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ABSTRACT

The computational modeling of the reactive transport of suspended
paerticles 1s particularly challenging because particles settle
differentially and they are involved in physicochemical reactions that
are often nonlinear and sometimes fast with respect to the fluid
turbulence. Examples of such reactions are particle coagulation,
precipitation/dissolution, adsorption, and secondary nucleation. The
kinetics of coagulation are examined and it is concluded that in the
aquatic environment particle number concentration correlations are
significant and that particles of size greater than about 0.1 micron
tend to collide most often with particles that are much smaller in size,
contrary to the theory of Hunt (1982). An improved model for the
collision frequency function for turbulent shear 1s proposed that takes
into account the intermittency in the microscale shear rate. Extending
the work of Daly (1984), a kinetic model of frazil ice growth is
formulated and verified against experimental data. To incorporate fast,
nonlinear reaction kinetics Iinto a general transport model, the
transport equaticn for the one-point, joint scalar probability density
function (pdf) is employed. Pope's (1981) Monte Carlo technique for
solving the pdf transport equation is extended to allow simulation over
nonuniform grids. 1In addition, stochastic algorithms for simulating
differential sedimentation and radial dif{usion are developed. Finally,
the capabilities of the model are demonstrated by simulations of frazil
ice formation In a river, transport and deposition of sludge particles
discharged from a coastal outfall, and desorption of trace elements from
resuspended, contaminated sediments.

Thesis Supervisor: Keith D. Stolzenbach
‘Title: Assoclate Professor of Civil Engineering
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I. BACKGROUND AND REVIEW

The ultimate goal of environmental research is the understanding of
the dynamics of individual natural processes In a local sense, and how
they interact in a global sense. The ability to predict the dynamic
behavior of the environﬁent is requisite to the assessment of the impact.
of artificial perturbations and the development of effective management
strategies.

Fxperimental research over the past two or three decades has
greatly increased our understanding of 1ndividua1 physical, biological
and chemical processes that contribute to variations iIn the
environment. There ié still much to be done. However, as part of the
research effort, it is useful to attempt to.synthesize the availlable
knowledge of individual processes by formuiating global analytical
models. These global models may then be used to study interactions
among various processes and further enhance our insight. With
sufficient testing and refinement, global models may eventually be used
in a predictive mode.

The formulation and implementation of a global model is
particularly challenging because of the potentially large number of
component processes involved, the nonlinear interactions that must be
preserved, and the resulting wide range of space and time scales that
must be simulated. To be of any practical value, however, the global
model must maintain flexibility in problem specification, accuracy of

results, and efficiency in computation.
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The goal of this thesis is to develop the capability to model
simultareously the transport and reaction of dissolved and solid
constituents in rivers, lakes and coastal waterbodies. A major part of
the effort is devoted to developing a general framework within which
accurate and efficient algorithms for computing transport and reaction
may be incorporated. In the hope of being able to gain insight into the
dynamic Interactions amongst processes, a miﬁimum of empiricism is
used. Before going into details about the modeling apLproach some

general aspects of aquatic transport modeling will be reviewed.

1.1 TFormulation of the General Problem
In general terms, the equation that governs the mean reactive
transport of both solid and dissolved constituents in the environment is

the familiar advective-diffusion equation,

2<o.> 3<0,> 3<0,>
i~ (1) 3 d (1) (1) 3
se— = - (U rut 85 ox, - ox, (7 + 0% o% )+
+ <s(j)(g)> (1-1)

where <¢j> i{s the local mean concentration of constituent j, <Ui> is

the mean advection velocity, ng) i1s the settling velocity of j-

particies (1f comstituent j is dissolved then wéj) = 0), r(1) 1s the
turbulent eddy diffusivity corresponding to the i-direction, p(1) 1is
the molecular diffusivity, 814 is the Kroenecher delta function, 1 =
1,2 correspond to horizontal directions, i = 3 corresponds to the

vertical direction and S(j)(¢) is a source term which is in general a

function of the total ensemble of constituent concentrations, ¢.
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Accordingly, the terms on the right hand side represent the
contributions of advection, particle buoyancy, turbulent dispersion,
molecular diffusion, and reaction proéesses to the net temporal change
in the local concentration.

The possible types of 1nteraqtions amongst the varlous processes
may conveniently be classified according to the ordering of the
component time scales. For example, consider a steady flow remote from

physical boundaries. Defining the scales

(3)
o} = .¢—j U = .U_i w(j) = ws
0,] * o U* S,0 W*Zj)
¢j i : s
S(j) ) S(j) L ii_ .o 1_,(i) +D(j) (1-2)
o D iy o T R L F)
Eq. 1-1 may be rewritten as
8<H.> <o > 3<6.>
i __ A * i~ _ *(3) 3
st - @)U - ) v 843 %
a ox t 0x
i S i
3<e.>
1 ) *(1 *(1 1 *(j
+(-tz)—*((r()fb())_2‘_)+(777) <8 (J)> (1-3)
axi axi tr
where
2 6.
L L (3) L (3) j
t = - t, = o— t = t = (1=4)
a Uo d Po s wsjo r Sijs

are the time scales characterizing each process. If there are ¢

constituents under consideration, then there are (20 + 2) time scales.
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Nonlinear interactions occur between processes that add or remove
mass from a material volume of fluid as it is being advected at the
local mean velocity <Uj>. These processes are settling, diffusion and

(3)

S

reaction. Consider the time scale ordering t(j) & ¢4 £t for all

r
j=1,2,...,0, for example. For this case settling may be neglected as
a transport process, but diffusion will be extremely important in
controlling the rate at which the reaction proceeds. The interaction

be tween diffusion and reaction will be nonlinear insofar as the reaction

1s nonlinear. The time scale ordering t, £ t(J) 4 t(j)

d - g+ om the other

hand, will not result in any nonlinear interactions since in this case
the system will be well mixed and reaction will proceed independently of
the diffusion or settling processes. In the general case the separation
of time scales will not be so distinct and the time scales for the
settling or reaction of different species will vary greatly. Also, for
unsteady flows or flows near non—homogeuneous boundaries additional time
and length scales will be introduced to describe the associated temporal
or spatial variability. Nevertheless, in formulating a gemneral
procedure for solving Eq. 1-1, it is necessary bo'include the capability
to handle any ordering of the time scales, elther directly or
indirectly.

The influence of fluid turbulence on reactive transport is
accounted for in the general conservation equation, Eq. 1-1, through the
terms representing turbulent diffusion and reaction. By writing the
turbulent diffusion term as we have in Eq. 1-1 we have already adopted
the "eddy diffusivity" approach for modeling the correlation between

turbulent fluctuating velocity and concentration, namely,
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v o< 9>

- <uy 62 1y o,

(1-5)

where T'ij 1is the eddy diffusivity tensor which 1is assumed diagonal
(Tyy = 0 for 1 # j, Tyy = r(j) for 1 = j). The scalar flux
-<u; ¢'> 1s also responsible for the genmeration of concentration
variance, <o'2>.

The eddy diffusivity r(i) is related to the (assumed stationary

and homogeneous) turbulence through the relation (Tennekes and Lumley,
1972)
t

> [ R
] o

(3)

r (t) d= - (1-6)

j

where Rj(T) 1s the Lagrangian velocity autocorrelation function for

the j-direction. If Rj(T) 1s a monotonically decreasing function of
the time shift, t, then for short times, t, we see that the eddy
diffusivity increases with diffusion time (i.e., with the diffusion
length scale). For long times the autocorrelation approaches zero and
the integral approaches the Lagrangian time scale. Thus for diffusion
times longer than the Lagrangian time scale (or diffusicn scales larger
than the integral length scale of the turbulence) the eddy diffusivity
{s constant. In isotropic turbulence the Lagrangian time scale is of
order k/e, where k = <u; u;>/2 is the turbulent kinetic energy and e¢ 1is
the energy dissipation rate. This means that the eddy diffusivity for
long diffusion times must be of order k2/e. Although the use of an
eddy diffusivity formulation to model turbulent dispersion 1is not
without problems (Tennekes and Lumley, 1972) given our ignorance of

turbulent dispersion mechanisms, it is not clear that a more complex

approach would yield any better results.
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The influence of turbulence on reaction can be uncovered by

expanding the source term about the mean concentratlons,

<s(e)> = S(<¢>) + Y %T <d(i) s(9) <¢>> (1-7)

1=2

where the differemntials are given by (Williamson, Crowell and Trotter,

1972)
@ sl .o = « % 2t s Lo
9 <o RIS | <o>
- ) ! 21 22 %
a1+a2+...ao=i a1!a2!...adl <¢1 L) "'¢c 2
!
X — 2 - S(¢) (1-8)

® <o>
1. 32 4
d9, B0, .. a¢c°

Thus we see that, if the reaction is nonlinear, the turbulence

a a a
correlations <¢l s ¢22...¢0°>, where ¢ is the total number of

constituents and ay are the multinomial coefficients, will affect the
mean reaction rate. Of course we cannot neglect the role of molecula:x

diffusion. While turbulence 1is the source of such correlations as

a a a
<o 1, ¢ 2...¢ G), molecular diffusion acts to remove the correlations.
1 2 o

The actual levels of correlation at any point in space and time are
determined by the dynamic balance between local turbulent generation and
redistribution, and molecular dissipation processes.

For example, under homogeneous and isotropic conditions, the

equation governing the decay of concentration variance is
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l2 ] !2
<o > _ _ 30 2, _ _ <6 > _
t = =12 D U(F )T . (1-9)
m
where
E (n) dn
l2 f ¢
t = __fﬁL_zT___ = 0 (1-10)
m 30 |2 2 2
12D<(7-) > 12D [ n E¢(n) dn

0

i{s the characteristic mixing time scale and E¢(n) is the concentration
variance spectrum as a function of wave number n. Corrsin (1964)
approximated the integrals in Eq. 1-10 using universal forms for E¢(n)
to obtain estimates of the mixing time scale. His results may be
expressed in terms of the integral time scale k/e and the Kolmogorov

time scale (v/e)l/2 as

()
Y]

2.7 (3 = 56)”% K/e sc < 0o(1) (1-11)

/2

(ad
[

2.0 k/e + 0.5(\;/5)1 1n Sc 5, > 1 (1-12)

where Sc is the Schmidt number for mass transfer or the Prandtl number
for heat transfer. These relations may be used t§ estimate the rate at
which concentration variance is dissipated by turbulent mixing and
molecular diffusion.

Just as viscosity determines the smallest scale of fluid motion,
molecular diffusion contfols the smallest scale of concentration
fluctuations. The smallest scale of fluid motion is the Kolmogorov
microscale (v3/g)1/4. 1If the Schmidt number is less than one, the
concentration variance will be destroved faster than the turbulent

kinetic energy so that the smallest scale of coucentration fluctuation
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will be larger than the Kolmogorov scale. by a factor sc—3/4
(Batchelor, Howells and Townsend, 1959). Conversely, if the Schmidt
number is greater than one the smallest scale of concentration
fluctuation will be smaller than the Kolmogorov scale, by a factor
Sc-1/2 (Batchelor, 1959).

Thus, to model the turbulent transport of dissolved and solid
constituents we need to have information on the distributions of k, €
and T(J). Methods for estimating these parameters will be discussed

in the following section.

1.2 Methods of Estimating Turbulence Parameters

There are three strategies, in general, that one may use to
estimate the distributicus of k, e and r(j) for use in the general
mass conservation equation. If the flow is sufficiently simple these
parameters may be computed from established semi-empirical relationships
and scaling laws, provided ome already has a good estimate of the
sources and sinks of turbulent energy (e.g., mean current shear, density
stratification, etc.). If no mean flow information is available, one
may rely on observational data to obtain typical magnitudes. If the
flow is not sufficiently simple or more detailed information 1is
required, one may use a turbulence model to obtain the necessary
parameters. Rodi (1980) and Lumley (1980) have provided general revieus
of current techniques in turbulence modeling. Models for the eddy
diffusivity in environmental flows may be found in Okubo (1971) and
Fischer et al. (1979). In this section observations of k and ¢ in
natural waters will be summarized and some simple relationships for

estimating the distributions of these parameters in channels and

boundary layers will be presented.
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Table 1-1 summarizes measurements of the energy dissipation rate
and the turbulence intensity that have been made 1in natufal waters. It
is emphasized that the measurements are presented here only to indicate
order of magnitude variations, since the accuracy of some of the data
sets 1s suspect. The turbulence intensity can only be identified in
flows that are bounded and have reasonably well aefined integral scales,
such és ch;nnels and boundary layers. Knowing the mean velocity, one
can estimate the turbulent kinetic emergy from the turbulence intensity.

The majority of turbulence measurements have been made in the
oceanic environment. The energy dissipation rate in the ocean mixed
layer is highly variable and seems to respond quite quickly to
atmospheric forcing (Dillon and Caldwell, 1980). Levels of e around
10-3 to 10-1 cm2/sec3 are characteristic of near surface waters
under high wind conditions. Levelé of ¢ around 1075 to 107%
cm2/sec3 are typical.of calm surface waters and deeper waters
including and below the thermocline. The same can be said for the
energy dissipation rate in lakes, although the average levels seem to be
slightly higher than in the ocean. The energy dissipation rates in the
ocean bottom boundary layer are dependent both on the mean current
velocity and on the distance from the bed. These factors account for
the large range of values presented in Table 1-1.

Taking all the observations into consideration, the overall range
of e appears to be from 10-6 to 100 cm2/sec3. This corresponds
to ranges of the Kolmogorov length and time scales of 0.03 cm to 1 cm
and 0.1 sec to 100 sec, respectively. For mean current speeds ranging
from 1 cm)sec to 100 cm/sec (Okubo, 1971) the values of the turbulence

intensity in Table 1-1 indicate turbulent kinetic energy varying from
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about 5 x 10~% em2/sec? to 300 cm2/sec2. This corresponds to

ranges of the integral lemgth (k3/2/¢) and time (k/e) scales of 0.1 m
to 50 m and, say, 30 sec to 3,000 sec. Figure 1-1 is a convenient plot
of the variation of the Kolmogorov length and time scales as a function
of €.

Table 1-2 presents some empirical relationships for estimating the
distribution of k, € and T' in open ;hannel flows énd csnstant shear
mixing layers. These relationships were determined by assuming that the
flow is in local equilibrium with production of turbulent kinetic energy
balancing the energy dissipation rate and by modeling the turbulent eddy
viscosity vy as (Rodi, 1980)

v, = 0.09 K2/e (1-13)

The eddy diffusivity was obtained through use of Reynold's analogy with
the turbulent Schmidt number set equal to one. The values of the
turbulence parameters obtained with these relationships compare quite
well with the available data (Nagakawa et al. 1975; El Telbany and

Reynolds, 1981).

1.3 Modeling of Environmental Reactions

The types of reactions that occur iIn’ the aquatic environment may be
classified into two broad categories according to whether they are fast
or slow with respect to the rate of turbulent mixing. Slow reactions
proceed independently of turbulent transport because by the time the
reaction has progressed to any extent molecular mixing has virtually

eliminated any local variance in concentration. Since the time scale
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for turbulent mixing, as measured by the ratio k/e, varies from a minute
to an hour, slow reactions have a characteristic time scale of several
hours or longer. Included in this category are some oxidation/reduction
reactions, such as the oxidation of MnII to MnIV, and the

coagulation of particles under conditions of low particle number
concentrations or low ionic strength.

Fast reactions may be further subdivided into linear and nonlinear
reactions. For zero or first order single-species reactious the
computation of the mean source term i1s straightforward. If the reacticn
1s nonlinear, however, the local reaction rate will be 1limited by the

local rate of turbulent mixing. As indicated in Section 1.1, the mean

source term for nonlinear reactions may be expressed in terms of a

a a a
series of correlations <¢1 , ¢22...¢00> where the level of correlation

is determined by the balance between thrbu;ent generation and diffusion,
and molecular destruction processes. Examples of such reactions include
transpor t-1limited growth reactions such as frazil ice formation and the

formation of certain chemical precipitates.

Irrespective of whether the reaction is linear or nonlinear, if the
reaction 1s chemically reversible then it may be possible to assume that
the reaction is always in local chemical equilibrium. If the processes
that disrupt the local chemical equilibrium, such as differential
sedimentation, diffusion across a chemical gradient or Interfering
irreversible reactions, occur much more slowly than local mixing, then
departures from equilibrium will be small and re-equilibration will Bé
very fast. Indeed, we can then assume that local chemical equilibrium

will always prevail.



- 306 -

There have been few attempts to model the reactive transport of
both dissoclved and solid constituents. When solid specles have been
included in the model, either the effect of the distribution of particle
size on sedimentation and coagulation was neglected (Sayre, 1969; Nihoul
and Adam, 1975; Ariathurai and Krone, 1976; Smith and O'Connor, 1977;
Chapman, 1982) or the modeling of these processes was over-simplified
(Somlyody, 1978; Hahn, Kaser and Klute, 1980). When nonlinear reactions
such as precipitation/dissolution and sorption were considered the
resulting nonlinear interactions between the reaction, diffusion, and
sedimentation processes were neglected either by assuming that settling
and réaction obey first-order kinetics (Chen and Orlob, 1975; Yousef and
Gloyna, 1977) or that reaction proceeds independently of transport
(Grove and Wood, 1979; Chapman, 1982). Most reactive transport models
that have been successfully applied have involved only dissolved
constituents and reactions amongst them that are relatively slow with
respect to the rate of transport. These ir:lude models for the reactive
transport of dissolved nutrients discharged from local sources (Orlob,
1972).

All nonlinear reactions are sensitive to turbulence to some
extent. It may be argued, though, that the majority of environmental
reactions amongst dissolved constituents are either so slow that
chemical kinetics control the reaction rate or are reversible and so
fast that local chemical equilibrium always prevails. However, there is
an important class of environmental reactions that, be they slow or fast
with respect to the turbulence, are directly controlled by the
microscale turbulent shear rate. These reactions involve interactions

with or amongst suspended particles.
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By controlling the relative velocity with which particles approach
each other, the microscale shear rate (e/v)l/2 determines the rate of
shear—~induced coagulatioﬁ (Krone, 1976; Hunt, 1980) and the rate of
secondary nucleation of frazil ice crystals (Garabedian and Strickland-
Constable, 1974; Evans et al., 1974). For diffusion-controlled growth
of a particle the transport of dissolved substance to or from the
concentration boundary layer sﬁrrounding the particle is modulated by
the microscale shear rate (Batchelor, 1979, 1980). Diffusion-control of
particle growth is known to be important for frazil ice growth
(Kallungal and Barduhn, 1977) and may be important for the nucleation
and dissolution of some precipitates and the iniﬁial adsorption of trace
elements onto particles (Morel, 19383).

The inability of existiﬁg models to properly incorporate the
reactive transport of particles may be partially aftributed to the
fnefficiency of conventional finite difference ana finite element
schemes for computing differential sedimentation within the framework of
a set of coupled partial differential equations of the form of Eq. 1-1.
Since sedimentation is modeled with an advection operator, to maintain
sufficient accuracy with these techniques one either has to use a higher
order advection operator or an unreasonably small grid spacing in the
vertical direction. These alternatives are both computatiomally
expensive. In addi?ion the modeling of nonlinear reactions presents
special difficulties because of the appearance of concentration
correlations Iin the average reaction rate, Eq. 1-6. To close the system
of equations one must somehow model these correlations. The current
p;;ctice in the modeling of environmental reactions 1s to lgnore the

correlations. It is clear that if these limitations are to be overcome



a new outlsok will have to be adopted in the formulation of the reactive

trangport model.

1.4 Scope and Objectives of Present Study

The review presented in the previous sections indicates that there
are a number of environmental processes that involve or are controlled
by the reactive differential transport of suspended.particles. In
addition some of these processes are modulated by the local rate of
turbulent mixing. Because of the computational limitations of the
numerical scheme existing reactive transport models either do not
include these processes or treat them in such an oversimplified manner
as to neglect many of the important interactions. Accordingly this
thesis has the following major objectives:

1. To incorporate particle reaction kinetics into a general’ 3-D

transport model.

2. To demonstrate the capabilities‘of the model by applying it to

several case studies. .

Chapter II deals with the modeling of coagulation in natural
waters. An improved model for the collision frequency function for
turbulent shear-induced coagulation is proposed which takes into account
the intermittency in the microscale shear rate. The stochastic nature
of the coagulation process is examined, and it is concluded that
correlations of particle number concentrations may have a significant
effect on the evolution of the particle size distribution, particularly
for the larger particles. Other than by direct Monte Carlo simulation
we have no means at present of modeling these correlations. By

considering the influence of individual particle interactions it is
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shown, countrary t; the theory of Hunt (1980, 1982), that coagulation of
particles is mainly a result of collisions with the very smallest
particles. Numerical simulations are used ts demonstrate that the
generally observed shape of the particle size distributions in coastal
waters is a result of particle interactions that may be related to the
inclusion of collision efficiency functions in the numerical scheme
rather than the local (in particle size space) equilibrium of volume
flux, as proposed by Hunt.

The details of the general reactive transport model are presented
in Chapter III. The basis for the model is the solution of the general
transport equation for the one-point, joint scalar probability density
function, rather than the conventional moment equations. Pope (1981)
has devised a simple Monte Carlo technique for solving this transport
equation. ﬁis technique is extended to allow simulation over a Qariable
mesh grid. An improved advection algorithm is proposed which permits
accurate modeling of the differential sedimentation process. Advantage
is taken of the gain in computational efficiency to incorporate
realistic reaction kinetics for such processes as coagulation and
precipitation/dissolution that have been beyond the capacity of previous
models.

Applications of the modeling techniques presented in Chapters II
and III are demonstrated in Chapter IV. Extending the work of Daly
(1984), a kinetic model for frazil ice growth is proposed. The model 1is
calibrated and verified against experimental data. To demonstrate its
flexibility and capabilities, the Monte Carlo model 1is applied to such
problems of current interest as the formation of frazil ice 1in rivers,

the disposal of sewage sludge from coastal outfalls, and the desorption
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of copper from resuspended sediments. Finally, the work 1slsummarized

and conclusions are given in Chapter V.
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II. THE KINETICS OF COAGULATION

The representation cf the kineties of particle coagulation in

ma thema tical equations is a very difficult task. On the one hand, one
does not want to approach the problem by accounting for the motion of
individual particles; on the other hand, one does not want to misrepre-
sent the physics by oversimplification. As a result of this difficulty
there has been much confusion in the literature regarding a number of
subtleties involved in the modeling of coagulation. The purpose of this
chapter is to clarify some existing problems in the literature in order
to make the theoretical basis for coagulation modeling more coherent.
Before proceeding to this task the foundation upon which the modeling of

suspended particle transport is based will be laid out.

2.1 Some Aspects of Modeling the Transport of Particles

Suspended particles are ubiquitous in natural waters. It is not
surprising that they play an important role in the biogeochemical
cycle of nearly all chemicals. For example, through adsorption-
desorption reactions coupled with coagulation and sedimentation
processes, particles are thought to control the geochemistry of most
trace elements (Morel, 1983; Karickhoff, 1984). Particles also affect
water quality by limiting the penetration of sunlight (Ariathurai and
Krone, 1976). Suspended particulate matter consists mainly of clays,
metal oxides, microorganisms, organic polymers (Hahn et al., 1980;
Karickhoff, 1984) and, in colder waters, frazil ice. The smallest
particles that may be detected by present electronic or optical
measurement techniques are about 1 pm in "diameter"”. The largest

suspended particles observed are of order 100 pm in size.



Table 2-) summarizes some observations of ‘suspended particle
distributions in natural waters. The concentration range of filterable
suspended particles spans six or seven orders of magnitude from 0.01°
mg/% in the deep ocean to 50,000 mg/f& near the outlet of sludge
outfalls. 1In rivers and estuaries the suspended sedimeat load is very
sensitive to the flow conditions, ranging from a few mg/& to as high as
10,000 mg/% under flood flows. In estuaries the particle concentrations
decrease with depth and downstream distance. In productive lake and
reservoir surface waters the solids concentrations are of the order 1 to
10 mg/% under normal conditicns, but may reach up to a few hundred mg/ %
{f the waters become eutrophic. In the open ocean suspended solids
concentrations rarely exceed 1 mg/f and decrease rapidly with depth in
the surface 200 m until a concentration of the order of 0.01 mg/R is
reached, after which the decrease in concentration is very small.

Bottom nepheloid layers and coastal submarine canyons represent local
regions of elevated solids concentrations, as do waste outfalls.
particle size distributions are often described by an equation of

the form

g() = = A2 (2-1)

where g(1) is the number density distribution (number of particles per
unit fluid volume per unit particle length), d¢(L) 1is the number
concentration (number of particles per unit fluid volume) of particles
of length scale £ - d2/2 to £ + d%/z, and A and b are constants. For
regions far from sources of particles, such as the mid-depths of the

ccean, the slope deviates little from an average value of b = 4.0.
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McCave (1983) notes that for bottom nepheloid layers and in shallow
coastal waters the size distribution iIs characterized by two segments of
slope b < 4 for sizes finer and b > 4 for sizes coarser than about 4 to
8 um. The data of Faisst (1980) indicates that the size distribution of
sewage sludge is well described by a slope of b = 4. 1In the surface
waters of lakes and oceans, and in rivers (and presumably in estuaries
as well, although I couid not find any data on size distributions in
such wateré) the coefficient b ranges from about 1.5 to 4.0. This large
variation in b probably reflects the input of suspended particles due to
resuspension of bottom sediments and algal productivity.

For particles smaller thar about 1 pm in size that are beyond the
detection limit there-is reason to believe that the mass and number
densities aecrease with decreasing size because coagulation has
incorporated them into larger aggregates (0‘'Melia, 1980). The numerical
simulatiorns to be presented in éection 2.5.2 support this reasoning.
Hence it will be assumed that particles less than 1 pm in size
contribute negligibly to the total suspended particle mass, and that the
number flux of particles through 1 ym size due to coagulation may either
be specified or neglected, depending on the situation.

To model suspended particle transport and coagulation with an
equation of the form of Eq. 1-1, several assumptions and approximations
have to be made. The most basic assumption that is implicit in Eq. 1-1
is that the fluid-solid suspension behaves as a continuum. To be
considered as a continuum, however, the local particle concentration
must be a well defined quantity. That {s, the local volume over which
the concentration is defined must be large enough to contain a

statistically significant number of particles, yet it must be small
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enough that it does not include real variations in the suspension.
Lumley (1976) presented, without proof, an expression for estimating the
accuracy of applying the continuum assumption as a function of the local
number concentration of particles. Because Lumley's result is so
important for assessing the validity of the continuum assumption, it is
derived here from first principles for the purpose of identifying the
assumptions and approximations on which it is based.

First, the error committed in defining the particle concentration
over a volume, V, too small to contain a significant number of particles
will be estimated. To do this the volume V is subdivided into smaller
voiumes each of equal size AV and sufficiently small that the following
assumptions are satisfied:

1) the probability that the volume AV contains a single particle is
approximately p = <N> AV/V where <N> is the average number of
particles in the volume V;

2) the probability that the volume AV contains two or more
particles is negligible compared to p;

3) the number of particles in any volume AV is independent of the
number of particles in any other non-overlapping volume AV.

Under these conditions the statistics of the total number of particles
in V is described by the binomial distribution (Benjamin and Cornell,

1970),

V/AV - n

viav) p" (1 - p) n=0,1,2,...,V/AV  (2-2)

py(n) = (
The mean number of particles in V is

KN> = pV/AV : (2-3)
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If V/AV is very large then the binomial distribution may be approximated

by the Poisson distribution

<" axp(—<N>)

= n=0,1,2,..., (2-4)

PN(n) =

for which the root-mean-square (rms) number of particles in V is
N>1/2,  As the averaging volume increases the rms error in the
resulting number councentration decreases.

To improve the accuracy of the concentration estimate, the
averaging volume may be increased until the smallest dynamically
significant scale of fluid motion, n, is reached. Any further increase
in the size of the averaging volume will result in real variations in
the particle number concentration beiﬁg averaged into the estimate. Let
us assume that the x-axis 1s orignted in the direction of the local
gfadient in the number concentration ¢. The local variation in ¢ may be
written as

6 = ¢, +tax+ a2x2 + ... (2-5)

where ¢, is the number concentration defined over a volume of scale

much less than n. If n is the scale of variation in ¢ then
a, ~ 04 /n) a, ~ 006 /%) (2-6)
1 o/M 2 o/ M

The total number of particles 1n.a volume V' of length scale L is
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obtained by integration,

NV = [ff ¢ av ~ oo, L7 + —5 ) (2-7)
vl

Note that the linear variation in ¢ does not contribute to the volume
integral. Hence the error committed in averaging over a volume that is
too large increases as the square of the ratio of L to n. The total
error E in the estimate of the number concentration is the sum of the

component errors

-1/2 | 1 (L2 3 -1/2 |1 L2
E = <N +§(;) = (L7 ¢,) +’3'('ﬁ) (2-8)

The total error is minimized at the point where 3E/dL = 0, that 1is,

4
_ (81 1/7 | )
L = (% g:) (2-9)

The total error in the concentration estimate at this point 1is

-2/7

E o~ (on°) (2-10)

As stated by Lumley (1976), the error in applying the continuum
assumption 1is proportional to the -2/7 power of the number of particles
in the volume corresponding to the smallest dynamically significant
scale of fluid motion, n.

In turbulent natural waters the smallest dynamically significant
écale is the Kolmogorov length scale, 7 = (v3/e)1/4, which varies

from about 0.03 cm to 1 cm. The volume n3 thus ranges from about
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3 x 10~3 em3 to 100 em3. Within such a volume the suspension

may be considered to be well mixed so that the volume may be taken as
the characteristic volume over which the local concentration 1is
defined. For an error of 1%, Eq. 2-10 indicates that the volume

n3 should contain 107 particles, for 107 error it should contain

3 x 103 particles and for 20% error it should contain 102

particles. Assuming that in natural water; particles raﬁge f£om 1 to
100 pm in diameter d and are distributed in number as d'4, then at a
concentration of 10X mg/f there will be approximately 10X+5
particles/cm3. For a minimum averaging volume of ﬂ3 = 10~3 cm3

we need a mass concentration of 10 mg/® or greater to be able to apply
the continuum assumption with an error of less than 10%. Thus we see
from Table 2-1 that the application of the assumption will be valid in
all cases egéept for mid-ocean waters. Further, when we discfetize the
particle size range Into size classes we must ensure that each size
class contains a sufficiently high number concentration. To partially
compensate for the fact that particle number densities decrease
logarithmically with size it is often expedient to choose particle size
classes whose size band increases logarithmically with size.

To model the settling behavior of suspended particles Stokes' law
is frequently employed. The Stokes approximaéion may safely be applied
for a particle Reynélds number Uy d/v less than 1/2, where Ug is the
terminal settling velocity and d is the diameter of the (assumed
spherical) particle (Lumley, 1976). The maximum particle size for which

Stokes law may be applied is thus

2

d = [ \ ]1/2
max g(s - 1)

(2-11)
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where s is the specific gravity of the particle. The bulk specific
gravity of relatively large suspended particles is typically 1.01 to
1.20 (Dillon, 1964; Riley, 1970; Krone, 1972; Chase, 1979) for which
dpax ranges from about 170 pm to 450 pm. From the point of view of

the Reynolds number criterion, then, the application of Stokes law will
always be valid.

There ar; some complications, however. The presence of a double
layer on colloidal (< 1 um) particles is well known ané leads to a
different force balance on the particle tﬁan that assumed by Stokes
law. For particles larger than about 5 pm in size the effect of the
double layer is largely unknown. From detailed observations of the
settling behavior of individual natural aggregates in a settling‘
chamber, Chase (1979) has concluded that surface coatiﬁgs, solution
electrolytes, and dissolved argaﬁic substances all contribute to a
nonlinear drag reduction on natural particles relative to the Stokes
drag. assumption. Chase noted that the effect of the reduced skin
friction was particularly apparent for the smaller aggregate sizes.
Another factor that must be taken into account is the reduction in the
density of aggregates with increasing size (McCave, 1984). Because of
the diversity in types of particles, there is a large range in observed
densities for aggregates of the same size. These complicating factors
are normally circumvented by using an empirical function that describes
the variation of apparent density with size in conjunction with Stokes
law (Tambo and Watanabe, 1979; McCave, 1984).

Another assumption implicit in Eq. 1-1 is that the particles have

negligible inertia and, apart from settling, they are advected with the
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fluid. We note that for Kolmogorov length scales in natural waters
ranging from 0.03 ecm to 1 cm, suspended particles are always small
relative to the smallest length scale of the turbulence. In addition,
for Kolmo orov time scales spanning 0.1 sec to 100 sec the particle time
constant

(s-l)dz

= —ﬁv— (2"'12)

is short compared to the shortest time scale of the turbulence for
Smax = 1.2 and dpax = 200 um. Under these conditions, Lumley (1976)
showed that the particle inertia may be neglected 1if

-1/4

2 (2-13)

d/n < 5 Re

where n is the Kolmogorov length scale and Rey is the Reynolds number
of the turbulence based on the integral scale. For turbulence time
scales k/e, where k is the turbulent kinetic energy, ranging from 30 sec
to 3000 sec the largest turbulence Reynolds number will be about 106
for which the critical diameter will be about 160 um. Hence the neglect
of particle inertia will always be a valid approximation.

Finally we note that the particles will have a negligible effect on
the fluid motion. Batchelor and Green (1972b) computed that for a
suspension of idertical spherical particles in pure strain a vo lume
concentration of 0.003 is required to modify the dilute fluid viscosity
by 1%. The volume concentration in natural waters, on the other hand,
rarely exceeds 0.001 so that the energy dissipated by the particles will

normally be negligible.
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It is clear that .to model the transport of suspended particles one
must be willing to make a number of approximations. One hopes, however,
that with the level of detail adopted here the essential physics will be
captured and the model will describe at least the average behavior of

particle transport In natural waters.

2.2 The Mechanics of Particle Collisions

The mechanisms that cause suspended particles to collide include
Brownian motion, fluid shear, and differential sedimentation. In
addition, turbulent shear can cause particles to break uwp. However, the
experimental evidence indicates that particle breakup 1s limited to
large (> 1 um), weakly bonded aggregates under high shear (> 102
em2/sec3) (Tambo and Hozumi, 1979). Since such shear rates are very
rarely observed in matural waters, particle bfeakqp will not be
considered as a mechanism affecting the distribution of particles.

To compute the frequency with which a test particle collides with
other particles we first assume that the test particle does not
interfere in any way with other particles (i.e., we assume that the test
particle occupies no space) and compute the frequency with wﬁich other
particles come into contact with the imaginary test particle. The
modification to the collision rate due to short range hydrodynamic
deflection, van der Waals' forces, and electrostatic effects 1s then

accounted for with a collision efficiency function.

2.2.1 Collision Frequency Functions
For non-interfering particles a test particle of radius ry is

said to have collided with a second particle of radius ry when the
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second particle has come to within a distance (rj + rj) of the test

par ticle (i{.e., the particles are just touching). The collision
frequency function B(ri,rj) 1s a measure of the rate at which
non-interfering i- and j-particles collide, and depends on the mechanism
of collision.

Table 2-2 summarizes the collision frequency functions for the
various mechanisms. The functions are expressed in terms of particle
volume vy. Since volume is conserved during the coagulation process,
it is a more useful indicator of particle size. Presented in Table 2-2
is an improved model for the collision frequency function due to
turbulent shear. The modification to Saffman and Turnmer's (1956) model
is to account for the intermittent behavior of the fluctuating energy
dissipation rate field. The derivation of the improved collision
frequency function is the main subject of this section.

When turbulent shear motions exist in the fluid, particles may
collide by differential advectiorn. The instantaneous flux of
j-particles to a test i-particle may be written as

4n (ri +r )2 w

3 rir, +r

) (2-14)
gty 3

where 04 is the number concentration of j-sized particles and wy 1is
the inward radial velocity relative to the test particle. If the
turbulence is assumed to be locally isotropic, then the shear will be

randomly oriented and

1 du
w = = (r, +r,) | — (2-15)
rr{ﬁj 2 i j lax rffj
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where du/dx is the linear shear rate and the factor of 1/2 is included
to account for the fact that, on average, the shear will be such that
half the time the particles will diverge rather than converge. Since
the particles are much smaller than the Kolmogorov length scale, (ri +
rj) « (v3/¢)}/4, and local isotropy has already been assumed,

then

duy  _ € _
(3;) = Ts5v (2-16)

At this point in their derivation, Saffman and Turner (1956)
assumed that G = du/dx Is normally distributed. If such is the case

then the probability density function for |G| is

N

(2-17)

Q |o
[ —

2 1
o(le]) = —7m— el 3
(2n) g A

[ R

where'oé is the varianée of G, and the mean value of IG' may be easily

computed to be

qel> = ml’? .

G (2-18)

Hence, as obtained by Saffman and Turner (1956), the mean flux of j-
particles to the test particle is

9 1/2 1/2

3 <e>
21t(r1 + rj) (;) (ng) ¢j

2
lnt(r1 + rj) <wr r1+rj> ¢j

1/2
1.29(r; + ¢ y3 Le2 (2-19)

—795 ¢
3 v1/2 j
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and the collision frequency function is

1/2, 1/2

ﬂ(ri,rj) = 1.29(r1 + rj)3 <e> /v (2-20)

Given what was konown about turbulence at the time, Saffman and
Turner's assumption that the local shear rate is normally distributed
was reasonable. However, it is now well known that the small-scale
gstructure of turbulence is highly intermittent. Observations by a
number of researchers (Batchelor and Townsend, 1949; Van Atta and Chen,
1970; Van Atta and Park, 1972; Kuo and Corrsin, 1971) suggest that the
distributions of small~scale turbulence parameters are highly nonuniform
in space and time and have an intermittent nature which becomes more
clearly defined with increasing Reynolds number. That is, as the
Reynolds ﬁumber increases, the degree of intermittency increases, and
simultaneously the scale range (or wave number range) for which there
is appreciable intarmittency continues to expand. Grant, Stewart
and Moilliet (1962) noted measured values of ¢ that varied by a factor
of four or more even when there was no appreciable evidence of any
change in the overall nature of the turbulence.

The strong intermittency of the small-scale fluctuations ensures
that the probability distributions for the small-scale turbulence
components are highly non-Gaussian. In the papers by Obukhov (1962) and
Kolmogorov (1962) it was suggested that the dissipation rate e(f,t) has
a log-normal probability distribution. This hypothesis prompted a great
amount of experimental research aimed at determining the probability
distribution of velocity derivatives (Van Atta and Chen, 1970;

Kholmyanskii, 1970; Stewart, Wilson and Burling, 1970; Gibsocn, Stegen
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and Williams, 1970). The data are presented and discussed in Monin and
Yaglom (1975). The measu;ements show noticeable departure of the
measured distributions from the log-normal distribution at extreme
values of the measured variables. Hence, the log-normal dlstribution
does not accurately describe the extreme tail of the true velocity
derivative distribution so that moments of relatively high order may not
be accurately evaluated if this distribution is assumed. However, the
use of an assumed log-normal distribution is a great improvement over
the assumption of normally-distributed velocity derivatives used by
Saffman and Turner (1956) and will be adopted here.

Assuming that z = G2 = (du/dx)2 is log-normally distributed,

the probability density function for z may be written as

p(Z) = 1/3 ' exp[_% (ln ; - <1n z>)2]
(27) z 0y, , In z
- 1/2 exp[- ( 1/; In ( f ))2] (2-21)
(2w) z a0 (2) o m
In z In z 2

where Ez is the median of z and cin . is the variance of 1ln z
(Benjamin and Cormell, 1970). For the log-normal distribution it can

easily be shown that if b is any real number, then

-]
b. _ b _~b 1.2 2 e
z"> = i z' p(z) dz = m, exp(i-b Oin z) (2-22)
Hence any moment of z can be related to <z> by the relationship
<zb> 1 2 2
= - exp[i 91nz (b - b)] (2-23)

<{z>



2
To determine %1n z in terms of known parameters we first oltserve

that
<zz> 2
> = exp[o], ,] (2-24)
<z>
so that
2 <z <(ou/ox)®>
ol , = In( 22) = mn S ) =l kK (2-25)
{z> <(du/dx)"> "

where K, is the kurtosis of the veloecity derivative.

The kurtosis of the velocity derivative is known to be Reynolds
number dependent. Summaries of the available data by Kuo and Corsin
(1971) and by Van Atta and Antonia (1980) indicate that for Ry < 200,

Ky ~ Ry0:2 while for Ry > 200, Ky ~ R)0-41, where Ry

is the Reynolds number based on the Taylor microscale. Figure 2-1,
taken from Van Atta and Antonia (1980), illustrates these trends. Hence
01, , ¢an be determined from the kurtosis using the empirical
information represented by Fig. 2-1, if the Reynolds number is known.

The use of a_Reynoids number based on the Taylor microscale is
impractical and a functional dependence on more basic variables is
desirable. If we again invoke local isotropy, then <u?> = 2k/3, where

k is the turbulent kinetic energy, and using Eq. 2-16 the Taylor

microscale may be approximated as

<u2>1/2 10kv]1/2

A = = ————

<(?)u/'c’>x)2>1/2 <>

(2-26)
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and the Reyrnolds number as

Wby ast?
RN~ ~ 3 172 (2-27)
(Ke>v)
Knowing cfn 2 in terms of Ky(k,<e>) we then use Eq. 2-23 again

to determine

1 _ <z>1/2
exp [— Z 1n Ku] = WZ‘—- (2"28)
u

1/2 /2

<z > = <z>1

Since <zl/2> = <|bu/bx|> we can finally obtain the collision frequency

function for turbulent shear as

B(ri,rj) = 21t(r1 + rj)3 <|bu/bx|>

_2n c. +1.)3 <e>1/?
= (i3)172 Ty 7Ty o« /& 172
u

)3 <rs>1/2

1/4 1/2
v

(2-29)
] K,

= 1.62 (ri +r

This result differs from that of Saffman and Turner, Eq. 2-20, by the
numerical constant and the factor Ku'1/4.

Support for this improved model of the collision frequency function
may be derived from the experimental measurements of Delichatsics and
Probstein (1975). These researchers investigated the coagulation of
latex particles in a fully developed turbulent pipe flow. During the
course of their experiments the observed particle sizes ranged from 0.2

pm to 0.8 pm in radius. To. remove any electrostatic effects the
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particle suspension was initially completely destabilized with the
addition of chemical coagulants. As a result the collision efficlencies
will be very close to one for the range of particle sizes observed.
Delichatsios and Probstein assumed a model for the collision frequency
function due to turbulent shear of the form ﬁ(ri,rj) = b(ri+r§) (z-:/\))ll2
and determined the constant b from their measurements. For coagulation
in a flow of 10 gallons per minute through a smooth-walled l-inch
diameter pipe, they report a value of b = 0.86. 1If d is the pipe

diame ter, U is the average velocity, and f is the friction factor then
the friction velocity may be estimated as u, = ﬁ(f/8)1/2, the energy
dissipation rate is approximately <e> = £U 3/2d, and the turbulent
kinetic energy k = 3u*2/2. For a smooth-walled pipe the friction

factor 1s computed to be f = 0.024 and using Eq. 2-27 the turbulence
Reynolds number 1is R) = 30. From Figure 2-1 the corresponding'
magnitude of the kurtosis is K, = 5. Substituting into Eq. 2-29
indicates a value of b = 1.08, which is closer to the experimentally
determined value than that of 1.29 in Saffman and Turner's model.

Of course, given the possible experimental measurement errors and
the errors involved in estimating the turbulence parameters, it is
difficult to attach much significance to the small differences in the
above values of the parameter b; it can be argued that the experimental
measurements do not invalidate either model. Note also from Figure 2-1
that the value of K, varies only over a factor of 10 for four orders
of magnitude change in R) so that Ky can vary at most by a factor of
1.8. It is thus doubtful that any experiment will demonstrate the

superiority of either model, especially given the limitations In current

techniques for generating homogeneous turbulence and for measuring
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particle size distributions. However the improved model is recommended

for use since it is physically more rigorous.

2.2.2 Collision Efficiency Functions

The collision frequency functions derived in the previous section
assume that particles travel in rectilinear paths without interference
from each other. in reality the motion of a particle generates a
velocity gradient in its vicinity that affects the paths of oncoming
particles. Also, when the particles get close enough attractive London
van der Waals' forces and repulsive electrostatic double-layer forces
come into play and modify the particle paths. These real effects are
accounted for with collision efficiency functions which when multiplied
by the collision frequency function provide a complete measure of the
frequencf of collision Between particles.

The strategy for computing c&llision efficiency functions is to
integrate from a given starting point the equatious of motion for a j-
particle approaching a test i-particle. The van der Waals' and
electrostatic forces are included in the equations of motion. The
possible starting points are those that would result in collision 1if the
particles did not interfere with each other. The fraction of the
starting points that result in collision when particle interference 1is
accounted for is the collision efficiency, E(vy, Vj).

The derivation of collision efficiency functions for the various
collision mechanisms is obviously complex and beyond the scope of this
discussion. Only the results will be presented here. For collisions
due to Brownian motion, Valioulis et al. (1984) have computed efficiency

functions for particles in water that behave as shown in Figure 2-2,



0.8

>
S
Z
w
O
ik 0.6
w
Z
o
@
|
-]
O
&
0.4
0.2
Figure 2-2

- 64 -

oo'r.’.' = ° .:,:—T-:ﬂo::
. - ,. ? .’.0: o"’;"sﬂ"'
,
= I.
. 4
Vo
'.
¢ 1y
Ly
] i — A/ (K T)=1 G2
—==A/(kT)=10°
: e~ A/(KT)=152
—ese- A/(kT)=10"
~ecos-A /(KT )=10
! <ssee-A/(kT)=102
]
JL'
h’
§ i 1
0 25 50 75 100

PARTICLE RADIUS RATIO (ry/rq)

Collision efficiency function for collisions due to

Brownian motion (from Valioulis et al., 1984).



- 65 -

that is, the efficiency increases as the ratio of particle radii. The
sole effect of the double layer forces, as indicated by the ionic
strength I appears to be to determine the critical value of A/kT beyond
which coagulation may occur. The dimensionless parameter A/kT 1is the
Hammaker group and is a measure of the relative strength of the van der
Waals' forces and the Brownian diffusion (A is the Hammaker constant, k
{s the Maxwell-Boltzman constant and T the absolute temperature).

Adler (1981) used the theory of Batchelor and Green (1972a) for the
hydrodynamic interaction of two spheres in a shear flow to compute
collision efficiency functions for shear-induced collisions. His
results, as Interpreted by Valioulis et al. (1984), are shown in Figure
2-3. Here the efficlency of collisions decreases with the ratio of
particle radii. The parameter that governs the overall ievel of

efficiency 1s

H = —2& (2-30)

144mp r23 G

where p 1s the dynamic viscosity, G is the strain rate and rp is the
radius of the larger particle. The parameter H represents the relative
strength of the van der Waals' force and the fluid shear.

For differential sedimentation, Neiburger et al. (1974) have
obtained a collision efficiency function which takes into account only
hydrodynamic effects. The efficiency is a function of the radius of the
smaller particle, rj, and the relative particle éize, ro/ry, as
shown in Figure 2-4. For a fixed relative particle size the collision
efficiency increases with increasing particle size since the deflecting

hydrodynamic forces become less important as particle inertia
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{ncreases. For the same reason the collision efficiency decreases with
the relative particle size for fixed r). For r]/r2 near one wake
capture occurs when the two particles are large enough fer inertial
effects to become appreciable.

Note that the effect of Brownian motion has not been included in
the collision efficiency for shear or differential sedimentation.
Preliminary work by Feke and S;howalter (1983) haé shown that Brownian
moticn can have a significant influence in either increasing or
decreasing the collision rate. However, incorporating this effect into
collision efficiency functions is very difficult and remains to be done

in any general way.

2.3 The Stochastic Coagulation Equation

| It was shown in Section 2.2 that the fnstantaneous expected number
of collisions of j-particles with an arbitrary i-particle pér unit
volume per unit time is 5(v1,Vj) E(vi,vy) ¢j. It follows that

the instantaneous expected number of collisions between all i{- and
j-particles per unit volume per unit time 1is ﬂ(Vi,Vj) E(Vi,Vj)

6165 Each collision per unit volume results in the local number
concentration of i- and j-particles each being reduced by one and that
of particles of volume (v§ + Vj) being increased by one. As

particlés in a local region of space coagulate there is a local decrease
in the number of particles available for further coagulation. It is to
be expected that all particles of any given size will not experience the
same history of collisions. As a result it is possible that some
particles in the local region will become very 1;rge in a relatively

short time by coagulating with a few other large particles. There will
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be a 1imit on the size that these few fortunate particles may attain
because of the finite amount of mass in their immediate vicinity. Other
particles will take a relatively long time to achieve the same increase
in size because they will have coagulated with smaller particles. It is
apparent that the coagulation process itself will cause local
fluctuations in the number concentration of particles. Thus, for
eéample, the average numbef of collisions between 1I- and j-particles

over a long period of time is

B(vi,v ) E(vi,v ) <¢i¢j>

] ]

= B(vi,vj) E(vi,vj) [<o,> o>+ COV(¢1,¢j)] (2-31)

where cov(¢1,¢j) is the covariance between ¢1 and ¢j.
Irrespective of any fluid turbulence, coagulation is evidently a
stochastic process.

It is important to stress at this point that coagulation causes
local fluctuations in concentration at a scale that is much smaller than
the smallest scale of the turbulence. Concentration correlations due to
the coagulation process occur over length scales comparable to the
particle length scale where the flow is essentislly a laminar shear of
fluctuating magnitude and direction. This non-interfereunce of length
scales ensures that turbulence and coagulation will be stochastically
independent. Whereas the generation mechanisms for particle
concentration correlations may be different, both turbulent and
coagulation-induced fluctuations are damped by the same mechanlism, that
1s, molecular or Brownian diffusion. As discussed in Section 1.2, the

interaction of turbulence with molecular processes results in damping of
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the turbulent fluctuations at the length scale (Dzv/s)l/4 for a
Schmidt number greater than one, where D is th: molecular diffusivity.
The scale at which coagulation-induced fluctuations will be damped will
similarly be determined by the balance between the rates of generation
and dissipation of comcentration correlations. 1In this section we wili
be concerned with coagulation-induced fluctuations only, implying length
scales much smaller than the Kolmogorov scale.

The equation that describes the time evolution of the mean number
concentration of i-particles, <¢{>, 1s called the stochastic
coagulation equation. This equation, which has been derived by
Bayewitz et al. (1974), has the form
d<¢i> i-1

1
-1
it "7 L)

[<¢j><¢1_j> + cov(¢j, ¢i_j)] B(vj, vi—j) E(vj’vi—j)

_jzl [<o;><0;> + covlog, 6;)] Blvy, vy) Elvy, vy)

. (2-32)
The equation presupposes that the smallest particles in the system have
volume v] but places no limit on the largest particle size. 1In
addition, Eq. 2-32 does not account for any sources or sinks of
particles. The first term on the right-hand size represents the
creation of i-particles by coagulation between smaller j- and (1-3)-
particles. The second term represents the loss of i-particles by
coagulation with azny other particle.

Not surprisingly, the stochastic coagulation equation is not closed

since it includes higher order statistics in the form of covariances of

concentrations. The alternatives for closing the equation are (a)



ignore the covariances, (b) model the covariances in terms of known
variables such as the mean concentrations, or (c) 1nc1ude the evolution
equations for the covariances and either ignore the higher-order
statistics in those equations or model them in terms of known

variables. Scott (1967) adopted the third approach and modeled the
triple correlations appearing in the evolution.-equation for <¢1¢j>

in terms of mean concentrations. He was then able to demonstrate that
correlation effects in a coagulating cloud of particles decrease with
time. This result, however, seems to be strongly influenced by the form
of his model for <¢$1¢j> whizh unfortunately lacks a firm physiéal

basis. The first approach for closing the coagulation equation seems to
be the most popular (Warshaw, 1967; Marcus, 1968; Gillespie, 1972).
Gillespie (1972) showed that if the covariances are ignored then as time
progresses the probability diétributiop of particle concentration
approaches a Poisson form. Indee&, if the concentration fluctuations
are initially Poisson distributed then they will remain so for all

time. This result is not surprising since by removing particle
covariances we have introduced a basic requirement for the spatial
distribution of particles to be Polsson, namely, the presence or absence
of a particle in any volume of spaée sufficiently small to contain at
most one particle is independent of the presence or absence of a
particle in any other similar but non-overlapping small volume of space
(Benjamin and Cormnell, 1970). The random appearance and disappearance

of i-sized particles at random points in space by coagulation has no

effect on the overall statistical distribution of i-particles, or of any'

other size particle. Hence, as discussed in section 2.1, the
probability distribution for the number of particles in any given volume

is the Poisson distribution.



Bayewitz ét al. (1974) were able to solve the full stochastic
coagulation equations including the covariances for the particular case
where the collision frequency and collision efficiency functions are
both comstant and independent of particles size, say ﬁ(Vi,Vj)

E(vg,vy) = c. Their solution is for the time evolution of an

initial population of unit-sized particles of number concentration
$1(0). Their results show that the particle concentrations become
Poisson distributed with time, as predicted by Gillespie (1972). They
were also able to show that for ¢)(0)ct << 1, that is, for small

initial particle number concentrations or short times after initiation
of coagulation, the covariances in the stochastic coagulation equation
could be ignored with negligible error. However, for ¢1(0)ct Z.O(l)

the effect of neglecting the covariances is to under-predict the rate of
growth of the large-particle tail of the size distribution. Bayewitz et
al. further note that with a size-dependent coagulation kermnel,

B(vi,vy) E(vy,vy), the discrepancy between the solution to the

full stochastic equation and that with the covariances neglected would
be even greater.

There are a number of Monte Carlo algoritnms that have been
developed to simulate the stochastic coalescence of rain drops In a
cloud. The early efforts by Lapidus and Shafrir (1972), Chin and
Neiburger (1972), and Robertson (1974) unfortunately suffered from lack
of statistical rigor. Chin and Neiburger (1972) and Robertson (1974)
simulated.the growth of a single drop falling through a cloud of smaller
drops. Chin and Neiburger assumed a size distribution for the smaller
drops while Robertson assigned all the smaller drops the same size.

Both techniques fail to account for all possible particle collisions,
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since only collisions with the initial drop are accounted for, and thus
do not properly simulate the effect of particle correlations (Gillesple,
1975). The techniqﬁe of Lapidus and Shafrir (1972) 1s more general but
still does not properly treat particle correlations because more than
one collision 1Is permitted during a given time step (Gillespie, 1975).
Gillespie (1975) developed an algorithm which is quite general and fully
statistically rigorous. ﬁnfortunately he did not apply his algorithm to
any test problem.

None of the analytical or Monte Carlo models presented above have
considered the mechanism which 1limits the extent of correlation between
particles, namely, microscale mixing by Broﬁnian diffusion. .Pearson,
Valioulis, and List (1984) developed a Monte Carlo technique for
simulatiag cbagulation &irectly in physical space. The algorithm tracks
the positions and sizes of a variable populafion of spherical particles
in a fixed cubical control volume. Periodic.boundary conditions are
applied in that particles leaving the control volurne are replaced with
image particles entering from the opposite boundary. The procedure may
‘be run in two basic modes: (a) to check the analytical collision
frequency functions (zssuming the collision efficiency is unity for all
particle interactions), when two particles collide the collision is
counted and one of the particles is randomly repositioned, (b) to
simulate coagulation, when two particles collide a new particle is
created that conserves the total volume of the two initial particles.
Between collisions particles move in straight paths at constant speeds
determined by the collision mechanism (or combination of ‘mechanisms)
being applied. Although short-range interactions described by the

collision frequency function are not simulated, if the Brownian



diffusion of particles is simulated along with any of the collision
mechanisms, then particle correlations will be properly accounted for.
Pearson et al. (1984) developed their Monte Carlo technique
primarily for the purpose of verifying Humt's (1980, 1982) theory on
pariicle size distributions resulting from stationary coagulation. This
topic will be addressed in Section 2.5. For the moment some of their
results may be used to examine the effect of néglecting particle
correlations when the collision frequency funciion is size dependent.
Pearson et al. (1984) considered a spatially homogeneous population
of coagulating particles of volume vy = iv; defined over the finite
range { = 1,2,...,M. Particles of volume vy are continuously
introduced into the population at the constant rate I (number per unit
fluid volume per unit time) and are removed from the population when
they have reached a size greater than vy. When stationarity 1s
achieved the rate, of voluﬁetric addition of particles, Ivj, is equal
to the volumetric rate of removal of particles. Hence, at steady state
the general equation governing the fiux of particles through any given
particle size vy is
liil <o, ><p, > + covl(p., o, ,)] B(v,, v, ) + I8(i-1)
RS MR 37 %13 37 V19
M
= jzl[<¢1><¢j> + cov(¢i,¢j)] B(vi,vj) 1 =1,2,...,M

(2-33)

where the collision efficiency function is assumed to be unity.



i J

Figures 2-5 and 2-6 are the stearyv state particle size
~distributions cbtained by Pearson et al. (1984) fo? coagulation due to
Brownian motion and turbulent shear, reépectively. Their results are
expressed in terms of a number density distribution g(v)
non-dimensionalized with the system parameters, I, vy, and kT/u or
(e/v)l/z. To assess the relative contribution of concentration
correlations, Eq. 2-33 without the covariance terms was solved
numerically and the numerical solution was compared with the Mente Carlo
results. As with the Monte Carlo algorithm, in the numerical scheme
unit-sized particles are introduced into the distribution at every time
step at the rate I and particles are removed when they have reached a
size greater than vy. All possible integral particle sizes between

vy and vy are included. The numerical algorithm thus corresponds
exactlf to the Monte Carlo algorithm except for the facL that since the
motion of individual particles is not accounted for, particle
correlations are not modeled.

For the case of coagulation due to Brownian motion only, Figure 2-5
shows that neglecting the concentration correlations causes the large
particle tail of the distribution to be over-estimated. This conclusion
also applies to the numerical results of Bayewitz et al. (1974) for the
case where the collision frequency function is constant and independent
of particle size. However, for the case of Brownian motion, Pearson et
al. simulated coagulation by tracking the motion of individual
particles; that is, they simulated Brownian diffusion as well. It is
demonstrated in Section 2.5 that for steady state coagulation due to
either Brownian motion or turbulent shear, the major comtribution to the

volume flux through any size class vy is due to collisions o<
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particles of size vy and vi-]. Hence, for any i # 1 both sides of
Eq. 2-33 may be approximated by <¢1><¢4{-1> + cov(é],i-1).

A criteria for the neglect of cov(d],41-1) as compared to '
<$1><$i-1> may be derived through the following line of reasoning.
A particle of volume vj-] in its path through a cloud of unit-sized
particles sweeps out a tube within the cloud ~f radius approximately
equal to rij-]. This "wake” behind the (1-1)-particle 1is the cause of'4
particle correlation. The mechanism by which the correlation is erased
is mixing by Brownian diffusion. If the time scale for the unit-sized
particles to completely mix behind the (i-1)-particle is much less than
the time scale for creation of the wake by coagulation, then the
particle correlation will be negligible. The time scale tq for radial
diffusion of unit-sized particles by Brownian motion over a tube of'
radius rq-) 1is

2
ty = 6rmur, ri_I/kT (2-34)

The time scale t. for removal of unit-sized particles by an (1-1)

particle is

- -1 _ 3n 1 _
to = [BCvys vy ) 8 i) = g T BV E RN (2-35)
1 i-1 &'V1
A criteria for the correlation effect to be small is tq << tp or
-1
Vi « [3v1 g(vl)] (2-36)

Substituting the system parameters corresponding to Figure 2-5 yields

the results vi-] € 890 v} for the circles and vi-] & 320 vy for
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the squares. If by "much less than" we mean "an order of magnitude less
than" then, indeed, we see from Figure 2-5 that the numerical results
without the concentration correlations begin to diverge from the Monte
Carlo results at approximately Vi;l = 20 vi.

For the case of coagulation due to turbulent shear only, Figure
2-6, there does not seem to be any significant difference between the
numerical solution and the Monte Carlo results. This might seem
surprising since Pearson et al. did not simulate Brownian diffusion for
this case. Without any mechanism to 1limit the extent of correlation
other than the removal of vy—particles and the addition of
vi-particles from random points in space it would seem that there
should be some noticeable effect of particle correlations, especially
given the results in Figure 2-5. However, fur ther consideration will
reveal tha; the lack of correlation 1s an artifact of the technique used
to model shear-induced coagulation.

Without Brownian diffusion the distribution of particles within the
control volume, once steady state conditions have been established, must
be such that each particle 1s separated from its neighbors by a distance
of order (v3/e)l/4. 1Indeed the role of molecular mixing processes
1s to reduce the scale of segregation beyond the minimum scale of the
turbulence. If molecular mixing is absent, then turbulence cannot
reduce the segregation any further than the Kolmogorov microscale
(Brodkey, 1975). If the addition of unit-sized particles into the
population was discontinued, then we would expect coagulation to cease
as well, The only reason that coagulation is observed is that
unit-sized particles are continuously introduced into the control volume

at random points. Once introduced, a unit particle will soon coagulate
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with the particle already occupying the local veclume of space. The
growth of each particle will thus be limited by the average rate at
which unit-sized particles are introduced into their local volume. When
a collision with a vj-particle results in a particle exceeding the
maximum size, vy, it is removed. Hence, the growth history of every
particle involves correlation only with unit-sized particles. Since the
unit-sized particles are placed at random within the control volume,
there 1s effectively no particle correlation whatsoever. Hence, the
results of Figure 2-6 cannot be used to conclude anything about the
extent of particle correlations caused by shear-induced coagulation
(although the comparison with the Monte Carlo results further confirms
the accuracy of the numerical integration procedure employed).

If Brownian motion and turbulent shear are superimposed, then a
criterion for neglecting particle correlations may'be derived as above.

In this case the time scale for coagulation 1is

t o= [b(l—:/\»)l/2 Vi Y g(vl)]-1 (2-37)

where b is an appropriate constant depending on the choice of collision

frequency function for turbulent shear (see Sectiomn 2.2.1). Hence, 1if

2kT ]3/5

9 (t»:/v)ll2 nb v?/3 g(Vl)

(Z-38)

vi_1 &

then the correlation effect will be small (for steady state coagulation

with a constant input of unit-sized particles). Similarly, for Brownian
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mtion and differential settling the time scale for coagulation is

4/3 -1
e = [ 0.1 f_|9p pf| Vi-1 V4 g(vi)] - (2-39)
v Pe
and the criterion for neglecting correlations 1is
2kT 3/5
v,y € (2-40)

4/3
0.9 g ;pp-pf| VI/ g(Vl)

These criteria indicate that high particle concentrations increase the
extent of correlation between particles, in agreement with the results
‘of Bayewitz et al. (1974).

From the observations of particle size distributions presented in
Table 2-1, it is evideﬁc that particles tend to be distributed as v~2
over the size range 0.5 um < r < 50 pm. Letting r; = 0.5 um and
assuming a minimum mass concentration of 0.0l mg/l, to be able to
neglect particle correlations, eq. (2-36) indicates that the maximum
particle size should be much less than 390 pm; for a typical shear rate
of 1 sec~l, eq. (2-38) indicates a maximum particle size much less
than 38 pm; for a specific gravity of 0.05, eq. (2-40) indicates a
maximum particle size much less than 25 pm. Since particle mass
concentrations much greater than 0.0l mg/l are usually of interest, we
can anticipate that particle correlations will always be significant,
particularly for the larger particles.

Summarizing, it has been shown that coagulation is a stochastic
process so that modeling the evolution of the mean number concentration
of any size particle, in a strict sense, requires having to deal with

particle concentration correlations. Small-scale mixing by Brownian
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diffusion or low particle concentrations can reduce the extent of these
correlations. For typical particle concentrations observed in the
aquatic environment, it appears that particle correlations will always
be significant. Since there is no means of modeling these correlations
at present, other than by the approach of Pearson et al. (1984)
involving direct Monte Carlo simulation of individual particle
collisions, we must be aware that numerical simulations will tend to

under-estimate the extent of coagulation.

2.4 Numerical Integration of the Coagulation Equations

The numerical solutions presented in Section 2.3 involved particle
size ranges of only two orders of magnitude in volume (or less than omne
order of magnitude in radius). To model coagulation in the aquatic
environment, oée needs to consider particle volumes ranging over eight
or nine orders of magnitude. This requirement precludes including all
possible integral particle sizes in the numerical scheme. It is thus
necessary to subdivide the particle size range into a smaller number of
sections, or size classes. Within each size class the distribution
function of any property of interest may te taken as constant or
assigned some higher order functional form with additional continuity
constraints at the boundaries of the size classes.

Numerical difficulties are introduced when the discretization
results in non-integral size classes, that is, when collisions of
particles from the 1th and jth size classes do not produce particles
belonging to the (i + j)th size class. For the case when the
distribution function is taken as constant within each size class two

techniques have been developed for overcoming this difficulty. Gelbard,



- 83 -

Tambour and Seinfeld (1980) have developed a method that essentially
involves modifying the coagulation kermnel, B(Vi,Vj) E(Vi,Vj) for

each possible interaction that results in a change in the total volume
of particles in size class k, in such a manner that volume 1Is conserved
overall and coagulation proceeds at the proper rate. The general
coagulation kernel now becomes a function of vy as well as vy and

vy. These modified coaguvlation kernels are specific to the
discretization scheme and the coagulation kernel employed. For each new
coagulation kernmel or discretization of particle size classes a whole
new set of modified coagulation kernmels must be computed, in general, by
numerical integration of double integrals. Once the modified
coagulation kernels have been computed they are substituted into the
coagulaticn equations and time integration may proceed as usual with any
conventional scheme. Although the method is completely general it does
suffer from the inflexibility and large computational cost of having to
pre-compute the modified coagulation kernels.

A much simpler technique has been developed by Lawler, 0'Melia and
Tobiason (1980). The method is equivalent to that of Gelbard et al. in
that volume is conserved overall and the technique is applicable only to
the case where the distribution function is assumed constant within each
size class. When particlzs of nominal size vy and vy coagulate they
form a particle of size (vy + v4). In general the volume (vqy +
Vj) will not correspond to a nominal size class volume but will be
within the range vy to vk+], where vg 1s the nominal value of the
kth size class and similarly for vy4+}. To conserve volume the
number flux Fn = B(vy,vy) E(vi,vy) ¢(vy) ¢(vy) is divided

into two fractions. The fraction



f

13k v -v : <1 (2-49)
of Fp 1s assigned to the kth size class and the fraction
(1 = f14k) of Fp Is assigned to the (k+1)th size class. 1If

(vy + v4) > vM, where M is the last size class, then the fraction
f =1 3 5, (2-42)

of F, 1s assigned to the Mth size class. Since the volume flux is

Fy = Fp(vy + Vj), we see that this technique conserves volume,

although the total number of particles is not properly reduced. Note
that without additional constraints or equations it is not possible to
both conserve volume and properly reduce numbers when non—-integral size
classes are used. The fractions fijk: one for each possible 1-j
fnteraction, are pre-computed before time integration proceeds.
However, as compared to Gelbard et al.'s method, the coefficients are
obviously much simpler to compute and are a function.of the particle
size range discretization only, not of the coagulation kernel. Because
of its simplicity and cost effectiveness Lawler et al.'s method 1is
preferred to that of Gelbard et al., especially since both methods have
the same level of computational accuracy.

Note that in the aquatic enviromment particle volume may not be
strictly conserved during ccagulation. As mentioned in Section 1.3 the
density of suspended particles is observed to decrease with increasing
size (McCave, 1984). This implies that when two particles coagulate to

form a larger particle water must be entrapped in the aggregate
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resulting in a larger effective particle size (and a smaller effective
particle density) than that givem by the sum of thg two initial particle
volumes. To take this effect into account in the numerical scheme would
require empirical input specifying the actual volume that each pair of
particles would adopt upon coagulation. Since this type of information
is not presently available, we must keep in mind this possible source of
error in our numerical simulations.

The discretization of the particle size range into size classes,
like any discretization procedure, should provide sufficient resolution
where the curvature in the distribution function is the greatest.
Because most of the particle numbers are normslly concentrated in the
smallest-sized particles it is usually necessary to have the finest
resolution at the small end of the size range and the coarsest
resolution at the large end. The discretization of the size range Into
logarithmically increasing size intervals is often employed to achieve
the proper resolution and reduce the number of size classes in the -
numerical scheme (Berry, 1967). In addition, as previously mentioned,
logarithmic size classes compensate for the logarithmic reduction in
particle numbers with size, thus permitting the application of the
continuum assumption in defining local particle concentrations.

The integration of the coagulation equations may be performed with
a simple explicit time stepping procedure provided the time step is
chosen appropriately. The coagulation time scale for any size class {

is

1) _ 1 (Ad -
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and the integraticn time step should be smaller than this time scale.
There are various ways of accomplishing this goal,‘two of which will be
described here. To evaluate their relative merits, results obtained
using each technique will be compared against an exact solution.

Exact unsteady solutions to the coagulation equations (without
concentration correlations) have been obtained by Golovin (1963), Scott
(1968), Drake and Wrigﬁt (1972) and B;yewitz et al.-(197z) for various
analytical coagulation kernels and initial conditions. A solution that
is convenient for our purposes is that for a constant coagulation kernel
independent of particle size and an initial exponential particle number

density distribution of the form

g(v,0) = g(vl)exp(—v/vl) (2-44)

The solution, due to Scott(1968), is

4 g(vl) exP(v_l(_;‘z—Z?f)

g(v,T) = (2-45)

(T + 2)2
where the non-dimensional time T = ¢ v} g(v]) t and c is the
magnitude of the constant coagulation kermel.

The first method of integrating the coagulation equations involves
using a single time step for all particle size classes. The time step
chosen should be smaller than the smallest value of Atr(i), 1=
1,2,...,M. Thus at each time step a complete sweep of all possible
collisions between i- and j-particles (j > 1) is performed by looping
through j = 1, i+l,...,M while i ranges from 1 to M. For each i,j pair

the number flux out of size class 1 and j and into size class k and k+l,
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where vy < vy + v5 £ vk+1, 1s accumulated. With the net fluxes

(Ad/At){ the time scales for each size class 1 are updated from

Atr(i) - b | 'qlTi (%)J (2-46)
where b is a fixed constant of magnitude less than one (usually set at
b = 0.1) 'and the minimum value At = min(Atr(l), Atr(z),...,

Atr(M)) is chosen as the time step for the next time interval.

After the time step has been computed the particle concentrations are
updated with the net fluxes A¢4. Because a single time step is ﬁsed
in the integration procedure this algorithm will be called the single
time step algori thm.

Figure 2-7 is a comparison of the numerical solution using the
single time step algorithm with Scott's exact solution, with the
coagulation kernel set at ¢ = 3.5 x 10-18 cm3/sec and the initial
particle uumber density distribution specified as g(vy,0) =

6.5 x 1073 cm3 um'3. Integer size classes were employed with

vy = 0.5 pm3. The size range was truncated at vy/v] = 125.

Hence there is some truncation error at the large end of the size range
that is not shown in Figure 2-7 since only the results for the first 65
size classes are plotted. The agreement is excellent and confirms the

accuracy of the numerical scheme.

To demonstrate the validity of using logarithmic size classes
Figure 2-8 1s a comparison of the numerical and exact solutions
corresponding to Figure 2-7 except that the size classes are spread
apart by a factor of vy/vi-1 = 100.77, The size range vy/v] =

125 1s represented by 8 size classes, instead of 125. Although there



o~ 10°
E
3
1
®
£
2
. 2
E% 10
2
o
> 101
=
(7p)
4
wl
0
i
(1)
m 10
<
p )
<
10!
Figure 2-7

- 88 -

vi/v1

Comparison of numerical solution using the single time step
algorithm with Scott's (1968) exact solution (g(vy,,0) =
6.5 x 1073 em™3 pm~3, ¢ = 3.5 x 10-18 cm3/sec,

vy = 0.5 um3, M = 125 integer size classes).
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Figure 2-8 Comparison of numerical solution using the single time step
algorithm with Scott's (1968) exact solution (same

conditions as Figure 2-7 except 8 logarithmic size classes,

vi/vi-1 = 100.77),
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has been some degradation of accuracy the numerical solution compares
quite well with the exact sclution. The discrepancy between the
solutions may be partially due to the truncation error which must be
accommodated over a larger apparent particle size range since the size
classes are spread so far apart.

An alternative technique for integrating the coagulation equations
1s based on the premise that if there 1is a wide range in the time scales
Atr(i) determined from Eq. 2-46, then it may be computationaily more
efficient to use a separate integration time step for each particle size
class. This procedure will be called the multiple time step aigorithm.
Since the coagulation equations are coupled, that is, each vy <
vy + vy < Vil interaction appears as a number flux Fp in three
separate equations if Integer size classes are used or four equations
with non-integer classes, ;hen additional book-keeping is required to
conserve particle volume. In particular, each interaction must be
assigned to a single equation and all three, or four, number fluxes
(i.e., the flux out of size classes i and j and into size classes k and
k+1) are accumulated simultameously. Of thé three possible choices each
interaction is assigned to the equation that has the smallest time
scale. Thus, considering all the equations, the one that has the
minimum time scale, say the equatican for size class &, will have all the
interactions that include particles of size vy assigned to {it. The
equation that has the next smallest time scale will have somewhat fewer
terms and so on until the equation with the longest time scale is
reached, which will be assigned no interactions 1if integer size classes
are used, or at most one term if logarithmic size classes .« mployed.

In other words, instead of performing all interactions each time step,
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as with the single time step algorithm, each iInteraction 1is assigned its
own time step chosen from the finite set of time scales Atr(i), i =
1,...,M. Given an 1nteraétion vi + v§ = vk, the time step

assigned to it is the smallest of Atr(i), Atr<j), or Atr(k).

To prevent numerical instability, if at any given time an
interaction results in a number flux that will cause the concentration
of a size class to become negati&e, then the flux is not accumulated and
the interaction 1s reassigned to the equation with the next smallest
time scale of the three possible choices. During the course of the
numerical integration if the relative »rdering of the equations should
change as a result of a change in the relative timé scales, then the
interactions that are assigned to equations whose time scales become
relatively longer must be reaséigned to equations that may now have
smaller time scales.

This algorithm is as difficult to program as 1£ is to describe.
However, it does work quite well, in fact, it is as accurate as the
single time step algorithm. Figure 2-9 corresponds to Figure 2-8 except
that the multiple time step algorithm was used to compute the numerical
solution. The numerical solutions in Figure 2-8 and 2-9 are essentially
indistinguishable. Unfortunately the multiple time step algorithm is
not as computationally efficient as the single time step method. A
number of different simulations were performed each designéd to favor
the multiple time stepping capability of this second algorithm. In
every case the multiple time step algorithm required more CPU time, by a
factor of 1.5 or more. Fven when the distribution of time scales was
such that the shortest time scale was more than 10 times as small as its

nearest competitor, the single time step algorithm was fonnd to be more
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Figure 2-9  Comparison of numerical solution using the multiple time
step algorithm with Scott's (1968) exact solution (same
conditions as Figure 2-7 except 8 logarithmic size classes,

vi/vi-1 = 100.77),
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efficient. Apparently the cost of book-keeping interactions and
guarding against numerical instability is sufficient to more than
compensate for the savings incurred by having.a few less Interactiomns to
compute at every time step. In particular, the re-ordering of equations
and the consequant reassignment of interactions required by the
evolution of the size distribution was found to be very expensive.

The number of interactions that must be computed every time step
with the single time step algorithm is of order M2/2, where M is the
total number of size classes. In principle, if the time scales are
gsufficiently spread out, the number of interactions that must be
computed with the multiple time step algorithm is of order M. It would
thus seem that the multiple time step procedure should become relatively
more efficient as the number of size classes is increased. However,
numerical siﬁulations have shown exactly the opposite trend. Apparently
with more size classes we have more opportunities for equations to
change their relative ordering and the cost of reassigning interactilons
increases tremendously with increasing numbers of equatiouns.

Hence, based on this comparison of the two algorithms along with a
few other unsuccessful algorithms that have not been reported here, the
simplest way of integrating the coagulation equations also happens to be
the most computationally efficient. In all subsequent cases the
explicit single time step algorithm has been employed to integrate the

coagulation equations.
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2.5 Particle Interactions During Stationary Coagulation

2.5.1 Coagulation Die to a Single Collision Mechanism

There has been recent interest in applying Friedlander's (1960a,b)
local equilibrium hypothesis for explaining observed particle size
distributions in the oceans and atmosphere (Hunt, 1980, 1982; Jeffrey,
1981; Pearson et al, 1984). In analogy with its famous counterpart in
turbulence theory, the concept implies such notlons as statlonarity,
equilibrium subranges, and universal constants. The theory is supported
by the favorable agreement between the predicted size distributions and
tlose observed experimentally (Hunt, 1980) and simulated by Monte Carlo
techniques (Pearson et al., 1984).

Hunt's (1980, 1982) local equilibrium theory is based on five
assumptions: (a) the coagulation process must be in a dynamic steady
state with a ccnstant volﬁme flyx through the size distribution, (b) the
collision efficiency must be independent of particle size, (e)
collisions must be dominated by particles comparable in size, (d) only
one coagulation mechanism is dominating the volume flux through a
particle size subrange, and (e) the coagulating power of each collision
mechanism may be characterized by a single parameter (xT/n, (e/v)llz,
g(pg=pg)/u for Brownian motion, turbulent shear and differential
sedimentation, respectively). Hunt (1982) lumps assumptions (c) and (d)
into one assumption, but clearly they are independent. It is possible
for one mechanism to be dominating the volume flux without that flux
being mostly due to collisions between equal-size par ticles.

Alternatively, it is also possible for collisions of equal-sized
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particles to be dominating the volume flux with each mechanism causing
about the same number of collisions per unit time.

With these assumptions, dimensional analygis may be applied to
obtain the form of the size distribution in each size sutrange over
which a single mechanism is controlling the rate of coagulation be tween
particles comparable in size. The size distributions based on particle
volume are (Hunt, 1982)

a) for Brownian motion

F
N v 1/2 -3/2 -
e N G (2-47)
b) for shear
F
_ v 11/2 -2 _
g(v) = Ash [-E— i v (2-48)
c) for differential sedimentation
Fv 1/2 -13/6
glv) = Agq [g(ps - pf)/u] Y (2-49)

where Fy is the volume flux, G = (a/v)1/2 is the turbulent shear
rate, and Ap, Agh, Ads are "universal” dimensionless constants.

The physical justification for Hunt's (and Friedlander's, 1960a,b)
first assumption has been questioned by Junge (1969) for atmospheric
aerosols and by McCave (1984) for oceanic particles on the grounds that
typical coagulation rates are too slow compared to the rate of change of
the oceanic or atmospheric conditicns for stationarity to be achleved.
In addition, McCave(1984) points out that in the ocean the sources for
particles are distributed throughout the particle size range and not

1imited to nucleation of the smallest-sized particles so that the volume



flux through any subrange, even if it is constant, is not due to
coagulation alone. With respect to the second assqmption Valioulis et
al. (1984), based on a comprehensive review of the literature, have
shown that in general collision efficlencies are strongly dependent on
particle size. They conclude that only for those mechanisms for which
the collision efficiency functions favor collisions between equal-sized
particles may local equilibrium be invoked. From Figures 2-2, 2-3 and
7-4 we see that for Brownian motion and, if the radius of the small
particle is less than about 30 pm, for differential sedimentation,
collisions between equal-sized particles are, in fact, not favored.

Jeffrey (1981) gave an alternate derivation of Hunt's theoretical
results, If collisions between equal-sized particles dominate the
volume flux, then local equilibrium is established over particle size
ranges of order vj. Hence Jeffrey approximated the expression

representing the volume flux out of size class vy by
s 2 3
) ] = F -
(vj)(Avj)bZ-1 ;fs(vi.vj)g(vi)g(‘.rj.m'i B(vj ,vj)g (vj)vJ F, (2-50)

where Fy is the volume flux and Avy ~ O(Vj). Substituting into

Eq. 2-50 the erpressions for ﬁ(VJ,VJ) for the various collision
mechanisms yields the results corresponding to Hunt's theory, namely,
Eqs. 2-47, 2-48, and 2-49.

From Jeffrey's derivation it is evident that for local equilibrium
to be in effect the terms representing collisions between equal-sized
particles must dominate the summation in Eg. 2-45. However, using
Hunt's forms for g(vy) it is easy to show that for each collision
mechanism 5(vi,vj) g(vi) g(vj) » ﬁ(vj,vj) gz(vj) for £ « j. That is, it
appears that the summation in Eq. 2-61 is dominated by terms

representing collisions with the smallest sized particles of order vy,
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not ccllisions with equal-sized particles of order vy. This internal
inconsistency leads us to doubt the validity of Hunt's local equilibrium
hypothesis.

In the remainder of this section the general validity of Hunt's
third assumption will be examined. The question of which particle
interactions dominate the flux of particles through any size class 1is
not just of academic interest. Indeed, McCave (1984) has shown that,
for the low particle concentrations observed in the ocean, the time
required for a particle to travel through the size distributiom would be
several hundred years if collisions between particles comparable in size
dominate. If small particles have to coagulate with particles much
larger in size, however, this "travel” time could be shortened
congiderably.

Analytically, a stationary particle size distribution may be
generated by considering a spatially homogeneous population of
coagulating particles of size vy = ivy, i=1,2,...,M into which
particles of volume v; are continuously introduced at a rate I
(number/volume/time) and from which particles are removed when they have
reached a size greater than vy. If the resulting stationary size
distribution is in local equilibrium the finite domain errors introduced
by the double truncation will be restricted to reglons near the
boundaries of the size distribution. Varying the range of particle size
should not affect the shape of the size distribution. If local
equilibrium is not the rule, then the effect of the truncation should be
evident throughout the size distribution, and changing the particle size
range should affect the shape of the distribution. This 1s the kind of

reasoning that has heen applied by Pearson, Valioculis and List (1984) in
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their attempt to verify Hunt's theory. Their Monte Carlo technique and
some of their results have already been discussed in Section 2.2.

Pearson et al. obtained steady-state particle size distributions
for the Brownian motion and turbulent shear mechanisms each acting alone
(so that Hunt's assumption (d) is automatically satisfied) and with the
collision efficiency set equal to ome. Since collisions between
equal-sized particles do not occur by differential sedimentation, with
the technique of constantly introducing unit-sized (vi-sized)
particles it is impossible to verify Hunt's predicted form of the size
distribution for this mechanism acting alone, the solution being g(v) =
c(t) 8(vy) with c(t) » ® as t » ». That is, to verify Hunt's form for
the differential sedimeptation subrange it is necessary to have a
mechanism that will allow particles of size vj; to collide with each
other. Because their results seemed to be insensitive to.the particle
size range employed and since the slopes of the particle number
distributions they obtained zenerally agreed with those predicted by
Hunt's theory, Pearsom et al. conclude that their results give further
support for the validity of the theory.

The agreament between the Monte Carlo simulations of Pearson et
al. and Hunt's theoretical results may be explained with reference to a
class of exact solutions derived by Klett (1975). Klett (1975) derived
the general solution for coagulation frequency functions that have the
functional form B(vi,vy) = ﬁo(v1Vj/v12)b, where B, and
b are constants. Writing each collision frequency function as the
product of a magnitude, which in general depends on the volume of the
larger narticle, and a non-dimensional function of the ratlo of the

particle volumes results in
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a) for Brownian motion

1/3 | 12
aer (L 73/7y) 34 1] 8k

. c ,
b} for shear
[(vilvj)llj + 1]3
B(vi,vj) = 2.56 vj{ 3 } = 2.56 v fz(vilvj) (2-52)

¢) for differential sedimentation

. g les - oe| a3 ) 1/3
Blvyswy) = 0.1 3 o vy {1 (vylvy) 11+ (vllvj)]}
P =~ Ps
- 0.1 & j—f————il v 3¢ (v 1v) (2-53)
v Pe 3 3 i

1)

For the case b = 0 Klett pointed out the excellent agreement
between his solution and Priedlander’s (1960) steady state size
distribution for coagulation due to Brownian motion only (which is the
sampe as Hunt's, i.e., Eq. 2-47). The reason for the agreement is
{mmediately apparent from Eq. 2-51 and the plot of the function
£i(vi/vj) in Figure 2-10. For vi/vj > 0.01, £1(vi/vy) =
1. Unless vj/wvy << 0.01 the exact solution for stationary
coagulation due to Brownian motion only will be very similar to that for

B = Bo = 8kT/3z. For the case b = 0 Klett’s exact solution is

1/2 i=1

glvp) = | 3

v,“ B (21-3)!

221-D 5 2y1 13
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Figure 2-10 The functions f), f and fj.
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For 1 > 1 the solution may be approximated by (Klett, 1975)

v, 1/2

1 -3/2
172 (ao ) Vi

1
(27)

(2-55)

g(vi)

In general the solution for this case must depend only on the parameters
I, Bo and vi, 1 = 1,...,M. Dimensional analysis reduces the number

of independent variables to (I/ﬁo)l/2 and vy, 1 =1,...,M. By

invoking local equilibrium the number of independent variables is

fur ther reduced to (Ivl/Bo)l/2 and the local particle volume

vi. Dimensional analysis then yields the functional form

F ;
_!)1/2 v -3/2

5 L (2-56)
)

g(vi) = A (
where A is a dimensionless constant. The kind of reasoning that has
been applied by Hunt (1980, 1982) and Pearson et al. (1984) is that
since Eq. 2-56 1s consistent with the asymptotic solution, Eq. 2-55,
then the particle size distribution must be in local equilibrium.
However, as will soon become evident, this consistency, though
necessary, 1s not sufficient to guarantee local equiiibrium.

A direct method of verifying the local equilibrium assumption is to
examine the magnitude of the terms in the summations in the governing
equation,

i-1

%- Y B(vj,vi_j) g(vj) g(vi_j) +-—£§ 5(1-1)
=1

3 vy

j

1,2,...M (2-57)

X
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To do this we solve Eq. 2-57 numerically as described in Section 2.4.
No sectional representation of the particle size distribution is
employed; all integral particles sizes from vj to vy are retaired in
the numerical scheme. The computed solution is thus exact to within
machine round-off error and the finite-domain error resulting from
truncation of the size distribution at vy. Klett (1975) has shown

that the truncation error for this case 1s

gp(vy) 1,1-1

where gr(vy) 1s the truncated size distripution. For a fixed M the
relative error increases with relative particle size i = vy/vy.
Figure 2-11 shows the comparison betweeﬁ the analytical solution, Eq.
.2-54, and the numerical solutions for B = By and B = 8kTf;/3p with M
= 50 and serves as a check on the numerical scheme. The numerical
solutions are indistinguishable from each other.
Figure 2-12 illustrates the variation of B(vy,vj)g(vi)g(vy)

with vj for various vj. The absolute magnitudes of the values on

the ordinate scale have no significance; the scale indicates relative
values only. The results were obtained from the numerical solution
rather than the exact solution {(only because it was more convenient).
Contrary to the local equilibrium hypothesis it i{s evident that the
dominant collisions are with particles of size comparable to vj.
Alternatively, as shown in Figure 2-13, the major velume flux through
the size distribution is due to the interaction vy + vj = vj4] for
all j. Hence, though the solution is self-similar with the similarity

parame ter (Fvlﬁo)i/z, the physical justification for the volume
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60

Comparison of the numerical solution for B = B, and

B = 8kTf]/3u with the exact solution for B = B, (o =
8kT/3p = 10721 cm3/sec, vy = 56 um3,M = 50, I = 1.7
x 1017/cm3-sec; solid 1line, exact solution; dashed

line, numerical solution).
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flux F, appearing in the soluticn is not local equilibrium. The
consistency between Eq. 2-55 and 2-56 is simply a dimensional accident.
Froﬁ Figure 2-14 it is evident that the functien fz(Vi/Vj) is
well approximated by the function (v1/Vj)1/2. This is fortunate
because the stationary size distribution for coagulation due to shear
alone can then be approximated by Klett's solution for b = 1/2 if we let
Bo = 2.5 G vy. Figure 2-15 is a comparison of the two solutions.
For this case as well, though the colution scales with the volume flux,
the size distribution is not in local equilibrium, as illustrated in
Figure 2-16.
The equivalence between the stationary solutions for coagulation
due to Brownian motion and shear with Klett's solutions for b = 0 and b
= 1/2, respectively, helps to explain the results obtained by Hunt
(1980, 1982) and Pearson et ai. (1984). As previously explained, for
differential settling acting alone, however, no stationary solution is
possible if only unit-sized particles are introduced into th;
distribution. Even if we ignore this difficulty and accept the result

g(v) ~ v-13/6 derived by Hunt, using the simple test of comparing

ﬁ(vi,vj)g(vi)g(vj) with s(vj,vj)g %vj) for 1 « j we can conclude that

local equilibrium is not in effect for this mechanism acting alone
either.

Summarizing, what we have shown in this section is that when steady
state coagulation is established by introducing unit-sized particles at
a constant rate into a homogeneous population and removing them when
they have exceeded a preset size, 1f there is ome and only one mechanism

causing collisions, then the coagulation process will not be dominated
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by coagulation of particles comparable in size. The particle
interactions that will dominate the volume flux are those of any size
pa;ticle with the smallest, unit-sized particles. The obvious question
now is what happens when there is more than one collision mechanism
acting simultaneously? This topic will be addressed in the following

section.

2.5.2 Coagulation Due to Combined Mechanisms

It was noted in the previous section that under steady state
conditions when there is a single mechanism inducing coagulation,
particles of any given size tend to coagulate most often with the
smallest particles in the system. It would be interesting to determine
whether this still holds for the case where all three mechanlsms act
simultaneously. In simulating coagulation due to combined mechanisms it
1s normally assumed that, since e>ch of the mechanisms acts
independently, the net coagulation kernel is given by the sum of the
component kernels for each mechanism, each compone;t representing the
product of a collision frequency function and a collision efficiency
function for that mechanism. In all the simulations presented so far
the collision efficiency has been arbitrarily set equal to one. It
would also be interesting to determine what effect the collision
efficlency functions presented in Section 2.2.2 have on the resulting
size distributions.

In the simulations to be presented subsequently the particle size
range is 0.1 pm to 100 um in radius. The particles are assigned a
specific gravity of 1.1. The Brownian diffusivity parameter 2kT/3p is

set at 2.5 x 10-12 cm3/sec, corresponding to a water temperature of
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T = 15°C. For the simulations performed in previous sections integral
size classes were used since the particle size range spanned only two
orders of maznitude in volume. To accommodate the nine orders of
magnitude In particle volume to be considered here we must resort to
logarithmic size classes. Accordingly, the size range 1s subdivided
into 28 size classes, each class representing a nominal volume larger
than the previous one by a factor of vi/vi_] = 101/3.  The total
mass ~. particles in the system will be maintained at approximately 100
mg/l in all cases. The simulations will be presented in pairs, with one
result corresponding to a case where the collision efficiency functions
are all equal to one and the other result corresponding to a case where
the size-dependent collision efficiency functions presented in Section
2.2.2 have been employed.

In the first pair of simulations the mean energy dizsipation rate
has been set at 10" ¢ cm2/sec3. For simplicity Saffman and
Turner's (1956) model for the collision frequency function due to
turbulent shear has been employed. The parameter prl/Z/IDp“pf|
1s thus equal to 1 cm/sec3/2, so we should expect to have a turbulent
shear subrange. For graphical convenience Figure 2-17 1s a plot of the
mass density distribution, h(log v) rather than the number density
distribution. 1In terms of the mass density distribution, the slopes
predicted by Hunt's theory are 1/2 for Brownian motion, 0O for turbulent
shear, and -1/6 fer differential sedimentation. We see from Figure 2-17
that there is quite a large difference between the two solutions. Both
solutions have an identifiable Brownian motion subrange. It is
difficult to identify a turbulent shear subrange in either solution,

although it seems to be apparent in the one in which size-dependent
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Steady state coagulation due to combined mechanisms (r) =

0.1 pm, r, = 100 um, 28 logarithmic size classes with

M
vi/vyi-y = 101/3, (p,=pg)/pg = 0-1, 2T/3p

= 2.5 x 10712 em 3/sec, e = 1072 cm2/sec3; solid

line, solution with collision efficiency set equal to one;

dashed 1line, solution with collision efficiencies from

Section 2.2.2, A/kT =1, H = 10~2).
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m1llision efficiencies were included. Hcither solution comes close to
having a -1/6 slope differential sedimentztion subrange. The frend of
increasing mass densicy with particle size at the lar.;gest particle sizes
1s real insofar as the conditions simulated here are artificial.
Presumably if we included the process of sedimentation through physical
space in the simulation the mass density would continue to decrease with
increasing particle size since this mass removal mechanism is most
efficient at large particle sizes.

To see if a turbulent shear subrange could be generated a second
pair of simulations was performed in which the energy dissipation rate
was increased by two orders of magnitude to 1 cm2/sec3. The results
are preseated In Figure 2;18. We see that we now have an iderntifiable
shear subrange in the solution in which ccllision efficlencies were
included, but no such subrange is apparent in the other sclution. If we
are willing to say that the large particle region of the distribution is
the differential sedimentation subracge, a comparison of the solutions
in Figures 2-17 and 2-18 indicates that it does mot have a unique
slope.

Bunt (1982) presented data that indicated that the slopes of the
mass density distributions should be about 0.5 for the Breownian motion
subrange, -0.5 to 0.3 for the tm:bulenlg shear subrange, and -0.65 to
-1.6 for the differential sedimentation subrange. Adopting an average
value of -1.1 for the differential sedimentation subrange it is apparemnt
that the solution with size-dependent collision efficiencies does a much
better job of reproducing the data. This is viewed as an indication
that collision efficieccies cotxihute strongly not only to the overail

rate of coagulation but also = i+ form of the size distribution and
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thus should always be employed in simulations of the coagulation
process.

To determine which interactions contribute most to the number flux
through the size distribution, Figures 2-19 and 2-20 are plots of the
relative magnitudes of the integrands B(Vi,vj) E(vi,vj) ¢(Vi) ¢(vj)
for the solutions presented in Figure 2-16. Although the inclusion of
size-dependent collision efficiency functions affects the overall
distribution of the integrands in (Vi,Vj) space, for both cases, it
appears that the dominant collisions contributing to the number flux
into or out of any given size class are due to collisions with the
smallest particles in the system. Figures 2-21 and 2-22 indicate that
the dominant contribution to the mass flux through any size class vj
1s.due to collisions of particles of size comparable to vij with the
smallest particles in the system. Thus in no way is local equilibrium
of particle collisions evér the rule. Farley (1984) has found that the

same holds true for particle collisions in unsteady coagulation as

. well. The similarity of the observational data with the solutions in

which size-dependent collision efficiencies were included appears to be
due to the complicated distribution of the coagulation integrands in
(Vi,Vj) space.

Ac a final note we wish to present typical coagulation time scales,
as indicated by the numerical simulations. For the simulations
presented in Figure 2-18 the time scales, defined by Eq. 2-54 ranged
from 2 x 109 sec to 7 x 103 sec, with the smallest time scales
correéponding to the equations for the largest particles. Thus, at a
mass concentration of 100 mg/l the coagulation process for some size

classes may be fast enough to interact nonlineaily with the turbulence.
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Figure 2-19 Relative contributions of individual collisions to the
total number of collisions. Values correspond to the
solution with collision efficiencies set equal to one in

Figure 2-17.
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RELATIVE COLLISION INTEGRANDS, £(V;,V)) a(log V;) g(log V)

Figure 2-20 Relative contributions of individual collisions to the
total number of collisions. Values correspond to the
solution with collision efficiencies from Section 2.2.2 in

Figure 2-17.
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For every order of magnitude increase in the number concentratiocm, the
time scales are reduced by one order of magnitude., As indicated in
Section 1.3, typical particle mass concentratioms range from 0.1 mg/1l to
50,000 mg/l1 in the aquatic enviromment. For concentrations of order 10
mg/l or less the influence of turbulence on the coagulation process may
be neglected. For contentrations as high as 50,000 ng/l the coagulation
time scales will be of order 1 sec, so that nonlinear coupling with

turbulent mixing may be anticipated.
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III. MONTE CARLO TECHNIQUE FOR MODELING REACTIVE

TRANSPORT IN THE AQUATIC ENVIRONMENT

In developing a numerical model for computing the transport and
reaction of solid and dissolved constituents in the aquatic environment,
one must be concerned with a number of issues that will limit the
generality of any approach that is employed. In particular, the
modeling of interactions between solid and dissolved constituents
requires, at the very least, having to deal with a large number of
constituents and a large number of physical and chemical processes.
Assoclated with the various physicochemical processes will be a wide
range of space and time scales that must be considered. Finally, the
relative time scales between physical transport processes and reaction
processes may be such that nonlinear coupling exists and must be
properly accounted for.

In this chapter a novel technique for computing reactive transport
will be introduced that at least partially overcomes all the limitations
addressed above. The conceptual basis for the modeling approach will
be presented first, followeé by demonstrations of the accuracy and
flexibility of the model algorithms in simulating various physical and
chemica.. processes. Finally, the computational efficiency of the model

will be assessed.

3.1 Conceptual Basis
The general problem that we wish to solve has already been outlined

fn Chapter I, where it was Iindicated that modeling the reactive



- 122 -

transport of solid species poses special problems, both from a
theoretical and a computational point of view. If the aquatic system
that we wish to model contains no particles, so that no differential
settling occurs, and all the reactions are elther slow with respect to
the turbulent mixing or sufficiently fast and reversible, so that local
chemical equilibrium may be invoked, then we can uncouple the reactiion
process from the physical transport processes. Siﬁce all dissolﬁed
constituents will be transported at the same rate everywhere then only
one transport equation needs to be solved. The solution procedure in
this case is one of iteration between the solution of the single
differential transpo?t equation and the solution of the coupled mass
action or kinetic equations.

When we introduce particles into the system, however, the situation
becomes considerably ﬁore complicated. Since particles settle
differentially, we need to solve a separate transport equation for each
particle size class considered. If we are studying the coagulation
process, for example, then the transport equations will be coupled
through the reaction term and, for the sake of accuracy and resolution,
{1t will be desirable to include something on the order of 10 particle
size classes. The use of an implicit finite difference formulation for
such a problem would be prohibitive since the computational cost would
increase exponentially as thé number of equations to be solved. Indeed,
we would probably be forced to use an explicit time-stepping scheme with
a first-order upwind difference operator for the advection term thus
limiting the scheme to first-order accuracy in both space and time. In
addition, to efficiently compute the contribution of reaction to the

local time rate of change, a fractional time-step or operator-splitting

technique (Yanenko, 1971) would have to be employed.
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The situation becomes further complicated when we attempt to allow
for fast, irreversible reactions which are typically nonlinear. As
indicated in Section 1.2, if we want to model the term <S(a)(9)> then we
have tc somehow model the correlations <¢il ¢;2 “oe ¢ZU>.

It has been recognized by researchers who model combustion
processes, where the reactions are highly nonlinear, very fast and
irreversible (Dopazo, i975; Janicka, Kolbe and Kollmann, 1979; ‘ope,
1976) that the most general solution to this dilemma is to attehpt to
model the transport equation for the one-point, joint scalar probability
density function (pdf). Given a set of scalar properties that specify
the reacting field, the joint pdf p(%; X, t) provides a complete
statistical description of the scalar fluctuations at any point in space
X and time t.

Following O'Brien (1980) the joint pdf transport equation may be
derived as follows. Each joint realization of the random scalar field
i3 represented mathematically as

' o
p (o3 x,t) = 1 &6(¢ (x,t) - ¢ ) (3-1)
~ o~ a=1 a ~ a
where §(x) Is the Dirac delta function. Hence, for each possible set of
scalar values (¢, at the point X and tine t, p' takes on the value
one if each actual scalar value ¢a(f’t) equals the corresponding ¢,
and zero if one or more of the ¢a(f’t) do not equal ¢,. In this

manner the joint pdf is identical to the ensemble average of p',

p(g; x,t) = <p'(g; x,t)> (3-2)
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Setting Tq = ¢g(x,t) — ¢o we have

66 = 66 o = .g..é— = __b_é___a_ = —6_6._ (3—[‘)
b¢a bta 3¢a bta bra 6¢a b¢a
so that
! dd o] A0 !

op g 08 a [ _ a dp
% . Ly 2 _En ose (x,0) -4 )] = e on (3-5)

¢ a=1 % ot y=1 v Y ot ol

Y#a

where we now use the convention of summation over repeated indices.

Similarly, it can be shown that

] a 1
.a_p— = - __¢il. g_p_ (3_6)
ax1 bxi b¢a
Substituting
09 0d o¢ 62¢
a_ a _ (a) "a a (a) _
R Yy ox, Ys SEI 63+ D ox, 3%, + 577 (3-7)

into Eq. 3-5, adding Eqs. 3-5 and 3-6 multiplied by Uj toge ther, and

ensemble averaging the result, we obtain the transport equation for the



one-point, joint scalar pdf,

1 b¢>

o _ _ 3 iy, @, (@ e
il (<U1>p + <ug p >) + <a¢ W % 83>

i a i

2
L] a ¢ .
dp a. _ 0 (a) 3
+ <b¢ D 5% % > 3% (s*"7p) (3-8)
a 171 a

The first term on the right-hand side represents the change in p(?; f,t)
due to the physical transport processes of advection and turbulent
diffusion. The second term accounts for differential settling. The
third term represents the effect of molecular mixing and the final term
is the source term, representing transport through scalar space by
reaction processes. The attraction of working with this equation rather
than the moment equation, Eq. 1-1 is that the source term appears in
closed form, that is, 1t does not have to be modeléd.' However, the
turbulent diffusion, differeﬁtial sedimentation and melecular mixing
terms do have to be modeled since they are represented as correlations
with p'. 1If, as before, we model thz turbulent transport of the pdf

as a simple gradient diffusion process then

-<u, p> =

(1) ap
1 I .

bxi

(3-9)

where (1) 1is the turbulent eddy diffusion coefficient. A model for
the differential settling term is formulated in Section 3.3.4., Various
models have been proposed for the molecular mixing term. These models
will be reviewed in Section 3.4.

Pope (1981) has devised a very efficient Monte Carlo technique for

solving the pdf transport equation, the computational expense of which
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is generally determined by the cost of integrating the reaction term.
For the solution of the coagulation equation, for example, the cost
increases as the square of the number of particle size classes
considered. As a result it is possible to compute the simultaneous
reactive transport of a much larger number of constituents, as compared
to a finite difference solution of the pdf equation.

The remainder of this chapter is devoted to presenting and
assessing various numerical algorithms for solving the joint pdf

transport equation.

3.2 Monte Carlo Formulation for Solution of the Joint PDF Equation

The Monte Carlo technique for solving the one-point jolnt scalar
pdf transport equation was devised and proven to be a valid simulation
technique by Pope (1981). For the sake of simplicity a rather heuristic
approach will be adopted here in outlining the essentials of the
technique.

As with all numerical techniques the spatial domain is first
discretized into finite control volumes surrounding each nodal point of
an orthogonal grid. The joint pdf (i.e. the independent variable) is
represented at each node by an ensemble of N elements; each of which
“contains" separate representative concentrations for each constituent

a. Denoting the ensemble at any node and at any time by E(4; x,t), any
(k)
¢

~

(k)

concentrations of the ensemble by ¢a , we see that the joint pdf is

of the elements of the ensemble by , and any of the representative

represented at any node by an ensemble of N elements, or MNg

representative concentrations,



E(¢; x,0) = g(l) ¢§1) @ﬁ_l) cbf,l)
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If all the statiztics of the ensemble E(g; X, t) equal the corresponding
statistics of the joint pdf p(q:; X, t) then the euasemble is equivalent
tn the foint pdf. The essence of the Monte Carlo technique is the
manipulation in time of these elements in such a way as to simuléte the
corresponding evwolution of the joint pdf.

An equivalent interpretation for the eiements s(k) is that they
represent spproximately eqt_nl—sized, coempietely mixed lumps of fluid
contziniag representative concentrations of each of the oonstitue-nts a.
As illustrated schematically in Figurce 3-1 each finite control volume in
the discrerized spatial domain may then be considered as amn incoupletely
mixed tank reactor. Advection causes each element to remain within the
reactor an average length of time equal to the residence time V§/Q1,
where V5 1s the wolume of the 1th control volume and Q; 1s the
flow rate through the control volume. The exchange of elements between
adjacent reactors is representative of the turbulent diffusion process.
The vertical migration of representative solid concentrations from
elesents in a given control volume to elements in the comtrol volume
below simulates the sedimentation process. The effect of mixing may be

modeled by letting random pairs of elements coalesce at a given rate,
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average their representative concentrations and then redisperse
instantaneously to form two elements. In the time between element
coalescences, reaction may proceed independently within eacﬁ element.
Each of these processes is independent of the other and proceeds at a
rate governed by its own time scale. To the extent that each element is
completely mixed on a molecular scale the size of the elements may be
assumed comparable to the Kolmogorov length scale, that 1s, of
characteristic length scale 1 mm to 1 cm.

It is emphasized that within a control volume elements have mno
relative position. Since each control volume is assumed to be spatially
uniform or, more properly, statistically homogeneous, the element set
represents typical concentrations that one would obtain if one
hypothetically took samples of volume 4nn3/3, where n 1s the
Kolmogorov length scale, f?om random pcints throughout the assumed
homogeneous control volume. In principle, the statistics of the
representative concentrations are {dentical whether one samples from the
entire control volume V4 or whether one confines oneself to sampling
from some smaller volume AV where 4n12/3 < AV < V4 and 21 1s the
integral length scale of the turbulence. For this reason we should not
concern ourselves with the misconception that we seem to be permitting
elements to mix that are separated by a distance comparable to the width
of the control volume. The representative conceatrations that occupy
the entire control volume are also the representative concentrations
that occupy a volume of length scale 21 surrounding any given
element.

In short, we are not directly simulating the physical transport of

fluid lumps through space. Rather we are simulating the effec~t that

[R—

v ) =TT O"T
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each process has on the local scalar pdf by manipulating cer tain
attributes of the statistical samﬁles, or elements. The use of such
notions as "lumps of fluid" that "move" through space and "contain”
representative concentrations is an artificial device that aids in the
conceptualization of the stochastic manipulations being applied.

This so-called element model has its origins in the coalescence-
dispersal model of Curl (1963). Spielman and Levenspiel (1965) used the
approach in a Monte Carlo simulation of coalescence and reaction of
two-phase systems in backmix reactors. These authors pointed out that
their dispersed phase model could be used to study mixing and reactlon
in homogeneous systems as well. Accordingly, Kattan and Adler (1967)
and Flagan and Appleton (1974) used the stochastic mixing model to study
combustion in homogeneous turbulence. Pope (1979) showed that the
evolution oé a reacting system described by the one-point joint scalar
pdf transport equation is equivalent to that given by the element model
formulation. The motivation for using the element model approach is
that it is conceptually simpler and computatiorally less expensive than
a finite difference or finite element formulation of the pdf transport
equation, although the fundamental basis for the element model is not as
well defined (Pope, 1979). We are thus forced to invoke the notion of
"equivalence” to prove the validity of the element model formulatiomn.

We have already indicated that the ensemble of elements is equivalent to
the joint pdf if all statistics of the ensemble are equal to the
corresponding statistics of the pdf in the limit as the number of
elements becomes infinite. Similarly, if a given operation on an
ensemble of elements results in the same modification to 1ts statistics

as another operation applied to the equivalent joint pdf then the two

operations will be said to be equivalent (Pope, 1981).
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The evolution equation for the joint pdf may be written
symbolically as a serles of operators acting on p(d; x,t),
3 3
® - (-] A+ F P huem-s]p (3-11)
i=1 j=1
where A(i), D(j), W, M, S represent, respectively, advection,
turbulent diffusion, differential settling, molecular mixing and
reaction operators. If we approximate the time derivative with a
forward-difference representation, then
o, W
p(4; x,t+at) = [1L+at (=5 A+ § DI +w+M-58)] ple; x,t)
- - i=1 j=1

(3-12)

where At is the time increment. The joint pdf transport equation is a
linear equation with variable coefficients. We may thus use the method
of approximate factorization of operators (Yanenko, 1971) to rewrite
Eq. 3-12 as

3 3

p(¢; x,t+At) = [ T (1-at A(i)) I (1l+At D(j))(1+Atw)
- - 1=1 j=1

(1+AtM) (1-AtS) | plg; x,t) + 0(At)2 (3-13)
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which is equivalent to the sequence of operations

(1)

p(gs x,t,) = (1=at A7) p(¢gs x,t, ) i=1,2,3
. - (3 .
p(y; x,t,) = (1At D7) p(gs X,y ) i =4,5,6
-7 - j = 1-3
p(¢; x,t,) = (1+at W) plg; x,t0)
p(g; x,t5) = (1+at M) ply; X, t.)
(5 x,tg = t+at) = (1-atS) p(g; x,tg) (3-14)

The intermediate times tj, t,...,tg are noticnal rather than
particular. They merely indicate the order in yhich the operations are
performed since all operations represent an integration over a full time
step At. The ordering of the operations in (3-14) is arbitrary.
Fur ther processes in the sequence may result from decomposing any of the
operators in (3-14) into a series of operators. For example, there 1is
no reason why the source term cannot be represented as a series of
processes over each of the ¢ dimensioms in scalar space just as
advection is represented as a series of processes over each of the three
dimensions in physical space.

To meet stability criteria any process in the sequence (3-14) may
be represented as a further sequence of operatioms each corresponding to

an integration over a shorter time step. For example, advection in the
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i-direction may be represented as

(1)

pld; x,t+At) p(¢3 X, t + m At )

. m
a(i) A(i)) 2 p(y; §,t) (3-15)

(1 - At

The final result represents the sequence of operations

(1)

(1)) (1 - at, A(i)) p(¢;

p(g; X, tHAt,

~

»£)

L

(i))

(i))

. _ (1) , (1) . .
p(?, X, t+2Ata (1 At AN p(Q, X, tHA L

el

(1))

(1)

| (1) (1),
p(¢g; x, tHm At (1 - at, A7) plg; x,tH(m -1)At,

)
(3-16)

However, for these operations the intermediate times are real times
since the same operation is being performed at every time step

Ata(i). The best estimate of p(?; f,t+kAta(1)) is obtained by
updating the pdf as each process A(i), D(j), W, M or S appears In
chronoiogical order. In other words, each process 1is assigned a time
scale (Ata(i), 1=1,2,3, for advection, Atd(j), j=1,2,3 for

turbulent diffusion, Ats(a), a=1,2,...,0 for differential settling,
Aty for mixing, Aty for reaction) and an absolute time. After each
process is performed the absolute time of the process is updated by 1its
time scale.‘ The choice of which process to perform next is determined
by the process with the smallest absolute time. In this manner the

simulated pdf at any time between operations is a good approximation to
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the "exact” pdf at that time, although a better approximation of the pdf
is obtained when all processes have reached the same absolute time.

The basis of Pope's Monte Carlo method is the use of stochastic
algorithms to simulate each operation in the sequences (3-14) and
(3-16). The advection, diffusion and settling operations result in the
shifting of elements from node to node while retaining their
representative concentrations (i.e., transport in physical space). The
mixing and reaction operations result in changing the representative
conicentrations within elements while retaining their location in
physical space (i.e., tramsport in scalar cpace). We will deal with the

former set of operations first.

3.3 Stochastic Modeling of Transport in Physical Space

In formulating stochastic algorithms for computing the evolution df
the joint scalar pdf in space and time it will be convenient to consider
each element as having a number of attributes. The obvious attributes
which have already been eluded to are location in physical space and
time. Other attributes will be introduced in later sections. In this
section algorithms that determine how an element changes its spatial
location as a result of advection, settiing and turbulent diffusiom will
be presented. Note that the implementation of these algorithms requires
that the mean velocity field <U1(xj)> and the distribution of the

eddy diffusivity F(i)(xj) be specified as input.

3.3.1 Pope's Algorithms for Advection and Diffusion
Pope (1981) developed stochastic algorithms for simulating

advection and diffusion that are in direct correspondence to the
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first-ordep upwind difference operator and second-order central
difference operator, respectively, commonly used in finite-difference
formulations. His algorithms, though, require a uniformly spaced grid
and a constant number N of elements at each node.

For constant grid spacing AL the upwind difference operator for

similating advection in the i-direction 1is

p(xj) - p(xj - AR)
AL

(1) _ -
AT plxy) = |<Ui(xj)>' [ ] + 0(ag) (3-17)

where the local mean velocity <Uj(x4)> is assumed to be in the

direction of increasing x. The correspouding stochastic algorithm Is to

chcose at random na(i) = in:[|<U1>‘Ata(1) N/af] elements at

node xj and node x4~AX and replacing the na(i) elements at xjy

with the na(i) elements chosen from the upstream node. The symbol

int[7] means "the closest integer to the real number y". Since the grid

spacing and number of elements per node are constant each node loses

exactly as many elements as it receives during each advection operation.
For simulating linear diffusion in the i-direction on a uniform

grid the central difference operator is

[p(x, + aR) - p(x,)]
D(i)P(x.) = r(i) (xj + A2/2) ] 5 ]
J (A2)
[p(x,) - p(x, ~ af)]
- r‘”(xj - ar/2) —3 ] ro(a)?  (3-18)

(a1)?

where P(i)(Xj) 1s the local turbulent diffusion coefficient for the
i-direction. The corresponding.stochastic algorithm is to choose at

random two groups of elements at each node without replacement. The
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(1)
d

first group of néi) = int[F(i)(xj + AR/2)At

(
is commuted with the ndi) = int[F<i)

N/(AL)Z] elements chosen

(1) 2
p N/(af) 7]

1) _

at x - AL/2)At

3 (%341

elements chosen at Xj+1 = Xj + Al. The second group of né

(i)(xj - AR/2) Atéi)

(i)(

N/(Al)zl elements chosen at xj is commuted

(1)
d

int(T
(L
d+ Xy-1
X§-1 = x§ - A%. Again, since N and AR are constant, the number of

1)

elements n§+ chosen at any node will always equal the number of

elements ngé) to be commuted with the adjacent node.

with the n = {nt[T + AR/2) At N/(AL)Z] elements chosen at

Being equivalent to the finite difference operations, the
stochastic algorithms are governed by the same stability criteria that

1imit the choice of the grid spacing AR and time steps, Ata(i) and

Atd(i), namely,

(1) ‘ (1)
At At
a (1) d 1 _
|<U1(xj)>‘ ~— < 1 r (xj) a—)—i <3 (3-19)

For the stochastic operations these criteria take on the obvious
significance that the number of elements chosen at any node for
transport to an adjacent node cannot exceed the total number of elements
available, N.

To evaluate the accuracy of Pope's stochastic algorithms the
following test cases were analyzed. To test the advection algorlthm we
consider a one—-dimensional constant velocity flow of magnitude <U> = 4
transporting a tracer from a source at x = 0 towards increasing x. The
x—dimension is discretized into a series of nodes spaced AR = 0.04 apart
and each node is assigned a constant number N = 400 of elements. The

advective time step 1s chosen to be Aty = 0.001 so that N/10 = 40
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elements will be transported from each node during each time step. The
initial concentration of all elements at all nodes is zero. The
boundary condition at x = 0 is that of a constant concentration of ome.
In other words elements transported downstream from the node x3 = 0

are replaced by elements with a concentration of one. Figure 3-2
compares the simulated concentration profiles with the exact square wave
solution for various times. The simulated results show that the front
1s advancing at the proper rate but is experiencing some undesirable
numerical dispersion. This drawback is characteristic of the
first-order upwind difference operator and it is evident that performing
the operation in a stochastic mode does not alleviate the problem. The
numerical dispersion is known to increase with the grid spacing so that
for highly convective flows an unreasonably small grid spacing AL may be
required to avoid large numerical errors. To circumvent this difficulty
a new, more accurate advection algorithm was developed and is introduced
in Section 3.3.3.

The diffusion algorithm was tested by considering a one-dimensional
domain of length one, the end-points of which are maintained at a
constant concentration of one. The node spacing is A2 = 0.04 and the
total number of elements at each node is N = 400. Initially all the

nodes are assigned a zero concentration. At time t = 0 tracer begins to

diffuse from the boundaries at a rate T 0.01. The diffusive time step

25 elements are commuted in

is chosen to be Atq = 0.0l so that N/16
each direction from each node at each time step. The exact solution
describing the diffusion of the tracer in time is (Carslaw and Jaeger,

1959)
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Figure 3-2 Simulation of advection with Pope's algorithm. The tracer
1s advected at a speed <U>=4 from a boundary at x = 0
maintained at a constant concentration of one. The solid
line is the exact solution and the symt_>-013 are the

simulated results (N = 400, Ax = 0.004, At, = 0.01).
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2 2
(-1) b [-F(2k+1; T t] cos [(2k+1) ; (x-1/2)]
k=0 L

(3-20)

where % is the distance between the boundaries. Figure 3-3 compares the
simulated concentration profiles with the exact solution. The simulated
results are in very good agreement with the exact solution. There 1s
some numericel inaccuracy in the region near x = 1/2 at later times.
This is due to the large curvature in the concentration profile which
has not been accurately resolved by the coarse grid spacing in that
region. Ideally, one would like to optimize the grid to have variable
spatial resolution. To overcome this limitation a new algorithm has

been developed and is presented in the following section.

3.3.2 Extension to Variable Grid Spacing and Element Density

For Pope's (1981) algorithms it can be said that the element
density, or the number of elements per unit spatial volume, is constant
thkroughout the domain. For anv Monte Carlo technique, increasing the
element density (the number of representative values per estimate or the
number of statistical trials, to use the statisticlan's terminology)
decreases the standard error of the estimate. In fact, the standard
error decreases as the inverse square root of the element density
(Handscomb and Hammersley, 1965). An immediate consequence of varying
the grid spacing or the total number cf elements at each node is that
the element density will vary throughout the spatial domain. Hence the
standard error of the mean concentrations computed at each node will

vary as well.
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The coepstraint of constant spacing between modal points and
constant number of elements per node for Pope‘'s advection and diffusiomn
algorithms ensures that the total number of elements at each node will
remain constant in time as the simvlation progresses. By varying the
element density the number of elements that a glven node loses during
any operation will generally not equal the number of elements that it
receives. To overcome this d;.fficulty we allow for eléments to be
duplicated or averaged as they are shifted from one node to the mnext. ‘
To illustrate how this procedure is carried out consider first the
central difference operator for simulating diffusion In the i-direction

over a non—uniform grid,

p(xjﬂ) - p(xj)

(1) __1 (1)
e i v [P (e + %5123 € ¥4 T % )
_ oD p(xy) - plx;_,) 2 5
r ((xj + xj_llz) ( X, =% )] + o(/uj) (3-21)

where Alj is the width in the fi-direction of the control volume
surrounding the node Xj, and X§+1 and xj-] are the i-cocordinates

of the nodes adjacent tc Xj. We wish to simulate a diffusion
operaticn over a single tme step, that is, from t o t+At. In finite

difference form this may be represented as

p(xj,t-l-At) = [1 + (At) D(i)] p(xj,t)

(1) _ ()
®a- T Ya+

= (1 - ) p(xj,t) + "’((1:-) p(xjﬂ.t) + “’c(li) p(xj_l.t)

(3-22)

N

where
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@ TGy +xg,/2) A
t‘j =
d+ Alj(xj+1 - xj)
(1)
r o ((x, +x,_,)/2) At
wéi) - - %x _jxl - (3-23)
3 j-1’

In stochastic form the operation represented by Eq. 3-22 involves

choosing at random two groups of elements without replacement from the

(1)

set of Ny elements at each node xj. The first group of W4 Nj
(1)
elements chosen at xj is commuted with the W44 Nj+1 elements chosen
(1)

at x,,,. The second group of W3- N, elements chosen at Xy is commuted

j+1 i
with the mgf) Nj-l elements chosen at X4o1t The net gain or loss of

(1)

a+ (N - N,) + w(i) (N - N,). Hence,

j+1 j d- j=1 j
irrespective of the grid spacing if the number of elements differs from

elements at xj is w

one node to the next then as diffusion proceeds in time we have the

computationally disastrous situation of having the total number of

elements at X5 either continually increase or continually decrease.
A simple way of maintaining Nj constant lis, for example, to

(1) (1)

replace the Wy N, elements shifted to x with o

3 j+1 d+ )

Nj+1(Nj/Nj+1

elements. The multiplication factor Nj/Nj+1 implies either
duplicating or averaging the wéi) Nj+1 elements chosen at xj+1. For
example, 1if Nj/Nj+1 equals three then for each element chosen from

the ensemble at xjy4) to be shifted to xj two additional identical
elements should be added to the element set at xj. On the other hand,
if NjINj+1 equals one-half then each pair of elements chosen from

X441 should be averaged into a single element before being added to

the element set at X4,
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To prove that this multiplication/averaging operation is valid we
adopt the same procedure used by Pope (1981). 1Let p(¢; x,t) represent
the pdf of the elements at node xj before the diffuslon operation.

The function p(d¢; Xj ,t) 1s related to the elements at xj by

N
A j o
1 ¢ (k)
- Mk=l o1 @ a
Y
= %r' 2 p' (¢, ¢(k)(xj,t)) (3-24)
j k=1 - "

as shown in Section 3.1.2. As Ny » = the function B(?; Xj,t)

converges to the true pdf p(?, Xj,t). To prove that the stochastic
diffusion algorithm is equivalent to the finite difference procedure
represented by Eq. 3-22 we need to show that after a diffusion operation
from £ to (t+At) the function ;(9; xj, t+At) converges to p(?; xj; tHA L)
in Eq. 3-22 as Ny » =. To cover both nases let Nj/Nj+1 <1 and

Ny/Nj-1 > 1, that is, the elements chosen from xj+] must be

averaged before being added to the element set at xj and the elements
chosen from x4j.) must be multiplied. If the elements chosen to be

shifted from one node to the next are denoted by ¢*(k) then after the

diffusion operation

(l-wéi)- wéi))N

~ 3
P(g3 x;, trat) = g~ [ ] o' (@ o™ 0,00
- j k=1 -
(1)
Wge Ny N, LNy, 1 /Ny) (k)
+ 1 (F= ) S ONERNC )

=1 3+1 k=(£-1)(Nj+1/Nj)+l

ot

Rl 0100 Jvic e - Bl
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w(i) N
N, Y- "§-1 ,
h| *(k)
+ ) p' (¢, ¢ (x_y»t))]
Nj-l k=1 - i1
(l—wéi)-méi))Nj
= (1 - w(i) - m(i))N [ 1
a+ a- "7 (l_wéi} _ wéi))Nj K1
(1)
#(k) (1) R T
P'((;I‘!, ¢ (xj’t))] towg, [T_ f
Wy Nj =1
(N, /N,)
N 341775
(3 ] p' (g, g*(k)(xjﬂ,t))]
j+1 k=(1-1)('N4+1/Nj)+1
(1) 1 o 51 #(k)
e PHs o Oy 0]
w4 N, _ =1 :
j-1
= (1 - méi) - wgi)) ;(9; xj,t) + wéi) ;(9; xj+1,t)
+ mgf) p(y; Xg_y0t) (3-25)

and as Ny-1, Nj, Nj41 > = this result converges to Eq. 3-22. This
confirms that the procedure of multiplying or averaging elements to be
shifted in the diffusion operation is valid.

Consider now the upwind difference operator for simulating

advection in the i-direction over a non-uniform grid,

p(xj) - p(xj_l)
j-1

] + 0(x

(1) - - -
A p(xj) = |<Ui(xj)>| [ xj—l) (3-26)

j

xj-x

In finite difference form the advection operation over a single time



step may be represented as

(1)

p(xj, t+At) = (1 - At A7) p(xj,t)
= 0P b0y oV e pexgn (e2n)
where
<U, (x,)>| At
(1) | <0y ey |
w. (%) - (3-28)
a i xj - xj_1

The corresponding stochastic algorithm is to choose at random wéi)(xj)Nj

elements at node x, and replace them with wii)(x N elements chosen

] j73-1

at xy-1. However, at node xj-] the number of elements that will be

chosen to be shifted to node xj 1is mii)(xj—l) N, ,. If either

j=1
# N or m(i)(x ) # w(i)(x ), or both, then in genmeral the number
3 j-1 a ] a =17 ’

of elements that xj loses to the downstream node will not equal the

N

number of elements that it receives from the upstream node. As before,
we can remedy this situation by multiplying the number of elements

= (M (x m, 1/ (6 (x W

received from node xj-1 by y =

" i-1
For the proof of the validity of this procedure let us first assume

that y > 1. Denoting as before the elements chosen to be shifted by

¢*(k) then after a single advection operation

(1)
(l-wa (xj))Nj

B(_(b; Xy tHAt) =-:,—[ ) p' (¢, ¢
3 k=1

*“‘)<xj,t)>

(1l(x )N

v
+ v z p'(Q) ~*(k)( j -1? )
k=1
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(1)
(1w (xj))Nj

(1) 1
=(1 -w (x,)) A P'(dhtb (x,,t))
= [(l-w(i)(x )N k=1 - 3]
a 3773
(1)
. Ywéi)(xj)Nj_l ) wa (xj )Nj_l
N (1) -
3 w, (xj)Nj-l k=1
p' (¢, 9*(k)<xj_1,t))]
(1) ~ (1) ~
= (1 -w, (xj)) p (¢; xj,t) + W, (xj)p(ck, xj_l,t) (3-29)

which converges to Eq. 3-27 as Nj, Nj-1 » . The same result can be
obtained for y < 1.

To demons:rate the usefulness of the multiplication/averaging
procedure consider again the test case for the diffusion process
presented in Sectiom 3.3.1. For the simulation shown in Figure 3-3 the
constant grid spacing was AL = 0.4 and the number of elements at each
node was N = 400. let us repeat the simulation but this time with grid
spacings of A% = 0.04 in the regions O < x < 0.28 and 0.72 < x < 1.0, AR
= 0.03 in the regions 0.28 < x < 0.40 and 0.60 < x < 0.72 and AL = 0.02
in the region 0.4 < x < 0.6. The number »f elements at each node 1is
still maintained constant at N = 400 and the time step is Aty = 0.0l.
Figure 3-4 compares the simulated results with the exact solution. As
compared to the previous simulation in Figure 3-3 the effect of
increasing the resolution in the region near x = 0.5 1s to increase the
accuracy of the solution in that region by reducing the standard error
of the numerical estimates.

The modification of Pope's (1981) algorithms for advection and

diffusion to handle non-uniform grids and variable element density
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greatly extends the flexibility of the Monte Carlo apprcach. It is
often computationally expedient to vary ghe spatial resolution of the
discretization in order to efficiently resolve the anticipated curvature
in the distribution of the modeled variables. The use of variable
element densities will allow us to increase or decrease the accuracy of

the pdf from one spatial point to the next as is necessary.

3.3.3 An Improved Advection Algorithm

To avoid having to deal with numerical dispersion in highly
convective flows an improved advection algorithm has beern developed
which takes advantage of the Lagranglan nature of the simulated
transport of Monte Carlo elements through physical space. Since each
node represents a certain volume of space Vi on average each element
should remain at a éiven node for a length of time equal to the
residence time V{/Q4, where Qi 1is the flow rate through Vj. We
thus assign each element with an additional attribute that will be
called its advective age. In the step that advances time from t to
(t+At) we advance the advective ages of all elements in the system by
At. Those elements whose advective age becomes greater than the local
residence time are chosen to be advected to the downstream node and
their residence time is reset to zero. If the element density Nj/Vj
is constant for all nodes then irrespective of the grid spacing each
node will lose as many elements as it receives during an advection
operation. If the element density varies from node to node then the
procedure of multiplying or averaging elements described in the previous

section must be applied.
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With reference to the test case for advectlion presented in Section
3.3.1, au efficient way of implementing this algorithm is as follows.
Initially, the elements at each node xj are assigned an advective age
by numbering the elements from 1 to Nj. During any time step the

(1)

advective age of each element 1is advanced by n o= int[l(Ui(xj)>|At;i)

Nj/(Xj-Xjul)]. Those elements whose advective age 1s greater than

(1)

Nj are singled out to be advected and are renumbered from 1 to no
the advective age 1 being assigned to the youngest element and n;i) to
the oldest. If the elements have to be multiplied or averaged the
relative age of the elements is still preserved. In this manner the
.elements move through space at the proper rate.

Figure 3-5 presents the simulated results using the improved
advection algorithm for the test case described in Section 3.3.1 and may
be compared with Figure 3-2. For the simulation In Figure 3-5, however,
we have varied both the grid sp~cing and the element density in order to
demonstrate the validity cf the multiplication/averaging procedure. The
grid is expanded at the constant rate Axj = 1.1Ax4j~1 with distance
x, with Ax; = 0.01. Note the elimination of numerical dispersion and
the high degree of accuracy possible in representing the square wave.

In fact the only error incurred by this algorithm is due to rounding off
the quantity n;i) to the nearest integer. This error decreases as néi)
increases. However, we are obviously still restricted by the limitation

n;i)(x )y <N

3 3
It 1s admitted that the ability to preserve a square wave in its
passage through a control volume is totally inconsistent with the

previously stated notion that elements have no relative position within
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Figure 3-5 Simulation of advection with the improved advection

algorithm. Same conditions as in Figure 3-2 except that
Aty = 6.25 x 1074, Ax) = 0.01, Axy = l.1Axi.1,

and N varies randomly from node to node over the range N =

90 to N = 950.



a control volume. However, since we are usually interested in
advection-dominated systems this error seems justified in comparison

with the alternative error involving artificial dispersion of elements.

3.?.4 A Differential Settling Algorithm

The term representing differential sedimentation in the pdf
transport equation, Eq. 3-16, appears as a correlaticn with pflw; x,t),
hence we must devise a model for it. Insofar as the settling process
resembles an advection process, that is, a vertical transport through
space at the speed wia), it is clear that we can pattern the differen-

tial settling algorithm after the advection algorithm. Whereas

advection transports all constituents at the same rate '<Ui(xj)>|

Atgi)/Alj with differential settling each particle size class ¢
changes spatial location at a different rate wia) Atga)/Alj. Thus each
size class has its own settling time scale At(a)

5 and the algorithm 1is
performed for each size class separately.

Since the diffusive transport of large particles is negligible in
comparison to the settling tramnsport, to avoid numerical dispersion the
differential settling algorithm is patterned after the improved
advection algorithm described in the previous section. Each
representative solid concentration corresponding to a specific size

(k)

class qa, ¢a , 1s assigned a separate settling age from 1 to Nj as an

attribute. (In the advection process all size classes and constituents
k

of a given element, ¢( ), are assigned the same advective age.) During

any time step the settling age of each representative solid

(a) (a) , (a) .

v s Aty NJ/AXJ]. Those

representative concentrations whose settling age 1s greater than Nj

concentration is advanced by n = intlw



(a)

are singled out to be settled and renumbered from 1 to n= the
settling age 1 being assigned to the youngest representative
concentration in each size class o and nia) to the oldest. If the

representative concentrations have to be multiplied or averaged the

relative age of the values is still preserved. In contrast to the

advection algorithm, however, representative concentrations ¢:k) chosen
at xjy are not replaced with representative concentrations of the same
element number k chosen at xj.1, but rather are replaced by values

from randomly chosen element numbers from the set of ¢ik) chosen to be
settled at xXy-1-

In addition, special considerations need to be taken at the surface
and bottom boundaries. If there is no flux of particles through the
surface boundary then representative concentrations that have settled
out of the top control volume must be replaced with zero concentration
values. At the bottom boundary one can account for the loss of mass

from the system by accumulating the concentration flux from the bottom

control volume in a separate varilable array.

3.3.5 An Efficient Radial Diffusion Algorithm

The formulation of an efficient radial diffusionm algorithm requires
special consideration. This may be appreciated by examining the central
difference operator for radial diffusion over a non-uniform grid for the

case where the radial diffusion coefficient 'y 1s conmstant,

(r, + 1, .)
(r) T j 341
D'’ p(r,) [ = (p(r, ) - p(xr,))
f} j l'jArj Z(rj+1 rj) j+1 j
-(r, + ¢ ) .
J j-1 :
TEy = Ty.p) (p(ry) - plry 1 N)] (3-30)
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where Arj 1s the radial width of the control volume surrounding node
ry. The corresponding stochaestic algorithm i{s to choose two groups of
elements at each node without replacement. The first group of hd+(rj) =

int[rr(rj+1 + rj) Atd Nj[(er Arj(rj+l - rj))] elements chosen at rj is

comnuted with the ny ( ) = int{r (r + rj) At (2r

T+l r Tyl a Ny /2Ty q87 54

(r

J41 T rj))] elements chosen at rj+l

int[Fr(rJ +

. The second group of nd_(rj) =

rj_l)Athj/(erArj(rj - rj_l))] elements chosen at rj is

= [I‘r(rJ tTi J_lArj_l(rj

If we are not willing to use the

commuted with the n . (

d+ ) Atd Nj_l/(Zr

rj-l)
rj_l))] elements chosen at rj-l'
multiplication/averaging procedure then to maintain N; constant we
must have the element density NJ/rjArj constant for all nodes.
This means that the total number of elements must increase with
increasing radial distance ry. If we want to model the outward radial
diffusion of a constituent, however, this is exactly the opposite way
that we would wish to assign Nj, that is, for the sake of accuracy we
would like to have Nj decrease with increasing Tj. Use of the
multiplication/averaging procedure will alleviate the problem somewhat
but not entirely since we are still constrained to shift in any
direction at least one but no more than Nj/2 elements, that is,

r (r, + 1 +1) At, N N

] < dnt[id_ J* d Jy 4 (3-31)
[er Arj rj - rjtll - 2

Thus if at the outer-most node ry we set the time scale Atq such

that
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T_ (ry + 1y ) oty Ny )

ZrM ArM

1 ' (3-32)

(ry = Ty

then at the inner-most node r) we must satisfy

rr (r1 + r2) Aty Nl N,

2r, Ar, (¢, -1,) <2 (3-33)
1 1 "2 1
implying that
/ - -
Zr, Ar,(r, rM_l)(r1 + r2) 2(r), rM—l) Ar,
NM 2 {_+r, )r, or, (t, -r,) = O[ (r, - r,) Ar ] (3-34)

M T TM-1’ T 8F1 M2 T 2 - N1 1

Since for an outward diffusion problem we would normally separate the
nodes further and further apart with iIncreasing radial distance we see
from Eq. 3-34 that Ny will still have to increase with rj.

The real source of the problem is not in the choice of Nj or the
grid spacing Arj but rather in the fact that the diffusion rate
Fr/rjArj decreases with increasing rj. This implies that the
diffusion time scale Aty should increase with Increasing rj. To see
how this can be accomplished let us write the radial diffuslon operation
over the finite domain 0 < r < R as a series of operations over a finite

number n of subdomains,

3

op r 0 op <
3t (r,t) = — = (r 5?] kZI(H(rk) - H(r, ) (3-35)

where H(rj) denotes the Heavyside function, which equals zero for r <
ry and one for r > rjy. The summation in Eq. 3-35 thus represents

the entire spatial domain O < r < R. MNow since Eq. 3-35 is a linear
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equation with variable coefficients we can use the method of approximate
factorization of operators (Yamenko, 1971) in formulating the finite

difference scheme. The conventional explicit scheme

n
pry, tar) = [1+ a0 ] (A, - Hiry,,)) p{T) p(rs,t)  (3-36)
k=1

is approximately factorized as

n
p(rj, teAt) = I [1 + Ar(B(r)) - B(r, ,)) D(r)] p(rj,t_) (3-37)

k=1 k+1

with an error of order (At)2. Note that the subdomains rp < r <
rx+] msay countain two or more nodes but the end gl)oim:s rk and ry+}
must correspond to modal points. Eq. 3-37 is equivalent to the

following sequence of operations:

l>(1:j ’ tl) L, (at) p(r:I ,t)

P(rj. tz) = Lz(At) p(rj,tl)

) (3-38)

p(r 5 t = t+At) Ln(AI:) p(r

j* ta-1

where the operator L (At) = [1 + At(B(zr)) - B(r, ) P(F)]. The
intermediate times tj, t3,...,th-] are motiionalirather than

particular. They merely indicate the order in which the operations are
performed since all operations represent an integration over a full time
step At. The ordering of the operations Ly is arbitrary. RNote also

that we have not yet gained anything since for diffusion between each

G e owws H aomawe -
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pair of nodes one and only one step in (3-38) will be performed and each
diffusion operation will be performed at the same rate 1/At.

If each radial subdomain is characterized by a typical radial
distance dg, where rg < dk < rk+l, and a typical grid.spacing
Adg, then the nominal diffusion time scale for each subdomain is
dgAd/Tp. Suppose the smallest and largest subdomain diffusion
time scales are At4g and Aédg, respectively. If thé integration
time step 1is set at At = b Atgg, where b < 1/2, then the error due to
the neglected terms in Eq. 3-37 will be approximately proportional to
b2. If the integration time step is set at At = bAtygy then the
error will be approximately proportional to (bAtdl/Atds)z,
although the computational cost will be reduced by Atds/Atqg. To
reach a compromise between accuracy and efficiency we note that any step
in Eq. 3-38 can be represented as a fur ther sequence of operations each

corresponding to an Integration over a shorter time step Atk, that is

p(rj, t; + At) p(rj, t t mag)

m
[Lk(Atk)] k p(rj,tk) (3-39)

The final result represents the sequence of operations

p(rj, t + Atk) [Lk(Atk)] p(rj,tk)

p(rj, t, * 28t ) (L, (at, )] p(rj, €, +at)

P(rj,tk + mAY =t ¢ At) = [Lk(Atk)] p(rj, t *+ (mk-l)Atk) (3-40)

For these operations the intermediate times are real times since the

—
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same operation is being performed at every time step Atg. The best
estimate of p(rj, tx + 1Atx) is obtained by updating the pdf as

each diffusion operation in a subdomain appears in chronological order.
If we set Aty = bdgx Adk/Tr and the master time scale At = Atqg

so that mg = Atgg/Atk then the error in Eq. 3-37 will be

approximately proportional to (bAtdl/mkAtk)2 = b2. As well,

compared to the case where the master time scale is set at At = Atgs,
the computational cost will be considerably reduced.

What we have just described in mathematical terms is an efficient
time-splitting algorithm for performing the stochastic radial diffusion
oparation. Summarizing the procedure, the radial domain 0 < r < R is
subdivided into n subdomains and each subdomain is assigned a diffusion
time scale based on a typical radial distance and grid spacing within
the subdomain.. Diffusion in each subdomain proceeds at a rate
determined by the subdomain time scale. After each diffusion operation
the subdomain diffusion time is updated by the subdomain diffusion time
scale. The choice of whicﬁ subdomain in which to perform the next
diffusion operation is determined by that subdomain that has the
smallest diffusion time. In this manner the complete cycle of
operations (3-38) will be performed on average once every Atdg, where
Atgy 1s the longest of the subdomain time scales. The advantage of
this technique is that it allows one to set the total number of elements
Ny in each control volume independently of the choice of the radial
grid.

To evaluate the accuracy of this algorithm the following test case

was analyzed. We consider a cylindrical domain of radius R =1 with the

tracer concentration maintained at a value of one along the

T

-— et e e
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circumference. The grid spacing is compressed at the rate Ary =
Arj_1/1.1 with radial distance, with Arj; = 0.1. The total number of
elements at each node is N = 400. The domain is subdivided into seven
subdomains each with its own diffusion time scale. The time scales
decrease with radial distance, with a time scale of 4 x 104 at the
inner-most subdomain and 7.5 X 1075 at the outer-most subdomain.
Initially all the nodes are assigned a zero comcentration. At time t=0
tracer begins to diffuse from the boundary at the rate 'y = 1.0. The
exact solution describing the diffusion of the tracer is (Carslaw and

Jaeger, 1959)

J (rak)
o(r,t) = 1-2 Z exp[- I' a.k t] ——Jja—‘y (3-41)

where ai 1s the kth root of the Bessel function J,. Figure 3-6
compares the simulated concentration profiles with the exaét solution.
The simulated results are in good agreement with the exact solution,
especially at early times. The degeneration in the accuracy of the
solution with time may be due to the accumulatlon of errors from
rounding off real values to integer values in applying the

multiplication/averaging procedure.

3.4 Stochastic Modeling of Molecular Mixing

The molecular mixing term in the transport equation for the joint
scalar pdf appears as a correlation with the function p'(%; f’t)’ hence,
i1t must be modeled. Any model of molecular mixing must reflect the
balance between the steepening of local scalar gradients by the

turbulent stretching of material surfaces and the smearing out of these
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Figure 3-6 Simulation of radial diffusion of a tracer at a rate T =

1.0 within an infinite cylindrical domain of radius one.
The circumference is maintained at a constant concentration
of one (N = 400, Aty = Ary_3/1.1, Ar) = 0.1,

7.5 x 1073 < Atg < 4 x 10-4).
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gradients by molecular’diffusion. In terms of its effect on the joint
scalar pdf the first influence results in the increase of local
probability density by the creation of 1nterfaces (and thus
correlations) between fluid regions of different concentration. The
second influence reduces the local probability density by smoothing out
concentration differences and destroying correlations. The
rate-1imiting step is the creation of local disconfinuities in
concentration by turbulence. The time scale of this process is the

mixing time scale, previously defined in Sectiom 1.1,

2.7(3 - Sc)-2 k/e Se < 0(1) (3-42)

T
[l

2.0 k/e + O.S(v/e)llzkn Sc Se >> 1 (3-43)

(as
"

where Sc is the Schmidt number. Hence, a semi-empirical model for
describing the influence of molecular mixing on the joint scalar pdf may

be formulated as (Curl, 1963; Dopazo, 1979)

ap(¢; x,t) $ w
- _ b . 1 . .
—5r— = T el % 0 dg, [ty 10 Olyie,, &) dby
m o) ¢
- p(y; x,t)) (3-44)

~ -~

where b is a numerical constant. Thé first and second terms on the
right-hand side account for the generation of p(%; f’t) by microscale
turbulence and its destruction by molecular processes, respectively.
The function G(Q; b, ?b) relates the mixed fluid concentration ¢

~

to 1ts possible sources, namely, the interaction between twe fluid
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regions cf concentratiou ¢a < ¢ and ¢b > .

-~

Several models have been put forward for the interaction kernel

G(¢; b, ?b)' Pope (1982) has shown that they can all be expressed iIn

~

the form
1

6(gs ¢ &) = J Ma)6(g = (1ma) ¢ = aly, + ¢)/2) da (3-45)
o] , )

where a is a mixing parameter. For a = 1 complete mixing occurs since

the Dirac delta function will be zero unless ¢ = 1/2(4,a + ¢b). For a =

~

0 no mixing occurs and ¢ = ¢_. Curl (1963) proposed the model A(x) =
' a

~ ~

6(1-a), or

Glgs 40 b)) = 804 = (g, + 4)/2) (3-46)
corresponding to a fixed value of a = 1. This model indicates that when
two fluid regions of concentration b, and Qb are brought together any
mixing that occurs between the two regions is instantaneously complete;
the region of interaction between the two initial fluid regions is
characterized by a uniform concentration equal to the average of the
concentrations ?a and ?b' In reality, of course, the regilom of
interaction between the two initial fluid regions should be
characterized by a continuous gradient in concentration with initial
concentrations Qa and 9b as extreme values. Curl's model is thus

rnot physical since it does not properly describe the microscale mixing
process. Consequenply, use of Curl's model in a numerical simulation of

the pdf transport equation results in the evolution of discontinuous

scalar pdf's.
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To remedy this situation we must permit the interaction of fluid

regions of concentration ¢a and ¢b to generate fluid regions of

any possible concentration ¢ between ¢a and by This amounts to

- ~

specifying a function A(z) that is continuous in the interval 0 < a <

1. Dopazo (1979) proposed the model

Ala) Z(Qb - Qa) %E erf—l(a—l) (3-47)

so that

29 - (Qa + ?b)

d -1
G(g; ¥ » 4y) = rm erf = ( ) (3-48)

where erf-l is the inverse of the error function. Janicka, Kolbe and

Kollmann (1979) put forward the model A(a) = 1 so that

G(gs ¢ » ¢) = 1 (3-49)
Janicka et al.'s model indicates that when two fluid regions of
concentration Qa and Qb are brought together mixing between the two
reglons generates lumps of fluid of all intermediate concentrations
?a < 9 < Qb with equal probability. Dopazo's model, on the other
hand, assigns a relatively higher probability to the generation of fluid
lumps of concentration near ?a or Qb’ and relatively lower probability
to the generation of fluid lumps of concentration near (Qa - %b)/z.

The constant b in Eq. 3-44 is different for every choice of Aa)

and is determined from the decay rate of the variance of concentratiomn

ci for any specles a,
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2 2
dcx(I Ty -
o T TE (3-50)

Multiplying Eq. 3-48 by ¢§ and integrating over d¢ results in

do

RN

2
-b(a1 - a2/2) a,
2t
m

(3-51)

Q.
T

where aj 1is the i1th moment of A(a). For Curl's model, for example,
a] = ag = 1. Hence, for compatibility with Eq. 3-50 we must set
b = 4.

The stochastic form of the molecular mixing model represented by
Eqs. 3-44 and 3-45 1s essentially the well-known coalescence-dispersal
model (Curl, 1963; Spielman and Levensypiel, 1965). At any node x4 the
mixing operation is performed every mixing time step Ztm, where Atp
<< tp/b, by choosing np = (bAty/ty)Nj elements at random from
the ensemble of Ny elements. The elements g(k) chosen for mixing

randomly choose partners and mix according to

Qz(k) - (1 - a)gik) + a(gik) + 21()k))/2
Q:(k) - (- a)gék) + a(Qik) + Qék))/z (3-52)

(k) (k)

where ¢ Js the mixing parameter, ¢a and ¢b are the concentrations of

*(k) *(k)
the pair of elements prior to the mixing operation, and ¢a and ¢b

~

are the respective concentrations after mixing. If Curl's model 1s used

« 1s fixed at the value one and both elements are reassigned the same



concentration corresponding to the average value of the initial
concentrations. With Dopazo's and Janicka et al.'s models the parameter
a« is chosen at random from the probability density function A(a) for
every palr of elements.

Pope (1982) has criticized the models of Dopazo and Janicka et al.
on the basis that in homogeneous and isotropic turbulence they do not
evolve the joint scalar pdf to a Gaussian form. Whereas all moments of
the Gaussian distribution are finite, Pope shows that any choice for the
function A(a) will result in asymptotic scalar pdf's whose higher order
moments grow in time without bound. To overcome this problem Pope
proposed a modification to the basic model form, Eq. 3-44. The
derivation of the model equations 1s quite complicated and the reader is
referred to Pope's paper for datails. Only the modification to the
stochastic algorithm will be presented here.

Pope (1982) showed that scalar pdf‘s with infinite higher moments
result when the choice of elements to be mixed is unbiased, as for the
models presented above. Accordingly, he proposed that every element be
assigned a random mixing age t and a random life expectancy t*, where
0 < 1, t* < 15/(16b), as additional attributes. The probability
density function of mixing ages is denoted by r(s) and that of life
expectancies by r*(s). These two functions are related by

1 dr(s)
2 ds

ri(s) = - (3-53)

Pope studied the behavior of a number of different cholces for the
functions A(g¢) and r(s). Based on the criteria that in homogeneous and

isotropic turbulence the mixing process should generate scalar pdf's
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that become asymptctically Gaussian with time, he recommended the

following probability demsity functions,

A(x) = 10 o (1 - 3a/4) (3-54)
16b,2 22
r(s) = 2b[1-(53)" s ] (3-55)

Using Eq. 3-53

N

*
r (s)

4282 bs [1 - (1527 57 (3-56)

w

Also, the value of b indicated by Eq. 3-51 with this choice of A(a) 1s
b = 3.482.

To implement the modified algorithm initially all elements are
assigned a random age T(k)(f,t) from the distribution r(s) and a

random life expectancy 1*(k)(x,t) from the conditlonal distribution

r: (s|s) = H(s® - s) £ (s)/ / r(s') ds' (3-57)
o

where H(s) 1s the Heavyside function. Note that r*(s) 1is the pdf of
life expectancy for elements of zero mixing age. If an element has
already attained the age t = s then 1its life expectancy 1s described by
the conditional pdf r: (s* s).

During any time step Atp all elements age by Atp/tmp. All
elements whose age becomes greater than their life expectancy are
singled out for mixing. The chosen elements randomly choose partners
and mix according to Eq. 3-52 with the mixing parameter a chosen at
racdom for each element pair from the pdf A(a) specified by Eq. 3-54.

After mixing the ages of the mixed elements are set to zero and their
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life expectancies are reset by randomly chosen values from the pdf
r*(s).

A useful test case for the stochastic mixing algorithm involves the
mixing of a single scalar in steady, homogeneous and Isotropic
turbulence. We postulate an initial random scalar field with two
equally probable states, ¢ = 0 and ¢ = 1. The corresponding initial

scalar pdf 1is
p(¢; 0) = 0.5[6(¢) + 8(1 - ¢)] (3-58)

With ghe onset of mixing there is a transfer of probability density from
the extreme values at ¢ = 0 and ¢ = 1 to 1nfermediate values 0 < ¢ < 1.
As a result the two delta functions decrease in magnitude Pj(t) and a
continuous distribution po(¢; t) forms in the range 0 < ¢ < 1. At any

time t > O the scalar pdf may be expressed in the form

p(¢; t) = pc(q»; t) + Pl(t)[5(¢) + 85(1-¢)] (3-59)

After a sufficiently long time Pj(t) = O and the normalized pdf
p(¢; t)/o(t), where o(t) is the standard deviation, tends to a Gaussian

form,

p(d; t) _ 1 -(¢ - 0.5)2]

= exp
o(t) (2“)1/2 202(t)

H t > o (3-60)

In order to reduce the statistical uncertainty and demonstrate the
validity of the algorithm the simulation was performed with N = 12,000
elements. The initial condition, Eq. 3-58, was generated by assigning

half the elements the concentration one and the other half the
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concentration zero. The mixing time scale was set at tp = 1.0 and the
time step was chosen as Aty = 0.001. Figure 3-7 illustrates the

simuiated reduction with time of the standard deviation according to

o(e) = o(0) exp(-t/t ) (3-61)

with g(0) = 1.0. Figure 3-8 shows the simulated evolution of the
functions Py(t*) and pc(¢; t*) as a function of the .

non-dimensional time t* = t/tp. After a time equal to the mixing

time scale the delta functions have essentially disappeared and

Pc (&3 t*) begins to take on a Gaussian form. Figure 3-9

demonstrates that for times t* > 1.5 the normalized pdf is Gaussian.
These results confirm the excellent performance of Pope's stochastic
mixing algorithm. 1In all subsequent simulaticns Pope's molecular mixing

model will be employed.

3.5 The Source Term
Fope (1981) showed that the effect of reaction on the ensemble of
elements is to modify the ccncentration of all elements ¢ék)(x,t) by
A¢a(k) (x,t), where
t+A L

00 = [T s @00 ae (3-62)
t

The reaction time step Aty must satisfy

at, < ota oS 75! (9] A T
x =~ k =1l,...,N (3-63)

This criteria ensures numerical stability if S(a)(¢) is a linear



- 168 -

-In(o(t*))

0 ' 1 ] ] |
0 2 4
TIME, t*

Figure 3-7 Reduction of the variance in tracer concentration due to
mixing in homogenous and isotropic turbulence at a rate
1/ty = 1.0. Inftially the variance 1s equal to one. The

symbols are the simulated results. The solid line is the

exact solution.



- 169 -




-.170 -

p (W

Figure 3-9 Asymptotic form of the normalized pdf of tracer
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function of 9 and is often sufficient to quaranéee st bility if
S(a)(g) is nonlinear.

For fast reactions it is possible that the reaction time scale
¢a/8§a)($) is so short as to be cocmparable to the Kolmogorov time
scale (v/g)l/z. If the source function S(a)(g) is dependent on the
mlcroscale shear rate (e/v)l/2, as for transport-limited particle
growth reactions, for example, then there will be additional nonlinear
interactions due to the correlation between the fluctuating dissipation
rate and the fluctuating concentrations. To capture these interactions
it 1s necessary to somehow simulate the spatial-temporal variation of
the energy dissipation rate field.

In Section 2.2.1 the theory and experimental evidence for the
statistics of the fluctuating turbulent energy dissipation rate were
reviewed and it was indicated that the pdf of ¢ 1s highly skewed and
approximately log-normal. By adopting this probability distribution for
¢ a crude but physically reasonable model for simulating its temporal
varfation may be devised. An advantage of assuming a log-normal form is
that only two parameters are required to completely specify it, namely,

the mean <&n e¢> and varlance 02 of the logarithm of ¢. Alterna-

in e

tively, we need only specify the mean value of ¢ and kurtosis of the

velocity derivative since, employing the local isotropy assumption,

Qn e> = fn<e> - in Kll;/z (3-64)
2 = in K (3-65)
cln € u -

where K, 1s the kurtosis of the fluctuating isotropic shear. The

T ™

-

" we = mom

tew ) oy



kurtosis may be determined from the turbulent Reynolds number using the
experimental data presented in Figure 2-1. Since Ky and <e> will 1in
general vary from node to node we have a crude representation of the
spatial variation of the dﬂssipation rate field.

To simulate the temporal variation of ¢ we adopt the following
simple algorithm. Starting from t = 0 a random value of g(f,o) is
chosen from the pdf of ¢, knowing the local values <€(f)> and Ku(§>-
This level of ¢ is assumed to be constant for a time equal to the
Kolmogorov time scale At) = (vla(f,o))llz. At time t}; = At] a
new random value e(f, tl) is chosen and held constant for a time
At2.= (v/e(f,tl))l/z- By building up a times series of ¢ values in
this way both the statistics of the fluctuating dissipation rate and its
intermittent behavior (once in a while a very large value of ¢ from the
tail of the log-normal distribution will be chosen and held constant for
a very short time) at a point in space will be preserved. A separate
c-time series 1s simulated for each element ¢(k) at each node.

Although the formulation of the reaction algorithm is conceptually
the simplest the computef time required to integrate the source function
S(a)(g) over the time step At for all elements at all nodes is normally
the rate-limiting step in the entire simulation. It is thus expedient
to make sure that the algorithm that performs the integration in Eq.

3-62 is as computationally efficient as poscible.

3.6 Assessment of the Model
In the last three sections we have prcsented algorlithms for
simulating the influence of various processes on the evolution of the

local joint scalar probability density functiom. All of the algorithms
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are procedures for modifying one or more attributes of the Monte Carlo
elements. The attributes that have been identified include
representative concentration, location in physical space, advective age,
settling age, mixing age and life expectancy. Each physical or chemical
process has 1ts own time scale. The time scales are summarized in Table
3-1. In the simulation each process is performed at a separate rate
with the process time step being a fraction of the process time scale.
With these algorithms in hand it is now quite simple to put them
toge ther into a complete model of any level of complexity. All that is
required is a main program to keep track of all the process times and
control the execution of each process. It is evident that the Monte
Carlo technique for solving the pdf transport equation is par ticularly
attractive because it can be implemented ecasily and adapted for a wide
range of applications. |

Test simulaticns have been performed to demonstrate the validity of
each stochastic algorithm. These simulations have also illustrated the
level of accuracy that may be achieved with the Monte Carlo technique.
There are two types of error that are associated with the Monte Carlo
procedure. Since the joint scalar pdf is represented at each point by a
fipite number N of elements there is sampling error that is proportional
to N-1/2, To reduce the sampling error by a factor of one—half ocne
must either quadruple the number of elements in the simulation or
perform the simulation four times and average the results. Pope (1981)
has shown that the sampling error is unbiased and is independent of the
grid spacing. Based on extensive analysis he determined that the
standard error in the mean concentration estimate for constituent a,-

(egt) g, may be estimated from
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(e.) = bo (3-66)

st «a a

where o, 1s the standard deviaticn of the pdf for constituent « and b
is a constant equal to 1 + 0.5, The second type of error 1is due to the
use of stochastic algorithms that are equivalent to truncated finite-
difference operators. Since the solution procedure is explicit the
scheme is first-order accurate in time. If Pope's advection algorithm
is used the.scheme is also first-order accurate in space. With the use
of the improved advection algorithm, however, the spatial accuracy
becomes limited by the diffusion operator, which is second-order.
Hence, the overall accuracy of the simulation may be controlled through
the time step, the grid spacing and the total number of elements per
node.

Any 1increase in'the desired accuracy of the simulation will come at
the expense of additional computational cost. Consider an integration
performed over a total simulation time T. During the simulation each
process will be executed a total number of times equal to the simulation
time divided by the time step for that process. If only dissolved
constituents are included in the simulation then all constituents will
be transported through physical space at the same rate. In this case
the advection and diffusion algorithms will modify the spatial location
of elements only. If solid and dissolved constituents are included,
however, each will be transported differentially through physical space
and we must keep track of the spatial location of each representative
concentration in each element. For the estimates presented below it

will be assumed that both solid and dissolved constituents are included
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in the simulation. Let the total number of constituents be denoted by o
and the total number of elements in the simulation by Np. The total
amount of computer work involved in performing the advection and
diffusion operations will be proportional to the total number of
representative concentrations whose spatial location is modified times
the total number of operations performed in the sirulation. For Pope's
advection and diffusion algorithms the computer work will be
proportional to (gN,<U>At /ax) (T/At.) and (cNTI‘Atd/(Ax)z)(T/Atd),
respectively. Thus we see that the computer work for these algorithms
is independent of the time step. For these algorithms no penalty is
incurred in decreasing the time step to improve the accuracy. With the
extension of Pope's algorithms to variable grid‘spacing and element
density it is not possible to write an exact expression for the computer
work, but whatever it may be it will still be independent of the Eime.
step. Let us assume that for this case the computer work may be |
described with a proportionality similar to that for Pope's algorilthms
but with characteristic values of NT<U>/Ax and NTI‘/(Ax)2 instead of
exact values. As compared to Pope's simple algorithms the extended
algorithms will alsc have a larger propor tionality comnstant because of
the larger number of manipulations involved in the execution of each
operation. The computer work involved in executing the improved
advection algorithm is proportional to UNT(T/Ata) since at every time
step all the elements must be aged and searched for those alements whose
advective age exceeds the residence time. A similar proportionality
holds for the differential settling algorithm except that only the solid
constituents have their spatial location modified by this process, and

the settling of each size class is executed at a different rate. For
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Pope's molecular mixing algorithm we must age all elements and search
for those elements whose mixing age exceeds their life expectancy.
Assuming that all constituents mix at the same rate the computer work Is
thus proportional to NTT/Atm.

The proportionality expressions for the computer work due to each
process are summarized in Table 3-2. Also included are the unit costs
in terms of CPU seconds on a Honeywell/Multics computer. For the
advection, diffusion and settling algorithms the unit costs correspond
to the cost of modifying the spatial location of a single representative
concentration by that algorithm. For the mixing algorithm the unit cost
represents that required to mix a single pair of elements. These
estimates are necessarily quite gross and are reported only for the
purpose of estimating the order of magnitude of the cost of an
| an£1cipated simulation. As previohsly mentioned the rate-limiting step
in any simulation is normally due to the reaction process. For the
coagulation process, for example, the cost of implementing the reaction
algorithm is proportional to 1/2 cZNTT/Atr.‘

As discussed in Section 3.1 the solution of the pdf transport
equation iIs generally necessary if one wants to compute the transport of
constituents undergoing fast, nonlinear reactions. If the reactiouns
considered are very slow with respect to the mixing rate or they are
linear, then it is more expadient to solve a finite difference or finite
element formulation of the transport equatiorn for the mean concentra-
tion, Eq. 1-1. On the other hand, as pointed out by Pope (1981), a
finite difference cr finite element solutiom of the pdf transport
equation 1s computationally inefficient because of the high cost

associated with evaluating the double integral im the mixing model, [Cq.
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3-44, over all constituent concentrations and for each node. Pope
estimates this cost to be proportional to exp(6g). With the Monte Carlo
technique, however, the cost of solving the pdf transport equation
generally increases linearly with ¢ (although with coagulation included
it increases with o). Pope indicated that for o 2> 4 a finite
difference solution of the pdf equation was not feasible.

Thus, if we want to model fast, nonlinéar reactions fhe Ménte Carlo
technique presented here is the most computationally efficient scheme
and 1t also has the advantage of being extremely flexible and easy to
implement. It was indicated in Section 2.4 that the coagulation of
particles at concentrations of 100 mg/% or greater is sufficiently fast
to interact nonlinearly with the turbulence. The initial formation of
frazil ice in rivers is another example of a fast nonlinear reaction
involving suspénded particles. In the next chapter we will demonstrate
the potential usefulness of the Monte Carlo model by performing several

hypothetical, but typical, simulations involving the reactive transport

of suspended particles.
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IV. MODEL APPLICATIONS

In this chapter we wish to present several examples involving the
modeling of the reactive transport of suspended particles. Suspended
particles participate in such reactions as precipitation/dissolution,
coagulation, and sorption. Accordingly, the model applications
presented here involve the nucleation and growth of frazil ice in
rivers, the coagulation and settling of sludge particles discharged from
a coastal outfall, and the desorption of copper from contaminated
sediments following a resuspension event. The examples have been chosen
so as to demonstrate as much as possible the full range of capabilities
afforded by the modeling techniques presented in the previous two

chapters.

4.1 Frazil Ice Formaction

The initial formation of ice in natural water bodies 1s governed by
the interaction of both physical and climatic factors. If the flow 1s
only weakly turbulent then heat transfer across the water surface will
deplete the heat content of the surface waters while the deeper waters
remain relatively unaffected. As the surface water temperature drops
below the freezing point thin floating ice plates form which grow slowly
in lateral extent and attach themselves to each other and to solid
boundaries, such as the shore. The accumulation of free-floating 1ice
plates by attached plates results in the formation of a continuous 1ice
sheet that grows outward from solid boundaries and eventually forms a
complete ice cover. If the water is sufficientiy turbulent, however,

mixing of surface waters with deeper waters will create a uniform
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temperature distribution with depth. The turbulence will also carry ice
nuclei formed at the surface downward intc suspension. As they melt the
suspended ice nuclei will continually ccol the water column until it
becomes supercooled by a few hundredths of a degree Centigrade. At this
point the ice nuclei will begin to give off heat and grow 1in size Into
what is known as frazil ice (Michel, 1971; Ashton, 1979).

Frazil crystals growing in supercooled water are called active
frazil because of their fast rate of growth and their strong tendency to
attach themselves to boundaries and other solid objects in the flow,
including each other. As the crystals grow and flocculate they
eventually‘reach a size where their buoyancy overcomes the turbulent
transport and they float to the surface. These spongy masses of 1ice
then agglomerate into so-called pans of order 1 m in diameter and 0.l to
0.5 m in thickness and finally into floes with diameters of order 1 to
30 m and thickness 0.5 to 5 m. When the frazil ice particle§ have
depleted the supercooling they become non-cohesive and are then called
passive frazil (Ashton, 1979; Martin, 1981).

Because frazil ice is only formed in high energy flows it is not
often observed in lakes but it occurs regularly in northern rivers and
coastal ocean waters. The formation of ice particles in suspension and
the subsequent agglomeration process result in the production of
tremendous volumes of porous ice. Consequently, frazil ice may be
responsible for severe obstruction of flow passages and thus cause such
problems as blockage of hydroelectric reservoirs, freezing of submerged
hydraulic structures, flooding, interference with navigation, and
obstruction of jntakes for water supply (Michel, 1971; Osterkamp,

1978). The development of an analytical framework for predicting the
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ifnitiation and for computing the production of frazil ice would thus be
of great engineering interest.

In the hope of making further progress towards this goal we will
present a kinetic model for the nucleation and growth of suspended
frazil ice particles. The kinetic model will then be incorporated into
a one-dimensional formulation of the scalar pdf transport model and used
to examine the formation of frazil ice in rivers. We begin with a brief
review of the kinetics of frazil ice growth. Further details on frazil

fce dynamics may be obtained from the recent report by Daly (1984).

4.1.1 Initial Nucleation

The nucleation of frazil ice is observed to occur at a level of
supercooling of only a few hundredths of a degree Centigrade. This
obéervation rules out homogeneocus nucleation of pure water as a possible
nucleation mechanism because it is only effective at water temperatures
less than -38°C, which are never found in any natural water body. The
second possible mechanism, heterogeneous nucleation, requires the
presence of foreign particles as nucleation sites and a level of
supercooling of -4°C or more. Although suspended particles are
abundant, water temperatures of ~4°C have never been observed in
turbulent natural flows, not even in the thermal boundary layer at the
water surface. The only remaining possibility is a mass transfer
process whereby seed crystals are introduced from the atmosphere into
the water column. Likely sources of seed crystals are snow and ice
particles that fall from trees or are carried by the wind and air-borne
water droplets created by splashing, wind spray and air-bubble bursting

that freeze in the air and drop into the flow as ice particles

(Osterkamp, 1978; Daly, 1984).
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¥hile the introduction of seed crystals into the flow from the
atmosphere may be the initial source of frazil ice nuclei, it does not
account for the very high particle number concentratiems that are
observed. The mechanism which generates frzazil nuclei from ice

particles already present in the flow is secondary nucleation.

4.1.2 Secondary Nucleaticn
| Secondary nucleation is termed secondary because it requires the
presence of seed crystals of the material being crystallized, as opposed
to primary (hoeogeneous and heterogenecus) mechanisms which do not
require seed crystals. Denk and Botsaris (1972a) have identified three
msechanises by which secondary nuclei may be generated by the parent
crystal: (a) by the growth and detachment of surface irregularities,
(b) by the ordering of the solute meolecules near the surface of the
parent crystal which leads to a high local supersaturation and induces
primary nucleation, and (c) by the uptake of impurities by the growing
p-rent crystal which reduces the impurity concentration near the crystal
surface sufficiently that primary nucleation becomes possible locally.
Vith respect to frazil ice formation the last two mechanisms are
unlikely sources of secondary nuclei because of the high levels of
supersaturation (supercooling) required for primary nucleation and
because the possible numbers of nuclei produced by these mechanisns
would not be sufficient to explaiz the observations. In any case, st
low supersaturation the first mechanism is the main source of secomndary
nuclei (Ottems, Janse, and DeJong, 1972).

Evans, Margolis, and Sarofim (1974) demonstrated experimentally

that the rate of production of secondary nuclei in agitated



- 184 -

crystallizers is removal-limited, that lis, depends on the rate of
detachment of surface irregularities rather than the rate of growth of
the irregularities. They indicated that fluid shear and collisions of
crystals with hard surfaces (including other crystals) could cause the
detachment of surface irregularities. 1In the literature the latter
mechanism is called contact nucleation or collision breeding. Based on
experimental studies, Denk and Botsaris (1972b) and Desai, Rachow, and
Timm (1974) have shown that the number of nuclei produced by contact
nucleation is a function of the contact energy, the supersaturation, the
impurity concentration, and the level of mixing.

To explain the observed dependence on the supersaturation Lal,
Mason and Serickland-Constable (1969) put forward the “survival®™ theory
whereby the number of nuclei produced by the collision itself was
independent of the supersaturation but only those nuclei that were
larger than the critical radius grew in size while those smaller
dissolved. The critical radius r. is that required to overcome the

effect of surface tension and is determined from the Gibbs-Thomson

equation as (L2l et al., 1969)

(4-1)

where, for ice crystals, y is the Ice-water interfacial tension, py is
the deasity of ice, L is the latent heat of fusion, Te 1s the
equilibrium temperature of the ice-water mixture (i.e., the saturation
temperature) and T is the bulk fluid temperature in °K. TFer ice, y = 22
ergalcaz, L = 3.3 x 102 ergs/gm and p; = 0.92 gm/cm3 (Fletcher,

1970). From Eq. 4-1 we see that as the supersaturation increases the
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critical radius decreases so that more nuclei may survive. Garside and

Larson (1978) investigated the production of secondary nuclei by direct
microscopic observation of low energy contacts between a crystal and a
solid rod. Contrary to the survival theory they observed that secondary
nuclei were produced over the size range between 1 and 50 pm and that
the level of supersaturation determined the number of large nuclei that
were chipped off the parent crystal. In saturated and undersaturated
solutions large nuclei were not produced by contact of the rod with the
crystal.

Summarizing, for frazil iec2 crystals it appears that the dominant
mechanism of secondary nucleation is collision breeding. The rate of
production of nuclei depends on the rate of collisions between crystals,
on the energy associated with each collision and, to a lesser extent, omn
the super-saturation and the impurity concentration. Since the
supercooling is so small, on the order‘of 0.01 °C, we can assume that no
large nuclei are produced by collisions between crystals and that all
the nuclei have a size comparable to the critical ?adius. Substituting
a supercooling of 0.01 °C into Eq. 4-1 indicates that the critical

radius for ice is of order 4 pum.

4.1.3 Growth

In general, the growth of frazil ice is controlled by the crystal
morphcliogy, the rate of incorporation of water molecules into the
crystal surface, and the transfer of latent heat away from the crystai.
At low supercoolings characteristic of turbulent waters the dominant
shape for ice crystals is a flat disc with diameter-to-thickness ratio

ranging from 5 to 100. Frazil ice crystals appare.tly maintain their
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disc shape up to a diameter of 300 pm. Further growth results in the
appearance of scalloped edges and dendritic growths along the perimeter
of the crystal. This instability seems to limit the maximum disc size
to about 300 um (Daly, 1984).

The disc shape morphology is a result of anisotropy in the grow th
rates of ice along the two axes. The growth rate along the radial axis
is heat transfer controlléd while that élong.the longitudinal axis 1is
much slower and controlled by the intrinsic kinetics at the crystal
surface. Daly (1984) has shown that if ihe size of the frazil disc 1is
defined by its radius r, then the crystal growth rate may be modeled

with an expression indicative of transport (heat transfer) limitation,

namely,

dr h ,
T Ezf'(Te - T (4-2)

where h is the heat transfer coefficient.
Batchelor (1979, 1980) has determined that the heat transfer rate

from small particles suspended in turbulent fluid is

2 1/2
_k 1/ _ r ¢ _
ho= X(1+0.17 pe 3 Pe = 7 €1 (4-3)
ho= £+ 0.5 pe /3 Pe » 1 (4=t

where Pe is the particle Peclet number and « and k are the thermal
diffusivity and the thermal conductivity, respectively, of the fluid.
These relationships are applicable for spherical particles of radius r <

10n, where n is the Kolmogorov micro-scale. Since Pe = Pr(r/n)2 where
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the Prandtl number Pr for heat transfer is 13, then Pe < 1 for r < 0.3
n. For a minimum value of n = 0.3 mm in the aquatic environment we see
that the low Peclet number relation will usually be appropriate since
the maximum disk size is 150 pm in radius. We also note that at small
Peclet numbers the heat transfer 1is dominated by diffusion and is thus
insensitive to the shape of the particle. In modeling the growth of
frazil ice in natural waters we need nmot concern ourselves with the fact

that the crystals are discs rather than spheres.

4.1.4 Sintering

The mechanism which causes frazil ice crystals to flocculate is
fundamentally different from that which causes coagulation of colloidal
particles. The coagulation of colloids in water of sufficlent ionic
strength is brought about by interactions between electrostatic forces
and attractive van der Waals' forces. The flocculation of ice crystals,
on the other hand, results from the tendency of crystals to minimize
their surface free energy. The most stable shape in terms of surface
free energy is a sphere. The point of contact between two frazil discs
thus represents a highly unstable system. The chemical potential
gradient existing between two crystals brought into contact drives the
transéer of material to the point of contact in such a way that a solid
neck or bridge forms between them. This process is called sintering.
The rate of growth of the neck is proportional to the supercooling
(Hobbs, 1974). Extrapolating from exparimental measurements of the
sintering of the two spheres in air, Martin (1981) has determined that
the time required for two spheres of radius 1 pm to form a neck of width

equal to one—quarfer of the sphere diameter would be of the order of
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102 seconds. This is sufficiently fast to account for the observed

flocculation of frazil ice particles in turbulent flow.

4.2 A Zero-Dimensional Model of Frazil Ice Kinetics

To develop a model for the kinetics of frazil ice growth we may
make use of the few reported experimental studies of frazil formation in
laboratory flumes. The ability of the proposed model to reproduce the
experimental data as well as the observed sensitivity to variations in
physical parameters is interpreted as a convinecing demonstration of its

validity.

4.2,.1 Model Assumptions

A complete model for the kinetics of frazil ice requires separate
submodels for the effects of initial nucleation, secondary nucleation,
growth, and flocculation. In addition the model must conserve overall
mass and energy. Consider an isotropic and homogeneous water
environment initially at temperature T > T, where Te 1s the
jce-water equilibrium temperature, and from which heat 1s continually
and uniformly extracted at the constant rate Q (energy per unit volume
of water per unit time). To model initial nucleation, as soon as the
temperature drops below the equilibrium temperature we introduce seed
crystals of radius ro, where ro is the critical radius, into the
environment at a constant rate I, (number per unit volume of water per
unit time). The parameter I, must be specified empirically. Since
there are no available measurements of initial seeding rates or size
distributions, the approximate value of I, will be deduced by

comparison of observations with simulated supercooling curves. .. only.
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observed effect that the initial seeding has on the formation of frazil
ice is In the time lag required to reach the point of maximum
supercooling. Therefore, there is no point in attempting to specify the
size distribution of the initial nuclei since the additional empirical
parameters that would be introduced would not contribute any more
information.

To model secondary nucleation we adopt the procedure put forward by
Evans, Sarofim, and Margolis (1974). The number of nucleil produced per
unit volume per unit time I(Vi,Vj) due to collisions between

crystals of size vy and v4 is modeled as
I(vi,vj) = Z c(vi,vj) (4-5)

where C(Vi,Vj) is the rate of energy transfer to the crystals by the
collisions, per unit fluid volume, and Z is the number of nucleil
generated per unit of collision emergy. In principle Z is a function of
the impurity concentration and the level of supercooling. However,
since we are dealing with very small variations in the supercooling and
impurity concentration, Z will be assumed constant. As with the initial
seeding rate the approximate magnitude of Z will be obtained by
comparison of observations with simulated results. Also, as discussed
above, since the supercooling will be very low there will be effectively
no large nuclei produced by collisions so that it can be assumed that
all secondary nuclel have a radius comparable to the critical radius

ro. Following Evans et al., to model the functiomn C(Vi,Vj) we

assume that collisions between narticles are sufficiently inelastic that

after colliding two particles have no relative velocity. Conservation
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of momentum and energy then yields the result

) m(vi) m(v,)

2 mlv,) + m(vj) [ash(vi’vj) Esh(vi’vj)

c(vi,vj) =

2 2
wgp (V) + B (Vysvy) Ege (Vio7y) wdr(vi’vj)]

g(vi) g(vj) (4~6)

where g(vy) 1s the number demsity function, m(vy) is the mass
associated with particles of size vy, w(vi,vj) 1is the relative

velocity of the particles prior to collisicn, ﬁ(Vi,Vj) is the

collision frequency function and E(Vi,Vj) is the cnllision

efficiency function. The subscripts sh and dr indicate the turbulent
shear and differential rising mechanisms. Since the minimum particle
size is of order 4 pm in radius we can neglect Brownian motion as a
collision mechanism. Substituting the expressions for B and v presented

in Section 2.2.1 ylelds

1 N1 Yy 1/3 1730 <e>. /2
e(vy,vy) =-5°1V;—r§[b“’1 Uyt 50 Bty
g P s a3 s, 1732
+0.00076 ( & ———= |vi"" - v |) SRR
Edr(vi’vj)] g(vi) g(vj) (4-7)

where pi 1is the ice demsity and b = 0.0033 with Saffman and Turner's
(1956) model for the collision frequency function for turbulent shear
while b = 0.0066/Ku3/4 for the improved model proposed in Section

2.,2.1.
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To conserve mass, when nuclei are removed from the parent crystal
we must decrease the volume of each parent crystal by Avij =
I(vi,vy)vcAt/2, where ve = 4mr3/3. Since the continuous
size range will be discretized into size classes, this 1s accomplished
by removing all the mass from size class vj and re—-propor tioning it
between the size classes vk and vk+], where vk < vi + Avij <
vit+1. The re-proportioning is performed in the same manner as in the
solution of the coagulation equations described in Sectlon 2.4.

The actual growth of frazil ice crystals is governed by the thermal
energy balance

—= =t e S5+ Q) (4-8)
where My is the total mass of ice per unit volume of water, p 1s the
water deasity, L is the latent heat of fuslon and cp is the heat
capacity of water. The cooling rate Q is specified as input. The rate
of increase of total ice mass is given by

dM @

—E% = by [ dor_ g(r,t) dr (4-9)

r
where g(r,t) is the particle number density distribution. The
rate of growth dr/dt is computed from Egs. 4-2 and 4-3 or 4-4. The
growth of ice crystals results in a volume increase Avj for each size
class. As with the removal of secondary nuclei, the addition
of ice mass 1s accomplished by removing all the mass from size class
vy and re-proportioning it between the size classes vk and vk4l,

where v < vy + Avy £ vk+1. Having computed dM{/dt the bulk

water temperature may be updated using Eq. 4-7.
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To model the flocculation of frazil crystals the coagulation
equation will be employed with only turbulent shear and differential
rising considered as collision mechanisms. It w1ll also be assumed that
the collision eﬁficiency functions presented in Section 2.2.2 are
applicable. To limit the number of unknown parameters the collision
efficiency function for turbulent shear corresponding to a value of H =
10~2, defined by Eq. 2-30, will be adoptea for all the simulations to
be performed. As indicated by Figure 2-3, tiis 1s a relatively high
level of efficiency. The integration of the coagulation equation will

be performed as described in Section 2.4.

4.2.2 Model Verification

To determine typical values of the parameters T, and Z and to
demonstrate the validity of the kinetic model described above
comparisons of modellsimulations with experimental data will be made.
All the experiments have produced the same kind of quantitative result,
namely, a time history of the bﬁlk water temperature as frazil ice
nucleates and grows through its active phase. A typlcal supercooling
curve is shown in Figure 4-1, taken from Michel (1963). The initial
linear decrease in tamperature is due to a constant cooling rate in the
absence of ice growth. Shortly after the temperature drops below the
equilibrium temperature frazil ice particles begin to nucleate and
grow. The release of latent heat of fusion causes the time rate of
decrease of temperature to decrease until a minimum temperature 1s
reached at which the rate of heat extraction from the ice-water mixture
is balanced by the rate of latent heat release by the growing crystals.

Up to this point the rate of frazil ice production increases steadily,
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although the particles are still not large enough for their buoyancy to
be significant. Beyond the point of maximum supercooling the release of
latent heat exceeds the surface cooling rate and the temperature rises
again at a relatively rapid rate. This rapid temperature increase
corresponds to the maximum rate of ice production. The frazil particles
begin to flocculate and rise to the water surface. As the temperature
approaches a constant but very small level of supercooling, termed the
residual supercooling, the rate of ice production decreases and levels
off at a constant rate that is a function of the cooling rate only.
Beyond this point the surface cooling causes the passive growth of the
floating ice floes.

The first comparison is with the observations of Michel (1963),
Figure 4-1. Michel performed his experiments in an outdoor
recirculating flume consisting of a channel of 12 in. by 12 in.
cross—-section,and a return 6-in. diameter pipe. 411 the conduits were
fabricated of plexiglass. The flow was driven by a pump and could be
varied from 150 gpm to 600 gpm. Since the turbulence intensity will be
relatively high just downstream of the pump and relatively low in the
channel section that in the pipe section of the flume may be considered
as representing average conditions. For an average flow of 375 gpm, the
Reynolds number is 3.6 x 104 and the friction factor f = 0.0225. The
average energy dissipation rate may be estimated from ¢ = fU3/2d
as 50 cmZ/sec3, where U is the average velocity and d is the pipe
diameter. With this parameter fixed and the heat removal rate Q
determined from the initial slope of the supercooling curves as 0.0012
J/cm3 sec, the parameters I, and Z were optimized to achieve the

best model fit to Michel's experimental data, as shown in Figure 4-1.



The optimized values for the initial seeding rate I, and the number of
nuclei generated per unit of collision energy Z were 0.05
nuclei/cm3-sec and 4 x 1017 nuclei/J, respectively. While the
parameter Z may be regarded as somewhat universal, the initial seeding
rate depends on local conditions and may be expected to vary.

There have been some experimental measurements of the parameter Z.
Clontz and McCabe (1971) measured the energy of collision of a steel
hammer striking a fixed crystal of epsomite immersed in a flowing
supersaturated solution and, by viewing the crystal under a microscope,
counted the number of nucleil that were produced. They obtained a value
of Z =5 x 136 nuclei/J. Denk and Botsaris (1972b) used essentially
the same technique and obtained a value of Z = 1 x 106 nuclei/J for
sodium chlorate. Strickland- Constable (1976) questioned the accuracy
éf the collision energy measurements since theoretical calculations
which he performed to determine the minimum work needed to form a
compact nucleus of epsomite yielded a value of Z = 1013 nuclei/J.

These results were obtained for crystals with smooth surfaces. To
explain the somewhat higher value of Z = 4 x 1017 nuclei/J obtained in
the numerical simulation we may note that the maia contributlon to
secondary nucleation comes from the largest crystals present in the
flow. As previously mentioned, frazil ice crystals develop dendritic
growths and scalloped edges as they grow to sizes of order 300 pm in
diameter. These surface irregularities will be sheared off quite easily
upon contact. Hence we should expect the value of Z indicated by a
growing suspension of frazil ice crystals to be much larger than that

assoclated with the contact of a smooth crystal surface.
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The next two model simulations are to be compared with the
cbservations of Carstens (1966). Carstens performed his experiments in
an indoor flume in the shape of a race track with cross-section 20 cm by
20 em. The flow was driven by a propeller. The first simulation
corresponds to the data in Carstens' Figure 6A in which the flow
velocity was reported to be 50 cem/sec. The friction velocity for an
open channel flow may be estimated from the relationship u, =
E(f/B)I/2 where, for a smooth boundary, the friction factor f 1is

determined from (Schlichting, 1968)

g1/2 2 10g(r £/%) - 0.8 (4-10)

where R = 40 h/v is the Reynolds number. For a depth of flow h = 20 cm
the Reynolds number R is & x 105, the friction factor is f = 0.14 and
the friction velocity is u, = 2.4 cm/sec. The depth variation in

the energy dissipation rate for a channel flow is given by

u3
- X - ¥ -
e = = (-3 (4-11)

where ¢« is von Karman's constant. The average dissipation rate may be
obtatned by integrating this relatifomship from the top of the viscous
boundary layer, y = v/u,, to the water surface, y = h. The

depth-average dissipation rate e is

_ 1 h ui uh
w0 s m e (4-12)

and s equal to 13 cmzfsec3 for this case. The cooling rate
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indicated by Carstens' data is 0.0014 J/cm3-sec. With the parameters
Iy and Z fixed at their values determined from the fit to Michel's
data, Figure 4-2 compares the model results with Carstens' experimental
data presented in Figure 6A of his paper. The agreement is quite
remarkable, although the experimental conditions do not vary that much
from those reported by Michel, for which the model was calibrated. The
final comparison is with the data presentéd in Carstens' Figﬁre 7. Here
the reported flow velocity was 33 cm/sec, corresponding to an average
dissipation rate of e = 4.0 cm2/sec3. The cooling rate indicated by
the data is 5.5 x 1074 J/em3-se . Figure 4-3 compares the model
results wigh the experimental data and further confirms the validity of

the kinetic model of frazil ice growth.

$.2.3 Sensikivity Analysis

To further demonstrate the validity of the kinetic model, the
sensitivity of the model to variations in the physical input parameters
will be compared with experimental observations. The base case for the
simulations corresponds to the simulation of Michel's (1963)
experimental data. Figure 4-4 shows the effect: of varying the energy
dissipation rate. In agreement with Carstens' (1966) observations,
increasing the energy dissipation rate decreases the maximum
supercooling and iﬁcreases the rate of increase of temperature beyond
the maximum supercooling. Figure 4-5 illustrates the differences in the
particle size distributions resulting from different levels of e. Since
the particle growth rate is propor tional to e>1/4, the coagulation
rate to <e>1/2 and the secondary nucleation rate to <e>3/2,

variations in the energy dissipation rate will influence the rate of



T(3S—cWD/r #T00°0 = O ‘r/¥810NU
) (10T x % = Z ‘d9s—cWO/TITA0U G0°0 = O ‘covs/Luwd ¢ =
<3> Uirm uoTlIeTnuwis Tapouw ‘SuIl PITos ‘eiep y9 3T (9961) ,SuU9Isie)

‘sToquds) yimoi8 907 TJzeaj JO [SpowW IFISUFY JO UOTIEITJITISA Z-% 2an813

80°0-
|
[e 0]
o —
_ vo'o- T
)
m
0
>
|l_
Cc
)
m
c00-
8
ﬁl‘ r. ] |
) 1 1 s 1 oo.o
8 9 3 4 4 0

(Ujw) IWIL



"(29S-¢WI/L 500070 = O ‘r/¥sTONU
/1 0Tl x % =72 aumm|mEu\ﬂwﬁo:c G0°0 = 91 .mumm\NEu 7 =
<3> Y3l im uojlernuwis Tapou ‘SUFT PITos ‘eaep ; *3Id (9961) ,susisae)

‘sToquAs) yimoad 90 1JzelaJ JO Topow DFISUTY JO UOFIBDTJITISA ¢-% 2and14d

199 -

T ¥0°0-

¢0°0-

00°0

(uiw) 3INWIL

(Do) 3HNLVH3IdNIL



*(P8s—cwd/p
Z100°C = D ‘C/¥s{onu ;{01 x # = Z ‘d9s-cwd/131donu ¢0°0 = °1)

ajea uorledissjp ASasus a9yl Sujfiea Jo 10533F° :LITATITSUSS TOPON

(uiw) 3INIL
ot 8 9 14 c

- 200 -

g 08S/zWd 9°0= <3>

or s 9 e z
(uiw) INIL

-y ®and1g

00

o't

0'¢c

0L°0-

S0°0-

00°0

(l/wB) NOILVHL

- NIONOD 3Di

(Do)
JEN1LVHIdNIL



- 201 -

secondary nucleation most noticeably. We should expect that increasing
the dissipation rate will shift the particle size distribution towards
increasing numbers of small particles and this is indeed what 1s
demonstrated in Figure 4-5. For the same reason the effect of
increasing the number of secondary nuclel generated per unit of
collision energy is the same as Increasing the energy dissipation rate,
as illustrated in Figure 4-6. In accordance with the observations of
Hanley and Tsang (1984) increasing the initial seeding rate (Figure 4-7)
decreases the time lag prior to reaching the point of maximum
supercooling so that smaller levels of supercooling result. Increasing
the initial seeding rate also Increases the rate of increase of
temperature beyond the point of maximum supercooling. Finally, as
illustrated in Figure 4-8, increasing the rate of heat removal increases
the maximum supercooling and the rate of increase of temperature beyond
the point of maximum supercooling, in agreement with Carstens' (1966)
observations.

To explain the sensitivity of the model to variations in the system
parameters we will determine an analytical expression for predicting the
time tg required to reach the point of maximum supercooling. Since
initially the contribution of the latent heat release by 1ice growth to
the thermal energy balance, Eq. 4-8, 1s small we can approximate the

temperature history up to the point of maximum supercooling by

T(t) = = Qt/p <, (4-13)

where t = 0 corresponds to the point where the temperature is at the
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ecuilibrium temperature, assumed equal to 0°C. Note that although dT/dt
will not be constant and will change rapidly near the point of maximum
supercooling, the value of T(t) given by the relationship will be a good
approximation to the temperature at that point. The rate of crystal

growth may be approximated by

(oW
3]
=

& o X _[1+0.17 pe

dt T p, L S Yo, L (4-14)

rpiL

1/2 kT
/2

for particles smaller than 100 pm in radius, which i{s about the maximum
size the particles will have attained by the time the point of maximum
supercooling is reached. Integrating this relation yields an expression

for the crystal size as a function of time t' af ter nucleation

2 1/2
r(t') = [ rz + .E—E——- ]

T (4-15)

P
For typical cooling rates of order 10-3 J/cm3-sec the secound term
within the brackets dominates over the first for times greater than 30
seconds so that the growth rate may te written as

1/2

kQ
am e ' = ! 4=16
[ oy T ] ¢ At (4-16)

1

r(t")

If there were no secondary nucleation the particle number density
distribution would evolve as a squarz wave of amplitude glr,t) = Ig/A
for ro < r < At. With secondary nucleation, however, the number

density at any size r will grow in time approximately according to

(L (t = /x) + I1/A r <r <t

glr,t) = { (4-17)
0 r > At
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where IT is the total number of secondary nuclei prodhced per unit

time per unit fluid volume,

t t

A
i c(ri,rj) dri drj (4-18)

c ]

IT(t) = Z

">

Eq. 4-17 does not account for the removal of nuclei from the large
parent crystals, only for their addition to the size r.. Assuming
that up to the point of maximum supercooling the production of secondary

auclel 1s dominated by the turbulent shear mechanism,

5 3
3/2 at At (¢, +r.)” (r,r.)
1,(t) = 0.018 Z o, (%) [ ] : 33 3 1] g(r ,t)
v T. Ty (ri + rj)
g(rj,t) dridrj (4-19)

The major contribution to the double integral will come from collisions
of the largest size particles of size ry ~ At for which g(r,t) ~

Io/A. Approximating g(r,t) by Ig/\ and replacing the lower limit

r. by zero yields

3/2 5 10
I,(t) = 0.018 Z pic%) (1_/7)° [1.67 + 0.45 an(at)] (At) (4--20)

The total ice mass at any time t after the start of supercooling



and up to the point of maximum supercooling is

r3 g(r,t) dr

2 3/2
m .3 4 4q € 2 11
3 04 M I+ (3 ) (0.018) Z p, (V) I

-4 4
(4.3 x 10 ) tl (4-21)

At the point of maximum supercooling, dHj/dt = Q/L. The time of

maximum supercooling tg is thus obtained by implicit solution of

t3 (1 + Ctlo) = __Q;EE.EL_ (4-22)
s 8 L K3 T
Py o

L = 4.5 x l.o'4 py 2 (e/v)3/2 I, xg (4-23)

Table 4-1 compares the values of tg obtained with Eq. 4-22 with those
obtained in the numerical simulations presented in Figures 4-4, 4-6, 4-7
and 4-8. The values of Ct:o presented in Table 4-1 are generally of
order one. The poiﬁt of maximum supercooling is thus controlled by both
the rate of initial seeding and the rate of secondary nucleation. Tor
Ct:O « 1, the value cf tg is controlled by the initial seeding rate
and 1s Independent of the secondary nucleation rate. The discrepanby
=‘ween the results is less than 107 confirming the validity of the
assumptions made in arriving at Eq. 4-22. The major assumptions are
that for t < tg the contribution of the latent heat release by ice
growth to the thermal emergy balance is negligible, turbulent shear is
the dominant mechanism controlling the production of secondary nuclel,

and collisions between the largest crystals produce most of the
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secondary nuclef. Knowing tg the approximate value of the maximum
supercooling may then be obtaimed by substitution Into Eq. 4-13.

Having formulated z kinmetic model of frazil ice growth we may now
incorperate it withir tne framework of the pdf transport model to
examine the additional effect of turbulent transpor% on the formation of
frazil fce in rivers.

4.3 A One-Dimensional Model of Frazil Ice Growth im Rivers

5.3.1 Model Description

The one-dimensional model of frazil ice growth presented here
assumes a steady, miform channel flow over a smooth bottom. The flow
ifs assumed to be well-mixed fn the lateral direction end ;iffusion in
the flow direction is ﬁeglected. The reactive flow within the bottom
and surface boundary layers is n&t modeled. We are thus following a
columr of water in its passage downstream at the constant rate U =
(x-x5)/(t-ty) where xo is the position of the water column at the
inftial time t,.

The vertical structure of the turbulence is included in the model
through the following relationships for the turbulent kinetic emergy, k,

the energy dissipetiom rate, ¢, and the vertical eddy diffusivity, Ty,

2

k(y) = —:43— (- -)! (4-24)
3

ely) = K—;(l -4 (4-25)

I =« oy (1 -4 (4-26)

where v £s the hefght above the bottom, h is the depth of flow,  1s won
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Rarman's constant, us = (gh9)l/2 is the friction velocity, and 9 is
the channel slope.

The model computes the reactive transport of suspended ice
crystals, discretized into a number of size classes, and thermal energy
as measured by temperature. The bottom boundary condition is one of
zero flux for both particles and heat. Heat fluxes due to ground-water
.flow and the terrestial heat flux are neglected since these are very
small compared ﬁith the surface heat flux (Carstens, 1970). The surface
boundary condition for the particles is also zero flux, except for the
addition of initial seed nuclei at the rate I,' (number per unit
surface area per unit time). The surface boundary condition for heat is
a constant removal at the ;ate Q' (energy per unit surface area per unit
time).

Incorporated in the model are stochastic algorithms for simulating
the differential rising of ice particles and the vertical diffusion and
mixing of ice and heat. All particle sizes are assumed to mix at the
same rate, but the difference in the mixing rates for heat and particles
13 retained. The algorithm for computing secondary nucleation, growth
and flocculation of the ice particles is as described in the previous
section with the only difference being that the temporal behavior of the
energy dissipation rate is simulated according to the algorithm
presented in Section 3.5. The time scale for the growth of the smallest

particles 1is

dv -1 -1
(a) _ 1 « _ 3kT
t, = w) = == (4-27)
a piL T

For a supercooling of order T = 0.04°C and particle radii ranging from 4
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to 100 pum, the time scale indicated by Eq. 4-27 ranges from 0.07 to 45
sec, fast enough for the growth of the smaller particles to interact
nonlinearly with the fluctuating energy dissipation rate.

The growth rate of the particles, as represented by Eqs. 4-2 and
4-3 is linearly dependent on the supercooling but nonlinearly dependent
on the energy dissipation rate. The rates of secondary nucleation and
flocculation are nonlinearly dependent on the energy dissipation rate
and on the number density distribution. In addition to examining the
effect of vertical transport, we will also be interested in the extent
to which the coupling between the fluctuating particle concentrations

and energy dissipation rate influences the formation of frazil ice.

4.3.2 Model Results

To investigate the effects of vertical transport and nonlinear
reactions on the formation of frazil ice in rivers, three simulations
have been performed. For the first case, the zero-dimensional model
presented in Section 4.1 was employed to model frazil ice growth without
nonlinear turbulence interactions and assuming complete vertical
mixing. For the second and third cases, the Monte Carlo model was
employed, thus incorporating vertical transport. However, for the
second simulation, the effect of turbulent mixing on reaction was
eliminated by assigning an infinite mixing rate. In other worxds,
immediately following each operation the new average concentrations of
all constituents at all nodes were computed and all representative
concentrations were assigned their corresponding average value. For the
third simulation, it was assumed that all particle size classes mix at
the same rate. However, the difference between the mixing rates for

particles and heat was retained.
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In all cases the depth of water is elther explicitly or implicitly
assumed to be h = 5 m. For the cases with vertical transport, the river
slope is set at 0.0002 so that the corresponding average velocity is 1
m/sec. The surface cooling rate 1is 650 J/m2-sec and the initial
seeding rate 1s 2500 nuclei/m2-sec. The corresponding rates for the
zero-dimensional model are a heat loss of 130 J/m3-sec and an initial
seeding rate of 500 nuclei/m3-sec. 1In all cases the particle size
range considered is 4 pm < r < 1435 ym, divided into 8 logarithmic size
classes. The number of elements at each node for the Monte Carlo model
is 100.

Figure 4-9 illustrates the simulated time histories of
temperature. For the case with complete vertical mixing, the peak
supercooling is reached earlier and, therefﬁre, has a smaller magnitude
than the cases with vertical transport. By limiting the rate of
transpoft of initfal seed nuclei from the surface waters, it is nof
surprising that the peak supercooling for the cases with vertical
transport lags that for the case with complete vertical mixing by a time
interval approximately equal to the diffusion time h2/1"v ~
(5m)2/(0.04 m2/sec) = 10 min.

Except for the late stages of supercooling, the results for the two
simulations with vertical transport are indistinguishable. Even beyond
t = 50 min, when the result begin to diverge, the differences between
the two simulations are very small. This is an indication that the
coagulation, growth and secondary nucléation reactions may not be
sufficiently fast or nonlinear to interact with the turbulence. Figure
4-10 compares the growth of ice mass for the three cases. As expected

from the previous result, the early peaking in temperature for the case
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without transport requires a shorter time lag before significant ice
growth than the case with vertical transport. The small differences for
the two cases with vertical transport confirm that the nonlinear
interaction between mixing and reaction is not important for frazil ice
growth in rivers. The remainder of this section will be devoted to a
Vdiscussion of results obtained for the Monte Carlo model simulation with
mixing modeled apprbpriately.

Figure 4-11 presents simulated vertical profiles of mass
concentration. At early times the largest crystal sizes are still small
enough that their buoyancy is insignificant so that mass is uniformly
distributed with depth. At later times, due to crystal growth and
flocculation, the frazil particles are much larger, their buoyancy is
more significant and, hence, there is a large vertical gradient in mass
concentration with most of the ice 'mass accumulated at the surface.
Figure 4-12 illustrates the growth of the larger particles at
mid-depth.. The larger particles grow in numbers until about the time of
peak supefcooling. Beyond this time as the supercooling decreases, the
rate of formation of larger particles becomes less than the rate of
removal by rising. Hence the number concentrations of larger particles
at mid-depth decrease again. Figure 4-13 shows the vertical profiles of
mass density for the various size classes at t = 35 min. It i3 evident
that the frazil seed nuclei Iintroduced through the water surface
actually grow to Intermediate sizes before they can be transported to
deeper waters. Thus, the introduction of frazil ice nuclei in deeper
waters is due primarily to secondary nucleation.

Figure 4-14 presents the time history of standard deviation for the

pdf's of number concentration for various size classes and of
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STANDARD DEVIATION {°C or cm?3)

TIME (min)

Flgurc 4-14 Time history of the standard deviation of the pdf's for

temperature and particle number concentration (depth = 0.8

m; open .squares, temperature; solid diamonds, class #1, r =

4 pm, open diamonds, class #4, r = 50 pm; solid squares,

class #7, r = 620 pm).



temperature at a depth of 0.8 m. From the large variation in the
standard deviation for size classes 1 and 7 it is evident that there is
significant interaction with the turbulence. However, it seems that the
overall effect on the total ice mass and water temperature is such that
the turbulence interaction is negligible. Perhaps one of the reasons
why this is so is that the standard deviations for the intermediate size
classes show little change with time, while those for the smallest and
largest size classes exhibit opposite trends; while the standard
deviation of the pdf of the largest particles is increasing, that for
the swallest particles is decreasing. Indeed, if one were to average
the standard deviations for size classes 1 and 7 in Figure 4-14, it
appears that the result would not vary much in time. Perhaps these
opposite trends cancel each other out in thelr overall interaction with
turbulent mixing. In any case, the dynamics are too complicated to be
able to say for certain. Finally, Figure 4-15 shows that the normalized
pdf's of number concentration for size classes 1, 4 and 7 at t = 31 min
and a depth of 0.8 m are slightly positively skewed.

In summary, as compared with the case with complete vertical
mixing, the effect of vertical transport om frazil ice growth In rivers
{s to reduce the rate of introduction of seed nuclel to deeper waters,
thus increasing the time to reach the peak supercooling and Iincreasing
the magnitude of the maximum supercooling. The growth, secondary
nucleation, and coagulation reactions involved in the formation of
frazil ice do not seem to be sufficiently fast or nonlinear to
necessitate being concerned about possible interactionms with turbulent

mixing.
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4.4 A Two-Dimensional Model of the Transport and Deposition of

Sewage Sludge from a Coastél Outfall

Concern over the fate of particles that are emitted from municipal
ocean outfalls arises from the fact that the largest fractioms of most
types of waste constituents (organic compounds and trace metals) are
associated with the particulate phase. As a result, the particles can
affect marine 1ife by acting as the transport vector for toxic species
and by accumulating organic debris in bottom sediments adjacent to the
outfalls. To understand the fate of particles upon disposal, one needs
to be able to estimate deposition rates as a functlon of location and to
relate those to the mass emission rates, the sedimentation
characteristics of the particles, and the hydrodynamic regime of the
receiving waters.

When.sludge {ssues from the outfall, it undergoes immediate
dilution within the resulting turbulent buoyant jet as it rises to some
equilibrivm height dependent on the amblent stratification, among other
factors. After reaching the equilibrium height in a matter of minutes,
the neutrally buoyant wastewater cloud is then subject tc advection by
local currents and dispersion by current shear and oceanic turbulence.
As they are being transported by the fluid, the suspended sludge
particles coagulate with each other and with natural marine particles
and slowly settle out of the water column.

In this section, a two-dimensional far field mode) for the
transport and deposition of waste particles emitted from a coastal
outfall will be presented. The model extends current analytical
techniques in that coagulation is accounted for in addition to particle

transport and settling. Accordingly, the purpose of the model



simulations presented here is to assess the relative importance of

cosgulation as a mechanisc affecting the fate of discharged particles.

4.4.1 Madel Descriptiom

Cousider a mmicipal outfall termimating in water of depth h and
from which issues a wastewater flow Q containing a2 solids concentration
€o- The plume rises to am equilibrion height zo above the bottom.
Thereafter the plume disperses at the rates [y vertically amd T'p
horizontally, while the suspended particles coagulate and settle. For
simplicity the mean current velocity is assumed to be zero. The plume
is thus radfially symmetric about the source.

The tso-dimensional model is a far field model, that is, the
dypamics of the initial dilutiom process are not zodeled. Instead, a
constant mass flux, Qcg, of perticles at the equilibrium height, 24,
is assumed. The particles at the source are assumed to be distributed
as &5 within the limits I pm < d < 100 um, in accordance with the
data of Faisst (1980); the mass and number demsities of waste particles
smaller than 1 pm are neglected. The surface and bottom boundary
conditions for vertical diffusion are zero-flux. Particles are removed
from tle system only by settling to the bottom. Since the problem is
radfially symmetric, the horizontal concentration gradient at r = 0 is
zere. The cuter radial boundary s chosen as a distamce sufficiently
large that only the smallest particles are still suspended in the water
colum at that distance and approximately steady conditions have been
attained by the time the smallest particles have reached the outer
boundary. The initial conditiocn is zero concentration everywhere. Very

far from the source when the suspended waste particle concentratiom has
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decreased to a level comparable to the natural background concentratlon,
coagulation with natural particles will become significant; however, at
this point the total mass of waste particles remaining in suspension
will be very small. The background concentration of natural particles
may thus be safely neglected. The wastewater flow is "turned on" at t =
0 and the plume development is simulated until approximate steady state
conditions are established.

Incorporated in the model are stochastic algorithms for simulating
differential settling, radial eddy diffusion, vertical eddy diffusion,
and mixing of particles. All particle sizes are assumed to mix at the
same rate. Coagulation of particles 1s computed as described In Section

2-4.

4.4.2 Model Results

As previously stated, the purpose of the model simulations is to
assess the relative importance of coagulation as a mechanism affecting
the transport and deposition of discharged particles. Accordingly, two
simulations have been performed, one with coagulation included and the
other with coagulation neglected. 1In both cases the depth of the water
was h = 80 m, the equilibrium rise height was 2z, = 40 m and the mass
emission rate was Qc, = 1 kg/sec. The particle size range, 0.5 pm < T
< 50 pm, at the source was divided into 8 logarithmic size classes.
Within the water column particles sized up to r = 170 um were accounted
for with two additional size ;lasses. The particle density was assumed
to be 1.1 gm/cm3. Constant values of the Kolmogorov time scale,
(v/<e>)1/2 = 10 sec, the integral time scale, k/<e> = 3000 sec, the

radial eddy diffusivity, Iy = 30 m2/sec, and the vertical eddy
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diffusivity, Ty = 10-4 m2/sec, were employed. The outer boundary

was chosen at a radial distance of 15 km. The 80 m by 15 km spatial
domain was discretized with an 11 by 9 (respective}y) node grid with the
grid resolution decreasing with increasing distance from the source.

The number of Monte Carlo elements per node was 50.

Figure 4-16 compares the total particle mass deposition rates as a
function of time for the two simulated cases. The mass deposition rates
are expressed as a percentage of the mass emission rates. The
fluctuations in the deposition rates are due to the fact that the rates
represent instantaneous values which have been smoothed somewhat by the
application of a moving average of width 1.8 x 10~5 sec. Since
coagulation contributes to the remcval of the smallest particles whicn
would.otherwise not settle, it is not surprising that including
coagulation results in quasi-steady state conditions being established
sooner with the quasi-steady.state deposition rate being slightly larger
than for the case with coagulation neglected.

Figure 4-17 illustrates the steady state distribution of the
sedimentation flux with radial distance. Near the source the
sedimentation flux for the case with coagulation included is almost
twice as large as that with coagulation neglected. Beyond a distance of
4 km the distributions of sedimentation flux for the two cases differ
negligibly. Figure 4-18 is a contour plot showing the distributions of
suspended particle mass at steady state. At any point in space the
iower suspended mass concentrations for the case with coagulation
fncluded are consistent with the enhanced mass removal rates
demonstrated above.

Flgures 4-19 and 4-20 illustrate the steady state particle size

distributions at a depth of 55 m and at various radial distances for the
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100

TIME (days)

Figure 4-16 Sedimentation rate (expressed as a percentage of the mass

emission rate) versus time (solid line, coagulation

{ncluded; dashed line, coagulation neglected).
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Figure 4-19 Steady state particle size distributions at a depth of 55 m

at various radial distances for the simulation with

coagulation included.
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two cases. For the case with coagulation included it is evident that
the mass densities are lower, as expected. For bo;h cases there 1s a
peak in the distribution for particle sizes in the neighborhood of r =
10 pm reflecting accumulation of mass which has settled out of the
waters above that depth. Particles of size much larger than r = 10 pm
settle to the bottom very quickly and experience little radial
diffusion. Particles much smaller than 10 um do not settle
significantly bdut experience a uniform reduction in mass density due to
the coagulation process.

In summaty, coagulation of waste particles enhances the removal of
mass from the water column, especially within a few kilometers from the
source. The simulations presented did not consider coagulation of
particles during the initial dilution process or coagulation with
natural particles already present in the water column. Since the
emitted particle concentrations may be as high as 50,000 mg/%2 for some
sludge discharges, the extent of coagulation within the near field plume
may be quite significant even though the residerce time is only a few
minutes. Taking these factors into account, the enhanced massg
deposition rate near the source due to coagulation may be significantly

greater than the factor of two simulated here.

4.5 A Two-Dimensional Model for the Desorption of Trace

Elements from Resuspended, Contaminated Sediments

The {ntentional or accidental discharge of industrial and municipal
vastes often results in the accumulation of trace metals within the
sediments adjacent to the disposal site. The trace metal concentrations

within the sediments may be reduced by mixing processes in the
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sediments, or by desorption from the sediments after they have been
resuspended due to a storm event. Tn shallow coastal waters, unless the
‘bottom current velocity is very large, the last mechanism of
concentration reduction is normally the most efficient. Accordingly, as
a final demonstration of the capabilities of the Monte Carlo approach, a
two-dimensional model for computing the transport of dissolved (free)
and adsorbed (bound) trace metal species will be presented. Featured in
the model will be the computation of the chemical equilibrium between
free and bound states, the differential transport of dissolved and

adsorbed species, and particle coagulation.

4.5.1 Model Description

Consider a lens of contaminated sediment of radius R in a coastal
waterbody of uniform depth h. The sediments outside the lens and the
overlying waters are assﬁmed to be uncontaminated. The occurrence of a
storm event will result in the resuspension of sediments. For the
{nitial condition it is assumed that the resuspended sediments have a
uniform mass concentration ¢, with depth, that they are distributed in
particle diameter as d-%4 over the size range 1 ym < 4 < 60 pm, and
that the resuspended contaminated sediments are confined to the
cylindrical region directly above the initial sediment lens. Outside
this cylindrical region the resuspended sediments are assumed to be
uncontaminated. Following the resuspension event, the particles begin
to coagulate and settle while contaminant desorbs from the particles.
Since the mean velocity 1s assumed to-be zero, the only means of
transport for the bound and free contaminant, apart from settling, is

vertical and radial dispersion.
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The modeling of trace metal adsorption/desorption requires special
consideration. The adsorption of solute onto a solid surface is a
two-step process requiring physical transfer of mass through the fluid
phase and chemical reaction at the solid-1iquid boundary. Since the
reaction at the phase boundary may be as fast as the diffusive
transport, either diffusion or reaction may limit the overall reactiom
rate. However, it is ofteﬁ very difficult to determine which step 1is
controlling. The time scale for equilibrium to be reached for the fluid
phase transport and interface reaction is on the order of minutes to
hours. 1In addition to the3se processes, there Is often a slower
adsorption process invelving diffusion of the adsorbate toward the
interior of the solid. The kinetics of this intra-particle diffucion
typically occur on a time scale of days to months. The kinetics of
surface adsorption are very complicated and not well understood. As a
result, there is very little information avallable on appropriate rate
laws and associated kinetic constants. The most successful approaches
to date all require invoking chemical equilibrium (Morel, 1985;
Karickhoff, 1984).

The traditional modeling of adsorption requires relating, at
equilibrium, the number of moles of solute adsorbed per unit mass of
solid to solution phase concentration of solute by an empirical curve
£it known as an adsorption isotherm. The term isotherm 1s used to
signify that the model is strictly applicable only under conditions of
constant temperature, although this restriction is not that critical for
aqueous systems. The adsorption isotherm level of modeling is very
useful for simple systems at constant pH and ionic strength and where a

single adsorbing species 1is being considered (Morel, 1982).
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To incorporate pH and electrostatic effects, the adsorption process
may be modeled as a complexation reaction. In addition, the so-called
surface complexatioﬁ model can allow for various kinds of surface sites
and more than one adsorbate that will compete for those sites. To apply
the surface complexation model it is assumed that a standard free energy
of adsorption can be assigned to each reaction. This free energy change
is the sum of an intrinsic and a coulombic change, which accounts for
the electrostatic effect. The corresponding equilibrium constant is
thus given as the product of an intrinsic and a coulombic constant
(Morel, 1983). A description and comparison of various models for
estimating the coulombic constant may be found in Westall and Hohl
(1980). Once a surface complexation model has been chosen, it may be
quite simply incorporated into a numerical scheme for computing chemical
equilibria (Westall, 1979).

For simplicity, local equilibrium will be invoked and the surface
complexation approach will be adepted in the modeling of adsorption,
with electrostatic effects neglected. Accordingly, the equilibrium
between solid surface sites, XSO-, and metal catioms, Mt, is
described by an equilibrium constant that is a function of pH and of the
metal species only.

Once local chemical equilibrium has been invoked, the local
concentrations of the constituents participating in the reversible
reactions are governed by chemical thermodynamics. 1If a system of =a
constituents, or species, sy, 1 = 1,2,...,n is known to be in chemical
equilibrium, then it is possible to choose from the set of n specles a
subset of m < n components c;. {=1,2,...,m vhose total concentration

{s reaction invariant and, thus, chemically conserved (Morel, 1983).
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The subset is chosen such that each component is a "building block" for
at least one species and such that the total concentration of each
component is independent of the total concentration of any other
component. Once the components have been chosen, the equilibrium of
each species may be expressed in terms of the set of components

according to

—» g ¢ 4+13 c¢c_ + ...+a, ,c,+ ...+a c (4-28)

where ajj are stoichiorecric coefficients. The equilibrium

concentration [51] is determined by the mass law equation

) L m - (4-29)

where Kj is the equilibrium constant. Since the set of m components
1s contained in the set of n species, the computation of the component
concentrations [cJ] is obtained by solving the equations (4-29) by
fteration, subject to the constraint that [cj] be non-negative and

n

121 aij[sil = [cj]T (4-30)
that is, that the total concentration [Cj]T of each component be
congerved. To solve the nonlinear algebraic equations, Eq. 4-29 and
Eq. 4-30, the MICROQL algorithm developed by Westall (1979) will be
employed. This algorithm is essentially the same as the well known

computer code MINEQL (Westall et al., 1976) except that the subroutines
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for computing equilibrium solid formation (i.e., precipitation) have
been removed.

The species that are included in the model are the particles
divided into a number of size classes, tne dissolved fractions and the
adsorbed fractions of each trace metal species. Since the particle size
distributions will be horizontally uniform for all times after the
resuspension event, it is only necessary to compute the influence of
settling and coagulation on the size distributions in the vertical
direction (i.e., in rme dimension). The transport of the bound and free
components of the trace metals, however, will be in both the horizontal
and vertical directions, hence a two-dimensional computation is required

for the trace metal species.

4.5.2 Model Results

In modeling the reactive transport of resuspended, contaminated
sediments we are mainly concerned with computing the horizontal
dispersion and the re-deposition of copper to the bottom sc’iments. The
role of coagulation in the re-deposition of copper 1s particularly
interesting. Unfortunately, it is unknown at this time to what extent
coagulation reduces the specific surface area available for adsorption,
1f at all. When two particles coagrvlate it seems that any solute that
13 already adsorbed onto the surfaces which come into contact should
become trapped within the agglomerate. It also seems that further
adsorption onto the surfaces which are now in contact should be
impaired. For simplicity and definitiveness, it will be assumed that
the adsorbing capacity of any particle is proportional to its

instantaneous equivalent spherical surface area. This assumption is
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unrealistic since it means that, given two particles whose adsorbing
capacity is saturated, should these particles coagulate adsorbate will
kave to desorb from the mew agglomerate since its capacity lLased on the
new equivalent surface area will be exceeded. Since the following
simulations are only for demcmstration purpeses, it must be kept in mind
that the conclasions to be drawn from the results are grossly biased by
this idealized assumption. WNote also that the apélicability of the
model is not tied to this idealization. Any rule describing how
coagnlation of two particles affects the adsorbing capecity of the
resulting agglomerate may easily be incorporated into the model without
loss of generality.

To examine the influence of coagulation two simulations have been
performed, one with coagulation fncluded apd the other with coagulation
nezlected. In both cases the depth of the water was set at h = 30 m,
the radius of the contaminated lens was r = 1 km, and the initial
resuspended sediment concentraticn was cg = 100 mg/l. The initial
particle size range was 0.5 pm < r < 30 pm, divided into 6 logarithmic
size classes. With the omset of coagulation, particle sizes up to T -
100 pm were accounted for with two additional size classes. The
particle density was assumed to be 2 gnfcn3. Constant values of the
Kolmogorov time scale, (wfce>)1/2 = 10 sec, the integral time scale,
kf<e> = 3000 sec, the radial eddy diffusivity, I'y = 30 n?/sec, and
the vertical eddy diffusivity, I'y = 10-% m2/sec, were employed.

For simplicity only ome trace metal species was considered in the
simulation, namely, copper. Copper forms tke following major complexes
in seawater: XSOCu, CuO#*, Cu(GH);, CuCD3, CuCl, amd CuSO,.

A complete list of species includes these conplexes in addition to the
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fonic species Cu2t, xso-, H¥, OH-, HCO3", Cl~, and
S04~. From these 13 species a set of 6 components may be chosen:
X$0-, Cu2t, Cl-, HCO3~, S042-, and HF. The total
concentrations of the seawater ions Cl1-, HCO3~, 8042‘, and
H+ will for all intents and purposes remain unchanged, hence, they
were fixed at thelr natural concentratlons. The total concentrations of
surface sites and copper will vary in time and space due to differential
transport and coagulation. However, since the rate of change of total
surface site and copper concentrations at a point in space will be much
slower than the rate or re-equilibration, the assumption of local
chemical equilibrium is valid.

Table 4-2 is the tableau for the chemical equilibrium computation.
The numbers in the central part of the tableau are the stoichiometric
coefficignts, ajj. Locking horizontally across the tableau one
obtains the information to solve the mass action équations, Eq. 4-29.
Looking vertically.down the tableau yields the information required to
solve the mass conservation equations, Eq. 4-30. The total seawater ion
concentrations and the equilibrium constants were obtained from Morel
(1984) and Mantoura et al. (19785. The surface site density was assumed
to be 5 x 10-8 moles/cm2. Since the total concentrations of the
seawater ions are fixed, only two equations need to be solved, the two
unknowns being the concentration of adsorbed copper, [XSOCu], and the
concentration of dissolved copper, ([cu2+] + [CuOHT] + [Cu(OH),] +
[CuCOo3] + [cuClt] + [CuSO,]). Given the total concentration of
dissolved copper, the partitioning among the various dissolved copper
species is fixed by the stoichiometry, that is, the concentrations of

the dissolved copper species will always be in the same fixed relative

proportions.
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Figure 4-21 compares the total particle m2ss deposition as a
function of time for the two simulated cases. As expected, coagulation
greatly enhances the deposition of particles on thé sea bed. With
coagulation neglected, the rate of mass deposition decreases
monotonically with time. With coagulation included, the initial rate of
deposition is very fast. However, once the largest particles have
settled ou:r of the water column carrying with them all the additiomal
particles they have coagulated with (at about t = 0.5 days), the
remaining suspended mass concentrations are low enough that the rate of
deposition is actually less than the corresponding rate for the case
with coagulation neglected. Thereafter the deposition rate Ilncreasec
slightly, exceeding the corresponding rate for the case with coagulation
neglected at about t = 4 days, then begins to decrease again very
slowly. This observation is supported by the profiles of mass
cdncentration, Figure 4-22. With coagulation neglected, the depth
profiles exhibit a decrease in mass concentration near the surface as
the larger particlgs settle out of the water column. With time, only
the smallest particles remain which essentially do not settle. As a
result, the mass concentration becomes uniform with depth., With
coagulation included, the initial mass removal is much more extensive.
By t = 0.25 days, half the initially suspended mass has been removed
from the water column. The difference between the two profiles, with
and without coagulation, is quite significant at this time. Thereafter
the difference between the profiles decreases, since the mass deposition
rate for the case with coagulation 1s less than that without
coagulation, until t = 5 days. After t = 5 days, the difference between

the corresponding profiles increases again. A comparison of Figures
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4-23 and 4-24 shows that with coagulation more large particles are
removed than without coagulation. Since we already know that the
dominant collisions are with the smallest particles, it is not
surprising that the mass concentration of small particles should
decrease so fast as well.

Figure 4-25 compares the total redeposited copper as a functlon of
time. Since coagulation reduces the specific surface area of particles,
the amount of adsorbed copper that settles out of the water column 1s
initially less for the case with coagulation than without., With less
surfaée area available per unit fluid volume, the equilibrium is shifted
towards higher concentrations of dissolved copper. However, the
dominant collisions are with the smallest particles. Since most of the
copper will 5e adsorbed to the smallest particles, ultimately the
mechanism which removes tha smallest particles most efficiently will
also remove the most copper. Hence; after the large particles have
settled out of the water column, the rate of removal of copper is
greater for the case with coagulation than without. Figures 4-26 and
4-27 support these observations and indicate that with coagulation
included less copper is redeposited near the inital sediment lens, but,
at later times, more copper is redeposited at greater radial distances
than with coagulation neglected. It is evident that coagulation
actually contributes indirectly to the dispersion of the contaminant.

Figure 4-28 illustrates the horizontal distribution of adsorbed
copper ;t a depth of 12.5 m at various times. The differences in the
distributions for the two cases, with and without coagulation, are so
small as to be negligible (though the adsorbed copper concentration is

consistently higher for the case without coagulation than with), hence,
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Figure 4-23 Particle size distributions at a depth of 12.5 m at various

times for the simulation with coagulation included.
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Figure 4-26 Distribution of copper in sediments at various times for

the simulation with coagulation included.
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Figure 4-27 Distribution of copper in sediments at various times for

the simulation with coagulation neglected.
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Figure 4-28 Horizontal distribution of adsorbed copper at a depth of

12.5 m at various times.
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only one plot is presented. Figure 4-29 compares the horizontal
distributions of dissolved copper at a depth of 12.5 m for the two
cases. The relative fractions of the various dissolved copper complexes
are indicated by the scales on the right. The dissolved copper
concentrations for the case without coagulation are lower than for the
case with coagulation since in the latter case the total surface area
available for adsorption is less. Note again that these conclusions are
grossly biased by the f{dealized assumption regarding the adsorbing

capacity of coagulated particles.
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V. SUMMARY AND CONCLUSIONS

The focus of this thesis has been the analytical modeling of
transport and reaction involving suspended particles. The modeling of
the reactive transport of suspended particles is particularly
challenging because particles settle differentially, and they are
involved in physicochemical reactions that are often nonlinear and
sometimes fast with respect to the fluid turbulence. Due to lack of
experimental data, present day understanding of how particle transport
and reaction mechanisms interact is limited. The development of a
global modeling technique for simulating particle transport and reactlon
4s thus a useful means of syntheslzing the available knowledge and
increasing our understanding of the dynamics oé suspended particles.
However, to be a reliable tool, the global model must incorporate
submodels for the component processes that have a sound physical basis.
Accordingly, a major part of the thesis has been devoted to improving
and developing analytical models and computational techniques for the
component processes of interest in order to meet this requirement. The
following is a summary of the major contributions and conclusions.

An improved model for the collision frequency function for
turbulent shear-induced coagulation which takes into account the
intermittency in the microscale shear rate has been proposed. The
improved model describes the experimental data of Delichatsios and
Probstein (1975) better than the well estableished model of Saffman and

Turuer (1956), although the differences are small.
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Based on a discussion of the stochas;ic nature Sf coagulation,
;pproximate criteria have been dgrived for determining whether or not
- particle correlation effects may be neglected in the modeling of
coagulation. The criteria are verified by applying them to the Monte
carlo simulations of Pearson et al. (1984). For typical particle
concentrations observed in the aquaiic environment, the criteria
indicate that particle correlations will always be significant,
particularly for the dymamics of the larger particles. Since there is
no means of modeling these correlations at present, other than by the
Monte Carlo technique of Pearson et al., we must be aware that numerical
simulations will tend to under predict the extent of coagulation.

By considering the relative contributions of individual particle
interactions to the coagulation process it was shown, contrary to the
theory of Hunt (1980, 1982), that steady state coagulation of particles
is mainly a result of collisions with the very smallest particles}
Klett's (1975) analytical solutions of the coagulation equations were
employed to uncover the inconsistency in Hunt's theory. Numerical
simulations were used to demonstrate that the generally observed shape
of the size distribution for particle mass in coastal waters is a result
of particle interactions that may be related to the inclusion of
collision efficiency functioms in the numerical scheme rather than a
local (in particle size space) equilibrium of volume flux, as proposed
by Hunt.

To permit the incorporation of fast, nonlinear reaction kinetics in
the global modeling framework it was recommended that the model be based
on the solution of the transport equation for the one-point, joint

scalar probability density function. Pope (1981) devised a very simple
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and efficient Monte Carlo technique for solving the pdf transport
equation which unfortunately requires a uniform grid. To extend the
technique to allow simulation over non-uniform grids, the procedure of
duplicating or averaging Monte Carlo elements was put forward and proven
to be a valid statistical operation.

An improved advection algorithm was proposed to permit accurate
modeling of the differential sedimentation process. While the infinite
spatial resolution provided by this algorithm is inconsistent with other
alogorithms which limit the spatial resolution to the scale of the grid
cpacing, the error in applying the improved alogorithm for advection-
dominated systems is judged to be less severe than the alternatlve of
suffering numerical dispersion through the use §f Pope's (1981)
advection algorithm.

Based on the use of operator splitting, an efficient radial
diffusion algorithm was developed which allows greater flexibility in
the design of the grid and the choice of the element density. Also, for
nonlinear reactions that are both sensitive to the microscale shear rate
and sufficiently fast (i.e., with a reaction time sca)e of less than 100
sec) as to be sensitive to fluctuations in the energy dissipation rate,
a simple stochastic algorithm was suggested for simulating the temporal
variation in the magnitude of the dissipation rate at a point in space.

As an application of some of the concepts discussed in the chapter
on coagulation kinetics, and extending the work of Daly (1984), a
kinetic model for frazil ice growth was formulated. The model 1s
calibrated and verified against experimental data. A simple analytical
expression for estimating the time to reach the point of maximum

supercoooling as computed by the zero-dimensional kinetic model 1is

derived.
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To examine the effect of vertical transport, the kinetic model of
frazil ice growth was incorporated into the Monte Carlo model and a
simulation of the formation of frazil ice in riverg was performed. It
was determined that, as compared to the case where vertical mixing is
infinitely fast, the effect of vertical transport is to delay the time
to reach the point of maximum supercooling by an additiomal increment
approximately equal to the diffusion time hZ/Fv, where h is the
depth of flow. By comparing a simulation in which the interaction
between mixing and reaction was suppressed with one in which the
{nteraction was retained, it was demonstrated that the effect of
turbulent mixing on the nonlinear growth, coagulation and secondary
nucleation reactions is very small., Hence, there really is no need of
the capability to model fast (with respect to the mixing rate),
nonlinear reactions when modeling the reactive transport of suspended
particles. However, note that the improved advection algorithm
assoclated with the Monte Carlo solution procedure is a very accurate
and efficient way of modeling differential sedimentation. Given that
the capability to model mixing could be removed without significant
error, the cost of model computations would be considerably reduced
since the reaction would only have to be computed for ome element per
node (at a given node all elements would be identical and the pdf would
be a delta function). Also, considering the simplicity and flexibility
of the Monte Carlo approach, it is still recommended for use as the
general transport model.

To further demonstrate the capabilities of the Monte Carlo model 1t
was adapted for computations'of the transport and deposition of sewage

sludge discharged from a coastal outfall and of the desorption of trace
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metals from resuspended, contaminated sediments. To be able to easily
identify the significance of coagulation as a mechanism affecting the
removal of mass and the transport of trace metals in coastal waterbodies
the flow regimes in these simulations were grossly oversimplified. 1In a
real simulation of the coastal environment, of course, much more effort
would be devoted to characterizing the spatial distributions of mean
velocity, eddy diffusivity, and energy dissfpation rate.

It is recognized that the kinetic models employed in this thesis
need refinement and/or further verification. It is also well known that
obtaining experimental data relating to the reactive transport of
suspended particles is very difficult. In particular, the problem of
measuring particle size distributions i{s non-trivial and often limits
tha accuracy and frequency of experimental measurements. However, a
significant amount of research effort is currently being devoted to
developing techniques for optically or electronically deﬁecting particle
size distributions and these techniques should be perfected within the
near future. Let us assume for the moment that such techniques are ﬁow
available for making particle measurements both in the lab and in the
field. What kinds of experiments can bé designed to verify the model
predictions? |

At the zero-dimensionl level it is conventional to perform
stirred-beaker experiments to test kinetic models and examine the
influence of turbulent mixing. This type of experimental design 1s not
favored here because the very high shear rates near the impeller may
cause particle breakup and the non-uniformity of the flow makes it very
difficult to characterize the turbulence regime. Instead it 1is

recommended that such experiments be conducted in a container in which
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turbulence 1s generated by uniform buoyant convection. With such a
method of mixing the turbulence is quite urniform in all directions over
most of the flow field and the turbulence scales may be easily
controlled via the heat flux and the plate separation. The problem with
this approach is that the level of turbulence required to keep the
particles suspended calls for a very large heat flux. Also, to avold
secondary circulations the container must be carefully insulated and the
temperature distribution at the top and bottom plates must be maintained
horizontally uniform to better than 0.l degrees Centigrade per meter.
Though these problems are quite restrictive, given sufficient resources
they may be overcome.

To perform experiments in the container relating to coagulation,
micron-sized particles may be mixed in solution of sufficiently low
fonic strength that coagulation is suﬁpressed. By slowly increasing the
fonic strength of the solution, a well defined point will be reached at
which coagulation begins to occur. The time evolution of the particle
size distribution may then be measured and compared with the numerical
predictions. Any nonlinear behavior due to the interactlon of the
turbulence with the coagulation process may then be investigated by
repeating the experiment at varying levels of the energy dissipation
rate. Similarly, to examine nonlinear behavior due to particle
correlation effects, the experiment may be repeated at different levels
of the initial particle number concentration.

The models of the component processes of frazil ice formation need
to be verified with experimental data. To verify the secondary
nucleation model it is necessary to suppress the sintering mechanism so

that the evolving number concentrations and size distributions may be
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uniquely related to the microscale shear rate through the proposed
model. This may be accomplished by using otﬂer types of crystals that
form secondary nuclei but do not sinter. 1In performing such experiments
it will be important to ensure that after the initial seeding no further
anuclel are introduced into the chamber other than those formed by the
secondary nucleation process. Also, in verifying the model it should be
possible to determine for each type of crystal a unique physical
constant describing the number of secondary nuclei formed per unit of
collision energy. Batchelor (1980) has already shown that his
transport-limited growth model describes the available data very well.
That frazil ice formation is indeed a transport-limited reaction may
need to be further demonstrated. To isolate the growth mechanism,
secondary nucleation and sintering must be suppressed. This may be done
by introducing omnly a Jery small number of initial seed nucleil and
effectivély {increasing the lag period where crystal collisions may be
neglected. The rate. of growth of the initial seed nuclei should then be
described by the growth model. Once the secondary nucleation and growth
models have been verified the effect of sintering may then be examined
by performing growtl experiments at high initial concentrations of seed
nuclei. Any behavior not predicted by the secondary nucleation and
growth models will then be due to the sintering mechanism. In addition
to measuring particle size distributionms, high speed photography could
be used to provide direct observations of the sintering process. As
with coagulation, the influence of turbulence on the reactlion rates may
be assessed through repeated experiments at varying levels of the energy

dissipation rate.
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Due to the variability and complexity of sorbent/sorbate
composition, chemical character, and sorptive interactions, considerable
more laboratory data are required before realistic kinetic models of the
adsorption process may be developed. Given that in some instances the
microscale turbulent shear rate may determine the reaction rate, the use
of a controlled turbulent environmment such as the convection chamber in
which to perform fundamental adsorption experiments would thus appear to
be a necessity.

To examine the effect of transport on rteaction at the
one-dimensional level, it is recommended that field experiments be
conducted in man-made open channels, such as navigation channels,
1r£1gation canals, or drainage ditches. The distributions of the mean
velocity and turbulence parameters in these flows may be modeled with
reasonable accuracy. In addition, perturbations such as local additiomns
of tracers may be applied and the time response may be monitored by
sampling appropriately at downstream locations. Coagulation experiments
may be conducted by adding a suitable coagulant in the channel flow and
observing the subsequent coagulation of the natural particles. Under
suitable atmospheric condi;ions, frazil ice formatiom may be induced by
increasing the turbulence lcvel in the channel (by increasing the flow
rate) to a point where the vertical diffusion rate becomes comparable to
the crystal growth rate. Adsorption experiments may be conducted by
adding a suitable adsorbate and monitoring its subsequent adsorption
onto the natural particles. As demomstrated by the simulation of frazil
fce formation in rivers in section 4.3, such experiments may be easily

simulated by the Monte Carlo model for comparison purposes.
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The use of more complex two- or three-dimensional natural flows to
produce experimental results against which model predictions may be
verified is not recommendaed. Since it is very difficult to predict mean
circulations and the distributions of the turbulence parameters in such
flows, one can only expect to reproduce gross features with numerical
computations. Once the model has been verified at the zero- and
one-dimensional levels 1t may be expected to produce results at the two-
and three-dimensional levels whose accuracy is limited by the accuracy
with which the hydrodynamic inputs may be specified.

In closing, it is emphasized that the primary utility of the
reactive transport model is as an engineering tool, that 1is, to provide
understanding as to interactions between various mechanisms of transport
and reaction, to examine the consequences of any hypotheses or models
made with regards to any reaction process, to aid in the design of lab
and field experiments, and to evaluate the gross effects of any
artificial perturbation applied to the aquatic environment. Quite
simply, the analytical models and computational techniques presented in
this thesis provide a framework within which the dynamics of suspended

particles may be studied.
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