similarly, no significant 
difference was observed in IgG3, the first highly functional IgG subclass selected during 
acute immune responses 212. However, the anti-spike (S) IgG1 titers differed 
significantly between severe and moderate disease and were lower in individuals that 
died from severe infection. By the second week, significantly higher titers of nearly all 
the S-specific antibody isotypes and subclasses (Figure 5-1B), and higher titers across 
all antigens (Figure 5-S1A), were observed in survivors of severe disease compared to 
those with moderate disease and those who died. Slower S-specific IgG1 development 
was noted in both those who died and in individuals with moderate disease. By the third 
week, IgA and IgM were nearly equivalent across all groups (Figure 5-1B and Figure 5-
S1A). However, individuals with severe and moderate disease generated higher IgG 
subclass titers compared to the deceased group by the third week, pointing to a 
convergence of IgG immunity across survivors but a delayed and incomplete evolution 
among non-survivors. Thus, despite the early robust evolution of IgA and IgM responses 
among non-survivors, these data argue for a potential selective defect in IgG 
development associated with COVID-19 mortality. 

5.3.2 Compromised Fc-receptor binding and effector function tracks with COVID-19 
mortality 

Given the differences in IgG class-switching, we next examined the functional 
consequences of this defective class-switched response. Specifically, the ability of 
SARS-CoV-2-specific antibodies to bind to the low-affinity IgG-Fcɣ-receptors (FcɣRs) 
and the IgA-Fc-α-receptor (FcαR), critical for deploying antibody effector function210, 
was assessed. Binding was assessed to the FcαR and the low affinity IgG FcɣR, the 
activating FcɣR2A and FcɣR3A receptors, the sole human inhibitory receptor FcɣR2B, 
and the GPI anchored FcɣR3B receptor210,213. FcɣR binding profiles mirrored changes in 
IgG1 and IgG3 titers, with early development of S-specific FcɣR2B and S1- and S2-
specific FcɣR2B and FcɣR3B binding antibodies in individuals with severe SARS-CoV-2 
infection that survived (Figure 5-1C and Figure 5-S1A). These differences were amplified 
over time, with FcɣR3A and FcαR binding antibodies reaching relatively similar levels 
across groups, but overall lower Fc-receptor (FcR) binding antibodies in individuals with 
moderate disease and non-survivors. 
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Differences in FcR binding results in changes in signaling cascades and distinct 
antibody-mediated innate immune effector functions210. Therefore, we next probed the 
consequences of the changes in antibody titer and FcR binding on innate immune 
effector functions and neutralization (Figure 5-1D). Low but detectable antibody effector 
functions were observed in all three groups one week following symptoms, with rapid 
initial development of functional humoral immunity among survivors with severe 
infection. Notably, by the second week of infection, S-specific antibody dependent 
neutrophils phagocytosis (ADNP), complement fixation (ADCD), and neutralization were 
similar among the severe survivors and non-survivors, but were higher than the levels 
observed in individuals with moderate disease (Figure 5-1D). Conversely, monocyte 
phagocytosis (ADCP), NK cell activating (ADNKA) S-specific antibodies, measured by 
MIP-1b secretion, and RBD specific functions, were significantly lower in non-survivors 
compared to survivors of severe infection but were similar in non-survivors and survivors 
with moderate disease. In particular, RBD-specific monocyte phagocytic antibodies and 
complement fixing antibodies remained lower in non-survivors through week three 
(Figure 5-S1A). Changes in Fc-glycosylation directly influence FcɣR binding and effector 
function214, Interestingly, by the second week following symptom onset, broad FcɣR 
binding associations were observed in survivors of severe disease (Figure S1B) that were 
lost in individuals who ultimately succumbed to infection, pointing to potential shifts in 
Fc-glycosylation across groups, in the setting of continually evolving IgG titers. Thus, 
two potential temporal shifts in Fc glycosylation may exist during SARS-CoV-2 infection, 
the first poised to recruit and clear the virus, and a second for clearing infected cells. 
These data collectively point to a disconnect in the evolution of antibody titer and 
function, with a slower and milder evolution of antibody effector functions among 
individuals with moderate infection, a rapid and highly functional humoral immune 
evolution in individuals with severe disease, and a defect in the evolution of particular 
IgG functions in individuals that ultimately pass away. 
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Figure 5-1. Weekly evolution of SARS-CoV-2 specific humoral immune responses 
following symptom onset across different clinical courses 
193 plasma samples from hospitalized SARS-CoV-2 infected individuals were profiled against the SARS-
CoV-2 spike antigen (S). A: Of the patients 82 were not admitted to the ICU and were eventually 
discharged (moderate), 76 required ICU care but did not succumb to infection (severe), and 35 died of 
COVID-19 (deceased). Patients were sampled from 1-8 times during their hospital stay. np denotes the 
number of patients in a group, and nt denotes the total number of samples collected across all individuals. 
Distributions of titers (B), Fc-receptors (C), and functions (D-G) across moderate (blue), severe (yellow), 
and deceased (red) over the course of 0-7, 8-14, and greater than 14 days against S. The solid white line 
represents the median and the dotted lines the first and third quartiles. A Kruskal-Wallis test was used to 
evaluate statistical differences across groups for all intervals and features and was corrected for multiple 
hypothesis testing using the Benjamini-Hochberg procedure. If statistically significant then a two-sided 
Mann-Whitney U test was performed for post-hoc comparisons. Significance corresponds to the Mann-
Whitney U test p-values (*: p < 5e-2, **: p < 5e-3, ***: p < 5e-4, ****: p < 5e-5, *****: p < 5e-6). Antibody 
dependent cellular phagocytosis (ADCP), antibody dependent neutrophil phagocytosis (ADNP), antibody 
dependent complement deposition (ADCD), antibody dependent Natural killer cell activation (ADNKA). 
See also Figure S1, Table S1, and Data S1. 

5.3.3 Developmental differences in humoral architecture 

To further investigate whether specific types of antibody properties or antigen 
specificities differed across individuals that survived or did not survive severe SARS-
CoV-2 infection, polar plots were generated to examine potential patterns in humoral 
features at one, two-, and three-weeks post symptom onset (Figure 5-2). As early as the 
first week post symptoms, enhanced humoral immunity was observed in severely ill 
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patients that survived infection (Figure 5-2). While responses holistically increased in 
both groups, the rise was more uniform and robust among survivors compared to non-
survivors. Although there were similar IgA and IgM responses across the two groups, 
there was an overall trend towards lower IgG3, Fc-receptor binding, and Fc functions in 
the non-survivors which were observable by the second week post symptoms but were 
amplified by week three, similar to what was observed in the univariate analysis (Figure 
5-1). In particular, survivors evolved overall higher phagocytic responses. To probe the 
global differences in the humoral immune response across the groups, non-parametric 
combinations of univariate differences for each feature class further revealed 
significantly higher overall development of Fc-receptor binding as early as week one and 
Fc-functional responses by week three in the severely ill recovered individuals 
compared to those who died (Figure 5-2). Ultimately, the majority of antibody features 
were stunted in those who died with no evidence of disease enhancing humoral 
responses linked to mortality. These data highlight more significant qualitative defects 
in the humoral immune response that track with COVID-19 mortality. 
 

 
Figure 5-2. Weekly evolution of humoral architecture  
The polar plots depict the mean percentile of each antibody feature at each interval across the severe 
(top) and the deceased (bottom) groups. The major slices 1-6 cover antigen specific isotypes/subclasses, 
7-11 antigen-specific antibody Fc-receptor binding, and 12-16 antigen-specific antibody mediated 
functions. For segments 1-11 antigen specificities repeat in the following order: S, RBD, N, S1 trimer, S1, 
and S2. For segments 12-16 antigen specificities are repeated S, RBD, and N. The size of the wedge 
depicts the mean percentile ranging from 0-1. On the right, non-parametric combination global p-values 
are shown, composed of Mann Whitney U test p-values for partial tests within each feature type, and using 
the Fisher method for combination (*: p < 0.05). 
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5.3.4 Longitudinal variation across clinical groups 

Given the significant differences across the groups over time, we next aimed to gain 
enhanced temporal granularity related to the nature of the humoral defect in humoral 
immunity. Whereas the Uniform Manifold Approximation and Projection (UMAP), which 
represents high-dimensional data reduced to two-dimensional space, showed limited 
SARS-CoV-2 humoral immune variation by age and sex (Figure 5-3A-B, Figure 5-S2), but 
variation was observed with respect to time following symptom onset (Figure 5-3C). 
Temporal changes in individual humoral features across the groups highlighted distinct 
humoral trajectories across the patient groups and across antigens and isotypes (Figure 
5-3D). When analyzed by days following symptom onset, rather than weekly intervals 
(Figure 5-1 and Figure 5-2), delays in the rise of IgG, IgA, FcɣR2A, and antibody 
functions in non-survivors emerged (Figure 5-3D). All three isotypes appeared to decline 
more rapidly among the deceased compared to the survivors. Furthermore, no 
difference was noted in neutralizing antibody evolution between these groups (Figure 5-
3D). Thus, temporal analysis revealed both delayed and incomplete evolution of the 
humoral immune response among non-survivors of SARS-CoV-2 infection.  
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Figure 5-3. Temporal evolution of SARS-CoV-2-specific antibody features  
(A-C) Uniform Manifold Approximation and Projection (UMAP) was used to visualize the multivariate data 
in two dimensions. Each point represents a given individual at a single timepoint and colors indicate age 
(A), sex (B), and group (C). (D) Normalized antibody levels are shown over time, plotted by days after 
symptom onset, for the severe and deceased group. Each dot is an individual measurement, the lines 
show smoothed non-parametric regression models (loess), and the color indicates the antigen-specificity. 
See also Data S1, and Figure S2. 

5.3.5 Dissecting specific temporal differences in early humoral dynamics  

To determine the antibody features that differed most across survivors and non-
survivors, Akaike Information Criterion (AIC) was used to identify the individual humoral 
characteristics that showed the greatest variation between the severe and deceased 
groups, based on quantitative kinetics occurring over the first 17 days following 
symptom onset (Figure 5-4A). Among the top 5 features, S2-, S- and S1 trimer-specific 
FcɣR binding were highly divergent across the groups, followed by additional RBD- and 
S1-specific FcɣR binding and S-specific complement depositing antibody activity 
(ADCD) (Figure 5-4A). Antibody titers showed less pronounced differences between the 
groups, highlighting stronger differences in quality, rather than quantity, of antibody 
evolution during the first 17 days following symptom onset. 

To gain a deeper sense of how the features differed over time, curves were fitted 
for each feature and evaluated based on 4 parameters: 1) “a”=initial levels, 2) “b”=initial 
seroconversion speed, 3) “c”=seroconversion time, and 4) “d”= endpoint levels (Figure 
5-4B). Analyzing the features that were the most divergent across the groups (Figure 5-
4A), S2-specific FcɣR3B and S-specific FcɣR2B binding levels differed not only at the 
time of symptom onset (parameter a), but also seroconverted more rapidly (c) over the 
first few days following symptom onset in the individuals who survived severe SARS-
CoV-2 infection (Figure 5-4C and Figure 5-S3). Conversely, S2-specific FcɣR2B and 
FcRɣ2A binding were initially higher in survivors compared to non-survivors but reached 
similar levels in both groups. Further FcR binding antibodies and S-specific ADCD all 
showed a similar difference in time to seroconversion across the two groups, 
highlighting the delayed kinetics of this evolution in individuals that did not survive 
infection. Thus, these data highlight the different temporal changes across the antibody 
features, pointing to distinct functional consequences in antiviral immunity following 
infection.  

In order to understand generalizable differences in the temporal evolution of the 
humoral immune response, a composite visual was constructed that summarized kinetic 
differences in each parameter (a, b, c, d) across each feature and the two group. Early 
elevated broad IgG1 levels, S1- and S2-specific IgG3, S-specific FcɣR2B, S- and S2-
specific FcɣR3A, S2-specific FcɣR3B were noted, with a notable immunodominance of 
S2-specific immunity among survivors at the time of symptom onset (parameter a) 
(Figure 5-4D). A consistent, but more abrupt initial conversion speed (parameter b) was 
observed in the individuals that ultimately passed away across multiple subclasses, 
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isotypes, FcR binding profiles, and functions, potentially related to their lower early 
levels. Non-survivors also converted later (parameter c) than survivors across nearly all 
FcR binding antibodies, with a delay in RBD- and S2-specific FcɣR2B and FcɣR3B 
binding antibodies. Final overall magnitudes (parameter d) pointed towards higher 
levels among survivors. Importantly, no single feature was enhanced early or later in 
individuals who ultimately passed away, further underscoring that no antibody feature 
pointed to evidence of disease enhancement in this population.  

As mentioned above, in comparison to other targets on S, S2-specific responses 
were already expanded days after symptom onset in severe survivors (Figure 5-4C-D 
and Figure 5-S3). Given the emerging appreciation for the more conserved nature of S2 
across coronaviruses215, the early rise in S2-specific FcR binding antibodies may reflect 
an early evolution of cross-reactive immunity that may be key to disease control. 
Conversely, no differences were observed in common-coronavirus RBD-specific 
humoral immune responses at early timepoints across the groups, suggesting that the 
ability to evolve S2-specific cross-reactive immunity, rather than the level of pre-
existing immunity to less cross-reactive RBDs, associated with neutralization (Amanat 
et al., 2020), may play a more critical role in disease recovery (Figure 5-S4). These data 
point to both higher initial and overall levels of IgG and FcR binding antibodies among 
survivors, especially against the S2 domain. In contrast, non-survivors showed lower 
initial responses that attempted to converge but largely failed to do so. 

Finally, to determine the individual antibody features that differed most across 
the two groups, data were integrated, and an enrichment score was calculated for each 
antibody Fc-readout (Figure 5-4E), each antigen-specificity (Figure 5-4F), or groups of 
Fc-features (Figure 5-4G), to define the humoral changes that were most elevated within 
one group or another. While limited differences were noted in IgG2, IgA, and IgM 
responses across the two groups, IgG1, IgG3, FcR binding and functional responses 
differed most across survivors and non-survivors. These differences were observed 
similarly across all tested SARS-CoV-2 antigens (Figure 5-4F). Moreover, when all 
feature “types” were collapsed, no enrichment was observed for titers, but FcR binding, 
and Fc-effector functions were able to resolve individuals across clinical trajectories 
(Figure 5-4G). These data highlight that cross-antigen differences in antibody effector 
function, rather than titer, are most divergent between survivors and non-survivors of 
SARS-CoV-2 infection.  

To illustrate whether survivors with severe disease and those who died could be 
distinguished within the first week following symptom onset, a random forest selection 
model was constructed. The model recursively chose a minimal set of features that best 
distinguished the two groups in a cross-validation framework, resulting in the generation 
of a model able to robustly classify individuals. The model was able to classify survivors 
or non-survivors with 72% accuracy (Figure 5-4H-I). Many of the top features selected 
by the model were higher in survivors, including S-specific functions, FcRs, and IgG3. 
One feature, N-specific FcɑR, was higher in non-survivors, in line with previous 
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observations related to early immunodominance shifts between S- and N- across 
individuals that ultimately survive or pass away211. Thus, early cross-antigen specific 
antibodies able to drive rapid control and clearance of the virus represent early 
biomarkers that resolve disease trajectory and provide insights into humoral functions, 
and dysfunctions, that may be key to early antiviral containment. 
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Figure 5-4 Dissecting temporal differences across groups. 
(A) The bar plot depicts the ΔAIC of the model without differences between the groups, where the higher 
the height represents the features that explain trajectory differences best between the groups. The bars 
are colored according to antigen-specificity, and the vertical line (ΔAIC = 10) indicates the commonly used 
threshold for rejecting models. (B) Four-parameter logistic growth curves were employed to dissect the 
specific temporal difference across the groups for each feature. The curves were built by y(t) = d + (a-
d)/(1 + (t/c)^b), with y(t) describing the temporal evolution of the antibody levels based on the days after 
symptom. Differences were then split by:  a= defining differences in initial levels, b= the seroconversion 
speed, c= the seroconversion time and d= the asymptotic end levels. The influence of the parameters on 
the shape of the curve is shown for varying parameter values indicated by the color. (C) The top 10 
different features that differed most between the groups are shown. Dots indicate individual patients, 
diamonds indicate the binned median, the lines indicate the fitted curves corresponding to the optimal 
model and the color indicates the group. The specific parameters which differed for the displayed model 
are indicated in the left corner. The dots and lines are color-coded according to the group. (D) The heatmap 
shows the Akaike weight averaged parameter differences between the groups. Each row represents a 
parameter (a, b, c, d) and is normalized across the features, and the color intensity depicts how different 
the parameter is across the groups, and the color indicates in which group the parameter is higher. Along 
the x-axis, individual specificities (S, RBD, N, S1 trimer, S1, and S2) are organized in the same repeating 
order across each Fc-variable that was acquired (subclasses, isotypes, FcR binding, and functions). (E-G) 
Normalized enrichment scores (a metric of how different the feature is across the two groups) are shown 
for individual features collapsed by antigen (E), individual antigens (F), and feature “type” (G). The darker 
the color the more differentially that feature is expressed across the 2 groups. (H) Receiver operating 
characteristic (ROC) curve shows the model performance in a cross-validation framework. In light blue 
are the ROC curves for each replicate and the orange is the mean ROC curve showing overall performance. 
Mean AUC is reported using the mean ROC curve. Classification accuracy was compared to permutated 
data and significance was assessed using exact p-values of the tail probabilities (*: p<0.05).  TPR: True 
positive rate, FPR: False positive rate. (I) Features most often selected during the classification process 
in yellow are shown and ranked based on the magnitude of the enrichment across severe and deceased 
individuals. See also Figure S3 and Figure S4.  

5.3.6 Antibody profiles evolve more slowly with moderate disease, but mimic 
survivor profiles  

The evolution of early FcR binding and activity in severely infected individuals appeared 
to emerge as a key correlate of convalescence. However, whether similar antibody 
profiles developed in individuals with moderate infection, remained unclear. Antibody 
profiles were therefore compared across individuals with moderate and severe infection 
who survived. Despite the delayed rise in SARS-CoV-2 antibody levels early in infection 
(Figure 5-1B and Figure 5-S1) individuals with moderate infection evolved equivalent 
IgA and IgM levels by the third week following symptoms (Figure 5-1B, Figure 5-5A, and 
Figure 5-S1). IgG, FcR-binding, and antibody effector functions evolved slowly and 
remained lower in individuals with moderate disease compared to those with severe 
disease but continued to develop (Figure 5-5A). Similarly, trajectory analysis 
demonstrated delayed subclass and isotype titers, FcR binding, and functional 
responses in individuals with moderate infection (Figure 5-5B). As early as two weeks 
following symptoms, individuals with a moderate disease trajectory could be resolved 
from individuals with severe disease based largely on functional antibody features that 
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were all elevated in individuals with severe disease (Figure 5-5C-D). These data point to 
similar biophysical, albeit delayed, SARS-CoV-2 antibody profiles among moderately 
infected individuals that may not require further functional evolution due to early and 
effective control of the virus.  

 

 
Figure 5-5. Humoral differences between moderate and severe disease  
(A) The polar plots depict the mean percentile of each antibody feature at each interval across the 
moderate (top) and the severely (bottom) infected individuals. The major slices 1-6 cover antigen specific 
isotypes and subclasses, 7-11 antigen-specific antibody Fc-receptor binding, and 12-16 antigen-specific 



99 
 

antibody mediated functions. For segments 1-11 antigen specificities repeat in the following order: S, 
RBD, N, S1 trimer, S1, and S2. For segments 12-16 antigen specificities are repeated S, RBD, and N. The 
size of the wedge depicts the mean percentile ranging from 0-1. On the right, non-parametric combination 
global p-values are shown, composed of Mann Whitney U test p-values for partial tests within each feature 
type, and using the Fisher method for combination (*: p < 0.05). (B) Normalized antibody levels are shown 
over time, by days after symptom onset for the moderate and severe groups. Each dot is an individual 
measurement, the lines show smoothed non-parametric regression models (loess) and the color indicates 
the antigen-specificity. (C) The receiver operating characteristic (ROC) curve shows the model 
performance in a cross-validation framework. In light blue are the ROC curves for each replicate and the 
orange represents the mean ROC curve showing overall performance. Mean AUC is reported using the 
mean ROC curve. Classification accuracy was compared to permutated data and significance was 
assessed using exact p-values of the tail probabilities (*: p<0.05). TPR: True positive rate, FPR: False 
positive rate. (D) Features most often selected during the classification process. In yellow are features 
enriched in the individuals with severe infection, and in blue enriched in the moderates.  

5.4 Discussion  
In the absence of correlates of immunity, vaccine development efforts have been 
focused on maximizing antibody titers and neutralization, which have been linked to 
protection against other pathogens216–218. However, once SARS-CoV-2 infection evolves 
beyond the upper-respiratory tract, dissemination within the lower-respiratory tract, 
and even across organs, may require more complex immune responses to fully contain 
and eradicate the infection. Along these lines, emerging vaccine correlates of immunity 
point to a critical role for both neutralization and Fc-effector functions in protection from 
infection118. Specifically, S- and RBD-specific complement and phagocytosis have been 
linked to viral control in the bronchoalveolar fluid118. These data suggest that a potential 
synergy is required between the antibody antigen-binding domain (Fab) and constant 
domain (Fc) functions in immunity against SARS-CoV-2, where neutralization provides a 
first line of defense, and Fc-effector functions may provide a second line of defense 
deeper within the respiratory tract. However, whether the same mechanisms are utilized 
during natural viral clearance or whether spontaneous resolution of infection may be 
associated with different antibody mechanisms remains to be determined.  
  Unlike other viral infections, IgM and IgA arise nearly simultaneously in SARS-
CoV-2 infection, likely due to the highly compartmentalized nature of this infection. 
While individuals with moderate infection exhibited lower levels of these isotypes, the 
similar levels of IgA and IgM among individuals who survived or did not survive severe 
infection suggest similar early pathogen burden within the groups. However, while the 
individuals who survived severe infection successfully class switched to IgG antibodies, 
with high affinity FcR binding capacities, individuals who did not survive showed less 
robust switching and exhibited a delayed evolution of high affinity FcR binding 
antibodies and Fc-effector function. This suggests an acute systemic developmental 
defect in the humoral immune response associated with COVID-19 mortality. Moreover, 
individuals with moderate disease also exhibited delayed humoral immune evolution, 
pointing to either non-humoral mechanisms of humoral immune control in moderate 
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disease or an exposure to less virus, requiring less aggressive immunity for containment 
and clearance. Furthermore, given the striking perturbations in cellular immunity 
reported during infection203, future studies including autologous antibodies and cellular 
effectors from infected patients could provide enhanced insights into mechanisms of 
protection or pathology.  

Given the staged evolution of antibody isotypes and the time required for affinity 
maturation, distinct antibody effector functions likely contribute to restriction of 
infection at different times during infection. Dissecting the trajectory of the humoral 
immune profiles with respect to time following symptoms and comparing the evolution 
of humoral features across groups could point to distinct time-specific mechanisms of 
immunity against SARS-CoV-2. For example, S2-specific FcR binding differed among the 
groups very early in infection, with S2-specific FcɣR2B separating the groups from the 
first day of symptom onset. Given our emerging appreciation for S2 conservation across 
coronaviruses, it is plausible that the rapid evolution of S2-specific responses, drawn 
from pre-existing cross-reactive immunity to other coronaviruses may help facilitate 
initial viral control219. Conversely, S1 trimer-, S-, and RBD-specific humoral immune 
profiles split between the groups during the second week of infection, highlighting a 
delayed response to these specificities. Collated, kinetic differences highlighted the 
unique early and late enrichment of IgG and FcR binding in individuals who survived 
compared to those who did not, pointing to a critical need for a very early class-switch 
and maintenance of IgG and FcR binding antibodies for recovery. However, why the 
deceased class switched to IgA, but not to IgG, early in disease remains unclear. 
Emerging data point to the aberrant induction of germinal centers among individuals 
with severe infection220. Due to the compartmentalized mucosal nature of the infection, 
and the ability of T-cell independent IgA-class switching to occur at mucosal sites, it is 
plausible that equivalent early IgA switching may occur across all severely ill 
individuals221, but a lack of sufficient germinal center support may result in poor IgG 
switching in those who ultimately pass away. T-help is critical for class switching, and 
T-helper selection biases have been noted with age222, diabetes223, and higher body-
mass index224, comorbidities associated with more severe SARS-CoV-2 disease. 
Additionally, lymphopenia, cytokine dysregulation, and other tissue architectural 
pathological manifestations may all alter germinal center activity, contributing to this 
early incomplete class switching. Therefore, future studies considering the dysregulated 
cellular states observed in the COVID-19 patients, as well as the collaboration of 
antibodies with cellular immunity, may reveal additional mechanisms critically 
important for protection.  

Antibody responses clearly accrue with more severe disease, raising discussions 
about a potential pathological role for humoral immunity in disease severity205. However, 
here we did not observe any evidence of higher antibody levels or functions in individuals 
who ultimately passed away, providing limited evidence of antibody enhancement. It is 
critical to note that beyond their immunological activities, antibodies also represent 
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critical biomarkers of the intensity of antigen-exposure. For instance, antibody levels 
typically increase with antigen-burden in Tuberculosis225, human immunodeficiency 
virus180, and malaria infection226 but do not contribute to enhanced disease in these 
settings. Thus, distinguishing the quantitative changes that simply track with pathogen 
burden from the qualitative changes in antibodies that drive immunity or pathology may 
be key to unlocking the mechanistic changes that lead to effective immunity. 

Neutralization did not differ across the groups in early infection but instead 
developed with severity of disease. Whereas emerging vaccine studies point to 
neutralization as a key correlate of immunity227, after establishment of infection, 
neutralization may play less of a role in controlling the pathogen. Instead, Fc-effector 
functions are likely critical for the recognition of infected cells and clearance of new 
virus. In the context of vaccination, then, neutralization and Fc-effector function are 
likely to be key collaborative correlates, required to provide first and second line defense 
in antiviral control, as has been recently observed in vaccinated NHP228. However, given 
that only a small proportion NHPs develop severe disease, like their human 
counterparts, assessing the impact of these vaccines on attenuating severe disease 
remains difficult outside of very large primate studies. Nonetheless, harmonizing human 
pathogenesis studies with NHP vaccine studies offers a unique opportunity to uncover 
the key correlates of immunity to guide vaccine development.  

While no influence was observed in antibody profiles across therapeutic 
interventions or co-morbid conditions, these data argue for independent influences of 
lung-disease associated pathophysiological changes in collaboration with SARS-CoV-2-
specific antibody profiles in shaping disease outcome. However, collectively, the work 
here argues for the evolution of a robust, protective functional humoral immunity among 
individuals who develop severe infection that is perturbed soon after infection among 
non-survivors. Defining early biomarkers that identify individuals on a deleterious 
clinical trajectory may provide early opportunities to triage individuals to better and 
more intense care. Alternatively, these data also highlight the importance of accessing 
the full range of humoral immune functions to fully provide protection from SARS-CoV-
2 infection and disease.  

5.5 Limitations of study 
There are several limitations in this study. First, given that patients are admitted and 
discharged at different stages during their disease trajectories, identical temporal 
sampling was not possible across all samples. However, given the large number of 
samples, temporal trajectories were constructed across clinical groups. Moreover, 
complementary modelling approaches were used to ensure that the trajectories were 
representative of the patient class and that conserved signatures of protection were 
identified across the groups. Additionally, antibody mediated functional assays were 
performed with cells from healthy donors, rather than autologous cells from the infected 
patients. However recent findings suggest that COVID-19 patients, especially those with 
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severe disease, exhibit unique cellular deficiencies and perturbated cellular states203. 
Therefore, future studies investigating the composite effects of humoral functional 
immunity linked to altered cell states observed in COVID-19 patients, may reveal 
additional mechanisms critically important for mechanistically understanding 
protection. Lastly, peripheral antibodies were analyzed in this study. However, localized 
production of antibodies may result in the production of localized antibodies with 
distinct functional properties that may drive unique protective or pathological functions. 
Thus, future studies focused on compartment specific antibody functional profiles may 
also provide enhanced resolution on protective or pathological functions of antibodies 
at the site of viral infection and replication.   

Collectively, the data presented here argue for a role for functional humoral 
immunity in the resolution of severe SARS-CoV-2 infection. Although, additional cohorts 
may provide future mechanistic insights into the specific signals that result in the 
generation of these protective humoral immune responses, these data point to specific 
antibody functions that may be of high value in vaccine or therapeutic design. 

5.6 Methods 
5.6.1 Sample cohort 

Plasma samples from 193 subjects infected with SARS-CoV-2, from Massachusetts 
General Hospital (MGH), were included in this study. Individuals were tested for SARS-
CoV-2 by real-time reverse-transcriptase–polymerase-chain-reaction (RT-PCR) using 
nasopharyngeal swabs. Subjects that tested positive were enrolled in the study upon 
hospital admission, and samples at admission were included in this study (Figure 5-1A 
and Table 5-S1). Patients were admitted to the hospital due to moderate to severe 
symptoms of COVID-19 and were followed over multiple timepoints (ranging from 1-8 
timepoints per individual). Disease outcome was classified as either discharged or 
deceased. Severity of disease was classified by admission to the intensive care unit 
(ICU). All enrolled participants gave written, informed consent. Demographic 
information including age, and whether patients were immunosuppressed are 
summarized across the groups (Table 5-S1). Plasma samples from 32 hospitalized 
individuals which tested negative by RT-PCR were used as negative controls throughout 
the study. All experimental data was captured in two technical replicates and the 
average value was reported for all assays. This study was approved by the MGH Human 
Subjects Institutional Review Board. 

5.6.2 Primary immune cells 

Fresh peripheral blood was collected by the MGH Blood bank from healthy human 
volunteers. All volunteers gave signed consent and were over 18 years of age, and all 
samples were de-identified before use. The study was approved by the MGH 
Institutional Review Board. Human NK cells were isolated from fresh peripheral blood 
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and maintained at 37˚C, 5% CO2 in RPMI with 10% fetal bovine serum, L-glutamine, 
penicillin/streptomycin.  

5.6.3 Cell lines 

HL-60 cells (ATCC), a promyelocytic leukemia cell line, were grown in IMDM 
supplemented with 20% fetal bovine serum and penicillin/streptomycin at 37°C, 5% 
CO2. For neutrophil differentiation, the media was supplemented with 1.25% DMSO for 
THP-1 cells (ATCC), a monocytic leukemia cell line, was maintained in RPMI 
supplemented with 10% fetal bovine serum, L-glutamine, penicillin/streptomycin, 
HEPES, and beta-mercaptoethanol. THP-1 cells were grown at 37˚C, 5% CO2. 

5.6.4 Luminex 

Antigen-specific antibody subclass/isotype and Fc-receptor (FcR) binding levels were 
measured using a 384-well based customized multiplexed Luminex assay, as previously 
described157. This high-throughput assay allows for the assessment of relative antibody 
concentration against SARS-CoV-2 RBD, HKU1 RBD, NL63 RBD (all kindly provided by 
Aaron Schmidt, Ragon Institute), SARS-CoV-2 nucleocapsid (N) protein (Aalto Bio 
Reagents), and SARS-CoV-2 spike protein (S) (kindly provided by Eric Fischer, Dana 
Farber) as well as S1 (Sino Biological, 40591-V08B1) , S1 trimer (provided by Bing 
Chen), S2 (Sino Biological, 40590-V08B), and a mix of HA A/Michigan/45/2015 (H1N1), 
HA A/Singapore/INFIMH-16-0019/2016 (H3N2), B/Phuket/3073/2013 (Immunetech). 
In brief, antigens were covalently bound to fluorescent carboxyl- modified microspheres 
(Luminex) by NHS-ester linkages using EDC and Sulfo-NHS (Thermo Scientific). Antigen-
coupled beads were then washed and blocked before adding plasma samples at an 
appropriate sample dilution (1:500 for IgG1, 1:1000 for all Fc- receptors, and 1:100 for 
all other isotype/subclass readouts). After an overnight incubation at 4oC while shaking 
at 700rpm, immune complexed microspheres were washed using an automated plate 
washer (Tecan) with 0.1% BSA 0.02% Tween-20. Antigen-specific antibody titers were 
detected using a PE-coupled detection antibody for each subclass and isotype (IgG1, 
IgG2, IgG3, IgA1 and IgM, Southern Biotech), and Fc-receptors were fluorescently 
labeled with PE before addition to immune complexes (FcR-2A, -2B, -3A, -3B, Duke 
Protein Production facility). Plasma samples were acquired via flow cytometry, using an 
iQue (Intellicyt) and S-Lab robot (PAA). Analysis was done using ForeCyt software by 
gating on fluorescent bead regions and PE median fluorescent intensity (MFI) was 
reported as readout for antigen-specific antibody titers. 

5.6.5 Effector functional assays 

Bead-based assays were used to quantify antibody-dependent cellular phagocytosis 
(ADCP), antibody-dependent neutrophil phagocytosis (ADNP) and antibody-dependent 
complement deposition (ADCD) in the MGH SARS-CoV-2 cohort, as previously 
described159,229,162,160,161. Yellow (ADNP and ADCP) as well as red (ADCD) fluorescent 
neutravidin beads (Thermo Fisher) were coupled to biotinylated SARS-CoV-2 RBD, N 



104 
 

and S antigens and incubated with diluted plasma (ADCP and ADNP 1:100, ADCD 1:10) 
to allow immune complex formation for 2h at 37˚C. To assess the ability of sample 
antibodies to induce monocyte phagocytosis, THP-1s (ATCC) were added to the immune 
complexes at 1.25E5cells/ml and incubated for 16h at 37˚C. For ADNP, HL-60 cells 
were differentiated into CD11-expressing neutrophils with media including 1.25% 
DMSO for 5 days as described previously (Worley et al., 2018b), cells were maintained 
below 1E6 cells/ml. On day 5, 5E5 cells/ml were added per well to immune complexed 
yellow beads and incubated for 16h at 37˚C. Afterwards, neutrophils were stained with 
an anti-CD11 BV605 detection antibody (Biolegend) and fixed with 4% 
paraformaldehyde (Alfa Aesar). In order to measure antibody-dependent deposition of 
C3, lyophilized guinea pig complement (Cedarlane) was reconstituted according to 
manufacturer’s instructions and diluted in gelatin veronal buffer with calcium and 
magnesium (GBV++) (Boston BioProducts). Subsequently, C3 was detected with an 
anti-C3 fluorescein-conjugated goat IgG fraction detection antibody (Mpbio). 

Antibody-dependent NK cell activity was measured via an ELISA-based assay, as 
described previously 163. Briefly, plates were coated with 3µg/mL of antigen (SARS-CoV-
2 RBD, N and S) and blocked overnight at 4˚C. NK cells were isolated the day prior via 
RosetteSep (Stem Cell Technologies) from healthy buffy coats (MGH blood donor 
center) and rested overnight in 1 ng/ml IL-15 at 1.5E5 cells/ml (Stemcell). The next day, 
diluted plasma samples were added to the antigen-coated plates (1:50 dilution) and 
incubated for 2h at 37˚C. NK cells were mixed with a staining cocktail containing 
CD107a PE-Cy5 (BD), Golgi stop (BD) and Brefeldin A (BFA, Sigma Aldrich) and 2.5E5 
cells/ml were added per well and incubated for 5h at 37˚C. Following, cells were fixed 
(Perm A, Life Tech) and stained for surface markers with anti-CD16 APC-Cy7 (BD), anti-
CD56 PE-Cy7 (BD) and anti-CD3 PacBlue (BD). Subsequently, cells were permeabilized 
using Perm B (Life Tech) and intracellularly stained with an anti-MIP-1β PE (BD) 
antibody.  

All assays were acquired via flow cytometry with iQue (Intellicyt) and an S-Lab 
robot (PAA). For ADCP, events were gated on singlets and bead-positive cells, whereas 
neutrophils were defined as CD11 positive events followed by gating on bead-positive 
neutrophils. A phagocytosis score was calculated for ADCP and ADNP as (percentage of 
bead-positive cells) x (MFI of bead-positive cells) divided by 10000. ADCD was reported 
as median of C3 deposition. NK cells were defined as CD3-, CD16+ and CD56+. Data 
were reported as the percentage of cells positive for CD107a and MIP-1β. 

5.6.6 Neutralization 

Neutralization was determined using a SARS-CoV-2 pseudovirus expressing a luciferase 
reporter gene, as described previously198. To generate the pseudovirus, the packaging 
construct psPAX2 (Cat# 11348, AIDS Reagent), luciferase reporter plasmid pLenti-CMV 
Puro-Luc (Cat# 17447, Addgene) and Spike protein expressing pcDNA3.1-SARS CoV-
2.SΔCT were transfected in HEK293T cells by the calcium phosphate method at a ratio 
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of 1:1:0.5. Supernatants were collected and filtered with a 0.45-µm filter 48 hours post-
transfection. For the neutralization assay, HEK293Ts were transfected with pcDNA3.1(-
)-hACE2 (Cat# 1786, Addgene). The hACE2-expressing HEK293T cells were plated in 
96-well plates 12 hours after transfection at a density of 20,000 cells/well and rested 
overnight. Serum was heat inactivated by incubation at 56°C for 30 minutes. Heat 
inactivated serum was twofold serially diluted, mixed with 50uL of pseudovirus, and 
incubated at 37°C incubator for 1 hour. After incubation, the serum/pseudovirus mixed 
was added to the HEK293T/hACE2 cells. Six hours after infection, cell medium was 
replenished. Cells were lysed in Steady-Glo Luciferase Assay (Promega) 48 hours after 
infection. A luciferase assay was performed with luciferase assay reagent (Promega) 
according to the manufacturer’s protocol. NT50 was defined as the concentration of 
serum required to achieve half maximal neutralization. 

5.6.7 Quantification and statistical analysis 

All analyses were performed using python version 3.6.8, and R version 3.6.1. Raw data 
and custom code are available in Supplementary Information. 

5.6.8 Polar plots 

Polar plots summarize the mean percentile of clinical groups across day ranges from 
symptom onset. First, percentile rank scores were determined for each feature across 
all time ranges. Samples which were sampled multiple times within an interval were 
represented by the mean value, and mean percentiles were determined using samples 
corresponding to intervals and clinical groups.  

5.6.9 Non-parametric combination 

Global statistical differences of feature types between groups were assessed using non-
parametric combination230,231. Briefly, for each feature class (i.e. IgG) partial tests 
consisting of p-values determined by Mann-Whitney U tests were performed for each 
sub feature (i.e. IgG1 RBD, IgG1 N, etc.), then p-values were combined using the Fisher 
method. Next, the data was permutated a thousand times, preserving the permutated 
structure for partial tests, and was used to construct a null distribution of global 
statistics. Finally, the true global statistic was directly compared the null distribution 
and the global p-value was determined.        

5.6.10 Batch effect evaluation 

To evaluate batch effects by confounders including age, sex, body-mass-index (BMI), 
well plate and past pulmonary disease, UMAP232 based methods were used to reduce 
the high-dimensional serological data into a two-dimensional space for qualitative 
evaluation, and then quantified by the degree of local neighborhood diversity using local 
inverse Simpson’s Index (LISI)233 (Figure 5-S2A). First, titers and FcR features were 
log10 transformed. Then, using the first 40 principle components (PCs) that explain 
more than 95% of the variance, variation was extracted by principal component analysis 
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(PCA) 234 using the ‘prcomp’ function in R package ‘stats’. Next, the principal 
components were mapped into a two-dimensional space through the UMAP technique 
implemented using the R package ‘umap’ with fine-tuned parameters (neighbor = 30, 
min. dist = 0.1). Finally, the LISI score was calculated using the R package 
‘immunogenomics/LISI’. The score ranged from one to the number of categories and 
was used to evaluate the degree of mixing in the UMAP embedded space. The larger the 
LISI score, the higher the degree of heterogeneity among the samples and, therefore, 
the smaller the confounding effect. Unknown samples (for BMI and previous pulmonary 
diseases) were excluded, and the continuous variables BMI and age were grouped in 4 
and 7 categories, respectively (BMI: <25, [25,30), [30, 35), >=35, age: [30,40), [40,50), 
[50,60), [60,70), [70,80), [80,90), [90,100). The observations for the continuous 
variables were the same when using a local average score instead of categorizing the 
samples. 

5.6.11 Temporal analysis 

First, the Luminex measurements and ADCD were log10 transformed. All measurements 
were normalized such that the minimal value across groups was 0, and the maximal 
value was 1. For visualization, a non-parametric regression model was employed to 
obtain a smoothed line using the R function ‘loess’ (span = 0.7). It is critical to note, that 
the late rise of some curves is attributable to a limited number of late timepoints, and 
not due to a true elevation in antibody levels. To understand and determine differences 
in the antibody dynamics between the groups, we described the dynamics of each 
antibody feature y at the group-level using a four-parameter logistic growth curve: 
 

𝑦𝑦(𝑡𝑡) = 𝑑𝑑 +
(𝑎𝑎 − 𝑑𝑑)

�1 + 𝑡𝑡
𝑐𝑐�

𝑏𝑏 

 
with t denoting the days after symptom onset, and a, b, c, and d denoting biological 
parameters for the initial antibody levels at the day of symptom onset (a), the initial 
seroconversion speed (b), the time of 50% seroconversion (c) and the asymptotic end 
levels (d). To detect differences between the individuals who survived severe SARS-
CoV-2 infection and those who did not, we built models that describe the dynamics of 
both groups simultaneously, allowing for combinations of parameters to differ between 
the groups, while the others are shared between the groups. With 4 parameters, there 
are 16 possible combinations/models for each feature that could potentially explain the 
antibody feature dynamics. For each feature, each of the 16 models was fitted to the 
data using maximum likelihood estimation, treating each measurement as an 
independent data point and assuming that differences in measurements arose due to 
measurement noise.  We employed a Laplacian likelihood function, which has been 
shown to be robust against outliers in the data235. 
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In addition to the parameters a, b, c, and d, also the noise parameter was 
estimated from the data. Therefore, the simplest model assuming that there is no 
difference between the two groups has 5 parameters, while the most complex model 
has 9 parameters and allows all curve parameters to differ. The corresponding likelihood 
functions were maximized using a multi-start gradient-based optimization236 with 
parameter boundaries 𝑎𝑎 ∈ [0.01,1],𝑏𝑏 ∈ [0.01, 100], 𝑐𝑐 ∈ [0.01,1000],𝑑𝑑 ∈ [0.01, 1.2],𝜎𝜎 ∈
[0.01, 1000] and 50 starts which were increased to 500 if the maximal value was not 
found more than 3 times within a log-likelihood threshold of 0.1. Due to improved 
numerical performance, the parameters were estimated in log10-space237. 

To detect whether there were differences between the groups, and, furthermore, 
decide which particular differences were most distinct across the groups, we calculated 
the Akaike Information Criterion (AIC)238: 

𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖 = 2𝑛𝑛𝜃𝜃𝑖𝑖 − 2log𝐿𝐿 �𝜃𝜃𝑖𝑖
^
� , 𝑖𝑖 = 1, … ,16 

 
for each of the 16 models. Here, 𝑛𝑛𝜃𝜃𝑖𝑖 denoted the number of parameters of model i and 
log-likelihood function 𝑙𝑙𝑙𝑙𝑙𝑙 𝐿𝐿  evaluated at the maximum likelihood estimate. The AIC 
rewards a good fit and penalizes a higher number of parameters to avoid overfitting and, 
thus, low values of AIC are preferable. The model with the lowest AIC value was then 
chosen to be the best model and, commonly, models with a difference in AIC values: 
 

𝛥𝛥𝛥𝛥𝛥𝛥𝐶𝐶𝑖𝑖  =  𝐴𝐴𝐴𝐴𝐶𝐶𝑖𝑖  − min
j ∈{1,...,16}

 𝐴𝐴𝐴𝐴𝐶𝐶𝑗𝑗 
 
that were higher than 10 were rejected239.To analyze the overall differences in 
parameters across the groups (Figure 5-4D), the maximum likelihood estimates for all 
16 models were combined by weighting the contribution of individual models by the 
Akaike weight: 

𝑤𝑤𝑖𝑖  =  
𝑒𝑒−0.5𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖

� 𝑒𝑒−0.5𝐴𝐴𝐴𝐴𝐶𝐶𝑗𝑗16
𝑗𝑗 = 1

 

 
Weights for models that were not plausible were ranked low, and, therefore, did not 
contribute to the parameter estimate.  

5.6.12 Enrichment analysis 

Enrichment of features determined to be different between groups was determined 
using the same framework employed by Gene Set Enrichment Analysis (GSEA)240. The R 
package ‘fgsea’ was used to determine normalized enrichment scores241. ∆AIC were 
used as weights and null distributions were constructed with size matched random 
selection of features over 10000 times.  
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5.6.13 Classification of clinical groups 

Random forest199 classification models were trained to distinguish clinical groups using 
minimal sets of features, to avoid overfitting and identify features that were most 
predictive. Data were not corrected or transformed prior to analysis but features for 
which 70% of values fell below one standard deviation above the mean of SARS-CoV-2 
negative samples were pruned. Samples which had multiple time points within a time 
interval were represented as a single mean value. 

Models were trained and tested in a fourfold cross-validation framework using 
random stratified sampling to ensure the groups are represented each set. Within each 
fold, random forest hyperparameters (number of estimators, max depth, and max 
features) which best optimize balanced accuracy were selected based on the training 
set with a random search in a threefold cross validation framework. Balanced 
subsampling during bootstrapping was used for the construction of each random forest 
model. Once hyperparameters were determined the minimal set of features which 
optimizes out of bag accuracy on the training set is selected using recursive feature 
elimination with fourfold cross validation. Finally, a random forest classifier was fit using 
both the selected hyperparameters and minimal features and used to predict the test 
set. Multiple iterations of fold-specific feature selections were performed to determine 
the features which best distinguish clinical groups and the stability of the results. 

Performance was determined using receiver operating characteristic curves 
(ROC) and summarized with the area under curves (AUC). ROC curves were constructed 
for each repetition using probability estimates, and the mean ROC curve was determined 
by using the mean probability for each sample across replicates. Performance and 
robustness of the model was also contrasted to negative control models built from 
permuted data. Within each fold of the model the training set labels were shuffled, and 
classification accuracies were generated using the same process. These control models 
were generated 50 times for each repetition. Predicted and true outcomes were 
compared to determine accuracy. Robustness was defined as the exact p-values of the 
tail probabilities of the true distributions within the control distributions. Reported are 
the median p-values across ten independent cross-validation repetitions107.  
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5.7 Supplementary figures and tables 

 



110 
 

Table 5-S1. Demographics of cohort, related to Figure 1. 
a Information about acute respiratory distress syndrome was not available for 15 individuals in the severe 
group, and 8 of the deceased group. 
b Information about past pulmonary diseases was not available for 1 individual in the moderate group, 3 
in the severe group, and 3 in the deceased group. 
c Information about body-mass-index was not available for 13 individuals in the moderate group, 13 in 
the severe group, and 3 in the deceased group.  
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Figure 5-S1. Antibody evolution by week following symptoms and RBD Specific IgG1 
Fc-receptor coordination, related to Figure 1. 
(A) 193 plasma samples from hospitalized SARS-CoV-2 infected individuals were profiled against SARS-
CoV-2 spike antigen (S), receptor binding domain (RBD), nucleocapsid protein (N), subunit 1 of the spike 
protein as a trimer (S1 trimer), subunit 1 of spike protein (S1) as a monomer, and subunit 2 of the spike 
protein (S2). Distributions of titers across moderate (blue), severe (yellow), and deceased (red) individuals 
are shown in the violin plot over the first, second-, and third week following symptom onset. The solid 
white line represents the median and the dotted lines the first and third quartiles. A Kruskal-Wallis test 
was used to evaluate statistical differences across groups for all intervals and features and was corrected 
for multiple hypothesis testing with the Benjamini-Hochberg procedure. If statistically significant then a 
two-sided Mann-Whitney U test was performed for post-hoc comparisons. Significance shown 
corresponds to the Mann-Whitney U test p-values (*: p < 0.5e-1, **: p < 0.5e-2, ***: p < 0.5e-3, ****: p < 
0.5e-4, *****: p < 0.5e-5). Antibody dependent cellular phagocytosis (ADCP), antibody dependent 
neutrophil phagocytosis (ADNP), antibody dependent complement deposition (ADCD), antibody 
dependent Natural killer cell activation (ADNKA). (B) Spearman correlations were assessed within each 
clinical group at two- and three-weeks post symptom onset between IgG1 titers and FcɣR binding profiles 
to assess shifts and changes in antibody glycosylation. Red corresponds to higher correlation, white to no 
correlation, and blue to anti-correlation. 
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Figure 5-S2. Batch effect evaluation, related to Figure 3. 

(A) The algorithm provides an overview of the evaluation pipeline. The first 40 principal components 
(PCs) explained more than 95% of the variance and were extracted from z-scored 
measurements. UMAP was applied to map the extracted PCs into two dimensions, in which the 
local diversity was quantified by the local inverse Simpson index (LISI). (B) UMAP visualizations 
highlight limited antibody profile differences across four of the treatments that were used in the 
SARS-CoV-2 patients. (C) UMAP visualizations show the influence of co-morbid conditions – 
immunosuppression, pulmonary disease, and body-mass-index (BMI) - on antibody profiles. (D) 
UMAP visualization was used to probe for potential plate-batch effects, where each color 
represents a different plate run across Systems Serology. (E) The histograms show the 
distributions of LISI scores for past pulmonary disease, body-mass-index (BMI), age, sex, and 
well plate. LISI measures the degree of mixing in an embedding ranging from 1 to the number of 
categories (e.g., 2 for sex), where larger LISI scores indicate less separation and more mixing. 
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Unknown samples were excluded and the continuous variables BMI and age were grouped in 4 
and 7 categories, respectively (BMI: <25, [25,30), [30, 35), >=35, age: [30,40), [40,50), [50,60), 
[60,70), [70,80), [80,90), [90,100)). Overall, the histograms show no substantial skewing of the 
antibody profiles. 
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Figure 5-S3. Temporal evolutionary curves of antibody features, related to Figure 4. 
For each antibody feature, the optimal model fit is shown for each group across each feature. Dots indicate 
individual patients, diamonds indicate the binned median, the lines indicate the fitted curves 
corresponding to the optimal model and the color indicates the group. The parameters which are different 
for the displayed model are indicated in the left corner and color-coded according to the group for which 
the parameter is higher. 
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Figure 5-S4. Pre-existing coronavirus immunity, related to Figure 4. 
60 plasma samples from hospitalized SARS-CoV-2 infected individuals were profiled against the receptor 
binding domain of HKU1, NL63, and a mixture of influenza antigens. Distributions of titers across 
moderate (blue), severe (yellow), and deceased (red) individuals are shown in the violin plot collected 
within the first five days following symptoms. The solid white line represents the median and the dotted 
lines the first and third quartiles. A Kruskal-Wallis test was used to evaluate statistical differences across 
groups for all intervals and features and was corrected for multiple hypothesis testing with the Benjamini-
Hochberg procedure. No significant differences were detected. 
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Luminex. TZ preformed profiling of antibody effector functions. Genotyping, including 
quality control and imputation was performed by the Twins UK organization. TZ 
preformed all subsequent analyses.  

6.1 Abstract 
Antibodies are critically important in protection against disease. Beyond the ability to 
recognize a myriad of targets, Fc diversification directs immune function, is critically 
important for combatting infection, and is key for defining mechanisms of protection. 
While genetic biases in affinity maturation have been demonstrated, little is known 
about the genetic regulation of Fc biology. Thus, we comprehensively profiled 227 
pathogen-specific antibody Fc characteristics and functions to 19 common pathogens 
and allergens across a cohort of twins (n=510). The majority of subclass, isotype, Fc-
receptor binding, and Fc-effector functional responses showed a degree of heritability. 
GWAS of the top 45 heritable phenotypes identified five genomic regions that were 
significantly associated to nine humoral traits, and accounted for up to 33% of variance. 
Subsequent co-expression analysis revealed myeloid cell processes involved in the 
regulation of Fc-biology. Collectively, these data highlight novel mechanisms that 
govern Fc-biology and are underscored by host-pathogen interactions. 

6.2 Introduction 
The humoral immune response has evolved the capacity to uniquely adapt and swiftly 
combat both environmental and pathogenic threats 242. This is achieved through the 
production of vast libraries of polyclonal antibodies, poised to recognize any potential 
foreign surface and drive rapid immune clearance. Individual antibodies are composed 
of two regions that during infection mature independently and provide distinct functions. 
Antigen recognition is mediated by the fragment antigen-binding (Fab) region, 
diversified through somatic hypermutation, and is capable of binding a near infinite 
space of targets. Conversely, the fragment crystallizable region (Fc) is diversified 
through class-switch recombination and post-translational modifications, resulting in 
distinct constant domains and glycosylation patterns. This alters the affinity of 
antibodies to Fc receptors which are found on the surface of all immune cells and thus 
impacts downstream immune function 63. Thus, antibodies have the ability to not only 
recognize, but also to regulate inflammation 205, drive cytotoxic destruction or 
opsonophagocytic clearance of nearly any foreign 209 or altered self-targets 243, and even 
deliver new-antigens to antigen-presenting cells to promote cellular immunity 244. Yet, 
while a great deal is known about the processes that influence binding repertoires, less 
is known about the biological processes that are involved in regulating Fc-diversification 
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which is key for the control and clearance of many infectious 6 and non-infectious 
diseases 245. 

Emerging evolutionary genomic studies suggest that selective pressure exerted 
through host-pathogen interactions have contributed to the enrichment of genes 
advantageous for reducing pathogen transmissibility across the population 1. Thus, 
pathogen-specific humoral immune responses are formed as a result of a combination 
of both pre-determined genetic and stochastic processes. This is further supported by 
the enrichment of particular binding repertoires following infection 31 due to preferential 
usage of gene segments 34 or distance-based biases between V, D, and J segments 33. 
Additionally, repertoire twin-based studies have shown similarities in CDR3 lengths 
among monozygotic twins and have attributed genetic influences to the usage of gene 
segments, clonal expansion, and clonal sequence diversity 35,246,38,36. However, the 
extent of genetic impact and the specific genotypic elements which control isotype and 
subclass abundance, Fc-receptor binding profiles, and antibody effector functions 
remain incompletely understood. Ultimately, characterization of humoral genetic 
architectures could help uncover the mechanisms of Fc-regulation, and aid in next 
generation vaccine design. 
 Class switch recombination represents the first key step in tuning antibody 
effector functions. Specifically, 9 distinct Fc-domains (IgG1-IgG4, IgA1-IgA1, IgM, IgE, 
and IgD) exist in the human immunoglobulin heavy chain locus (IGH) 247. During B cell 
differentiation, inflammatory cues lead to genetic excision events that link affinity 
matured Fab domains to specific Fc-segments 248, each with their own Fc-receptor 
binding and Fc-effector functional capabilities 249. For example, Th1 cytokines have been 
linked to the preferential production of IgG1 and IgG3 subclasses, Th2 cytokine profiles 
to the production of IgG2 and IgG4 subclasses 250, and mucosal signals to the selection 
of IgA isotypes 251. The combinatorial variation in isotypes and subclasses therefore 
impacts the overall affinity of pathogens coated with antibodies (immune complexes) to 
the different Fc receptors (FcR) on the surface of innate immune cells. Importantly, 
because FcγRs bind IgGs with low affinity, triggering multiple FcRs is required to drive 
immune cell activation and effector function 63. Emerging data point to the critical role 
of Fc-effector functions in protecting against a broad array of diseases  including human 
immunodeficiency virus (HIV) 7,9,11, Influenza 12,116, Herpes Simplex Virus 15, and Malaria 
17,18. However, whether Fc-biology is regulated solely via immunological cues, or 
whether population level genetic variation biases this essential humoral activity remains 
incompletely understood.  

Previous familial-based studies have shown that variation in titers to different 
childhood vaccines are 36%-91% heritable 252–255, and genome-wide association studies 
(GWAS) investigating IgG titers against different of infectious diseases have identified 
multiple strong single nucleotide polymorphisms (SNP) associations 256–259. 
Furthermore, robust SNP associations have been identified that drive specific bulk IgG 
Fc-glycosylation patterns 43. Collectively, these studies point to a role for genetics in the 
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regulation of the quantity of the antigen-specific and quality of the bulk IgG humoral 
immune response. Despite this progress, the genetic contributions and factors which 
control pathogen-specific antibody isotype and subclass levels, FcR binding, and Fc-
effector function remain unknown.  

Thus, to begin to define the potential influence of genetics on Fc-biology, we 
comprehensively profiled 227 humoral traits including isotype and subclass abundance, 
FcR binding, and antibody mediated effector functions across 18 common viral and 
bacterial pathogens, and 2 allergens in a cohort of monozygotic and dizygotic twins. 
Heritability accounted for more than 20% of variation across the majority of humoral 
traits with IgM levels, antibody dependent neutrophil phagocytosis (ADNP), Varcellia-
Zoster (VZV), Measles, and Respiratory Syncytial (RSV) responses showing the highest 
estimates of heritability. GWAS analysis was performed on 45 of the top heritable 
humoral traits revealing five genomic regions reaching genome-wide significance across 
nine humoral traits that explained a median of 30% of the variance. Further 
transcriptomic analysis of genetic overlap of the hits to previous studies pointed to a 
critical role in myeloid cell activity as a key regulator of antibody Fc-biology. Ultimately, 
these data provide a resource for understanding the genetic mechanisms underlying 
humoral immune diversification.  

6.3 Results 
6.3.1 Distinct heterogeneity in pathogen-specific humoral characteristics 

Antibodies are primary correlates of both naturally occurring and vaccine-induced 
immunity against many infectious diseases 6. However, antibodies also represent critical 
biomarkers of disease activity 260,261, and have been implicated in both protective and 
pathological consequences across autoimmune 245 and allergic diseases 262. Previous 
familial-based studies have found that variation in IgG titers to common infectious 
diseases 263 and childhood vaccines are heritable 252–255. Moreover, subsequent GWAS 
analyses have identified multiple SNPs across many genes including HLA-DQ, HLA-DR, 
and STING1 that were strongly associated with IgG1 levels to the Epstein-Barr virus 
(EBV), Varicella zoster virus (VZV), and more 256–259. However, beyond titers, variation in 
antibody isotypes, subclasses, Fc-receptor (FcR) binding, and Fc-effector functions also 
contribute to humoral protection 7,17,13. Yet, whether genetic factors also control 
pathogen-specific Fc-biology remains largely unknown.  

Thus, we comprehensively profiled pathogen-specific humoral responses across 
a cohort of 168 monozygotic (MZ) and 342 dizygotic (DZ) twins (Figure 6-1A). All 
participants were female, between the ages of 41-78 (mean 61), of British ancestry, and 
100% Caucasian. Pathogen-specific isotype and subclass levels, binding to FcRs, and 
effector functions were first systematically measured against 9 viral and 7 bacterial 
pathogens, and 2 allergens (Table 6-S1). These pathogens and allergens were selected 
based on the probability of exposure either through infection or vaccination to the 
participants in this cohort. Protein antigens, polysaccharide antigens, or whole 
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pathogens were chosen based on previously reported immunodominance or availability. 
Additionally, Influenza A virus subtypes H1N1 and H3N2, and prefusion and postfusion 
conformational states of the respiratory syncytial virus (RSV) fusion (F) glycoprotein 
were also included. On the population scale, a diversity of responses was observed to 
almost all humoral features (Figure 6-1B). These data collectively provided a humoral 
landscape that could be used to identify population-level pathogen-specific antibody 
characteristics and determine the genetic factors responsible for their control. 

To first gain a deeper understanding of immune programming across antigen-
targets and Fc-readouts, we next examined the mean pathogen-specific isotype and 
subclass levels, binding to FcRs, and effector functions across the whole cohort (Figure 
6-1C). Antigen-specific results for each readout were min-max normalized along feature 
types. With the exception of allergens Arah2 and Betv1, and Ttox robust IgG1 responses 
were observed across all pathogens. IgG2, IgG3, and IgG4 levels were more pathogen 
specific than IgG1 with the strongest mean IgG2, IgG3, IgG4 responses observed 
against Dip, Polio and Post-RSV, and HBV respectively. Additionally, IgM and IgA also 
exhibited pathogen specific behavior with the strongest mean responses observed 
against Dip and Polio, and Polio and Post-RSV respectively. Enhanced binding to FcγR2A 
followed a similar profile to IgG1 responses. However, FcγR2b, FcγR3A, and FcγR3b 
showed more nuanced pathogen-specific profiles.   

Differences in FcR binding results in alterations in the capacity to drive antibody 
Fc-effector functions 63. Thus, population-level mean antibody-dependent effector 
functions were probed (Figure 6-1C). Antibody-dependent complement deposition 
(ADCD) was observed across most pathogen-specific target antigens. Conversely, mean 
antibody-dependent cellular phagocytosis (ADCP) and antibody-dependent neutrophil 
phagocytosis (ADNP) responses were more pathogen specific. In particular, the 
strongest mean ADCP responses were observed against Flu and RSV, and the strongest 
mean ADNP responses against Measles. Collectively, these data highlight striking 
variation in antibody functionality across antigen-specificities pointing to immunologic 
functional programming across targets. 

Finally, to determine whether variation in antibody responses was driven by 
potential confounding variables, a principal components analysis (PCA) was performed 
using all humoral data and was assessed for twin zygosity type, age, alcohol use, and 
smoking (Figure 6-1D and Figure 6-S1). This revealed limited variation driven by the twin 
sets (Figure 6-1D) and demographics (Figure 6-S1), pointing to a limited impact of these 
confounders on polyclonal antibody Fc-profiles.  
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Figure 6-1. Comprehensive Profiling of Pathogen-specific Antibody Features and 
Population-level Responses. 
(A) Pathogen-specific humoral responses to a myriad of viral pathogens, bacterial pathogens, and 
allergens were profiled in a cohort of 510 individuals. The cohort consisted of 168 monozygotic (MZ) and 
342 dizygotic (DZ) matched twins. Humoral profiling of plasma samples consisted of measuring pathogen-
specific antibody isotype and subclass levels, levels of binding to Fcγ-receptors (FcγR), and effector 
functions. (B) Normalized antibody responses across MZ and DZ individuals organized by pairs and 
antibody characteristics with a repeating sequence of pathogen specificities. Normalization was achieved 
by first subtracting technical noise followed by rank-based inverse normal transformation. (C) Mean 
population-level humoral responses to pathogen specificities. Values were determined by first evaluating 
the normalized mean of each antibody feature followed by min-max normalization along antibody 
characteristics. (D) Principal components analysis (PCA) scores plot built on normalized humoral features 
and split by twin zygosity. Ellipses correspond to the 95% confidence intervals for each group. (Betv1: 
Pollen, Arah2: Peanut, Hib: Haemophilius Influenzae type b, Ptox: Pertussis, Ttox: Tetanus, PPD: 
Tuberculosis, Pneumo: Streptococcus pneumoniae, Dip: Diphtheria, HBV: Hepatitis B, Noro: Norovirus, 
Polio: Poliomyelitis, Pre-RSV: Respiratory Syncytial Virus A/B Prefusion F glycoprotein, Post-RSV: 
Respiratory Syncytial Virus A/B Postfusion F glycoprotein, VZV: Varicella-Zoster virus, EBV: Epstein-Barr 
Virus, H1N1-CA: Influenza A virus CA/7/2009, H3N2-TX: Influenza A virus Texas/7/2012). Also see Table 
6-S1 and Figure 6-S1. 
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6.3.2 Coordination in Fc-profiles are driven by antigen-specificity and Fc-
characteristics 

Given the presence of distinct Fc-profiles across antigens, we next aimed to determine 
whether any coordination existed among humoral features. Pairwise spearman 
correlations revealed strong relationships within subclasses and isotypes, pathogen FcR 
binding, and between IgG1 levels and FcR binding (Figure 6-2A). Specifically, cross-
antigen relationships were observed within isotypes and subclasses. Furthermore, 
strong coordination among IgM responses were observed, and pointed to a broad intra-
individual bias towards IgM selection. Similar relationships were also observed for other 
isotypes and subclasses, albeit these relationships were less robust. Conversely, 
correlations across FcRs or between FcRs and IgG levels were also observed but to 
specific antigen-specificities. To investigate whether monozygotic and dizygotic twins 
differed in their coordination to specific features this analysis was extended to each 
group, and as expected revealed no notable differences (Figure 6-S2). To further 
quantify differences in the inter-relatedness of antibody characteristics and pathogens 
specificities, distributions of significant spearman correlation coefficients across Fc-
characteristics (Figure 6-2B, top) and antigen-specific antibody features were 
compared (Figure 6-2B, bottom). Among these readouts, the highest level of 
coordination was observed across IgM responses and the lowest to FcR-binding levels 
(Figure 6-2B, top). From an antigen-specific perspective, Polio-specific responses were 
least coordinated, and Mumps-specific responses the most. 

Finer detail regarding the coordination of antigen-specificities and Fc-features 
was next investigated through hierarchical clustering (Figure 6-2C). This revealed 20 
distinct clusters that were further binned into two larger clusters. The first set of clusters 
(left) included largely individual antigen-specificities composed of multiple Fc-features, 
and pointed to coordination among antibody isotype, subclass, and FcR binding levels 
across RSV, Betv1, Arah2, VZV, Noro, Polio, Measles, Mumps specific antibody 
responses. Therefore, this suggests that individuals with robust IgG responses to these 
targets also generated robust FcR binding profiles and functions. The second large 
cluster (right) was composed of groups of antibody Fc-feature driven profiles. These 
clusters consisted of distinct IgM, IgA, IgG2, IgG3, and IgG4 clusters. These data 
ultimately point to coordination across both antigen-specificity and Fc-feature.   
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Figure 6-2. Coordination of Antibody Characteristics and Pathogen Specificities 
(A) Pairwise spearman correlations organized by type of antibody measurement and with a repeating 
antigen sequence. (B) Distributions depict significant spearman correlation coefficients (ρs) across 
antibody characteristics (top) and pathogen specificities (bottom). Bars correspond to the median of each 
distribution. (C) The dendrogram depicts hierarchical clustering of the pathogen-specific antibody 
correlations. Agglomerative hierarchal clustering was performed with pairwise distances determined by 
correlations and ‘complete’ linkage method. Clusters were defined with a threshold based on half 
maximum pairwise distance among features and are represented by alternating grey and blue colors. The 
identity of the antibody characteristics and pathogen specificities in each cluster are summarized by the 
colors of the bars. Also see Figure 6-S2. 

6.3.3 Genetic factors contribute to variation in humoral responses 

The architecture observed to the humoral immune response within antigen-specificities 
and Fc-characteristics across this cohort highlights the potential influence of non-
stochastic driving forces. Thus, the familial structure among twin pairs was leveraged to 
determine the impact of genetics on the diversification of particular antigen-specific 
antibody profiles. Similar to previous work demonstrating heritability in IgG1-titers 263, 
here we profiled the impact of heritability on all pathogen-specific Fc-features. The 
heritability of each feature was estimated using linear mixed effect models, where we 
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were able to decomposed the variance due to additive genetics (A), common shared 
environment (C), and unique environment (E) 264. Heritability was defined as the variance 
due to additive genetics as a fraction of the total variance, ranging from 0%-suggestive 
of non-genetic factors to 100%-suggestive of strong genetic influence. Goodness-of-fit 
was assessed using the Akaike Information Criteria (AIC) 238 and comparison among 
models with and without genetic parameters (ΔAIC) was used as a measure of 
confidence, with ΔAIC>0 providing evidence for difference among these models and 
therefore justifying the existence of the genetic parameter. 

Heritability was observed across a number of features including among Fc-
characteristics and pathogen-specificities (Figure 6-3A). IgM levels showed the greatest 
number of heritable features with ΔAIC>0, followed by IgG1 levels and FcRs. In terms 
of individual features Ptox-IgG1, VZV-IgG4, and PostF-RSV FcγR2b binding levels 
showed the greatest levels of heritability. Similarly, evidence for heritability was also 
observed across antibody effector functions, with the highest levels noted among PPD-
ADNP and RSV-ADCP levels with estimates of 61% and 68%, respectively. Moreover, 
EBV and Flu specific ADNP also exhibited ΔAIC levels above 5 (Figure 6-3A and 6-3B). 
As for pathogen-specificities, high estimates were also observed across FcγRs in the 
case of Ptox, Measles, and PostF-RSV specific antibodies. Additionally, responses 
against Measles showed the highest heritability in isotype, subclass, and FcR binding 
across all pathogens followed by Ptox-, Dip-, PostF-RSV, and VZV-specific antibody 
responses. Taking a closer look at the distribution of heritability estimates highlighted 
that the majority of features were more than 20% heritable and exhibited estimates as 
high as 68% (Figure 6-3C, left). Furthermore, comparing the distributions of the variance 
captured by each parameter across all features revealed that overall additive genetics 
accounted for more variance than common environment, albeit not as much as the 
unique environment which represents exposures that are specific each to individual 
(Figure 6-3C, right). Collectively, these data highlight the influence genetics has in 
determining Fc-biology. 
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Figure 6-3. Heritability of Pathogen-specific Humoral Phenotypes  
(A) Dot plot of heritability estimates for each pathogen-specific antibody measurement. Color 
corresponds to the ΔAIC and size to the level of heritable influence. (B) Scatter plot depicting the 
heritability and ΔAIC values of each feature with color corresponding to ΔAIC. (C) The probability density 
distribution of heritable influences across all measurements and the mean heritability threshold of 0.22. 
(D) Probability density distributions of the variance explained by each component of the ACE model across 
all measurements. (A, additive genetics; C, common shared environment; E, unique environment). 

6.3.4 Particular classes of antibody features are under greater genetic control 

To quantitatively probe global differences in heritable contributions to individual classes 
of antibody features, across both Fc-characteristics (Figure 6-4A, left) and antigen-
specificities (Figure 6-4A, right), non-parametric combination 58 was adapted to the 
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linear mixed effect model framework. Briefly, by permuting the zygosity labels among 
twin pairs and calculating the mean heritability estimate for a specific feature type over 
multiple iterations, a null distribution is formed. Then exact p-values were determined 
by comparing the true mean heritability estimates within the control distributions. A 
clear hierarchy appeared in mean heritability across feature types, with FcγR3A binding 
levels (Figure 6-4A, left) and measles-specific responses (Figure 6-4A, right) exhibiting 
the highest mean heritability estimates. Conversely, IgM-, ADNP-, and IgG1- levels 
showed the greatest effect sizes (Figure 6-4A, left). Similarly, antibody responses to 
VZV, Measles, and PostF-RSV also exhibited high mean heritability estimates, but with 
reduced levels of significance. Moreover, several additional features, including overall 
ADCD levels, and Norovirus-, PreF-RSV, Ttox-, H3N2-TX-, Rubella-, Betv1-, Pneumo-, 
Hib-, Arah2-, and HBV-specific responses all showed low mean heritability estimates. 
Collectively, Fc-profiles exhibited more evidence for heritability than pathogen 
specificities. 
  Given the differences observed across antibody characteristics and pathogen 
specificities, broader classes of humoral features were explored. First comparing 
isotype and subclass levels, binding to FcRs, and antibody mediated effector functions 
revealed that only isotype and subclass levels were globally significantly heritable 
(Figure 6-4B). Additionally, antibody effector functions showed the greatest mean 
heritability and was nearly significant. Similarly, consolidation of pathogen-specificities 
based on viral or bacterial antibody targets pointed to greater mean heritability among 
viral-specific responses, and with both viral and bacterial responses exhibiting 
significance compared to their null distributions (Figure 6-4C). Finally, differences in 
mean heritability were calculated for viruses experienced by infection alone (Viral non-
vaccine) and those for which vaccines are used routinely (Viral vaccine).  This analysis 
revealed that antigen-specific antibody responses to viruses that are largely vaccinated 
against exhibited significant and high mean heritability (Figure 6-4D). Ultimately, these 
data highlight the specific classes of humoral traits that are most heavily influenced by 
genetics. 
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Figure 6-4 Broad Heritable Influences Amongst Specific Antibody Attributes 
Mean heritability estimates among (A) antibody characteristics and pathogen specificities, and (B-D) 
higher-level classes. Violin plots correspond to null distributions determined by non-parametric 
combination, bars correspond true mean heritability estimates, and exact P values are reported.  

6.3.5 Genome-wide association reveals genetic control of pathogen-specific Fc 
profiles 

To determine the specific genetic factors that control the development of particular 
pathogen-specific Fc-profiles that showed heritability estimates greater than 30% and 
ΔAIC>0, consecutive GWASs were performed. This included GWASs for 45 antibody 
features, comprised of 21 isotype and subclass features, 18 FcR-binding features, and 
6 effector functions across 16 different pathogens. Following quality control, 4,663,961 
variants and 498 individuals were used to screen for associations. This yielded five 
regions which reached genome-wide significance (p < 5 x 10-8) across nine humoral 
traits (Figure 6-5A), all of which have not been previously reported. Lead variants had 
minor allele frequencies (MAF) between 19% and 49% which explained 25% to 33% of 
the variance among these traits (Table 6-1). Additionally, Post-RSV specific IgG1 levels 
and FcγR2A-, FcγR2b-, FcγR3A-, and FcγR3b-binding levels all shared the same leading 
variant, rs679574. Further analyses identified candidate genes for each of the variants 
265,266 (Table 6-1). For each lead variant, nearby SNPs were further investigated (Figure 
6-5B-K) as well as associations across all select humoral traits (Figure 6-5L). 
 Single nucleotide polymorphism (SNP) rs62493093T was associated with 
significantly higher IgG2 levels against HBV (Figure 6-5B). Furthermore, the number of 
rs62493093T alleles were proportional to IgG2 HBV-specific levels indicative of a dose-
dependent response in the presence of this SNP. This variant was nearest to the DLC1 
gene encoding for a Rho GTPase activating protein (Figure 6-5C). Moreover, nominal 
associations and trends were noted between this HBV-specific rs62493093 SNP and 
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Measles FcR-binding, Measle-specific ADNP, and RSV-specific ADCP levels suggesting 
that this SNP may have a broader impact on shaping humoral immune responses across 
pathogens (Figure 6-5L).  

Variant rs10770123C was associated in a dose-dependent manner with FcγR3A-
binding levels against Polio and was located in the 3’ UTR region of RNF141 (Figure 6-
5D-E). This variant was also in high linkage disequilibrium with other genome-wide 
significant intron SNPs contained within RNF141 (Figure 6-5E and Table 6-S2). These 
variants have also been previously implicated as expression quantitative trait loci 
(eQTLs), influencing the expression of  RNF141 among blood cells 267 and 
lymphoblastoid cell lines (LCL) 268, as well as the expression of MRVI1 and MRVI1-AS1 
in monocytes 269 and neutrophils 270 respectively. Additionally, this SNP was also 
suggestively associated with Polio-specific FcγR3b binding levels and weakly 
associated with VZV-specific IgG1, FcγR3b, and FcγR3A (Figure 6-5L). Associations in 
the opposite direction were also interestingly noted across multiple IgM specific 
responses. 

A significant inverse dose-dependent association was observed between 
rs1806595T and Flu-specific ADNP levels (Figure 6-5F). This variant was located 
nearest to the SPRY2 gene on chromosome 13 and was in high linkage disequilibrium 
with multiple variants including rs2379 (Figure 6-5G). Although located in an intergenic 
region, variant rs2379 has previously been identified as a CCCTC-binding factor (CTCF) 
binding site across many tissues including immune compartments 271 (ENCSR756ZKG). 
CTCF plays a key role in regulating chromatin structure and maintaining organization on 
the megabase-scale 272, therefore variants in CTCF binding regions represent potential 
distal regulatory elements. Moreover, beyond Flu-specific ADNP, the rs1806595 SNP 
additionally showed a trend to associations with EBV-, PPD-, and Measles-specific 
ADNP, pointing to a cross-pathogen specific modulation of antibody qualities involved 
in controlling neutrophil activity (Figure 6-5L). 

Subsequently, variant rs10131070G showed a strong association with Mumps-
specific IgG4 levels, with higher levels corresponding to the major allele and a complete 
loss of Mumps-specific IgG4 responses in homozygotes with the rs10131070G minor 
allele (Figure 6-5H). This SNP was in high linkage disequilibrium with rs10131536 and 
rs11157248, all of which are located in the T cell receptor alpha locus (TRA) (Figure 6-
5I). These variants are additionally all located in sites known to be epigenetically 
modified across various cell types 273. For example, variant rs10131536 is located at a 
site of h3k4me1 in T helper cells. These data point to a critical potential role of this SNP 
in T helper cell function that may bias Mumps and possibly VZV antibodies towards IgG4 
(Figure 6-5L).   
 The strongest associations identified in this study were between variant 
rs679574 and postfusion F RSV (Post-RSV) specific IgG1, FcγR2A, FcγR2b, FcγR3A, and 
FcγR3b binding levels (Figure 6-5J). The presence of the minor allele rs679574C, 
whether heterozygotic or homozygotic, resulted in substantially higher levels of IgG1 
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and binding to FcRs against the Post-F antigen from RSV (Figure 6-5K). Variant 
rs679574 was also in perfect linkage disequilibrium with two synonymous variants 
rs492602 (A68A) and rs681343 (Y83Y) located in exon 2 of FUT2, and a nonsense 
variant rs601338 (W154X) (Figure 6-5K). Variant rs601338A encodes for “non-
secretor” status in homozygotes with both null alleles. This results in no functional FUT2 
enzyme production and therefore the lack of histo-blood group antigens (HBGA) on 
mucosal surfaces 274. Additionally, nominal associations between these SNPs and Ptox 
specific IgG1 and FcR bindng, Penumo-ADCP, and Measles and VZV-specific IgM levels 
were also observed but with opposite effects across all FUT2 variants (Figure 6-5L). 
These data suggest that these FUT2 SNPs may have broad implications related to 
humoral function but with pathogen specific directionality. 

To further define the mechanistic basis for SNP mediated antibody Fc- 
modulation, we next used gene set analysis and Gene Ontology (GO) to identify the 
pathways in which SNPs were enriched in. Subprocesses of the immune response 
(GO:0002376) were tested and revealed multiple gene sets that were significantly 
associated to 16 heritable features. The top significant processes were related to B cell, 
T cell, and innate immune function (Figure 6-5M and Table 6-S3). Specifically, PPD- and 
EBV-specific ADNP were linked to lymph node development and germinal center 
formation whereas Measles-specific IgG1, FcγR2A, and FcγR2b binding levels were 
associated with T cell proliferation and differentiation. Moreover, although no SNPs that 
reached genome wide significance to PPD-specific ADNP and Measles-specific IgG1 
levels were observed (Figure 6-5A), significant immune processes were detected 
(Figure 6-5M). Thus, collectively, this genomic screen identified multiple genetic factors 
which contributed to the modulation of pathogen-specific Fc-biology. These genetic 
factors were related to both regulatory control and alterations in immune genes that 
likely influence both adaptive and immune programming. 
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Figure 6-5. Genome-wide Associations and Processes Involved in Regulating 
Pathogen-specific Antibody Fc Phenotypes 
(A) Summary Manhattan plot demonstrating five regions which reach genome-wide significance and the 
traits which they are associated with. Variants which cross genome-wide significance (p < 5 x 10-8) are 
depicted in red. Genotype-phenotype relationships and regional association plots were then depicted for 
IgG2 against HBV (B and C), FcγR3A against Polio (D and E), ADNP against Flu (F and G), IgG4 against 
Mumps (H and I), and FcγR3A against Post-RSV (J and K). The directionality of genotype-phenotype 
associations correspond to the presence of minor alleles and the number of each set of alleles are 
reported. The dotted line represents the median and the error bars one standard deviation. Regional plots 
depict chromosomal position on the x-axis based on GRCh37, negative log10 p-values on the left y-axis, 
recombination rates on the right y-axis, and RefSeq genes on the bottom. The horizontal line depicts 
genome-wide significance (p < 5 x 10-8), the purple diamond the lead variant, and colors to the linkage 
disequilibrium based on the 1000 Genomes November 2014 European (EUR) database. (L) Levels of 
association of lead variants to other heritable features. Red colors indicate positive associations toward 
minor alleles and blue colors indictive negative associations toward major alleles. The intensity of the 
colors indicates the degree of confidence and ranges from genome-wide significance (p < 5 x 10-8), 
suggestive associations (p < 1 x 10-4), nominal associations (p < 0.05), and trends (p < 0.1). (M) Top 
immune related process of heritable traits with at least significant pathway. On the left a lollipop plot with 
negative log10 q-values corresponding to each trait is depicted. Gene set enrichment analysis was 
performed using gene ontology (GO) and gene set p-values across all traits were multiple hypothesis 
corrected using the Benjamini-Hochberg procedure with a false discovery rate of (α = 0.05). The vertical 
dashed line depicts the significance cutoff, and the color of the lollipop corresponds to whether the GO 
term is a general process (black) or involved in negative (blue) or positive (red) regulation of a process. 
The corresponding GO terms are shown on the right. Also see Table S3. Also see Table 6-S2 and Table 6-
S3. 
 

 
Table 6-1. Novel Significant SNPs Associated with Humoral Traits 
Lead variants associated to humoral traits which reach genome-wide significance threshold of (p < 5 x 10-
8). Annotations were based on lead variant or variants in linkage disequilibrium with the lead variant (r2 
> 0.8). These variants were located in the coding regions (C), contained with the gene (G), or were 
upstream or downstream of a particular gene (N). Whether variants corresponded to previously reported 
eQTLs (Q), disrupted a regulatory motif (R), was supported by transcriptomics data (T), or was supported 
by previous research (S) was also reported. (Chr, chromosome; Pos, position in GRCh37; rsID, reference 
SNP identification; EA, effect allele; NEA, non-effect allele; EAF, effect allele frequency; BETA, weight; SE, 
standard error; % Var, percent variation explained)  
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6.3.6 Transcriptomic and pathological consequences of genotype associations to 
humoral phenotypes  

To further explore potential mechanisms related to SNP mediated Fc-biological 
programming, target gene expression was obtained from single cell transcriptomics 
data 275. Expression of candidate genes was first analyzed across immune cell types, 
revealing robust expression of DLC1, RNF141 and SPRY2 among common myeloid 
progenitors (CMP) (Figure 6-6A). Specifically, expression of DLC1 was mainly observed 
in CMP cells whereas RNF141 expression was observed broadly among cells of myeloid 
lineage, and expression of SPRY2 was restricted to CMP and myeloid cells. Conversely, 
expression of gene TRAV8-2, within the TRA cluster, was observed in a subset of 
regulatory T cells and as expected, FUT2, showed no expression among any immune cell 
types.  

In order to investigate the processes which the candidate genes DLC1, RNF141, 
and SPRY2 influenced, co-expression of transcripts were evaluated among the cell types 
that showed robust expression of each candidate gene respectively. Co-expressed 
genes were then attributed to biological processes using gene list enrichment analysis 
and the gene ontology (GO) database. For example, genes co-expressed with DLC1, 
previously associated with HBV-specific IgG2 levels, were restricted to those with 
significant correlations (|ρ| > 0.3) within CMPs, and genes with the strongest correlations 
were visualized (Figure 6-6B). Enrichment analysis revealed that genes co-expressed 
with DLC1 in CMPs were involved in the regulation of myeloid cell differentiation 
(GO:0045637) (Figure 6-S2), and consisted of 11 intersecting genes including MEF2C, 
PRKCQ, and ITGA2B. Furthermore, to define whether the expression of candidate genes 
in CMP were associated with changes in the relative abundance of isotype and subclass 
genes, the mean relative expression of specific immunoglobin heavy constant (IGH) 
genes, expressed in Plasma cells (PCs), were correlated to the mean expression of the 
candidate genes across donors. This analysis of CMP candidate genes and PC IgG Fc 
domain profiles revealed strong correlations between DLC1 expression and the relative 
abundance of IGHG2 and IGHG3, but reduced levels of IGHA1 and IGHA2 (Figure 6-6C). 
This therefore links the expression of DLC1 within CMPs to the selection of particular 
isotypes and subclasses.  

Similarly, we next examined the co-expression of genes with RNF141, previously 
associated with Polio-specific FcγR3A-binding levels, within CMPs and granulocyte-
monocyte progenitors. Both negative and positive relationships were identified (Figure 
6-6D). Negative correlations were enriched in genes responsible for antigen processing 
and presentation of exogenous peptide antigen via MHC class II (GO:0019886), and 
positive correlations in genes related to neutrophil degranulation (GO:0043312) (Figure 
6-S2). Antigen processing and presentation consisted of 9 overlapping genes comprised 
of 6 HLA genes, CD74, and CTSD whereas neutrophil degranulation consisted of an 
overlap of 7 genes including strong correlations to S100A8, GCA, and S100A12. This 
potentially points to a critical role for antigen-presentation to T cells that ultimately 
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shapes antibody Fc-biology. Additionally, RNF141 expression in CMPs was correlated 
with relative isotype and subclass abundance in PCs and revealed strong correlations 
between RNF141 with IGHG3 and IGHG4 expression, but reduced IGHA1 and IGHA2 
levels (Figure 6-6E). This once again highlighted a clear correlation between gene 
expression in myeloid cells and Fc-biological gene profiles in PCs.  

Finally, this transcriptomic analysis was extended to SPRY2. Co-expression 
correlations between SPRY2, previously associated with Flu-specific ADNP levels, in 
CMPs and myeloid cells revealed strong negative correlations to ribosomal proteins 
important in protein translation (GO:0006614, GO:0002181, and GO:0006613) and 
cell-to-cell communication (Figure 6-6F and Figure 6-S2). Moreover, expression of 
SPRY2 in CMPs was strongly associated with elevated IGHA1 and IGHA2 in PCs (Figure 
6-6G), and further supporting the role for specific gene-signatures in CMPs that aid in 
shaping B cell functional Fc-programming. 

Finally, beyond expression analysis, the NHGRI-EBI Catalog of Human Genome-
wide Association Studies (https://www.ebi.ac.uk/gwas/) was used to ultimately identify 
overlap between SNPs which associated with pathogen-specific humoral traits. SNPs, 
identified in the FUT2 gene, that were linked to Post-RSV-specific IgG and FcR levels, 
showed strong associations with population level susceptibility to Mumps, common 
colds, childhood ear infections, chronic inflammatory diseases, autoimmune diseases, 
Type 1 Diabetes, antibody levels against BK polyomavirus VP1, and the concentration of 
breast milk oligosaccharides (Table 6-S4). Moreover, among these SNPs the nonsense 
variant rs601338, encoding for the “non-secretor” phenotype, has previously been 
reported to provide resistance against respiratory viral pathogens including RSV, 
Influenza A, and Rhinovirus 276 as well as mucosal pathogens Norovirus (GII.4) 277, 
Rotavirus (VP8) 278, and HIV-1 279. This collectively further validates the link between 
these SNPs, differential humoral immune functional programming, and 
resistance/susceptibility to disease. Ultimately, these data collectively provide 
mechanistic insights into the basis for genetic programming of Fc-biology, that may 
provide clues for future vaccine design efforts aimed at leveraging the potent role of Fc-
biology in the battle against infections, malignancies, and beyond. 

https://www.ebi.ac.uk/gwas/
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Figure 6-6. Transcriptomic Analysis of Genes Associated with the Development of 
Pathogen-specific Antibody Responses 
(A) Average expression of candidate genes across immune cell populations. Size corresponds to the 
fraction of cells which expression the gene and color the average expression in log counts per million plus 
one. Co-expression spearman correlation networks to each candidate genes (B, D, and F), and correlations 
between mean expression of candidate genes within a cell type or subset of cells and the relative 
abundance of IGH genes in plasma cells (C, E, and G) across donors were depicted. Co-expression 
network edge widths and color intensities correspond to the magnitude of the correlation coefficients with 
red relating to positive and blue negative correlations. All correlations shown are statistically significant 
past Bonferroni correction for multiple hypotheses. (B) The DLC1 network was built with common myeloid 
progenitors (CMP), (D) the SPRY2 network on CMP and myeloid cells, and (F) the RNF141 network on CMP 
and cells of monocyte-granulocyte lineage. 

6.4 Discussion  
Pathogen specific humoral immunity is driven by polyclonal antibodies, and through 
diversification of antigenic targeting, antibody structure, and mediated effector 
functions enable distinctive tailored responses. Compositional differences in these 
properties have been shown to be important in combatting infection against many of 
infectious diseases7,17,13. Beyond the identification of polyclonal antibodies properties 
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advantageous against infection, the foundational mechanisms which give rise to 
resistant or susceptible subpopulations remains poorly understood. Familial-based 
studies of heritability have previously attributed the influence of genetics in determining 
pathogen-specific IgG titers against common infectious diseases263, and subsequent 
GWAS studies have revealed many strong SNP associations256–259. However, the genetic 
elements which control broader pathogen-specific polyclonal antibody characteristics 
including isotype and subclass abundance, enhancement to Fc-receptors, and antibody 
mediated effector functions remain largely unknown. Thus, here using 510 twins a rich 
dataset of 227 pathogen-specific humoral traits was generated, assessed for 
heritability, and screened for genetic associations. This revealed the identification of 
multiple genetic variants spanning five genomic regions with genetics accounting for a 
up to 68% of total variation. Both pleiotropic and single control of pathogen-specific 
humoral traits was identified and largely involved innate immune processes. Ultimately, 
these findings pointed to genetic mechanisms of humoral traits underpinned by both 
immune processes and host-pathogen relationships.  
 Infections represent a major selective pressure for humans 280, and variations in 
host genetics have previously shown the capacity to influence both resistance and 
susceptibility to infection. For example, mutations in Duffy antigen receptor for 
chemokines (DARC) and CC-chemokine receptor 5 (CCR5) have shown to confer 
resistance against Plasmodium vivax281 and HIV-1282 respectively. Both of these 
mutations inhibit host invasion and therefore represent a class of genetic variants 
related to mechanisms of infection underscored by host-pathogen interactions. More 
broadly, genetic variation can also impact different stages of humoral development 
either through direct or indirect influence. Thus, the underlying mechanisms which 
describe pathogen or allergen specific humoral traits can be best understood through 
the context of these two delineations. 

Variant rs62493093 which was significantly associated to IgG2 levels against 
HBV related to DLC1 Rho GTPase-activating protein (DLC1) and exhibited control 
influenced by both immune intrinsic and host-pathogen factors. DLC1 enables the 
activation of small GTPases which regulate the actin cytoskeleton and consequently 
induce morphological changes and control cell migration283 and was robustly expressed  
of in common myeloid progenitors. Co-expression correlations further revealed an 
enrichment of genes involved in the regulation of myeloid cell differentiation. Distinct 
differences in Rho GTPase expression have previously been observed during various 
stages of myeloid differentiation284 and presents a potential route in which DLC1 may 
influence myeloid differentiation. Elevated levels of DLC1 were also correlated to a 
relative increase in IGHG2 expression and validated the IgG2 phenotype. HBV is a non-
cytopathic hepatotropic virus285 and relies on the immune unresponsive nature of the 
liver286. Therefore, effective immune responses against HBV must balance viral control 
with liver pathology. In this regard IgG2 is advantageous as it has a lesser ability to 
activate effector functions due to its reduced affinity to FcγRs212 and thereby potentially 
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drives opsonization while mitigating inflammation. Beyond its role in CMP 
differentiation, DLC1 is also a strong suppressor of MYC activation and its down 
expression is a hallmark of hepatocellular carcinoma (HCC)287 which is also linked to 
HBV infection288. Furthermore, suppression of DLC1 through miR-141 has previously 
been demonstrated as a requirement for efficient HCV replication289. Therefore, control 
of DLC1 exhibits both pathogen and host specific attributes which ultimately contribute 
to the determination of IgG2 levels against HBV.   
 Contrary to DLC1, variants located within ring finger protein 141 (RNF141) 
showed evidence of pleiotropic effects and included significant associations to Polio 
specific FcγR3A binding as well as strong associations to FcγR3b, Varicella-Zoster Virus 
(VZV) specific binding to both FcγR3A and FcγR3b, and broad associations to many 
pathogen-specific IgM isotypes. Strong expression of RNF141 was observed among 
cells derived from common myeloid progenitor cells, positively correlated to genes 
involved in neutrophil degranulation, and negatively correlated to genes involved in 
antigen processing and presentation via MHCII. At present, the full extinct RNF141s 
molecular function is poorly understood. Being a ring finger protein, RNF141 exhibits E3 
ubiquitin ligase activity resulting in degradations of proteins290. The exact substrates 
RNF141 targets have yet to be experimentally validated, but binary protein interaction 
data suggests that RNF141 may target mevalonate kinase (MVK)291. MVK is an enzyme 
responsible for the production of non-sterol isoprenoids which are necessary for protein 
prenylation and can alter protein function292. For example, loss of MVK function resulting 
in unprenylated RhoA has been shown to lead to the over production of IL-1β, IL-6, and 
TNF through the activation of Rac1 293,294. Furthermore, impaired prenylation due to MVK 
deficiency causes of hyperimmunoglobulinaemia D295 and highlights the ability of MVK 
function to influence class switching. Therefore, RNF141 may present as a potential 
regulator of protein prenylation altering cytokine production and thereby modulating 
innate immune function and antibody class switching. This was further supported by the 
observed correlations between RNF141 expression and the increase in relative IgG3 
abundance. Additionally, FcγR3 binds IgG3 with higher affinity than other 
subclasses212,296 and would explain the enhanced binding to FcγR3A and FcγR3b that 
was observed against Polio and VZV. Ultimately, the mechanism under which RNF141 
influences class switching may be more nuanced and thereby not fully explained by 
static negative correlations to certain HLA genes. 

Sprouty RTK signaling antagonist 2 (SPRY2) also exhibited pleiotropic genetic 
control but with significant and suggestive associations to ADNP function. Expression of 
SPRY2 was mainly observed in CMP and myeloid cells. Co-expression correlations 
further implicated reduced cotranslational protein targeting to the membrane related to 
negative associations to ribosomal proteins which holistically described regulation of 
translational activity. SPRY2 is a feedback regulator which controls the mitogen-
activated protein kinase (MAPK) pathway through multiple avenues297. The MAPK 
pathway is important for many cellular processes including ribosomal biogenesis298. 
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Additionally, ribosomal levels have previously been shown to regulate lineage 
commitment in hematopoietic stem and progenitor cells (HSPCs)299. Therefore, SPRY2 
through modulation of MAPK signaling influences ribosomal expression and thereby 
lineage commitment. The expression of SPRY2 was also correlated to IgA1 and IgA2 
expression in plasma cells. This is further supported by reports of rare mutations in 
SPRY2 causing IgA nephropathy, a buildup of IgA in kidneys300. These mutations 
exhibited reduced levels of SPRY2 phosphorylation and therefore enhanced inhibition of 
the MAPK/ERK pathway and ultimately leading to the over production of IgA. Although 
the mechanism in which inhibition of the MAPK pathway results in the preference for IgA 
is not presently known, it is plausible that this occurs due to changes in innate immune 
cellular phenotypes. Consequentially, IgA isotypes are also potent drivers of ADNP 
function301. Thus, SPRY2 may influence ADNP function by both effecting CMP 
differentiation and driving elevated levels of IgA. 
 Beyond mechanisms related to immune cell function coding variants found in the 
FUT2 gene which significantly associated with IgG1 levels and FcγR binding specific to 
the RSV post-fusion glycoprotein F (Post-RSV) represented mechanisms related to 
mucosal defense and host-pathogen relationships. FUT2 encodes for the α1,2-
fucosyltransferase 2 enzyme responsible for the attachment of A and B histo-blood 
group antigens onto proteins and lipids that are either anchored to the surface of 
mucosal epithelium or secreted302. Variant rs601338A which was in complete linkage 
disequilibrium with lead variant rs679574 is a nonsense variant leading to the enzymatic 
inactivity of FUT2 and the lack of histo-blood group antigens (HBGA) on mucosal 
surfaces known as “non-secretor” status303. Non-secretor status has been shown to 
provide resistance against Norovirus (GII.4)277 and many respiratory pathogens 
including RSV276. Mechanistically, resistance against norovirus has been attributed to 
the loss of HBGA which facilitates viral attachment 304. RSV viral entry relies on 
attachment usually through the G glycoprotein and membrane fusion which is facilitated 
by the F glycoprotein which undergoes a large confirmational change in the process305. 
Although less is known about the fusion process it is plausible that HBGA acts as a fusion 
mediator resulting in the prolonged exposure of the post fusion confirmation state which 
switches back and forth at a basal rate306. In this way non-secretor status may provide 
resistance as well as aid in the development of humoral response against RSV. 

Variants which were significantly associated to various pathogen-specific 
humoral traits collectively highlighted mechanisms driven by innate immune processes 
and described by specific host-pathogen interactions. In order to thoroughly understand 
these relationships, 13 humoral features across 20 pathogens and 510 individuals were 
profiled. Although this represents a comprehensively large dataset from a systems 
serology perspective, it is smaller than conventional GWAS studies. Despite the size of 
the cohort five genomic regions reaching genome-wide significance were identified and 
accounted for a substantial amount of variation. Furthermore, many significant 
processes were identified as a result of pathway analysis which with further validation 
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cohorts in larger cohorts could statistically implicate additional SNPs. Correlates of 
immunity driven by the properties and functions of polyclonal antibodies are still being 
revealed in many disease contexts and across many populations. The data generated 
here can provide a useful roadmap for understanding the humoral landscape as it relates 
to various pathologies, inform vaccine design, the development of therapeutics, and 
provide potential diagnostic markers for the prediction disease outcomes.    

6.5 Methods 
6.5.1 Samples 

Plasma samples from 510 participants were obtained from the UK Adult Twin Register, 
TwinsUK, were included in this study. The TwinsUK cohort consists of twins which was 
originally formed in order to study the genetic impact of various traits on the female 
population. The broader cohort includes individuals that are representative of the 
general British population which are of Caucasian descent, and is further described in 
greater detail in307. The participants selected for this study consisted of 168 
monozygotic and 342 dizygotic matched twins. Of the 510 participants, 498 were 
provided with whole-genome genotyping data. All participants were female between the 
ages of 41-78 (mean 61), and through the means of self-reporting were 100% 
Caucasian and of UK ancestry. Regardless, population stratification by principal 
component analysis was still conducted in order account for any self-reporting 
discrepancies. All experimental data was captured in two technical replicates and the 
average value was reported for all assays. This study was approved by the MGH Human 
Subjects Institutional Review Board and London-Westminster NHS Research Ethics 
Committee, and all participants provided informed consent. 

6.5.2 Primary immune cells 

Primary human cells were obtained from healthy volunteers at MGH blood donor center. 
All donors were over 18 years of age, provided signed consent, and were de-identified 
before use. This study was approved by the MGH Institutional Review Board. Human 
primary Neutrophils were isolated from fresh peripheral blood and maintained at 37˚C, 
5% CO2 in RPMI with 10% fetal bovine serum, L-glutamine, and penicillin/streptomycin. 

6.5.3 Cell lines 

THP-1 cells (ATCC), a monocytic leukemia cell line, were maintained in RPMI 
supplemented with 10% fetal bovine serum, L-glutamine, penicillin/streptomycin, 
HEPES, and beta-mercaptoethanol. THP-1 cells were grown at 37˚C, 5% CO2. 

6.5.4 Quantification of antibody subclasses, isotypes, and Fc-receptors by luminex  

Antigen specific subclass and isotypes, and Fc-receptor binding levels were quantified 
through a customized Luminex assay as described in 308. This high-throughput assay 
allows for the assessment of relative antibody concentration against Betv1, Arah2 
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(Indoor Biotechnology), ActHIB Vaccine, Pneumovax23 Vaccine, IPOL Vaccine (MGH 
Pharmacy), Pertussis toxin (List Biological Laboratories), Tetanus toxin, Diphtheria toxin, 
Norovirus VP1 GII.4 (Native Antigen), PPD (Statens Serum Institute), HBV HBsAg Adw 
(GenWay), EBV gp350/220 (Immune Tech), VZV gE (kindly provided by Lingwood Lab, 
Ragon Institute of MGH, MIT and Harvard), HA1 (A/California/07/2009) (H1N1) 
(Immune Tech), HA1 (A/Texas/50/2012/H3N2) (eEnzyme), RSV A/B Pre F Fusion 
Protein, RSV A/B Post F Fusion Protein (kindly provided by XXX, NIH), Mumps – Enders, 
Measles – Endmonston, and Rubella HPV-77 (BioRad Antibodies). Antigens were 
covalently coupled to carboxylated microspheres (Luminex) through EDC and sulfo-NHS 
crosslinking (Thermo Scientific) as per the manufacture’s recommendations. Antigen 
coated microspheres (~800 of a single microsphere type per well) were added to 384 
well plates (Greiner Bio-One). Samples and controls were diluted at 1:100 in PBS except 
for IgG1, IgG2, IgG4, and IgA1 that were diluted 1:50. Optimal Ig specific dilutions were 
determined beforehand through titration. Samples and controls were added to the wells 
and incubated for 16 hrs at 4ºC. Microspheres were washed three times (PBS-0.1% 
BSA-0.05% tween-20) and were incubated with a PE-coupled detection antibodies for 
each subclass and isotype (IgG1, IgG2, IgG3, IgA1 and IgM, Southern Biotech), and Fc-
receptor (FcγR-2A, -2b, -3AV, -3b, Duke Protein Production facility) over the course of 
1 hr. Fc-receptors were fluorescently labeled with PE prior to the addition of immune 
complexes. This was achieved by using recombinant AviTag FcRs which were 
biotinylated with the BirA-500 kit (Avidity) according to the manufacturer’s instructions. 
Next, FcRs were incubated with streptavidin-PE (Thermo Scientific) for 10 min, and then 
quenched with an excess of 20 μΜ biotin for 10 min. After, incubation with detection 
antibodies plates were washed three times and acquired through flow cytometry, using 
the Intellicyt iQue Screener and S-Lab robot (PAA). Analysis was performed using 
ForeCyt software by gating on fluorescent bead regions and PE median fluorescent 
intensity (MFI) was reported. Background signal as defined as the MFI of microspheres 
incubated with human serum minus IgA/IgM/IgG (Millipore) was subtracted, and all 
samples and controls were run in duplicate. 

6.5.5 Effector functional assays 

Three bead based functional assays were performed during this study including 
antibody-dependent cellular phagocytosis (ADCP), antibody-dependent neutrophil 
phagocytosis (ADNP) and antibody-dependent complement deposition (ADCD) as 
previously described in66,161,160. 

Phagocytosis assays (ADNP and ADCP) were multiplexed in order to 
accommodate the throughput needed following the procedure described in 98. First the 
Pneumovax23 Vaccine, the IPOL Vaccine (MGH Pharmacy), Pertussis toxin (List 
Biological Laboratories), Diphtheria toxin (Native Antigen), PPD (Statens Serum 
Institute), EBV gp350/220 (Immune Tech), a 1:1 mix of HA1 (A/California/07/2009) 
(H1N1) (Immune Tech) and  HA1 (A/Texas/50/2012/H3N2) (eEnzyme), a 1:1 mix of RSV 
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A/B Pre F Fusion Protein and RSV A/B Post F Fusion Protein (kindly provided by XXX, 
NIH), and Measles – Endmonston (BioRad Antibodies) were biotinylated with sulfo-
NHS-LC-biotin (Thermo Scientific) according to the manufacturer’s instructions. Then 
Zeba spin desalting columns (Thermo Fisher) were used to remove unbound biotin 
through buffer exchange to PBS. Biotinylated antigens were then separately coupled to 
either red, yellow, or scarlet fluorescent neutravidin beads (Thermo Fisher) at a ratio of 
1:1. Beads and biotinylated antigens were coupled at 37oC for 2 hrs in low-binding 
microcentrifuge tubes (Corning). Beads were then washed twice with 0.1% PBS-BSA 
through centrifugation (16,000 x g, 5 min) at room temperature to remove unbound 
antigen. The antigen-coupled fluorescent beads were resuspended in 1:100 0.1% PBS-
BSA and stored for up to no more than a week at 4ºC in the dark. Sets unique color 
antigen coated beads were mixed in equal ratios prior to the beginning of the 
experiment.  

Immune complexes were then formed by the addition of 10µL of samples diluted 
1:100 in 0.1% PBS-BSA and 10µL of the antigen coupled bead mixture in each well of a 
96-well round bottom microplate (Corning) for 2 hours at 37ºC. After the formation of 
immune complexes, 200 µL of 0.1% PBS-BSA was added to each well, pelleted (1000 × 
g, 10 min), and the supernatant removed to clear unbound antibodies. For ADCP THP-
1s (ATCC), monocyte cell line, were incubated with immune complexes at 125,000 
cells/mL at 37˚C for 16 hours. After the incubation period, cells were fixed with fixed 
with 4% paraformaldehyde (Alfa Aesar). For ADNP, following immune complex 
formation white blood cells from healthy donors were added at concentration of 
125,000 cells/mL and incubated at 37˚C for 1 hr. White blood cells were isolated from 
ACD-treated whole blood through the lysis of a red blood cell. To remove red blood cells, 
a 1:10 ratio of ammonium-chloride-potassium (ACK) lysis buffer (150mM NH4Cl, 10mM 
KHCO3, 0.1 mM Na2EDTA, pH 7.4) was incubated with the cells for 5 min at room 
temperature followed by sequent washes with PBS. Following the bead-cell incubation 
period, neutrophils were stained with an anti-CD66b Pacific blue antibody (Biolegend) 
at concentration of 1:100 in 0.1% PBS-BSA and then fixed with 4% paraformaldehyde 
(Alfa Aesar).  

For quantification of antibody-dependent deposition of C3, an adapted 
multiplexed protocol was used based off of procedures described in309. First, the same 
antigens that were used for the ADNP and ADCP assays were carboxyl coupled to 
Luminex beads in the same manner described above, but with four times as more 
antigen per bead region. Antigen coated microspheres were then combined and diluted 
1:300 in PBS-0.1% BSA-0.05% tween-20. 10µL of plasma samples diluted 1:10 in PBS-
0.1% BSA were added to each well of a 384 well plate (Greiner Bio-One). Then immune 
complex formation was then facilitated by adding 45µL of the microsphere bead mixture 
to each well (~730 bead/well) and was incubated at 37ºC for 2 hrs on a plate shaker at 
800rpm. Following immune complex formation plates were washed twice in PBS-0.1% 
BSA. Then, lyophilized guinea pig complement (Cedarlane) was reconstituted according 
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to manufacturer’s instructions, diluted 1:44 in gelatin veronal buffer with calcium and 
magnesium (GBV++) (Boston BioProducts), 90µL of complement was added to each 
well, and incubated at 37ºC for 20 minutes while shaking at 800rpm. Following 
complement deposition plates were washed twice with cold 15mM PBS-EDTA. 
Afterwards, C3 was detected with an anti-C3 fluorescein-conjugated goat IgG fraction 
detection antibody (Mpbio). The detection antibody was diluted 1:200 in PBS, 50µL were 
added to each well, and was incubated at room temperature in the dark while shaking 
at 800rpm. Plates were then washed twice more before the acquisition of the data.  

All effector function assays were acquired with the iQue (Intellicyt) flow 
cytometer and S-Lab robot (PAA). Analysis was performed using ForeCyt software. THP-
1 cells were gated on singlets and bead-positive cells (ADCP), and Neutrophils were 
gated on singlets, CD66b, and bead positive cells (ADNP). A phagocytosis score was 
determined as the percent of bead-positive cells times the MFI of bead-positive cells 
divided by 10000. ADCD was determined by gating microspheres on singlets, 
fluorescent bead region, and C3 deposition was defined as PE MFI. All samples were 
averages of two technical replicates. Additionally, each replicated consisted of a 
different set of antigens which were conjugated on different color beads. Background 
signal was defined as the MFI of samples incubated with a PBS no antibody control 
which was subtracted from each score. 

6.5.6 Genotyping 

Genotyping of the TwinsUK cohort was performed with a combination of Illumina arrays 
(HumanHap300, HumanHap610Q, 1M-Duo and 1.2MDuo 1M). The normalized intensity 
data were pooled for each of the three arrays separately, with 1M-Duo and 1.2MDuo 1M 
being pooled together. For each dataset, Illluminus calling algorithm was used to assign 
genotypes. No calls were assigned if an individual's most likely genotyped was called 
with less than a posterior probability threshold of 0.95. Validation of pooling was 
achieved through the visual inspection of 100 random, shared variants for any overt 
batch effects. Finally, intensity cluster plots of significant SNPs were visually inspected 
for over dispersion biased no calling, and/or erroneous genotype assignment. SNPs 
exhibiting any of these characteristics were discarded. 

6.5.7 Heritability estimation 

In order to determine the influence of genetics on humoral traits biometrical genetic 
modeling of twin data was used. Following systems serology profiling of the cohort of 
twins, contributions to additive genetics (A), common environment (C), and unique 
environment (E) were decomposed through the use of linear mixed effect models. Prior 
to analysis, all traits were first rank-based inverse normal transformed. Models were fit 
with the specific parameterization structure described in264 and is based on structural 
equation modelling310. Briefly, this approach assumes that MZ twins share 100% of their 
genetics, DZ twins share approximately 50% of their genetics, all twins share equal 
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exposure to similar environmental influences, and that each twin has their own unique 
exposures. Therefore, narrow estimates of heritability can be made by the construction 
of linear mixed effect models which through the maximization of a log-likelihood 
function decomposes of covariance matrices into A, C, and E components. Heritability is 
therefore estimated by evaluating the variance due to additive genetics of particular a 
trait as a fraction of the total variance. An added benefit of this approach was that age 
could be accounted for as a potential confounder through its addition as a fixed effect. 
Thus, this approach was utilized to estimate the genetic influence across all humoral 
traits.  

Following the estimation of heritability, null models were constructed through the 
exclusion of the genetic parameter. In order to determine whether the inclusion or 
exclusion of the genetic parameter improved the process of fitting the Akaike 
Information Criterion (AIC) was used238. The AIC rewards goodness of fit while 
penalizing the addition of parameters which in turn helps avoid overfitting, with lower 
values of AIC considered as more preferable. Therefore, through contrasting the AIC 
values between the full genetic model and the null model of specific traits justification 
for a genetic component can be made. This was further quantified through determining 
ΔAIC scores which were calculated through the subtraction of a null model’s AIC by the 
AIC of their respective genetic model. Thus, the ΔAIC could be interpreted as a degree 
of confidence and helped provide justification for the influence of genetics on a trait. All 
calculation were implemented in R, version 3.4.4 using custom code available in the 
data availability section.   

6.5.8 Non-parametric combination 

Statistical evaluation of various classes of humoral traits were assessed using non-
parametric combination230,231. In brief, for each type of antibody characteristic, pathogen 
type, or other higher class (i.e., IgG1, Measles, all viral pathogen) class-level mean 
heritability scores were determined by first estimating the heritability of each sub-
feature (i.e., IgG1 H1N1, IgG1 Post-RSV, etc.) through the linear effect modelling 
framework described above. Next, null distributions for each global mean heritability 
estimate was constructed through permutating the twin pair zygosity labels a thousand 
times. This ensured that the permutation structure among the sub-features in each 
iteration that collectively comprised the null distribution of mean heritability estimates 
for a specific trait was preserved. Thus, significance was defined as the exact P value of 
the tail probability of the true mean heritability score within the null distribution. 

6.5.9 Genotyping quality control 

Quality control (QC) consisted of the removal of samples and variants which did not meet 
exclusion criteria and was conducted prior to analysis. Samples with genotypic call rates 
< 98% or excess heterozygosity across all SNPs (≥ 2 standard deviations from the 
sample mean) were excluded from the analysis. Additionally, ethnic outliers which 
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showed evidence of non-European ancestry were assessed by principal component 
analysis in comparison which HapMap3 populations and were therefore removed. 
Lastly, identity by descent (IBD) probabilities were used in order to identify samples that 
were suggestive of identity errors which were removed, and misclassifications of MZ and 
DZ twins were corrected.  

Following quality control of samples, variant QC was performed using a set of 
unrelated samples. This included the removal of SNPs with minor allele frequency (MAF) 
< 1%, significant deviation from Hardy-Weinberg equilibrium (HWE) (p < 10-6), and SNP 
call rate < 97% (SNPs with MAF ≥ 5%) or < 99% (for 1% ≤ MAF < 5%). Following variant 
QC, alleles from the genotyping arrays were combined and aligned to build37 forward 
strand alleles (https://www.well.ox.ac.uk/~wrayner/strand/). 

6.5.10 Genotyping imputation 

Prior to imputation the “HRC/1KG Imputation Preparation and Checking Tool” (version 
4.2.5) (developed by Will Rayner) was used to check input data for accuracy relative to 
expected HRC (http://www.haplotype-reference-consortium.org/site) or 1000G Phase 
3 reference panels (http://www.well.ox.ac.uk/~wrayner/tools/). This process identified 
errors in the original data, including incorrect REF/ALT designations, strand 
designations, extreme deviations from expected allele frequencies, and palindromic 
(A/T and G/C) SNPs with allele frequency near 0.5 which are often the source of 
imputation errors. The problematic variants identified were then either fixed or 
removed. Then using the quality controlled genotypes were pre-phased using 
SHAPEIT2311 with the 1000 Genomes haplotypes Phase 3 integrated variant set release 
in NCBI build 37 (hg19) coordinates (https://mathgen.stats.ox.ac.uk/impute/) as a 
reference panel. Imputations were performed using the Michigan Imputation Server312. 

6.5.11 GWAS analysis 

Genome-wide associations between pathogen-specific humoral traits and variants 
which were either directly genotyped or imputed were performed using the FaST-LMM 
package313. This package was chosen due to its ability to account for relatedness and 
hidden population structure in an additive genetic model through a realized genetic 
similarity matrix (GSM) using genotyping data. In order to avoid proximal contamination, 
GSMs are computed from all variants in other chromosomes other than where the test 
variant is located and are cross validated in a process called leave out one chromosome 
(as implemented in FaST-LMM)314. Models in the FaST-LMM algorithm are fit with 
restricted maximum likelihood (REML) method and P values between a given variant and 
trait are computed using the likelihood ratio test. Additionally, age was added as 
covariate and was corrected for across all associations, and the percentage of the 
variance explained by each variant was determined using FaST-LMM. Association 
results were further quality controlled in Plink version 1.9beta315 by the removal of 

https://www.well.ox.ac.uk/%7Ewrayner/strand/
http://www.haplotype-reference-consortium.org/site
http://www.well.ox.ac.uk/%7Ewrayner/tools/
https://mathgen.stats.ox.ac.uk/impute/1000GP_Phase3.html
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variants with minor allele frequency (MAF) > 0.1, Hardy-Weinberg equilibrium < 10-8, 
and SNP call rate > 90%. This yielded a total 4,663,961 of variants.  

GWAS were performed on select pathogen-specific antibody responses (n=45) 
which provided the best evidence for heritability (heritability > 30%, and ΔAIC > 0). 
Genomic control inflation factors (λGC) had a median of 1.009 (range 0.990 - 1.026) and 
indicated that population stratification had minimal influence on the overall test 
statistical distribution. Associations were considered genome-wide significant for (p < 
10-8) and suggestive for (p < 10-4). Characterization of lead SNPs was achieved through 
selection of variants with the smallest p values within a 1-Mb genomic region. Linkage 
disequilibrium-based clumping was performed on GWAS results for each trait separately 
using Plink version 1.9 beta for all variants with association of (p < 10-4). This process 
compared variants in LD (r2 > 0.5) within a 100-kb block of the strongest associated 
variants and pruned them. Lastly, regional association plots were generated using the 
browser-based application of LocusZoom.js316 with 1000 Genomes genotypes for 
European populations on build 37 (hg19) as an LD resource and built-in gene annotation. 
Genes which were further from variants were omitted for visualization processes when 
variants were in regions of high gene densities.  

6.5.12 Variant annotation 

Functional annotation of genetic variants was performed with ANNOVAR using build 
hg19265. Gene-, region-, and filter-based annotations were determined using the 
refGene, dbnsfp42a, and gwasCatalog databases. The regulatory elements of variants 
were evaluated using both RegulomeDB v2.03266 and HaploReg v4.1. This included the 
search for overlap in eQTL data, regulatory chromatin states and histone modifications, 
altered motifs, and proteins bound. Both the leading variants and variants in linkage 
disequilibrium (r2 > 0.8) were annotated (Table 6-S2). 

6.5.13 Gene set analysis 

Gene set analysis was performed using magma, version v1.09. Traits which showed 
evidence of heritability (univariate=45, multi-trait=29) were selected for gene set 
analysis. Prior to analysis, SNPs were mapped to genes based on a genomic window of 
10-kb using build 37 (hg19). Gene based p-values and correlations among neighboring 
genes were then computed using the Top 1 SNP-wise gene analysis model. For each 
traits variants with phenotypic associations of (p < 0.05) were included as inputs. 
Competitive gene-set analysis was then implemented using gene analysis using the trait 
specific gene analysis results using a database of immune specific gene ontology 
biological processes. Gene set p values across all traits were then multiple hypothesis 
corrected using the Benjamini-Hochberg procedure with a false discovery rate of (α = 
0.05). 
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6.5.14 Co-expression correlations 

Single cell RNA sequencing data from275 was used for all expression based analyses and 
was select for its coverage . Gene counts were normalized to log counts per million 
(CPM) using Scanpy package version 1.9.1317. Co-expression correlation networks were 
performed using protein coding genes and GWAS candidate genes, and mitochondrial 
genes and genes that were not expressed in the major of were excluded. Immune cell 
types selected for co-expression analysis were based on the mean expression of GWAS 
candidate genes. Spearman correlations were then determined and pruned based on 
statistical significance with Bonferroni correction for multiple hypotheses and (|ρ| > 0.3). 
Correlation networks were constructed based on top correlations between genes and 
GWAS candidate genes and visualized using Cytoscape version 3.7.2. Enrichment 
analysis of co-expressed genes was determined using Enrichr with the GSEAPY package 
version 0.10.8318. Correlations among the mean expression of genes identified by the 
variant screen and fraction of isotype or subclass abundance were determined through 
spearman correlations across donors. Isotype or subclass abundance was determined 
through comparing the expression of immunoglobin heavy constant (IGH) genes (i.e., 
IGHG1) as a fraction of all IGH isotype and subclass expression. Correlations to class 
switch recombination genes and were assessed in a similar fashion but with mean 
expression of genes in B cells. 

6.6 Supplementary figures and tables 

 
Table 6-S1. Summary of Profiled Infectious Diseases and Antigens,  related to 
Figure 6-1 
Pathogen classification, antigens, and antigen types which represent the infectious disease or allergens 
which were profiled in this study. 
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Figure 6-S1. Evaluating of variation driven by potential external effects,  
related to Figure 6-1 
Principal components analysis (PCA) scores plot built on normalized humoral features and split by age 
ranges, alcohol use, and smoking. Normalization was achieved by first subtracting technical noise 
followed by rank-based inverse normal transformation. In case of alcohol use and smoking ellipses 
correspond to the 95% confidence intervals for each group. 
 

 

Figure 6-S2. Coordination of Antibody Characteristics and Pathogen Specificities 
across Monozygotic and Dizygotic Twins, related to Figure 6-2 
Pairwise spearman correlations organized by type of antibody measurement and with a repeating antigen 
sequence determined using only monozygotic twins (A) and dizygotic twins (B) respectively.    

*Avaiable upon request  

Table 6-S2. SNPs in Linkage Disequilibrium with Genome-wide Significant Hits, 
related to Figure 6-5 
Lead variants associated to humoral traits which reach genome-wide significance threshold of (p < 5 x 10-
8). Annotations of variants in linkage disequilibrium with the lead variant (r2 > 0.8) are shown. 
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Table 6-S3. Genes Related to Top Immune Process Identified with Gene Set 
Analysis, related to Figure 6-5 
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Figure 6-S2. Gene List Enrichment Analysis of Co-expressed Genes Related to 
Humoral Traits, related to Figure 6-6 
Gene list enrichment analysis performed on positive and negative co-expressed genes which were 
significantly correlated to candidate GWAS genes. The color of the dots corresponds to the combined 
score, the size of the dot the number of genes related to the process and the negative log10 q-values are 
depicted on the x-axis. 

 
Table 6-S4. Overlap of Variants with Disease Outcomes and Immune Related 
Phenotypes, related to Figure 6-6 
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Chapter 7 
 
Conclusions and future perspectives 
Humoral immunity is comprised of a complex network of polyclonal antibodies which 
can vary in both antigen specificity and how they drive effector functions. This thesis 
described the development of experimental and computational tools to understand how 
polyclonal antibody composition shapes aspects of human health. This was achieved by 
developing a unique antibody dependent primary monocyte effector assay, machine 
learning approaches and novel computational methods for uncovering mechanisms of 
protection against infectious diseases and evaluating vaccine strategies, and 
characterizing the genetic architecture of pathogen-specific polyclonal antibody 
characteristics and functions. These works have collectively led to the discovery of 
genetic variants that control the development of antibody characteristics and effector 
functions, aberrant immunity linked to SARS-CoV-2 mortality, and specific vaccine 
platforms that drive tissue-specific immunity. From a biological perspective much is still 
unknown regarding the cellular decisions responsible for differences observed in 
subpopulations of individuals and across different pathogens. In order to gain a more 
complete picture, development of modelling approaches for integrating multi-omics and 
antibody data is still needed. This would allow to further characterize the cellular B cell 
mechanisms that are responsible for generating specific downstream polyclonal pools. 
Regardless, the works presented here aided in improving the understanding of how 
polyclonal antibody composition impacts human health and the factors responsible for 
their development. This has provided a foundational framework which could be used to 
improve the design of future vaccines and informs the clinical management against 
specific infectious diseases.  
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7.1 Extending the ADMP assay  
In chapter two of this thesis the development of an antibody dependent primary 
monocyte phagocytosis assay (ADMP) was described. This assay provides several 
distinct advantages over the traditional THP-1 cell based assay including enhanced 
sensitivity and greater dynamic range, and the ability to capture changes in surface 
markers and cytokine profiles that more accurately represent mechanisms in situ. In 
addition to improved sensitivity and the ability to describe downstream consequences 
of phagocytosis, the use of primary monocytes also allows for the investigation of 
disease-associated states and whether certain perturbations alter responses to immune 
complexes. Perturbed monocytic states have been previously associated with many 
diseases45,90,91, and although donor variability was low among healthy donors (Fig. 2-1F 
and Fig. 2-S1D-E) ADMP assays performed with perturbed monocytic cell states could 
provide different results. Therefore, monocytes isolated from donors which exhibit 
disease-specific characteristics could uniquely respond to immune complexes and thus 
provide additional novel mechanistic insights into disease specific immunopathology.  
 At present, the ADMP assay readouts are comprised of signals formed by 
integrating information across all monocyte subsets. Monocyte subsets are divided into 
three major populations: classical, non-classical, and intermediate. Each subset is 
defined by CD14 and CD16 expression and is responsible for different functions. 
Classical monocytes are the dominant subset and are thought to be primed for 
phagocytosis. Alternatively, intermediate monocytes have been suggested to 
preferentially participate in antigen presentation, and non-classical monocytes in Fc-
driven phagocytosis and anti-viral immunity91. Yet, how the composition of polyclonal 
antibodies and Fc structure impacts the downstream phenotypes and cytokine secretion 
of each subset has yet to be investigated. This could help better inform how these 
subsets cooperate to collectively respond to infection and would provide further insight 
into how the expansion of particular subsets relates to various inflammatory diseases319.  
 Additionally, the ADMP assay being a bead-based assay allows for the 
multiplexing of antigens98. While multi-bead uptake has been shown to recapitulate 
single-plex signals, offering a sample-sparing approach to perform multiplexed ADCP 
assays, competition assays with antigens of interest are also possible. Therefore, the 
ADMP assay may be further modified to capture individual antigen responses, 
multiplexed activity, and even competitive responses. Moreover, the assay may be 
modified to used cryo-preserved monocytes, that if thawed properly monocyte viability, 
phagocytic activity, morphology, migration, adherence, and other functions  minimally 
impact monocyte activity99–103. Therefore, the use of cryopreserved monocytes could 
provide additional flexibility when fresh monocytes are not available such as in the case 
of when profiling perturbed monocytes from non-healthy donors. 
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7.2 Upper and lower respiratory correlates of humoral protection across 
other respiratory viruses 
In chapter three machine learning approaches and development of computational 
methods were used to uncover differences in upper and lower correlates of protection 
against RSV based on different vaccine strategies. RSV infection initially begins in the 
upper respiratory tract, and ultimately migrates into the lower respiratory tract where it 
can cause severe disease140. The upper and lower respiratory tracts are composed of 
distinct cellular components and represent unique immunological landscapes141. Thus, 
the immune correlates of protection against RSV infection may vary across different 
compartments, and thus unique antibody functions maybe required in order to restrict 
protection upon entry than at the site of viral replication and disease. This is consistent 
with our findings which highlighted neutralization, IgA levels, and ADCD as correlates of 
upper respiratory protection, and IgA and ADNP function as correlates of protection in 
the lower respiratory tract. 
 Beyond RSV, other respiratory viruses feature similar pathologies. For example, 
SARS-CoV-2 virus also infects both upper and lower respiratory tracts. Interestingly, the 
SARS-CoV-2 B.1.1.529, omicron variant, has been shown to preferentially target the 
upper respiratory tract and result in reduced lethality compared to the delta variant320. 
Yet, the antibody correlates of protection in the lower and upper respiratory tracts 
against SARS-CoV-2 infection are currently unknown. Therefore, given our previous 
findings and the reported differences in pathology across SARS-CoV-2 variants, it is 
likely that extending a similar analysis to study the correlates of compartment-specific 
protection against SARS-CoV-2 could help further elucidate the etiology of COVID-19. 
Additionally, defining if the same vaccine platforms induce similar compartment-
specific correlates against SARS-CoV-2 could help improve vaccine design especially in 
the wake of variant immune evasion. 

7.3 Approaches for expanding the longitudinal modelling framework 
In chapter five, a numerical algorithm was developed in order to temporally model 
humoral development in a cohort of SARS-CoV-2 infected individuals. To determine 
differences in dynamics between groups, a four-parameter logistic curve was used and 
is modelled on the group-level. For a given feature, multiple models are built that 
describe dynamics of both groups simultaneously, allowing for combinations of 
parameters to differ while constraining others to be the same. Therefore with 4 
parameters, there are 16 possible combinations/models that can be used to potentially 
explain the dynamics of a feature. Each model is fitted using maximum likelihood 
estimation, treating each measurement as independent and assuming that differences 
in measurements are a result of noise. Thus, this framework is best suited for cohorts 
for which variation is not driven by confounders, and is constrained to study designs 
without any multi-level structure.  
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For such applications, a customized nonlinear mixed-effects model could be 
developed to longitudinally model the dynamics of each individual. This would further 
enable the ability to cross validate results and thus improve generalizability. Taking this 
development one step further, the estimation of models which integrate parameters 
across multiple features would enhance the understanding of whether of the specific 
aspects of humoral development across multiple features best describes differences 
among groups. This would thus be representative a multivariate nonlinear mixed effect 
model.  

Both the current and potential future frameworks are well suited for numerous 
additional applications beyond the one mentioned in this thesis. For example, little is 
known about the humoral development of antibody characteristics and functions 
against other infectious diseases. Therefore, the current framework could be easily 
applied to other pathogens to understand differences between susceptible and resistant 
subpopulations. Additionally, nonlinear mixed effect models could be used to profile 
differences in dynamics while accounting for multi-level structure like in the case of 
maternal-fetal transfer studies and the evaluation of multiple different vaccine designs.  

7.4 Methods for validating genetic mechanisms 
In chapters six, a genomic pipeline was developed to screen genetic variants which 
associated to pathogen-specific polyclonal antibody characteristics and functions, and 
was then functionally validated with transcriptomic data and pathway analysis. This led 
to the discovery of five significant genomic regions and multiple immune processes 
which related to humoral phenotypes. These results were then used to carefully 
construct mechanistic hypotheses. The goal of this study was to propose mechanisms 
which could then be further validated in future studies. The five mechanisms which were 
highlighted in the study were not B cell specific but rather involved innate immune and 
T cells or were related to specific host-pathogen interactions. This indicated that the 
factors which affect polyclonal antibody properties are more likely due to changes in the 
external stimuli or environment that B cells experience.  

To validate the functional and regulatory consequences of our top five GWAS hits 
functional genomics methods such as Hi-C for chromatin structure, ChIP-seq for TF 
binding to DNA, and more can be employed. Then direct effects like change in 
expression and certain cellular phenotypes (e.g. migration, and antigen presentation) 
can be tested through genetic perturbations of a cell type in vitro. However, the overall 
induction of humoral immunity involves many cells and secondary interactions. 
Therefore, to properly evaluate the effects of certain alleles in vivo transgenic mouse 
models are needed. Thus, first a mouse line would be generated to contain our germline 
mutations with our variant of interest. Then both the transgenic mice and healthy 
controls would be challenged with the respective pathogen. This allows to investigate 
associated pathologies and many additional aspects not possible with human donors. 
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7.5 Enhancing mechanistic insights by multi-omics integration 
The majority of SNPs that are identified during GWAS are located in non-coding regions 
of the genome321.  In chapter six, several of the SNPs reaching genome-wide significance 
were located in intergenic regions. Regulatory SNPs can control the downstream 
expression of genes and ultimately impact phenotypes322. SNPs can be located within 
regulatory elements such as promoters, enhancers, and nuclear structural elements 
such as CCCTC-binding factors (CTCF). For example, variant rs2379 which was 
significantly associated with ADNP functional antibodies was located in a CTCF binding 
region. They can also alter CpG DNA methylation (DNAm) patterns, and has been linked 
to various diseases323,324. In our study, variant rs10131536 which was associated to 
IgG4 against Mumps was located at a site of h3k4me1 found on T helper cells. 
Therefore, it is possible that genetic variants located in sites of potential DNAm can 
impact the composition of polyclonal pools by altering cell function and in turn affect 
disease outcomes.  

Multiple studies over the past few years have uncovered that loci specific DNAm 
are genetically influenced325. DNAm occurs at CpG sites of the genome, and the majority 
of unmethylated CpGs are within CpG islands (CGI) which are repeats in close proximity, 
which have been shown to suppress the expression of nearby genes326. Interestingly, cis 
(proximal) SNPs have been estimated to account for ~60% of DNAm variability327. These 
regulatory SNPs are known as methylation quantitative loci (me-QTL) and have been 
associated with various diseases, processes, and tissue types328. me-QTLs are 
calculated by using linear mixed models to observe whether particular SNPs track with 
DNAm within a ±1-1000kb range. It can often be the case that a single me-QTL results 
in multiple cis CpG methylation events329. However, due to LD, linking causal SNPs to 
methylation events is difficult, but Bayesian hierarchal models can be fitted to infer 
putative causality330. In addition, the causality of me-QTLs can be quantified through a 
two-sample mendelian randomization process. Beyond, integrating methylation data 
other functional genomics data such as mRNA co-expression and protein-protein 
interaction data could also further help improve the mechanistic resolution of how our 
GWAS hits control pathogen-specific antibody characteristics and functions.   
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