

MIT Open Access Articles

Lithium Concentration from Salt-Lake Brine by Donnan-Enhanced Nanofiltration

The MIT Faculty has made this article openly available. *Please share* how this access benefits you. Your story matters.

Citation: Foo, Zi Hao, Rehman, Danyal, Bouma, Andrew T, Monsalvo, Sebastian and Lienhard, John H. 2023. "Lithium Concentration from Salt-Lake Brine by Donnan-Enhanced Nanofiltration." Environmental Science & amp; Technology.

As Published: 10.1021/acs.est.2c08584

Publisher: American Chemical Society (ACS)

Persistent URL: https://hdl.handle.net/1721.1/150571

Version: Author's final manuscript: final author's manuscript post peer review, without publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

1	Lithium Concentration from Salt-lake Brine
2	by Donnan-enhanced Nanofiltration
3	Zi Hao Foo, ^{†,‡} Danyal Rehman, ^{†,‡} Andrew T. Bouma, [†] Sebastian Monsalvo, [†] and
4	John H. Lienhard* ^{,†}
5	†Department of Mechanical Engineering, Massachusetts Institute of Technology,
6	Cambridge, Massachusetts 02139, United States
7	$\ddagger Center for Computational Science and Engineering, Massachusetts Institute of$
8	Technology, Cambridge, Massachusetts 02139, United States
	E-mail: lienhard@mit.edu
9	
10	Cite as:
11	Z.H. Foo, D. Rehman, A.T. Bouma, S. Monsalvo and J.H. Lienhard, "Lithium Concentra-

- 12 tion from Salt-lake Brine by Donnan-enhanced Nanofiltration", Environmental Science &
- ¹³ *Technology* 57, 15, 6320–6330 (2023). DOI:10.1021/acs.est.2c08584

Abstract

Membranes offer a scalable and cost-effective approach to ion separations for lithium 15 recovery. In the case of salt-lake brines, however, the high feed salinity and low pH of 16 the post-treated feed have an uncertain impact on nanofiltration's selectivity. Here, 17 we adopt experimental and computational approaches to analyze the effect of pH and 18 feed salinity, and elucidate key selectivity mechanisms. Our dataset comprises over 750 19 original ion rejection measurements, spanning five salinities and two pH levels, collected 20 using brine solutions that model three salt-lake compositions. Our results demonstrate 21 that the Li^+/Mg^{2+} selectivity of polyamide membranes can be enhanced by 13 times 22 with acid pre-treated feed solutions. This selectivity enhancement is attributed to the 23 amplified Donnan potential from the ionization of carboxyl and amino moieties under 24 low solution pH. As feed salinities increase from 10 to 250 g L^{-1} , the Li^+/Mg^{2+} selec-25 tivity decreases by ~ 43 %, consequent of weakening exclusion mechanisms. Further, 26 our analysis accentuates the importance of measuring separation factors using repre-27 sentative solution compositions, to replicate the ion transport behaviors with salt-lake 28 brine. Consequently, our results reveal that predictions of ion rejection and $\rm Li^+/Mg^{2+}$ 29 separation factors can be improved by up to 80 % when feed solutions with the appro-30 priate $\rm Cl^-/SO_4^{2-}$ molar ratios are used. 31

Keywords: Hypersaline Brine, Lithium Extraction, Nanofiltration, Resource Recovery, Selectivity Mechanism

2

14

32

33

35 Synopsis

- Membrane processes play an instrumental role in the green transition, allowing critical ma-
- ³⁷ terials to be harvested sustainably from hypersaline brine.

38 1 Introduction

In an era of accelerating resource scarcity fueled by climate change and population growth, the development of sustainable separation systems capable of accessing non-traditional sources of critical minerals is of paramount importance.¹⁻³ Owing to its high electrochemical activity and heat capacity, lithium is the central component of modern-day batteries and is a resource of increasing strategic importance for most economies.^{4,5} In spite of its abundance in continental and geothermal salt-lakes, the price of lithium is inelastic, owing to its production using conventional evaporation ponds.^{6,7}

To avoid the slowness and land requirements of evaporation ponds, lithium can instead be 46 produced from salt-lake brines using direct lithium extraction (DLE).⁸ In DLE, adsorbents 47 or chelating agents separate Li⁺ ions from a multicomponent aqueous mixture (e.g., Na⁺, 48 K^+).^{4,8} The high concentration of divalent ions in salt-lake brines (such as Mg^{2+}), however, 49 inhibits and attenuates DLE's separation efficiency due to their similar ionic radii (0.76 Å 50 for Li⁺, 0.72 Å for Mg²⁺).^{4,6} To improve lithium yield and purity, the hypersaline feed 51 can be pre-treated to selectively eliminate multivalent ions, leveraging solvent extraction,^{9,10} 52 nanofiltration,^{11,12} selective electrodialysis,^{13–15} chelating agents,^{16,17} or other absorption-53 based methods.¹ Nanofiltration, in particular, is attractive for brine softening owing to its 54 high energy and separation efficiencies, reliability, and ease of scalability.^{12,18–20} 55

Traditional nanofiltration membranes are typically thin-film composites comprising a 56 polyamide selective layer, and a polysulfone support layer.^{20–23} The polyamide layer is con-57 ventionally fabricated through interfacial polymerization between trimesoyl chloride and 58 piperazine, and the membrane's permeability and ion selectivity are dictated by the degree of 59 crosslinking.²⁴ Consequently, electrostatic potentials form along the membrane-liquid inter-60 face during operation, resulting from the ionization of residual carboxyl and amino moieties 61 in polyamide matrix with water.^{21,25–27} Ion fractionation of the feed solution is achieved 62 through a combination of steric, dielectric and Donnan exclusion mechanisms.^{19,28–31} In re-63

cent demonstrations, the monovalent cation selectivity can be effectively enhanced by up to six times with Donnan potential magnification, through active layer functionalization with positive charge centers or surface coatings.^{32–37}

65 66

> The challenge of Li⁺/Mg²⁺ separation with nanofiltration has received sustained interest 67 in the literature.^{3,4,38,39} The majority of salt-lake brines are multicomponent and have high 68 feed salinities. However, most prior studies tend to focus on dual cation feed solutions 69 (i.e., Li⁺ and Mg²⁺ cations) that are lower in concentrations, and which do not necessarily 70 replicate the transport dynamics in actual multicomponent salt-lake brine.^{34–37,40–42} As we 71 will demonstrate, the apparent ion rejections and Li^+/Mg^{2+} separation factors vary by up 72 to 80 % and 40 %, respectively, between experiments involving dual cation solutions and 73 concentrated salt-lake brines. Furthermore, as a prerequisite for brine valorization, the feed 74 solution is acid pre-treated in the industry to mitigate carbonate and silicate scaling;^{4,43} 75 the effect of lowering feed solution pH on the membrane's monovalent selectivity and ion 76 permeability under high salinities is nuanced and remains unclear.²¹ 77

> In this study, we analyze the kinetics of ion transport across polyamide NF membranes, 78 elucidating the dependence of the ion selectivity and water permeability coefficient on in-79 trinsic membrane parameters, feed composition, salinity and pH level. Over 750 original ion 80 rejection measurements, spanning five salinities and two pH levels, are recorded using brine 81 solutions that model the compositions of three salt-lakes. The measured data is used to 82 calibrate a semi-empirical model and systematically tabulated in the SI for future reference. 83 To deconvolute the highly coupled transport phenomena,⁴⁴ we juxtapose the rejection data 84 with dual cation and multicomponent feed solutions, pinpointing specific ion-membrane and 85 ion-ion interactions that give rise to differences in apparent selectivities. Lastly, we discuss 86 possible mechanisms for the observed weakening of selectivities at higher feed salinity and 87 the importance of choosing representative feed solutions for membrane characterization. 88

⁸⁹ 2 Materials and Methods

⁹⁰ 2.1 Materials and Chemicals

Synthetic brine solutions were prepared based on the aqueous salt-lake composition of Salar 91 de Atacama, Chile,¹⁸ Qaidam Lake, China¹⁹ and Salton Sea, United States,⁴⁵ as given 92 in Table 1. To investigate salinity effects, diluted variants of the respective brines were 93 prepared while keeping the relative ionic ratios constant (see Supp. Tables 1 - 3 in SI). 94 To ascertain the influence of multicomponent effects on the ion selectivity, complementary 95 experiments with dual cation solutions comprising Li⁺ and Mg²⁺ ions were conducted (see 96 Supp. Table 8 in SI). Deionized water from an in-house reverse osmosis system was used in 97 the preparation of all stock solutions. ReagentPlus-grade NaCl, KCl, LiCl, MgCl₂, CaCl₂, 98 Na₂SO₄, K₂SO₄, Li₂SO₄, MgSO₄, CaSO₄ (anhydrous, >99 %), NaOH (anhydrous, >98 %) 99 and HCl (37 %) were procured from MilliporeSigma. Semi-aromatic polyamide nanofiltration 100 (NF) membranes, and the feed and permeate channel spacers, were obtained from commercial 101 spiral-wound modules (DuPont FilmTec NF270–2540). The NF membranes were stored in 102 a buffered 1 wt% $Na_2S_2O_5$ solution, and soaked in deionized water for 24 h before use. The 103 membranes have a nominal molecular weight cutoff (MWCO) between 200 and 400 Da, and 104 they are stable for continuous operation between the pH levels of 2 - 11. 105

Table 1: Nominal ionic composition of the synthetic hypersaline brine from major commercial salt-lake reservoirs.

Salt Lake Location	Nominal Composition (g L^{-1})							
Sait Lake, Location	Li^+	Na^+	K^+	Mg^{2+}	Ca^{2+}	Cl^{-}	SO_4^{2-}	TDS
Salar de Atacama, Chile ¹⁸	1.19	69.01	17.89	7.31	_	143.72	12.06	251.18
Qaidam Lake, China ¹⁹	0.31	56.30	4.40	20.20	_	134.20	34.10	249.51
Salton Sea, United States ⁴⁵	0.22	53.70	17.10	-	26.30	152.00	0.12	249.44

Figure 1: A) Schematic diagram of the bench-scale nanofiltration experimental setup, including the pressure module and permeate measurement and collection system;⁴⁶ B) Selectivity mechanism for salt partitioning into the nanofiltration membrane pore, including steric, dielectric and Donnan exclusion mechanisms. The membrane's active layer is modeled as a network of continuous and tortuous nanoscale water channels, based on pore flow models;⁴⁷ C) Transport mechanisms and their respective driving forces for ionic transport across the nanofiltration membrane, including convective, diffusive and electromigrative contributions; Experimental measurements and computational predictions of species rejection for multicomponent salt-lake brine from D) Salton Sea, United States, E) Salar de Atamaca, Chile and F) Qaidam Lake, China.

2.2 Experimental Apparatus

¹⁰⁷ A plate-and-frame bench-scale cross-flow membrane module was adopted to characterize the ¹⁰⁸ performance of the polyamide membrane (Figure 1A).⁴⁶ The custom-built module had flow ¹⁰⁹ channel dimensions of 8.0 cm in length, 3.0 cm in width and 1.0 mm in thickness, and ¹¹⁰ was capable of accommodating up to 70 bar of feed pressure. Cross-flow was maintained

using positive displacement pumps (Hydra-Cell F20). A pulsation dampener (Hydra-Cell 111 4CI SST) was installed upstream of the membrane module to negate pressure pulsations. 112 Pressure transducers with 1 % reading uncertainty (Wika A-10) were installed along the 113 feed and permeate flow streams to monitor the flow pressure in real-time on the LabView 114 software. The water flux was determined by gravimetry, using a digital mass scale with 115 0.1 g readability (Ohaus Scout Pro SP601). The solution conductivity and pH levels were 116 monitored and recorded at 1 Hz frequency (Hach HQ440d). Streaming potential experiments 117 were conducted with the Anton Paar SurPASS 3 zeta potential system. 118

119

2.3 Membrane Performance Tests

Over 750 ion rejection measurements, based on 144 water samples from distinct operat-120 ing conditions, were recorded using dual cation and multicomponent salt-lake brines (see 121 Supp. Table 1 - 9 in SI). The experiments were conducted at a cross-flow velocity of 0.17 122 m s⁻¹, and at a temperature of 20.0 \pm 0.5 °C. The total dissolved solids (TDS) concentration 123 of the feed solution ranges between 10 and 250 g L^{-1} , at pH levels of 2 and 7, to assess the 124 impact of acid pretreatment on ion selectivity. In light of bicarbonate and carbonate scaling 125 risks in lithium extraction applications, alkaline feed conditions were not investigated. 4,14 In 126 these experiments, the membrane coupon was installed and compacted at an applied pressure 127 of 8 bar with deionized water for 2 h. Thereafter, the membrane coupon was equilibrated 128 with the salt solution for 15 mins at the specific pressure before sample collection. Solution 129 pH levels were adjusted with dropwise addition of 1 M HCl and 1 M NaOH. The feed and 130 permeate samples were collected in centrifuge tubes and chilled. The ionic compositions of 131 the solutions were analyzed with inductively coupled plasma optical emission spectroscopy 132 (Agilent ICP-OES 5100), calibrated using three-point standards from MilliporeSigma (Trace-133 Cert). The maximum uncertainty in each concentration measurement was under 2 %, based 134 on triplicate measurements. 135

The water flux was calculated by measuring the change in the mass of the permeate

solution, according to Eq. 1.

$$J_w = \frac{\Delta m}{\rho_w A_m \Delta t} \tag{1}$$

where J_w (L m⁻² h⁻¹, i.e., LMH) denotes the water flux, Δm and Δt denote the change in mass (g) and time (h), ρ_w denotes the density of water (g L⁻¹), and A_m denotes the effective membrane area (m²).

The membrane's water permeability coefficient was calculated by averaging the ratio of the pure water flux over the applied pressure, across feed pressures ranging from 5 to 40 bar. The flow loop volume was calibrated and incorporated to prepare the feed solutions (see text A.1 in SI). The ion rejections were calculated with Eq. 2, using concentrations determined by ICP-OES.

$$R_i = 1 - \frac{C_{i,p}}{C_{i,f}} \tag{2}$$

where R_i denotes the rejection of ion i (-), $C_{i,f}$ and $C_{i,p}$ denote the species concentration in the feed and permeate solution (g L⁻¹).

Lastly, the selectivity separation factor between solutes i and j was calculated with Eq. 3.

$$\alpha_{i/j} = \frac{C_{i,p}/C_{j,p}}{C_{i,f}/C_{j,f}}$$
(3)

where $\alpha_{i/j}$ denotes the separation factor between solutes *i* and *j* (-).

¹⁵⁰ 2.4 Transport Model

The Donnan-steric pore model with dielectric exclusion (DSPM-DE) was used as a computational tool to complement the experiments in inferring solute partitioning behavior, and to characterize transmembrane species transport.⁴⁷ A full description of the model, including the numerical assumptions, limitations and the solution algorithm, appears in the Supporting Information (see text B.1 in SI). The DSPM-DE model neglects active layer heterogeneity,^{26,48} assumes full dissociation of the inorganic salts²⁹ and models the dissolved solutes based on its hydrodynamic radii.²⁰ Despite its limitations, the model can predict the
transport coupling between the ions arising from charge anisotropy,⁴⁹⁻⁵¹ provide order-ofmagnitude estimations for the transport and partitioning mechanisms,^{27,52} and reproduce
the asymptotic rejection behaviors observed under high Péclet numbers.^{21,22,28} A complete
list of the model assumptions and implications is delineated in the SI.

The extended Nernst-Planck equation was used to model species transport arising from diffusion, convection and electromigration in DSPM-DE, and are provided in Eq. 4 and illustrated in Figure 1C. Here, the water flux was measured experimentally and served as a model input.

$$J_i = K_{i,a}c_i J_w - K_{i,d}D_{i,\infty}\nabla c_i - K_{i,d}D_{i,\infty}\frac{z_i c_i F}{RT}\nabla\Psi$$
(4)

where J_i denote the solute flux (mol m⁻² h⁻¹), $K_{i,a}$ and $K_{i,d}$ denote the hindrance coefficients from convection (-) and diffusion (-), c_i and z_i denote the molar concentration (mol L⁻¹) and electronic valency (-), $D_{i,\infty}$ denotes the Fickian diffusion coefficient (m² s⁻¹), F and Rdenote the Faraday (C mol⁻¹) and ideal gas constants (J mol⁻¹ K⁻¹), and T and Ψ denote the temperature (K) and electric potential (V).

To ensure chemical stability, electroneutrality conditions are imposed on the solution in the bulk and within the membrane pores, as provided by Eq. 5 and 6, respectively.

$$\sum_{i}^{N} z_i c_i = 0 \tag{5}$$

173

$$\chi_d + \sum_i^N z_i c_i = 0 \tag{6}$$

where χ_d represents the charge density of the active layer (mol m⁻³).

To ensure that the Gibbs free energy remains continuous, isoactivity conditions were imposed along the solution-membrane boundary.^{23,53} The solute's effective partition coefficient, consequently, was defined as the ratio of the solute activity within the membrane to the bulk solution, as provided in Eq. 7. Here, solute partitioning was the result of steric, dielectric and Donnan exclusion mechanisms, as illustrated in Figure 1B (see text B.1 in SI).

$$\frac{(\gamma_i c_i)_{mem}}{(\gamma_i c_i)_{bulk}} = \Phi_{i,steric} \Phi_{i,Donnan} \Phi_{i,dielectric}$$
(7)

where γ_i denotes the activity coefficient of solute *i*, and Φ_i denotes the partition coefficient. 180 The formation of concentration boundary layers on the membrane surface impacts the 181 apparent membrane selectivity.⁵⁴ To incorporate the concentration polarization effects, the 182 boundary layers were modeled using the method developed by Geraldes and Alves, incorpo-183 rating diffusive, convective and electromigrative effects^{47,49} (see text B.2 in SI). Mass transfer 184 coefficients within the concentration boundary layers were calculated using empirical corre-185 lations from our prior study.⁵⁵ The governing differential equation for species and charge 186 conservation were discretized and solved, using numerical solvers developed in Python (see 187 text B.1 in SI). The four model parameters, i.e., the average pore radius, effective membrane 188 thickness, charge density and the relative permittivity of water within the pores, were re-189 gressed from 72 ion rejection measurements, for each solution pH. The optimization problem 190 was solved with a metaheuristic stochastic minimization algorithm,⁵⁶ and the results are 191 summarized in Supp. Table 10. 192

193

3

179

Results and Discussion

194

3.1 Membrane Characterization and Model Calibration

¹⁹⁵ To calibrate the consistency of DSPM-DE, we compared the predicted ion rejections from ¹⁹⁶ the model to the experimental results by Micari et al.,⁵⁷ and Labban et al.,⁴⁹ using original ¹⁹⁷ model parameters from the respective authors (see text B.3 in SI). The maximum absolute ¹⁹⁸ deviations were below 15 % and 8 % for the two cases. Furthermore, the model captured the ¹⁹⁹ effects of ionic coupling, reproducing the negative rejection phenomena observed for small ²⁰⁰ monovalent ions.^{28,50}

Next, the original ion rejection measurements of the present work were used to calibrate 201 the model parameters of DSPM-DE, allowing us to infer differences in the solute transport 202 between the dual cation and multicomponent brines. Mindful of the assumptions and limita-203 tions of DSPM-DE, we restricted its use to brines of low concentrations (10 g L^{-1}), avoiding 204 ion-pairing^{58,59} and coupled diffusion^{60,61} phenomena that occur at higher concentrations. 205 Further, the model was calibrated to 72 ion rejection measurements from three unique brine 206 compositions (see Supp. Table 1 - 3 in SI), to prevent overfitting of the 4 model parame-207 ters. The agreement between the model and multicomponent brine experiments at pH 7 is 208 exemplified in Figure 1C – E, with a normalized root-mean-square error of 2.8 %. Similar 209 agreement was obtained for the experiments with multicomponent solutions at pH 2, and 210 with dual cation solutions, as shown in Supp. Figure 4 and 5. 211

Subsequently, we compared our numerical parameters to prior empirical membrane char-212 acterizations. The pore radius of NF 270 has been reported to be between 0.43 to 0.54 nm, $^{57,62-65}$ 213 and the pore size distribution has been estimated to be approximately 0.3 ± 0.1 nm, based 214 on MWCO experiments.²⁴ In comparison, DSPM-DE suggested pore radii of 0.416 and 215 0.461 nm, at pH 7 and 2, which were within the error of the reported estimates. Using 216 the model parameters at pH 7, the predicted limiting rejections for glucose, sucrose and 217 raffinose were within 8.5 % of the empirical measurements.⁴⁹ Using a LiCl binary solution, 218 DSPM-DE predictions for its partition coefficient were 0.176, approximately 16.2 % lower 219 than the expected value of 0.21 ± 0.06 obtained from earlier quartz crystal microbalance 220 with dissipation (QCM-D) measurements.⁶⁶ The predicted relative permittivity within the 221 pores was 39.58, which was within 6 % of the best estimates in the literature.^{49,50,57} 222

223

3.2 Donnan Exclusion enhances Monovalent Selectivity

We leveraged our calibrated model to examine the monovalent selectivity of nanofiltration, inferring key partitioning and transport mechanisms for Li⁺/Mg²⁺ separation. Electrostatic potentials form along the solution-membrane interface because the carboxyl and amino func-

Figure 2: Schematic diagrams of the thermodynamic partition coefficients and the transport mechanisms for the ionic species in the Chilean brine, at a total dissolved solids concentration of 10 g L^{-1} . Note that the partition coefficients are plotted on a logarithmic scale, and are compared at the same water flux of 15 L m⁻² h⁻¹. The relative contributions from steric, dielectric and Donnan exclusions, at a solution pH of A) 7 and B) 2, are outlined in blue, red and green, respectively. A partition coefficient lower than 1 (dotted lines) indicates selective rejection, and vice versa. Schematic diagrams for the diffusive, convective and electromigrative fluxes normalized to the total ionic flux of each species (left vertical axes) at a transmembrane water flux of 15 L m⁻² h⁻¹, at solution pH of C) 7 and D) 2, respectively. The normalized fluxes from the constituent mechanisms sum to 1 (dotted line). The extensive ionic fluxes are plotted on the right vertical axes to illustrate relative permeate concentrations. The results suggest transport coupling between cations and anions, induced through charge anisotropy across the active layer, to maintain solution electroneutrality. E) Solution speciation in Chilean brine as a function of increasing TDS. At high concentrations, ion-pair complexes between Li⁺, Mg²⁺, Cl⁻ and SO₄²⁻ dominate, ^{58,67} impacting NF selectivity due to attenuated solvation energy differences between species.

tional groups tend to ionize in water.^{68,69} The isoelectric point (IEP) is defined as the pH level that corresponds to a neutral active layer.^{29,70} Here, we experimented under neutral and acidic conditions, corresponding to solution pH levels above and below the IEP. Feed solutions at pH 2 were selected to mimic the effects of acid pre-treatment in resource recov-

erv applications.^{7,43}

The schematic diagrams for the derived partition coefficients from steric, dielectric and 232 Donnan exclusion are presented in Figure 2A and B, using the Chilean brine at 10 g L^{-1} . The 233 analyses for the other tested compositions are provided in the SI (see text C.1 in SI). We note 234 that the partition coefficients are plotted on logarithmic axes to accentuate the differences in 235 the exclusion mechanisms. The derived partition coefficients suggested that the active layer 236 was ion rejecting, which was consistent with prior knowledge of semi-aromatic polyamide 237 membranes.⁷¹ Between the six ions, the trend in the magnitudes of steric and dielectric 238 exclusion aligned with literature predictions from hindered transport⁵⁰ and solvation theories 239 surrounding ion dehydration,^{51,67,72} respectively. 240

From the experiments, the rejection of multivalent cations increased from 55 to 97 %241 approximately, when the solution pH was lowered from 7 to 2. The rejection of monovalent 242 cations, however, rose incrementally by 15 % on average, amplifying the separation factor 243 between Li⁺ and Mg²⁺ by a factor of six. Using our transport model, we attributed this phe-244 nomenon partly to changes in the ion partitioning behavior, as a result of the membrane's 245 Donnan potential increasing with the protonation of the carboxyl and amino moieties,⁶⁹ 246 vielding a positive surface potential. This result is corroborated by zeta potential mea-247 surements of the active layer, as presented in Supp. Figure 6. Cations that previously 248 permeated under the negative Donnan potential now encountered an amplified energy bar-249 rier from the positive Donnan potential.^{27,73} This conclusion is corroborated by Figure 2A 250 and B and Supp. Table 12, where the derived partition coefficients from Donnan exclusion 251 that were originally greater than 1 at pH 7, fell to be consistently below 1 at pH 2. For the 252 anions, conversely, the model predicted an increase in permeation from the Donnan poten-253 tial changes, reproducing the observed reductions in SO_4^{2-} rejections from the experiments. 254 Smaller ions with higher charge densities, i.e., multivalent cations, were impacted to a greater 255 extent by the electrostatic effects.²⁷ This disparity between ions amplified the rejection of 256 multivalent cations disproportionately, elevating Li⁺/Mg²⁺ separation factors. Our findings 257

reemphasized that the strength of Donnan exclusion, from the ionized charged groups in
the polyamide matrix, is highly sensitive to solution pH, and can be optimized for the ion
selectivity of nanofiltration.

261

3.3 Ion Transport Coupling attenuates under Low Solution pH

The literature contains copious evidence of ionic coupling in transmembrane transport, ^{2,44,60,74,75} although prior studies focused largely on simple pore geometries and dual cation solutions. Here, the effects of transport coupling on ionic fluxes were evaluated using multicomponent salt-lake brines, as illustrated in Figure 2C and D.

Across all three tested compositions at pH 7 (see text C.2 in SI), our model suggested that 266 Cl⁻ ion transport was largely diffusive, as depicted in Figure 2C.²⁹ This was a consequence 267 of the stronger Donnan exclusion effects on Cl^- at pH 7, lowering the effective partition co-268 efficient, and establishing a relatively large concentration gradient across the active layer, as 269 depicted in Supp. Table 12, and Supp. Figure 8. Under steady-state conditions, consequently, 270 the large ionic flux of Cl⁻ resulted in charge anisotropy, inducing a reverse electric potential 271 across the active layer.^{74,76} The induced electric field, conversely, accelerated the transport of 272 monovalent cations (Li⁺, Na⁺, K⁺) to preserve electroneutrality, coupling the two transport 273 rates by electromigration, as illustrated in Figure 2C. This deduction corroborates with prior 274 molecular dynamics simulations^{69,74} and multi-ionic experiments.^{27,50} However, the multiva-275 lent ions (Mg^{2+}, Ca^{2+}) were inhibited by its lower partitioning rates, causing the ionic fluxes 276 to be one order of magnitude lower than the monovalent ions. Consequently, as informed by 277 our computational models in Figure 2C, we inferred that the influence of electromigrative 278 coupling was less prominent for multivalent cations. 279

Under acidic conditions at pH 2, our experiments suggested that the water permeability coefficient decreased by approximately 40 %. Recent experiments attributed the permeability change to a physical restructuring of the polyamide matrix.⁷⁷ Assuming a 20 nm thick polyamide layer, likewise, our model suggested a reduction in the porosity-tortuosity factor by 23 %. Consequent of the denser active layer, as illustrated in Figure 2D, the absolute flux
of each ion fell by 45 % from weakening convective and electromigrative coupling. Therefore,
our model suggests that the ionic transport is largely driven by diffusion under low pH.

287

3.4 Membrane Selectivity lowers with Multicomponent Brine

Figure 3A illustrates the trade-off between the water permeability coefficient and the Li^+/Mg^{2+} 288 selectivity, comprising data on commercial and lab-scale membranes functionalized with 289 charge centers.^{34–37,40–42} To be consistent with prior work, dual cation feed solutions con-290 taining 1000 ppm LiCl and 2000 ppm $MgCl_2$ were used to determine the separation factors in 291 Figure 3A. Following the protonation of carboxyl and amino moieties within the polyamide 292 matrix under acidic environments, our experiments revealed that the Li⁺/Mg²⁺ selectivity 293 of NF 270 can be significantly enhanced, from 2.15 to 39.1. As a result of the Donnan exclu-294 sion enhancements, the monovalent selectivity of NF 270 approached the performance of the 295 functionalized membranes on the trade-off plot.^{33,34,37,78} These findings revealed that a syn-296 ergy between the solution pH and membrane functionalization may be derived, offering an 297 additional sensitive optimization parameter for the monovalent selectivity of next-generation 298 NF membranes. 299

Figure 3B – F illustrate the effects of feed salinity and solution pH on the monova-300 lent selectivity of nanofiltration, based on experiments with three multicomponent salt-lake 301 brines.^{18,19,45} The separation factors are calculated based on the largest experimental water 302 flux, to simulate comparisons based on either their asymptotic ion rejections, or at the hy-303 draulic pressure limits of the membrane.^{20,28} Compared to the Chilean and Chinese salt-lake 304 brines, we found that the derived Li^+/Mg^{2+} separation factors were overestimated by 40 % 305 when the dual cation solutions from prior work in Figure 3A were used; these results high-306 lighted the strong influence of multicomponent effects on the apparent monovalent selectivity 307 of NF, underscoring the need to characterize membranes with representative compositions 308 of the respective brines. 309

Figure 3: A) Robeson plot between the separation factor and water permeability coefficient of nanofiltration membranes, at the best performing solution pH, as reported in the literature.^{34-37,40-42} Here, NF 270 was evaluated using LiCl-MgCl₂ solutions as for the other membranes. Dashed lines represent constant values of $\alpha_{i/j}A_w$, a common metric to quantify the recovery potential of Li relative to Mg.³⁴ The Li selectivity of NF 270 membranes improves significantly at low solution pH levels (within recommended operating range). Selectivity performance of NF 270 for $\text{Cl}^{-}/\text{SO}_{4}^{2-}$ separation, for inorganic brines from **B**) Salar de Atacama, Chile, and C) Qaidam Lake, China. For all tested compositions, the Cl^{-}/SO_{4}^{2-} separation factor remains largely invariant to TDS changes at pH 2, while exhibiting a decreasing trend with increasing TDS at pH 7. Experimental measurements of the selectivity performance of NF 270 for Li⁺/Mg²⁺ separation, as a function of the solution pH and total dissolved solids (TDS) concentration, for inorganic brines from **D**) Salton Sea, United States, E) Salar de Atacama, Chile and F) Qaidam Lake, China. For all tested compositions, the effect of solution pH on the selectivity of Li^+/Mg^{2+} separations are opposite to the trends for the anionic separation. Separation factors are calculated at the largest experimented water flux, to simulate comparisons based on either their asymptotic ion rejections, or near the respective hydraulic pressure limits of the membrane.^{20,28} The dotted lines in (B) - (F) denote the separation factors obtained with LiCl-MgCl₂ solutions, following conventions in the literature. ${}^{34-37,40-42}$

310	Further, below the IEP (pH 2), influenced by a positive polyamide charge density, we ob-
311	served that the Li^+/Mg^{2+} separation factors decreased with increasing TDS concentrations;
312	the Li^+/Mg^{2+} separation factors attenuated from 27.2 and 35.7 at 10 g L ⁻¹ , to 6.32 and 5.81
313	at 250 g L^{-1} , for the Chilean and Chinese brines, respectively. The separation factors of the
314	cations, however, remained largely invariant with increasing TDS concentrations when the
315	pH is above the IEP. Conversely, the opposite relationship between $\rm Cl^-/SO_4^{2-}$ separation
316	factors and TDS concentration was observed, for both pH. The precise mechanism for the
317	decline in monovalent selectivity at high salinities remains unclear for NF. However, coupled
318	with the measured reductions in ion rejection (see Supp. Table $5 - 7$ in SI), the results sug-
319	gested that the weakening of dielectric and Donnan exclusions were plausible factors for the
320	observed decline.

In recent publications, the average hydration number of ions was observed to decrease 321 in nanoscale channels.^{12,25,30} Within the membrane pores, ions partially dehydrate from the 322 nanoscale confinement, lowering the dielectric constant and presenting an energy barrier for 323 ion transport.² At higher ionic salinities, however, stable ion-pairs form between oppositely-324 charged ions, reducing the effective hydration numbers in the solution, as described in Fig-325 ure 2E.⁵⁸ It is likely that the ion-pair formation narrowed the energy differences for ion 326 dehydration between monovalent and divalent cations, weakening and minimizing the differ-327 ences in dielectric exclusion.⁶⁷ Further, at higher salinities, the electric double layer on the 328 channel walls is thinner, spanning less of the channel cross-section and lowering the effective 329 activation energies for ion conductance from charge screening.^{15,68} This was accompanied by 330 an attenuation of the surface charge density, as suggested by zeta potential measurements 331 in Supp. Figure 6. The high salinities typical of salt-lake brine suppressed charge-exclusion 332 effects across the solution-membrane interface, thereby elevating the permeability of multi-333 valent ions and lowering the net monovalent selectivity. 334

Figure 4: Schematic diagrams illustrating nanofiltration transport coupling with dual cation feed solutions. Here, feed solutions are dual cation if it contains only two cation species $(Li^+ \text{ and } Mg^{2+})$, and are multicomponent if it consists of more than two cation species. A) Nanofiltration experiments with Li⁺-Mg²⁺-Cl⁻ (LM-C) brine. The high permeability of Cl⁻ ions entrains additional cations to permeate through the active layer to maintain electroneutrality. Here, the higher effective partition coefficient of Li⁺ causes it to permeate selectively over Mg. B) Nanofiltration experiments with Li⁺–Mg²⁺–SO₄²⁻ (LM-S) brine. Here, the high rejection of SO_4^{2-} ions reduce the effective permeation of Li^+ ions to maintain electroneutrality of the solutions. \mathbf{C}) Plot of the error in species rejection against the transmembrane water flux. Simulated brine that mimics both the cation and anion ratios (green lines and markers) register rejection errors of up to 4% for both Li⁺ and Mg²⁺, while simplified brines with only one anion, Cl^- (purple) or SO_4^{2-} (red), register rejection errors of up to 80 %. **D**) Plot of the separation factor of the simulated brine against that of the actual multicomponent salt-lake brine. The upward, downward, leftward and rightward markers correspond to transmembrane water fluxes of 5.0, 10.0, 15.0 and 20.0 $\mu m s^{-1}$, respectively. Comparisons are made between feed solutions with equal ionic molarity and transmembrane water flux.

335 3.5 Anionic Composition impacts Apparent Monovalent Selectivity

In the preceding sections, our results indicated that the kinetics of cation and anion transport are coupled. In the literature, however, dual cation feed solutions were frequently used to characterize new membranes.^{34–37,40–42} Here, we analyzed the impact of solution simplifications on the observed ion rejections and $\text{Li}^+/\text{Mg}^{2+}$ separation factors.

Rejection differences between the dual cation and multicomponent brines for Li⁺ and Mg²⁺ at pH 7 are presented in Figure 4C. Solutions with simplified anionic compositions, namely LM-C and LM-S brines, registered rejection errors up to 80 and 25 % for Li⁺ and Mg²⁺, respectively. When the Cl^{-}/SO_{4}^{2-} molar ratio was accurately replicated with the LM-CS brine, we observed that the absolute errors for Li⁺ and Mg²⁺ fell under 4 % for both ions. Similar behavior under acidic conditions was observed in Supp. Figure 10 (see text C.3 in SI).

In the absence of SO_4^{2-} ions in LM-C experiments, the total anionic flux was overestimated because of the high diffusive and partitioning rates of Cl⁻ ions (see Supp. Table 12 in SI). An amplified electric potential than that with the multicomponent brine was induced, increasing the transmembrane cationic flux. In Figure 4A, to perserve electroneutrality, more Li⁺ was preferentially transported over Mg²⁺ due to its higher partition coefficient, magnifying its apparent permeance.

³⁵³ Conversely, in the absence of Cl^- ions with LM-S experiments, the net anionic flux fell ³⁵⁴ by 80 % approximately due to the poor SO_4^{2-} partitioning. In Figure 4B, Li⁺ and Mg²⁺ ³⁵⁵ rejections increased proportionally to ensure permeate solution electroneutrality, accounting ³⁵⁶ for the rejection differences in Figure 4C.

In Figure 4D, the rejection errors were propagated to assess its implications on the apparent separation factors for Li^+/Mg^{2+} . We found that the separation factor was consistently overestimated by up to 40 % for both pH, when feed solutions with simplified anionic compositions were used. Conversely, the separation factor errors were consistently under 15 % when the Cl^{-}/SO_{4}^{2-} molar ratio was accurately replicated in the feed solution. These results revealed potential causalities between the cation-anion transport coupling and the apparent permselectivity. To accurately assess the selectivity for cation separations, membranes should be characterized using solutions with representative anionic compositions, and vice versa.

365 4 Implications

Membrane processes are key unit operations in resource recovery applications, providing sus-366 tainable and cost-effective methods to separate and concentrate lithium from salt-lake brine. 367 However, the impact on selectivity from the high feed salinity and low solution pH typical 368 of post-treated salt-lake brine remains unclear. In this work, nanofiltration experiments are 369 conducted at five feed salinities and two pH levels, using synthetic brine solutions based on 370 the actual aqueous compositions of three salt-lakes. In total, over 750 original ion rejection 371 measurements are systematically recorded, and the data is used to calibrate a semi-empirical 372 pore-flow model to elucidate transport and selectivity mechanisms. 373

Our experiments show that the Li^+/Mg^{2+} selectivity of polyamide membranes is en-374 hanced by approximately 13 times when acid pre-treated feed solutions are used. Our models 375 attribute this phenomenon to changes in the ion partitioning behavior, as a result of the am-376 plified Donnan potential from carboxyl group protonation. With multicomponent solutions, 377 the Li⁺/Mg²⁺ selectivity decreases by ~ 43 % as a result of competition from other mobile 378 monovalent ions; these effects are amplified under higher feed salinities due to a combination 379 of ion-pair formation and the narrowing of the overlap in the electric double layers, leading 380 to leakage of co- and multivalent ions. 381

Further, the transport kinetics between monovalent cations and anions appear to be coupled by the requirement of electroneutrality in the permeate solution. The degree of coupling is suggested to be weaker under low solution pH, as a result of porosity reductions in the polyamide layer from physical restructuring. In the literature, typically, feed solutions with simplified anionic compositions have been used to evaluate $\text{Li}^+/\text{Mg}^{2+}$ selectivity. Our measurements show that these simplifications result in an overestimation of ion rejection by up to 80 %. Consequently, the apparent $\text{Li}^+/\text{Mg}^{2+}$ separation factors in the literature have consistently been overestimated by up to 40 %.

In essence, our experimental results underscore the strong influence of salinity and multicomponent effects on the apparent monovalent selectivity of NF, arising from transport coupling and weakening of exclusion mechanisms. To better represent the selectivity of NF membranes in resource recovery applications, it is crucial that feed solutions with representative anionic compositions and salinities be used.

395

397

398

399

400

Supporting Information Available

³⁹⁶ The following files are available free of charge in the Supporting Information.

- Original experimental data for 750 nanofiltration ion rejection and water flux measurements with dual cation and multicomponent brine.
- Model description and numerical methods for nanofiltration transport model.
- Analysis of solute partitioning, transport phenomena and ionic coupling effects.

401 Acknowledgement

This work is supported as part of the American-Made Challenges, Geothermal Lithium Extraction Prize, by the US Department of Energy. The authors acknowledge additional financial support from the MathWorks Fellowship, Abdul Latif Jameel Water and Food Systems Laboratory Fellowship, NUS Development Grant and MIT Energy Initiative. The authors are grateful to Akshay Deshmukh and Samuel Heath for their technical feedback, to Ying Jie Quek for her feedback in graphic design, to Omar Labban for the neutral solutes experimental data, and to Pierre Lermusiaux for his expert advice in numerical analysis.

409 Author Contributions

Z.H. Foo performed the experiments, programmed the numerical models, and conducted
the technical analysis. D. Rehman assisted with the numerical modeling. A.T. Bouma and
S. Monsalvo assisted with the experiments. J.H. Lienhard conducted the technical analysis
and supervised the project. The manuscript was prepared and reviewed by all authors.

414 Declaration of Competing Interest

The authors declare no competing financial or personal conflicts of interest that would have appeared to influence the content of this paper.

417 References

(1) Alkhadra, M. A.; Su, X.; Suss, M. E.; Tian, H.; Guyes, E. N.; Shocron, A. N.; Conforti, K. M.; Pedro De Souza, J.; Kim, N.; Tedesco, M.; Khoiruddin, K.; Wenten, G.;
Santiago, J. G.; Hatton, T. A.; Bazant, M. Z. Electrochemical Methods for Water Purification, Ion Separations, and Energy Conversion. *Chemical Reviews* 2022, *122*, 13547–13635.

(2) Epsztein, R.; DuChanois, R. M.; Ritt, C. L.; Noy, A.; Elimelech, M. Towards singlespecies selectivity of membranes with subnanometre pores. *Nature Nanotechnology* **2020**, 15, 426–436.

- (3) Kumar, A.; Kim, Y.; Su, X.; Fukuda, H.; Naidu, G.; Du, F.; Vigneswaran, S.; Drioli, E.;
 Hatton, T. A.; Lienhard, J. H. Advances and challenges in metal ion separation from
 water. *Trends in Chemistry* 2021, *3*, 819–831.
- (4) Khalil, A.; Mohammed, S.; Hashaikeh, R.; Hilal, N. Lithium recovery from brine: Recent developments and challenges. *Desalination* 2022, 528, 115611.

431	(5)	Kumar, A.; Naidu, G.; Fukuda, H.; Du, F.; Vigneswaran, S.; Drioli, E.; Lienhard, J. H.
432		Metals Recovery from Seawater Desalination Brines: Technologies, Opportunities, and
433		Challenges. ACS Sustainable Chemistry & Engineering 2021, 9, 7704–7712.
434	(6)	Wu, L.; Zhang, C.; Kim, S.; Hatton, T. A.; Mo, H.; David Waite, T. Lithium recovery
435		using electrochemical technologies: Advances and challenges. Water Research 2022,
436		<i>221</i> , 118822.
437	(7)	Meshram, P.; Pandey, B. D.; Mankhand, T. R. Extraction of lithium from primary and
438		secondary sources by pre-treatment, leaching and separation: A comprehensive review.
439		Hydrometallurgy 2014 , 150, 192–208.
440	(8)	Yang, S.; Zhang, F.; Ding, H.; He, P.; Zhou, H. Lithium Metal Extraction from Seawa-
441		ter. Joule 2018 , 2, 1648–1651.
442	(9)	Foo, Z. H.; Stetson, C.; Dach, E.; Deshmukh, A.; Lee, H.; Menon, A.; Prasher, R.;
443		Lienhard, J. H.; Wilson, A. D. Solvent-driven aqueous separations for hypersaline brine
444		concentration and resource recovery. Trends in Chemistry 2022, 4, 1078–1093.
445	(10)	Boo, C.; Billinge, I. H.; Chen, X.; Shah, K. M.; Yip, N. Y. Zero Liquid Discharge of
446		Ultrahigh-Salinity Brines with Temperature Swing Solvent Extraction. Environmental
447		Science and Technology 2020, 54, 9124–9131.
448	(11)	Li, H.; Wang, Y.; Li, T.; Ren, Xk.; Wang, J.; Wang, Z.; Zhao, S. Nanofiltration
449		Membrane with Crown Ether as Exclusive Li+ Transport Channels Achieving Efficient
450		Extraction of Lithium from Salt Lake Brine. Chemical Engineering Journal 2022, 438,
451		135658.
452	(12)	Pavluchkov, V.; Shefer, I.; Peer-Haim, O.; Blotevogel, J.; Epsztein, R. Indications of ion
453		dehydration in diffusion-only and pressure-driven nanofiltration. Journal of Membrane
454		Science 2022 , 648, 120358.

455	(13)	Qiu, Y.; Ruan, H.; Tang, C.; Yao, L.; Shen, J.; Sotto, A. Study on recovering high-
456		concentration lithium salt from lithium-containing wastewater using a hybrid reverse
457		osmosis (RO)-electrodialysis (ED) process. ACS Sustainable Chemistry & Engineering
458		2019 , 7, 13481–13490.
459	(14)	Chen, Q. B.; Ji, Z. Y.; Liu, J.; Zhao, Y. Y.; Wang, S. Z.; Yuan, J. S. Development of
460		recovering lithium from brines by selective-electrodialysis: Effect of coexisting cations
461		on the migration of lithium. Journal of Membrane Science 2018 , 548, 408–420.
462	(15)	Fan, H.; Yip, N. Y. Elucidating conductivity-permselectivity tradeoffs in electrodialysis
463		and reverse electrodialysis by structure-property analysis of ion-exchange membranes.
464		Journal of Membrane Science 2019, 573, 668–681.
465	(16)	Wang, H.; Jones, L. O.; Hwang, I.; Allen, M. J.; Tao, D.; Lynch, V. M.; Freeman, B. D.;
466		Khashab, N. M.; Schatz, G. C.; Page, Z. A.; Sessler, J. L. Selective Separation of
467		Lithium Chloride by Organogels Containing Strapped Calix[4]pyrroles. Journal of the
468		American Chemical Society 2021 , 143, 20403–20410.
469	(17)	Sachar, H. S.; Zofchak, E. S.; Marioni, N.; Zhang, Z.; Kadulkar, S.; Duncan, T. J.;
470		Freeman, B. D.; Ganesan, V. Impact of Cation-Ligand Interactions on the Permselec-
471		tivity of Ligand-Functionalized Polymer Membranes in Single and Mixed Salt Systems.
472		Macromolecules 2022 , 55, 4821–4831.
473	(18)	Park, S. H.; Kim, J. H.; Moon, S. J.; Jung, J. T.; Wang, H. H.; Ali, A.; Quist-
474		Jensen, C. A.; Macedonio, F.; Drioli, E.; Lee, Y. M. Lithium recovery from artificial
475		brine using energy-efficient membrane distillation and nanofiltration. Journal of Mem-
476		brane Science 2020 , 598, 117683.
477	(19)	Nie, X. Y.; Sun, S. Y.; Sun, Z.; Song, X.; Yu, J. G. Ion-fractionation of lithium ions from
478		magnesium ions by electrodialysis using monovalent selective ion-exchange membranes.
479		Desalination 2017 , 403, 128–135.

480	(20)	Wang, R.; Lin, S. Pore model for nanofiltration: History, theoretical framework, key predictions limitations and prospects. <i>Journal of Membrane Science</i> 2021 , 620
481	, .	predictions, minitations, and prospects. Journal of Memorane Science 2021, 020.
482	(21)	Luo, J.; Wan, Y. Effects of pH and salt on nanofiltration-a critical review. <i>Journal of</i>
483		Membrane Science 2013 , 438, 18–28.
484	(22)	Zhao, Y.; Tong, T.; Wang, X.; Lin, S.; Reid, E. M.; Chen, Y. Differentiating Solutes
485		with Precise Nanofiltration for Next Generation Environmental Separations: A Review.
486		Environmental Science and Technology 2021 , 55, 1359–1376.
487	(23)	Shefer, I.; Lopez, K.; Straub, A. P.; Epsztein, R. Applying Transition-State Theory to
488		Explore Transport and Selectivity in Salt-Rejecting Membranes: A Critical Review.
489		Environmental Science and Technology 2022, 14, 11.
490	(24)	Wang, X.; Fang, D.; Hsiao, B. S.; Chu, B. Nanofiltration membranes based on thin-film
491		nanofibrous composites. Journal of Membrane Science 2014, 469, 188–197.
492	(25)	Ritt, C. L.; Werber, J. R.; Wang, M.; Yang, Z.; Zhao, Y.; Kulik, H. J.; Elimelech, M.
493		Ionization behavior of nanoporous polyamide membranes. Proceedings of the National
494		Academy of Sciences of the United States of America 2020, 117, 30191–30200.
495	(26)	Heiranian, M.; Duchanois, R. M.; Ritt, C. L.; Violet, C.; Elimelech, M. Molecular Sim-
496		ulations to Elucidate Transport Phenomena in Polymeric Membranes. Environmental
497		Science and Technology 2022, 56, 3313–3323.
498	(27)	Epsztein, R.; Shaulsky, E.; Dizge, N.; Warsinger, D. M.; Elimelech, M. Role of Ionic
499		Charge Density in Donnan Exclusion of Monovalent Anions by Nanofiltration. Envi-
500		ronmental Science and Technology 2018, 52, 4108–4116.
501	(28)	Labban, O.; Liu, C.; Chong, T. H.; Lienhard, J. H. Fundamentals of low-pressure
502		nanofiltration: Membrane characterization, modeling, and understanding the multi-
503		ionic interactions in water softening. Journal of Membrane Science 2017, 521, 18–32.

504	(29)	Yaroshchuk, A.; Bruening, M. L.; Zholkovskiy, E. Modelling nanofiltration of electrolyte
505		solutions. Advances in Colloid and Interface Science 2019 , 268, 39–63.
506	(30)	Lu, C.; Hu, C.; Ritt, C. L.; Hua, X.; Sun, J.; Xia, H.; Liu, Y.; Li, D. W.; Ma, B.;
507		Elimelech, M.; Qu, J. In Situ Characterization of Dehydration during Ion Transport in
508		Polymeric Nanochannels. Journal of the American Chemical Society 2021, 143, 14242–
509		14252.
510	(31)	Stolov, M.; Freger, V. Membrane Charge Weakly Affects Ion Transport in Reverse
511		Osmosis. Environmental Science & Technology Letters 2020, 7, 440–445.
512	(32)	Aydogan Gokturk, P.; Sujanani, R.; Qian, J.; Wang, Y.; Katz, L. E.; Freeman, B. D.;
513		Crumlin, E. J. The Donnan potential revealed. <i>Nature Communications</i> 2022 , <i>13</i> , 1–7.
514	(33)	Léniz-Pizarro, F.; Liu, C.; Colburn, A.; Escobar, I. C.; Bhattacharyya, D. Positively
515		charged nanofiltration membrane synthesis, transport models, and lanthanides separa-
516		tion. Journal of Membrane Science 2021 , 620, 118973.
517	(34)	Wang, L.; Rehman, D.; Sun, P. F.; Deshmukh, A.; Zhang, L.; Han, Q.; Yang, Z.;
518		Wang, Z.; Park, H. D.; Lienhard, J. H.; Tang, C. Y. Novel Positively Charged Metal-
519		Coordinated Nanofiltration Membrane for Lithium Recovery. ACS Applied Materials
520		and Interfaces 2021 , 13, 16906–16915.
521	(35)	Gu, T.; Zhang, R.; Zhang, S.; Shi, B.; Zhao, J.; Wang, Z.; Long, M.; Wang, G.; Qiu, T.;
522		Jiang, Z. Quaternary ammonium engineered polyamide membrane with high positive
523		charge density for efficient Li $+$ /Mg 2+ separation. Journal of Membrane Science
524		2022 , <i>659</i> , 120802.
525	(36)	Guo, C.; Li, N.; Qian, X.; Shi, J.; Jing, M.; Teng, K.; Xu, Z. Ultra-thin double Janus
526		nanofiltration membrane for separation of Li $+$ and Mg $2+$: "Drag" effect from
527		carboxyl-containing negative interlayer-thin Double Janus NF membrane Hydropho-

529

bic/hydrophilic Positive/negative charge Separation of Li + and Mg 2+. Separation and Purification Technology **2020**, 230, 115567.

- (37) Zhang, H. Z.; Xu, Z. L.; Ding, H.; Tang, Y. J. Positively charged capillary nanofiltration
 membrane with high rejection for Mg2 + and Ca2 + and good separation for Mg2 + and Li +. Desalination 2017, 420, 158–166.
- (38) Razmjou, A.; Asadnia, M.; Hosseini, E.; Habibnejad Korayem, A.; Chen, V. Design
 principles of ion selective nanostructured membranes for the extraction of lithium ions.
 Nature Communications 2019, 10, 1–15.
- (39) Sujanani, R.; Landsman, M. R.; Jiao, S.; Moon, J. D.; Shell, M. S.; Lawler, D. F.;
 Katz, L. E.; Freeman, B. D. Designing Solute-Tailored Selectivity in Membranes: Perspectives for Water Reuse and Resource Recovery. ACS Macro Letters 2020, 9, 1709–
 1717.
- (40) Košutić, K.; Dolar, D.; Kunst, B. On experimental parameters characterizing the reverse osmosis and nanofiltration membranes' active layer. *Journal of Membrane Science* 2006, 282, 109–114.
- (41) Xu, P.; Wang, W.; Qian, X.; Wang, H.; Guo, C.; Li, N.; Xu, Z.; Teng, K.; Wang, Z.
 Positive charged PEI-TMC composite nanofiltration membrane for separation of Li+
 and Mg2+ from brine with high Mg2+/Li+ ratio. *Desalination* 2019, 449, 57–68.
- (42) Li, Y.; Wang, S.; Wu, W.; Yu, H.; Che, R.; Kang, G.; Cao, Y. Fabrication of positively
 charged nanofiltration membrane with uniform charge distribution by reversed interfacial polymerization for Mg 2+ / Li + separation. *Journal of Membrane Science* 2022,
 659, 120809.
- (43) Pramanik, B. K.; Asif, M. B.; Roychand, R.; Shu, L.; Jegatheesan, V.; Bhuiyan, M.;
 Hai, F. I. Lithium recovery from salt-lake brine: Impact of competing cations, pretreatment and preconcentration. *Chemosphere* 2020, 260.

553	(44)	Zhai, X.; Wang, YL.; Dai, R.; Li, X.; Wang, Z. Roles of AnionCation Coupling Trans-
554		port and Dehydration-Induced IonMembrane Interaction in Precise Separation of Ions
555		by Nanofiltration Membranes. Environmental Science and Technology 2022, 56, 14069–
556		14079.
557	(45)	Williams, A. E.; McKibben, M. A. A brine interface in the Salton Sea Geothermal
558		System, California: Fluid geochemical and isotopic characteristics. Geochimica et Cos-
559		mochimica Acta 1989 , 53, 1905–1920.
560	(46)	Goon, G. S.; Labban, O.; Foo, Z. H.; Zhao, X.; Lienhard, J. H. Deformation-induced
561		cleaning of organically fouled membranes: Fundamentals and techno-economic assess-
562		ment for spiral-wound membranes. Journal of Membrane Science 2021 , 626, 119169.
563	(47)	Geraldes, V.; Brites Alves, A. M. Computer program for simulation of mass transport
564		in nanofiltration membranes. Journal of Membrane Science 2008, 321, 172–182.
565	(48)	Liang, Y.; Zhu, Y.; Liu, C.; Lee, K. R.; Hung, W. S.; Wang, Z.; Li, Y.; Elimelech, M.;
566		Jin, J.; Lin, S. Polyamide nanofiltration membrane with highly uniform sub-nanometre
567		pores for sub-1 Å precision separation. <i>Nature Communications</i> 2020 , <i>11</i> , 2015.
568	(49)	Labban, O.; Liu, C.; Chong, T. H.; Lienhard, J. H. Relating transport modeling to
569		nanofiltration membrane fabrication: Navigating the permeability-selectivity trade-off
570		in desalination pretreatment. Journal of Membrane Science 2018 , 554, 26–38.
571	(50)	Yaroshchuk, A.; Bruening, M. L.; Licón Bernal, E. E. Solution-Diffusion-Electro-
572		Migration model and its uses for analysis of nanofiltration, pressure-retarded osmosis
573		and forward osmosis in multi-ionic solutions. Journal of Membrane Science 2013, 447,
574		463–476.
575	(51)	Duignan, T. T.; Zhao, X. S. The Born model can accurately describe electrostatic ion

29

solvation. Physical Chemistry Chemical Physics 2020, 22, 25126–25135.

577	(52)	Mohammad, A. W.; Hilal, N.; Al-Zoubi, H.; Darwish, N. A. Prediction of permeate
578		fluxes and rejections of highly concentrated salts in nanofiltration membranes. Journal
579		of Membrane Science 2007 , 289, 40–50.
580	(53)	Taylor, R.; Krishna, R. Multicomponent mass transfer; Wiley, 1993; p 579.
581	(54)	Oren, Y. S.; Freger, V.; Nir, O. New compact expressions for concentration-polarization
582		of trace-ions in pressure-driven membrane processes. Journal of Membrane Science Let-
583		<i>ters</i> 2021 , <i>1</i> , 100003.
584	(55)	Tow, E. W.; Lienhard, J. H. Quantifying osmotic membrane fouling to enable compar-
585		isons across diverse processes. Journal of Membrane Science 2016, 511, 92–107.
586	(56)	Rehman, D.; Lienhard, J. H. Global optimization for accurate and efficient parameter
587		estimation in nanofiltration. Journal of Membrane Science Letters 2022 , 100034.
588	(57)	Micari, M.; Diamantidou, D.; Heijman, B.; Moser, M.; Haidari, A.; Spanjers, H.;
589		Bertsch, V. Experimental and theoretical characterization of commercial nanofiltration
590		membranes for the treatment of ion exchange spent regenerant. Journal of Membrane
591		Science 2020 , 606, 118117.
592	(58)	Marcus, Y.; Hefter, G. Ion pairing. Chemical Reviews 2006, 106, 4585–4621.
593	(59)	Wilson, A. D.; Lee, H.; Stetson, C. Mass action model of solution activity via speciation
594		by solvation and ion pairing equilibria. Communications Chemistry 2021, 4, 1–8.
595	(60)	Foo, Z. H.; Rehman, D.; Coombs, O. Z.; Deshmukh, A.; Lienhard, J. H. Multicompo-
596		nent Fickian solution-diffusion model for osmotic transport through membranes. Jour-
597		nal of Membrane Science 2021 , 640, 119819.
598	(61)	Lu, X.; Boo, C.; Ma, J.; Elimelech, M. Bidirectional diffusion of ammonium and sodium
599		cations in forward osmosis: Role of membrane active layer surface chemistry and charge.
600		Environmental Science and Technology 2014, 48, 14369–14376.

- (62) Oatley, D. L.; Llenas, L.; Pérez, R.; Williams, P. M.; Martínez-Lladó, X.; Rovira, M.
 Review of the dielectric properties of nanofiltration membranes and verification of the single oriented layer approximation. Advances in Colloid and Interface Science 2012, 173, 1–11.
- (63) Lin, Y. L.; Chiang, P. C.; Chang, E. E. Removal of small trihalomethane precursors
 from aqueous solution by nanofiltration. *Journal of Hazardous Materials* 2007, 146,
 20–29.
- (64) Dalwani, M.; Benes, N. E.; Bargeman, G.; Stamatialis, D.; Wessling, M. Effect of pH on
 the performance of polyamide/polyacrylonitrile based thin film composite membranes.
 Journal of Membrane Science 2011, 372, 228–238.
- (65) Sutariya, B.; Karan, S. A realistic approach for determining the pore size distribution
 of nanofiltration membranes. Separation and Purification Technology 2022, 293, 1383–
 5866.
- (66) Wang, J.; Armstrong, M. D.; Grzebyk, K.; Vickers, R.; Coronell, O. Effect of Feed Water
 pH on the Partitioning of Alkali Metal Salts from Aqueous Phase into the Polyamide
 Active Layers of Reverse Osmosis Membranes. *Environmental Science and Technology*2021, 55, 3250–3259.
- (67) Marcus, Y. The solvation number of ions obtained from their entropies of solvation.
 Journal of Solution Chemistry 1986, 15, 291–306.
- (68) Ritt, C. L.; Pedro De Souza, J.; Barsukov, M. G.; Yosinski, S.; Bazant, M. Z.;
 Reed, M. A.; Elimelech, M. Thermodynamics of Charge Regulation during Ion Transport through Silica Nanochannels. ACS Nano 2022, 16, 15249–15260.
- (69) Liu, S.; Ganti-Agrawal, S.; Keten, S.; Lueptow, R. M. Molecular insights into charged
 nanofiltration membranes: Structure, water transport, and water diffusion. *Journal of Membrane Science* 2022, 644, 120057.

626	(70)	Zhang, H.; He, Q.; Luo, J.; Wan, Y.; Darling, S. B. Sharpening Nanofiltration: Strate-
627		gies for Enhanced Membrane Selectivity. ACS Applied Materials and Interfaces 2020,
628		12, 39948–39966.
629	(71)	Chan, E. P.; Frieberg, B. R.; Ito, K.; Tarver, J.; Tyagi, M.; Zhang, W.; Coughlin, E. B.;
630		Stafford, C. M.; Roy, A.; Rosenberg, S.; Soles, C. L. Insights into the Water Transport
631		Mechanism in Polymeric Membranes from Neutron Scattering. Macromolecules 2020,
632		<i>53</i> , 1443–1450.
633	(72)	Wilson, A. D.; Lee, H.; Stetson, C. Local stress within a granular molecular solvent
634		matrix, a mechanism for individual ion hydration. Journal of Molecular Liquids 2022,
635		119544.
636	(73)	Zhou, X.: Wang, Z.: Epsztein, R.: Zhan, C.: Li, W.: Fortner, J. D.: Pham, T. A.:
607	(10)	Kim I.H. Flimelech M. Intrapore energy barriers govern ion transport and selectivity
037		f deceliention membranes. <i>Colours Advances</i> 2020.
638		of desalination membranes. Science Advances 2020, 6.
639	(74)	Malmir, H.; Epsztein, R.; Elimelech, M.; Haji-Akbari, A. Induced Charge Anisotropy:
640		A Hidden Variable Affecting Ion Transport through Membranes. Matter 2020, 2, 735–
641		750.
642	(75)	Kingsbury, R. S.; Wang, J.; Coronell, O. Comparison of water and salt transport prop-
643		erties of ion exchange, reverse osmosis, and nanofiltration membranes for desalination
644		and energy applications. Journal of Membrane Science 2020, 604, 117998.
645	(76)	Pedro De Souza, J.: Chow, CM.: Karnik, B.: Bazant, M. Z. Nonlinear ion transport
045	(10)	mediated by induced change in ultrathin percentage membranes. <i>Deviced Devices</i> F
646		mediated by induced charge in ultratinin nanoporous memoranes. Physical Review E
647		2021 , <i>104</i> , 44802.
648	(77)	Ranjan Puhan, M.; Sutariya, B.; Karan, S. Revisiting the alkali hydrolysis of polyamide
649		nanofiltration membranes. Journal of Membrane Science 2022, 661, 120887.

650	(78) Ibrahim, Y.; Wadi, V. S.; Ouda, M.; Naddeo, V.; Banat, F.; Hasan, S. W. Highly
651	selective heavy metal ions membranes combining sulfonated polyethersulfone and self-
652	assembled manganese oxide nanosheets on positively functionalized graphene oxide
653	nanosheets. Chemical Engineering Journal 2022, 428, 131267.

⁶⁵⁴ TOC Graphic

1	Supporting Information
2	Lithium Concentration from Salt-lake Brine
3	by Donnan-enhanced Nanofiltration
4	Zi Hao Foo, ^{†,‡} Danyal Rehman, ^{†,‡} Andrew T. Bouma, [†] Sebastian Monsalvo, [†] and
5	John H. Lienhard* ^{,†}
6	†Department of Mechanical Engineering, Massachusetts Institute of Technology,
7	Cambridge, Massachusetts 02139, United States
8	‡Center for Computational Science and Engineering, Massachusetts Institute of
9	Technology, Cambridge, Massachusetts 02139, United States
	E-mail: lienhard@mit.edu
10	

Number of Pages: 40. Number of Figures: 10. Number of Tables: 12.
12 Contents

13	Α	Exp	erimental Methods	$\mathbf{S8}$
14		A.1	Volume Calibration	$\mathbf{S8}$
15		A.2	Multicomponent Salt-lake Brine	S9
16		A.3	Simplified Synthetic Brine	S15
17	В	Con	nputational Methods	S17
18		B.1	Model Description	S17
19		B.2	Numerical Methods	S21
20		B.3	Experimental Comparisons	S22
		_		
21	\mathbf{C}	Res	ults & Analysis	S26
22		C.1	Solute Partitioning	S26
23		C.2	Transport Mechanics	S30
24		C.3	Composition Simplifications	S34

List of Figures

1	A) Plot of the final feed NaCl concentration against the initial feed NaCl	
	concentration, following dilution of the feed from the water in the flow loops	
	of the nanofiltration experimental apparatus. \mathbf{B}) Plot of the nominal species	
	concentrations (by design) against the actual species concentrations (from	
	ICP-OES). The maximum deviation for the concentration of the species is	
	18.5 %.	$\mathbf{S8}$
2	Selectivity performance of NF 270 for Li-Mg separation, as a function of	
	the solution pH and total dissolved solids (TDS) concentration, for inorganic	
	brines from \mathbf{A}) Salton Sea, United States, \mathbf{B}) Salar de Atacama, Chile and	
	C) Qaidam Lake, China. Selectivity performance of NF 270 for Cl ⁻ -SO ₄ ²⁻	
	separation, as a function of the solution pH and total dissolved solids (TDS)	
	concentration, for inorganic brines from $\mathbf{D})$ Salar de Atacama, Chile and $\mathbf{E})$	
	Qaidam Lake, China. For the cations, across all tested compositions, the	
	separation factor remains largely invariant to TDS changes at pH 7, while	
	exhibiting a decreasing trend with increasing TDS at pH 2. Vice versa, for	
	the anions, the separation factor remains largely invariant to TDS changes at	
	pH 2, while exhibiting a decreasing trend with increasing TDS at pH 7. This	
	trend illustrates the significance of leveraging the Donnan exclusion mecha-	
	nism, by using membranes with the same charge, to selectively separate ions	
	with the same charges.	S14
3	Model validation for the Donnan-steric pore model with dielectric exclusion,	
	using original experimental measurements and model parameters from \mathbf{A})	
	Micari et al., ¹ and B) Labban et al., ² respectively. \ldots	S22
	1 2 3	 A) Plot of the final feed NaCl concentration against the initial feed NaCl concentration, following dilution of the feed from the water in the flow loops of the nanofiltration experimental apparatus. B) Plot of the nominal species concentrations (by design) against the actual species concentrations (from ICP-OES). The maximum deviation for the concentration of the species is 18.5 %. 2 Selectivity performance of NF 270 for Li-Mg separation, as a function of the solution pH and total dissolved solids (TDS) concentration, for inorganic brines from A) Salton Sea, United States, B) Salar de Atacama, Chile and C) Qaidam Lake, China. Selectivity performance of NF 270 for Cl⁻-SO₄²⁻ separation, as a function of the solution pH and total dissolved solids (TDS) concentration, for inorganic brines from D) Salar de Atacama, Chile and E) Qaidam Lake, China. For the cations, across all tested compositions, the separation factor remains largely invariant to TDS changes at pH 7, while exhibiting a decreasing trend with increasing TDS at pH 2. Vice versa, for the anions, the separation factor remains largely invariant to TDS changes at pH 2, while exhibiting a decreasing trend with increasing TDS at pH 7. This trend illustrates the significance of leveraging the Donnan exclusion mechanism, by using membranes with the same charge, to selectively separate ions with the same charges. 3 Model validation for the Donnan-steric pore model with dielectric exclusion, using original experimental measurements and model parameters from A) Micari et al ¹ and B) Labban et al ² respectively

49	4	Plots of the species rejection against the transmembrane water flux from the	
50		nanofiltration experiments with \mathbf{A}) simulated LM-C brine at pH 7; \mathbf{B}) simu-	
51		lated LM-S brine at pH 7; $\mathbf{C})$ simulated LM-CS brine at pH 7; $\mathbf{D})$ simulated	
52		LM-C brine at pH 2; E) simulated LM-S brine at pH 2; F) simulated LM-	
53		CS brine at pH 2; Solid curves denote model predictions while solid markers	
54		denote experimental measurements.	S23
55	5	Plots of the species rejection against the transmembrane water flux from the	
56		nanofiltration experiments with \mathbf{A}) Salton sea brine at pH 7; \mathbf{B}) Salar de	
57		Atacama brine at pH 7; C) Qaidam lake brine at pH 7; D) Salton sea brine	
58		at pH 2; E) Salar de Atacama brine at pH 2; F) Qaidam lake brine at pH 2;	
59		Solid curves denote model predictions while solid markers denote experimental	
60		measurements.	S24
61	6	Plot of the zeta potential as a function of the feed solution pH. The isoelectric	
62		point was determined to be between the solution pH of 2.95 - 3.20, using	
63		0.1 - 1.0 M KCl solutions	S28
64	7	Schematic diagrams of the thermodynamic partition coefficients for the ionic	
65		species at a total dissolved solids concentration of 10 g/L. The relative contri-	
66		butions from steric, dielectric and Donnan exclusions, are outlined in blue, red	
67		and green, respectively. The sub-panels correspond to: \mathbf{A}) Salton sea brine	
68		at pH 7; B) Salton sea, United States brine at pH 2; C) Salar de Atacama,	
69		Chile brine at pH 7; C) Salar de Atacama, Chile brine at pH 2; E) Qaidam	
70		Lake, China brine at pH 7; F) Qaidam Lake, China brine at pH 2	S29
71	8	Plots of the normalized species concentrations (solid curves) and local electric	
72		potential (dotted curves) within the active layer of the nanofiltration mem-	
73		brane at A) pH 7, and B) pH 2, respectively. The species concentrations are	
74		normalized to the feed-side of the active layer, following species partitioning	
75		with the solution.	S31

76	9	Schematic diagrams of the transport mechanisms for the ionic species, at a	
77		total dissolved solids concentration of 10 g/L. The normalized diffusive, advectoral	
78		tive and electromigrative fluxes for the ionic species are represented in blue,	
79		red and green, respectively. The ionic fluxes of the three distinct mechanisms	
80		are normalized to the net species flux. The normalized fluxes, therefore, will	
81		sum to 1 (dotted lines). The sub-panels correspond to: \mathbf{A}) Salton sea brine	
82		at pH 7; B) Salton sea, United States brine at pH 2; C) Salar de Atacama,	
83		Chile brine at pH 7; C) Salar de Atacama, Chile brine at pH 2; E) Qaidam	
84		Lake, China brine at pH 7; F) Qaidam Lake, China brine at pH 2. \ldots	S33
85	10	Plot of the error in species rejection (defined as the difference between dual	
86		cation brines and multicomponent salt-lake brines at the same feed molarity)	
87		against the transmembrane water flux at \mathbf{A}) pH 7; and \mathbf{B}) pH 2, respectively.	
88		Simulated brine that mimics both the cation and anion ratios (green lines	
89		and markers) register maximum rejection error of 4 $\%$ and 15 $\%$ at pH 7 and	
90		2, respectively, for both Li ⁺ & Mg ²⁺ , while dual cation brines with only one	
91		anion, Cl^ (blue) or SO_4^{2-} (red), register rejection errors up to 80 $\%$ for both	
92		pH levels.	S34

List of Tables

94	1	Nominal ionic composition of feed solution based on brine from Salar de At-	
95		acama, 3 at total dissolved concentrations of 10, 30, 70, 150 and 250 g/L. $$.	S9
96	2	Nominal ionic composition of feed solution based on brine from Qaidam Lake, 4	
97		at total dissolved concentrations of 10, 30, 70, 150 and 250 g/L. \ldots . \ldots	S9
98	3	Nominal ionic composition of feed solution based on brine from Salton Sea, 5	
99		at total dissolved concentrations of 10, 30, 70, 150 and 250 g/L. \ldots . \ldots	S10
100	4	Selected wavelengths for spectroscopic analysis with ICP-OES	S10
101	5	Experimental measurements for NF 270 based on brine from Salar de Ata-	
102		cama, ³ at solution pH of 7 and 2, and total dissolved concentrations of 10, 30,	
103		70, 150 and 250 g/L	S11
104	6	Experimental measurements for NF 270 based on brine from Qaidam Lake, 4	
105		at solution pH of 7 and 2, and total dissolved concentrations of $10, 30, 70, 150$	
106		and 250 g/L	S12
107	7	Experimental measurements for NF 270 based on brine from Salton Sea, 5 at	
108		solution pH of 7 and 2, and total dissolved concentrations of 10, 30, 70, 150	
109		and 250 g/L	S13
110	8	Nominal ionic composition of dual cation feed solutions based on brine from	
111		Salar de Atacama, at a solution molarity of 0.35 M	S15
112	9	Experimental measurements for NF 270 based on dual cation brine at 0.35 M,	
113		at solution pH of 7 and 2	S16
114	10	Regressed model parameters for DSPM-DE from the respective experimental	
115		data	S23
116	11	Comparison between the limiting rejection of neutral solute between DPSM-	
117		DE and prior experimental measurements. ²	S24

11812Ion effective partition coefficients with multicomponent & dual cation brine119for NF 270 at transmembrane water fluxes of 15 μ m/s.S26

A Experimental Methods

A.1 Volume Calibration

The flow loop volume of the experimental apparatus is calibrated to accurately represent the 122 solution concentrations (Fig. 1A in the main text).⁶ First, deionized (DI) water is introduced 123 into the flow loop, without retentate recycling, until the conductivity of the retentate falls 124 within 1 % of the DI water. Next, an NaCl feed solution with a pre-determined initial 125 concentration is passed through the flow loop and recycled until the conductivity of the 126 solution reaches a steady state. The initial and final concentrations of the NaCl solutions are 127 determined with ICP-OES, and are plotted in Supp. Fig. 1A. Linear regression is performed 128 to elucidate the volume of the flow loop, based on Eq. 1. 129

$$C_{NaCl,f} = C_{NaCl,0} \left(\frac{V_{Solution}}{V_{Solution} + V_{Loop}} \right)$$
(1)

where $C_{NaCl,0}$ and $C_{NaCl,f}$ denote the initial and final measured NaCl concentrations, and $V_{Solution}$ and V_{Loop} denote the volume of the solution tank and flow loop, respectively.

Supplementary Figure 1: A) Plot of the final feed NaCl concentration against the initial feed NaCl concentration, following dilution of the feed from the water in the flow loops of the nanofiltration experimental apparatus. B) Plot of the nominal species concentrations (by design) against the actual species concentrations (from ICP-OES). The maximum deviation for the concentration of the species is 18.5 %.

The derived flow loop volume is incorporated to prepare the feed solutions for all the experiments. A comparison between the nominal and actual concentrations of the inorganic solutes in the respective brines is presented in Supp. Fig. 1B. The maximum absolute deviation in the species concentrations is 18.5 %.

136 A.2 Multicomponent Salt-lake Brine

Synthetic multicomponent brine is prepared based on the aqueous composition of the saltlakes in Salar de Atacama,³ Qaidam Lake,⁴ and Salton Sea.⁵ Diluted variants of the respective brine, as provided in Supp.Table 1, 2 and 3, are prepared while keeping the relative ionic ratios constant. The total dissolved solids (TDS) concentrations of the experimental solutions are 10, 30, 70, 150 and 250 g/L.

Supplementary Table 1: Nominal ionic composition of feed solution based on brine from Salar de Atacama,³ at total dissolved concentrations of 10, 30, 70, 150 and 250 g/L.

Salt Lake, Location			Nomi	nal Co	mposit	tion (g/I	L)	
	Li^+	Na^+	K^+	${\rm Mg}^{2+}$	Ca^{2+}	Cl^-	SO_4^{2-}	TDS
	1.19	69.01	17.89	7.31		143.72	12.06	251.18
Salar da Atacama	0.71	41.21	10.68	4.37		85.83	7.20	150.00
Chile	0.33	19.23	4.99	2.04		40.10	3.36	70.00
Unne	0.14	8.24	2.14	0.87		17.17	1.44	30.00
	0.05	2.75	0.71	0.29		5.72	0.48	10.00

Supplementary Table 2: Nominal ionic composition of feed solution based on brine from Qaidam Lake,⁴ at total dissolved concentrations of 10, 30, 70, 150 and 250 g/L.

Salt Lake, Location			Nom	inal Co	mposit	tion (g/I	L)	
	Li^+	Na^+	K^+	Mg^{2+}	Ca^{2+}	Cl^-	SO_4^{2-}	TDS
	0.31	56.30	4.40	20.20		134.20	34.10	249.51
Osidam I aka	0.19	33.85	2.65	12.14		80.68	20.50	150.00
Chine	0.09	15.79	1.23	5.67		37.65	9.57	70.00
Omna	0.04	6.77	0.53	2.43		16.14	4.10	30.00
	0.01	2.26	0.18	0.81		5.38	1.37	10.00

Salt Lake, Location			Nomi	nal Co	omposit	sion $(g/]$	L)	
	Li^+	Na^+	K^+	Mg^{2+}	Ca^{2+}	Cl^-	SO_4^{2-}	TDS
	0.22	53.70	17.10		26.30	152.00	0.12	249.44
Salton Soa	0.13	32.29	10.28		15.82	91.40	0.07	150.00
Januar Sea,	0.06	15.07	4.80		7.38	42.66	0.03	70.00
United States	0.03	6.46	2.06		3.16	18.28	0.01	30.00
	0.01	2.15	0.69		1.05	6.09	< 0.01	10.00

Supplementary Table 3: Nominal ionic composition of feed solution based on brine from Salton Sea,⁵ at total dissolved concentrations of 10, 30, 70, 150 and 250 g/L.

Nanofiltration experiments are conducted based on the description provided in the *Materials and Methods* section of the main text. The ionic compositions are analyzed based on inductively coupled plasma optical emission spectroscopy (ICP-OES), using a three point calibration standard based on standard solutions from MilliporeSigma (Trace-Cert). The chosen wavelengths for spectroscopic analysis are given in Supp.Table 4. The maximum uncertainty in each concentration measurement is less than 2 %.

A detailed breakdown of the experimental conditions, including the feed temperature, concentration, pressure and solution pH, and the corresponding rejection results, are provided in Supp.Table 5, 6, 7. From these measurements, the separation factors between Li⁺ and Mg²⁺, and between Cl⁻ and SO₄²⁻, are calculated and plotted against the solution concentrations in Supp. Fig. 2A - E. Analysis of the Cl⁻ and SO₄²⁻ separation with Salton Sea brine is not provided as the concentrations of sulfate ions in the permeate solution are under the detection limits of ICP-OES.

Supplementary Table 4: Selected wavelengths for spectroscopic analysis with ICP-OES.

Elements	ICP-OES wavelength (nm)
Na	568.263
Κ	404.721
Li	323.263
Mg	277.983
Ca	373.690
Cl	774.497
S	180.669

Supplementary Table 5: Experimental measurements for NF 270 based on brine from Salar de Atacama,³ at solution pH of 7 and 2, and total dissolved concentrations of 10, 30, 70, 150 and 250 g/L.

SO_2^{2-}	0.971	0.975	0.974	0.974	0.677	0.638	0.728	0.818	0.972	0.979	0.975	0.974	1	0.828	070.0	0.902	0000	0.968	0.979	0.971	0.814	0/9/0	0.931	0.966	0.974	0/0/0	0.911	0.844	0.903	0.925	0.945	3 0.953	3 0.967	0.967	0.971	0.016	016.0	12200
CI-	0.067	0.101	0.143	0.171	0.142	0.148	0.217	0.302	0.051	0.118	0.119	0.129	0000	0.098	876 0	0.267	010	0.040	0.088	0.094	0.069	101.0	0.175	0.053	0.046	0.102	701.0	0.008	0.060	0.070	0.114	-0.00	-0.00	0.012	0.035	0.017	0.043	
$\frac{\text{on (-)}}{\text{Ca}^{2+}}$					I							Ι																										
s Kejecti Mg ²⁺	0.477	0.545	0.608	0.651	0.861	0.960	0.968	0.972	0.516	0.631	0.649	0.661	0.00	0.058	0.06.0	0.966	04.00	0.530	0.623	0.610	0.879	0.928	0.946	0.519	0.579	0.697 0.697	100.0	0.806	0.877	0.900	0.917	0.486	0.525	0.543	0.563	0.791	121.0	12:00
N+ K+	0.059	0.071	0.090	0.119	0.031	0.060	0.130	0.231	0.041	0.088	0.072	0.089	0000	0.100	0.179	0.182	0000	-0.000	100.0	0.031	-0.053	-0.028	0.062	0.002	-0.025	0.000	110.0	-0.095	-0.093	-0.073	-0.034	-0.090	-0.092	-0.086	-0.057	-0 143	-0.142	11.0
Na^+	0.067	0.090	0.139	0.192	0.035	0.054	0.145	0.266	0.061	0.131	0.147	0.160	0000	0.000	0 189	0.230	n S	0.015	0.034	0.091	-0.027	0.026	0.153	0.072	0.052	0.194	0.124	-0.068	-0.024	0.012	0.078	-0.036	0.006	0.008	0.051	790.0-	-0.061	10000
Li+	0.051	0.061	0.093	0.126	0.034	0.047	0.123	0.227	0.037	0.088	0.094	0.104	0.000	0.004	0.034 0.154	0.193	0.00	210.0	0.055	0.058	-0.041	0.004	0.103	0.032	0.019	0.048	0.014	-0.061	-0.033	-0.012	0.032	-0.031	-0.022	-0.010	0.014	-0.069	-0.054	10000
water Flux (LMH)	14.89	26.32	44.44	78.15	10.41	17.66	30.90	60.41	18.05	42.01	68.40	88.54	r r r	11.11	18.05 18.05	67.36	00 20	20.09	41.57 55 55	77.77	15.13	28.40 20.32	63.54	17.70	28.75	40.00 55 43	00.42	13.13	23.26	32.63	44.34	22.80	28.06	32.29	36.02	91.57	24.30	00.44
Temperature (°C)	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	000	20.0	0.02	20.0		20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	0.02	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	0.06	20.0	2.01
Feed Fressure (bar)	2.5	4	9	10	2.5	4	9	10	4	×	12	16	-	4 x	0 5	16	c	χç	15	10 24	∞ ;	12	10 24	12	18	24 CC	70	12	18	24	32	24	28	32	36	VG	2 C	P C
Fèed pH (-)	6.85	6.85	6.89	6.89	2.11	2.12	2.13	2.13	6.95	7.01	6.96	6.93	11	2.14 0.15	01.7 01.7	2.16	000	0.93 7.05	00.7 7 96	7.41	2.06	2.06	2.08	7.26	7.27	7.90	07.1	1.91	1.92	1.93	1.93	7.11	7.19	7.12	7.17	1 8.4	1.87	
ominal Feed Salimity (g/L)	10	10	10	10	10	10	10	10	30	30	30	30	00	30 20	30	30	0	0,1	02	02	<u>-</u> 02	0/2	02	150	150	150 150	0.0T	150	150	150	150	250	250	250	250	250	250	100

Supplementary Table 6: Experimental measurements for NF 270 based on brine from Qaidam Lake,⁴ at solution pH of 7 and 2, and total dissolved concentrations of 10, 30, 70, 150 and 250 g/L.

	SO_4^{2-}	0.974	0.982	0.981	0.979	0 660	0.790	0.400	0.872	0.950	0.971	0.971	0.973	0.576	0.730	0.823	0.874	0.944	0.966	0.968	0.975	0.716	0.819	0.883	0.933	0.905	0.941	0.945	0.951	0.724	0.833	0.893	0.913	0.891	0.914	0.904	0.928	0.007	0.857	0.000	0.896
	CI-	0.047	0.121	0.181	0.227	0.920	0.200	1010	0.484	0.073	0.146	0.188	0.204	0.194	0.280	0.332	0.400	0.067	0.133	0.141	0.183	0 119	0.182	0.210	0.259	0.033	0.057	0.038	0.092	0.075	0.139	0.148	0.163	0.021	0.033	-0.100	0.054	0000	0.000	0.000	0.012
(-) u	Ca^{2+}																																								
Rejectio	Mg^{2+}	0.457	0.546	0.599	0.656	0000	0.071	116.0	0.981	0.521	0.657	0.696	0.719	0.865	0.956	0.969	0.975	0.535	0.646	0.692	0.740	0 603	0.896	0.931	0.955	0.573	0.642	0.689	0.709	0.744	0.839	0.890	0.903	0.548	0.587	0.552	0.632	1000	0.634	0.740	0.772
Species	\mathbf{K}^+	0.017	0.056	0.086	0.106	0.067	0.000	0.000	$0.134 \\ 0.331$	0.023	0.033	0.059	0.060	-0.117	-0.019	0.056	0.153	-0.047	-0.067	-0.062	-0.017	0110	-0.155	-0.114	-0.059	-0.129	-0.160	-0.192	-0.173	-0.252	-0.228	-0.252	-0.229	-0.141	-0.140	-0.343	-0.177	0.014	-0.214	0.220	-0.324 -0.324
	Na^+	-0.018	0.064	0.100	0.154	0.070	0.010	0.010	0.324	0.046	0.040	0.065	0.078	-0.107	-0.037	0.071	0.163	-0.026	0.005	0.006	0.047	0.060	-0.073	-0.029	0.047	-0.029	-0.037	-0.044	-0.024	-0.149	-0.098	-0.081	-0.063	-0.002	-0.014	-0.202	-0.028	0 040	-0.104	-01.104 0 1.47	-0.147 -0.147
	Li+	0.026	0.066	0.096	0.129	040.0	0.0.0	00000	0.314	0.033	0.044	0.063	0.069	-0.112	-0.028	0.063	0.152	-0.019	-0.004	-0.005	0.034	0000	-0.114	-0.060	0.004	-0.070	-0.081	-0.100	-0.072	-0.178	-0.146	-0.142	-0.123	-0.060	-0.068	-0.232	-0.080	0.195	-0.135	0.11.0	-0.200
Water Flux	(LMH)	14.54	28.75	44.40	82.63	7 63	17.66	00.11	022.00 64.78	 10.41	32.49	50.00	68.40	5.90	20.13	36.02	53.13	8.68	18.75	28.40	46.57	4 17	11.80	20.78	38.54	10.06	15.63	24.24	30.20	6.94	11.96	20.64	25.00	7.97	10.04	12.15	13.89	1 60	7.62 0.38	9.JO 10.76	12.84
Temperature	(°C)	20.0	20.0	20.0	20.0	0.06	0.02	0.04	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	0.06	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	000	20.0	0.04	20.0
Feed Pressure	(bar)	2.5	4	9	10	и С	0.4	ب 4	10	4	×	12	16	4	×	12	16	×	12	16	24	0	12.0	16	24	18	24	32	38	18	24	32	38	28	32	36	40	90	50 30	70 96	06 40
Feed pH 1	(-)	7.02	7.41	7.40	7.32	20.0	10.2	00.7	2.00 2.09	7.31	7.26	7.30	7.31	2.05	2.01	2.03	2.06	7.27	6.87	7.00	7.06	9 D 9	2.03	2.07	2.05	7.16	7.25	7.30	7.31	2.12	2.12	2.07	2.07	7.12	7.28	7.17	7.20	601	1.93 1.06	1.00	1.33 2.01
ominal Feed Salinity	(g/L)	10	10	10	10	10	10	10	10	30	30	30	30	30	30	30	30	20	02	02	02	04	20	202	02	150	150	150	150	150	150	150	150	250	250	250	250	940	25U 950	950	250 250

Supplementary Table 7: Experimental measurements for NF 270 based on brine from Salton Sea,⁵ at solution pH of 7 and 2, and total dissolved concentrations of 10, 30, 70, 150 and 250 g/L.

Nominal Feed Salinity	Feed pH	Feed Pressure	Temperature	Water Flux	-	-	Species	s Rejecti	on (-)		ç
(g/L)	(-)	(bar)	(\mathcal{D}^{*})	(TMH)	Li+	Na^+	K^+	Mg^{2+}	Ca^{2+}	CI-	SO_4^{2-}
10	6.94	2.5	20.0	31.40	0.032	0.031	0.024		0.322	0.130	
10	7.00	4	20.0	46.88	0.053	0.038	0.050		0.373	0.139	
10	6.99	8	20.0	98.26	0.081	0.028	0.080		0.443	0.220	
10	6.98	10	20.0	114.93	0.069	0.055	0.063		0.449	0.231	
10	1.96	2.5	20.0	13.54	-0.005	-0.005	-0.057		0.806	0.276	
10	1.95	4	20.0	24.65	0.112	0.112	0.097		0.927	0.355	
10	1.96	×	20.0	59.72	0.278	0.278	0.272		0.940	0.443	
10	1.96	10	20.0	74.30	0.307	0.307	0.294		0.935	0.450	
30	6 85	F	90.0	91 59	013	_0.181	050 0-		0.375	0.146	
00	0.00	# C	0.04	70.17		101.0	0000			0.140	
30 20	0.84 6.93	χç	20.0	41.22	0.000	-0.434	-0.042		0.459	0.174	
30 30	0.00 6 81	16	20.0	01.40 01.70	0.048	071.0	0.006 0.006		0.486	112.0	
8	10.0	01	0.04	01.40	0100	0.07-00	0,000		007-0	117.0	
30	2.03	4	20.0	9.375	-0.122	-0.382	-0.157		0.708	0.199	
30	2.02	×	20.0	28.12	-0.033	0.156	-0.043		0.868	0.319	
30	2.03	12	20.0	46.18	0.040	0.294	0.030		0.880	0.362	
30	2.03	16	20.0	63.04	0.106	0.475	0.084		0.892	0.406	
20	7.23	æ	20.0	21.82	-0.043	-0.052	-0.075		0.371	0.154	
20	7.22	12	20.0	36.72	-0.043	0.322	-0.078		0.437	0.169	
20	7.35	16	20.0	48.26	-0.001	0.342	-0.037		0.477	0.201	
20	7.36	24	20.0	71.88	0.016	0.176	-0.014		0.473	0.191	
C I		c	0			0 1 7	010			1	
02	2.01	x :	20.0	11.80	-0.151	-0.179	-0.219		0.657	0.171	
20	2.01	12	20.0	21.88	-0.118	0.230	-0.195	ľ	0.774	0.235	
20	2.01	16	20.0	32.98	-0.080	0.003	-0.153	ľ	0.813	0.276	
20	2.01	24	20.0	54.17	0.007	0.356	-0.062		0.831	0.341	
150	6.97	12	20.0	13.54	0.041	0.160	-0.007		0.339	0.141	
150	7.11	18	20.0	23.60	0.115	0.259	0.074		0.456	0.254	
150	7.13	24	20.0	29.90	0.074	0.379	0.006		0.447	0.214	
150	7.12	32	20.0	40.98	0.096	0.177	0.060		0.476	0.253	
150	9.09	19	0.06	0.70		_1 378	-0 A17		0.310		
150	2.02 2.05	1 2	20.02	15.26	-0.331		-0.461		01010	-0.051	
150	2.00	24	20.02	91.88	-0.195	-0.357	-0.937		0 500	0.159	
150	2.06	32	20.0	31.25	-0.142	-0.209	-0.267		0.637	0.149	
250	6.96	24	20.0	10.73	-0.075	-0.353	-0.167		0.305	0.074	
250	6.99	32	20.0	15.97	-0.125	-0.292	-0.230		0.319	0.048	
250	6.99	36	20.0	18.36	-0.256	-0.783	-0.413		0.266	-0.059	
040	0	č	000	1			100 0		007	0000	
250	2.03	24	20.0	11.80	0.047	0.240	-0.021		0.463	0.222	
720	2.U9 2.13	32	20.0	10.28 10.28	011.0-	-0.078	-0.232		0.408	0.124	
250	7.11	30	20.0	18.30	-0.130	0.053	-0.250		100.0	0.129	

Supplementary Figure 2: Selectivity performance of NF 270 for Li-Mg separation, as a function of the solution pH and total dissolved solids (TDS) concentration, for inorganic brines from **A**) Salton Sea, United States, **B**) Salar de Atacama, Chile and **C**) Qaidam Lake, China. Selectivity performance of NF 270 for Cl⁻-SO₄²⁻ separation, as a function of the solution pH and total dissolved solids (TDS) concentration, for inorganic brines from **D**) Salar de Atacama, Chile and **E**) Qaidam Lake, China. For the cations, across all tested compositions, the separation factor remains largely invariant to TDS changes at pH 7, while exhibiting a decreasing trend with increasing TDS at pH 2. Vice versa, for the anions, the separation factor remains largely invariant to TDS changes at pH 2, while exhibiting a decreasing trend with increasing TDS at pH 7. This trend illustrates the significance of leveraging the Donnan exclusion mechanism, by using membranes with the same charge, to selectively separate ions with the same charges.

A.3 Simplified Synthetic Brine

To ascertain the impact of cation-anion coupling on the transport and monovalent selectivity 156 of NF membranes, experiments with dual cation brine solutions are conducted. The compo-157 sition of the dual cation solutions are depicted in Supp. Table 8. The molar ratios of Li⁺ to 158 Mg^{2+} of these dual cation solutions are kept constant at 1.75, in accordance to the Li⁺- Mg^{2+} 159 ratio of the Chilean brine.³ To ensure valid comparisons with the multicomponent brine at 160 10 g/L TDS (0.35 M), the dual cation solutions are prepared at the same ionic molarity. 161

Supplementary Table 8: Nominal ionic composition of dual cation feed solutions based on brine from Salar de Atacama, at a solution molarity of 0.35 M.

Brine Composition	No	ominal C	lompos	Solution Molarity (M)		
(Abbreviation)	Li^+	Mg^{2+}	Cl^-	SO_4^{2-}	TDS	Solution Molarity (M)
$Li^+-Mg^{2+}-Cl^-$ (LM-C)	0.34	2.05	7.70		10.09	0.35
$Li^{+}-Mg^{2+}-SO_{4}^{2-}$ (LM-S)	0.49	2.98		15.13	18.59	0.35
$Li^{+}-Mg^{2+}-Cl^{-}-SO_{4}^{2-}$ (LM-CS)	0.34	2.09	7.39	0.62	10.44	0.35

Three unique compositions are selected to elucidate the effects of anionic coupling on 162 Li⁺-Mg²⁺ selectivity. The three mixtures consist of: 1) lithium, magnesium and chloride ions (LM-C), 2) lithium, magnesium and sulfate ions (LM-S) and, 3) lithium, magnesium, chloride and sulfate ions (LM-CS). The molar ratio of chloride to sulfate ions in the LM-CS mixture is identical to that in the multicomponent Chilean brine. A summary of the experimental conditions and the measured species rejections is provided in Supp. Table 9. 167 The feed pressures are selected so that the transmembrane water fluxes are close to that of 168 the experiments with multicomponent solutions. 169

Supplementary Table 9: Experimental measurements for NF 270 based on dual cation brine at 0.35 M, at solution pH of 7 and 2.

1	Ι.																											
-	SO_4^{2-}											0.906	0.978	0.887	0.980	0.673	0.785	0.794	0.830		0.897	0.970	0.900	0.969	0.815	0.908	0.865	0.049
ection (-	CI-		0.361	0.427	0.440	0.467	0.597	0.660	0.686	0.717											0.320	0.415	0.424	0.450	0.508	0.619	0.619	0.600
ecies Re	Mg^{2+}		0.521	0.600	0.599	0.653	0.905	0.970	0.949	0.975		0.923	0.987	0.911	0.990	0.908	0.986	0.961	0.992		0.533	0.624	0.621	0.673	0.823	0.964	0.973	0400
Sp	Li+		-0.207	-0.184	-0.142	-0.125	-0.227	-0.125	0.029	0.115		0.793	0.863	0.816	0.885	0.190	0.447	0.585	0.632		0.046	0.077	0.094	0.106	0.002	0.124	0.274	110 0
Water Flux	(LMH)	(D	28.98	42.18	54.17	67.18	15.10	25.42	39.55	53.64	3)	18.75	36.97	54.49	65.10	12.50	33.73	64.06	79.68	(S)	28.54	41.14	54.68	65.10	14.53	27.08	41.00	00 11
Temperature	(D.)	ion Brine (LM-0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	ion Brine (LM-5	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	on Brine (LM-C	20.0	20.0	20.0	20.0	20.0	20.0	20.0	0.00
Feed Pressure	(bar)	dual cat	9	8	10	12	9	×	10	12	dual cat	9	×	10	12	9	8	10	12	dual cati	9	×	10	12	9	×	10	0
Feed pH	(-)		6.94	6.71	6.83	6.92	2.09	2.13	2.13	2.14		6.91	6.98	7.02	7.03	2.07	2.08	2.08	2.07		6.86	7.06	6.78	6.96	1.95	1.97	1.97	10
Nominal Feed Molality	(g/L)		0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35		0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35		0.35	0.35	0.35	0.35	0.35	0.35	0.35	36 0

¹⁷⁰ B Computational Methods

-..

¹⁷¹ B.1 Model Description

A pore flow model is used to analyze the selectivity of the membrane, and quantify the relative contributions arising from the partitioning and transport mechanisms. Here, we implement the Donnan-steric pore model with dielectric exclusion (DSPM-DE).^{7–9} Starting from irreversible thermodynamics, the solute flux is linearized and proportional to the chemical potential gradient normal to the membrane surface. From this premise, the extended Nernst-Planck equation (Eq. 2) can be derived, which accounts for transport arising from concentration gradients, bulk solvent motion, and potential gradients.

$$J_i = K_{i,a}c_i J_w - K_{i,d} D_{i,\infty} \nabla c_i - K_{i,d} D_{i,\infty} \frac{z_i c_i F}{RT} \nabla \Psi$$
⁽²⁾

where J_i and J_w denote the solute and solvent fluxes, $K_{i,a}$ and $K_{i,d}$ denote the hindrance coefficients from advection and diffusion, c_i and z_i denote the molar concentration and electronic valency, $D_{i,\infty}$ denotes the Fickian diffusion coefficient, F and R denote the Faraday and ideal gas constants, and T and Ψ denote the temperature and electric potential.

The porous structure of the membrane is homogenized as rigid, tortuous cylinders with a constant surface diameter. Hindered transport theory⁹ is applied to estimate the hindrance factors for both diffusion and advection, as provided in Eq. 3 and 4.

$$K_{i,d} = \frac{1 + \frac{9}{8}\lambda_i \ln(\lambda_i) - 1.56\lambda_i + 0.53\lambda_i^2 + 1.95\lambda_i^3 - 2.82\lambda_i^4 + 0.27\lambda_i^5 + 1.10\lambda_i^6 - 0.44\lambda_i^7}{(1 - \lambda_i)^2}, \text{ for } \lambda_i \in [0, 0.95)$$
(3a)

186

$$K_{i,d} = 0.984 \left(\frac{1-\lambda_i}{\lambda_i}\right)^{5/2}, \text{ for } \lambda_i \in (0.95, 1]$$
(3b)

$$K_{i,a} = \frac{1 + 3.867\lambda_i - 1.907\lambda_i^2 - 0.834\lambda_i^3}{1 + 1.867\lambda_i - 0.741\lambda_i^2} \tag{4}$$

where λ_i denotes the ratio of the solute's Stokes radius to the pore radius of the membrane. For chemical stability, electroneutrality conditions are imposed on the solutions within and external to the membrane pores, as shown in Eq. 5 and 6.

$$\sum_{i}^{N} z_i c_i = 0 \tag{5}$$

190

$$\chi_d + \sum_i^N z_i c_i = 0 \tag{6}$$

where χ_d represents the charge density of the membrane active layer.

¹⁹² Under this approach, the solute fluxes between two unique *uncharged* species are not ¹⁹³ explicitly coupled ¹⁰ (e.g. the concentration gradient of one species does not influence the ¹⁹⁴ transport rate of another species); The transport between unique *charged* species, however, ¹⁹⁵ are implicitly coupled through the induced potential gradient across the active layer, to ¹⁹⁶ maintain electroneutrality of the solutions.

Isoactivity conditions, as described by Eq. 7, are applied along the solution-membrane 197 interface, ensuring that the species Gibbs free energy remains continuous.¹¹ Here, the solute's 198 effective partition coefficient is defined as the ratio of the solute activity in the membrane 199 pore relative to the bulk solution. Solute partitioning is modeled as the combination of 200 three factors: 1) steric exclusion arising from size-based filtration by the membrane pores, 2) 201 Donnan exclusion arising from charge screening of ions due to the Donnan potential across 202 the solution-membrane interface, and 3) dielectric exclusion arising from a solvation energy 203 barrier for the ions. 204

$$\frac{(\gamma_i c_i)_{mem}}{(\gamma_i c_i)_{bulk}} = \Phi_{i,steric} \Phi_{i,Donnan} \Phi_{i,dielectric}$$
(7)

where γ_i denotes the activity coefficient of solute *i*, and Φ_i denotes the partition coefficient. Steric exclusion arises due to the size difference between dissolved solute and the membrane pore. Solutes that are larger than the membrane pore radius are incapable of transmembrane passage. Unlike point charges, solutes that are smaller than the membrane pore, however, exhibit a size-dependent passage probability that can be approximated by a geo metric distribution, as provided in Eq. 8.⁸

$$\Phi_{i,steric} = (1 - \lambda_i)^2, \text{ for } \lambda_i \in [0, 1]$$
(8a)

211

$$\Phi_{i,steric} = 0$$
, otherwise (8b)

Across the solution-membrane interface, a potential difference (Donnan potential) exists due to differences in the ion concentrations between the two media. The partition coefficient due to the Donnan potential is governed by Eq. 9, which is analogous to the Nernst equation. As a result, ions that are opposite in charge to the Donnan potential will selectively partition into the pores, while ions that are similar in charge to the Donnan potential will be selectively excluded from partioning.¹²

$$\Phi_{i,Donnan} = \exp\left(-\frac{z_i F}{RT} \Delta \Psi_D\right) \tag{9}$$

where $\Delta \Psi_D$ denotes the Donnan potential of the active layer.

In addition to size sieving and charge screening effects, the relative permittivity of the 219 solvent (dielectric constant) can be considerably lowered within the membrane pores. This is 220 a result of the constrained mobility and orientation of free and hydrating waters arising from 221 nanoscale confinement. In nanoscale channels, dielectric exclusion arises from the weakening 222 of water-ion interactions within the membrane pores, posing an energy barrier that may 223 induce ion dehydration during ion partitioning;^{12–14} however, the precise mechanistic rela-224 tionship between dielectric exclusion and ion dehydration remains an active area of research 225 and is beyond the scope of our present work. This energy barrier can be estimated based on 226 solvation energies or image forces.⁹ As a first approximation to the former, the Born model 227 is commonly adopted, 15 as given in Eq. 10. 228

$$\Phi_{i,dielectric} = \exp\left[-\frac{z_i^2 e^2}{8\pi k_B T \epsilon_0 r_i} \left(\frac{1}{\epsilon_{mem}} - \frac{1}{\epsilon_{bulk}}\right)\right]$$
(10)

where ϵ_{mem} and ϵ_{bulk} denote the relative permittivity in the membrane pore and bulk solution. 229 During membrane filtration, concentration boundary layers form along the membrane-230 solution interface, arising from the selectivity of the polyamide active layer.¹⁶ Here, con-231 centration polarization effects are incorporated to accurately model the ion concentrations 232 along the membrane–solution interface, using the model proposed by Geraldes and Alves.⁷ 233 Within the concentration boundary layers, the total ion flux is contributed from diffusive, 234 convective and electromigrative fluxes, as given in Eq. 11. 235

$$J_i = \bar{k}_{i,c} \left(c_{i,int} - c_{i,b} \right) + J_w c_{i,int} - z_i c_{i,int} D_{i,\infty} \zeta_{int} \frac{F}{RT}$$
(11)

where $c_{i,int}$ and $c_{i,b}$ denote the ion concentration along the membrane–solution interface, and 236 in bulk solution, ζ_{int} denotes the electric potential gradient along the membrane-solution 237 interface and $\bar{k}_{i,c}$ represents the modified mass transfer coefficient accounting for the 'suction 238 effect'.¹⁷ The modified mass transfer coefficient can be calculated from conventional mass 239 transfer coefficients, as provided in Eq. 12. 240

$$\bar{k}_{i,c} = k_{i,c} \left[\Xi + \left(1 + 0.26 \ \Xi^{1.4} \right)^{-1.7} \right]$$
(12)

where $\Xi = J_w / k_{i,c}$. 241

$$k_{i,c} = 1.121 * 10^{-4} * \left(\frac{v_w}{0.239}\right)^{0.79}$$
(13)

where v_w denotes the cross-flow velocity. 244

245

246	Overall, the key modeling assumptions can be summarized as:
247	1. Solute transport across the membrane is one-dimensional, normal to the area of the
248	active layer.
249	2. Electroneutrality is maintained in the membrane pores and the bulk solution under
250	steady-state conditions.
251	3. The ions are fully dissociated in water, and the dissolved solutes are modeled as
252	hard spheres, consisting of a charged ion surrounded by a sphere of hydrating wa-
253	ter molecules.
254	4. Membrane charge density and pore radius are modeled homogeneously, based on the
255	statistical average value. Membrane pores are modeled as tortuous cylinders.
256	5. Hindrance factor formulations based on the transport of hard spheres in neutral cylin-
257	drical pores are applicable to the transport of charged species across charged porous
258	membranes.
259	6. Solute transport between uncharged species are fully decoupled, while the transport
260	between charged species are only coupled through the electric potential.
261	B.2 Numerical Methods

The DSPM-DE model is developed in Python, using the NumPy and SciPy property pack-262 ages. The governing differential equations for transport (Eq. 2) are discretized with a second-263 order centered difference method, using a structured mesh with 100 nodes. The boundary 264 conditions for solute concentrations and electric potential are imposed by the isoactivity con-265 ditions (Eq. 7). Electroneutrality conditions, as provided by Eq. 5 and 6, are used to close 266 the system of equations. The nodal species concentrations and electric potential are solved 267 simultaneously, using the method of successive over-relaxation with a relaxation factor of 268 1.6, with a convergence tolerance of 10^{-8} . 269

The dual annealing algorithm, which is a metaheuristic stochastic optimization algo-270 rithm, is used to fit the membrane parameters of DSPM-DE. Unlike direct gradient based 271 methods, the dual annealing algorithm prescribes non-zero probability for the acceptance of 272 sub-optimal solutions during numerical iteration. This ensures that the algorithm does not 273 converge into local optimums. To ensure reproducibility and high accuracy of the numerical 274 solution, a local search algorithm based on the Nelder-Mead method is implemented at each 275 step of the stochastic algorithm. The convergence tolerance for the optimization problem is 276 set at 10^{-4} . 277

278

B.3 Experimental Comparisons

Here, we compare the numerical predictions from the DSPM-DE model to experimental data found in the literature. Using original model parameters from Micari et al.¹ and Labban et al.,² respectively, the model results are juxtaposed against the experimental measurements in Supp. Fig. 3A and B. The maximum absolute deviation is less than 15 % and 8 % for the data from Micari et al. and Labban et al., respectively. The model is able to capture transport coupling between ions, as evident by its ability to reproduce the negative rejection phenomena of small monovalent ions (e.g. Na⁺ and Cl⁻).¹⁶

Supplementary Figure 3: Model validation for the Donnan-steric pore model with dielectric exclusion, using original experimental measurements and model parameters from \mathbf{A}) Micari et al.,¹ and \mathbf{B}) Labban et al.,² respectively.

Supplementary Figure 4: Plots of the species rejection against the transmembrane water flux from the nanofiltration experiments with \mathbf{A}) simulated LM-C brine at pH 7; \mathbf{B}) simulated LM-S brine at pH 7; \mathbf{C}) simulated LM-CS brine at pH 7; \mathbf{D}) simulated LM-C brine at pH 2; \mathbf{E}) simulated LM-S brine at pH 2; \mathbf{F}) simulated LM-CS brine at pH 2; Solid curves denote model predictions while solid markers denote experimental measurements.

For the original experiments presented in Supp.Table 5, 6, 7 and 9, the model parameters from DSPM-DE are fit using the algorithms described earlier. In total, 4 model parameters are obtained from a total of 72 ion rejection measurements, for each solution pH. The results are summarized in Supp.Table 10.

Supplementary Table 10: Regressed model parameters for DSPM-DE from the respective experimental data.

Solution	Effective Thickness	Average Pore Radius	Relative Permittivity	Volumetric Charge Density
$_{\rm pH}$	$\Delta X \ (nm)$	$r_p (\mathrm{nm})$	ϵ (-)	$\chi~({ m mol/m^3})$
7	60.06	0.416	39.58	-63.57
2	185.38	0.461	34.00	6.91

290

The agreement between the model and experimental measurements for nanofiltration

Supplementary Figure 5: Plots of the species rejection against the transmembrane water flux from the nanofiltration experiments with \mathbf{A}) Salton sea brine at pH 7; \mathbf{B}) Salar de Atacama brine at pH 7; \mathbf{C}) Qaidam lake brine at pH 7; \mathbf{D}) Salton sea brine at pH 2; \mathbf{E}) Salar de Atacama brine at pH 2; \mathbf{F}) Qaidam lake brine at pH 2; Solid curves denote model predictions while solid markers denote experimental measurements.

Supplementary Table 11: Comparison between the limiting rejection of neutral solute between DPSM-DE and prior experimental measurements.²

Neutral Solute	Molecular Weight	Stokes Radius	Model Limiting Rejection	Experimental Solute Rejection
	(Da)	(nm)	(-)	(-)
Glucose	180.0	0.36	0.489	0.535
Sucrose	342.0	0.46	0.739	0.802
Raffinose	504.0	0.54	0.841	0.879

with the dual cation brine solutions are presented in Supp. Fig. 4A - F. The root-meansquare residual between the model and experiments is 2.2 %.

294

Similarly, the experimental measurements and model predictions for nanofiltration with

the multicomponent salt-lake brines at 10 g/L concentration are illustrated in Supp. Fig. 5A F. The root-mean-square residual between the model and experiments is 2.8 %. Using the regressed model parameters, the predictions of the limiting rejection for three neutral solutes are summarized in Supp. Table 11, leveraging empirical measurements from an earlier publication from our group.² The maximum deviation between the model estimates and the experimental measurements is 8.5 %.

С **Results & Analysis** 301

C.1Solute Partitioning 302

In this section, we quantify the relative contributions of steric, dielectric and Donnan exclu-303 sions to the performance of NF 270 for Li⁺ - Mg²⁺ separation. Multicomponent salt-lake 304 brines, at a concentration of 10 g/L, are used to elucidate the partition coefficients of the 305 three mechanisms. To ensure valid comparisons between the different brines and solution pH 306 levels, the transmembrane water flux is fixed at 15 μ m/s. The validated DSPM-DE model 307 presented in Supp. Fig. 4 and 5 is used to interpolate between the experimental points for 308 this comparison. 309

310

The schematic diagrams of the thermodynamic partition coefficients for steric, dielectric and Donnan exclusions are presented in Supp. Fig. 7A - F. Partition coefficients that are less 311 than 1 indicate that the activity of the solute is lower in the membrane pore as compared to 312 the bulk solution, and vice versa. The effective partition coefficient of a solute is the product 313 of the three constituent partition coefficients, which is summarized in Supp. Table 12. 314

Supplementary Table 12: Ion effective partition coefficients with multicomponent & dual cation brine for NF 270 at transmembrane water fluxes of 15 μ m/s.

Brino	ъЦ	Effective Partition Coefficients								
DIIIIe	рп	Na ⁺	K^+	Li^+	Mg^{2+}	Ca^{2+}	Cl^{-}	SO_4^{2-}		
Salton Sea	7	0.4877	0.3080	0.4413		0.0747	0.0023			
Salton Sea	2	0.0221	0.0103	0.0287		0.0002	0.1054	—		
Qaidam Lake	7	0.4891	0.3088	0.4425	0.0493		0.0023	< 0.0001		
Qaidam Lake	2	0.0117	0.0049	0.0155	< 0.0001		0.0647	0.0027		
Salar de Atacama	7	0.3378	0.2671	0.3134	0.0651		0.0039	0.0012		
Salar de Atacama	2	0.0092	0.0036	0.0125	0.0001		0.0490	0.0015		
Dual Cation (LM-C)	7			0.5744	0.1760		0.0245			
Dual Cation (LM-C)	2			0.0260	0.0003		0.1924			
Dual Cation (LM-S)	7			0.0007	< 0.0001			0.0056		
Dual Cation (LM-S)	2			0.0015	$<\!0.0001$			0.0026		
Dual Cation (LM-CS)	7			0.3658	0.0557		0.0407	0.0011		
Dual Cation (LM-CS)	2			0.0159	0.0005		0.0647	0.0017		

Across the 6 panels, the effective partition coefficients of the dissolved solutes are less 315 than 1, indicating that the active layer is ion rejecting. This deduction is consistent with 316 our prior understanding of semi-aromatic thin film polyamides.¹⁹ Furthermore, between the 317 7 different ions, the magnitude of steric exclusion increases with the Stokes radius for all the 318 solutes, a result that aligns with hindered transport theory.²⁰ The partition coefficient for 319 dielectric exclusion is lower for smaller ions with higher electronic valency. This observation 320 parallels our expectations from solvation theory, ^{15,21,22} where ions with higher charge den-321 sities $(Mg^{2+}, Ca^{2+} \& SO_4^{2-})$ experience a larger solvation energy barrier in response to the 322 decreasing relative permittivity of water. 323

The isoelectric point (IEP) of a membrane is defined as the pH level at which the active 324 layer exhibits a net neutral charge density. This phenomenon arises from the interactions 325 between the solution and, the carboxyl and amino functional groups along the polyamide 326 chains.²³ At the IEP, charged solutes experience little-to-no Donnan exclusion effects. From 327 prior work, the IEP of NF 270 was determined to be between the pH of 3-5.^{1,2,20} As depicted 328 in Supp. Fig. 6, using zeta potential measurements, the IEP was estimated to between the 329 pH of 2.95 and 3.20. Here, solution pH levels are selected to be above and below the IEP, 330 to analyze the effects of Donnan exclusion on the ion rejection characteristics of NF 270. 331

At a solution pH of 7, we observe that the Donnan exclusion partition coefficients of 332 the cations are consistently greater than unity, indicative of its selective permeance into the 333 active layer. Concurrently, the anions are excluded because the partition coefficients remain 334 smaller than unity. This Gibbs-Donnan effect is consistent with our findings. Based on 335 the characterization of the membrane, DSPM-DE suggests that the active layer exhibits a 336 negative charge density at pH 7, as described in Supp.Table 10. As a result, the Donnan 337 potential enhances the rejection of anions. For cations, however, the same Donnan potential 338 enhances its permeation into the active layer, leading to a reduction in cationic rejection. 339 This mechanism aligns with our experimental measurements, as presented in Supp. Fig. 5. 340 At a solution pH of 2, however, the membrane exhibits a net positive charge density, 341

as described in Supp.Table 10. The predictions based on Donnan equilibrium theory are
also exemplified in our experimental measurements, as depicted in Supp. Fig. 4 and 5.
Likewise, the opposite effect from the Gibbs-Donnan effect is observed. Consequently, under
the influence from a positive Donnan potential, the cations are selectively excluded, but vice
versa for the anions.

Furthermore, we observe that the intensity of the Gibbs-Donnan effect is stronger for 347 multivalent ions, leading to extremely high rejections of Mg^{2+} at pH 2. This phenomenon 348 accounts for the observed differences between the cationic and anionic selectivities in Supp. 349 Fig. 2. Consequently, at pH 7, the separation factor for Li⁺ - Mg²⁺ is considerably lower, 350 while the corresponding separation factor for $Cl^- - SO_4^{2-}$ is magnified, across all the tested 351 brines. The opposite effect is observed at pH 2, explaining the high measured Li⁺ - Mg²⁺ 352 separation factors at all tested salinities. The results underscore the importance of optimizing 353 the Donnan potential of the active layer to optimize charge-based separation of ions. 354

Supplementary Figure 6: Plot of the zeta potential as a function of the feed solution pH. The isoelectric point was determined to be between the solution pH of 2.95 - 3.20, using 0.1 - 1.0 M KCl solutions.

Supplementary Figure 7: Schematic diagrams of the thermodynamic partition coefficients for the ionic species at a total dissolved solids concentration of 10 g/L. The relative contributions from steric, dielectric and Donnan exclusions, are outlined in blue, red and green, respectively. The sub-panels correspond to: A) Salton sea brine at pH 7; B) Salton sea, United States brine at pH 2; C) Salar de Atacama, Chile brine at pH 7; C) Salar de Atacama, Chile brine at pH 2; E) Qaidam Lake, China brine at pH 7; F) Qaidam Lake, China brine at pH 2.

C.2 Transport Mechanics

In this section, we leverage our calibrated computational model to infer the key transport characteristics of nanofiltration with multicomponent solutions. Consistent with the *Solute Partitioning* section, the comparisons are conducted at a fixed transmembrane water flux of 15 μ m/s, and a feed TDS concentration of 10 g/L. Our numerical findings are summarized in Supp. Fig. 8A - B and 9A - F.

Evidence of transmembrane transport coupling between ions is well documented in the lit-361 erature, based on molecular dynamics (MD) simulations^{14,24} and multi-ionic experiments.^{2,10,25} 362 Due to high computational complexities and costs, the molecular simulations are largely re-363 stricted to simple pore geometries with dual cation mixtures. For MD simulations involving 364 Na⁺ and Cl⁻ ions, Cl⁻ was reported to preferentially traverse across the membrane pore, 365 owing to lower free energy barriers from favorable interactions with the pore interior.^{14,26} 366 The ensuing charge anisotropy results in a reverse electric potential across the pore, induc-367 ing an electrostatic pullback that impedes Cl⁻ forward transport. The same induced electric 368 potential was reported to accelerate the forward transport of Na⁺ to achieve solution elec-369 troneutrality. 370

In this work, the extended Nernst-Planck model is used to investigate the significance of such inter-ionic transport coupling in multicomponent brines. The normalized ionic fluxes of the three multicomponent brines, at pH 7, are presented in Supp. Fig.9A, C and E. Across the three tested compositions, our numerical results suggest that Cl^- and SO_4^{2-} transport is largely driven by diffusion, as illustrated in Supp. Fig. 8A. Macroscopically, this phenomenon is a result of the large diffusion and hindrance coefficients of Cl^- , as well as the large concentration gradient established by the poor solute partitioning.¹⁶

Supplementary Figure 8: Plots of the normalized species concentrations (solid curves) and local electric potential (dotted curves) within the active layer of the nanofiltration membrane at **A**) pH 7, and **B**) pH 2, respectively. The species concentrations are normalized to the feed-side of the active layer, following species partitioning with the solution.

From Supp. Fig. 8A & B, our model suggests that the ensuring charge anisotropy from 378 the anionic permeation leads to an uneven electric potential across the membrane pore. 379 The induced electric field accelerates the kinetics of cation permeation, a process known 380 as electromigration. For the monovalent cations (Li⁺, Na⁺ & K⁺), our model evinces that 381 electromigration plays a critical role in its forward transport, as evident from Supp. Fig. 9A, 382 C and E. To achieve solution electroneutrality under steady state conditions, the forward 383 transport of the monovalent cations is counteracted by a reverse diffusive flux. These ob-384 servations on the transport coupling between monovalent anions and cations appear to be 385 consistent with the prior results from the molecular-scale modeling with dual cation salt 386 solutions. 14,24,26 387

On the contrary, the effect of electromigrative coupling is less prevalent for the multivalent cations. Due to its poor partitioning into the membrane, our model suggests that the concentration of multivalent ions within the active layer is sparse. The multivalent ionic fluxes, as depicted in Supp. Fig. 9A, C and E, are at least one order of magnitude lower than the corresponding values for monovalent ions. From classical transport theory, in the limit ³⁹³ of infinite dilution, the species fluxes decouple and become independent from each other. ^{17,27} ³⁹⁴ Due to its low concentrations, our model suggests that the ionic fluxes of Mg²⁺ and Ca²⁺ ³⁹⁵ are relatively unaffected by the charge anisotropy, which appears to be consistent with the ³⁹⁶ classical theories. Consequently, from our simulations, the mutivalent ionic fluxes appear to ³⁹⁷ be diffusive in nature.

Supp. Fig 9B, D & E illustrate the normalized ionic fluxes under the influence of a positive surface charge density. From experimental measurements, we observe that the water permeability of the membrane decreased by approximately 40 %, when the pH is lowered from 7 to 2. Recent NF experiments involving pH changes attributed the reduction in water permeability to physical restructuring of the polyamide layer.²⁸ Based on the regressed parameters in Supp.Table 10, our model suggests likewise, that the permeability reduction is largely due to the lowering of the active layer porosity-tortuosity coefficient.

Across the three tested compositions, the absolute ionic fluxes of each species reduced by approximately 40 %. Assuming a 20 nm thick polyamide layer, our model suggests a reduction in porosity-tortuosity coefficient by 23 % when the pH is lowered to 2, causing the membrane to become denser. This ionic flux reduction arises from weakening advective and electromigrative coupling. Consequently, this combination causes the transport to converge to similar predictions from the solution-diffusion theory; the species transport becomes decoupled and diffusive in nature.

Supplementary Figure 9: Schematic diagrams of the transport mechanisms for the ionic species, at a total dissolved solids concentration of 10 g/L. The normalized diffusive, advective and electromigrative fluxes for the ionic species are represented in blue, red and green, respectively. The ionic fluxes of the three distinct mechanisms are normalized to the net species flux. The normalized fluxes, therefore, will sum to 1 (dotted lines). The sub-panels correspond to: **A**) Salton sea brine at pH 7; **B**) Salton sea, United States brine at pH 2; **C**) Salar de Atacama, Chile brine at pH 7; **C**) Salar de Atacama, Chile brine at pH 2; **E**) Qaidam Lake, China brine at pH 7; **F**) Qaidam Lake, China brine at pH 2.

C.3 Composition Simplifications

Here, we compare the differences in the rejection of Li⁺ and Mg²⁺ ions, between the dual cation and actual multicomponent salt-lake brine. The errors for Li⁺ and Mg²⁺ are plotted in up and down triangles, for solution pH of 7 and 2, in Supp. Fig. 10A & B, respectively. The dual cation experiments used in this analysis are outlined in Supp.Table 8, and the multicomponent experiments correspond to the 10 g/L data presented in Supp.Table 1. The plots in Supp. Fig 10 are obtained by interpolating between the experimental measurements, using the validated model presented in the previous sections.

Supplementary Figure 10: Plot of the error in species rejection (defined as the difference between dual cation brines and multicomponent salt-lake brines at the same feed molarity) against the transmembrane water flux at **A**) pH 7; and **B**) pH 2, respectively. Simulated brine that mimics both the cation and anion ratios (green lines and markers) register maximum rejection error of 4 % and 15 % at pH 7 and 2, respectively, for both Li⁺ & Mg²⁺, while dual cation brines with only one anion, Cl⁻ (blue) or SO₄²⁻ (red), register rejection errors up to 80 % for both pH levels.

420 421

422

423

In the previous section, we documented evidence of transport coupling between cations and anions, due to electromigration from the induced potential gradient. In the literature, however, when new membranes are characterized, the anionic compositions of the feed solutions are often simplified. Here, we are interested to evaluate the effect of this simplification

on the separation factor of Li^+ - Mg^{2+} .

Supp. Fig. 10A illustrate the species rejection error against the transmembrane water 425 flux, at a solution pH of 7. The LM-C, LM-S and LM-CS brine results are graphed in blue, 426 red and green, respectively. For solutions with one anion, the errors in species rejection are 427 large for the LM-C and LM-S brines, registering maximum absolute errors of 80 % for Li⁺, 428 and 25 % for Mg²⁺. When the anionic composition is accurately replicated with the LM-CS 429 brine, the corresponding absolute errors for Li^+ and Mg^{2+} fall under under 4 % for both 430 ions. Similar observations are registered under a solution pH of 2, as illustrated in Supp. 431 Fig. 10B. 432

The differences in cationic rejection can be attributed to transport coupling with the 433 anions, to preserve electroneutrality in the permeate solution. In the absence of SO_4^{2-} ions, 434 as represented by the LM-C feed brine, the anionic flux is significantly overestimated. This 435 arises from the high effective partition coefficient and diffusive flux of the Cl⁻ ions, as dis-436 cussed in the previous sections. A stronger electric potential gradient than that with the 437 multicomponent brine is induced, increasing the transmembrane cationic flux. Given that 438 the effective partition coefficient of Li⁺ is about one order of magnitude greater than that 439 of Mg²⁺, Li⁺ is preferentially transported over Mg²⁺. The rejection of Li⁺, consequently, 440 falls due to its higher permeance, while its effect on the rejection of Mg^{2+} is less significant; 441 this mechanism explains the observed differences in rejection with the LM-C brine in Supp. 442 Fig. 10A & B. 443

When Cl^- ions are absent in the feed solution, as mimicked by the LM-S brine, the opposite effect occurs. The transmembrane anionic flux falls by 80 % approximately, due to the low effective partition coefficient of SO_4^{2-} ions. To preserve electroneutrality, the corresponding cationic fluxes of Li⁺ and Mg²⁺ decrease proportionally, magnifying its rejection. This explains the elevated rejections of Li⁺ and Mg²⁺ observed in Supp. Fig. 10A & B.

Lastly, when both Cl^- and SO_4^{2-} ions are represented in the feed solution, as illustrated by the LM-CS brine, the rejection errors for the cations decrease to be under 4 % at pH

451	7, and under 15 $\%$ at pH 2. We speculate that the higher errors at pH 2 arose from com-
452	petition from Na^+ and K^+ for partitioning, due to Donnan exclusion from the positively
453	charged membrane. Based on the rejection values, the errors in the $\mathrm{Li^+}$ - $\mathrm{Mg^{2+}}$ separa-
454	tion factor are consistently under 15 %, for both solution pH. These findings demonstrate a
455	causal relationship between cation-anion transport coupling and the derived separation fac-
456	tors; future membrane characterizations should utilize solutions with the appropriate anionic
457	compositions, to obtain accurate simulation of the transport phenomena of salt-lake brines.

458 References

- (1) Micari, M.; Diamantidou, D.; Heijman, B.; Moser, M.; Haidari, A.; Spanjers, H.;
 Bertsch, V. Experimental and theoretical characterization of commercial nanofiltration
 membranes for the treatment of ion exchange spent regenerant. *Journal of Membrane Science* 2020, 606, 118117.
- (2) Labban, O.; Liu, C.; Chong, T. H.; Lienhard, J. H. Relating transport modeling to
 nanofiltration membrane fabrication: Navigating the permeability-selectivity trade-off
 in desalination pretreatment. *Journal of Membrane Science* 2018, 554, 26–38.
- (3) Park, S. H.; Kim, J. H.; Moon, S. J.; Jung, J. T.; Wang, H. H.; Ali, A.; Quist-Jensen, C. A.; Macedonio, F.; Drioli, E.; Lee, Y. M. Lithium recovery from artificial
 brine using energy-efficient membrane distillation and nanofiltration. *Journal of Membrane Science* 2020, 598, 117683.
- (4) Nie, X. Y.; Sun, S. Y.; Sun, Z.; Song, X.; Yu, J. G. Ion-fractionation of lithium ions from
 magnesium ions by electrodialysis using monovalent selective ion-exchange membranes.
 Desalination 2017, 403, 128–135.
- (5) Williams, A. E.; McKibben, M. A. A brine interface in the Salton Sea Geothermal
 System, California: Fluid geochemical and isotopic characteristics. *Geochimica et Cos- mochimica Acta* 1989, *53*, 1905–1920.
- (6) Goon, G. S.; Labban, O.; Foo, Z. H.; Zhao, X.; Lienhard, J. H. Deformation-induced
 cleaning of organically fouled membranes: Fundamentals and techno-economic assessment for spiral-wound membranes. *Journal of Membrane Science* 2021, 626, 119169.
- (7) Geraldes, V.; Brites Alves, A. M. Computer program for simulation of mass transport
 in nanofiltration membranes. *Journal of Membrane Science* 2008, *321*, 172–182.

S37
481	(8)	Wang, R.; Lin, S. Pore model for nanofiltration: History, theoretical framework, key
482		predictions, limitations, and prospects. Journal of Membrane Science 2021, 620.
483	(9)	Yaroshchuk, A.; Bruening, M. L.; Zholkovskiy, E. Modelling nanofiltration of electrolyte
484		solutions. Advances in Colloid and Interface Science 2019, 268, 39–63.
485	(10)	Foo, Z. H.; Rehman, D.; Coombs, O. Z.; Deshmukh, A.; Lienhard, J. H. Multicompo-
486		nent Fickian solution-diffusion model for osmotic transport through membranes. $Jour$ -
487		nal of Membrane Science 2021 , 640, 119819.
488	(11)	Wijmans, J. G.; Baker, R. W. The solution-diffusion model: a review. Journal of Mem-
489		brane Science 1995 , 107, 1–21.
490	(12)	Epsztein, R.; Shaulsky, E.; Dizge, N.; Warsinger, D. M.; Elimelech, M. Role of Ionic
491		Charge Density in Donnan Exclusion of Monovalent Anions by Nanofiltration. Envi-
492		ronmental Science and Technology 2018, 52, 4108–4116.
493	(13)	Lu, C.; Hu, C.; Ritt, C. L.; Hua, X.; Sun, J.; Xia, H.; Liu, Y.; Li, DW.; Ma, B.;
494		Elimelech, M.; Qu, J. In Situ Characterization of Dehydration during Ion Transport in
495		Polymeric Nanochannels. Journal of the American Chemical Society 2021, 143, 14242–
496		14252.
497	(14)	Malmir, H.; Epsztein, R.; Elimelech, M.; Haji-Akbari, A. Induced Charge Anisotropy:
498		A Hidden Variable Affecting Ion Transport through Membranes. Matter 2020, 2, 735–
499		750.
500	(15)	Duignan, T. T.; Zhao, X. S. The Born model can accurately describe electrostatic ion
501		solvation. Physical Chemistry Chemical Physics 2020, 22, 25126–25135.
502	(16)	Labban, O.; Liu, C.; Chong, T. H.; Lienhard, J. H. Fundamentals of low-pressure
503		nanofiltration: Membrane characterization, modeling, and understanding the multi-
504		ionic interactions in water softening. Journal of Membrane Science 2017, 521, 18–32.

S38

- (17) Bird, R. B.; Klingenberg, D. J. Multicomponent diffusion-A brief review. Advances in
 Water Resources 2013, 62, 238–242.
- (18) Tow, E. W.; Lienhard, J. H. Quantifying osmotic membrane fouling to enable compar isons across diverse processes. *Journal of Membrane Science* 2016, *511*, 92–107.
- (19) Chan, E. P.; Frieberg, B. R.; Ito, K.; Tarver, J.; Tyagi, M.; Zhang, W.; Coughlin, E. B.;
 Stafford, C. M.; Roy, A.; Rosenberg, S.; Soles, C. L. Insights into the Water Transport
 Mechanism in Polymeric Membranes from Neutron Scattering. *Macromolecules* 2020,
 53, 1443–1450.
- (20) Yaroshchuk, A.; Bruening, M. L.; Licón Bernal, E. E. Solution-Diffusion-Electro-Migration model and its uses for analysis of nanofiltration, pressure-retarded osmosis and forward osmosis in multi-ionic solutions. *Journal of Membrane Science* 2013, 447, 463–476.
- (21) Wilson, A. D.; Lee, H.; Stetson, C. Local stress within a granular molecular solvent
 matrix, a mechanism for individual ion hydration. *Journal of Molecular Liquids* 2022, 119544.
- (22) Marcus, Y. The solvation number of ions obtained from their entropies of solvation.
 Journal of Solution Chemistry 1986, 15, 291–306.
- (23) Richards, L. A.; Schäfer, A. I.; Richards, B. S.; Corry, B. Quantifying barriers to
 monovalent anion transport in narrow non-polar pores. *Physical Chemistry Chemical Physics* 2012, 14, 11633–11638.
- (24) Liu, S.; Ganti-Agrawal, S.; Keten, S.; Lueptow, R. M. Molecular insights into charged
 nanofiltration membranes: Structure, water transport, and water diffusion. *Journal of Membrane Science* 2022, 644, 120057.

528	(25)	Kingsbury, R. S.; Wang, J.; Coronell, O. Comparison of water and salt transport prop-
529		erties of ion exchange, reverse osmosis, and nanofiltration membranes for desalination
530		and energy applications. Journal of Membrane Science 2020, 604, 117998.
531	(26)	Hussain, S.; Haji-Akbari, A. Studying rare events using forward-flux sampling: Recent
532		breakthroughs and future outlook. Journal of Chemical Physics 2020, 152, 60901.
533	(27)	Taylor, R.; Krishna, R. Multicomponent mass transfer; Wiley, 1993; p 579.
534	(28)	Ranjan Puhan, M.; Sutariya, B.; Karan, S. Revisiting the alkali hydrolysis of polyamide
535		nanofiltration membranes. Journal of Membrane Science 2022, 661, 120887.