
Design as Exploring Constraints

by

Mark Donald Gross

S.B. Art and Design
Massachusetts Institute of Technology

1978

SUBMITTED TO THE DEPARTMENT OF ARCHITECTURE IN PARTIAL
FULFILLMENT OF THE REQUIREMENTS OF THE DEGREE OF

DOCTOR OF PHILOSOPHY
IN DESIGN THEORY AND METHODS

AT THE MASSACHUSE1TS INSTITTE OF TECHNOLOGY
FEBRUARY, 1986

@ Mark Donald Gross 1985

The Author hereby grants to M.I.T. permission to reproduce and to
distribute publicly copies of this thesis document in whole or in part.

Signature of the author
Mark Donald Gross

Department of Architecture
October 31, 1985

Certified by
N. John Habraken

Professor of Architecture
Thesis Supervisor

Accepted by
Stanford Anderson

Chairman
Departmental Committe for Graduate Students

MiASSACHIJSETT S iNSTiT0 ~t-
OF TECHNOLOGY

FEB 2 41986
LIBRARIES

Design as Exploring Constraints

by

Mark Donald Gross

Submitted to the Department of Architecture on October 31, 1985
in partial fulfilment of the requirements for the Degree of Doctor of Philosophy in

Design Theory and Methods.

ABSTRACT

A theory of designing is proposed, developed, and illustrated with examples from the
domain of physical form. Designing is seen as the exploration of alternative sets of constraints
and of the regions of alternative solutions they bound. Designers with different objectives
reach different solutions within the same set of constraints, as do designers with the same
objectives operating under different constraints. Constraints represent design rules, relations,
conventions, and natural laws to be maintained. Some constraints and objectives are given at
the outset of a design but many more are adopted along the way. Varying the constraints and
the objectives is part of the design process. The theory accounts for various kinds of expertise
in designing: knowledge of particular constraints in a design domain; inference--calculating the
consequences of design decisions; preference--using objectives to guide decision-making; and
partitioning--skill in dividing a large and complicated design into sets of simpler pieces, and
understanding the dependencies between decisions. The ability to manage ambiguity and
vagueness is an important aspect of design expertise.

A computational model supporting the theory is proposed and its implementation
discussed briefly. The constraint explorer, a computational environment for designing based
on constraint descriptions is described. We see how the constraint explorer might be used in
connection with a simple space-planning problem. The problem is taken from the procedures
of the Stichting Architecten Research (S.A.R.), a specific architectural design methodology
developed to help architects systematically explore layout variability in alternative floorplan
designs. Finally, a selected review of related work in constraint-based programming
environments, architectural design methods, and the intersection of the two fields is presented.

Thesis Supervisor: N. John Habraken

Title: Professor of Architecture

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

FEB 2 41986
LIBRARIES

- n

Acknowledgements.

Acknowledgements.

I am grateful to the following people.

My parents, Sonja Osaki Keller Gross and Eugene Paul Gross, for making me in the first
place, for showing me the beauty of nature, and for encouraging me to follow my interests.

My dissertation committee, for their patience, intellectual community, continued confidence,
and friendship; in particular,

Aaron Fleisher, for good arguments and hard questions;
N. John Habraken, for revealing a new way to understand built environments;
Seymour Papert, for articulating a vision of the computer as laboratory for learning.

Annette Dula, who taught me how to write, using this dissertation as a vehicle, and for
continuing and patient criticism throughout the writing.

Jean Nilsson, whose insightful comments are always extremely useful.

Catherine Chimits and Fred Wu, who intrepidly implemented parts of the constraint explorer in
constantly changing computing environments, and for continued interest in and criticism of the
ideas presented here.

Gary Drescher, David Levitt, Margaret Minsky, and everyone at the Atari Cambridge Research
Laboratory (1982-1984) for being a stimulating intellectual community. I am especially lucky
to have been part of this unique group of friends that also includes many of the other people
named on this page.

Danny Hillis and Ken Haase for suggesting some good references early on.

Steven Ervin, for helping to debug many of the ideas, for patiently sorting out confused
arguments, and for following in my footsteps nevertheless; Sandy Isenstadt for improving an
early draft of chapter two; Ming Wang for good discussions at an early stage.

Coral Software Corporation, for their dedication to excellence in personal computing and for
technical support, and Linda Laplante Okun for knowledgeable administrative guidance
through M.I.T.

Maurice K. Smith, whose unparalleled clarity in articulating principles of form first convinced
me to undertake the present work.

Alfonso Govela and Michael Gerzso, for taking me seriously and directing my early efforts as
an undergraduate.

Ranko Bon, Louis Bucciarelli, and William Porter, for asking sharp questions, and Donald
Schon, for enthusiastic support despite skepticism; Robert Lawler and Patrick Purcell, for kind
support when it was needed most.

- 1n1 -

Table of Contents

Table of Contents

1. Introduction 1

2. Design as Exploring Constraints 8

3. Use of the Constraint Explorer 21
3.1 A Brief Scenario 22
3.2 Behind the Scenes in the Constraint Explorer 28
3.3 Dimension Constraints 38
3.4 Position Constraints 44
3.5 A Position Constraint 56

4. Parts, Prototypes, and Dependencies 60
4.1 Elements and Configurations 60
4.2 Prototypes, Instances, and Individuals 69
4.3 Dependencies in the Built Environments 74

5. Floorplan Layouts 80
5.1 The Design of Supports 80
5.2 Exploring Arrangements of Functions in the Floorplan 84
5.3 Describing the Site 96
5.4 Function Norms 99
5.5 Position Rules 101

6. The Parts of the Program 103
6.1 The Overall Organization 103
6.2 Data Structures 106
6.3 Example 111
6.4 A Closer Look at the Parser and Solver 117

7. Review of Other Work 122
7.1 Overview 122
7.2 Simon's Constraint Formulation of Design 125
7.3 Models and Methods of Architectural Design 128
7.4 Computers and Computational Techniques 131
7.5 Discussion and Further Work 137

References 139

- iv -

Introduction

CHAPTER 1

Introduction

The art of design involves considerable expertise. We do not learn this

expertise--how to design--explicitly, as a set of procedures to follow, as for example,

we learn how to add, subtract, and multiply. Rather, we learn to design gradually, by

observing more expert designers, studying designs that are known to be good, and

through constant practice and criticism. We learn many techniques, rules-of-thumb,

formulae, and tricks, but never a systematic method. Many design disciplines are

now approaching a "complexity barrier" [Winograd 73] where traditional methods fail

to produce acceptable solutions. More systematic design methods are needed to

coordinate the efforts of teams of more than a very few designers, and also to tackle

more complex problems. This thesis proposes a theoretical framework for

understanding design processes, viewing design as exploring constraints and

alternatives. The test of this theoretical framework shall be in the performance of a

computer program that implements the operations of the theory. The dissertation also

describes this computer program, called "the constraint explorer".

Some will object strenuously to the idea of a systematic design method,

arguing that design is a creative endeavor and that efforts to make an explicit account

of the design process remove some essential artfulness. The objection is often

amplified when the efforts involve a computer, and to many readers, the word

Introduction 2

"constraint" connotes an unpleasant restriction of free will and creativity. * It is not

my intent to argue here against this point of view. My purpose is only to advance

explicit understanding of design processes. I believe that such an understanding is

necessary in order to build a foundation for more comprehensive and powerful ways to

design.

The theory presented here is not a normative theory of design; it does not

distinguish good designs from bad ones. It is also not a psychological theory of design; it

does not attempt to account for what goes on in designers' minds. Nor does the present

theory prescribe any particular design expertise. That job remains for applications of the

theory to particular design domains. For example, we might apply the theory to the

design of housing, bridges, or integrated circuits. Each such design domain entails vast

amounts of specific expertise. This theory is about how designers manage and

manipulate this expertise. The theory rests on the assumption that designers work

within rules, principles, conventions, and laws. We can describe all these as constraints

on design attributes, or variables. Then we can see a design process as exploring

alternative sets of constraints and exploring alternative solutions within each set of

constraints. These two parts of the process are not seen as separate phases of design;

rather they are integrated in time.

We begin to design by selecting a first constraint: "I need 40,000 square feet of

floor space", or "bedrooms must be in a quiet part of the house". We add to the

constraints and we change them. We explore alternatives by setting, or fixing the values

of design variables. Each fix may affect other parts of the design. For example, the

* One might just as properly call the present theory "design as exploring objectives", or "design as

exploring relations". We shall see that constraints, relations, and objectives are intimately related.

Introduction 3

placement of one room may affect the position of another. Thus design expertise involves

predicting the consequences of a fix on the rest of the design. Each decision is tentative

at first and becomes more definite with time; hence we sometimes need to undo or retract

previous fixes.

We work with many constraints. They come from many sources and are more and

less flexible. The design of a building, for example, includes structural constraints, use-

dimension constraints, temperature constraints, surface-material constraints, and others.

A few constraints, such as gravity, are fundamental laws of nature and cannot be altered;

others, chosen by the designer, can be changed; for example, stylistic conventions or the

choice of a construction system. Some constraints are general architectural principles;

others pertain only to the design at hand. We select and position building elements so as

to meet all these constraints. We realize many constraints operationally, as rules-of-

thumb for selecting and positioning material and space elements. The daylight in the hall

will be good if there are windows on one side. The building will stand if beams span no

more than twelve times their depth. For ordinary practice, these rules-of-thumb suffice; a

simple position or dimension rule can often subsume a detailed understanding of structural

or daylighting behavior.

Constraints form the boundaries of a multi-dimensional region where each

dimension represents an independent design attribute; each point represents a variant, or

alternative solution. For example, we can describe the size of a room using three

variables: height, width, and length. To describe the room's color or its area we must

introduce additional variables. These may relate to variables already in use, or they may

be entirely independent. Area, for example, is the product of width and length; whereas

color is an independent variable.

Introduction

We explore the region of alternatives by trying different values for variables and

comparing the results. Designers may have different exploration strategies. Trying

extreme settings of values is one strategy. Fixing positions before dimensions is another.

To select among alternatives we must have preferences, or objectives. We may prefer

long rooms, square rooms, or rooms whose width-to-length ratio is the golden mean. We

almost always, however, have more than one objective. For example, we may want both

the largest and the least expensive alternative. Usually our objectives do not coincide;

therefore we must compromise.

We can compromise among competing objectives by partitioning, or decomposing,

the design into pieces and optimizing each piece for a different objective. In designing the

foundation of a house, for example, we might optimize for strength, while in designing the

wood frame we might optimize for light penetration. We must make some decisions

together because they interrelate, while other decisions are easily separated. Based on

constraint connectivity, this structuring of decisions can only be performed after the

constraints have been stated. Seldom can we partition a design perfectly, but often we

can partition a design in different ways.

Rules are essential to design; without them we have only free-expression. The

concept of design rule is therefore central to the present enterprise. Architectural design

rules specify the allowable building elements--both material elements such as columns,

walls, and beams, as well as spaces such as gardens, halls, and rooms--and their proper

positions relative to one another and to their built context, or site. How are rules

adopted, adapted, invented, and explored in designing buildings and places? We can

obviously use rules to check already executed designs. But rules also play an integral

part in the process of defining and exploring designs. We sometimes abstract rules from a

Introduction

traditional building type, then use the rules to generate additional instances of that type.

The ability to see patterns in, and abstract rules from a given set of designs is certainly

important for the architect, but we shall not address it here.

Many traditional built environments have been studied and described in this way.

Examples include work on traditional Japanese houses; San Francisco Victorian house

form, siting, and facades; Spanish hilltowns; and Pompeii courtyard houses [Engel 64;

Vernez-Moudon 85; Hille 82; Smith, Hille, and Mignucci 82; Habraken, Akbar, and Liu

82]. All these examples identify a set of elements and the rules to assemble them into

coherent configurations that belong obviously to a certain building type. In his masters

thesis, for example, Hille shows that we can understand San Francisco Victorian facades

as discrete horizontal and vertical zones with minimum and maximum dimensions. He

also shows that the combination of facade elements in these zones is strictly governed by

rules. Hille presents these rules and shows how they can be used to generate new

variations on the theme [Hille 82].

Design, however, is more than following rules; it is making rules as well. Design

concerns inventing and adapting systems of form-organization as well as generating

specific forms within a given rule-system. By making new rules and combining and

modifying existing ones designers invent new styles and occasionally even new building

types. Moreover, the rules are not all decided before the designing begins; rather they

are adopted and invented throughout the design process. Rule-making may even continue

into the process of building. For example, where the architect has simply said "there

shall be bricks", the mason may impose a pattern.

Introduction

Architects seldom express rules explicitly. Even when abstracting rules from a

built reference, we draw until we come to understand the building's theme, or system of

rules. Then we can invent variations on that theme. Usually the understanding remains

implicit--we do not articulate the rules. One obstacle to explicitness is the lack of a way

to express, or notate, architectural rules. As drawings (along with scale models) have

been the traditional medium for communicating about the design of buildings since at least

the rennaisance, one might reasonably suggest drawings as an appropriate medium for

notating design rules. Drawings are useful for indicating specific design solutions, but not

for indicating ranges of possible decisions. For example, in a single drawing one cannot

easily express a range of alternative facade arrangements. Nor can one draw a room

known only to have an area of one-hundred-fifty square feet. A drawing can illustrate a

rule by showing a typical or extreme variant. Diagrams and sketches (drawings without

dimensions), on the other hand, show position relations between elements and can more

effectively convey the essence of a rule than can an exact drawing. The advantage of a

diagram is its ambiguity, its ability to stand for a range of alternatives.

A typical design involves thousands of rules, or constraints, at many different

levels. The theory requires that we express the rules explicitly using a formal notation

that will be introduced in chapter 3. Without a computer program to manage the

constraints, experiments would be too unwieldy. The computer becomes therefore a

laboratory instrument that supports the investigation of the theory. The computer helps in

several ways: it calculates the consequences of changes to the constraints and variables,

it maintains a history of the design process and enables the designer to retract decisions

in any sequence; it provides explanations for automatic inferences; it assists with the

Introduction

partitioning of large designs into smaller pieces; and it allows a set of constraints and

variables to be partitioned in different ways, affording multiple views of the design.

The dissertation is organized as follows. Chapter 2 presents a general statement

of the theory of design as exploring constraints. Architectural examples are used to

illustrate the theory. Chapter 3 introduces the constraint explorer, a computer assistant

based on the theory. We look first at an interactive session with the constraint explorer

where we design a simple configuration of two columns and a lintel, then we look behind

the scenes at the same session, observing the structures that the constraint explorer

constructs to represent the simple design. Finally we look at two classes of constraints

that are especially important in architectural design: position constraints and dimension

constraints. In chapter 4 we examine other structures that make up the constraint

explorer's model of a design: a hierarchy of elements and configurations, a hierarchy of

general prototypes and specific instances, and the dependencies between elements, both

inherent and induced. Chapter 5 shows how the constraint explorer would assist the

designer in making basic-variants, a particular space-planning task in the S.A.R. design

method. Chapter 6 explains how the constraint explorer might be implemented, showing

the parts of the program and the data structures the constraint explorer uses. Finally,

chapter 7 presents a review of other related work. I have placed the discussion of related

work at the end of the dissertation in order to come more quickly to the main idea.

Chapter 7 also sketches further work to be done in developing and testing the present

theory: design as exploring constraints.

Design as Exploring Constraints

CHAPTER 2

Design as Exploring Constraints.

We now present and discuss the theory of design as exploring constraints*. In order to

present the theory, however, we must first introduce its basic vocabulary, a set of terms used

throughout the dissertation. The terms are explained more fully in the paragraphs following

this introduction, but, for convenience, here is a brief summary. We describe a design as a set

of constraints, or relations on a set of variables. Each variable has a value, that the designer

may set, or fix. Some variables the designer may fix directly; others are calculated as

consequences of those fixed. Every collection of constraints, variables, and values may

constitute a partial design context, or package. The constraints in any context bound a region

of alternative solutions, or variants. Each independent variable represesents one dimension of

the region, or a degree of freedom. The degrees of freedom in a design fluctuate, increasing as

the designer introduces new variables, and decreasing as variable values are fixed. The

region's boundaries also fluctuate as the designer adds and changes constraints. Points in the

region represent particular variants, or completely specified alternatives with definite values

assigned to each variable. We explore, examine, and rank variants according to various

objectives, or preferences.

We adopt this somewhat sparse vocabulary because we want to formulate the theory

using a small number of precisely defined terms. Though the terms may sound technical, they

refer to concepts already largely familar to designers. For example, adding constraints and

*One may notice similarities between the present theory and that presented by Herbert Simon in the Science of
Design [Simon 69]. In Chapter 7 we compare and contrast Simon's theory with the present one.

Design as Exploring Constraints

fixing variable values correspond to what designers call 'moves' and 'decisions'. Likewise,

designers know a region of variants as a set of options, possibilities, solutions, or alternatives.

We shall refer often to these more familiar terms in the ensuing exposition of the theory.

Constraints are the rules, requirements, relations, conventions, and principles that

define the context of designing. There are many constraints on a design and they come from

different sources. Constraints are imposed by nature, culture, convention, and the

marketplace. Some are imposed externally, while others are imposed by the designer. Some

are site-specific, others not. Some are the result of higher-level design decisions; some are

universal, a part of every design. Gravity, for example, is universal. Other constraints apply

only in certain design contexts. The general position rules on windows and other facade

elements that characterize facades in the Back Bay section of Boston are less universal

constraints than gravity, but they are more universal than the additional constraints that operate

in any particular Back Bay facade.

We can describe a design problem or task as a collection of constraints and relations on

attributes of the object to be designed. That is, to design is to describe and identify constraints

and to specify an object that satisfies all these constraints. For example, constraints on the

design of a pencil are that it must leave an erasable mark on paper, that it be lightweight and

comfortable to hold. But we could design many pencils that satisfy all these constraints: hard

pencils, soft pencils, red pencils, thin pencils. Thus design problems are atypical problems in

that they have many solutions. We do not find the solution to a set of design specifications; we

find one solution out of many alternatives. Although we may prefer some alternatives to

others, all are solutions to the initial constraints. At each step in a design we can distinguish

among alternatives by adding constraints. The adding of constraints is as much a part of

Design as Exploring Constraints

design as the searching for solutions. The design process consists of adopting constraints and

then exploring for "good" alternatives in the region the constraints bound.

Examples of constraints are:

1. "Bearing walls occur on 5', 8', or 11' guide lines."
2. "X must be offset from Y by at least its own thickness."
3. "Kitchens must be at least 6' x 8' and occur only in beta zones."
4. "This window must admit at least 1 hour of direct sun."
5. "All material elements must be supported."

Constraints are always relations between variables that represent the attributes of the

object being designed. In constraint 1 above, the variables represent positions of bearing walls

and guide lines. In constraint 2, the variables are the positions of X and Y, and the thickness

of X. In constraint 4, the amount of sun that enters the window is a variable (as, presumably,

are some properties of the window itself: its position, dimension, orientation). These variables

are simple; they stand for attributes of the design that can be represented by a single number. It

is sometimes useful to aggregate variables to describe more complex attributes of a design. For

example, a window can be a variable, its value to be chosen out of a set of possible windows.

The window variable would then be an aggregate or compound variable consisting of the many

simpler variables that describe attributes of windows: shape, size, material, transparency,

method of opening, and manufacturer, for example. Constraint 5 expresses a universal

constraint, gravity.

It is useful to distinguish between variables directly set by the designer and

variables the designer controls only indirectly. In the design of our pencil, for example,

we directly control the color, length, radius, and shape of the pencil but its mass is a

function of its length, radius, and materials. Architectural designers control the selection,

position, and dimensions of material and space elements. Other variables in the design are

Design as Exploring Constraints

determined consequentially. For example, a variable representing the privacy of a room

might be related to the number of turns needed to enter the room from the nearest major

access, and whether one can see in from nearby locations. Though a designer may

determine to provide a certain degree of privacy, it is ultimately by adjusting the positions

and dimensions of building elements that the architect affects the privacy of a place.

The amount of daylight entering a room is another example. The designer controls

daylight indirectly, by directly controlling the positions, dimensions, and orientations of

openings in the room's exterior surfaces. (S/he may do it in other ways as well.) The

amount of daylight admitted is related to the size, orientation, and position of each opening.

This natural law about light and openings conveys a small piece of design knowledge.

Architects know this relation though offhand they may not know its mathematical

expression.

Consider the difference between a design specification and a set of construction

drawings for a building. The former consists of performance constraints--on variables that

the designer can control only indirectly, such as daylight and privacy. The latter consists

only of constraints on variables the designer controls directly--the relative placement of

material and space elements within certain tolerances. It takes an expert designer to

transform a set of constraints on variables such as privacy, outlook, and daylight into a set

of constraints on the positions and dimensions of material and space elements. For

example, the constraint, "the room must be at least moderately light in the afternoon" might

be alternately and equivalently expressed as constraints on the positions, dimensions, and

orientations of windows -- "window sills must be at least three feet from the floor and the

room must have have at least thirty square feet of window area on the west side".

Design as Exploring Constraints

Constraints describe a region in space, not in physical space but in an

n-dimensional mathematical one. Let us call the space an "n-space" to distinguish it from the

architectural meaning of the word "space". The number "n" stands for the number of

dimensions, degrees of freedom, or independent qualities in the design; n may be large and it

changes throughout the design process as variables are introduced and eliminated. Each

dimension in the n-space represents one independent variable in the design. Each point in the

n-space describes a complete set of variable values. A point in the region describes a complete

set of variable values that meet all the present constraints. Hence each point in the region

represents an alternative solution, or variant. Typically the region contains many such points.

The region need not have a simple shape. It may be large in some dimensions and small in

others. It may be all together in one place or in many small "islands". Both the dimensions of

the n-space itself and the region within it change throughout the design process. In this change

there are two overall tendencies. One tendency introduces new independent variables--new

decisions to be made--throughout the design; the other tendency fixes values for variables that

have been already introduced.

In most designs the initial constraints describe a large region of alternatives. That

is, the solution to the design problem as first stated is grossly underconstrained; a great deal

of freedom remains in the design. Novice designers experience a difficulty associated with

this--with so much freedom it is hard to choose a course of action. Not only are there

many degrees of freedom--many variables are unfixed, but also for each unfixed variable

there is a large range of possible values. Suppose in our design of a pencil we have chosen

values for all variables except length and color. We say then that two degrees of freedom

remain in the design. Within each of those two degrees, however, there may be a large or a

small range of options. For example, constraints may strictly limit the pencil's length while

Design as Exploring Constraints

allowing a large range of colors. When all variables are fixed, the design is complete,

having zero degrees of freedom.

The design is "complete", however, only relative to the constraints already adopted.

New constraints may be added at any time. Instead of narrowing the range of possible

alternatives, the new constraints may introduce new decisions. Consider designing a window

in a wall. We may begin with constraints on the window's dimensions and position pertaining

to the view, the amount of daylight, etc. At some point, not necessarily after fixing the

position and dimension variables, we may begin to design the parts of the window itself. This

entails new constraints and new variables. We may introduce constraints on the size of the

panes and mullions, on the window's moving parts. These constraints introduce new variables

to the design. They may be independent from the earlier decisions about the window's overall

dimensions and positions but more likely they are not. For example, the window's overall

dimension is related to the number, size, and arrangement of its panes and mullions.

At the outset there may be relatively few constraints and variables. Design proceeds

from a general set of specifications to a set of specific solutions. At completion, many more

constraints and variables have been introduced, and all variables have values. Thus each set of

constraints and associated variable values represents only one instant of a design process.

Each such instant we call a design state or context. In any state, some variables have particular

values, others are unspecified. The more values defined in a state, the more specific the

design. A region of alternatives exists only if the context is consistent; that is, no constraints or

values conflict. The region at all times consists of the set of alternatives satisfying the present

context of constraints. Often there are many alternatives and the region is very large.

Design as Exploring Constraints

Constraints, variables, and regions of alternatives, or variants make up the basic terms

of the model. We now use these terms to discuss the process of designing. A design begins

with a set of initial variables and constraints; it proceeds with the designer changing and adding

constraints and fixing and unfixing variable values; it ends with a single complete variant, or

sometimes a small, well-understood region of variants* . The path from specification to

solution is usually not direct. Rather, many options are explored and rejected. Though the

general tendency is to fix variable values, on occasion they are also unfixed, or retracted.

Design can also be understood as a process of successive refinement. Refinement

proceeds in two alternating steps: describing constraints and exploring alternatives, or variants.

The describing-step adds new constraints to the design; the exploring-step examines variants in

the constrained region. These variants suggest changes and additions to the constraints. The

cycle then repeats; the new context of constraints is explored, generating a new set of variants

(figure 2.1 below). This process of refining constraints and exploring alternatives is repeated

until it converges on a small region of acceptable variants, or alternatives.

constraints variants

Refinement Cycle.
Figure 2.1.

Figure 2.2 illustrates the same process, but now we see that each iteration of the cycle

produces a new set of constraints and a new set of variants. From the initial constraint context

* Designers sometimes leave a design intentionally unfinished leaving room for the user, the builder, or more
generally, for the next level of designer to complete the design..

Design as Exploring Constraints

C1, a set of variants V1 is generated. Examination of the set V1 suggests a new set of

constraints C2. The process iterates.

c1 c2 c3 v3 v2 v1

Each cycle produces new constraints and variants.
Figure 2.2

After describing a context of constraints and before making many firm decisions the

designer must learn what variants the region contains. This the designer does by exploring.

What are the extreme variants in the region described by the constraints? What are the degrees

of freedom in the design? How large a bedroom can be made in this floorplan? Suppose this

dimension were increased? Can these two rooms be moved independently? In general, what

variants are in the region and what variants are not? Constraints from different sources may

interact to describe a complex region of variants. The boundaries may be neither apparent nor

intuitive. Some exploration may be required in order to understand the boundary of the region

in detail. Therefore the designer may at first explore the region with only the goal of

understanding what variants the region contains.

Design involves various modes, or aspects of expertise. Among others, design

involves expertise in preference, inference, resolving conflicts, and on occasion, backtracking.

Preference among alternatives is a vital piece of the designer's expertise and it pervades the

design process. Design proceeds within constraints as a sequence of fixes, or decisions. At

each decision we may work out several alternatives that follow from it. Then we rank the

Design as Exploring Constraints

alternatives, choose the one we think best, and proceed to develop it. The choice of an

alternative is not arbitrary; rather it is a skillful choice. Sometimes, however, we cannot decide

immediately on an alternative so we develop two or three alternatives in parallel until the choice

becomes more clear. Of course we cannot develop more than one alternative for long. It is too

much extra work. Soon we must choose one and discard the rest. It is not that one alternative

is right and the others are wrong; rather, we prefer one alternative to the rest. In exercising

preference we apply a kind of expertise that is unique to design.

Design also involves the ability to infer chains of logical consequences of a decision.

Each design decision has or may turn out to have logical consequences. For example,

choosing a location for one room in a floorplan may determine the locations of other rooms.

The location of a stairway may depend at least partially on its horizontal run-length, which

depends in turn on its height and the ratio of its risers to treads. Following chains of

consequences in reverse is equally important. When a design decision is retracted, the designer

needs to know what other decisions depended on it and what else needs to be undone.

Determining a sequence of fixes, or settings, is another sort design expertise. The

sequence of settings affects the design outcome. Each decision changes the region, and the

alternatives available at any stage in a design process depend on the previous decisions. Within

one set of constraints a different sequence of fixes often reveals a different result. For

example, consider placing two rooms in a floorplan. If the livingroom is first placed in the

sunniest spot, it may preclude some locations for the kitchen. But if the kitchen is placed first,

then the sunniest remaining spot for the livingroom may be different. Some kinds of decisions

are usually made before others. One usually (but not always) decides the relative positions of

elements prior to fixing their dimensions precisely. One usually decides a beam span before

selecting its depth and width. There is not, however, only one possible sequence of decisions

Design as Exploring Constraints

in a design. Different architects begin in different places, some with construction details,

others with a site plan. The different starting points, sequences of decisions, and preferences

bring the design in each case to a different conclusion.

Constraints on the design are described by the designer in the beginning, but they are

also added to and changed throughout the design process. Some constraints are working

assumptions. For example, the designer may try to design a building for a certain cost and

using certain materials. But that may turn out to be impossible, or perhaps possible but

undesirable. In that case, the designer may change the initial assumptions and explore again.

Both inconsistency among constraints and dissatisfaction with alternatives are occasions for

changing the constraints.

Constraints on a design come from a variety of sources. Many of the constraints on a

design are standard constraints, not specific to the design at hand, but shared across a variety

of design contexts. The selection of a building technology, wood frame construction, for

example, is a source of many constraints on a building's design, but these constraints are not

specific to that particular building. Likewise, all buildings share constraints on daylighting,

thermal performance, and structural stability. Many of these constraints are listed in the

building code. Others are added to the design context not only by functional requirements of

the building (as given in an architectural program) but also by systems of form organization

imposed by the architect. For example, a designer may choose to work within the conventions

of an architectural style, or adopt or adapt rules from neighboring buildings. Thus many of the

constraints on the design are chosen by the designer and not imposed from outside.

As constraints are added to the design for many reasons and from many sources, the

constraints on a design may be inconsistent, conflicting with one another. Resolving the

Design as Exploring Constraints

conflicts, or inconsistencies, then becomes another important component of design expertise.

A constraint concerning the support of a beam may locate a column in the center of the room, a

condition perhaps forbidden by another constraint related to furniture arrangement possibilities.

Or one constraint may require that the livingroom be located near the entry; a second may

demand that the livingroom be on the sunny, or south side; a third insists that the entry be on

the north side. The nature of design is to balance, resolve, and sometimes even exploit

conflicting requirements.

For the same reasons that design constraints may be inconsistent they may also be

redundant, or mutually reinforcing. Thus another aspect of design expertise involves

managing redundant constraints. Constraints are redundant when they require the same thing.

This may mean that the constraint is especially important. For example, both pedestrian access

and visual continuity constraints might require an opening at a certain place in the edge of a

public space. Or the size of a livingroom may be governed simultaneously by use constraints

that limit the room size to 20' x 40', and by site constraints, allowing a maximum size of only

18' x 25'. In this case site constraints supercede use-dimension constraints. But we would not

forget the use constraints, if later we change the site constraints, say by moving a wall. The

site constraints might then no longer bound the livingroom size. The use constraints, however,

still would.

What is the best design? That is a difficult question because there are always many

competing objectives. The house should be sunny, but it should also be large, inexpensive,

and easy to insulate. And there may be hundreds if not thousands of other objectives. We can

optimize only one objective at a time. The sunniest house may not be the least expensive

house. The largest house will not be the sunniest house. The question is difficult, not because

we do not know our objectives, but because we cannot optimize the design for all of them

Design as Exploring Constraints

simultaneously. The "best" house will not be the sunniest, nor the largest, nor the least

expensive. There are trade-offs between these three qualities. The best house will be

sufficiently sunny, sufficiently large, and sufficiently inexpensive. The best design will turn

out to be a compromise or collage among our many objectives.

Design problems are complex, involving hundreds of constraints and decisions that

require skillful management. Because we have many conflicting objectives we can not

optimize over the entire design at once. Design expertise involves breaking or partitioning the

design into workable-sized pieces, or fragments, working the pieces separately and then

reassembling them. We try to minimize connections between the pieces so that we may work

each piece independently. The pieces can be worked in parallel by different designers, or

sequentially by one designer. We consider each piece as a separate design problem in which

we may optimize a different objective. For example, we may optimize sunlight in the

livingroom and size in the bathroom, if we choose to work the two rooms separately. We may

optimize the foundation for strength, and the wood frame screens for light penetration. We

may have to make adjustments where the pieces of the design do come together, but this can be

kept to a minimum by cleverly partitioning the design. Later we reassemble the worked

pieces of design, and the overall result shall not be a global optimization of one objective, but

instead a piecing together of local optimizations.

Now let's compare the method of an expert and of a novice designer. The expert

designer has explored extensively in previous sessions and no longer needs to try out many

different alternatives. The expert is confident of immediately choosing a good one, based on

experience. This partly explains the stylistic consistency of expert designers. Wright's

houses, for example, are relatively similar to one other, and different from houses by another

architect. Each of Wright's houses, particularly if we consider a short time period, represents

Design as Exploring Constraints

only a slightly different variation on the same theme. Experts do not much vary the

constraints. They tend to explore a limited and local region of alternatives, a region that they

have come to know well through experience. Because expert designers proceed rapidly with

minimum diversion towards their final alternative, their method might seem to be more

problem-solving than exploration. But their method must be understood in terms of their

previous experience in exploring. The inexperienced designer, on the other hand, must

explore a great deal to learn which alternatives are more likely candidates. Upon gaining

experience, the novice begins to build a set of preferences. In constrast, the expert designer

has already built up a large set of default constraints and preferences that invariably result in

satisfactory designs, and at least sometimes in excellent ones, thereby reducing the need to

explore. However, when expert designers attempt to operate outside their familiar context of

constraints, as in a foreign culture or in designing an unfamiliar building type, the expert

becomes a novice once again.

Use of the Constraint Explorer

CHAPTER 3

Use of The Constraint Explorer

We now illustrate the processes of describing and working with constraints. We begin

with a simple scenario showing a dialogue between designer and constraint explorer in which

the designer describes dimension and distribution constraints of a very simple configuration.

In sections 3.1 and 3.2 we examine this process first from the designer's point of view, and

then from the machine's. In sections 3.3 and 3.4 we look at examples of various dimension

and position constraints. We see how to construct a vocabulary for describing the relative

positions of material and space elements using combinations of simple arithmetic inequalities.

In section 3.5 we take a closer look at a single constraint concerning the relative positioning of

columns in a building.

Although the theory that designing is exploring constraints and alternative solutions

does not depend on a computer, the computer is the only practical way to explore such a

theory. The computer makes the theory easier to test and apply. We need the computer

because there are so many constraints to organize and so many alternatives to consider. The

computer will be asked to do only mundane tasks: remember design alternatives, keep track of

constraints, perform symbolic and numeric mathematical operations, and rank alternatives

according to objectives.

The constraint explorer acts as an assistant, keeping track of the constraints as they are

added, adopted, and removed from the design. It remembers the constraints on the design and

where they came from. It can report which constraints are satisfied and which are not. It can

Use of the Constraint Explorer

also indicate what additional decisions are needed to specify the design, what degrees of

freedom remain, the constraints on each degree of freedom, and issue warnings when it

identifies inconsistent constraints or a decision that violates a constraint. The constraint

explorer can calculate consequences of decisions, and it can exercise a preference you have

specified for choosing an alternative from a constrained set of values. It remembers and can

recall all the previous states in an exploration, and it can combine parts of one state with parts

of another. It can remember what sequence of operations was performed on a previous

occasion, and perform that sequence again upon request.

3.1 A Brief Scenario.

A brief scenario demonstrates some reasoning the explorer can do. A simple session

with the constraint explorer is presented and discussed. Interaction is presented here as textual

dialogue; that is, the designer issues commands and queries by typing at the keyboard (or by

selecting items from menus), and the constraint explorer responds by typing back answers.

Instead of interacting textually, designers may want to indicate constraints and settings by

drawing and sketching. Here however, the topic is design reasoning, not user-interface. We

shall concern ourselves with the design of a simple configuration of three elements--two

columns and a lintel--and with three position relations between the elements: the two columns

each support the lintel, and the columns are some minimum distance apart. The configuration

we call for simplicity an "arch"* (figure 3.1). (This name is used in the sense of the basic

structural principle of load-transferance rather than in the typical sense of a curved structure.)

* Technically "flat arch" or "portal" would be a more correct name.

A Brief Scenario

Use of the Constraint Explorer

"arch" configuration
Figure 3.1

To describe the "arch", we enter the following constraints:

>> Column-1 supports Lintel.
>> Column-2 supports Lintel.
>> 4' minimum-distance Column-1 Column-2.

Figure 3.2

The" " in each of these lines is typed by the constraint explorer; it prompts the

designer to enter a command or query. Throughout this scenario, text entered by the designer

is preceded by the ">>", to distinguish it from the constraint explorer's responses. Having

entered some constraints, we may wish to check that the constraint explorer remembers them.

In figure 3.3 we ask to see the constraints:

>> What-constraints?
A. (given) Column-1 supports Lintel
B. (given) Column-2 supports Lintel
C. (given) 4' minimum-distance Column-1 Column-2
D. (deduced) Lintel length > distance-centers Column-1 Column-2.

Figure 3.3

The constraint explorer lists the three constraints we entered and shows us the source of

each. By printing "(given)" in front of each of constraints A, B, and C, it reminds us that we

typed them in ourselves. Constraint D is a new constraint deduced by the explorer from the

given constraints. The explorer has figured out that the lintel may be no shorter than the

distance between columns! In figure 3.4 we ask the constraint explorer to account for that

deduction. It responds with the basis for its deduction: the two "support" constraints, A and

A Brief Scenario

Use of the Constraint Explorer

B. Notice that the minimum distance constraint is NOT a basis for the deduction of the

maximum-distance-between-columns constraint.

>> why D ?
The deduced constraint:
(Lintel Dimension) > (distance-centers Column-i Column-2)
was reached by reasoning from given constraints:
A) Column-i supports Lintel
B) Column-2 supports Lintel.

Figure 3.4

The constraint explorer stores all the design constraints and we can query it about the

constraints on a particular variable. For example, we may ask "what are the constraints on the

position of Column-2?". The explorer shows all constraints presently in the design that refer to

the position of Column-2 (figure 3.5).

>> What-constraints on (Column-2 position) ?
B) Column-2 supports Lintel,
C) Column-2 is at least 4' from Column-1,
D) Column-2 center is at most (Lintel length) from (Column-1 center).

Figure 3.5

These are the same constraints as in figure 3.3 (except for A, that has nothing directly

to do with Column-2) but here they are all expressed from the 'point-of-view' of Column-2.

In this example it is apparent by inspection what constraints reference any particular variable.

But in a design with hundreds of variables and constraints, one cannot tell by inspection all the

constraints that control or might control a variable or variables. Hence this cross-referencing

facilty is especially useful with larger designs, and perhaps even useful with small ones. The

constraint explorer will also report constraint violations. If we position the columns fifteen feet

apart, and specify a twelve foot lintel, the explorer reports a violation.

A Brief Scenario

Use of the Constraint Explorer

>> Set (Column-I Position) X
OK

>> Set (Column-2 Position) X + 15'
OK

>> Set (Lintel length) 12'

+-12--

k-15 --X

The move ...Set (Lintel length) 12'... conflicts with constraint:
D. Maximum Lintel length

(Lintel length) > distance (Column-I center) (Column-2 center)
(Lintel length) > 15,

which was deduced from these three relations:

LL. Lintel is rectangular.
(Lintel length) = distance (Lintel left) (Lintel right)

A. Column-1 supports Lintel,
(Column-1 center) is between

(Lintel left) and (Lintel right).

B. Column-2 supports Lintel,
(Column-2 center) is between

(Lintel left) and (Lintel right).

Figure 3.6

In figure 3.6 we set the columns fifteen feet apart and then called for a twelve foot

lintel. The explorer noticed the inconsistency and reported it. At the end of the sequence both

the conflicting constraint and the setting still remain in the design. We may 1) reposition one or

both columns; 2) unset or change the lintel length; 3) remove one of the support constraints

A Brief Scenario

Use of the Constraint Explorer

(this may cause other problems), or 4) let the inconsistency ride. In figure 3.7 we unposition

Column-2.

>> UnSet Position Column-2.
OK

Figure 3.7

Next we perform a local optimization, setting the distance between columns.

>> Maximize distance between Column-1 Column-2.
OK. Distance between Column-1 and Column-2 is now 12'.

>> What is the position of column-1 and column-2?
A. (given) The center of column-1 is at position X, and
B. (deduced) the center of column-2 is at position X + 12'.

>> Why B?
B1. maximize distance column-2 center and column-1 center (12).
B2. center of column-1 is at X.

>> What settings?
Lintel length is 12',
Column-1 center is at X.

Figure 3.8.

In figure 3.8, only the position of one column and the length of the lintel remain set.

Then we asked the explorer to choose the largest possible distance between columns, and we

asked it for the positions of the columns. It reminds us that one of the positions was given,

and the other is an extreme value, the result of maximizing the distance between columns.

Finally, we ask for a list of the settings that hold in this context.

This concludes the brief scenario. Let us summarize the preceding sequences of

interaction with the constraint explorer. First we described three constraints on the relative

positions of three elements (figure 3.2). From these, and using built-in mathematical expertise,

the constraint explorer deduced a fourth constraint, a maximum distance between the column

A Brief Scenario

Use of the Constraint Explorer

centers (figure 3.3). We asked for an account of the reasoning that led to the deduced

constraint (figure 3.4), and we asked for a list of constraints on a particular variable (figure

3.5). Then we placed two elements so as to violate the deduced constraint (figure 3.6); the

explorer reported a violation and by showing the bases for the constraint that was violated,

suggested alternate ways to resolve the conflict. We choose to resolve the conflict (figure 3.7)

by retracting one of the placements and ask the constraint explorer to re-position the element by

maximizing the distance between columns (figure 3.8).

We saw that the explorer can reason about given combinations of constraints and deduce new

constraints as consequences. We saw also that the explorer can calculate the effect of one

setting on other, connected parts of the design, and that it can recognize an inconsistent state

and trace its possible sources. We have seen that the constraint explorer remembers the bases

for its deductions, and can display the chain of events that has led to any particular state. This

can help the designer to understand the steps that have brought the design to any state.

A Brief Scenario

Use of the Constraint Explorer

3.2 Behind the Scenes in the Constraint Explorer.

In the previous section we discussed constraints on the relative positions of parts of a

simple configuration of two columns and a lintel. We looked at an interactive session with the

constraint explorer. Our emphasis was on the role of the user. This section discusses the same

interaction from the constraint explorer's point of view rather than the user's. We will examine

the representation, or model, of the design that the machine works with. This description

consists of the constraints and the values of the variables in the design--both changing

throughout the design; some are set by the designer and others are computed by the machine.

We can diagram the machine's description as a network of constraints and variables. The

figures that follow diagram the design model as it is constructed, maintained, and modified by

the designer in connection with the constraint explorer.

In initially describing the design of an "arch", we wrote three position constraints on

three elements. Figure 3.9a diagrams the description of the initial design state as the program

constructs it in its database. Figure3.9b illustrates the form of the "arch", with annotated

constraints. Figure 3.9b represents one variant of many that meet the constraints. The

constraint explorer can construct such an illustration using default values for variables in the

constraint description.

Li ntel

supports supports
supports

Col umn-1I inimum- Column-2 minimumT
ist ance Ldistanc

Initial description of "arch".
Figure 3.9a, b.

Behind the Scenes

Use of the Constraint Explorer

In the previous section we saw that after the three initial constraints were given, the

machine inferred a new constraint, a maximum distance constraint between the two columns

(Section 3.1, Figure 3.3). (We discuss in Chapter 6 how the program makes such inferences).

Figure 3.10a below shows the description after the inferred constraint is added. Figure 3.10b

shows the form of the configuration with the new constraint annotated.

Li ntel

supports supports
supports

xminimum
distance Idistancel

-n m maximum

Col umn-1I inimum- Column-2 distance

"Arch" description with deduced constraint
Figure 3.10a, b

Now let's look at the description one level deeper in detail than in Figures 3.9 and

3.10. We see that both elements and relations in Figure 3.10 are packages of more primitive

constraints and variables. That is, each of the elements "Column-1", "Column-2", and

"Lintel", and each of the relations "supports", and "minimum-distance" in Figure 3.9 stands

for a package of constraints and/or attribute variables, the definitions of which have been

previously put in by a designer. Packages are indicated in the diagrams as ellipses. Each

package has a name and may contain constraints and variables.

We now look more closely at the package of variables that describes the lintel. To keep

matters uncomplicated we shall treat the lintel here as a simple element, that is, it has no smaller

parts. (In chapter 4 we shall discuss configurations of elements). Figure 3.11 a shows the

Behind the Scenes

Use of the Constraint Explorer

relevant variables in the lintel package. These describe the lintel's qualities, including the

positions of its edges: left, right, top, and bottom, and its dimensions: length and height. Each

edge may also be described by a package of variables, but here we shall not be looking in that

close detail. Therefore in the diagram we need not draw the ellipses around names of edges.

Figure 3.11 a Attribute variables inside the Lintel package.

Figure 3.1lb shows the relationships between several variables inside the lintel

package. The lintel's length is the distance between its left and right edges. This relation is

entirely inside or local to the lintel package; all variables related by the distance relation are

contained in the lintel package.

Figure 3.1 1b: Attribute variables and constraints inside the lintel package.

Like the lintel, each "supports" relation in Figure 3.9 is a package of more primitive

components. The "supports" constraint relates two elements, in this case, a column and a lintel

Behind the Scenes

Use of the Constraint Explorer

(see figure 3.12a). The supports constraint may apply between any elements that have the

neccessary attributes for the description, that is, the supported element must have variables

representing the left, right, and bottom edges, and the supporting elements must have center

and top edge variables (figure 3.12b).

(supported element) LINTEL right
right left

left bottom
Lintel bottom

between
supports supports supports

to p
Col umn- I center top

(supporting element) center

COLUMN- I

The supports relation in detail.
Figures 3.12a, b, c

Figures 3.12c illustrates the constraint explorer's expanded description of the

"supports" package as position relations between variables of the two elements. "Supports"

contains two simpler position constraints. The first constraint is that the top edge of the

supporting element (the column) and the bottom edge of the supported element (the lintel) must

be at the same height, or EQUAL in position. The second constraint is that the center of the

supporting element must lie BETWEEN the right and left edges of the supported one. Figure

3.12d shows that the "BETWEEN" constraint, like "SUPPORTS", is a package of more

primitive constraints "<", and ">". Here, these constraints may be read "left of, and "right

of'.

Behind the Scenes

Use of the Constraint Explorer

Opening up the "BETWEEN" package inside "SUPPORTS"
Figure 3.12d.

We are now ready to expand the simple model shown in figure 3.10. Figure 3.13

shows how the constraint explorer expands both the element and the constraint packages.

Column and Lintel descriptions each have variables representing their edges, the Lintel also has

a length variable, and each Column has a variable representing its center. The "supports"

relation is expanded into more primitive position relations as in Figure 3.12c and 3.12d, and

the "minimum-distance" and "maximum-distance" packages are opened up to reveal a distance

computation and an inequality constraint.

botto m

center

Behind the Scenes

to p

Use of the Constraint Explorer

Expanded description of the arch.
Figure 3.13

On the basis of these constraint descriptions, the constraint explorer can perform

various calculations. If we give the positions of the two columns, then the machine will

calculate the effects on the lintel's length. If instead we give the position of one column and the

lintel length , then the explorer calculates the other column's position. (In section 4.3 we shall

see thafunder some conditions, the direction of calculation, or propagation of effects, may be

restricted). Thus the constraint explorer can express each constraint from the different points of

view of each of the variables it constrains. The first support constraint, for example, can be

seen as both "column-1 supports lintel" and "lintel is supported-by column-l".

We next make two settings in the design. Figure 3.14a shows the description network

of Figure 3.13 with a new setting injected: we set the position of the center of column- 1 to X.

Assume X names a previously defined position.

Behind the Scenes

Use of the Constraint Explorer

Injecting a new value into the network:
>> set (column-1 center) X.

Figure 3.14a

As the new setting is entered, the effects propagate through the design. Figure 3.14a

shows the state of the design description after column-1 has been positioned and effects have

stopped propagating. Heavy lines trace the effect of the setting outward from its injection into

the network. Any new constraints on the value of variables are recorded on the diagram in

place of the variable names. (Recall that"<" , and ">" mean "left of ", and "right of'

respectively.)

Fixing the center of column-1 at position X has immediate effects on two other

variables. The left edge of the lintel must be left of X, the right edge of the lintel must be right

of X. Notice that although two variables related by the lintel's length-left-right distance

constraint have received effects of the new setting (lintel left and lintel right), still no changes

can be computed for the lintel's length. The lintel's length is computed by the distance between

Behind the Scenes

Use of the Constraint Explorer

its right and left edges, and all that is known about the positions of the edges is that one of

them is to the left of position X and the other is to the right. As yet, nothing can be said about

the distance between the edges.

After setting the lintel's length, the design state looks like Figure 3.14b.

Figure 3.14b

The new value for Lintel length, together with the positioning of column-i's center

affects one more variable, the center of column-2. The length of the lintel and the center of

column-1 are given, and the explorer now limits the center of column-2 to be within one lintel-

length of the center of column- 1. That is,

(Column-2 center) < X + 12.

Behind the Scenes

Use of the Constraint Explorer

Notice that the effects of the change did not reach the tops or bottoms of any elements.

Nor is the left edge of column-1 or right edge of column-2 affected. The center of each column

is defined as being midway between its left and right edges. These constraints are illustrated in

Figure 3.15. The center is equidistant from the left and right edges, and the distance between

the edges is equal to the column's width. As we have not specified the column width, no

effects of setting the center reach the position of the edges.

center

1/2
left right

distance

width

Figure 3.15

Notice also that had we chosen to first dimension the lintel, we would not observe any

effects until we also had positioned one of the columns. The Lintel length is bound only by

two constraints, the internal "lintel dimension" constraint that relates the lintel's left, right, and

length variables, and the "maximum distance" constraint between the columns. Each of these

requires another variable value in order to compute and transmit a change. Had we positioned

column-2 instead of placing column-1, then a different though symmetric set of calculations

would have occurred, as the reader may confirm.

So far the constraints in this model do not fix the values of variables; they only limit

them. Even when we set the position of column-1 and the length of the lintel, the position of

column-2 was still free to vary within a range of 4' to 12' from column-1. To determine the

positions of elements, we might constrain the distance between the column centers to equal

Behind the Scenes

Use of the Constraint Explorer

three times the distance from column centers to the lintel edges. Then setting the lintel's

dimension will immediately determine both column positions.

We have seen that constraints and variables may be packaged together under one name

to describe more complex constraints and variables. The elements and position relations used

by the designer to describe the design are actually packages of more primitive relations between

the most primitive relations are "+", " f>", =", "*". We have also seen how the machine uses

the network description to determine the effects of changes in one part of the design on other

parts. Effects of changes may propagate through the network in various directions outward

from their origin. We saw also that a change only propagates throughout the design when a

certain threshold of settings have been made.

Two questions remain. How does the machine deduce new constraints, for example

the maximum-distance constraint in Figure 3.10? How does the machine tracks dependencies

between values in the design and explain the basis of its reasoning? These topics are treated in

chapter 6, but a brief comment here provides a general idea of the mechanisms. Deduced

constraints are added to the model by the program's symbolic mathematics routines (the

solver), and dependencies among values are recorded with every setting and calculation. The

constraint explorer uses the chain of dependencies that link design moves to provide

explanations of the source of particular values and constraints, and also to minimize destructive

effects of undoing design decisions.

Behind the Scenes

Use of the Constraint Explorer Dimension Constraints 38

3.3 Dimension Constraints.

We discussed in the previous section how the designer can package together collections

of constraints and variables to describe an element or a relation and we introduced network

diagrams as a way to understand the constraint explorer's representation of design rules. The

following two sections present two classes of constraints of particular importance to the

designer -- dimension and position relations.

In the examples following we shall consider constraints on the dimensions of a room.

Each of the following network diagrams represents a package of constraints, variables, and

their connections that the designer might assemble to describe a design rule to the constraint

explorer. Each package in these examples describes a different region of alternative room

sizes.

Let us begin with a package that has no constraints, only variables. Figure 3.16

describes a room with three independent variables: length, width, and height. That is, the three

variable values may be set independently and there are no limits on any of their values.

hei ght

ROOM width
length

Room variables packaged; no constraints.
Figure 3.16

In Figure 3.17 we see a room now constrained to be a cube. Length, width, and height

variables are all constrained to be equal. There is thus only one degree of freedom in this

Use of the Constraint Explorer

constraint; as soon as one variable's value is set, the design is completely specified. That

value, however, may be freely chosen. The room must be a cube, but it may be a cube of any

size.

hei g ht

widt h=

lengt

Cubical room.
Figure 3.17

Look at Figure 3.18a. It shows a room constrained to be exactly two thirds as wide as

it is long. This package has two degrees of freedom: length and width are related by the two-

thirds rule and height may be set independently.

hei ght

ROOM width2/
length

Two thirds proportion rule.
Figure 3.18a

Let us now see what happens when we fix, or set, a value that is connected through a

constraint to other values in the design. When we set a value for the width variable, the

constraint explorer calculates a value for the length. Alternatively when we fix a value for

length, the constraint explorer calculates a value for width. Figure 3.18b shows the two

different possible calculations with arrows indicating the direction of propagation. In addition,

if either variable--length or width--in the proportion rule is connected also to other constraints,

Dimension Constraints

Use of the Constraint Explorer

then any change may cause other calculations to be made, inducing a chain of consequences

propagating outward from the originally set variable. Here we have considered only one

constraint, but in Figure 3.19 we shall see an example of propagation through a network of

constraints.

height height

ROOM width 2/3 ROM width2/
ROMlength (OMlength

Two-thirds constraint calculates both ways.
Figure 3.18b

Our next diagram (Figure 3.19a) shows a room constrained to be two thirds as wide as

it is long with its height constrained to be the average of its length and width. These

constraints also have only one degree of freedom: fixing a value for any one of the variables

will determine values for the other two. Figure 3.19b shows the "average" constraint

expanded into more primitive components. For example, if we set the width to 12 feet, then

the length is 18 feet (by the 2/3 proportion rule), and the height is 15, half the sum of width

and height. This propagation of values is shown in Figure 3.19c. As with the cubical room,

this room's dimensions are not limited to any numerical range; rather they are constrained to

have a certain relation to one another.

hei g ht average

ROOM width 2/3

length

proportional room with average height
Figure 3.19a

Dimension Constraints

Use of the Constraint Explorer

"average" constraint expanded to its primitive components.
Figure 3.19b.

Propagating a value.
Figure 3.19c

Figure 3.20 shows a room constrained; not by proportion relations, but by maximum

and minimum dimensions that are constants. There are three degrees of freedom; each variable

is unrelated to the others and may be set independently. However, each variable is limited to

values in a certain range.

Dimension Constraints

Use of the Constraint Explorer

minimum and maximum dimensions.
Figure 3.20

In Figure 3.21, a room is constrained to be at least two thirds and no more than three

quarters as wide as it is long, and at least as high as it is wide. Even though the variables are

related, they may be chosen somewhat independently. These relations limit the range of values

but within that range there are still three degrees of freedom.

range of proportions constraint.
Figure 3.21

Next, in Figure 3.22 we see a combination of the packages in Figures 3.21 and 3.20,

representing the range-of-proportion constraint from Figure 3.21 and the minimum and -

maximum dimension constraint from Figure 3.20.

Dimension Constraints

Use of the Constraint Explorer

Combined range-of-proportion and range-of-dimension constraints.
Figure 3.22

Dimension Constraints

Use of the Constraint Explorer

3.4 Position Constraints.

Form, or the arrangement of physical elements in space, is the primary concern of

architectural design. Position relations and rules are therefore of utmost importance to the

architect. This section shows how position relations can be constructed by combining simple

arithmetic constraints and relations. We shall consider a number of examples describing basic

position relations increasing in complexity. Dimensions and positions are often interrelated and

we shall see that combinations of position constraints may have dimensional implications.

Later in this chapter, to illustrate the use of position constraints in design, we shall consider the

effect of applying a particular constraint--a rule of thumb for placing columns one above the

other in a column-and-beam type building.

We shall look at packages of constraints describing the relative positions of two

elements, A and B. We will say nothing here about their dimensions; we are concerned only

with describing their relative position in space. We shall approximate A and B as rectangular

elements confined to a plane. The terms "above", "below", "left of' and "right of' name the

four primitive position relations of the two elements. (In a three-dimensional version of the

model we would also use relations "in front of' and "behind".) Each package contains simple

combinations of the primitive position relations ("above", "below", etc.) between the elements'

edges. Each example package shows for comparison: (a) a network of constraints and

variables, (b) a representative variant or variants, (c) the same constraints and variables arrayed

in a matrix, and (d) a symbolic (Lisp-like) representation. We begin with an extremely simple

relation and gradually add and alter constraints.

Position Constraints

Use of the Constraint Explorer

We see in Figure 3.23a,b,c,d the position constraint, "A's right to the left of B's left".

This relation is often abbreviated, "A entirely left of B". Five representative variants are

indicated. A can be (1) "entirely above", (2) "(passing) above", (3) "enclosing", (4) "(passing)

below", or (5) "entirely below" B in the vertical direction. Observe no dimensions are given;

element A can be anywhere so long as it is to the left of B, A can be immediately or far to the

left of B; it can be above or below, as figure 3.23b indicates. In figure 3.23c the black dot

indicates a relation between the variable in the column and the constraint in the row.

B]N
1. entirelg 2. above & 3.enclosing

ngot < tt above passing

bottom bottom
lef t right - -....... [

4. below & A 5. entirely
passing below

Figure 3.23a. network diagram. Figure 3.23b. representative variants.

Figure 3.23c. constraint/variable matrix. Figure 3.23d. Symbolic form.

A entirely to left of B
Figure 3.23

Remember the spatial uses of the"<", "=", and ">" symbols (section 3.2). Between

right and left edges "<" means "left of', and between top and bottom edges "<" means "

below". When the symbol "<" indicates a relation between two numbers, we read it "less

than". Here, relating two element edges, it means one edge is "less far along" in some

direction than the other edge. The symbol has a different meaning depending on context.

A B

Position Constraints

Use of the Constraint Explorer

Here "<" measures distance along a direction. Likewise, ">" may mean "right of' or "above",

and "=" may mean that two edges are at the same (horizontal or vertical) position.

The constraint packages in Figures 3.24, 3.25, 3.26, and 3.27 show how to

distinguish some of the different classes of variants illustrated in Figure 3.23b. For instance, if

we add one constraint to the package in Figure 3.23a, we select the class of variants in Figure

3.23b.5. The new constraint package is shown in Figure 3.24a. Now "A is left of and

entirely below B" (Figure 3.24b). Another spelling, or name, for the same constraint is "B

right of and entirely above A".

A to < top B
b o tto m b o tto mE

-..* - -

Figure 3.24a. Constraint Network. Figure 3.24b. Example Variant.

A B
Ftb r t b ((A right) (B left))

< (((A top) (B bottom))

Figure 3.24c. Constraint Matrix. Figure 3.24d. Symbolic form.

A entirely left of and entirely below B.
Figure 3.24

By adding two more constraints to the previous package (Figure 3.24) we describe a

"passing" relation as illustrated in Figure 3.25. Element A must be below and entirely to the

left of B. This corresponds to Figure 3.23b.4.

Position Constraints

Use of the Constraint Explorer

Figure 3.25a. Constraint Network Figure 3.25b. Example Variant

A B
t b r t b I (<(A right)(B left))

< . (<(A top)(B top))
< . ((A top)(B bottom))
> (< (A bottom)(B bottom))

<

Figure 3.25c. Constraint Matrix. Figure 3.25d. Symbolic Form.

A entirely left of and passing below B.
Figure 3.25.

A more general passing constraint is demonstrated in Figure 3.26. Two elements pass

vertically but unlike the previous example, this constraint does not distinguish between A

above B and B below A. This corresponds to the variants in Figure 3.23b.2 and 3.23b.4.

Notice that the two cases, A above B, and A below B, are covered separately by two

constraints (labelled 'passing above' and 'passing below') ORed together. Figure 3.26a'

shows the two relations "passing-above" and "passing-below" expanded to reveal their

component relations. Only one of the component constraints need be satisfied. In this case, A

cannot be both above and below B at the same time. Constraints packaged with no explicit

logical relation (such as OR in this example) are implicitly ANDed together--all constraints in

the package must be satisfied.

I.... .-.- --

Position Constraints

Use of the Constraint Explorer

Figure 3.26a. Constraint Network.

Figure 3.26a'. Constraint Network(expanded)

A

A B

Figure 3.26b. Example Variants.

Position Constraints

Use of the Constraint Explorer

A B
1 2 1 r

OR . .10 r

A B 2 A B
t b t b 2 t b t b

> . g. < . .

Figure 3.26c. Constraint Matrix. Figure 3.26d. Symbolic Form

A and B passing.
Figure 3.26

Figure 3.27 shows A to the left of B, A's top above B's top, and A's bottom below

B's bottom, corresponding to Figure 3.23b.3. In other words, B is entirely--both top and

bottom edges--within the projection of A's right edge. This constraint implies that A's right

side must be longer than B's left edge.

Figure 3.27a. Constraint Network.

A B
t b r t b l

<

Figure 3.27b. Example Variant.

Figure 3.27c. Constraint Matrix. Figure 3.27d. Symbolic Form.
A to the left of and vertically enclosing B.

Figure 3.27.

(define-constraint
Passing (AB)
((A right)(B left))
(or (passing-above A B))

(passing-below A B)))

(< (A right) (B left))
(> (A top) (B top))
(< (A bottom)(B bottom))

Position Constraints

Use of the Constraint Explorer

In Figure 3.28 we see a description similar to the one in Figure 3.27, except A is offset

from B by a minimum distance, or offset. The distance between A's right edge and B's left

edge must be greater than the minimum offset. This package involves a dimension as well as a

position constraint. The offset dimension may be left as a variable, set to a constant, or, as we

shall see in a moment, related to some other quantity in the design.

Figure 3.28a. Constraint Network.

Smin.
offset

Fig B
Figure 3.28b. Example Variant.

Figure 3.28c. Constraint matrix. Figure 3.28d. Symbolic form.

A left offset from B by minimum dimension.
Figure 3.28.

In the next example, A is offset from B by at exactly its own width dimension (Figure

3.29). The offset that was a free variable in the previous example is now connected to A's

width.

A B mi.
r 1 offset

[>dist| 1 1 * I | .1
((distance (A right) (B left))

minimum-offset)

Position Constraints

Use of the Constraint Explorer

Figure 3.29a. Network

A B
r v

|=diste | * | (=I (A vi

Figure 3.29c. Matrix

Figure 3.29b. Variant

idth) (distance (A right)(B left)))

Figure 3.29d. Symbolic Form.

A left offset from B by A's width.
Figure 3.29

Figure 3.30 shows a package of constraints describing the containment relation, A

inside B. For this constraint to make sense in two dimensions, B must represent a space

element.

A < B

top > top
botto m bottomi

right < right
l eft > left

Figure 3.30a. Network.

A B
right left

top distance top
bottom bottom
vidt

Figure 3.30b. Variant.

Position Constraints

Use of the Constraint Explorer

A B
tb r 1 t br 1
<1111e

>0 WL
ThL1

* z e.

Figure 3.30c. Matrix. Figure 3.30d. Code.

containment - A inside B.
Figure 3.30.

Figure 3.31 shows the constraint, A cross B. Again, either A, or B, or both A and B

must be space elements for this package to make sense in two dimensions.

Figure 3.31a. Network.

Figure 3.31c. Matrix.

Figure 3.31b. Variant.

Figure 3.31d. Symbolic form.

A cross B
Figure 3.31.

Until now we have not mentioned any constraints on direction, although only

orthogonally oriented variants have been illustrated. We have been using absolute names for

(<(A top) (B top))
(> (A bottom)(B bottom))
(< (A right)(B right))
(> (A left)(B left))

LIlA B

A B
t b r 1 t b r 1

(e e

(<(A top) (B top))
()(A bottom)(B bottom))
(<(A right)(B right))
(>(A left)(B left))

Position Constraints

Use of the Constraint Explorer

position relations between elements and for their edges. Our absolute names assume we are

looking at a vertical section drawing. We have been using terms such as "top", "above", and

"left of' to indicate the relative positions of elements as seen by the reader of the drawing.

Thus, in order to simplify the explanation, we have been assuming that all elements face "up".

We now introduce a direction variable for each element. An element's direction is represented

by a number from 0 to 360, like a compass heading. By convention, in plan an element's

direction is along its longer axis, and is indicated in diagram by an arrow. The direction of an

element may be constrained in much the same way as the dimension and the position. For

example, the constraints in Figure 3.32 allow up to a 20 degree difference (or turn) in the

directions of A and B.

A B
top <op

bottom > bottom
right 4 left a ~~J

direction direction 1

difference j t
Figure 3.32a. Network. Figure 3.32b. Variants.

Adding an orientation constraint.
Figure 3.32.

Permitting the directions of elements to vary, we see that our absolute naming system

is less than ideal. For example, as element A rotates clockwise, its "top" edge gradually

becomes its right edge. Figure 3.33 shows another set of element edge names: front, back,

left, and right. These names are not absolute, but relative to the element's direction. The front

edge of an element is the edge towards the element's direction. As Figure 3.33a shows, if the

direction of an element is "up" (in the absolute naming system) then the absolute edge names

Position Constraints

Use of the Constraint Explorer

we have been using (top, bottom, left, right) map directly to the local names (front, back, left,

right). If we wish to use relative names for edges we can use a tick mark to indicate the front

edge of each element (figure 3.33b).

top
front

left right

back
bottom

absolute and local names of edges
Figure 3.33a.

tick mark indicates front edge.
Figure 3.33b.

However if we rotate two elements A and B so that their directions are different, we can

compare absolute and relative naming systems. The configuration in Figure 3.34 is described

using the two reference systems.

A

A bsol ute: A above B / B below A.

Relative: A right of B/ B front of A. B

absolute and local names.
Figure 3.34.

This concludes our examples of position constraint models. We have seen how to

construct a variety of moderately complex position constraints between two elements from a

small set of more primitive relations. A number of simplifications have been made for the

purposes of explanation. More than two elements may be related by a single position relation,

as we shall see next. Also, we have assumed that elements are rectangles, although we know

Position Constraints

Use of the Constraint Explorer

that often they are not. More sophisticated position rules may relate an element's shape and its

position. For example, a position rule might say "orient A's variable edge toward B" (Figure

3.35).

A B

A's variable edge toward B.
Figure 3.35.

Position Constraints

Use of the Constraint Explorer

3.5 A Position Constraint.

To gain a sense of how the sorts of position constraints described above might function

in a design, we next discuss the application of a particular position constraint in some detail.

We consider a simple structural constraint, expressed as a rule of thumb for positioning

columns. The purpose is not to argue the merits and disadvantages of a particular constraint,

but to see how a constraint fits into an architectural context. It is interesting that such

arguments can be expressed concisely using a vocabulary of constraints.

When designing with a one-way column-and-beam construction system the columns

(that carry the building) must be positioned according to general and particular constraints.

Columns that support one floor must themselves be supported by the columns on the floor

below. Although every column must be located over a beam, columns need not be stacked

directly one atop the other; rather, each may be laterally shifted along the beam upon which it

rests, so long as the beam can transfer the load onto the column below. As a rule-of-thumb the

columns may be offset along the beam by a maximum distance of the beam depth (figure 3.36).

The exact safe column offset depends on the particular beam -- its shape in cross-section and its

material -- as well as the load carried by the upper column. The rule-of-thumb is usually,

however, a good approximation. In the larger design other constraints also limit the

positioning of columns; for example, the maximum beam span and the room layout constraints.

maximum
H-S: 1 columa-offset

floor depth

Maximum column-offset equals floor depth.
Figure 3.36.

A Position Constraint

Use of the Constraint Explorer

Figure 3.37 shows a model of this constraint. Notice that this constraint concerns

variables from three elements: the floor depth, and the positions of two columns.

Lower-column Upper-col umn

center center

distance
Floor

< depth

Column-offset constraint - network diagram.
Figure 3.37.

Most modern column-and-beam designs do not exploit this column-offset constraint.

Instead, columns are usually placed one atop the other even though they might be offset

without violating any structural constraints. Although "stacked atop" is only occasionally

necessary where an exceptionally heavy load must be carried, many designers use the more

restrictive "stacked atop" constraint as a default. The column-offset constraint is perhaps a

more reasonable default than the stacked-atop constraint, as the former permits a wider choice

of column position than the latter, without significantly reducing structural integrity.

Alexander recommends an architectural rule or "pattern" similar to the column-offset

constraint, applied to locations of columns when a construction system of vaults is employed

[Alexander, Ishikawa, & Silverstein 77]. In both vaults and column-and-beam construction

the applicability of the constraint is based on a structural principle that the beam can safely

support a load through an angle as low as 45 degrees from the vertical (figure 3.38). Thus in a

vault or true arch the maximum column-offset distance could be greater than with the column-

and-beam system; that distance would be limited by the intersection of the 45 degree tangent to

the curve of the arch with the top surface of the floor (Figure 3.39). Bracing can also be used

A Position Constraint

Use of the Constraint Explorer

to extend the limit in a column-and-beam system. A true arch or vault, unlike a column-and-

beam system, can also support a column at its center, or key (Figure 3.40).

Beam can support loads through a 45 degree angle.
Figure 3.38

Column-offset in a vault.
Figure 3.39

Arch can also support at key.
Figure 3.40

The column-offset rule is an example of a local position constraint. It is local because

each application or instance of the constraint concerns the positions of two particular columns

and a beam. As it applies to every pair of columns where one supports the other this local

constraint can, however, have far-reaching implications on the design of a building. The

load

A Position Constraint

Use of the Constraint Explorer

constraint allows a variety of beam spans and column configurations; see for example figure

3.41.

Configurations of vertical support
Figure 3.41.

In these examples we have seen only local position rules. The same sorts of constraints

can be used to describe more global constraints. For example, all elements in a field may be

constrained to have approximately the same direction. Grids and reference-lines can be used to

establish a global position rule. Certain elements may be limited to certain grid intersections, or

to lie in the zones between certain reference lines.

A Position Constraint

Parts, Prototypes, and Dependencies

CHAPTER 4

Parts, Prototypes, and Dependencies

4.1 Elements and Configurations.

So far we have been looking at descriptions of designs in terms of position and

dimension constraints on elements. These constraint descriptions, however, are not the whole

story. For not only do elements have position and dimension constraints, they are also

organized into a hierarchy of parts and configurations. In the description of the "arch" we saw

the position constraints between its parts, the two columns and lintel, but we did not move up

in the part/whole hierarchy to view the arch as a part of a larger configuration, or down to view

each of the arch's parts as a configuration of elements. The hierarchy of elements and

configurations is another aspect to the description of a design, distinct from the constraints on

the properties of elements. The two descriptions are, as we shall see, related. We shall also

see that a set of constraints may describe a range of different configurations, and that a

configuration of elements may be described, or read, in several different ways.

A configuration is a set of elements with certain position relations. An element may be

either a space, or virtual element, or it may be a physical, or material one. In any case we call

the "parts list" of a configuration its "selection" and we call the set of position relations between

its parts its "distribution" [Habraken 83]. For example, two different configurations may have

the same selection of elements but different distributions, as Figure 4. la illustrates, or as in

Figure 4.1b, they may have the same distribution but different selections.

Elements and Configurations

Parts, Prototypes, and Dependencies

4.1a: Same selection, different distribution.
4. 1b: Different selection, same distribution

Figure 4.la, b

Most elements are themselves in turn configurations of smaller elements. We are all

familiar with the idea of a hierarchy of parts and wholes, in which a complex element--a house

for example--is decomposed into parts and parts of parts. Ultimately the complex

configuration "house" is seen to be composed of a large number of simple, undecomposable

elements, such as columns, beams, bricks, sticks, and nails. Though all decompositions of a

configuration comprise the same set of most basic elements, the decomposition of a complex

configuration into parts and sub-parts is not always unique. Conventionally, however, one

decomposition of configurations and elements is preferred. An element can also belong to

more than one configuration. For example, a light switch may belong to the configuration

"built elements in the living-room" as well as to the configuration "parts connected electrically

to the main power-line".

A configuration is described by its selection and its distribution. The selection

identifies the elements in the configuration. The distribution consists of position constraints on

the elements named in the selection. Each element in the selection may itself be a configuration

of smaller elements. Constraints describe the positions of the parts relative to one another, but

nQt relative to the configuration. A configuration and its parts are really the same entity;

E r=3 = JI

Elements and Configurations

Parts, Prototypes, and Dependencies

therefore they cannot enter into position relations with each other. A set of constraints need not

describe a single and unique configuration; it may describe a range of possible alternative

configurations, or variants. For example, in section 3.1 we described a set of position

constraints on three elements, two columns and a lintel. Those position constraints described

the configuration, "arch". As the constraints permit freedom in both the dimensions and

positions of the parts, they do not describe one single arch but a range or region of possible

arches. Figure 4.2 shows four different extreme arches described (that is, not excluded) by

those constraints.

a. b. c. d.

A constraint description may permit variants of a configuration.
Figure 4.2

Although earlier we described the position constraints between the columns and the

lintel elements (section 3.1), we did not view the columns and the lintel as configurations

themselves. Now we shall look at these elements in greater detail. We may describe a

column, for example, as a configuration of three parts: a base, shaft, and capital, centered and

stacked one above the other. Figure 4.3a shows the parts of a column in the hierarchic

description of an arch, and Figure 4.3b shows the constraints that describe the position

relations between the three parts. In Figure 4.3b the small numbers next to the "stacked"

constraint indicate the order of stacking. Figure 4.3c shows the position constraints between

the parts of the column in greater detail.

Elements and Configurations

Parts, Prototypes, and Dependencies

Figure 4.3a. Selection of parts in "Arch".

Capital
3

STACKED 2 Shaft CENTERED
1

Base

Figure 4.3b. Distribution of parts in "Column".

Figure 4.3c. Detailed distribution constraints of "Column".

Parts of a column and their distribution.
Figure 4.3a, b, c

There may also be dimension and proportion constraints that define each of these parts.

In Figure 4.4, position constraints are shown at the left and dimension constraints are shown to

Arch

Column-I Lintel Column-2

Base Shaft Capital Base Shaft Capital

Elements and Configurations

Parts, Prototypes, and Dependencies

the right. Figure 4.4 illustrates, in addition to the "stacked" and "centered" constraints of

Figure 4.3, the following dimension and proportion rules:

A) base and capital must be square in plan (their width and length dimensions must be
equal),

B) the base and the capital have the same dimension in plan (here their widths are
constrained to be equal),

C) the base and capital length must be between 2 and 4 feet,

D) the depth of the capital is one half the depth of the base, and

E) the column's shaft is at least five times higher than its diameter.

Constraints between parts of a column.
Figure 4.4

Previously we described a column as though it were simply a rectangle, having top,

bottom, left, and right edges (see section 3.2). We were only interested in the column as a part

of the arch; we were content to see it as simply an element. Now we have described the

column in greater detail, seeing it as a configuration of parts.

Elements and Configurations

Parts, Prototypes, and Dependencies

Our next step is to connect, or merge these two descriptions; that is, to integrate the

description of "column-as-part-of-arch" with the more detailed description of "column-as-

configuration-of-parts". We would like the constraint explorer to understand that the two

descriptions correspond to the same element. We need to specify, for example, that the top

edge of the column in the first description is the same as the top edge of its capital in the

detailed description. Our integration also shows that the column's left and right edges are the

same as the left and right edges of the base and capital (figure 4.5).

CAPITALIef
bottom lf

right

o p left top
SHAFT right leftCOLUMN
ottom right

bottom
top left

BAEright
botto

Integrating the detailed description of the column.
Figure 4.5

In general we will always work with descriptions of a configuration at two different

levels of detail: one describing the parts and their position relations and another describing the

configuration as a part in some other, larger configuration. The latter description will usually

only concern the outside edges of the configuration, and not position relations between its

parts. We would like to automatically generate simple descriptions from detailed ones. We

might use a 'bounding-box' heuristic: select the outermost edges of the configuration's

outermost parts and call these the edges of the configuration in the simple description. Figure

Elements and Configurations

Parts, Prototypes, and Dependencies

4.6 shows this scheme applied to several configurations. In some cases, of course, we may

want to override this procedure and reduce the detailed description using different heuristics.

Bounding-box reduces detailed descriptions to outermost edges.
Figure 4.6

Often we shall want to position an element relative to some part of a configuration.

For example, we might want to place a screen, or window, between the capitals of the columns

of an arch, directly beneath the lintel (Figure 4.7). The position relations here concern the

edges of the screen and the edges of the capitals of the columns of the arch. Now we are three

deep into the part/whole tree of the arch: the arch itself, the columns of the arch, and the

capitals of the columns of the arch. Figure 4.7a shows the form of the configuration and

Figure 4.7b diagrams the position relations between its parts. Notice that there are two sorts of

relations between elements in this diagram: part-whole relations and position relations.

Arch

Column- 1 Lintel 4-4 Column-2

Bas Screen Base

S haft S haft

Capital Capital

KEY: '- part-whole position

-. relations relations

Screen between capitals of columns of arch.
Figure 4.7a, b

Elements and Configurations

Parts, Prototypes, and Dependencies

The following example shows the same idea--that we shall sometimes want to describe

the position of one element or configuration relative to another element that is a part of a

configuration. Let us consider two different ways to describe a linear series of arches or

"arcade". In Figure 4.8, the distribution constraints of the arcade are position relations

between successive arches.

Arcade described as position relations between successive arches.
Figure 4.8

Figure 4.9 describes the same configuration as figure 4.8. Here, however, Arch2 is

positioned relative to column-2 in Archi, and not relative to the configuration Archi itself.

Alternate description of the arcade.
Figure 4.9

The next example shows that different configurations may have common elements.

Figure 4.10 shows two arch configurations that share a column. The shared column is known

by a different name in each configuration.

-EJ|j-

Elements and Configurations

counARCH 1 RH
col umn col umn-1 lf

- 2 l intel right

Parts, Prototypes, and Dependencies

Two arches share a column.
Figure 4.10

Figures 4.8 and 4.9 illustrated the idea that there may be several different ways to read,

or describe a configuration, all of them equally valid. Figure 4.1 la shows another example of

this multiple view idea: a lintel with three columns that may be read either as two arches (Al

and A2) sharing a middle column, or as a single arch (A3) with a third column placed between

its supporting columns. Figure 4.1 lb shows the different part-whole relations in these three

arch configurations.

Al A2m columnI column3 column2
Al A2

lintel

A3

A3

Three arches sharing a lintel.
Figure 4.11a, b

UH U
ARCHI ARCH2

Elements and Configurations

Prototypes, Instances, and Individuals

4.2 Prototypes, Instances, and Individuals.

We have seen how elements and position relations can be described by using

packages of constraints and variables and how packages can be organized in a part-whole

hierarchy to describe nested configurations of elements. We now examine a different

organization of these same packages--a hierarchy based on distinguishing prototypes,

instances, and individuals. This structure allows the designer to define new packages by

adding distinctions to existing ones.* Descriptions higher in this prototype hierarchy are

more general; lower ones are more specific and detailed. All but the most specific packages

in the prototype hierarchy refer to classes of elements or relations. For example, having

laboriously constructed an "arch" package by describing all the parts and their relations (as

in section 3.1), the designer can easily make arch-instances that share the general

description, yet each instance may vary in its particular details. Each may also be a

prototype for further sets of even more particular arch-instances.

We shall use the terms "prototype", "instance", and "individual"t as follows. Each

higher description in the hierarchy is a "prototype" for all its inferiors. The top, or root,

description is therefore an ultimate prototype having no prototype of its own. Each lower

* Generic, or classification hierarchy is a central feature in many "knowledge representation languages" and
increasingly becoming standard in general purpose programming languages as well. Here the issues are
simplified extremely for the sake of brevity. A clear and simple exposition may be found in Bobrow and
Winograd's Overview of KRL [Bobrow and Winograd 77]. The interested reader should refer to the programming
languages Simula, Smalltalk, and Objectlisp [Dahl and Nygaard 66, Goldberg and Robson 84, Drescher
(forthcoming)], and also to the large body of work in knowledge representation. Two good initial references are
Representation & Understanding [Bobrow and Collins 77], and the February 1980 special issue of the ACM
SIGART newsletter [Brachman and Smith 80]. A different perspective on these issues is afforded in NETL- A
System for Representing and Using Real-World Knowledge [Fahlman 79].

t Often the words "class", "subclass", and "instance" are also used for the same concepts, respectively.

Parts, Prototypes, and Dependencies

Prototypes, Instances, and Individuals

description is an "instance" of its superiors. Instances at the bottom, or fringe, have no sub-

instances. We call these ultimate instances "individuals".*

If further specifications are not made, the properties of an instance are the same as

those of its prototype. We say that each instance "inherits" its prototype's properties. An

instance may also carry additional properties that supplement and/or supercede its prototype's

properties. If any property is superceded, we say the instance is an exception to its prototype.

The entire set of properties of any instance is the union of its private properties and the

properties it inherits from its prototype. In case a property is assigned to two instances, the

lower value always applies. In figures 4.12 and 4.13, prototype Column C has two instances

CA and CB. In turn, CA and CB are each prototypes for two instances, individuals CA1> CA2,

CBl, and CE2._

C

CA 1 CB LJ

CAI CA2 CB1 CB2

Simple prototype hierarchy.
Links represent the "a-kind-of" relation between element descriptions.

Figure 4.12

Figure 4.13 shows the properties attached to each description in the hierarchy. The

properties of each instance can be found by reading up the chain of its prototypes, adding

*Although we shall not discuss it here, instances are not limited to a single prototype. Thus the prototype
hierarchy is actually a lattice. The prototype-inheritance mechanisms of the constraint explorer are those of

Objectlisp, and are discussed in The Obiectlisp Manual [Drescher (forthcoming)].

Parts, Prototypes, and Dependencies

Prototypes, Instances, and Individuals

properties from each description that are not defined in a lower instance. CA and CB differ in

their form but both inherit their height from C, the shared prototype. CA1 and CA2 differ in

height but share the same forn; CB1 and CB2 are alike except for position.

Look at the individuals in Figures 4.12 and 4.13. CBi and CB2 specify different

positions but they do not override any properties of their prototypes. CAl inherits CA'S form

and C's height; CA1 has no private properties (except for its built-in kindof property that

establishes its prototype). In contrast, CA2's private height supercedes the value specified by

C. We can think of CA2 as an exception to its prototype C* or we can think of C's height as a

default for all its instances.

C:
height: 10 feet

CA:. CB:
ki ndof C. ki ndof C.
form: round form: U-shaped.

CAI: CA2: CB1: CB2 :
ki ndof CA- ki ndof CA ki ndof CB. ki ndof CB.

height: 14. position: x. position: Y.

Prototype hierarchy showing properties of elements.
Figure 4.13

A prototype serves as the default description for all its instances. Defaults are useful

when we want to begin with a standard description for all instances and (possibly) return later

to specify or change descriptions of particular instances. Of course the constraint explorer

allows the designer to override the initial defaults.

* Notice it is possible in this scheme to construct a individual that is an exception to all

properties of its prototype. Indeed we have one in CA2 with respect to C. We call such
an individual a "perfect exception".

Parts, Prototypes, and Dependencies

Prototypes, Instances, and Individuals 72

The prototype-instance hierarchy pervades the constraint descriptions we have been using all

along. For example, Figure 4.13 shows both part-whole relations between elements in an

arcade as well as the prototypes shared by the various parts. (Position relations are not

shown.) We now see that each arch (A1, A2,...) is an instance of a prototype arch AO, and

likewise each column (Cl, C2,...) is an instance of a prototype column CO; each lintel (Ll,

L2,...) is an instance of a prototype lintel LO.

Diagram showing both part-whole and prototype-instance relations in an arcade.
Figure 4.13.

In figure 4.13 the three arches A1, A2, and A3 are identical; in general this need not

be the case. Each arch in the arcade may differ, so long as each arch meets the constraints in

the prototype AO, and similarly all the columns and lintels meet the constraints in their

prototype.

The prototype hierarchy organizes packages of constraints and variables. We have

seen how one class of material elements, columns, might be structured. The prototype

L1 L2 L3

C1 C2 C3 C4 C5 C6

3
prototyIpe

has-part
L 0Co

Parts, Prototypes, and Dependencies

Parts, Prototypes, and Dependencies Prototypes, Instances, and Individuals 73

hierarchy may also be used to specify relations as well as elements. For example, we may

begin with a prototype "A to the left of B" relation, and specify different variations as in

Section 3.4. Each variation of the relation can be described as an instance, or specification,

of its prototype. Structuring packages into a hierarchy or lattice of prototypes and instances

is an efficient way for the constraint explorer to store information, and it seems a natural

way for the designer to describe the design as well.

Dependencies in the Built Environment and in Design

4.3 Dependencies in the Built Environment and in Design.

In the built environment, position relations may be ordered by dependencies. If

moving one element disturbs the second while the second may be moved freely without

disturbing the first, then a dependency relation exists between the two elements. One

element supports, contains, and/or supplies another. Such dependencies between elements

may be a function of the element pair, or determined by the relative placement in space of

the elements. Different actors, or powers may control elements of different inherent

dependency levels. For example, one designer may design the major bearing walls and

another may design the infil walls and screens. Inherent dependencies of elements thus

order the relation between designers that control the elements. These dependencies

between elements are especially important in architecture and in any design domain dealing

with the arrangement of forms in space.*

In the course of building, dependencies between elements arise naturally. For

example, the roof depends on the bearing walls for support; the door depends on its frame for

support. In the supplies relation, the light depends on the power-cord for electricity; the pipes

supply the faucet with hot and cold water; the gutter drains the roof. Examples of the enclosure

or containment relation are: the room contains the closet; the apartment contains the room; the

apartment building contains apartments and a lobby. In each of these examples, one element

depends on the other but not the reverse. The roof may be moved without disturbing the

bearing walls, the faucet replaced without disturbing the pipes, and the apartments remodelled

without changing the volume of the building.

*Dependencies in the built environment are a major topic in Habraken's Transformations of the Site [Habraken
83]. Therefore only a summary appears here.

Parts, Prototypes, and Dependencies

Dependencies in the Built Environment and in Design

The "contains" relation is slightly different than "supports" and "supplies" because

containing elements must be space elements, not material ones. Space elements exist only by

virtue of our convention to recognize them--they are indicated by their bounding elements. A

room, for example, is indicated by its walls; a street, by the buildings on either side. Unlike a

brick or a beam, a space element cannot be picked up and moved about on the site unless it is

part of a prefabricated element. During design however, space elements are manipulated in the

same ways as material elements. Containment also has territorial implications, but those are

beyond the scope of the present work.

The "support", "supply", and "contains" relations are specific kinds of dependency

relations. Each is associated with a position relation. Of course, an element may be in relation

with more than one other element, and may at the same time depend on different elements in

different ways. For example, figure 4.14 shows power line (P) contained in an apartment (A),

supplying a toaster (T) that is also contained in the apartment. Garden light (G) is also

supplied by (P). Concisely stated, these relations are:

(A contains P)
(A contains T)
(P supplies T)
(P supplies G)
(not (A contains G))

A

P

T

Elements may have several dependency relations.
Figure 4.14

Parts, Prototypes, and Dependencies

Dependencies in the Built Environment and in Design

Some position relations between elements are not ordered by dependency. Consider

the typical position relation between a table and a chair. There is no dependency; each can be

moved independently. We can add a constraint that the chair must be at (within a certain

distance from) the table, thus introducing a dependency between the two elements. This is

dependency by fiat.

We can also introduce a dependency by placing the chair on top of the table. Now the

table supports the chair: the position of the chair depends on the position of the table. If we

move the table, the chair will move but if we move the chair the table will not. By rearranging

the elements we have changed their dependency relation. We can reverse this dependency by

placing the table on four chairs (or on a single chair if the table has one leg in its center). Then

we can freely move the table without disturbing the supporting chair(s), but the reverse cannot

occur. This second kind of dependency between a table and a chair is a matter of the relative

positions of the two elements.

A third kind of dependency may be inherent in the selection of elements in a position

relation. Unlike the table and chair example, some pairs of elements always have the same

dependency relation, unaffected by their relative position. Because of their physical properties

certain elements always depend on certain other elements--a dependency that cannot be

reversed. We say then that the elements belong to different "levels" of form. A level is a class

of elements that have the same inherent dependency behavior. For example, screen elements

such as windows and doors all belong to the same level. Levels can be ranked. The more

changeable elements are lower-level elements. For example, heavy masonry always supports

wood framing elements--never the reverse. These two classes of elements are at different

levels. Pipes always supply water faucets and never the reverse. Again the dependence

between elements is inherent, indicating their relative permanence or changeability.

Parts, Prototypes, and Dependencies

Dependencies in the Built Environment and in Design

Architects often indicate elements of different levels by drawing them in different

colors (or different line-weights, or on separate overlays). One color indicates the foundations

or building footprint, another indicates the wood frame, a third indicates movable partitions.

Although the three systems--foundation, frame, and partitions-- are inherently dependency

ordered, each system has its own set of dimension and position constraints. And although one

depends on the other, still slack remains in the position relation. For example, although the

foundation supports the wood frame, requiring the wood frame to be within a certain distance

of the foundation, within this distance the frame may still vary its position relation to the

foundation.

We now consider some implications of dependency and levels for the designer.

Dependency between elements is part of the physical behavior of the built environment; the

designer must understand it in order to operate successfully in it. The designer need only

understand dependency in practical terms: "if I move this element, what other elements must

move?". Levels of form are physical realities on the site but not on the drawing board. They

are especially useful to the designer who recognizes that a design does not often remain as built

for its lifetime, but rather is subjected to constant change and adaptation throughout its lifetime.

For example, the lot lines in a layout of houses generally remains constant while within each lot

a house is built, altered, and demolished. Another example is modem office building design

where often the building shell and infrastructure is designed by one architect and the territories

occupied by different tenants are designed separately. Some designers (the SAR architects

certainly, but also Hertzberger, Kroll and others) use elements of different levels to ensure that

their buildings are adaptable for change.* For example, such a designer will often work on

* Design education at M.I.T. has placed especial emphasis on this distinction, both in the
"built-form" design attitude exemplified by the teaching and works of M.K. Smith, and in N.J.
Habraken's "thematic design" workshops.

Parts, Prototypes, and Dependencies

Dependencies in the Built Environment and in Design

configurations of the different levels separately. Other designers are not explicitly concerned

with this distinction and do not use it to order their work. The designer need not recognize

different levels of elements in order to design, although it can certainly be useful to do so.

In some situations the designer operates only on one level; for example the designer

who lays out interior, infil partitions to make apartments within a given building shell operates

only at the level of infil partitions. But more often and more interestingly the designer controls

elements on at least two levels. For example, the same designer who decides on the positions

of bearing walls may later place the infil partitions that divide the space between bearing walls

into rooms and apartments. One use of this "levels" concept is in the testing of design

alternatives. Design decisions at one level are constraints for the next lower level. A measure

of flexibility of a design decision is the freedom it leaves for the next designer, or user, who

operates at the next lower level of elements. In general we can rank variants of a higher-level

system by the variety of lower-level configurations they permit. For example, we may test

configurations of bearing walls to see what different floorplans each can accommodate, and we

may test a floorplan to see what furniture arrangements it allows. This measure is not absolute;

rather it depends on the selection and distribution rules of the elements in the lower-level

configuration. Thus the same configuration of bearing walls would rate differently under

different room-size and room-layout constraints.

We have discussed three kinds of dependencies in the built environment: those we

declare by fiat, those due to relative positions of elements, and those inherent in the

combinations of elements themselves. We have seen that position relations between elements

may be ordered by a dependency, that some dependencies are due to the relative placement of

the two elements, and that other dependencies are inherent properties of the two related

elements. Elements with the same inherent position dependency are said to belong to the same

Parts, Prototypes, and Dependencies

Dependencies in the Built Environment and in Design

level. The designer must understand position dependencies in order to predict how changes

will propagate through the design. Another aspect of dependency in a design concerns the

sequence of design decisions. For example, in placing two rooms in a floorplan, the first room

placed may limit or even determine the possible positions for the second. We then may say that

the position of the second element depends on the position of the first.

We now turn to the implications for the constraint explorer. We want the constraint

explorer to know about physical dependence of elements and to be able to distinguish between

elements of different levels. It can then be made to simulate the physical dependencies of

elements in the built environment. We may want to be warned if we try to move or remove an

element on which other elements depend, or even to be prevented from so doing. ("You can't

move that column; the house will fall down!"). Sometimes, however, we want to move

elements around without regard for physical dependencies. We want to turn the enforcement

of dependencies on and off, at our own discretion.

Entering elements of different levels into the design introduces dependencies into the

system. An element's level is an inherent property--like its color or shape--and therefore we

must indicate the level of every new element we enter. For every element, three level

descriptors may be needed, one for each of the dependency relations: support, supply, and

containment.

Parts, Prototypes, and Dependencies

The Design of Supports

CHAPTER 5

Floorplan Layouts

5.1 The Design of Supports.

How might the constraint explorer be used as part of a design process? To answer

the question we look at an interactive session that represents a small portion of a larger space-

planning design process* - However, before looking at the session let us take a brief overview

of the larger design process discussed here--the "design of supports".

Planning for change is essential to the design of a support. A "support" consists of the

parts of a building shared by individual dwellers, for example, bearing walls, floors, and

public spaces. The designer's job is to decide on the placement of these shared elements in a

given site. This configuration of shared elements is the support, and it then serves as a site for

further design interventions carried out by the inhabitants of the building over time. For

example, individuals may change interior partitions without disturbing the support. The size

and arrangement of spaces indicated by support elements determines a support's capacity, its

adaptability to different uses and territorial divisions. Evaluating the relative capacities of

different arrangements of spaces is therefore an important operation in the design of supports.

* The design session presented here is based on an excerpt from Habraken's unpublished manuscript, Making
Basic Variants with a User-Friendly Machine [Habraken 83]. I have extended some of the queries to better
illustrate what the constraint explorer understands and I have also added explanatory notes.

Floorplan Layouts

The Design of Supports

In the interactive session we explore the capacity of a given arrangement of spaces, or

site, to support a certain program of activities, or set of "functions". For example, a 1-

bedroom dwelling program includes the functions: kitchen, bathroom, storage, bedroom,

livingroom, and diningroom. Some functions in a program may be optional, others

mandatory. We associate certain ranges of dimensions and certain positions with each function.

For example, "in a walkup apartment the entrance must be at least 5' wide, 7' deep, and

located in the service zone adjacent to the public stairs". Knowing the dimensions that each

function requires and the proper combinations and arrangements of functions, we explore the

programs and program layouts possible within a given site. In this way we come to

understand the capacity of the site to support lower-level variation.

The S.A.R. method* can help in evaluating capacity but to use it we must describe the

design as an arrangement of zones, margins and sectors. These formally represent the spatial

organization of the design. Figure 5.1 shows zone distributions and sector groups for several

familiar dwelling types: row house, gallery apartment, and courtyard house. Generally, zones

run along the major direction of the building (parallel with the street in an urban block

situation); sectors are clear spaces between divisions of zones, often delimited by walls running

perpendicular to the zones. We can see that a zone distribution is a configuration of zones

arranged one after the other, with a margin between each pair of zones.

* The design methodology developed by the Stichting Architecten Research (the dutch Foundation for
Architecture Research) helps designers evaluate the capacity of proposed designs. This method has been used
successfully for over fifteen years by architects in the Netherlands to design housing. A brief summary of the
work of the S.A.R. appears in chapter 7. Variations: a Guide to the Systematic Design of Supports by
Habraken et al [Habraken 76] contains a complete exposition of the S.A.R. method.

Floorplan Layouts

Floorplan Layouts The Design of Supports 82

.. alp ha
alpha alpha .---- - ..

beta beta
delta

alpha alpha ..--

gamma
row house :::: :: ::::::::: :: I

gallery house courtyard house

Sector groups and zone distributions for different dwelling types.
Figure 5.1

Figure 5.2 shows a simple sector group consisting of two sectors spanning three

zones: Alphal, Beta, and Alpha2*- In the following session we use the constraint explorer to

explore the capacity of this sector group. In a building involving many different sectors we

would repeat a similar analysis for each of the different sector groups. The sector group

examined here describes the spatial structure of a simple walkup flat. The same sector group

might be alternately reversed and repeated so that pairs of adjacent flats share access, as shown

in figure 5.3. Zones Alpha 1 and Alpha2 represent respectively the back and front zones of the

building, adjacent to the exterior. Beta represents the building's interior, or service zone.

* Actually the S.A.R. method recognizes three sectors here, one for each zone. Here we have concatenated
sector2O (alphal) and sector2O(beta) into a single sector spanning two zones.

The Design of Supports

16

Sector group for simple walkup flat.
Figure 5.2.

Adjacent dwellings share access.
Figure 5.3.

The S.A.R. method recognizes three kinds of constraints: site constraints, function

norms, and position rules. Site constraints represent the built context of the design: the zones

and sectors. Function norms constrain the dimensions of each function that may appear in the

floorplan. Position rules describe where each function may occur in the building. In order to

proceed with exploring layout alternatives we assume that these constraints have been

previously defined; at the end of this chapter we see how to enter them into the constraint

explorer.

20

Floorplan Layouts

Exploring Function Arrangements

5.2 Exploring arrangements of functions in the floorplan.

Exploring a sector group's capacity consists in trying different positions for each

function in each potential program. At this stage we only want to identify "basic variants",

those alternatives with functions in different positions, regardless of function dimensions. The

constraint explorer assists by recording all transactions, issuing warnings when we violate

previously entered constraints and, upon request, comparing the capacity of space remaining in

the layout with space needed for functions not yet placed. As in chapter 3, the dialogue

appears as a textual interaction, although a more sophisticated user-interface involving drawing

and gesture can also drive the same operations. For example, we can place functions and set

their dimensions using a simple pointing device such as a mouse or touch-sensitive screen or

tablet. Constraint selections might be made from a menu or chart, such as those illustrated in

figures 5.16 and 5.17 below. Text, though more tedious, shows more explicitly what

information is exchanged between designer and constraint explorer.

If we tried all arrangements of all functions in the site we would find many do not work

due to conflicting dimension constraints or that they violate a position rule. Each arrangement

of functions we specify must be tested for feasibility. That is what we do in the following

session; we perform a sequence of placement and dimensioning moves resulting in two basic

variants. We consider a function placed when we name the zone, or zones, it occupies and fix

its left or right edge relative to a sector. As a function's top and bottom edges may vary within

margins and its unfixed right or left edge may also vary, placement usually does not determine

function dimensions. At this stage of design we minimize function dimensions by default

(subject to position constraints) in order to maximize the number of basic variants.

Floorplan Layouts

Exploring Function Arrangements

We are now ready to use the constraint explorer to try out layout alternatives. Let us

begin by placing two functions, E (Entry), and B3 (Master bedroom), in two moves. We must

locate E adjacent to the shared access, either in the Beta zone or in the Alpha2 zone and the

Beta-Alpha2 margin. Accordingly, our first move places E in Beta, aligned to the left inside

Sector20. By default E's top edge registers at the top of Beta in order to minimize the use of

the inner margin. Then we fix E's depth so that it occupies the entire Beta-Alpha2 margin.

>> place E in Beta+margin, left aligned in Sector20.
ok.
(state 1)

>> set (E depth) 9'.
ok.
(state 2)

Next, we place B3 (Master Bedroom) in Alpha2.

>> place B3, in Alpha2, left aligned in Sector16.
ok.
(state 3)

(20

alphal
10

E bt

B3

16

Sector group after placing two functions. (State 3)
Figure 5.4.

Floorplan Layouts

Exploring Function Arrangements

We request an accounting for B3's dimensions. We ask first about B3's depth. We

find that B3's depth, according to its function norm, may be no less than 10' and because we

placed B3 in Alpha2, B3's depth may be no more than Alpha2's depth, also 10'. Therefore

B3's depth must be 10'.

> why (B3 depth)?
(B3 depth) 10; because:

(B3 depth) 10 ; function norm.
(B3 depth) 10 ; placement.

because:
(B3 depth) (Alpha2 depth) ;placement.
(Alpha2 depth) = 10.

What about B3's width? We did not fix it; yet it is constrained. We saw that B3's

depth is 10 feet and according to its function norm its minimum area is 120 square feet. The

relation between width, depth, and area and prior knowledge about inequalities allows us to

deduce a minimum width, 12. B3's width in Figure 5.4 shows this deduced minimum.

>> why (B3 width)?
(B3 width) 12 ;because:

(B3 depth) = 10. ; see above.
(B3 area) 120 ; function norm.
(B3 area) = (B3 depth) * (B3 width) ; rectangle dimensions rule.

Now we want to place another function in Alpha2. There may only be sufficent width

for two functions in a sector if one or both of them is pushed into the margin(s). We inquire

first how much free width remains in Alpha2 and then we request the "capacity" of this free

width in Alpha2. The capacity operation returns the names of functions that this free width

can contain and that are not forbidden by some position rule to occupy the Alpha2 zone. We

see that four feet of Alpha2 is only enough space for storage. Finally we check how much

width we need for a bathroom (b).

Floorplan Layouts

Exploring Function Arrangements

>> free-width Alpha2?
4' of free-width remain in Alpha2.
40 sq. ft. at Alpha2's present depth, 10'.

>> capacity Alpha2?
s (storage) is the only function that fits in 4'
of Alpha2.

>> show (b width).
6 (b width) 9.

We need two more feet of width to make a bathroom in Alpha2. To gain the two feet

we adopt a strategy: maximize the free width in Alpha2. First we replace B3, allowing it to

occupy the Beta-Alpha2 margin. Then we minimize B3's width, squeezing it up into the

margin. This, however, conflicts with our previous placement of E in that same margin. We

cannot have it both ways; therefore we unfix E's depth. B3 pushes E back into Beta but no

further, because we have limited B3 to margin+Alpha2; that is, B3 may not occupy Beta. E's

width remains unchanged.

>> replace B3 in margin+Alpha2

>> minimize B3 width
conflict: E, B3 overlap in Beta-Alpha2.
(state 4)

>> unfix (E depth).
adjusting (E depth) = 7'.

ok.
(state 5)

Floorplan Layouts

Exploring Function Arrangements

B3 pushes E out of the margin. (State 5).
Figure 5.5

Having gained the required width in Alpha2, we can now add the bathroom. Notice

that we place b in the margin although sufficient space remains in Alpha2 alone.

>> place b top aligned in Alpha2, Beta-Alpha2, aligned right in Sector16.
ok.
(state 6)

And now there is room for a 6 x 8 bathrom in Alpha2. (State 6).
Figure 5.6

20

alphal
10>

B 3
10 2

16

4 20

16

Floorplan Layouts

Exploring Function Arrangements

When we place more than one function in a sector or in a shared margin the constraint

explorer automatically enters constraints preventing two functions from occupying the same

space. Two such non-overlap constraints now exist: one between B3 and E in the Beta-Alpha2

margin, and another between B3 and b in Sectorl6:

(B3 top) (E bottom),
(B3 right) (b left).

These non-overlap constraints relate the dimensions of these three functions, E, B3,

and b. Pushing on b may affect E and vice versa. If we widen b, then B3 must narrow. As

B3 narrows it must become deeper, in turn reducing E's depth.

We can also check the distance of shared edge between any two functions. We ensure

that we can make a narrow doorway between E and B3.

>> shared-edge E B3?
(E bottom) and (B3 top) share 3 feet.

Next we place a "dummy" function, X, in zone Alphal. X stands for a function to be

identified later. It has no default dimension or position constraints. We constrain X's width

and E's to be equal.

>> place X in Alphal, aligned left in Sector20
>> constrain (X width) = (E width).

ok
(state 8)

Floorplan Layouts

Exploring Function Arrangements

We place a dummy function in Alpha2. (State 8).
Figure 5.7

Now we consider what functions we might place in the Beta zone. First we ask what

width remains in Beta. The answer is 13'. Planning to use 3' of Beta for access, we subtract

3' from the 13' and then request the capacity of the 10 usable feet in Beta both with and

without the adjacent Alpha1-Beta margin. We do not yet place a function in Beta.

>> free-width Beta?
13'.

>> capacity 10' Beta?
B1, b, D.

>> capacity 10' margin+Beta?
B1, b, K1, D.

Instead, we turn to the remaining space in Alphal. We try to place Ll (a small

livingroom) but Alphal in Sector2O lacks sufficient width. Ll requires 15 feet width, and X

already occupies 7 of Alphal's 20 feet.

20

16

Floorplan Layouts

Exploring Function Arrangements

>> free-width? Alphal
13'.

>> place L1, in Alphal, align right in sector20.
conflict: overlap Li X in Alpha2.
(state 9)

>> why?
the following constraint is violated:

(L1 width) + (X width) 20.
because

(X width) = 7.
(L1 width) 15.

If we can reduce Li's minimum width to 13' then we can place Li in Alphal. We

inquire why L1 requires 15 'width and we see that as with B3, L1's minimum width is related

to its depth. In placing Li, we restricted it to Alpha2. If we now allow Li to occupy a margin

we find that we can place it in Alphal.

>> why (L1 width)?
(L1 width) 15.

because:
(L1 depth) (Alphal depth)

because (L1 in Alphal)
and (Alphal depth) = 10;

(L1 area) = (LI depth) * (L1 width);
(L1 area) 150;

therefore: (Li width) 15.

>> place L1, in Alpha1+margin, align right in sector20.
ok.
(state 10)

Floorplan Layouts

Exploring Function Arrangements 92

Using a margin we

>> switch X, 1.
ok.
(state

>> place
ok.

can place a livingroom in Alphal. (State 10).
Figure 5.8

11)

We reverse the positions of Li and X. (State 11).

We reverse the positions of L1 and X. (State 11).
Figure 5.9

K1 in Beta, aligned right sector-20.

(state 12)

20

16

20

16

Floorplan Layouts

Exploring Function Arrangements

The sector group is now filled with functions. (state 12)
Figure 5.10

>> show basic-variant.
LI X
E K1

B3 b

>> shared-edge LI Ki?
(LI bottom) (K1 top) share 5'.

We now try to make Li narrower still; but without violating Li's minimum dimension

we cannot do it.

>> fix (L1 width) = 11.
conflict: Li 2 13 ;(L1 function norm).
(state 12)

>> unfix (L1 width).
adjusting (LI width) = 13.
(state 11).

It is finally time to decide the identity of X. We want to know what functions we might

substitute for X, given its location (in Alphal) and dimension (7' x 12'). Three functions

meet these constraints: dining (D), 1-person-sleeping (B 1), and small-kitchen (K 1). One of

these (K1) we have already placed in the floorplan. We next successively substitute each of the

20

16

Floorplan Layouts

Exploring Function Arrangements

other two functions (D and B1) for X, and save the resulting configurations as basic variants.

Adding B 1 changes the program from a roomy 1-bedroom to a cramped 2-bedroom flat.

>> capacity X?

X may be D (dining room),
B1 (1-person bedroom),

or KI (small kitchen).

>> substitute X = D.
ok.

(state 13)

Substituting D for X yields a basic variant (state 13)
Figure 5.11

>> add to basic-variants.
LI D
E K1
B3 b.

>> in state 12, substitute X = B1.
ok.
(state 14)

20

16

Floorplan Layouts

Exploring Function Arrangements

And substituting B 1 for X yields another basic variant (state 14)
Figure 5.12

>> add to basic-variants.
Li B1
E K1

B3 b.

Here we shall leave the session. We have seen how we place, move, and reshape

functions in a simple site, according to dimension and position constraints, assessing the site's

capacity to support a variety of layouts and programs of functions. The exploration we have

been doing assumes that some constraints were already entered into the constraint explorer. In

particular we have been assuming a predefined site, predefined function norms, and predefined

position rules. We now see briefly how to enter these constraints.

20

16

Floorplan Layouts

Describing the Site

5.3 Describing the Site.

As noted earlier, the site consists of a zone distribution and a sector group. To define a

zone distribution we must have zones. We first define three zones, Alphal, Beta, and Alpha2,

assigning a depth dimension to each. Alphal and Alpha2 are instances of the predefined

prototype Alpha-Zone, similarly Betal is an instance of Beta-Zone. If we did not specify zone

dimensions then the constraint explorer would use the default values from these prototypes.

>> define: Alphal
oneof Alpha-Zone
depth 10.

>> define: Beta
oneof Beta-Zone.
depth 7.

>> define Alpha2
oneof Alpha-Zone.
depth 10.

We classify zones by distinguishing built and open zones, and exterior and interior

ones. Alpha and Beta zones are both built zones. An Alpha zone represents the built space

immediately inside the building edge, typically containing livingrooms and bedrooms; a Beta

zone represents built space deeper inside the building, typically a place for storage and service

functions. Alpha zones are exterior built zones; Beta zones are interior built zones. Gamma

and Delta zones, not used in this example, represent exterior and interior open zones, locations

for porches and stoops, patios and courtyards. We combine our three new zones into a zone

distribution, a sequence of zones and margins. The zone distribution describes dimensional

stops along the floorplan depth. An optional margin separates each pair of zones. Here we do

not specify dimensions; therefore all margins assume default margin depths (2').

Floorplan Layouts

Describing the Site

>> define ZI
oneof zone-distribution
zone-list (Alphal margin Beta margin Alpha2).

10 Nalpha1

default margin depth 1

default margin depth I -7 > beta

10 > alpha2

Building a zone distribution from zones and margins.
Figure 5.13

Next we define two sectors and a sector group. For each sector, we describe a width

and specify the zone or zones the sector occupies. Then we define sector group SG1, a

configuration of these two contiguous sectors. Note that we associate a specific zone-

distribution with the sector group, and also the relative positions of the component sectors.

>> define sector20
oneof sector
zones (alphal beta)
width 20

>> define sector16
oneof sector
zones (alpha2)
width 16

>> define SG1
oneof sector-group
zone-distribution ZI
sectors (sector20 sector16)
constrain (align

(sector20 right) (sector16 right))

Floorplan Layouts

Describing the Site

Each sector's width is fixed; its depth is determined by the zones and margins it spans.

Zones are the highest-level elements; functions are the lowest. Functions placed in a sector

move when the sector is reshaped. This may allow for some reshaping of functions, as shown

in figure 5.14. Of course, stretching the basic variant in this way may result in function size

violations.

Changing a sector width in a basic variant.
Figure 5.14

We just saw that functions, because they are placed relative to sectors, change with the

sectors. Sectors are themselves placed relative to zone distributions, so changing the zone

distribution causes the sectors to change; this in turn affects the functions. Figure 5.15 shows

the same basic variant with greatly increased margin dimensions.

Changing the margin dimensions in a basic variant.
Figure 5.15

Floorplan Layouts

Floorplan Layouts

5.4 Function Norms.

A "function norm" is the set of allowable dimensions for a room, or function. We may

specify the function norm by selecting maximum and minimum values from a chart gridded by

furniture dimension increments (figure 5.16). The constraint-explorer's parser interprets

selections from the chart into the constraints shown below.

Function Norm Chart specifies dimension constraints per function.
Figure 5.16

> define K-function
oneof function

(depth 8)
(depth 11)
(width 7)
(width ! 9)
(area 60)
(area 95)

depth
8 9 10 11

...........I

............:

5 7

5 F
7

8

9

El

10

width

Function Norms

0 a

1 1 CD I

Floorplan Layouts

Minimum dimension values ensure that sufficient space is allowed for required

furniture and use-space, and maximum values ensure that the space allotted for the function is

not unreasonably large. We may additionally constrain the function dimensions, allowing, for

example, only certain modular dimensions. Or, we may describe the function norm some other

way, for example, by listing all allowed combinations of dimensions. Usually, however,

minimum and maximum depth, width, and area constraints suffice to describe the range of

desired function sizes. When we define a new function norm, the constraint explorer enters the

dimension constraints into a new and empty package. This package serves as a prototype for

instances of the function; thus function instances inherit the function norm constraints by

default.

We define dimension constraints for each function in the architectural program. We

then save a set of function norms together as a package. The next time we want to work with

those dimension constraints we simply recall the function-norm-set package.

100Function Norms

Floorplan Layouts

5.5 Position Rules.

In the S.A.R. method, position rules specify the allowed positions of functions in

relation to a zone-distribution; for example, "Entrance must be in the Beta zone". We can also

state position rules by listing the functions that are allowed/forbidden in each zone; for

example: "In Alphal, no Entrance, bathroom, or Bedroom".

>> position-rule: (E in Beta).
ok.

>> position-rule: (not (in Alphal (E B3 b))).
ok.

Instead of typing a position constraint expression for each function, we can set position

constraints using a mouse or pointer and the chart of possible position constraints shown in

Figure 5.17. From this chart we can select position constraints for each function, or combine

simple position constraints using NOT, OR, and AND. For example, we can construct the

following position rules:

>> position-rule: (L1 in Alphal) or (LI in ALpha2).
ok.

>> position-rule: (or (KI in Beta) and (L1 in Alpha2)
(K1 in Alpha2) and (L1 in Alphal))

ok.

101Position Rules

Floorplan Layouts Position Rules

alphal

S1beta

alpha2

Position rules chart.
Figure 5.17.

102

The Parts of the Constraint Explorer

CHAPTER 6

The Parts of the Constraint Explorer

6.1 The overall organization.

We now examine some details of how to implement the constraint explorer. First we

shall look at the overall organization of the program, then at the data-structures used to

represent constraints, variables, and packages, and finally we see the role of the various parts

of the constraint explorer program in a brief example. First let us take an overview of the

constraint explorer system. The constraint explorer is to be embedded in an object-oriented

dialect of lisp, ObjectLisp. Embedding permits the designer using the constraint explorer to

also access and benefit from directly the full functionality of the implementation language*.

For example, the inheritance hierarchy of prototypes and instances discussed in chapter 4 is an

integral component of the ObjectLisp programming environment. Lisp embedding also makes

it easy to interface the constraint explorer with other programs written in Lisp.

The constraint explorer is a collection of programs organized around a few elementary

data structures: constraints, variables, and packages. Constraints and variables are the most

atomic data structures the constraint explorer knows, and packages are collections of

constraints and variables. The programs: the parser, packager, solver, and secretary of state

perform the constraint explorer's functions. The programs share a common database that

The project is presently being developed in Objectlisp, a lexically scoped lisp environment with an extension
providing generically scoped closures[Drescher (forthcoming)]. Objectlisp provides a syntactically elegant,
semantically powerful implementation of object-oriented programming. For some advantages of this style of
programming, see also [Abelson and Sussman 85; Robson and Goldberg 83]. A Scheme implementation is
also being considered.

Overall Organization 103

The Parts of the Constraint Explorer

represents the evolving state of the design. Figure 6.1 shows a block diagram of these

programs and their shared database, the design state.

Desig ne r

Parser | int erprets between designer and other subprograms.

remov olver cka tary
constraints

& fixes. solve-f or, cl ust er- record &
quadratic, (inding restore partial

tri gon om etnc, metho ds. d esign stat es3
geometric, dependencies.

al g ebraic
, mthods.

Design State Database

Block diagram of the constraint explorer.
Figure 6.1

The design state database is simply the set of all constraints and variables, and their

various packagings. The parser interprets the designer's commands and queries, distributing

commands to other parts of the constraint explorer and adding and removing constraints and

value settings to the design state database. The solver propagates values through the system of

constraints, solves symbolically and arithmetically for variable values, and performs local

optimizations upon request The packager identifies clusters of closely interacting constraints

in the design state database and groups them together for solving. The secretary of state

maintains a history of the design process-- it saves and restores portions and sequences of the

design state and records dependencies between design decisions. Notice that no supervisor

program controls the execution of the constraint explorer's subprograms. Rather, the

Overall Organization 104

The Parts of the Constraint Explorer Overall Organization

constraint explorer is event-driven; each subprogram monitors the design state database and

activates itself as needed when new constraints and settings are entered.

105

The Parts of the Constraint Explorer

6.2 The data-structures.

The main data structure is a set of connected constraint and variable data structures.

This set represents the state of the design-in-progress. In chapter 3 we looked at fragments of

design states. There we used a network to represent these fragments. We saw how constraint

and variable data structures can be packaged together and connected to model complex physical

systems. Here we use a matrix to discuss operations on the design state as a whole. Any data

representation offers certain advantages and disadvantages. For many solver operations the

matrix view seems appropriate. For example, solving a set of simultaneous constraints is most

easily accomplished using matrices. The network representation has storage-management

advantages, however, for large and sparsely interacting sets of constraints and variables. It

may therefore be advantageous to store the design state as a large network, building matrix

representations for small pieces as needed for the solver. The matrices could then replace

pieces of the network. At any rate, the two representations are fundamentally equivalent, and

we need not be concerned here with whether the database is implemented as a network, as a

matrix, or as a mixture of both.

Think of the design state as a set of constraints and variables:

C1 (x1 , x2, x3 ,...)
C2 (x1, x2, x3,...)
C3 (x1, x2, x3,---)

That is, each constraint Ci can be written as a functional relation of variables xi ... xj.

Let us suppose further that each Ci can be written as an inquality relation:

106Data Structures

The Parts of the Constraint Explorer

fi (xI, x2, x3, ---) 0*-

(We shall call this the "normal form" of the constraint.) Then each Ci can be reformulated in

various ways. That is, by solving the functional relation fi for each xj we can generate

functions fii, fi2, fi3, ... such that,
x1 fil (x 2 , X3 , ---)

X2 > fi2 (Xi, X3, --

X3 t fi3 (XI, X2, X4, --

Each of these expressions we call a different formulation of the constraint, and each of the

functions fig we call a formula (following spreadsheet terminology) for the constraint Ci with

respect to variable xj. We can write these formulae in a matrix describing the design state (see

figure 6.2). We arrange the variables in columns and the constraints in rows. In each cell

corresponding to the interaction of a constraint i and variable j we write the formula fij, that is,

constraint Ci solved for the variable xj. For example, a < b and b > a are two formulations of

the same constraint. Looking across each row we find the same relation fi between variables

expressed in each cell, but with the value of xj expressed in terms of all the other variables.

Looking down each column, we find a list of the different constraints on the variable

represented by that column.
X X2 X3 X4

C1 f il f12 f 13 f 14

C £21 f22 f23 f24

C £31 f32 f33 f34

Form of the design state matrix
Figure 6.2

Much can be expressed with even only this limited sort of constraint. For example, using 1 and 0 for the
boolean values true and false we can write the full complement of first order logic relations (AND, OR, NOT,
IMPLIES, etc.). We can also aggregate primitive constraints to describe compound relations. However, we
need not limit constraints to algebraic inequalities and equations. We may well be interested in other sorts of
relations, for example, the relation that the selection of elements in one configuration be a subset of the
selection of elements in another, or topological relations. We would have to extend the solver's knowledge of
relations, but this requires no major overhaul.

Data Structures 107

The Parts of the Constraint Explorer

The matrix for an entire design will likely be enormous, having many constraints and

variables, but we almost always work with submatrices, or packages of constraints and

variables. There are two types of atomic data structures in the database: the constraint and the

variable. We shall look at an example of each. These can be thought of as header blocks for

the rows and columns of the matrix, respectively, or as nodes and links in a constraint

network. In addition to the information displayed in the matrix and network diagrams, these

data structures store additional information about each constraint and variable used by the

packager and the secretary of state. For example, each constraint and variable data structure

knows what packages it is belongs to, as well as what other items in the design state it depends

upon. Here is how a constraint prints out:

CONSTRAINT
name: floor-celling-height-relation.
expression: top - (bottom + height) = 0.
formulae: [top = bottom + height;

height = top - bottom;
bottom = top - height]

variables: top; bottom; height.
status: Indeterminate.
basis: declared in package "common dimensional relations".
history: []
packages: [common dimensional relations; P13].

Think of a constraint data structure as a frame with slots* for: the expression of the

constraint (its normal form), the list of different formulations of the constraint (entries in this

list correspond to the cells across one row of the matrix), the constraint's present status--

(satisfied, indeterminate, or inconsistent), a list of the constrained variables, and a history list

that stores the modifications to the expression throughout the design process. (The values of

slots in the frame may be precomputed, or they may be computed on demand. For efficiency,

once computed, slot values may be cached.) The epreion and formulae of a constraint

* Or more simply, a table of properties.

Data Structures 108

The Parts of the Constraint Explorer

change throughout the design process; as the designer adds constraints and fixes variable

values, the solver can begin to simplify constraint expressions. The source of each constraint

is indicated by its basis slot. The basis slot records a set of variables and constraints that were

used to derive the present constraint. This is useful when the designer wishes to track the

chain of deductions and dependencies in a design state. When an earlier decision is retracted,

the secretary of state can use this dependency information to determine what decisions and

deductions made after the retracted move may be affected. For newly introduced constraints,

the basis is simply "declared". Deduced constraints and values may remain even after their

basis is retracted. By default, upon retraction of all its bases, the basis slot of a constraint

reverts to "unsupported". Or, if we prefer, we can instruct the secretary of state to erase

unsupported values automatically. Information in the histqry slot is used to restore previous

states of the constraint. The package slot lists the packages the current constraint belongs to,

both user-defined (a-priori) packages, and thosed inferred by the packager (a-posteriori). In

this case, the constraint belongs to one user-defined package, named common dimensional

relations, and one package, P13, defined by the packager, that groups together a number of

constraints that share several variables. The name P13 is invented by the packager; the

designer may give the inferred package a mnemonic name.

Each variable data structure stores a name, value, a list of constraints that refer to it, a

history, or list of previous values, and a list of packages that it belongs to.

VARIABLE
name: height
value: [= top - bottom; = (2/3) length]
constraints: floor-celling-height-relation
history: 0.
packages: [common dimensional relations, P13]

Notice that the value of height is a list of two formulae, not a single number. As the

designing proceeds, this value becomes increasingly specific. In traditional programming

109Data Structures

The Parts of the Constraint Explorer

environments, a variable is either bound or unbound. In the constraint explorer, a variable may

be partially specified. In the constraint explorer a variable's value is the intersection of all the

constraints on its value. Thus we can arrange values in order of constrainedness, or

specificity. Proceeding from least to most constrained, a variable value may be: (a) named

(declared) but not constrained, (b) constrained, (c) constrained to an interval value, (d)

constrained to a fixed number value, (e) overconstrained. Partial specification of variables is a

useful device for representing ambiguity in design.

We have seen the two atomic data structures used to represent constraints and variables

and how they can be arranged in a matrix. We glanced briefly at some of the bookeeping

information that is carried in each data structure. We discussed the range of specificity of

variable values in the constraint explorer and we saw that variable values are equivalent to the

intersection of all the constraints on that variable, fixed values being a special case. Now we

turn to a small example, showing how the parts of the program, especially the solver, operate

on the design matrix.

Data Structures 110

The Parts of the Constraint Explorer

6.3 Example.

Let us consider an example. Suppose we work with the relation between the position

of the floor (bottQm), the position of the ceiling (1.p), and the height of a space (height). On a

drawing we might indicate the two positions and the distance between them. The parser would

enter the following constraint:

Cj: f, (top, bottom, height) = top - (bottom + height) =0.

The parser builds a new data structure for this constraint, adding a row to the design matrix. If

any of the variables have not been previously mentioned, then the parser also builds data

structures for them, adding columns to the matrix. To fill in the cells of the new constraint

row, the parser also calls on the solver to calculate the three formulae for the three variables

top, bottom, and height. These are:

top = fi1 (bottom, height) = height + bottom.
bottom = f12 (top, height) = top - height.
height = f13 (top, bottom) = top - bottom.

Next we introduce a new variable length, and describe a desired relationship between

height and length.

C2: f2 (top, bottom, height, length) = height - (2/3)length = 0.

Notice that C2 does not actually involve variables =p and bottom. However, we

indicate them in the notation for f23 and f24 to remind ourselves that each constraint may relate

as many as all the variables in the design. Solving for length and height, then, we have:

height = f23 (length) = (2/3) length.
length = f24 (height) = (3/2) height.

After the parser enters these two formulae in the matrix, we have the state shown in figure 6.3.

Example il1

The Parts of the Constraint Explorer

0 = top - (bottom + height) = bottom + haight = top - heigh = top - bottom

0 = hig - (213) kngth = (213) langth = (312) heigh

Matrix after entering two constraints.
figure 6.3*

Notice that the matrix of constraints and variables is sparse; that is, many constraints

and variables simply do not intersect. Only five of the eight cells in the matrix of figure 6.3 are

used; the other three remain blank.

Now that we have seen how the parser arranges constraints in the design matrix as we

enter them, we can begin to see how the solver and the other parts of the program support

exploration. The solver operates on the matrix in several ways. The simplest is the

propagation of changes through the design. In chapter 3 we briefly discussed propagation of

changes through constraint networks. Here we see how propagation works from the matrix

point of view. To propagate the effects of fixes through the design, the solver operates on the

design matrix in much the same way as a spreadsheet engine operates on a spreadsheet [Kay

84]. As we shall see, the constraint explorer's solver operates in other ways as well.

In the matrix view, propagation works as follows. We begin with a matrix as in figure

6.3. Upon fixing a variable value, we write the new value into all of the non-blank cells of the

variable's column. For example, if we fix the value of height (in figure 6.3), we would write

It may help to momentarily recall the network notation of the same set of constraints. Figure 6.3a shows the

network diagram corresponding to figure 6.3.

top height ength
bottom.+

Equivalent Network Diagram.
Figure 6.3a

112Example

The Parts of the Constraint Explorer

the new value into two cells, whereas if we fix the value of to, we only would write it into

one cell. (Instead of erasing the previous contents, think of each cell as a stack onto which the

new fix is pushed. If later we wish to withdraw a prior fix, the cell's previous contents are

available.) The solver is automatically invoked after each fix to calculate any consequences.

Now suppose we set the length variable to 15. The solver then computes a value for height,

using C2, and writes the computed value, 10, in both cells of the height column. It cannot

compute further until we give a value for either tW or bottom. Figure 6.4 shows the design

state matrix.
15

top lottom height kxgth

0 = top - (bottom + height) =bottom + 10 = top - 10 = 10

0 = height - (213) k 4ngth = 10 15

Matrix after injecting one fix.
figure 6.4

Notice that the solver has simplified the expressions in the cells for LW and bottom

replacing the variable height by its present value, 10. Immediately after fixing another variable

(we set top to 14 feet), the solver is automatically invoked again. It computes a numeric value

for bottom to reach the state shown in figure 6.5.

bottom = top - height
=14-10
= 4,

14 15

.40 40
top bottom height kngth

0 = top - (Iottom+ haight) 14 =4 = 10

0 = hWight - (213) 1zgth = 10 =15

After injecting a second fix.
Figure 6.5

113Example

The Parts of the Constraint Explorer

The solver propagates the consequences of new fixes by copying values down the

columns. and by computing functional relations along the rows. In this example, length's

fixed value determined height. When subsequently we fixed tQp'S value also, then bottom's

value was determined consequentially.

Though propagation works well in the above example, it is a weak method; inherently

local it cannot make inferences that require a global understanding of the design state. It

requires variable values to he given; from these it computes the values of other (dependent)

variables. Essentially it substitutes constants for variables and simplifies arithmetically. It only

yields solutions in some of the situations where solutions are possible. For example, when

constraints are simultaneous, the solver can compute a solution without any given values. That

is, if we describe two constraints

a + b = c, and
b = c,

then from the constraints alone, the solver can deduce that a's value must be zero. This

inference cannot be reached using only propagation of values, however. A simultaneous

solution algorithm must be employed.

Solving sets of simultaneous constraints may be easier than identifying them in the first

place. Most likely simultaneous constraints come from different sources, were entered at

different times by different designers, and are nowhere declared explicitly as a set of

simultaneous constraints. It is the job of the packager to notice that constraints 10, 14, and 177

(say) are simultaneous, and to make a new package labelled "system of simultaneous

constraints to be solved" and pass it to the solver. It is the solver's job to solve the system of

constraints, and fill in any deduced variable values.

Example 114

The Parts of the Constraint Explorer

Though some relations, such as the relation between the side of a square and its area,

are equations, in design we work most often with inequality relations. Inequalities enable us to

retain and modulate ambiguity in a design. The constraint explorer can be easily extended to

handle inequality constraints as follows. Values, such as 4, 10, and 14, are permitted to take

on interval number, and half-line number values. We shall discuss these ideas informally; a

rigorous treatment of interval numbers is provided elsewhere [Moore 65]. The interval

[8 11], for example, represents the set of values between 8 and 11*. If we set the value of

height to [8 11], the equivalent constraint is 8 height 11? . A half-line value is a

degenerate case of an interval number, where only one of the interval's bounds are given. For

example, the half-line number [oo 5] represents the set of number values less than 5; think of

the oo as representing either positive or negative infinity, depending on which position it

occupies in the interval number notation. The solver understands the operations +, -, *, and /

for interval values as well as for simple number values. For example, the difference of two

interval numbers is defined as

[a b] - [c d]= [(a-d) (b-c)].

With this small extension of the solver's arithmetic and algebraic abilities, we can use the same

symbolic mathematics machinery to manipulate inequality constraints that we use for equations.

For example, suppose we have the constraint,

x + y 16.

The solver can translate this inequality to an equation of interval values:

* An interval can be open or closed on either end, meaning that the end value is included or excluded in the

interval, respectively.
t We began by distinguishing two different kinds of things: constraints and variables. Now we find that,
though useful, the distinction between a constraint and a variable is not absolute. An interval value is
equivalent to a pair of inequality constraints and fixing the value of x a constant k is equivalent to writing the
constraint x =k: a fix is simply an extreme form of constraint.

115Example

The Parts of the Constraint Explorer

x + y = [oo 16].

If we set x's value to 4,and solve for y, we have:

y = [oo 16] - [4 4] = [oo 12].

Converting back to inequality notation,

y 5 12.

We have seen how, by extending the solver's operations to work on continuous

intervals of values, we can manipulate inequality relations as though they are equations. In a

similar way, we can extend the solver's operations to work on sets of discontinuous values.

We call these sets "choice values". That is, a variable might stand for the choice {2 4 8},

meaning that the variable value is constrained to be one of those numbers. The sum of the two

choice values is the set of sums of pairs of numbers picked one from each set. Thus:

{2 5} + {6 8 121 ={8 10 11 13 14 17}.

We can also define choice values by setting constraints. For example, we can define n as the

set of odd numbers:

remainder (n/2)= 0.

n = {...-3 -1 1 3...}

We have also seen that the solver requires a variety of methods to simplify and solve

sets of constraints. The methods for solution depend on what sorts of constraints we want to

write. At a minimum, the solver must be able to do linear algebra and linear programming, as

well as numeric and algebraic solution of equations and inequalities. We are likely to need also

quadratic, trigonometric, and other nonlinear constraints, as well as geometric constraints. We

see now that a full-fledged version of the solver must be capable of a range of symbolic

mathematical techniques.

Example 116

The Parts of the Constraint Explorer

6.4 A Closer Look at the Parser and Solver.

How are constraints, values, and objectives entered? How is the design state database

browsed and edited? In general, how does the constraint explorer program appear to the

designer? The parser interprets the stream(s) of input from the designer. It is the part of the

constraint explorer that deals most directly with the designer. We can divide the parsing task

into two components: managing input from the designer (reading), and building and modifying

the internal data structures accordingly (constructing). Thus we can divide the parser into two

parts: a reader that deals with the outside world of the designer, and a constructor that deals

with the internal world of the constraint explorer's data structures. The designer enters

constraints and values, selecting them from a chart or menu, indicating them gesturally with a

mouse or tablet, or typing them in at the keyboard. The reader handles this input. The

constructor instantiates data-structures for each new constraint, variable, and package and

connects the new data-structures into the rest of the design.

Ideally we would like to instruct and program the constraint explorer using a full

complement of interactive media: sketching, drawing, verbal description, gestures. The

problem of parsing is difficult, and a good parser must understand a set of representational

conventions specific to the design domain and perhaps even idiosyncratic to the designer.

Graphics input technology is just now arriving. Early attempts at sketch recognition and

graphical inference met with limited success [Negroponte 70]. The parsing task is also

undoubtedly informed by contextual knowledge (external to the drawing itself) of what the

drawing is about. For example, we are told whether a drawing is a plan or a vertical section,

and from this we infer the meanings of graphical symbols; the same size rectangle in plan and

section may indicate a bed and a door respectively. Moreover, drawing is not everything;

A Closer Look 117

The Parts of the Constraint Explorer

designers resort to natural language to discuss the elements, relations, objectives, and

difficulties of a design. Constraints such as "align", "parallel", "straight, "connected", "inside"

may be indicated with k graphic, gestural, or even textual symbol. Reading drawing is largely

context dependent; for example, identical rectangles in a plan drawing and in a section drawing

may represent entirely different elements.

Designing a user-interface for constraint -based programming is challenging, and little

work has been done in this field. We have simply assumed a lisp-like syntax for all interaction;

user-interface has not been of concern in this study. Lisp's uniform syntax obviates the need

for a separet parsing program. Rather, we discussed using constraints as a representation for

architectural knowledge.

How have other constraint-based programs dealt with the parsing problem? A

spreadsheet appears to the user as a matrix with text in many cells. TK!-Solver* by Software

Arts, the only presently available commercial product approaching a constraint language is also

entirely text-oriented--users must type in algebraic expressions and value settings. By contrast,

the Sketchpad program enabled the user to construct diagrams of constraint networks-- in

effect, to program--using a light pen and a few buttons [Sutherland 63]. In a very

sophisticated design environment, the designer could presumably just draw and sketch, making

marginal notes in some textual or graphic shorthand. The user-interface of Borning's Thinglab

program combined network editing and Smalltalk style browsing [Borning 77]. Gesture-based

programming environments have been shown capable of sustaining a small programming

language [Minsky 84], and gestural interactions may work well with graphical information. A

graphics editor with a strict syntax structures user-input and simplifies the parsing task. Thus

*Originally developed by Seth Steinberg and Milos Konopasek to assist students of textile design calculate the

relationships between various weaving parameters.

A Closer Look 118

The Parts of the Constraint Explorer

the user must say "here is a window", "here is a position", explicitly labelling every graphic

move. Levitt is also thinking about user-interface issues with respect to a constraint-oriented

musical design program [Levitt 85].

The solver is a collection of symbolic and numeric mathematics routines for computing

with constraints, relations, and objectives. The solver detects inconsistencies and eliminates

redundancies among constraints, and when possible it simpifies and solves for variable values.

A simple algebraic solver can be implemented using rule-based technology [Gosling 83]. See

also FAMOUS, the Macsyma system, QAS, and, the more recent SMP language [Fenichel 64;

Macsyma 82; Konopasek & Papaconstadopoulos 78; Wolfram 84].

In most other constraint-based computing environments relaxation is often used to find

solutions to constraint sets that cannot be solved by propagation (see chapter 7). Although

often advertised as a satisfaction technique, relaxation seeks local optima in an objective

function composed from all the constraints. Relaxation, being a strictly numeric technique,

cannot tell how many solutions a given set of constraints may have; relaxation finds always a

single solution. For example, given the constraint

x2= 4,

and working from an initial value for x, relaxation will adjust x towards the nearest solution

(either +2 or -2 in this case, depending on the initial value) in a series of successive

approximations. It cannot find the other solution unless given another initial value on the other

side of zero. Therefore the solver uses symbolic methods whenever possible to find the

solution(s) to a set of constraints. When they are a finite number, it is often as important to

know how many solutions exist as it is to know the solutions themselves. When we set the

constraint x2 = a, the solver knows that x has two solutions, even before fixing a's value (if a

is zero then both solutions are the same). We may say x has two degrees of freedom: its sign

119A Closer Look

The Parts of the Constraint Explorer

and its numeric value. The sign of x may take any of the three values {+, -, and 01; the

numeric field may take any independent rational number value, except that if the value of one

field is zero, the other must also be zero. Thus we can define the constraint "x2 = a" using

more primitive constraints:

x = (Sign)(PositiveRoot)
Sign = {-1 +11
PositiveRoot = 4a

and a= (x) (x).

The solver will also optimize on demand. It operates on small sets of constraints as

grouped by the packager. When optimizing locally, the designer must specify what package of

constraints to optimize over, the objective to be optimized, and whether a maximum or

minimum is sought. The simplex method will optimize the objective function when working

with linear constraints; relaxation and/or annealing methods may be used to optimize over

regions bounded by nonlinear constraints, or linear approximations to the constraints may be

obtained.

The secretary of state maintains a history of events in the design. It can restore

previous states or partial states upon request. Dependency directed backtracking techniques

[Stallman and Sussman 77] to support efficient retraction of previous fixes. This enables the

secretary to minimize side-effects of retractions. Recall the example in the previous section. If

after setting the variables length and top (as we did), we were to retract the setting for length,

the deduced values for height and bottom should disappear. The value for 1op may remain,

however. The secretary records history locally in the lists associated with each variable and

constraint in the design. Previous states can also be restored locally, combining parts of states

from different previous stages of a design. (D. McDermott discusses the use of dependency

information in reasoning with and about inequality constraints [D.McDermott 83].) A saved

120A Closer Look

The Parts of the Constraint Explorer

design history can later be replayed, generalized, and made into a procedure or routine with

variable parameters. The packager identifies clusters of constraints that interact closely, as

measured by the number of variables they share. Constraints with all the same variables are the

closest; constraints that share no variables are the least close. There may be several packaging

algorithms and any piece of the design may be in several packages simultaneously. Packages

also change with the designing. Many of the solver operations, (optimization, for example) are

expensive, consuming time and/or memory, especially when they are applied to large numbers

of constraints and variables. By identifying closely connected constraints and variables the

packager improves the solver's performance.

121A Closer Look

Reviewof Related Work

CHAPTER 7

Review of Related Work

7.1 Overview.

The act of design takes place not only in architecture, but also in many other domains.

The constraint exploration model of the design process discussed here was suggested by works

in three general categories: the study of design itself as a discipline independent of any

particular design domain, the study of design process and methodology in the domain of

architecture, and the application of computational techniques and methodologies to support

design analysis and synthesis.

In the first category, general theories of design, we consider Herbert Simon's outline

for a science of design. Simon proposes to treat design theory as a new discipline and he lists

some attendant mathematical techniques [Simon 69; Simon 75]. Simon portrays design as

optimizing an objective function over a region bounded by constraints. Simon's constraint

formulation of design has had a strong influence on the entire field of design theory. Even

models cast in Simon's terms that overcome the limitations of Simon's approach are often

confused with Simon's original constraint formulation. We review Simon's model and

contrast it with the present approach.

In the second category, methods and theories of architectural design, we discuss two

works. First we discuss Christopher Alexander's early Notes on the Synthesis of Form.

Alexander, like Simon, describes a design problem as a collection of requirements (in our

terms, constraints) and shows a systematic method of partitioning, or decomposing large

122Overview

Review of Related Work

groups of requirements into smaller groups [Alexander 64]. Methods for partitioning designs,

discussed by both Alexander and Simon, are also a part of the present model. Then, briefly,

we review the design methods of N. John Habraken and the Stichting Architecten Research

(S.A.R.). The S.A.R. methods provide architects and urban designers with tools for the

systematic analysis and design of built environments [Habraken et al 76; SAR 73].

In the third category, computational techniques for representing design expertise, we

consider the Sketchpad program, an early and insightful constraint-based design environment

[Sutherland 63], the IMAGE program, an architectural design aid based on Sketchpad

[Johnson and Weinzapfel 71], and the simulation kit Thinglab, that combines constraint-based

and object-oriented programming techniques [Borning 77]. Then we review some work of

Gerald Sussman's group on compute-assisted design and analysis of electrical circuits

[Stallman and Sussman 77; Stallman and Steele 80]. Finally, we briefly consider an alternative

approach to representing design expertise, the application of production-rule based expert

systems to design.

This review assumes that the reader is familiar with the general fields; although in each

case a brief explanation is given, the discussion emphasizes the relation of each of the projects

to the present work. We focus only on a few efforts in the field of design methods and

computational approaches to design that are closest to the present work, omitting much that is

important in any context larger than the present thesis. In addition to the work reviewed here, a

few different directions are indicated by the DISCOURSE program [Porter, Lloyd, and

Fleisher 70], the Design Problem Solver [Pfefferkom 75], URBAN5 [Negroponte and

Groisser 70], and in integrated circuit design, the REDESIGN system [Steinberg and Mitchell

84], the MAGIC system [Taylor and Ousterhout 84] and the Rectangle Placement Language

[Roach 84]. Govela's master's thesis discusses a computational environment for space and

123Overview

Review of Related Work

function analysis based on the S.A.R. principles [Govela 77]. A good source for older

references is the bibliography in the collection of papers edited by Charles Eastman [Eastman

75] and the symposium proceedings edited by Gary Moore [Moore 70]. Integrated circuit

design is an especially lively area of research now, and is being automated as rapidly as

possible*. Partly as a result of work in integrated circuit design, artificial intelligence is turning

to the problems of designing and design methodologies. A recent survey article in a popular

artificial intelligence quarterly summarizes some directions of current thought [Mostow 85].

*Current work is reported in the proceedings of the annual IEEE Design Automation conferences.

124Overview

Simon's Constraint Formulation

7.2 Simon's Constraint Formulation of Design.

Herbert Simon, working from concepts of mathematical economics and management

theory, outlines topics in a new discipline he calls the "science of design". He argues that

design problems can be described as sets of constraints or requirements on the object to be

designed. He casts design as a problem in optimization--a problem of maximizing or

minimizing an objective or goal within a region of alternatives circumscribed by constraints. In

other words, the constraints and the objective are initial conditions for design, and optimizing

produces the solution. Simon uses the "diet problem" to illustrate the idea. In the diet

problem, the objective is to design a diet that minimizes cost while meeting nutritional

requirements; constraints also include the relations between cost, nutrition, and different foods.

Simon demonstrates the relevance of optimization techniques when design is seen this way.

All the relations in the diet problem are linear equations, and given a particular set of constraints

and an objective one can compute a solution that optimizes the given objective subject to the

given constraints using only the mathematical technique of linear programming. One might

well argue, however, that this definition of design is too constraining; that is, situations with

well-defined a-priori constraints and objectives are not typical design situations.

Simon concedes that in many cases it may be difficult to find the best solution, for to

know that it ih the best, it must be evaluated and compared with all other alternatives. In such

cases, Simon argues, any alternative meeting all the constraints--though perhaps not the

optimium solution--will suffice. That is, if the given constraints truly describe the design

requirements, then any alternative within them should be satisfactory. Accordingly, the first

two items on Simon's agenda are techniques for finding an optimum solution, and techniques

for finding a satisfactory alternative when the optimum is difficult to find. He calls a procedure

Review of Related Work 125

Simon's Constraint Formulation

that generates an alternative that meets the constraints a "satisficing" procedure (satisfice =

satisfy + suffice). Constraint satisfying algorithms are at the heart of computer programs such

as Sketchpad [Sutherland 63] and Thinglab [Borning 77] discussed later in this chapter. The

assumption in using a constraint satisfier is that so long as the constraints are met, we do not

care which alternative among the possibilities the satisfier returns. In other words, the use of a

constraint satisfier suggests no preference among alternatives.

When finding the best solution is difficult, Simon suggests settling for a satisfactory

one. In architectural design however, and undoubtedly in other domains as well, the problem

is not merely computational. The problem is to describe the objective function. Architectural

design typically has many different objectives only one of which (by the very nature of

optimization) may be optimized over a set of constraints. Deciding on an objective function is

part of the design process. Also, constraints and objectives are not fixed at the outset of

design, but they are introduced and changed by the designer continuously throughout the

exploration for satisfactory variants. Paul Freeman and Allen Newell (working on automatic

design of software) saw these difficulties, and they offer the following criticism of the simple

constraint formulation of design:

"The generality and utility of this formulation belies the difficulty of specifying
problems in its terms.... All aspects of the formulation contribute to the
difficulties: defining the space of possibilities; formulating the constraints;
obtaining all the constraints in advance, and creating a reasonable objective
function" [Freeman & Newell 77, p. 621].

Though Freeman and Newell do not pursue the constraint model of design*, they do

offer suggestions for its improvement. In particular they recommend "relaxing the constraint

* They develop instead a model for "functional reasoning in design", which, they argue, is a poor-man's scheme

for satisfying constraints. They work with functional descriptions and see design as a process of connecting

structures that provide certain functions with other structures that require those functions.

126Review of Related Work

Simon's Constraint Formulation

formulation: permitting the space, the objective function, or the constraints to change, or to

become progressively defined throughout a design" [p 621].

Following Simon, the present work uses constraints to describe design problems. But

the use of constraints is somewhat different than the use Simon proposes. In part, the present

work extends Simon's constraint formulation in the way Freeman and Newell suggest. For

Simon, constraints are always part of the initial conditions of the design, and they inflexibly

limit the space of solutions that may be explored. In the present model, constraints are

redefined, added, and changed dynamically throughout the design process. By exploring

different sets of constraints, the designer also explores different regions of alternatives. In

Simon's model one goal or objective describes the best design; optimization of that one

objective is global, carried out over the region defined by all the constraints. The present

model, in contrast, allows for multiple objectives. Here we optimize locally (suboptimize),

over small pieces of the design. Simon's model of design differs from the present model on

two key points: his constraints are fixed, ours change; where he optimizes globally, we

suboptimize locally.

127Review of Related Work

Architectural Design Methodologies

7.3 Models and Methods of Architectural Design.

We shall now take up two well known theories of architectural design: the early work

of Christopher Alexander, and the work of N. John Habraken and the Stichting Architecten

Research. Both are attempts to account explicitly for the process of designing, in short to

answer the question, "how to design". Alexander's presents his thesis in the form of a design

theory, whereas Habraken and the S.A.R. embodied their theory in a set of procedures, or

design tools.

Like Simon, mathematician-turned-architect Christopher Alexander describes a design

problem as a list of requirements on the object to be designed. Alexander takes up one of

Simon's topics, the decomposition of complex problems into smaller, simpler pieces. In Notes

on the Synthesis of Form he argues that partitioning design problems into chunks of workable

size is an important and increasingly difficult part of designing; and he describes an algorithm

for decomposing design requirements in this way [Alexander 64]. The algorithm finds groups

of requirements that can logically be worked together given a table of connections between

constraints. Alexander explains that "...two requirements are linked if what you do about one

of them in a design necessarily makes it more difficult or easier to do something about the

other" [p 107]. Of course, systematic problem decomposition, also known as "divide and

conquer" is no new idea. But its systematic application to design, and in particular to

architectural design, was Alexander's contribution. Alexander's concern--how to break into

pieces a design problem described as a system of constraints--has since been taken up by

others who have explored different algorithms for decomposing, or clustering, large collections

of constraints [Kernighan and Lin 70; Milne 70; Owen 70].

128Review of Related Work

Architectural Design Methodologies

The design model presented here incorporates Alexander's thesis about decomposition,

although different algorithms may be used. Different partitioning algorithms will group the

constraints in different ways, thereby affording the designer alternative views of the design.

Also, because constraints change continuously, different partitionings of the design may be

employed at different stages of the design process. Finally, Alexander required the designer

to enter a table of connections of the different design variables. Because in the constraint

explorer, all the relations between variables are explicit, that table can be generated

automatically from the given set of constraints.

We now turn to the work of N. John Habraken and the Stichting Architecten Research

(S.A.R., the dutch Foundation for Architecture Research) in systematic, analytical, design

methods for architects and urban designers [Habraken et al 76; SAR 73]. These procedures

have been tested for twenty years now, and are gaining widespread acceptance in the

Netherlands as well as elsewhere in Europe. The S.A.R. methods provide a way to notate

architectural design rules, using a coordinated system of grids, zones, and margins, and with

the help of the notation, a way to systematically explore and compare design alternatives, or

variants. The S.A.R. methods help a designer evaluate and compare design variants within a

system of rules about the placement and dimensions of building components and use-spaces,

and especially respect to the options remaining for subsequent design operations. For

example, the architect designing the layout of bearing walls of a building can test the capacity

of alternative layouts to support alternative floorplan (space-arrangement) layouts. The S.A.R.

methods can also be used to measure the variation implied by a given system of rules.

Fundamental to the S.A.R. methods is the distinction of different levels of physical

form (discussed briefly in chapter 4). The S.A.R. methods include procedures for analyzing

the capacity of a design to support variation at lower levels. For example, the basic variant

Review of Related Work 129

Architectural Design Methodologies

analysis procedure calculates different possible room arrangements in a major building

structure. The designer distinguishes "support" elements from "infil" elements;the latter are

those that can be moved without disturbing the former. The recognition of different levels of

elements as members of separate systems that may be controlled by different designers is a

cornerstone of the S.A.R. methods. Transformations of the Site [Habraken 83] discusses

hierarchical organization of physical elements based on their inherent position dependence, or

level, in greater detail.

The S.A.R. methods, in essence, are a systematic way to explore systems of

constraints. The present work extends the S.A.R. methods in several ways. Most obviously,

the present model is implemented in software, which makes it faster than the same operations

carried out by hand. In the constraint explorer, all bookkeeping is done automatically;

consequently exploration is much less expensive. The S.A.R. analyses emphasize

dimensional comparison (fit/no-fit). That is a certainly one critical aspect of design but it is not

the only aspect. Other analyses, for example concerning daylight, thermal performance,

structural stability, privacy, enclosure, and noise, might be modelled in the same way. The

S.A.R. methods do not preclude such analyses, except insofar as systematically performing

many of them by hand for many alternatives is tedious and tiresome. Here we are concerned

with exploring consequences of design rules systematically, but we would like to work with

more general design rules than those of the S.A.R.

Carried out by hand, the S.A.R. methods require hours of tedious work, and rigorous

attendance to a precise notational system. By developing a computational environment for

explicitly describing both designs and design procedure, the present work aims to extend the

sorts of design rules that we can notate, the complexity of design procedures that we can write

and follow, and the number of alternatives we can practically explore.

130Review of Related Work

Computational Techniques

7.4 Computers and Computational Techniques.

Next we consider a number of computational approaches to representing and using

design expertise. We begin with Ivan Sutherland's program, Sketchpad [Sutherland 63].

Sketchpad anticipated many modem computing developments including list-processing,

interactive graphics and graphical programming languages, objects and generic hierarchies, and

constraint based programming. Although Sutherland titled his report, "A Graphical Man-

Machine Interface", Sketchpad was really an early constraint-based computer language.

The Sketchpad user described constraints on a set of graphical objects - points, lines,

arcs, angles. Sketchpad then produced an arrangement of the objects that satisfied the

constraints or at least came close. Sketchpad tried to satisfy the constraints using two

techniques. One technique, that Sutherland calls the "one-pass method", is equivalent to

propagation, as Sussman and Steele point out [Sussman and Steele 80]. The other technique,

"relaxation of constraints", was used when propagation failed. Sketchpad, when given a set of

constraints, constructed an objective function that measured the "sum of errors" (an error

measures the extent to which an alternative falls short of optimizing a constraint). Given a set

of initial variable values, the relaxation algorithm adjusts these values incrementally so as to

reduce the sum of errors. Thus Sketchpad sought a "compromise optimum"; it minimized the

sum of squares of local dissatisfactions. The Sketchpad user had no control over this objective

function, except by altering the constraints themselves. Relaxation, a hill-climbing procedure,

searches the region of alternatives for the solution that best satisfies the compromise objective

function, by proceeding in the direction of increasing quality (lower sum of errors). It finds

local optima but cannnot tell whether there is more globally a better alternative.

131Review of Related Work

Computational Techniques

The Image program [Johnson and Weinzapfel 71] provided an architectural interface to

Sketchpad. The designer's role in the Image program is to provide constraints and monitor

solutions. The constraint satisfier inside Sketchpad selects one alternative that meets the

constraints and Image draws the alternative. The designer may then change the constraints and

try again. The designers of the Image program understood that constraints in design shift and

change, thus Image was intended to be used iteratively, in a sort of specify-satisfy cycle.

Image provides the designer with a catalog of geometric and very simple architectural

constraints--proximity, adjacency, line-of-sight, that can be selected and applied to graphic

elements such as lines, points, circles, and rectangles in a field. For example, the designer

might constrain two rectangles to be adjacent, and with lines of sight between each of them and

also a third rectangle some distance away from each. The Sketchpad satisfier then operates on

all the constraints together as described above and produces a set of values for the variables that

satisfies--or at least tries to satisfy--all the given constraints. The resulting data-set is then

displayed as a drawing.

In the constraint explorer, constraints may change continuously and incrementally;

optimizations, when performed, are local, not global. In Image, constraints may only be

changed after a complete "run" of the Sketchpad satisfier; Image attempts to satisfy the entire

system of constraints simultaneously. Unlike Image, the present work also proposes to

partition or decompose the design and work pieces separately, providing the designer with

greater control over the process of selecting an alternative.

Alan Borning developed some of Sutherland's ideas in the Sketchpad program in a

more modem programming environment [Borning 77, 79]. Borning's simulation kit,

Thinglab, incorporates constraint satisfaction in an object-oriented programming environment.

The Thinglab user describes constraints on properties of objects; Thinglab's constraint

132ReUview of Related Work

Computational Techniques

satisfying mechanisms (similar to those of Sketchpad) attempt to maintain the given relations

between those properties. For examples, Borning shows Thinglab maintaining the simple

metric and geometric relations between sides of a quadrilateral, simulating the stresses in a

bridge under load, and maintaining constraints on the layout of text in a document Thinglab is

notable for its elegant integration of constraint-based and object-oriented programming (it was

written in the Smalltalk programming language) also Thinglab maintains both class/instance

relations between descriptions in its database, but also a part-whole hierarchy. The present

work would extend Thinglab's capabilities by keeping track of dependencies in the design, by

providing automatic decomposition of designs, and by providing a solver capable of symbolic

mathematics.

Gerald Sussman and his group at MIT have worked extensively on the theory and

methods of electrical and integrated circuit design. They have developed computational

formalisms for design and have suggested ways to structure computer programs to aid in both

design analysis and synthesis. (Sussman's Ph.D. thesis described HACKER, a program that

designed sequences of robot-arm operations for constructing configurations in a simple world

of blocks, was based on a paradigm of design as debugging almost-right plans [Sussman 73]).

Steele and Sussman's Constraints paper [Steele and Sussman 80] provides an introduction to

constraint-based programming techniques. That paper also discusses the differences between

declarative and imperative programming styles. Electronic components such as resistors and

capacitors are composed by combining packages of simple arithmetic constraints; for example,

they would model a resistor as a package of constraints on the voltage and current at its

terminals, the voltage being constrained to equal the product of the resistance and the current

across the terminals. A circuit is constructed by connecting the packages of constraints that

represent the circuit components. The behavior of the circuit can then be simulated by fixing

133Review of Related Work

Computational Techniques

voltages and/or currents at various points in the circuit. If component values (resistances and

capacitances) are left unfixed, then fixing the voltages and currents at enough places in the

circuit may determine the component values. Local propagation of currents and voltages in the

circuit are sufficient to simulate some but not all circuit behaviors. Some circuit behaviors

require a higher, algebraic, level of analysis; for these Steele and Sussman recommend the

technique of "slices". This involves substituting an equivalent but easier to analyze sub-circuit

(slice) for some difficult-to-analyze part of the circuit; hence the method of slices is similar to

algebraic manipulation of the constraints in symbolic form. Search is sometimes needed in

circuit behavior analysis, for example to determine which of several plausible operating ranges

of a transistor in a circuit is correct. Chronological backtracking in the event of search failure is

wasteful. In their programs EL and ARS, Sussman and Stallman introduced the idea of

dependency-directed backtracking, a technique for remembering the assumptions and the chain

of deductions that lead to a design state and for using this information to avoid repeating the

same mistake when searching [Stallman and Sussman 77]. Every item in a dependency

network is linked to other items in the database that were used to deduce it. Steele's Ph.D.

thesis packages together several techniques for managing constraints in a proposal for a

general-purpose constraint language [Steele 80].

In the last phase of integrated circuit design, layout constraints are important. These

constraints, involving the location, orientation, and connections of elements and configurations

is similar in some ways to many architectural constraints. One program developed in

Sussman's group, the Design Procedure Language [Batali and Hartehimer 82], manages

constraints on the positions and dimensions of the thousands of rectangles of silicon and metal

on a VLSI (Very Large Scale Integrated-circuit) chip* . In addition to layout design, the

* An introduction to the general problems of circuit layout is provided in the overview article Circuit Layout
[Soukup 81].

Review of Related Work 134

Computational Techniques

electronic (both electric and digital logic) behavior of integrated circuit components at several

levels of abstraction can also be modelled within the constraints paradigm. [Sussman,

Holloway, and Knight 79].

We turn finally from the constraints model to a different computational model of

expertise, the use of production-rules to represent expertise. In a rule-based expert system, all

knowledge is represented as a structured set of If-Then rules. Each rule represents an inference

that an expert might make about the subject. Rule-based expert systems have been used so

successfully in various domains that the term "expert system" has come to imply a production-

rule system. The technology involved dates back to the General Problem Solver program

[Newell and Simon 63]. MYCIN, a rule-based expert-system for determining therapeutic

regimes for patients with infectious diseases is a model for a large class of knowledge-based

expert systems using this technology [Shortliffe 76], but rule-based expert systems have been

developed in many different task domains, for example: configuring the components and

cables of VAX computer installations [McDermott 82], selecting the most likely site for mineral

exploration based on seismic data [Duda et al 78], and performing checking, routing, and

optimal placement in integrated circuit design have also been developed [Williams 77; Kim and

J. McDermott 83; Steinberg and Mitchell 84]. It is only a matter of time before architectural

applications are built; many such efforts are presently underway. Rule-based expert systems

are presently a very active area of research, and some interesting variations on the theme

described here abound. We will not attempt a review of the field. An informative review of

rule-based expert systems appeared in Science [Duda and Shortliffe 83].

The rule base in this kind of expert system typically contains many hundreds of such If-

Then rules, or deductions. Of course, the rules cannot be entered in an ad-hoc way, but must

be structured to lead to conclusions from given sets of propositions. MYCIN for example,

135Review of Related Work

Computational Techniques

always begins with a description of symptoms and results of clinical tests, and finshes with a

diagnosis. The structuring and preparation of this knowledge base is the main task and the

most time consuming one in programming this sort of expert system.

All rule based expert systems contain essentially the same simple mechanism for logical

deduction, a so-called "inference engine". Given a set of initial assertions (the problem

statement), the inference engine searches the rule base for deductions to make from the given

assertions. It then asserts these deductions and iterates. The program again searches its

knowledge base, producing a second set of deductions. When the program needs information

that was not initially supplied it queries the user. This reasoning cycle continues until the

program reaches a goal, in the case of MYCIN, when it has achieved a diagnosis and

prescribed a therapeutic regime for the patient, or until repeated iterations of the inference

engine reveal no further deductions .

Why not stick with rule-based systems, instead of venturing into constraint-based

programming techniques? Given their success, why consider other representations for design

expertise. No doubt there are applications of rule-based technology in design. However,

rule-based systems have thus far proven best at problem-solving tasks with single best

solutions and objectives that are well-defined initially. But we have argued that design

expertise is not in solving problems, but in exploring for solutions. Rule-based programming

can be seen as a subset of constraint-based programming, in which "implies" is the principal

relation. However, not all design conditions and expertise seem easily amenable to expression

in the implicational (If-Then) form required by rule-based systems. Design expertise involves

informed preference among alternatives as well as logical deduction; it is exploratory as well as

goal-oriented. A general-purpose programming environment for design may well incorporate a

production-rule language but there it need not stop.

136Review of Related Work

Discussion and Further Work

7.5 Discussion and Further Work.

We have viewed designing as the exploration of different sets of constraints and the

regions they bound. This idea we have called a theory of designing. The theory is not a

manifesto that prescribes good design; rather it is about what we know and how we use what

we know in order to design. In the theory there is a place for specific knowledge about a

particular design domain. It accounts for various activities in a design process: making

decisions, exercising preferences, exploring possibilities, choosing among alternatives,and

backtracking. The theory is stated generally, as it might be applied to all design domains and is

illustrated with examples from the design of the built environment. Architectural design,

perhaps the most archetypal of all design domains seems especially appropriate as a test-

domain for any design theory. It is assumed that constraints can be used to represent design

expertise and describes how expertise so represented might be exercised. We have discussed a

computational model that supports the theory. We discussed the use of the program and

sketched how it might be built, and we have seen how a body of well-defined and useful

design procedures (the S.A.R. methods) relate to the proposed theoretical framework.

The purpose of building a computational model is to test constraints as a representation

for design expertise and to provide designers with a higher-level platform for programming

than conventional languages and computer-assisted design programs. The constraint explorer

provides a framework for representing and manipulating design expertise. The actual expertise

must come from experts and will vary across domains and across experts, and therefore the

present work stops short of prescribing it.

137Review of Related Work

Discussion and Further Work

The present work makes no claims for completeness or exclusivity. The present

model may not account for all of designing, and there may be other ways of looking at the

things that the present model does account for. There may well be limitations to what can be

expressed using constraints. Therefore, in applying the theory to various design domains, it is

only prudent to watch for expertise that .a be expressed, but not within the framework of

constraints proposed here. At any rate we shall judge the constraint model a success if we are

able to use its formalisms to articulate and express a body of design expertise from a small but

well-defined subdomain of architectural design. That then is naturally the next goal of the

project. The usefulness of the computational model lies in the ability of architects to take over

its mechanisms and use them for their own purposes; to extend the built-in primitive relations

with more complex architectural ones.

The computer program described here is intended to provide a computational

environment for (a) articulating design constraints, (b) developing procedures and strategies to

manipulate them, and (c) studying the expertise embodied in (a) and (b). It is intended both as

a repository for design knowledge and expertise as well as a tool for designers. The constraint

explorer described here is not trivial to construct. Given a reasonable computing environment,

however, the task is doable. Although trial versions of almost all the pieces of the constraint

explorer program have been built and tested on various computers at various times, the entire

program has yet to be assembled together under one operating system. The next step therefore

is to build the program, and then to begin to use it to express design expertise.

138Review of Related Work

References

Abelson, H. and Sussman, G. J. with Sussman, J. 1985. The Structure and Interpretation of
Computer Programs.. Cambridge: M.I.T. Press and New York: McGraw-Hill.

Alexander, C. 1964. Notes on the Synthesis of Form. Cambridge Massachusetts: Harvard
University Press.

Alexander, C. and Mannheim, M. 1962. HIDECS-2: A Computer Program for the
Hierarchical Decomposition of a Set with an Associated Graph. M.I.T. Civil Engineering
Systems Laboratory Publications No 160.

Batali, J. and Hartheimer A. 1982. Design Procedure Language Manual. M.I.T. Artificial
Intelligence Laboratory Memo #598.

Bobrow, D. and Winograd, T. 1977. An Overview of KRL, a Knowledge Representation
Language. Cognitive Science 1:3-46.

Bobrow, D. and Collins, A. (ed.) 1975. Representation and Understanding: Studies in
Cognitive Science. Academic Press.

Borning, A. 1977. Thinglab--an Object-oriented System for Building Simulations Using
Constraints. In Proc. Fifth International Joint Conference on Artificial Intelligence pp. 497-
498.

Borning, A. 1979. Thinglab--A Constraint-Oriented Simulation Laboratory
Xerox Palo Alto Research Center report SSL-79-3, Palo Alto, California.

Brachman, R. and Smith, B.C., eds. 1980. Special issue on knowledge representation.
SIGart newsletter no. 70 (February).

Dahl, 0. and Nygaard, K. 1966. SIMULA - An Algol-based simulation Language. CACM
9(9):671-681.

Drescher, G. L. 1985. Objectlisp Manual. M.I.T. Artificial Intelligence Memo (forthcoming).

Duda, R.O., Hart, P.E., Nilsson, N.J., Konolige, K., Reboh, R., Barrett, P., and Slocum, J.
1978. Development of the PROSPECTOR consultation system for mineral exploration. Final
Reprt, SRI Projects 5821 and 6415, SRI International, Inc. Menlo Park, California.

Duda, R.O. and Shortliffe, E.H. 1983. Expert Systems Research. Science 220:261-268.

Eastman, C. M. (ed.) 1975. Spatial Synthesis in Building Design. New York: Wiley & Sons.

Engel, H. 1964. The Japanese House--A Tradition for Contemporary Architecture. Tokyo,
Japan and Rutland, Vermont: Charles E. Tuttle & Co.

Fahlman, S. E. 1979. NETL: A Systemfor Representing and Using Real-World Knowledge.

Cambridge, Massachusetts: M.I.T. Press.

139

References

Fenichel, R. R. An On-Line System for Algebraic Manipulation. Ph.D. dissertation, Harvard
University, 1966.

Freeman, P. and Newell, A. 1971. A Model for Functional Reasoning in Design. Proc.
Second International Joint Conference on Artificial Intelligence, pp. 621-640, British
Computer Society: London.

Goldberg, A. and Robson, D. 1983. Smalltalk-80: The Language and its Implementation.
Addison-Wesley.

Goldstein, I. and Bobrow, D. 1981. Layered Networks as a Tool for Software Development.
Proc. Seventh International Joint Conference on Artificial Intelligence. Vancouver.

Gosling, J. 1983. Algebraic Constraints. Ph.D. dissertation, Carnegie Mellon University
(CMU-CS-83-132).

Govela, A. 1977. Space and Function Analysis -- a Computer System for the Generation of
Functional Layouts in the S.A.R. Methodology. Master's thesis, Massachusetts Institute of
Technology.

Habraken, N.J., Boekholt J.T., Thijssen A.P., and Dinjens, P.J.M. 1976.V ariations - The
Systematic Design of Supports. Laboratory for Architecture and Planning/MIT Press.

Habraken, N.J., Akbar, J., and Liu, L. 1983. Thematic Design. Design Theory and Methods
Group Working Paper, Department of Architecture, M.I.T.

Habraken, N.J. 1983. Transformations of the Site. Cambridge, Massachusetts: Awater
Press.

Hille, R.T. 1982. Understanding and Transforming What's There-- A Look at the Formal
Rule Structure of the Residential Facade Zone in Victorian San Francisco. Master's thesis,
Massachusetts Institute of Technology.

Johnson, T. and Weinzapfel, G. 1971. Computer Assisted Space Synthesis under Geometric
Constraints. Industrial Forum 1:17-24.

Johnson, T.; Weinzapfel G.; Perkins, J; Ju, D.; Solo, T.; Morris, D. 1970. IMAGE: An
Interactive Graphics-based Computer Systemfor Multi-Constrained Synthesis. Department of
Architecture, M.I.T.

Kay, A. 1984. Computer Software. Scientific American. 251(3):53-59.

Kernighan, B.W. and Lin, S. 1970. An Efficient Procedure for Partitioning Graphs. Bell
Systems Technical Journal (Febuary).

Kim, J. and McDermott, J. 1983. TALIB: an IC Layout Design Assistant. In Proc. National
Conference on Artificial Intelligence, pp 197-201, Los Altos: William Kaufmann.

140

References

Konopasek, M. and Papaconstadopoulos, C. 1978. The Question Answering System on
Mathematical Models (QAS): Description of the Language. Computer Lanugages, v 3:144-
155, Pergammon Press, Ltd.

Kowalski, R.A. 1979. Logicfor Problem Solving. New York: North Holland.

Levitt, D. A. 1985. A Representation for Musical Dialects. Ph.D. dissertation, Massachusetts
Institute of Technology.

Macsyma 1982. MACSYMA Reference Manual. The Macsyma Group, Laboratory of
Computer Science, M.I.T., Cambridge Massachusetts.

McDermott, D. 1983. Data Dependencies on Inequalities. In Proc. National Conference on
Artificial Intelligence, pp 266-269, Los Altos: William Kaufmann.

McDermott, J. 1982. Rl: A Rule-Based Configurer of Computer Systems. Artificial
Intelligence 19(9):39-88.

Minsky, M. R. 1984. Manipulating Simulated Objects using a Force and Touch Sensitive
Display. Proceedings ACM SIGraph Conference 84.

Mitchell, W. J. 1977. Computer Aided Architectural Design. New York: Petrocelli/Charter.

Mostow, J. 1985. Toward Better Models of the Design Process. In The AI Magazine
2(1):44-57.

Moore, R. E. 1966. Interval Analysis. Englewood Cliffs, New Jersey: Prentice-Hall.

Milne, M. 1970. CLUSTER: A Structure-Finding Algorithm. In Emerging Methods in
Environmental Design and Planning, ed. G. Moore, pp.126-133, Cambridge: M.I.T. Press.

Negroponte, N. 1975. Soft Architecture Machines. Cambridge: M.I.T. Press.

Negroponte, N. and Groisser, L. 1970. URBAN5 - A Machine that Discusses Design. In
Emerging Methods in Environmental Design and Planning, ed. G. Moore, pp.10 5 -1 15,
Cambridge: M.I.T. Press.

Newell, A. and Simon H.A. 1963. GPS, a Program that Simulates Human Thought. In
Computers and Thought, ed. Feigenbaum, E. and Feldman, J.. Mc Graw Hill.

Nilsson, J. N. 1984. Change and Continuity in Urban Form: A Case Study of East Oakland's
Store-and-Flat Buildings. Master's Thesis, University of California, Berkeley.

Owen, C. 1970. DCMPOS: An Algorithm for the Decomposition of Nondirected Graphs. In
Emerging Methods in Environmental Design and Planning, ed. G. Moore, pp.133-147,
Cambridge: M.I.T. Press.

Pangaro, P.A. 1982. Beyond Menus: The Rats-a-Stratz or the Bahdeens. In Proceedings
Harvard Computer Graphics Week, Cambridge: Harvard University.

141

References

Pfefferkorn, C. E. 1975. The Design Problem Solver: a System for Designing Equipment or
Furniture Layouts. In Spatial Synthesis in Computer-Aided Building Design, ed. C.M.
Eastman, pp. 98-147, New York: Wiley.

Porter, W., Lloyd, K., and Fleisher, A. 1970. DISCOURSE: A Language and System for
Computer Assisted City Design. In Emerging Methods in Environmental Design and
Planning, ed. G. Moore, pp.92-105, Cambridge: M.I.T. Press.

Polya, G. 1945. How To Solve It; A New Aspect of Mathematical Method. Princeton:
Princeton University Press.

Roach, J. A. 1984. The Rectangle Placement Language. In Proc. 1984 IEEE Design
Automation Conference, pp 405-411.

SAR 1973. SAR 73: S.A.R. Method for the Development of Urban Environments. Stichting
Architecten Research.

Shortliffe, E. H. 1976. Computer-based Medical Consultations: MYCIN, American Elsevier.

Simon, H. A. 1969. The Sciences of the Artificial. Cambridge, MIT Press.

Simon, H. A. 1975. Style in Design. In Spatial Synthesis in Computer-Aided Building
Design, ed. C.M. Eastman, pp. 98-147, New York: Wiley.

Smith, M. K., Hille R.T., and Mignucci, A. 1982. Ranges of Continuity: Eleven Towns in
Spain and Portugal. Exhibit, Department of Architecture, M.I.T.

Soukup, J. 1981. Circuit Layout. In Proceedings of the IEEE. 69(10):1281-1304.

Stallman, R. and Sussman, G.J. 1977. Forward Reasoning and Dependency-directed
Backtracking in a System for Computer-Aided Circuit Analysis. Artificial Intelligence, 9:135-
196.

Steele, G.L. 1980. The Definition and Implementation of a Programming Language Based on
Constraints. M.I.T. Artificial Intelligence Laboratory Technical Report TR-595,
Massachusetts Institute of Technology, Cambridge.

Steele, G. and Sussman, G.J. 1980. CONSTRAINTS - A Language for Expressing Almost-
Hierarchical Descriptions. Artificial Intelligence 14:1-39.

Steinberg, L. I. and Mitchell, T. M. 1984. A Knowedge Based Approach to VLSI CAD - The
REDESIGN System. In Proceedings of the 21st Design Automation Conference (pp 412-
418).

Sussman, G.J. 1973. A Computational Model of Skill Acquisition. Ph.D. dissertation,
Massachusetts Institute of Technology.

142

References

Sussman, G.J., Holloway, J., and Knight, T. 1979. Computer-Aided Evolutionary Design
for Digital Integrated Systems. M.I.T. Artificial Intelligence Laboratory Al Memo 526.
Massachusetts Institute of Technology, Cambridge.

Sutherland, I. 1963. Sketchpad - A Man-Machine Graphical Communication System,
Technical Report No. 296, Lincoln Laboratory, Massachusetts Institute of Technology,
Cambridge.

Taylor, G.S. and Ousterhout, John K. 1984. Magic's Incremental Design-Rule Checker. In
Proceedings of the 21st IEEE Design Automation Conference (pp. 160-165).

Vernez-Moudon, A. 1985. Built for Change - Urban Architecture in San Francisco
Cambridge, MIT Press 1985 (forthcoming)

Weinzapfel, G. and Handel, S. 1975. Image: Computer Assistant for Architectural Design.
InSpatial Synthesis in Computer-Aided Building Design, ed. C.M. Eastman, pp. 61-98, New
York: Wiley.

Williams, J.D. 1977. Sticks, A New Approach to LSI Design. Master's thesis,
Massachusetts Institute of Technology, Cambridge.

Winograd, T. 1975. Breaking the Complexity Barrier, Again. In ACM SIGPLAN Notices
1:13-30.

Wolfram, S. 1984. Computer Software in Science and Mathematics. In Scientific American,
251(3):188-203.

143

