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Abstract

Predictions of metal consumption are vital for criticality assessments and sustainabil-

ity analyses. Although demand for a material varies strongly by region and end-use

sector, statisticalmodels of demand typically predict demandusing regressionanalyses

at an aggregated global level (“fully pooled models”). “Un-pooled” regression models

that predict demand at a disaggregated country or regional level face challenges due

to limited data availability and large uncertainty. In this paper, we propose a Bayesian

hierarchical model that can simultaneously identify heterogeneous demand parame-

ters (like price and income elasticities) for individual regions and sectors, as well as

global parameters. We demonstrate the model’s value by estimating income and price

elasticity of copper demand in five sectors (Transportation, Electrical, Construction,

Manufacturing, andOther) and five regions (North America, Europe, Japan, China, and

Rest of World). To validate the benefits of the Bayesian approach, we compare the

model to both a “fully pooled” and an “un-pooled” model. The Bayesian model can pre-

dict global demand with similar uncertainty as a fully pooled regression model, while

additionally capturing regional heterogeneity in income elasticity of demand. Com-

pared to un-pooled models that predict demand for individual countries and sectors

separately, our model reduces the uncertainty of parameter estimates by more than

50%. The hierarchical Bayesian modeling approach we propose can be used for var-

ious commodities, improving material demand projections used to study the impact

of policies on mining sector emissions and informing investment in critical material

production.
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2 BHUWALKA ET AL.

1 INTRODUCTION

Theworld is increasingly dependent on elements from the periodic table once thought rare or trace, driven by the need for sustainable technologies

(Klinger, 2020; Vidal et al., 2018). Firms and governments alike are trying to improve the characterization and projection of materials production

and demand. These projections are used to understand resource stress (Elshkaki et al., 2016; Graedel et al., 2015; Nassar et al., 2012) and the

environmental implications of material consumption (Van der Voet et al., 2019). Unexpected high demand for materials can increase costs, which

can influence companies’ decisions to make capital investments, commit to circularity, or expand their businesses (Kuipers et al., 2018; Leader

et al., 2019; Månberger & Stenqvist, 2018). Demand forecasts are largely conducted at an aggregated global level even though there is significant

heterogeneity in demand dynamics at various regions and sectors (He & Small, 2022). Moreover, demand forecasts typically have large uncertainty

within and across studies (Watari et al., 2021). For demand estimates to be effective in guiding decision-making, we need novel forecast methods

that reduce uncertainty while accounting for regional and sectoral differences.

Models of future material demand are typically informed by two approaches: (1) stock dynamic modeling and (2) inflow-driven modeling. Stock

dynamic models (or “bottom up models”) calculate material demand as a derivative of the changing stocks of various applications that contain the

material. On the other hand, inflow-driven models (or “top down models”) find econometric relationships between overall material demand in a

region (typically, globally) and input variables such as population and income.

Stock dynamic approaches are used to estimate demand for metals (Deetman et al., 2018; Gerst, 2009; Glöser et al., 2013; Watari et al., 2020)

usually in specific smaller-scale case studies like that for South Africa (Kapur & Graedel, 2006), Switzerland (Bader et al., 2011), China (Dong et al.,

2019; Zhang et al., 2015), and theUnited States (He&Small, 2022;Wang et al., 2022). A comprehensive stock dynamicsmodel of theworldmaterial

stocks requires sufficientdataabouthowmuchmaterial is used inmostmajor applications, in all regions. Therefore, although stockdynamicsmodels

are more detailed and capture heterogeneity between regions and sectors, they are limited by data constraints and a large number of required

assumptions (Schipper et al., 2018).

Due to these limitations, the most common approach for estimating demand involves inflow-driven modeling (Müller et al., 2014; Watari et al.,

2021). Of the 63 demand projection studies reviewed byWatari et al. (2021), 66% used an inflow-driven approach, while only 26% applied a stock

dynamics approach. These models estimate material consumption in each year as a function of variables such as population, income, and price

(Elshkaki et al., 2018; Schipper et al., 2018). Inflow-driven approaches have the advantage of accessible aggregate data at the national or global

level (Liu et al., 2013) as well as transparency due to the fewer required assumptions. Within the category of inflow-driven models, regression

models are commonly used by researchers to analyze the demand for key materials, such as copper (Ciacci et al., 2020; Dong et al. 2019.; Fisher

et al., 1972; Kuipers et al., 2018; Van der Voet et al., 2019), aluminum (Elshkaki et al., 2020), and steel (Dhar et al., 2020). Most regression models

involve estimating keyparameters like incomeelasticity (i.e., percentage change inmaterial demand resulting froma1%change in economic growth)

and price elasticity (i.e., percentage change in demand resulting from a 1%price changes) fromhistoric data (Crompton, 2015; Fernandez, 2018; Pei

& Tilton, 1999). This relationship of demand with income and price is then used to project future demand under various scenarios using scenario

analyses (Börjeson et al., 2006).

A major limitation of regression models is that they lack appropriate inflow data in many cases. As a result, they are less useful for detailed

regional analysis (Schipper et al., 2018). It is important to understand demand across locations because demand dynamics can differ significantly

between developed and developing countries (Ayres et al., 2003; Krausmann et al., 2009), which can be lost in aggregated global demand values

(He & Small, 2022). Due to data limitations, regressionmodels that estimate demand across individual countries find large uncertainty in estimates

such as price elasticity of demand. For instance, only 23% of the price elasticity values estimated by Fernandez (2018) were statistically significant.

The key issue in regression modeling for material demand, therefore, is the trade-off resulting from choosing the level of data pooling. If demand

is analyzed at a localized level (i.e., data from individual regions and sectors are treated separately or “un-pooled”), there is larger uncertainty in

estimated parameters because of a smaller amount of available inflow data and a greater variation within countries. Ifdata are aggregated and

demand is analyzed at a global level (i.e., the demand data are aggregated or “pooled”) to reduce uncertainty, heterogeneous trends across different

countries and sectors are lost.

In this paper, we apply a Bayesian hierarchical modeling approach to overcome the aforementioned challenges with choosing the level of data

pooling in regressionmodeling of demand (Gelman et al., 2013). Bayesian regressionmodels permit the use of smaller datasets through hierarchical

modeling (Vehtari et al., 2017) which allows sharing of information across heterogeneous sites. Hierarchical models estimate local parameters (i.e.,

price elasticity in a specific country) as well as global parameters (i.e., aggregate price elasticity). The global parameter value (which is estimated by

pooling data across sites) acts as a default (or prior) for the local parameter values and therefore reduces uncertainty in local parameter estimates.

Therefore, Bayesian hierarchical models make predictions with lower uncertainty and greater accuracy than classical least squares regression,

which is itself a special case of hierarchical models (Gelman, 2006).

Bayesian modeling has already been adopted in the literature to predict demand under uncertainty for other systems such as electricity (Wang

et al., 2017) and water (Zhang et al., 2019). Bayesian approaches have also been used to reduce uncertainty in material flow analyses when little

data are available (Dong et al, 2022; Lupton&Allwood, 2018). In these instances, Bayesian techniques allowed amore informed decision-making by

reducing uncertainty while accounting for spatial variation. However, to the best of our knowledge, Bayesian hierarchical regression modeling has

not yet been applied to analyzematerial demand.
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BHUWALKA ET AL. 3

The Bayesian hierarchical model we introduce estimates the price and income elasticity of demand (i.e., demand for a material is modeled as

a function of material price and GDP). To demonstrate the benefit of our model in cases with low inflow data, we apply the model on copper

demand data for five regions and five sectors from 2000 to 2014 (only 15 data points per region-sector combination). We compare our model

against an “un-pooled” model where demand parameters for each region–sector combination are estimated independently, as well as against a

“fully pooled” model that estimates demand parameters at a global level. While we demonstrate how our approach can improve inflow-based

regression models, we cannot compare directly against stock dynamics models which are used in cases with different modeling goals and data

availability.

We find significant reduction in the uncertainty of the price elasticities (2.3× lower) and income elasticities (1.6× lower) when using a hierar-

chical model over an un-pooled model. As prediction uncertainty typically compounds over time, this leads to a very large reduction in uncertainty

(>10×) in demand prediction over a 25-year time horizon. Finally, when compared to a fully pooled regression model that only captures global val-

ues of income elasticities, a hierarchical model can capture heterogeneity in different regions’ response to GDP growth without any increase in

uncertainty.

2 METHODS

We model copper demand in five regions and five sectors as a function of price and income (real gross domestic product or GDP). Our goal is to

demonstrate how a Bayesian hierarchical demand model helps reduce uncertainty in material demand estimates compared to linear regression

models. We compare the estimated price and income elasticities of demand for each region–sector combination from three candidate models:

(i) the Bayesian hierarchical model we propose in this paper, (ii) an “un-pooled” model where the demand in each region and sector is modeled

independently, and (iii) a “fully pooled” model where demand is modeled at a global level. In this section, we describe the variables included in our

model and how the model form compares with the literature. We then examine the three candidate models and the differences between them.

Finally, we describe the data we use to train our models.

2.1 Model variables

As commonly found in other demand analyses, we model demand as a log-linear relationship between demand, price, and income. We make small

modifications to the Pei and Tilton’s “simple”metal demand that specifies demand for a particularmetal (Dt) in a period as a function of its own price

(Pt), the price of a substitute (SPt ,) and income measured by GDP (GDPt) (Pei & Tilton, 1999). The variable choices and model transformations we

make are discussed in detail in Supporting Information Section A.

Specifically, we model the change in log-demand in any region–sector combination as a linear function of the change in the log-price and the

change in the region’s log-GDP in that period:

Δ ln
(
Dsi,rj ,t

)
= 𝛽osi ,rj + 𝛽si ,rjΔ ln

(
P′t
)
+ 𝛽GDPsi ,rj Δ ln

(
GDPrj ,t

)
(1)

The subscript si is the sector index for sector i, rj the region index for region j and year t. Dsi,rj ,t , the total copper demand in year t for each of the

25 region–sector combinations.

The intercept, 𝛽osi ,rj , measures the temporal effect, that is, change in demand due to technology growth or change in consumer preferences. It

specifically captures the change in the demand growth rate for amaterial in the absence of price or income changes. For example, while technology

growth and efficiency inmanufacturing reducesmaterial demand over time, change in consumer preferences can increase or decrease demand.

The terms 𝛽si ,rj are the sector- and region-specific price elasticities. The price used here, P
′
t =

Pt+2∗Pt−1+Pt−2
4

, is the trailing 3-year average copper

cathode price (similar to Pei andTilton).Wedonot usemetal price at year tdirectly because it takes time formanufacturers to cutmaterial intensity

in response to price and the demand is more likely impacted by long-term price. Since an increase in rawmaterial price should causemanufacturers

to use alternativematerials or dematerialize, the price elasticity 𝛽si ,rj is expected to be negative.

Finally, 𝛽GDPsi ,rj is the income elasticity; it measures the change in the demand due to a percentage change in real GDP. Typically, as income level

increases, copper use either increases or stays constant. The income elasticity 𝛽GDPsi ,rj is therefore expected to be non-negative.

2.1.1 Bayesian hierarchical model

A Bayesian hierarchical model allows for partial pooling of information, providing the option to pool data from different local groups (regions, sec-

tors, or both inour case). Stateddifferently,multilevel or hierarchicalmodels can separately estimate thepredictive effects of an individual predictor
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4 BHUWALKA ET AL.

F IGURE 1 Graphical representation of the Bayesian hierarchical model (top), the un-pooledmodel (middle), and the pooledmodel (bottom).
The grey circle represent the independent (predicted) variable in themodel, that is,Δ ln(Dsi,rj ,t), the grey squares represent the dependent
(predictor) variables, that is,Δ ln(P′t) andΔ ln(GDPrj ,t). The white circles represent model parameters, including priors, hyperpriors, and the error
term. N() refers to the normal distribution and Exp() refers to the exponential distribution.

and its group-level mean. For this reason, hierarchical models are contextual; they can account for effect specific to each local group, but also the

global mean, which further informs the local estimate.

Figure 1 shows a graphical representation of the Bayesian hierarchical model with the dependent and independent variables, as well as param-

eters (the “priors” and “hyperpriors”). Priors are probability distributions that reflect existing knowledge or belief about uncertain value of a

parameter. Priors add value in that it allows for a Bayesian model to estimate the credible interval for a parameter faster without having to search

over the entire real number space. Priors inform the “first guess” of the parameter values, essentially improving parameter estimation when data

are limited. In our model, we use wide probability distributions as priors to minimize bias in the parameter estimates. (See Supporting Information
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BHUWALKA ET AL. 5

TABLE 1 Priors and hyperpriors used in the Bayesian hierarchical model

Priors (local) Hyperpriors (global)

𝛽osi ,rj ∼ Normal (𝛽0 ,𝜎o) 𝛽0 ∼ Normal (0, 1)
𝜎o ∼ Exp (1)

𝛽si ,rj ∼ Normal (𝛽,𝜎) 𝛽 ∼ −Exp (1)

𝜎 ∼ Exp (1)

𝛽GDPsi ,rj ∼ Normal (𝛽GDP ,𝜎GDP) 𝛽GDP ∼ Normal (0, 1)
𝜎GDP ∼ Exp (1)

Section F to see model sensitivity to change in these priors. Given that we have small data, we assessed the influence of these priors to our model

results.)

Hyperpriors are used in our Bayesian hierarchical model to initialize the model such that it finds better mean and standard deviations for each

prior (Gelman, 2006). The hyperpriors are informed by the literature but are chosen such that they are non-informative (have wide probability

density range). We use a −Exp (1) prior for the hyperprior for the global price elasticity 𝛽. The 95% confidence interval of an −Exp (1) distribution

between−3 and 0. As we expect the price elasticity to always be negative, the hyperprior has no support in the positive real region. Moreover, the

value of zero has a maximum probability in an exponential distribution which ensures we do not bias the price elasticity estimates. Typical values

of global price elasticity fall comfortably within the −3 to 0 range defined by our hyperpriors. We use a normal hyperprior for income elasticity

and intercept that is centered around zero so that the posterior estimates are not biased by the prior we assign. Pei and Tilton find the average

income elasticity across regions to be 0.066, which comfortably falls within the 95% confidence range of the hyperprior 𝛽GDP between −2 and 2

(Pei & Tilton, 1999).

To estimate the parameters, we apply the No-U-Turn (NUTs) algorithm with PyMC3, a gradient-based extension to Hamiltonian Monte Carlo

Sampling algorithm that improves efficiency ofMarkov chainMonte Carlo (MCMC)methods.Models in our experiments are run on two chains.We

run 3000 iterations in addition to 1000 discarded samples that were used for model tuning. More details are in Supporting Information Section E.

Themodel likelihood function p(ysi,rj ,t|𝜃) is fit to the data assuming normally distributed errors, that is,

p(ysi,rj ,t|𝜃) = N
(
𝛽osi ,rj + 𝛽si ,rjΔ ln

(
P
′

t

)
+ 𝛽GDPsi ,rj Δ ln

(
GDPrj ,t

)
, 𝜀
)

(2)

where

ysi,rj ,t = Δ ln
(
Dsi,rj ,t

)
𝜃 is the parameter vector [𝛽osi ,rj , 𝛽si ,rj , 𝛽

GDP
si ,rj , 𝛽0,𝜎o, 𝛽,𝜎, 𝛽GDP,𝜎GDP, 𝜀]∀i, j containing the priors ( 𝛽osi ,rj , 𝛽si ,rj , 𝛽

GDP
si ,rj ) and hyperpriors

(𝛽0,𝜎o, 𝛽,𝜎, 𝛽GDP,𝜎GDP ). See Table 1 for more details about priors.

si = specific sector, i ∈ {Transportation, Electrical, Construction, Manufacturing andOther}

rj = specific region, j ∈ {China, North America,Europe, Japan, Rest of theWorld}

t = year

𝜀 is the variance of themodel error. It is initialized with a prior 𝜀 ∼ Half − Cauchy(5)

The joint posterior probability P(𝜃| ysi,rj ,t) for the hierarchical model can bewritten as follows:

P
(
𝜃| ysi,rj ,t

)
∝

Nr∏
i=1

Ns∏
j=1

T∏
t=1

{
p
(
ysi,rj ,t|𝜃

)}
×
{
p
(
𝛽osi ,rj |𝛽0,𝜎o

)
p
(
𝛽si ,rj |𝛽,𝜎

)
p
(
𝛽GDPsi ,rj |𝛽GDP,𝜎GDP)} × p

(
𝛽0

)
p (𝜎o) p (𝛽) p (𝜎) p

(
𝛽GDP

)
p
(
𝜎GDP

)
(3)

where

Nr = 5 = number of regions considered

Ns = 5 = number of sectors considered

T= 14= numbers of years of annual data

and p(ysi,rj ,t|𝜃) is the data likelihood that themodel fits (same as Equation 2 above) The rest of the terms in the equation that aremultiple with the

likelihood are the prior distributions (posterior= likelihood× prior).
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6 BHUWALKA ET AL.

Section E in the Supporting Information validates the estimation of the posterior was done correctly by using the posterior-predictive checks

outlined by Gabry et al. (2019). In Supporting Information Section E we compare the posterior predicted demandwith the actual data and also plot

themodel error.We find that the error has an average value close to 0.

2.1.2 Alternative models

In this paper, we compare the Bayesian hierarchical modeling approach outlined above with a “fully pooled” and “un-pooled” approach described in

the following sections.

Un-pooled model

If we run individual regressionmodels to estimate demand for each region–sector combination, we are running an “un-pooled” model:

Δ ln
(
Dsi,rj ,t

)
= 𝛽osi ,rj + 𝛽si ,rjΔ ln

(
P′t
)
+ 𝛽GDPsi ,rj Δ ln

(
GDPrj ,t

)
(4)

An un-pooledmodel does not sample global parameters, which can lead to overfitting.

They typically havemore uncertainty because we are not sharing information across regions or sectors or their combinations. Pei and Tilton use

individual regression models to analyze demand in 18 countries and can be considered to fall under our definition of an un-pooled model (Pei &

Tilton, 1999).

A classical un-pooled regressionmodel has uniform completely uninformative priors for the individual parameters (𝛽osi ,rj , 𝛽si ,rj , 𝛽
GDP
si ,rj ∼ U(−∞,∞)).

To best simulate this, we initialize parameters with centered (zero mean), uninformative priors (initialized with a very large standard deviation).

The main difference between the two models is that the un-pooled model does not estimate a group-level mean (see Figure 1; does not estimate

𝛽, 𝛽0, 𝛽GDP,𝜎,𝜎GDP,𝜎0). Since there is no group-level mean, each site’s estimate for parameter values is completely independent of the other sites’

parameter estimates.

𝛽osi ,rj ∼ Normal (0, 100)

𝛽si ,rj ∼ Normal (0, 100)

𝛽GDPsi ,rj ∼ Normal (0, 100)

The joint posterior for the un-pooledmodel can bewritten as follows:

P
(
𝜃|yr,s,t) ∝

Nr∏
i=1

Ns∏
j=1

T∏
t=1

{
p
(
yr,s,t|𝛽osi ,rj , 𝛽si ,rj , 𝛽GDPsi ,rj

)}
p
(
𝛽osi ,rj

)
p
(
𝛽si ,rj

)
p
(
𝛽GDPsi ,rj

)
(5)

Fully pooled model

A regression run on global demanddatawith no region-specific effects is “fully pooled” because it combines all the local information into one regres-

sion.Mathematically, a fully pooledmodel only samples global parameters, ignoring difference nuances across local groups in the data (see Figure 1;

does not estimate 𝛽osi ,rj , 𝛽si ,rj , 𝛽
GDP
si ,rj ). By only estimating global parameters, these models reduce uncertainty but lose site-specific heterogeneous

information. For the fully pooledmodel, we assign the same priors for 𝛽, 𝛽0, and 𝛽GDP as in the case of the hierarchical model.

Δ ln
(
Dsi,rj ,t

)
= 𝛽0 + 𝛽Δ ln

(
P′t
)
+ 𝛽GDPΔ ln

(
GDPrj ,t

)
(6)

where

𝛽0 ∼ Normal (0, 1)

𝛽 ∼ −Exp (1)

𝛽GDP ∼ Normal (0, 1)

For both un-pooled and fully pooledmodels, we use the same data and the same set-up for estimation (same hardware, sampling runs, etc.).
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BHUWALKA ET AL. 7

F IGURE 2 Local parameter estimates for un-pooled (orange) and hierarchical (blue) model are displayed along the x-axis, with the hierarchical
model values overlayed on the un-pooledmodel values. Circle represents parameter mean and the bar represents the width of 95% confidence
interval for the parameter. The region–sector combination is displayed on the y-axis. The global estimates for the pooled (green) and hierarchical
(blue) model are also displayed. The hierarchical model estimates both local and global parameters, the pooledmodel estimates only global
parameters, while the un-pooledmodel estimates only local parameters. The two figures correspond to price and income elasticity respectively.
The values for the intercept are in Supporting Information Figure S1. The 95% confidence intervals for price and income elasticities from the
un-pooledmodel are wider than the hierarchical model, that is, there is reduced uncertainty in the estimates from the hierarchical model. The
values used to generate this figure are present in Supporting Information Table S1.

2.2 Data

The data we use in our models consist of annual copper demand from 2000 to 2014 broken down by five sectors (Transportation, Electrical, Con-

struction,Manufacturing, andOther) and five regions (NorthAmerica, Europe, Japan, China, andRest ofWorld). The demanddatameasures refined

consumption of copper including direct use of scrap.We use historic copper price data (S&PGlobalMarket Intelligence, 2016) and real GDP at con-

stant 2010USD (UnitedNations, 2010). The demand datawe use consist of 25 region–sector combinations (5 regions and 5 sectors), each of which

has only 15 years of annual data. In total, we have 375 data points for demand (15 years× 25 region–sector combinations).We estimate 81 param-

eters from this data (6 global parameters + 25 region–sector combinations × 3 covariates: intercept, price, and GDP). The disaggregated demand

data are from proprietary sources, but the aggregated global demand data are presented in Supporting Information Section C. All other data used

(on price and GDP) are also presented in the Supporting Information Section C.

2.2.1 Results

In this section, we compare the values of price elasticity and income elasticity between the hierarchical and un-pooled model, specifically focusing

on the difference in uncertainty of the estimates. The differences in the intercept values are discussed in Supporting Information Section B.We also

compare the hierarchical model with a fully pooled model, to evaluate the predictive cost of the additional site-specific parameter information we

gain in a hierarchical model.

2.2.2 Price elasticity

In the hierarchical model, all region–sector combinations have very similar negative price elasticities 𝛽si ,rj (Figure 2; Supporting Information

Table S1). The mean values for all region–sector combination is −0.104 and has a 95% confidence range from −0.076 to −0.13. On average, a 1%
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8 BHUWALKA ET AL.

increase in price leads to a 0.104% decrease in demand. The fact that all local price elasticities have similar estimates means that there was very

little heterogeneity in price elasticity across region–sector combinations.

Such a low negative price elasticity is consistent with the findings in the literature. Evans and Lewis calculated a long-run copper price elasticity

between −0.0909 and −0.1177 (Evans & Lewis, 2005). Other estimates for global copper long-term price elasticity are −0.2 from Fisher et al.

(1972) and −0.44 by Dallas Fed (Stuermer, 2017). Pei and Tilton calculate price elasticity for 18 countries and find only 4 that are non-zero (at a

95% confidence level) with an average value of 0.066 (Pei & Tilton, 1999). None of these analyses considered sectoral disaggregation of demand.

The un-pooled model has much larger variation in price elasticity estimates than the hierarchical model. We define the uncertainty in price

elasticity for eachmodel (both un-pooled and hierarchical) as the average of the standard deviation of each 𝛽si ,rj :

Up =

∑5
i=1

∑5
j=1 𝜎

(
𝛽si ,rj

)
25

(8)

The value ofUp for un-pooledmodel is 0.081, compared to aUp of 0.035 for the hierarchical model. The uncertainty for the hierarchical model is

2.3× lesser than that for the un-pooledmodel.

When comparing the hierarchical model and fully pooled model (Figure 2; Supporting Information Table S2), we see no major difference in esti-

mated price elasticities. The global price elasticity estimate 𝛽 in the hierarchical model has a mean value −0.104 and standard deviation (SD) of

0.018. This estimate is similar to the price elasticity estimated by the fully pooled model (Mean = −0.091; SD = 0.018). Despite additionally esti-

mating 25 site-specific price effects, the hierarchical model still lends a global price elasticity estimate with a similar standard deviation as the fully

pooledmodel.

Income elasticity

As opposed to what we observed for the price elasticities, we find significant heterogeneity between sites for income elasticity values (𝛽GDPsi ,rj ) esti-

mated by hierarchical model (Figure 2; Supporting Information Table S1).We find the income elasticity to bemuch stronger than the price elasticity

(mean values for 𝛽GDPsi ,rj range from 1.82 to 4.22, which are more than 10× larger in magnthan estimates for −𝛽si ,rj ). This means that the demand for

copper is driven by economic development more than by price considerations. Crucially, developing countries (China, RoW) have a smaller value

for income elasticity than developed countries (NAM, Japan, EU). The mean value of 𝛽GDPsi ,rj for ∀i, j ∈ {China, RoW} ranges from 1.82 to 3.00. Com-

paratively, the mean value of 𝛽GDPsi ,rj for ∀i, j ∈ {EU, Japan, NAM} ranges from 2.30 to 4.22. This result suggests that with an equivalent percentage

increase in GDP, developed countries have a larger percentage increase in demand for copper. This is likely because the product mix used by con-

sumers in developed countries require a larger amount of copper than those in developing countries. For example, developed countries consume

more electricity, buy more cars, and consequently use more copper for wiring. There is evidence in the literature that supports this finding that

developed countries havea strongerdemand response to increase in income levels thandeveloping countries. Pei andTilton find theaverage income

elasticity of copper in developed countries to be 1.450 and in developing countries to be−0.008 (Pei & Tilton, 1999).

For the income elasticity as well, the hierarchical model leads to a significant reduction in uncertainty over the un-pooled model. We define the

uncertainty in income elasticity for eachmodel (un-pooled and hierarchical) as:

UGDP =

∑5
i=1

∑5
j=1 𝜎

(
𝛽GDPsi ,rj

)
25

(9)

The value of UGDP for the un-pooled model is 0.843, compared to a UGDP value of 0.513 for the hierarchical model. Therefore, the uncertainty is

reduced by 1.6× due to hierarchical pooling. Noticeably, the uncertainty reduction is lower for the income elasticity than the price elasticities, due

to the larger underlying heterogeneity for income elasticity (Meager, 2019).

When comparing the hierarchical model to the fully pooled model (Figure 2; Supporting Information Table S2), we find that the global value

of income elasticity (𝛽GDPhas a Mean = 2.91 and SD = 0.23) is more uncertain than the income elasticity in a fully pooled model (Mean = 1.96;

SD = .093). The fully pooled model has lower deviations in parameter estimates but is unable to capture the heterogeneity between sites that we

observe from the local estimates for 𝛽GDPsi ,rj in the hierarchical model. A fully pooledmodel would estimate the same income elasticity for all regions,

that is, an increase in GDP at a global level would have the same effect on demand irrespective of how that growth is distributed across regions.

Alternatively, the hierarchicalmodel captures regional incomeelasticitiesand can therefore be used to analyze the impact of a change in the relative

income across regions onmaterial consumption.

2.3 Shrinkage in hierarchical models

To validate the benefit of using a hierarchical structure in materials demandmodels, we compare the posterior estimates from hierarchical in com-

parison to those froma non-hierarchicalmodel using shrinkage plots.When local groups are homogeneous, hierarchicalmodels can account for this

 15309290, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jiec.13339 by M

assachusetts Institute O
f T

echnology, W
iley O

nline L
ibrary on [10/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



BHUWALKA ET AL. 9

F IGURE 3 Mean values of income elasticity 𝛽GDPsi ,rj are plotted on the y-axis while mean values of price elasticity (𝛽si ,rj ) are on the x-axis. Each
point represents a region–sector combination, with blue values estimated from the hierarchical model and orange values estimated the un-pooled
model. A line connects the values estimated from bothmodels for a particular region–sector combination. Following the line from orange point to
blue point maps the change in themean value of 𝛽GDPsi ,rj and 𝛽si ,rj when using a hierarchical model to partially pool data. Region–sector combinations
are represented by initials R_S (R is the first letter of the five regions:China, Europe,NAM, Japan, andRoW. S is the first letter of the five sectors:
Construction, Electrical, Transportation, Industrial, andOther). The average global price and income elasticity estimate from the pooledmodel is
shown by the green point. Data used tomake this figure are in Supporting Information Table S1. The shrinkage plot for the intercept and price is in
Supporting Information Figure S2.

information by pulling parameters toward a global mean. The shrinkage effect comes from information on the parameter estimate for a particular

region–sector combinationA impacting the global mean value, which in turn impacts the value for the parameter estimate in another region–sector

B. “Shrinkage” or “pooling” is larger when there is homogeneity in estimates across sites and shrinkage is lesser when sites are heterogeneous.

Figure 3 shows the shrinkage in the mean values for price and income elasticities. There is large shrinkage for the price elasticities, that is, all

values are pulled close to the global mean of 0.104 in the hierarchical model. The variation in the price elasticities estimated by the un-pooled

model is likely a function of noise rather than structural differences between regions and sectors. However, despite shrinkage caused by pooling, we

observe that the hierarchicalmodel finds heterogeneity in income elasticities (observed by the spread along the y-axis). The variation across sites in

theun-pooledmodel remains after poolingmeans, implying that there are likely structural differences across incomeelasticities of different regions.

China and RoWhave lower average values for income elasticities than Europe, NAM, and Japan. The fully pooled model only infers a “global” value

of income and price elasticity (green point in Figure 2) and is unable to capture these regional differences. Moreover, the estimated “global” income

elasticity value is close to the income elasticity values for China, likely because the estimate is dominated by China (which is the largest consumer

of copper). The global elasticity from the pooled model is biased by the largest historical consumer and will not give accurate demand predictions

for future scenarios in which the relative consumption between regions changes.

The hierarchical model can be considered as a useful hybrid between the un-pooled model which captures regional heterogeneity, and the fully

pooledmodel that has lower uncertainty. In Supporting Information Figure S1, we can also see a strong shrinkage effect for the intercept signifying

that there is little difference across sites.

2.4 Uncertainty reduction for predicted future demand

We sample parameters from their posterior distribution to predict demand in a constant price scenario (prices fixed at 2014 levels; details

in Supporting Information Section G). We explore the sensitivity of this prediction under different price scenarios in Supporting Information

Section G.

Total copper consumption under a constant price scenario for the hierarchical model was 32.5 and 39Mt in 2018 and 2040, respectively, where

the 2040 demand estimate reflects that of Elshkaki et al. (2016), which estimated 42 Mt copper consumption under market-first and policy-first

UNEP GEO-4 foundational scenarios in 2040.While our result is a decent approximation of future copper demand, the focus of this analysis is not

on accurately predicting demand but rather using a simple model to describe the benefit of hierarchical pooling especially when there are limited

data. Analyses that aim to accurately predict copper demand should use more data and account for shifts in various end-use sectors such as the

effect of a transition to renewable energy (see Discussion section).
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10 BHUWALKA ET AL.

F IGURE 4 Predicted values for future global copper demand based on randomly sampling parameter 2000 values from the estimated
posterior probability distributions. Each colored line represents a particular sampling run of themodel, with the prediction year on x-axis and
annual demand on y-axis. Threemodel results shown here: (L) hierarchical model, (C) un-pooledmodel, (R) fully pooledmodel. Data used tomake
prediction are present in Supporting Information Section G.

TABLE 2 Predicted values for demand (in kt) for copper in 2040. Rows represent different indicators for the range of predicted demand
values. Columns are different model specifications. Data used tomake prediction are present in Supporting Information Section G

Demand@ 2040 (kt) Hierarchical Un-pooled Pooled

Mean 38,570 155,000 44,741

Median 37,933 92,000 44,208

SD 6234 267,244 6712

5th Percentile 29,624 38,662 34,770

25th Percentile 34,287 60,990 39,991

75th Percentile 42,000 156,674 48,708

95th Percentile 49,940 441,100 56,481

The un-pooled model has a poor predictive performance (Figure 4), with the interquartile range for demand in 2040 being 61,000 and 156,000

kt (Table 2). This is driven by the large uncertainty fromChina intercept (𝛽osi ,rChina ).While the 95% confidence interval includes a value of zero for the

China-Electrical intercept (𝛽oselec ,rChina ), the intercept has amean value of 0.10whichmeans that demand in this sector has about annual growth rate

of 10% on average. These uncertainties would lead to a prediction with unrealistic, extreme demand growth.

In comparison, the hierarchicalmodel hasmuch lower uncertainty of prediction (Table 2). The interquartile range for 2040demand from thehier-

archical model is between 34,287 and 42,000 kt (this range is 11.25× lower than the un-pooledmodel). The shrinkage effect of hierarchical models

pools the values of parameters closer by leveraging information across sites and reduces the range of parameter values. While a 95% confidence

interval range between 29 and 49 kt is still a large uncertainty for demand prediction, such level of uncertainty may be inevitable given that we

specifically chose a case study with small data.

Compared to a fully pooled model which estimates only three parameters (intercept, price elasticity, and income elasticity at a global level), one

would expect the hierarchical model to have greater uncertainty as it estimates 81 parameters (local and global effects). However, we find that the

hierarchical model has a predictive accuracy similar to, or even better than, the fully pooledmodel (Table 2). The interquartile range for hierarchical

model is 7713 kt (compared to 7717 kt for pooledmodel) and the SD for hierarchical model is 6234 kt (while it is 6712 kt for fully pooledmodel).

3 DISCUSSION

Given the importance of material demand projections to decision-makers, we need novel methods to accurately model material demand at an

appropriate level of regional and sectoral detail. We have demonstrated that hierarchical models can (a) reduce uncertainty in demand prediction

relative to un-pooled models, while (b) identifying site-specific heterogeneity that fully pooled models cannot. The uncertainty reduction is useful

for multiple reasons:

Mine expansion and investment decisions need reliable predictions of long-term demand. Without reliable prediction tools, decision-makers

could fail tomanage risk and underinvest, leading to supply shortages and price increases for critical minerals. The reduction in uncertainty can also

help improve environmental impact estimates, which typically rely on material demand projections as inputs (Van der Voet et al., 2019). More-

over, understanding heterogeneity in price and income elasticities across regions and sectors is important for many decision-makers. There is
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BHUWALKA ET AL. 11

evidence that developed and developing countries have different metal intensities (Ayres et al., 2003; Krausmann et al., 2009). Having estimates

at a local level allows researchers to study various future scenarios for growth in specific regions and sectors withmore confidence. One can study,

for example, the effect of a GDP slowdown in China on global copper demandwithout relying on aggregate values for income elasticity.

The fact that the hierarchical model can infer both “local” and “global” effects is particularly useful. Pei and Tilton calculate income and price

elasticities for 5developing and13developed countries using individual linear regressions (un-pooled) (Pei&Tilton, 1999). To commentonelasticity

at an aggregated level, they take the unweighted average of each countries’ elasticity value. The hierarchical model improves this in two ways:

First, by estimating group-level effects endogenously, we can not only calculate themean, but also uncertainty in the aggregated global elasticities.

Second, the hierarchical model uses the group-level mean to inform the local values, reducing uncertainty. In Pei and Tilton’s linear regression

analysis for copper demand, only 4 out of the 18 countries had a copper price elasticity value statistically different from 0 (Pei & Tilton, 1999).

Similarly, Fernandez (2018) also calculated 174 local price elasticity values and found that only 23%of the estimated bywere statistically significant

at a p-value of 0.10. In our un-pooledmodel, which is similar to the approaches in the papersmentioned above, we see a similar result that only 4 out

of 25 price elasticity values had a 95% confidence interval that did not include 0. However, in the hierarchical model all of the 25 price elasticities

had a 95% confidence interval regime below 0, due to the effects of pooling and shrinkage.

The main drawback of using a Bayesian hierarchical approach compared to traditional regression analyses is that sometimes Bayesian models

(especially ones with many parameters) do not converge easily. If sampling chains do not converge, we cannot trust the modeled parameter esti-

mates to be the “true” estimate. In the absence of convergence, the model may not have evaluated all the potential values for that parameter.

Increasing the size of the sampling chain and giving the model more time to converge can overcome this challenge but may lead to longer estima-

tion times. If the metal demand module is a part of a larger sustainability or climate model, long estimation times can be undesirable. We did not

encounter convergence issues in our analysis (see Supporting Information Section E for details about model run time, hardware, and divergences).

Another limitation of this paper is that we only had access to data from 2000 to 2014 for copper demand that was disaggregated at both a

regional and a sectoral level. While using a small dataset was useful in meeting the goals of this paper (i.e., introducing the new methodology and

demonstrating how it reduces uncertainty in low-data settings), it limited the analyses we could do. Future studies can extend this model in many

ways to conduct interesting research on more recent and detailed datasets. First, while we assumed that local parameters were sampled indepen-

dently from a global distribution of priors, future researchers can study correlations between elasticity estimates in different sites (a full covariance

matrix similar toWang et al. would increase the number of parameters to 625, which ismore than the number of datapointswe had). Second, future

research should extend this methodology to study the effects of covariates other than price and income. For example, researchers can study the

effect of sector-specific variables (e.g., automotive sales, electricity demand), region-specific variables (e.g., urbanization), or recycling rates, which

impacts demand through feedback (Ryter et al., 2021, 2022). Adding more covariates can allow interesting analyses such as studying the impact of

vehicle electrification (by using EV sales as an inflow variable that impacts demand), transition to renewable energy, and increased recycling rates

on metal consumption. Third, future work should apply this model to study demand for critical metals other than copper and shed light on differ-

ences across metals markets. Models that quantify the heterogeneity in howmetal demand in each industry responds to income and technological

changes are key to informing substitution and circular economy strategies (Seck et al., 2020). Demand formanymetals can bemodeled together by

adding another level of hierarchy (e.g., the income elasticity for copper, iron, and aluminum can be sampled from a distribution of the income elastic-

ity for metals). Finally, as also noted by Lupton and Allwood (2018) who apply Bayesian inference to reduce uncertainty in materials flow analyses,

a Bayesian approach can improve stock dynamics drivenmodels (e.g., by reducing uncertainty in metal intensity-of-use parameters).
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