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ABSTRACT

This thesis will provide a practical decision procedure for the indefinite integration of
algebraic functions in terms of elementary functions. An elementary function is one that can
be expressed using combinations of algebraic functions, exponentials and logarithms. We can
either express the integral as an elementary {unction or guarantec that thic cannot be dore.
The algorithms presented here are “ratiopal” in the sense that no algebraic extensions are
made which are not necessary to express the answer. The basic apprcach involves reducing
the singularities of the integrand iteratively. This has the advantage that even when the
original problem is not integrable, it can be partially integrated and reduced to a simpler form.
We are able to prove that any integral can be reduced to one whose finite poles are all simple.
Elimination of simple poles requires the construction of logarithmic terms. Whether or not
this can be done reduces to the question of whether some multiple of a given divisor is
principal. We present a novel algorithm for solving this probiem which is able to compute the
exact order of the given divisor by examining its behavior under “reduction modulo p.” We
also present algorithms for finding absolutely irreducible factors of multivariate polynomials
and computing the genus of curves. The latter is a simple consequence of our use of an
integral basis for our function field to provide a global non-singular model of the curve. This
basis allows us to determine the nature of the singularities of the integrand and provides an
ideal-theoretic algorithm to compute a function with a given principal divisor.
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CHAPTER I INTRODUCTION

This thesis will provide a practical decision procedere for the irdefinite integration of
algebraic functions. Unless explicitly noted, we will always assume » to be our distinguished
variable of integration. An algebraic function y of x is defined as a sclution of a mouic
polynomial equation in y with coefficients that ar: rational functions in x. Each of these
rational functions in x can be written as a quotient of polyriomials in x whose coefficients are
constants (i.e. not dependent on x). If we adjoin each of these constant coefficients to our
base field Q (rational numbers), then we have constructed a finitely generated extension of Q
that we will call our coefficient field, K. We can assume the integral has the form J y dx where
f(x,y) is the unique monic polynomial of least degree that y satisfies. An elementary function
is one that can be expressed using combinations of algebraic functions, exponentials and
logarithms. We propose either to express the integral as an elcmentary function or guarantee

that this cannot be done.

SECTION 1. REVIEW OF PREVIOUS WORK

During the 18t and 19'h centuries this problem attracted much interest [1]. Euler (1748)
and others studied elliptic functions and discovered they were not integrable in terms of
elementary functions. Abel (1826) first studied the integrals of general algebraic functions,
which later became known as abelian integrals. Liouville [41] proved a key theorem that
forms the Lasis for the decision procedure. He showed that [ y dx, if integrable in terms of

elementary functions, could be expressed as

fydx=v0+2c,-logv,- (n
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where the c; are constants and the v; are rational combinations of x and y. The basic idea in
his proof is that integration cannot introduce any new functions other than constant multiples
of logs since differentiation would not remove them. Liouville (1833) also gave an integration
algorithm [31] for the special case of algebraic integrals that could be expressed without
logarithms, but he fourd no method for solving the general problem. This problem was so
difficult that Hardy (1916) pessimistically stated [21] “there is reason to suppose that no such

method can be given.”

The next major steps in this area were taken by Risch (1968). First he gave a complete
decision procedure for integrating elementary functions that were free of algebraic functions
[38]. Then he turned his attention to the algebraic problem, and in [39] he sketched a
procedure that reduced algebraic integration to a problem in algebraic geometry, determining a
bound for the torsion subgroup of the divisor class group of an algebraic function field.
Finally in [40] by referring to some recent results in algebraic geometry he outlined a theoreti-
cal solution to the problem. While this indeed disproved Hardy’s undecidability conjecture, it
did not really present a. practical algorithm that could be used to actually solve integration

problems.

Risch refined equation (1) by showing one could assume c,cK and v;eK(x,y) where K is
the algebraic closure of K (see also [42]). He also showed that vyeK(x,p). The integration
problem is now reduced to findiog the ¢; and the v;. The basic approach that Risch used and
that we will use is to construct these functions by analyzing their singularities. By considering
algebraic functions on their Riemann surface, they are no longer multi-valued and have only a
finite number of poles as singularities. At each point of the Rieraann surface a function can
ve expressed locally as a Laurent series in terms of some uniformizing parameter. When the
parameter is expressed as (Jc—a)l/'l for some aeK and neN the series is called a Puiseux
expansion. The finite initial segment composed of the terms with negative exponents is called

the principal part of the series expansion. If we compute the principal paris of the integrand
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at ail its poles, then we can integrate these sums termwise. If we discard the log terms that
arise by integrating terms of the form r; (x—a)—!, then the remaining terms form the principal
parts of the expansions of v, at all of its poles. Thus we make the key observation that the
singular places of v, are a subset of the singular places of the integrand. Now we are in the
position of trying to find a function with a given set of principal parts. Since an algebraic
function with no poles is constant, this function is only determined up to an additive constant,
as expected from an integration probleiﬂ. The least degree term of of each principal part
specifies the order n J of the pole at that place p ; on the Riemann surface. This allows us to
associate an integer with each place if we agree to associate the integer 0 with places where
the integrand was non-singular. The formal sum over all places Z n p; is called a divisor, and
by the Riemann-Roch theorem the set of algebraic functions with orders not less than those
specified by the divisor form a finite dimensional vector space over K. Bliss [6] gives a
technique for finding a basis for this vector space. A general member of this vector space can
be expressed as a linear combination of basis elements with indeterminate coefficients. By
equating the principal parts of a general miember of the vector space with the principal parts of
the integral we get a system of linear equations that give a necessary and sufficient condition

for the existence of the algebraic part cof the integral.

To. find the logarithmic part we now examine the terms of the form r; (x — a)_‘ that we
ignored earlier. The coefficients r; are precisely the residues of the integrand at the singular
places p J of the integrand. If the integral exists then it can be presented in a form where the c;
's form a basis for the Z-module generated by the residues. In fact as we shall show in
chapter 6 the c; generate the minimal algebraic extension of the coefficient field required to
express the integral. The algorithms we present will avoid Puiseux expansions and never

introduce algebraic quantities not required for the final answer.

To simplify our presentation of Risch’s approach, we will now assume all the residues are

rational numbers. The general case will be treated in chapter 6. Let m be a least common
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denominator of all the residues. We will now construct a divisor D from our set of residues, in
general we would have k divisors where k is the rank of the Z-module generated by the
residues. We define the order of D at each place p to be m times the residue of the integrand
at p. Thus D = X (mr;)p; . Since there are only a finite number of places where the integrand
has non-zero residue D is a well defined divisor. Since the sum of the residues of the integrand
is zero, degD =X (mr;)=0. For any function feK (x,y) we have a divisor
div(f) = = (ora,f)p where ord,f is the order of f at p. A divisor is called principal if it is the

divisor of some algebraic function. If the divisor associated with the residues is principal

1
m

describing a function f then we have determined the log term —logf. However, if the divisor
is not principal it is possible for some integer multiple of it to become principal. If k& times a
divisor D is principal with associated function v, then we have a log term -'—n%c—logv. This is the
fundamental theoretical obstruction to the integration of algebraic functions. The integrand
contains complete information about the location and orders of the poles of the algebraic part
of the integral, but for the log parts the residues enable us to find reduced divisors only (the
coefficients of the places are relatively prime), not necessarily the actual divisors of the
logands. The “points of finite order problem” is to find an integer bound B such that if kD is
not principal for some divisor D and all integers 1<4<B then no integer multiple of D is
principal. Under componentwise addition and subtraction of the order coefficients the set of
divisors becomes an abelian group. The quotient of the group of divisors of degree zero by
the subgroup of principal divisors is called the divisor class group. The divisor classes for
which some multiple is principal form the torsion subgroup of the divisor class group. Thus we
can reformulate our question as finding a bound for the torsion subgroup. In order for such a

bound to exist it is critical that our constant field be a finitely generated extension of the

rationals and not an algebraically closed field.

The approach that Risch outlined for determining the bound uses a technique that has
lately come into vogue in many areas of algebraic manipulation. We take a difficult problem

and homomorphically map it into a simpler domain, hoping to find some technique for lifting
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the solution back to the original domain. Although the original points of finite order problem
seems quite difficult, Weil (1948) showed that the probiem is easily solvable for function
fields in one variable over finite fields [52]. For these fields the divisor class group is finite
and Weil’s rationality formula for the zeta function shows that the order of the class group can
be computed by counting points on a non-singular model. Using Weil’s proof of the extended
Riemann hypothesis for such fields we can explicitly give bounds for the divisor class group
over a finite field. An upper bound is (Vg + 1)23 where g is the order of the finite field and

g is the genus, and we obtain a lower bonund of (Vg — 1)28.

The natural approach to reducing our problem is “reduction mod p,” where p is the prime
ideal for some discrete: valuation of our constant field, e.g. if the constant field is Q .then p will
be a prime ideal in Z. But we must verify when such a reduction is “good”, i.e. gives us useful
information for determining our bound. Risch observed [40] that if we get a projective
non-singular model for our function field and if its reduction mod p is still non-singular then
the reduction is good. This means that the induced homomorphism of divisor class groups is
injective for all divisors whose order is relatively prime to the characteristic of the finite field
([44] or [47]). Since the torsion subgroup is a finite abelian group, it can be decomposed into
a product of the group of eluments whose orders are relatively prime to p and the p-sylow
subgroup. Thus if we find two distinct rational primes that give us good reduction, we can
multiply the bounds for the two divisor class groups and get our desired bounds. Risch
claimed that all of these steps were known to be effective, but he provided no explicit
algorithms. Dwork and Baldassarri [4] independently duplicaied Risch’s approach to this
problem in the process of finding algebraic solutions for second order linear differentiai

equations.

James Davenport has independently investigated this problem. His algorithms are
constructed along the lines suggested by Risch. He uses Puiseux expansions and Coate’s [12]

algorithm to construct a basis for the multiples of a divisor. This construction is used for both
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the algebraic and transcendental part of the answer. To bound the divisor torsion he uses
special purpose algorithms depending on whether the curve is genus 1 and whether there are
parameters present. In the case there are parameters present, he produces an explicit test for
torsion without computing the bound. In the case of genus 1, he uses arithmetic on the curve
to compute the torsion. While these special purpose tests can be reasonably efficient, in the
general case, he reverts to the Weil bound given previously. His algorithms are general, but
his implementation is currently limited to algebraic functions that can be expressed with nested

square roots.

Risck and Davenport depend on Puiseux expansions to unravel the singularities of the
function field defined by the integrand. Some such mechanism is necessary to distinguish
apparent poles from actual ones. For example the function y/x has an apparent pole at the
origin, but if y2 = xz(x + 1) then the function is actually holomorphic there. We will use
integral bases to determine the nature of the poles of an algebraic function. An integral basis
for an algebraic function field of degree n is a4 set of n functions such that an element of the
function field can be expressed as a linear combination of basis elements with polynomial
coefficients if and only if that element has no singularities in the finite plane, i.e. the element
is an integral aigebraic function. Good algorithms for computing integral bases are a subject
of ongoing research [56]. Bliss [6] shows that finding integral bases is no harder than
computing Puiseux expansions, and in the very important case of function fields defined by a

single radical, they are immediate.

In this thesis we present a new aigorithm for integration of algebraic functions. We rely
on the construction of an integral basis to provide an affine non-singular model for the curve.
This will allow us to construct the algebraic part of the answer by a generalization of
Hermite’s algorithm for integrating rational functions. This integral basis can aiso be used to

test whether divisors are principal and to test for good reduction.
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A very serious problem in symtolic calculations is that. intermediate expressions are
frequently much larger than the final answer and can thus be very time and space consuming.
One of the counterparts to intermediate expression swell that we are forced to deal with in this
problem is intermediate constant field extensions. Risch and Davenport make the simplifying
assumption of an algebraically closed constant field. Making unnecessary extensions of the
constant field éreatly increases the cost of arithmetic. We will present an algorithm that will
perform all its operations in the minimum extenosion field iﬁ which the answer can be ex-
pressed. Risch’s more extensive use of Puiseux expansions forced him to operate in an

extension field of much higher degree for his intermediate computations.

We will present a new algorithm for algebraic function integration that is strongly
analogous to recent efficient algorithms for rational function integration [49]. Using integral
bases to normalize the problem, we will be able to reduce the finding of the algebraic part of
the integra! to solving a set of linear equations. Finding the logarichmic part is indeed more
difficult and does involve determining whether a given divisor is of finite order to guarantee
termination of the algorithm. In addition to obtaining bounds that guarantee termination, we
will present a novel algorithm for actually obiaining the Iégand associated with a divisor.
Unlike earlier approaches that constructed this function from the divisor alone, we will use the
integrand to create the ideal of functions that are multiples of the divisor at all finite places.
Generators for this ideal can be derived almost by inspection, and there remains only to

determine whether there is a principal generator.

Algebraic function integration is significantly more complicated than rational function
integration since one can no longer depend on unique factorization. Ideals were created by
Dedekind to restore unique factorization to algebraic number fields. Since that time they have
been studied in increasingly abstract settings, to the point that their origins are almcst
forgotten. We intend to actvally use ideals, as Dedekind intended 100 years ago, to combat

the lack of unique factorization in algebraic function fields. In addition, our explicit genera-
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tors for the ideal associated with a divisor will permit us o reduce the generators and compute
the exact order of this divisor mod p. Thus instead of working with bounds fo: the torsion, we
can compute the exact order of torsion divisors. We then need only to test whether or not this
narticular power is principal, instead of testing all powers up to some calculated bound. This

will be shown to lead to a very practical decision procedure for algebrzic function integration.

Finally we will investigate the possibility of exiending this procedure to include exponeatials
and logarittms enabling one to determine whether the integral of any elementary function can

be expressed as an elementary function.

SECTION 2. OUTLINE OF THESIS

Chapter Two will present an algorithm for computing an integral basis for our function
field. This is essentially the same algorithm presented by Ford [20] for algebraic number fields,
with proofs of validity in this more general situation and extended to normalize the basis
elements at infinity. This fundamental construction will be used throughout the thesis and
effectively provides us with an affine non-singular model for our function field. It enables us
to determine the poles of our integrand and characterize the form of the answer. We will also
use this integral basis to help find principal generators for divisors and test for *‘good

reduction™.

Since the running time of many of our algorithms depend critically on the degree of the
defining relationship for our function field, it is very useful to guarantee that our defining
polynomial is irreducible over the algebraic closure of our coefficient domain, i.e. is absolutely
irreducible. In Chapter Three we present a new algorithm for finding an absolutely irreducible
factor of a multivariate polynomial that seems to be significantly better than other known
approaches. As pointed out by Duval [18], the number of absolutely irreducible factors of the

defining polynomial is the same as the dimension of the vector space of functions that have no
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poles. We can compute this simply using our normalized integral basis, and then we only need
to perform our factorization algorithm when it is known to yield a lower degree factor. Since
an irreducible polynomial will usually be absolutely irreducible, this can prevent a lot of

wasted effort.

Armed with a minimal defining polynomial and an integral basis we are ready to find the
purely algebraic part of the integral. Chapter Four proceeds by analogy with the standard
approaches to rational function integration. It shows how Hermite's algorithm can be general-
ized to deal with algebraic functions. This approach will always succeed in reducing the
integral to one with only simple finite poles and perhaps poles at infinity. In fact we are able
to show that if the original problem had no poles at infinity, and after removing the algebraic
part we introduce poles at infinity, then the original problem was not integrable. This approach
has the advantage of allowing one to obtain canonical reduced form: even for problems that
are not integrable. In this stage only linear congruence equations are solved and no new
algebraic numbers are generated. It is difficult to remove poles at infinity by a Hermite-like
method, so the original integral is transformed by a simple change of variables so that there
are no poles at infinity. This simplifying transformation is one of the probleins to be overcome
in trying to generalize this algorithm tc handle mixed transcendental as well as algebraic

extensions.

If the original problem was integrable, the remaining simple finite poles must be canceled
by the derivative of a linear combination of logarithmic terms. In the rational function case
these log terms can be found by factorization or by computing gcd’s of polynomials. Unfortu-
nately algebraic function fields are not unique factorization domains so this approach cannot
be used. As described earlier we will use the residues of the int‘egrand to construct divisors
associated with each log term. In Chapter Five we pri.sent an algorithm that computes a
polvnomial whose roots are all the residues using resultants. This is an extension of the idea

we used in {48] for rational functions and does not use power series expansions or extensions
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of the coefficient domain. Given this polynomial we finally need to extend our coefficient
domain to include its splitting field. We show that this is the minimal exteasion required for
expressing the integral. After computing a Z-linear basis for the residues, we construct a model
for the divisor associated with each basis element. OQur construction of the model appears new,

and provides us with a simple construction to find a principal generator if one exists.

Finally in Chapter Six we are ready to address the “points of finite order problem”. We
need to know fior each of the divisors we have constructed, whether there is some power of it
that is principal. As discussed in Risch [40] and Davenport [14], we will use the technique of
“gcod reduction” to solve this problem. However our explicit representation of a divisor will
allow us to compute the order of individual divisors exactly instead of merely computing a
bouad on the orders of all divisors. While we do perform a sequence of tests for principality
on powers of divisors, these tests are all performed over finite constant fields and thus much
less expensive then testing successive powers of a divisor over our original coefficient field.
After computing what should be the order of our original divisor if it were finite, we merely
perform a singie test for that power of our divisor over the original function field. Both of

these improvements should make a substaatial difference in running time.

In Chapter Seven we summarize our contributions and suggest ways to extend the work
done here. In an appendix we present one step ioward a compiete algorithm for handling both

transcendental and algebraic extensions.
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CHAPTER 2 INTEGRAL BASES

In later chapters we will be very concerned with the problema of creating functions with
prescribed singularities. It will be very useful to be able to recognize and generate functions
whose only noles lie at places over icfinity. Such functions are called integral algebraic
functions. In the field K(x) these are simply polynomials in x, ie. a rational function has a
finite pole if and only if it has a nontrivia! denominator. Any function that is algebraic over

K(x) satisfies a unique monic irreducible polynomial with coefficients in K(x).

Z"+a,Z" V¢ o ta, (1

Such a function is integral over K[x] if an? only if the coefficients are in fact in K([x], ie.
polynomials in x. In the rest of this thesis we will abbreviate “integral over K[x]" to

“integral”.

Let K(x,y) be a finite algebraic extension of degree n over K(x), then the integral
functions form a free module of rank n over K[x], i.e. any such function can be written as
linear combination of n basis functions with coefficients that are polynomials in x. Such a
basis is called an integral basis. If we allow the coefficients to be rational functions in x then
these same n functions comprise a vector space basis for K(x,y) over K(x). Thus each element
of K(x,y) has a unique representation in terms of a particular integral basis, and bas no finite
poles if and only if each coefficient is a polynomial, i.e. no denominators. In thic chapter we
present an algorithm for computing an integral

allow the coefficients to be rational functions in x then these same n functions comprise a

vector space basis for K(x,y) over basis.

One technique for findig such a basis is given in [Bliss]. What we call an integral basis,
he wonld term multiples except at infinity of the divisor 1. His basic technique involves Puiseux

expuosions. We wish to avoid performing such expansions for two reasons: (1) A large
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amount of code is required (2) Many algebraic numbers nead to be introduced to compute
Puiseux expansions even though none of them are actually required to express the final basis
elements. While Puiseux expansions are very useful in their own right, we don’t really need
them and choose to avoid the time cost of doing unnecessary algebraic number computations

and the space cost of all that additional code.

The algorithm we present here is based on work by Zassenhaus and Ford [20]. Tkey
were primarily interested in the case of algebraic number fields, but their algorithm also
applies to funciion fields in cne variable. In fact since we will always assume the characteris-
tic of K is zero or greater than n, the algorithm can be somewhat simplified. The algorithm
presented here is a genemlizatio:i to functions fields of tne first of the two algorithms Ford
presents. We chose to use this one since it is much simpler and it avoids fully factoring the

discrimiuant.

We are given K(x,y) where K is a computable field, x is a distinguished transcendental
element, and f(x,y) an irreducible separable polynomial of degree n over K[x]. Without loss of
generality we can also assume f monic. If not then let fr = gy where a is the leading coeffi-
cient, then_';\' satisfies a monic polynomial and generates the same function field. The elements
of K(x,p) that are integral over K[x] form a ring called the integral closure of K[x] in K(x,p).
As ncted above this ring is also a free module of rank n. Since y is integral over K[x], and the
sum or product of integral elements are integral, {1, y, ..., y"'l] constitutes a basis for an
integral K[x] module. This is our first “approximation” to an integral basis. Each iteration of
the algorithm will produce a basis for a strictly iarger integral K[x] module untii the integral

closure is reached.

One important measure of the relative sizes of full (i.e. rank n) sub-modules of the
integral closure is given by the discriminant. Let [w,, ..., w,] be n elements of K(x,y). Since

K(x.y) is a separable algebraic extension of K(x) of degree n, there are n distinct embeddings
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o; into a given algebraic closure. The images of 2u element under these mappings are called

the conjugates of that element. The conjugate matrix of w = [w,, ..., w,] is defined by

[al(wl) a,,(m)‘
M- = : : (2)

) loy(w,) - tr,.(.wn)J

The discriminant of w is the square of the determinant of the conjugate matrix. The discrimi-
pant is non-zero if and only if the w; generate a full module (ie. they are linearly independ-
ent). We can define the trace (sp) of an element weK(x,y) as sp(w) = 2 o;(w). Since this is a
symmetric function of the conjugates, it is an element of K(x). If we re-express the discrimi-
nant as the determinant of the product of the conjugate matrix and its transpose, we see that
the product entries are traces of products of the original matrix entries. Thus the discriminant

could be defined as determinant(sp(w,-wj)).

= (3)

o [cn(gm - gy [orw) -+ oyw)] [ WD) - splwymy)
" oy < e | Lonwy) - ouw]  LspOmwy) o sp(wp)

If the w; ’s are integral functions then their traces are polynomials, and thus the discriminant is
a polynomial. If v = [‘"1' ...y ¥,] is a basis for a full module that contains w then each w; can
be written as a polynomial combination of the v; iie. w = Av where the change of basis
matrix 4 is an nxn matrix of polynomials. Thus the conjugate matrix My = 4.M; and
Disc(w) = det (A)2Disc($). w and v generate the same module if and only if 4 is invertible as
a matrix over K[x], i.e. det (4)eK. If ¥ strictly contains w then det (4) is a polynomial p of
nonzero degree and Disc(v) = Disc(w)/, p2 thus each time we are able to produce a strictly
larger K[x] module, we eliminate a squared factor from the discriminant and the process can

only continue for finitely many steps.

We will now state and prove the key algebraic result on which the algorithm is based.
Let R be a principal ideal domain, in our case K[x] while Ford and Zassenhaus assume R = Z.

Let V be a domain that is a finite integral extension of R. Then V is also a free module of
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rank equal to the degree of QF(¥V) (the quotient field of V') over QF(R). Let v = ["1' N |
be a basis for ¥ over R. The discriminant of v generates an ideal in R that we will call the
discrimirant of ¥V over R. The discriminant of any other basis of ¥ over R ditfers by the
square of 2 unit and thus generates the same ideal. If m is an ideal in a ring S, we define the
idealizer Id(rm) to be the set of all ueQF(S) such that umsm. Id(m) clearly contains S and is

the largest ring in which m is still an ideal

Theorem: [1] Under the above conditions V is integrally closed if and only if the idealizer of

every prime ideal containing the discriminant equals V.

We will break this into a succession of small lemmas.
Lemma: [1] If m is a nonzero ideal in V the idealizer of m is integral over R.

Proof: Since V is a finite R-al'gebré m is finitely generated over R. Let m, ..., m; span m
over R and let ueQF (V) such that umSm Then um; = ?r,-jm with r,-jeR. Let M be the matrix
rij—Biju where 8,:,- is the Kronecker index. Then M annihilates the vector [m,, ey m k], and if
we multiply by the adjoint of M we see that det M Kkills each of m; and thus annihilates m
Since V is an integral domain, det (M) must be zero, but this gives a monic polynomial over

R that u satisfies, and hence u is integral over R. ]

! is the set of all

Next we define the inverse of an ideal. If m is an ideal in V' then m™
ueQF (V) such that um<V. This notion is similar to the idealizer. The idealizer of an ideal is
the subset of the quotient field that sends an ideal into itself, while the inverse of an ideal
sends it into the ring V. Having defined the inverse of an ideal we will say that an i . m is
invertible if mm~' = V. By definition we have mm=lcsV. If Vis integrally closed then it is a

Dedekind domain and has the property that every non-zero ideal is invertible. By proposition

9.7 and 9.8 in [2] p.97 we have
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Lemma: [2] If all the non-zero prime ideals of V are invertible then V is integrally closed.
Lemma: [3] Any prime ideal not containing the discriminant of V over R is invertible.

Proof: Let m be a prime ideal not containing the discriminant of ¥ over R. Then if we localize
at m the discriminant becomes a unit and thus the local ring is integrally closed and locally m
is invertible, in fact principal. If we localize at any other maximal ideal of V" m contains units
and is its own inverse. Since the localization of m at each prime ideal is invertible then by

proposition 9.6 [2] m is invertible. 3

Corollary: [1] If ¥ is pot integraily closed there is some prime ideal containing the discriminant

that is not invertible.

Procf: By lemma 2 there is some prime ideal that is not invertible and by lemma 3 it must

contain the discriminant.

The following lemma is proved in [27] p. 607.

Lemma: [4] If V properly contains an ideal m then m~! properly contains V.
Now we are ready to finish the proof of theorem 1.

Proof: If V is integrally closed the idealizer of any non-zero ideal equals V by lemma 1. If V
is not integrally closed there is some prime ideal m that contains the discriminant but is not
invertible. Thus m~'m is an ideal containing m but properly contained in V. Since m is
maximal we must have m~'m = m. Thus in this case m~' = Id(m). By lemma 4 we have the

idealizer of m properly contains V.o

Using theorem 1 we could compute the integral closure by computing the idealizer of the
finitely many ideals that contain the discriminant. Either the result in each case will be V in
which case ¥ must be integrally ciosed, or we will find a ring strictly larger than V that is

integral over V. This can happen only a finite number of times since each such ring will
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remove a squared non-unit factor from the discriminant. We will improve this idea by dealing
with all the ideals dividing the discriminant at the sanie time. First we observe the following

property of idealizers:

Lemma: [S] If m and n are ideals then the idealizer of the product contains the idealizer of

either ideal.

Proof: Any element of mn is of the form  m; where mem and nen If ueld(m) then um,em

and thus umnemn.

Next we must introduce the notion of the radical of an ideal. The radical of an ideal m&V is
the set of ail ueV such that some power of u is in m and can also be characterized as the
intersection of all prime ideals containing m. Our algoritbm is based on the following corollary

to theorem 1.

Corollary: [2] V is. integrally closed if 2nd only if the idealizer of the radical of the discrimirant

equals V.

Proof: Since all the non-zero prime ideals of ¥ are maximal, the radical of the discriminant is
also the product of all prime ideals containing the discriminant. By theorem 1 if V' is not
integrally closed the idealizer of one of these primes must be strictly larger than V. By lemma
5 the idealizer of the radical contains the idealizer of that prime and thus must also strictly

contain V. If V is integrally closed again the idealizer of any ideal must equal V. O
Thus our algorithm for computing the integral closure of V is:

1. find the radical of the discriminant of V over R

2. compute the idealizer lA/of that radical.

A A
3. If Vis strictly larger than V then set ¥ to V and go to step (1)
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4, retum V

Although this algorithm works, there are a few optimizations possible. The first time through
V = R[a] where a satisfies equation (1). To compute the discriminant in this case, one simply
computes the resultant of equation (1) and its derivative. Prime factors of the discriminant
that appear only to the first power can be ignored. When returning from step 3 to step 1 one
only needs to concentrate on the factors of the discriminant that have actually been reduced in
the previous itcration. Since if there is some p whose p-radical is invertible, it will stay that
way throughout the rest of the computatioa. This leads us to the following improved version of
the algorithm for computing the integral closure of ¥V = R[a] over R assuming f(X) is the

minimal equation of integral dependence for a.

0. Let d = Resultant(f,/’) and k = d

1. Let ¢ = [l p; such that p; is prime, p;| k, and ,p?ld. If ¢ is a uxit then return V.

2. Find J (V), the radical of (¢) in V

3. Find 'I\/, the ideélizer of Jq(V) along with M the change of basis matrix from 9 to V.
4. Let k be the determinant of M. If k is a unit then return V

5.Setd = d/k>and V = ¥ and go to 1.
SECTION 1. RADICAL OF THE DISCRIMINANT

The dis riminant is a principal ideal generated by some element d of R. We wish to
compute the radical of the ideal 4 generates in V. Since R is a principal ideal domain it is also
a unique factorization domain. Let (p,, ..., p;) be the distinct prime factors of d in R. Since
the radical of (d) is intersection of the prime ideals containing d, it is also the intersection of

the radicals of the p; Let us therefore consider how to compute the radical in V of a principal
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ideal cenerated by a prime element p of R. Foliowing Ford we call such an ideal the p-radical

of V.

u is in the p-radical if and only if the coefiicients a; in equation (1) of the monic minimal
polynomial for u over R are divi:ible by p. ([2] Proposition 5.14 and 5.15) This gives us a
membership test, but we are looking for ideal geilerators. Zassenhaus and Ford observed that
under appropriate conditions the irace map from V to R provides us with linear constraints on
the members of the p-radical. For any u in V the degree of u over R must divide the rank of
V over R that is also the degree of QF (V) over QF(R). If m is the degree of v over R then
sp(u) = —(n/m)a; Thus if ue p-radical then p divides sp(u). Again following Ford we define
the p-trace-radical as the set of ueV such that for all weV, p | sp(uw) This leads us to the

following lemma:
Lemma: [6] p-radical € p- trace-radical

Proof: If u is in the p-radical then for any weV, uw is in the p-radical. But then the previous

argument shows that sp(uw) is divisible by p. O

"Now we find conditions under which the two sets of lemma 6 are the same. If w is in the
p- trace-radical then Sp(wk)-—_-.o mod p for all k>0. Let m be the degree of w over R. Then
R([w] is a free R-module of rank m dividing n, the rank of ¥ over R. There is a reduced trace
map from R[w] to R denoted by sp, satisfying (n/m)sp (u) = sp(u) for any ueR[w). If
n/m¢(p) then p dividing sp(u) implies p divides sp (#) and thus the p-trace-radical of Rw]
equals the intersection of the p-trace-radical of ¥ with R[w]. If n/m is zero in R /(p) then the
characteristic of R/(p) must divide n. To avoid this problem, we now make the assumption
that the characteristic of R/(p) is greater than n the rank of ¥ over R. In our application
where R = K[x] the characteristic of R/(p) is the same as the characteristic of K, and we
sha!! see that the restricticn will not cause any problems. In Ford and Zassenhaus’ case where

R = Z, peZ and the characteristic of R/(p) equals p. Thus when the discriminant has small
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prime factors, cur assumption wouid be invalid, so they compute the p-radical for small values

of p using the kerrel of powers of the Frobenious automorphism instead of the tracc map.

. koo
Assume w is in the p-trace-radical of R[w]. Then sp (w ) is divisible by p for all £>0.
We wish to relate the traces of powers of w to the coefficients of the minimal polynomial for
w in equation (1). This is provided by Newton’s identities ([25] p. 203). f we let

k ,
s, = sp,(w) then for 1<k<n we have:
Sk + alsk—l E R ak—lsl = - kak (4)

Thus a; = — s, is divisible by p and by induction assume a; is divisible by p for all i<k<n.
Then the left hand side of equation (4) is divisible by p and as long as the characteristic of
R/(p) is greater than n we can divide by k and g, must also be divisible by p. Since the
coeificients of its minimal polynomial are divisible by p, w must be in the p-radical of V,

which proves the following partial converse to lemma 6.

Theorem: [2] If the characteristic of R/(p) is greater than the rank of V over R, then the

Subsection 1.1. Computing the p-trace-radical

Let [wy, ..., w,] be a basis for V over R. The p-trace-radical Jp(V) was defined as the

set of ueV such that p | sp(uw) for all weV.

sp(uw)=0 mod p for all weV <>

sp(uw)=0 mod p for 1<isn <=

n
Eujsp(ij,-)so mod p for 1<ign
j=1

Using the trace matrix SPy defined by equation (3) we can write this as:
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2
[Sp(wl) - sp(wyw, ) [ uy

SP_ei = epR" (5)

Lsp(n;,,wl) sp(;vi) u,
where pR" represents the set of vectors of length n whose elements are divisible by p. J (V) is
determined by the solutions to (5) with u,eR. We actually wish to compute Jq(V) where g is
a certain product of distinct primes dividing the discriminant.
I " =N,
pilg

Thus we want to find all weR" ;uch that the left side of equation (5) is in fact in gR". We
need to add some equations to (5) to guarantee that each element u; of our solution vectors
must lie in R as opposed to QF(R). Let I, be the nxn identity matrix. Then ueR" if and
only if g/, +iieqgR". Thus if we let M 7 be the vertical concatenation of SPg and g, J (V) is
the set of all ueQF(V) such that Mq-ﬂequ". If we left multiply M, by an invertible
R-matrix, the R-module of solutions remains unchanged. Invertible R-matrices are called
unimodular, and are characterized by having determinants that are units in R . Since R is a
principal ideal domain, there is some unimodular matrix that converts M‘7 into an upper
triangular matrix. ([37] Theorem I1.2 gives a constructive proof of this). This process allows
us to reduce the 2n relations imposed by M 4 and equation (5) to an equivalent set of n
independent relations. Once this is done, we invert the square matrix determined by the first
n rows of the reduced M 7. The columns of this inverse matrix provide a basis for the solutions

to equation (5).

In our application we have the even stronger restriction that R is a euclidean domain.
This allows us to triangularize M 7 by elementary row operations only. This process is called
Hermitian row reduction and is somewhat analogous to gaussian elimination that is used for
matrices over fields. With gaussian elimination any nonzerc element can be used to zero out
its entire column . With hermitian row reduction one can only multiply by elements of R and

a nonzero element can reduce the other members of its column to be smaller than it. Since R
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is a euclidean domain this process can only continue for finitely many steps before we find an
element that divides everyone else in its column. Finally this element can be used to clear the
column. Let d be the size function associated with R, for R = K[x] we use the degree, and
for R = Z we use absolute value. To simplify the presentation of the following algorithm we
define d(0) = «. Let nrows and ncols be respectively the numbers of rows and columns of a
given matrix M. We assume that nrows>ncols and M has rank ncols in the following algorithin

for hermitian row reduction.

1. loop for j = 1 thru ncols
2. choose k such that d(M kj) is minimal for j<k<nrows.
3. exchange rows j and k
4. loop for i = j + 1 thru nrows
5. let g be the polynomial part of M ,.J./M i
6. replace M; with M;~qM;
7. if there is some M,-j;éO for j<i<nrows theu go o 2.

8. return M

SECTION 2. COMPUTING THE IDEALIZER

Given (m, ..., m,) that form an R-basis for an ideal m in V, we wish to compute an
R-basis for the idealizer of m . The idealizer of m was defined as the set of ueQF(¥V) such
that um<m. This concept is very similar to the inverse ideal of m, m~1, which was defined as
the set of ue@F(V) such that um=V. Although we don’t need to compute inverses to find an
integral basir we will need them in chapter V, and we present both algorithms here to display

their similarities. The inverse procedure will be given first since it is slightly simpler.

We assume v = (v, ..., v,) forms a basis for V over R that we hold fixed throughout this

section. uem™! if and only if um; = Zr,-jvj with ryeR for 1<i<n. Multiplication by m; is a
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linear transformation on V. Let M; represent multiplication by m; with respect to our fixed
choice of basis v. (for details on constructing M; see [48]) Since v also forms a basis for
QF(V) over QF(R), u can be represented as = u;v; where u,cQF(R). Then M fu,, ..., u,l !
yields the vector of coefficients of um;. uem™! if and only if the product coefficients lie in R
for all i. Thus we are left with the linear algebra problem of finding a basis for R-module of
vectors [u,, ..., u,] such that M([uy, ..., un]') is a vector of elements of R for all i. Let M
be the n?xn matrix that is the vertical concatenatioﬁ of the M, Then we are looking for all

2

vectors 7 over QF(R) such that M#% is an n“ vector of elements of R. By Hermitian row

A
reduction we can zerc out the last n? — n rows of M , so we have reduced to an nxn matrix M

2 A A
such that M@eR" if and only if MueR". The columns of M~! form a basis for m~1.

Essentially the same approach will allow us to find the idealizer of m. Now we require
that um; = Zr,-jm ; with ri€R. The M; still represent multiplication by m; but now the input
and output basés are different. The M necessary to cdmputc the idealizer again take inputs
expressed in terms of v but give output vectors expressed in terms of the basis for m. Other
than this one change the algorithm for idealizers is identical to the previous one for inverses.

A summary of both algorithms follows:

1. Let M; be the matrix representing multiplication by m; with input base v and output basis v

for computing inverses or 711 for calculating the idealizer.

A
2. Let M be the first n rows of the Hermitian row reduction of the vertical concatenation of

the M;
A
3. Peturn the columns of M~ as the result expressed with respect to v

A
Note the transpose of M ~1is the change of basis matrix required in step 3 of the integral

basis algorithm.
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SECTION 3. NORMALIZE AT INFINITY

In this section we return to the special case R = K[x]. Having constructed an integral
basis we can recognize finite poles of functions, but we also need to deal with singularities at
“infinity”. Given an arbitrary basis for a X[x] module (an integral basis is a special case), we
wish to miniinize the sum of the orders of the basis elements at infinity. A characieristic
property of an integral basis [wy, ..., w,] is that £ a;(x)w; is integral over K[x] if aad only if
each a;(x)w; is. In other words there is no cancellation of singularities from different sum-
mands. We would like our basis to have the same property with respect to the local ring of

K(x) at infinity and we wiil characterize this by saying that such a basis is Normal at infinity.

We will need the concept of a focal ring at a place p of the function field K(x). The local
ring at p is defined as the set of functions in X(x) that have no pole at p. If p is a finite place
centered at x = g then the local ring at p consists of rational functions whose denominators
are not divisible by x — a. The order of a rational function at infinity is the degree of its
denominator less the degree of its numerator. Thus the local ring of K(x) at o= consists of
those ratiohal functions whose numerator degree does not exceed their denominator degree. A
function in K(x,p) is said to be integral over the local ring at p (for brevity integral at p) if it
satisfies a monic polynomial with coefficients in the local ring at p. Analogous to the global
integral basis, thers exists a local integral basis at each place p of K(x) such that all functions
in K(x,y) that are integral at p can be written as a linear combination of basis elements with
coefficients in the local ring at p of K(x). We will find it convenient to introduce the slightly
weaker concept of a normal basis. [w,,...,w,] is a normal basis at p if there exist rational
functions r;eK{x) such that rw; form a local integral basis at p. In other words there exists

rational scaling factors that convert a normal basis into an integral basis.

Armed with this terminology we see that a basis is normal at infinity if and only if some

rational multiple of the basis elements is a local integral basis at infinity. Let [w,,...,w,] be a
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basis for a K[x] module. Assume we are giver a local integral basis at infinity [Vl"""’n]' We
wish to modify the original basis to make it normal at infinity without disturbing its basis

properties everywhere else. We first represent the w; in terms of the v

n
w;= > M;v, where M eK(x)
i=1

L

If w; were a normal basis at. infinity there would be rational functions r; such that the change
of basis matrix rim; would have a detcrminant that was a unit in the local ring of K(x) at

infinity, i.e. a rational function whose numerator has the same degree as its denominator.

Define the representation order, k(w;) of w; at infinity as the mjin ord M i for 1<j<n.
We will initially choose r; = x~k™)_ This guarantees that 7w, is integral at infinity znd its
representation order is 0. Note that the order at infinity of the determinant of M is always
>Z k(w;). We will show that our basis becomes normal when these numbers are equal. Let JCI
be the change of basis matrix for r,w;. Each row of f:‘{ is just r; times the corresponding row of
M. rw; is an integral basis if and only if the determinant of 1‘\{ has order zero at infinity.
Since this determinant is integral at infinity, this is equivalent to it having a non-zero value at
infinity. Let N be a matrix where N,-j is the value of A//\Iu at iofinity. Since taking determinant;
commutes vith évaluation, the determinant of N equals the value of the determinant of JCI at
infinity. Thus r;w; is a local integral basis at infinity if and only if N has nonzero deterinitiant.

n

If the determinant of N is zero then there are a set of constants ¢;eK such that = c‘.Nij = ( for
i=1

1<j<n. Let i0 = i such that ¢;#0 and k(w;) is minimal. Define
A n
Wio = 2, cpk (o) =k(¥)y,,
i=1

A
‘Then replacing w;, by ’Q'io still yields a global integral basis. Similarly replacing M, J by
A
% ¢, Mij yields a row whose orders are strictly positive. Thus the representation order k( 3',.0) is
strictly greater than k(w,)). The order of the determinant of the change of basis matrix is

preserved by our new basis. After a finite number of such steps this order will be equal to the
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sum of the representation orders of our basis elements and the basis will be normal.

We have shown how to make an arbitrary hasis normal 1t :afinity given a local integral
basis at infinity. We next show how to compute the latter. If we replace x = 1/z then infinity
gets transformed to zero in the z — space. In order to compute a local integral basis at zero,
we can use the algorithm of the previous section after maki'ng one optimization. In the local
ring at 0 any polynomial not divisible by z is a unit. Thus we can replace the discriminant by
the maximal power of z dividing it. After computing this local integral basis, we merely

substitute 1/x for z and obtain a local integral basis at infinity.

SECTION 4. GENUS COMPUTATION

Our integral basis algorithm wiil also afford us an easy way to compute the genus of a
function field. The global discriminant divisor of K(x,y) over K(x) is the product of the local
discriminant divisors over each place of K(x). As a by-product of our integral basis computa-
tion, we have computed two discriminants, a polynomial disc ;. (x) that is the product of the
discriminants over all finite places of K(x), and a monomial in z = 1/x, discm(l/x) that is the
focal discriminant at infinity. The degree of the discriminant divisor of our function field
K(x,p) over K(x) is the sum of degree of di.s‘cﬁm-,,(x) and the order at intinity of disc”(l/x).
If we call this total discriminant degree 4 and we assume thas K is the 2xact constant field of
K(x,y), then the genus of our function field K(x,y) can be computed by the following formula

given in [19] p. 134:

g =d/2—[K(xy):K(x)] + 1
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SECTION 5. SIMPLE RADICAL EXTENSIONS

If Fis a field with y algebraic over F of degree n such that y"€eF, then we will call F(y) a
simple radical extension of F. If the characteristic of F is relatively prime to n, then extending
F if necessary we can assume that F contains « a primitive nth root of unity. There is a

unique differential automorphism of F(y) over F such that a(y) = wy. Define the operator

Note that T,-(_yj) = y’ if i = j else 0. Thus letting g = = gyi with gieF , we have Ty (g) = gyi.
Since o sends integral functions to integral functions, and sums and products of integral
functions are integral, we have that the operators T; imap integral functions to integral
functions. If g i an integral function this shows that each gyi must also be integral, which
means that the basis yi is normal everywhere proving the following:

Proposition: If K(x,y) is a simple radical extensicn of K{x) of degree n relatively prime to the

n—-1

characteristic, then the natural basis, 1,p,...,p is normal everywhere.

Without loss of generality we can assume that y satisfies the following equation:

n—=1
V=1l
i=0

where p,eK[x] and has no repeated factors. Thus to convert our natural basis into an integrai
basis we have to find polynomials d;(x) of maximal degree such that yi/d,-(x) is integral.
Raising this expression to the nth power this implies that [1 pj'-’ /djeK[x]. It is easy to show that

the maximal d,(x) is the following:

n .
d; = HPE'U/HI

-1
j=0
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Thus the following functions provide an integral basis for our simple radical extension:

i

y
a',-(x)

3

g

|
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CHAPTER 3 ABSOLUTE IRREDUCIBILITY

We have assumed that the defining polynomial f(x,y) for the integrand y is irreducible
over K(x), but during the integration process we may need to extend our coefficient field X,
and over the extended field f may no longer be irreducible. In fact, in order to compute our
bound for the “points of finite order”, we need to be avle to guarantee that f will remain
irreducible after any algebraic extension of our coefficient field and is thus said to be absolute-
ly irreducible. Another difficulty is the precise determination of our coefficient field. Initially
we defined our coefficient field K to be the minimal extension of ( necessary to express the
defining polynomial. ~ny element of our function field that is algebraic over k£ could also
have been considered part of the coefficient field. For example, if f(x,y) = y4 — 2x% then
yz/x is a V2 and thus algebraic over Q. Note that once we adjoin V2 o K, f is no longer
irreducible and y satisfies a polynomial of degree 2 over this extended coefficient field. It will
be advantageous to make our coefficient field as large as possible since that will decrease the
degree of our function field and thus speed up our computation time that is strongly dependent
on this degree. We now define the exact coefficient field K° of K(x,y) to be the set of all
elements of K(x,y) that are algebraic over K, also called the relative algebraic closure of K in
K(x,y). From the previous example the existence of elemeris of K(x,y) that are algebraic over
K seems connected with the question of the absolute irreducibility of f(x,y). In the next
section we will prove that this is indeed the case and in fact the process for finding an
absolutely irreducible polynomial for y will lead us to discover the true coefficient tield of

K(x,p).

As the previous example seems rather contrived, one might be led to suspect that defining
polynomials that are irreducible but not absolutely irreducible are quite rare in practice. This is
indeed the case, however the integral basis computation from the previous chapter can be used

to perform a quick test for absolute irreducibility. The integral basis for that example is 1, y,
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yz/x, y3/x. Note that the first and third of these functions have no poles anywhere and are
thus have divisor (1). As observed by Duvai in [18] the dimensicn of the multiples of the
divisor (1) is the number of absolutely irreducible components of the function field. Since we
have already coinputed an integral basis that is normal at infinity, we merely need to test how
many of our basis elements have no poles at infinity. If the answer is one, we can skip the
algorithm derived in this chapter, since we are guaranteed that our defining polynomial is

absolutely irreducible.

In this chapter we will permit K to be a perfect field of arbitrary characteristic. As a
consequence if F is any finite algebraic extension of K, it can be generated by a single
element and is thus a simple extension of K, F = K(a). Assuming that f(x,y) is irreducible
over K, we will present a new algorithm for performing absolutely irreducible factorizations,
i.e. factorization over the algebraic closure of K, K. The initial difficulty is that all current
algebraic factoring algoﬁthms only operate over a finitely generated field and the algebraic
closure of K is not finitely generated. Thus we must find some subfield of X that is finitely
generated and is sufficient for performing the factorization. Risch shoewed the problem was
decidable in [38] p. 178. His approach was to convert a multivariate polynomial to a univari-

ate one by the Kronecker substitution ([S0] p. 135).

f(x,,xz,...,xv) »f(t,td,...,ld'-‘)

The key property of this substitution is that different power products of the X; go into
~ different powers of ¢ assuming 4 is chosen larger than the degree of any variable appearing in
f- Risch argued that. the splitting field of this univariate polynomial suffices for the factoriza-
tion. Assuming the original polynomial had v variables each with maximum degree 4 then his
splitting field can be an algebraic extension of degree d"!, whereas the algorithm presented
below can test for absolute irreducibility or find an absolutely irreducible factor by operating

over an extension of degree d the minimum of the degrees of all the variables. By

min?
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examining the algebraic structure of the fields involved, we will also discover some quick tesis

for absolute irreducibility.

SECTION 1. EXACT COEFFICIENT FIELDS AND REGULAR EXTENSIONS

First we will peed some purely algebraic results (see also [45] pp 194-198). All fields are
assumed to be contained .n some universal field. If E and F are f{ields then EF is the composi-
tum that is the field generated by EUF. If K is a nite algebraic extension of k then [K:k]
denotes the degree of this extension. From the previous section we see that determining the
exact coefficient field requires us to find the relative algebraic closure of one field in another.

The next lemmas give some properties of such fields.
Lemma: [1]1 If x is transcendental over k then k is algebraically closed in k(x).

Proof: Let y be an element of k(x) that is not in k. y can be written as u(x)/v(x) with
u,;ek[.\:]. Then x satisfies the polynomial P(X) = u(X)—v(X)y. If P is not identically zero, this
implies x is algebraic over k(). Let u(X) = z u,-Xi and v(X) = Z v,-Xi and choose j such that
v;#0. If P were identically zero then u;—yv; = 0, but since u,v;ek this implies yek contrary to

the assumptions. Thus x is algebraic over k(y) and y cannot be algebraic over k. O

Lemma: [2] Let K2k be fields with k algebraically closed in K and k(a) a simple algebraic

extension of k. Then [K(a):K] = [k(a):k].

Proof: Any factor of the monic minimal polynomial for « over k has coefficients that are
polynomials in the conjugates of a and thus algebraic over k. If these coefficients were in K

they would also be in k since the latter in algebraically closed in the former. O

Corollary: [1] Let x be transcendental over k and F be a simple algebraic extension of k, then

[F:k] = [F(x):k(x)].
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We are looking for a defining polynomial for y that is irreducible over K. Factoring the
bivariate polynomial f over X is exactly the same as factoring it over K(x) by Gauss’s lemma.
If a perfect field k is algebraically closed in K, then K is said to be a regular extension of k.
Thus the search for an absolutely irreducible defining polynomial is equivalent to finding a
presentation of our function field as a regular extension of the coefficient field. We have the
following key theorem that connects our twin problems of absolute irreducibility and exact

coefficient fields.

Theorem: [1] If f(x,y) is irreducible over a perfect field k then it is absolutely irreducible if

and only if k is algebraically closed in k(x,p), ie. x = k°

Proof: f is absolutely irreducible if and only if it is imreducible over any finite algebraic
extension F of k. We wish to prove that f is irreducible over any such F if and only if k is

algebraically closed in k(x,y).

[F(x,p):k(x)] = [F(x,p): F(x)] F(x):k(x)] = [F(x,p):k(x,p)][k(x,p):k(x)] (n

By corollary 1 [F(x):k(x)] = [F:k] and using equation (1) we have:

[F(x,p):F(x)] = [k(x,p):k(x)] <> [F:k] = [F(x,y):k(x,p)] (2)

f(x,p) is irreducible over F if and only if [F(x,p):F(x)] = [k(x,y):k(x)], and using equation
(2) we have f is absolutely irreducible if and only if [F:k] = [F (x.p):k(x,y)] for any finite
algebraic extension F of k.

If k is algebraically closed in k(x,y) then by lemma 1 [F(x,y):k(x,y)] = [F:k] for
any such F. Conversely if f is absolutely irreducible then choose F to be the algebraic closure
of k in k(x,p). Thus [F(x,y):k(x,y)] = 1 since FSk(x,y). By equation (2) we have [F:k] =1

showing that k is in fact algebraically closed in k(x,y). O

Corollary: [2] If f(x,p) is irreducible over k°, the algebraic closure of k in k(x,y), then f is

absolutely irreducible.
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Proof: k° is algebraically closed in k°(x,y) = k(x,y). Thus f is absolutely irreducible by the

theorem. OO

Corollary 2 gives us a finitely generated field to factor over.

Note that we have also demonstrated that [K’:K] divides [K(x,y):K(x)]. Our choice of x
as the independent variable and y as algebraic over x was somewhat arbitrary. If we reverse
the roles we see that [K’:K] must divide both deg,f and deg,f. So if these two numbers are
relatively prime then f must be absolutely irreducible. More generally for an irreducible
multivariate polynomial, if the gcd of all the degrees appearing in the polynomial is 1, then it

must be absolutely irreducible.

SECTION 2. ALGORITHMIC CONSIDERATIONS

An‘negi with these algebraic results, we return to the question of iinding an absolutely
irreducible .equation for y. We pow realize that K° is the field we want to factor over, but we
have no explicit presentation of K°. We know that K°SK(x,y) with each element of K°
algebraic over K. Since each element of K° is independent of x, we can also view K’ as a
subfield of the field K(u,w) where w satisfies f(u,w) = 0. Again as in chapter II without loss

of generality we will assume that f(X,Y)eK[X,Y] is monic as a polynomial in Y.

The minimal polynomial of each element of K° is monic with coefficients in K. Thus K°[u] is
certainly an integral algebraic extension of K[u]. Let A be the integral closure of K[u] in
K(u,w). Any factorization of f(x,y) with coefficients in K° yields a factorization with
coefficients in A. By the results of the last chapter any element of 4 can be written as a
polynomial in ¥ and w divided by the discriminant of K {u,w] over K[u]. This discriminant is a
polynomial in u and is the same as the discriminant of f(u,w) viewed as a polynomial in w.

The discriminant of a monic polynomial is non-zero if and only if the polynomial is square-
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free, i.e. has no repeated factors. Since we have assumad that K is perfect, any irreducible

polynomial over K must be square-free and hence the discriminant of f is non-zero.

If K v is sufficiently large then we can find a uyeK such that disc(f) doesn’t vanish at u = u,,
Then the map sending u to u is a well defined homomorphism from A onto a ring B. B can
be presented as K[w] modulo f(ugy,w). Let f 1(w) be an irreducible factor of f(ug,w) over K.
There is a natural homomorphism from B onto the field B, = K[wl/(f|(w)). If we have a
non-trivial factorization of f with coefficients in A, then applying both of the above homomor-
phisms we arrive at a non-trivial factorization with coefficients in B,. Our choice of an
irreducible factor of f(uy,w) was arbitrary, so we may as well choose the factor of least
degree. In particular, if there are any linear factors, then f(x,y) must already be absolutely
irreducible. In any case, we have found a presentation for an algebraic extension of K that
contains K°. Note that it was unnecessary to compute disc(f) to verify our choice of u,.
Disc(f) is zero if and enly if f has a repeated factor. Thus we pick successive values of u
until we find cne such that f(u,y) remains square-free. If m is the degree of f in u, then we

must test at worst 2mn values until we find one that works.

We have justified the following algorithm for finding an absolutely irreducible factor of a
polynomial f(x,y) whose discriminant with respect to y is nonzero and irreducible over a
sufficiently large field K.

0. If gcd(degxf,degyf) = 1 then return f(x,y)

1. Find an x in K such that f(xo;y) is square free. (may fail if K is finite)
2. Factor f(x,,p) over K and let f,(y) be a factor of l:ast degree.

3. If £,(») is linear return f(x,y).

4. Else factor f(x,y) over K[w]/(f,(w)) and return a factor of minimal degree.
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For the more general problem of finding absolutely irreducible factors of multivariate
polynomials, the same approach works. Step O is changed tc take the gcd of the degrees of ali
variables present, and in step 1 we must find values for all variables but one such that the
resulting univariate polynomial is square free and the leading coefficient doesn’t vanish. We
have assumed that K is large enough so that we can find substitution points that leave f
square free. This may fail if X is a finite field. In that case if we let m be the gcd of the
degrees of all variables present, then we do know that [K’:K] divides m. Thus K° is a
subfield of the unique extension of K of degree m. It therefore suffices to factor over that

extension.

Once we have found an absolutely irreducible defining polynomial for y, then we adjoin

the coefficients of all the monomials to K and this generates K’ the exact coefficient field.

SECTION 3. BINOMIAL POLYNOMIALS

If f(x.,y) is of the form y" — g(x) then a much simpler algorithm exists for obtaining an
absolutely irreducible factorization. This is based on the following theorem proven in [Lang]

p.221.

Theorem: [2] Let k be a field and n an integer >2. Let ack, a#0. Assume that for all prime

numbers p such that p|n we have agk”, and if 4 |n then a¢ — 4k*. Then X"~? is irreducible

in K[X].
We define square-free factorization of a polynomial g(x)eK[x] to be

g(x) = cf] &7 (3)
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where ceK, gcd(g,-,gj) = 1 for i#j, and each g; has no repeated factors. If we assume that X
is perfect, then g/(x)eK[x] for all i. This leads us to the following simple algorithm for finding

an absolutely irreducible factor of y" — g(x).

1. Compute a square-free factorization of g(x) as in equation (3).
2. Let d be the gcd of all the ¢; and n.

3. If d = 1 then f is absolutely irreducible and return it.

4. An absolutely irreducible factor of y" — g(x) is

n 1 €;

yd _ cngid
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CHAPTER 4 THE RATIONAL PART OF INTEGRAL

By Liouville’s theorem if the integral of an algebraic function is expressible in terms of
elementary functions, it can also be written as the sum of an algebraic function and constant
multiples of logs of algebraic functions. We will label the sum of logs the rranscendental part of
the integral and the rest the rational part. This terminology is carried over from rational
function integration. We use it since we want to draw strong parallels between our algorithms

for algebraic function integration and the well known ones for rational function integration.

SECTION 1. RATIGNAL FUNCTION INTEGRATION

There are primarily three basic algorithms for finding the rational part of the integral of a
rational function, however they all share a common first stage. Polynomial division is em-
ployed to convert the integrand into the sum of a polynomial and a proper rational rational
function. (Proper means the degree of the numerator is less than that of the denominator).
The polynomial part can be trivially integrated termwise. At this point the three algorithms

diverge.

Subsection 1.1. Full factorization

The simplest algorithm conceptually coinpletely faciors the denominator of the reduced
integrand over the algebraic closure of the constant field. If only approximations to the roots
were used this algorithm would be acceptable, but we want exact solutions and this requires
constructing the splitting field of the denominator. This construction involves algebraic
factoring and can be very expensive. Then a complete partial fraction decomposition is

performed. Each term in the result is easy to integrate, but the result contains many algebraic
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quantities. They are all unpecessary since the rational part of the integral can always be
expressed without extending the constant field, but the task of trying to eliminate the algebra-
ics can be costly. This algorithm is close in spirit to the proposed by Risch in [39] and partially
implemented by Davenport in [14]. The similarity becomes more evident if we reexpress the
algorithm in terms of power series. The portion of the partial fraction expansion involving a
particular oot of the denominator is ideatical to the principal part (negative degree terms) of
the power series expansion of the integrand at that root. Thus the algorithm can be expressed
as power series computation and termwise integration. The additional step in Risch’s algor-
ithm involves reconstruction of the rational part of the integral from the principal parts of its
expansions at all its poles. This is a fairly complex process for an algebraic function, however
a rational function is simply determined up to an additive constant as the sum of its principal

parts.
Subsection 1.2. Linear equations

Another algorithm for rational function integration was proposed by Horowitz [26]. This
approach is global as contrasted with the local techniques used above. First a square-free

factorization of the denominator is performed.
D =[] D}, gcd(D,D,) =1 for i#j (1
and each D; is square-free (has no multiple factors). By observing that the integral of

—k-1 . —k . .
(x = ¢) is —(x — ¢) /k, we see that integration reduces the order of a pole by one.

Thus

A =

B c
: — +
[mo: Mo / [12;

where the last integral produces the transcendental part. The degrees of B and C are con-

strained since both are numerators of proper rational functions. By letting B and C be
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polynomials with undetermined coefficients, differentiating both sides of the above equation
and equating coefficients of the same powers of x we get a system of linear equations for the
coefficients of B and C . Since the rational part of the integral is uniquely determined up to an
additive constant and we have constrained the constant by requiring a proper rational func-
tion, the above system has a unique solution. This method is relatively insensitive to sparse- -

ness in the input or output.

Subsection 1.3. Hermite’s algorithm

The third technique is due to Hermite [24]. It attempts to reduce the “complexity” of the
problem using a succession of linear first degree congruence equations. Again we start by
performing a square-free factorization of the denominator. But now instead of trying to find
the euiire rational part in a single step, we will repeatedly find pieces of the rational part that
can be used to reduce the multiplicity of the denominator of the integrand. The algc-ithm we
present here treats the factors of the denominator one at a time. Mack [&Mazk.] presents a
variant that treats all the factors at once, but his algorithm would only make our formulas

more complicated, and the underlying theory is essentially the same.

Again we assume a square-free factorization of the denominator of the integrand as in
(1). LetV = Dj +1 for some >0, i.e. V'is a multiple factor of the denominator. Let U be the

cofactor of ¥, U= D/V. By (1) U and V are relatively prime and we can write the integral as

f A, dz
UVJ +1

We will attempt to repeatedly reduce the multiplicity of the denominator while constructing

portions of the final answer. We claim that there exist polynomials B and C such that

fmj+1=§+f—u%
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After differentiating both sides and multiplying by UV/*! we get
A = UVB'-jBUV + VC

This is a differential equation with two unknowns so it would seem that we have made the
problem more complicated. We will additionally claim, however, that there is a unique
solution B such that deg(B)<deg(V). We then reduce the equation modulo V' This eliminates

the B’ and C terms from the above equation and we are left with
= - jBUV mod V : (2)

This equation will indeed have a unique solution as long as j#0 and gcd(V,V’) = 1. But V is
square-free by construction so the latter requirement is satisfied. As long as ;>0 we can find a
unique B solving (2) and then subtracting (B/ Vi)' from the integrand will reduce the multipl-
icity of the denominator. By repeating this process wiih all multipie factors of the denomina-
tor, we see that the integral of any rational function can always be expressed as the sum of a
rational function and an integral whose denominator has multiplicity one. The latter integral

has no rational part, i.e. it is expressible exclusively as a sum of logs.

SECTION 2. ALGEBRAIC FUNCTIONS

We choose to base our algorithm for finding the rational part of the integral of an
algebraic function on Hermite’s method for rational function integration. In fact all three of
the algorithms pcesented in the previous section can be generalized to handle algebraic
functions. The generalization of the first approach requires Puiseux expansions and algebraic
number computations that we wish to avoid. The advantage of the .iu app:nach over the
second is that we are provided with insight into how an integral may fail to be elemen:sry and

its step by step reductive nature will often allow us to return partial results instead of me.ely

returning ‘‘not integrable™.
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To simplify matters we will transform the integral so that there are no poles or branch
points at infinity. We assume an integral of the form [ T R ,-(x)yi/ Q(x) dx where R; and 0
are polynomials and y satisfies f(y,x) = 0. Let a be an integer that is peither a root of Q nor a
root-of the discriminant of f. We can “move” the pcint a to « by defining z = 1/(x - a) or
x = a + 1/z. Our new integial is

fZ Ra+ 1/z)y (- ;2

) dz
Q(a+1/z)

After performing the integration we can apply the inverse transformation to express the
answer in terms of x instead of z. If we let m be the degree of f in x, then the transformed
minimal polynomial for y is g(y,z) = z"f(y, @ + 1/z). Using the results of last chapter, we can
find a basis, [w,...,w,] for the integral closure of K[z] in K(z,y). In terms of this basis the
integrand can be expressed as £ 4,(z)w;/D(z) where D and A4; are polyncsnials. Since this

integrand has no poles at «, deg(A(z))<deg(D(z)) for all i.

We now attempt to imitate Hermite’s algorithm for rational functions. Again we start by
performing a square-free factorization of the denominaior D(z) yielding D = Il D: Let
V=D, for some k>0 and U = D/V. Fbllowing Hermite’s algorithm we might now look

for polynomials B; and C; such that

sz,.% dz = 23,.% + fgc,.-:_;k dz 3)

Unfortunately we won't be able to find them in general without additional restrictions on U.
The difficulty is caused by the fact that y’ has a non-trivial denominator. Hermite depended
on the fact that the derivative of a polynomial is a poiysomial, but this is not necessarily true
for algebraic functions. If y satisfies f(y,z) = O then we can find y’ = dy/dz by taking the

total derivative of the defining polynomial.

a4+ s -
a,y’”’az’ 0
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2 - of/az
dz af/ dy

Thus » is a rational function in y and z. Similarly w,-’ in general has a nontrivial denominator.
Let E be the least common denominator of w; for all i. Then the derivative of the second
werm in (3) will in geneél have E as a factor of its denominator. This will force us to permit
E to be a factor in the denominator of the third term. We want to use (3) iteratively; this
means the third term on one iteration will become the first term for the next iteration.
Therefore we may as well assume the denominator of the first term is also divisible by E. In
the last iteration k = 1 making the denominator of the third term is UV, so our additional
restriction on equation (4) is that E| UV. We can always guarantee thic by multiplying the 4;
and U by a suitable factor of E. Note that there is then an uncanceled gcd between the
numerator and denominator of the first term in (3). We need 10 be sure that the new U is still
relatively prime to V. This can only be guaranteed if we know E to be square-free. Fortunate-

ly that is always the case.
Lemma: [1] If »,w>0 and v,(z — a)>0 then v (z — a)w'>0.

Proof: vazo implies vpdwzo, and vp(z - a)>0 implies vp(z —-4a) = updz + 1. ([Chev51] IV.8

Lemma 1) But dw = w'dz and thus Osva'dz<v‘,(z -aw. o

We therefore begin with equation (3) with the following conditions:

E|UV, ged(U,V) = 1, ged(V,V') =1 (4)

Now as before we perform the differentiation and multiply through by vkl vielding
w;
S A = US (VB] + B,~V"+'(;k'—)') + VS Cw; (5)

We then reduce the equation modulo V.
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S Aw=S B,-UVJ‘“(%)' mod ¥V 6)

We must show that this equation alwayvs has a um.que solution. This is equivalent to showing
that the S; = vk “(—Z%)' is a local integral basis, i.e. any integral function can be
expressed as a linear combination of them with rational function coefficients and denominator
relatively prime to V. There are two ways this can fail, cither the §; are not linearly independ-
ent over K(z) or there exists an integral function whose representation requires a factor of V
as a denominator. Since the former case implies that zero is a nontrivial linear combination of
the §;, both cases may be summarized by saying there exists an integral function that can be

,/ ¢ I*\ !

For purposes of generating a contradiction we assume that the §; do not form a focal integral
basis and thus there exists an integral function (7). We can add X (UT,)'w; to equation (7)

yielding a new integral function G such that

G=3 V*((wi)'l;ki + UT;(%)') = V3 (UT,%)’ (8)

Assuming that such an integral function G exists implies there exists a function for whom
differentiation doesn’t increase the order of its poles; this is the source of our contradiction.
Let F=2ZXUTw,/ Vk The restriction on the T; in (7) says that a smaller value of k would be
insufficient, ie. there is some place p such that va <vp( 1/ Vk_l) and v, V>0 where v, is the

p

order function at p.

Lemma: [2] If v is a nonzero function such that v,u#0 and p is a finite place (not over = )

then vpu' = vy, u~r where r is the ramification index of p with respect to K(z).

Proof: We embed our function field in its p-adic completion and let ¢+ be a uniformizing
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parameter at p. We can then write

o .
U= z C‘I'
i=j

The coefficients in the series are algebraic over our constant field and we can extend our
derivation d/dz uniquely to the completion yielding:

a0
u = 2 ic,-t"lt'

i=j
Since j#0, vpu' = j—-1+ vpt'. Since p is a finite place, the p-adic expansion of z begins
z=ay+ar + .- where a,#0 so vy(dz/dt) = r — 1. Thus vpt’ = v,(dt/dz) = 1~ r and

vpu’s(j—l)+(l—r)=j-r.|:1

Since V is a square-free polynomial in z and v,¥>0 we have v,V =r and thus
vp(1/ V") m v, (1/V* ") =r. I k>0 then v,F<v,(1/V*"") implies v,F<9. Using lemma 2 we
see that va'<vp(1/Vk—l) —r = vp(l/Vk). But according to equation {8) F’ can be written
as G/ Vk where G is an integral function. This contradicts the fact that va’<vp(l/ Vk). Thus
the §; do indeed form a local integral basis, and equation (6) will have a unique solution

modulo V as long as k>0.

By our choice of E there must exist polynomials M i such that

J
Since E| UV let TE = UV for some polynnmial T.
J
Substituting (9) into equation (6) yields:
SAw=Y (- kUVBYw; + 3 B, TS Myw, mod V (10)
i i i j

If we now equate the coefficients of w; on both sides of (10) we get a set of iinear congruence
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equations with B; as unknowns.

=—kUV'B, + TS B;M;; mod V (11)
J

We have shown that this system will always have a unique solution for k>0. Thus the
determinant of the coefficient matrix must be relatively prime to ¥ and the system can always

be solved, e.g. using Cramer’s rule.

For efficiency reasons it is important to recognize when the system (11) decouples, i.e.
each equation involves only one unknown. When V[T the summation in (11) vanishes and

we are reduced to solving a succession of equatious of the form
A= - kUV'B; mod V

This case of algebraic integration is almost exactly the same as in rational function integration.
VIT if and only if ged(V,E) = 1. Thus it can become worthwhile to split ¥ inio two factors,

one that divides E and one relatively prime to E and treat each case separately.

The other situation in which the system decouples is when the matrix M p in (9) is
diagonal. This means that wi' = R,w; where R; is a rational function in z. We can solve this
differential equation, and the solution will be an algebraic function if and only if w;"eK(z)
[42]. Thus the matrix can be diagonal if and only if K(z,y) is a compositum of single radical

extensions.

SECTION 3. POLES AT INFINITY

Repeated applications of the reductions presented in the previous section will leave us
with an integral whose denominator is square-free. One might hope that we have removed all

singularities from the integrand except those that should be cancelled by log terms as in the
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rational function case. Unfortunately while we have been reducing the order of the finite
poles, we may have introduced poles at «. In this section we will prove that if our basis is
normal at infinity the presence of such poles will prove that the original problem was non-

integrable.

- The problem is caused by the second term in equation (3), F# = £ B ,.w,-/ VX, By construc-
tion we have the restrictioq that deg(B;)<deg(¥). Thus at each iteration of the previous
algorithm, the coefficients u} the answer produced will be proper rational functions, i.e. degree
of numerator less than -legree of denominator. This guarantees that the rational function
coefficients of the portion of the answer we have produced will have positive order at =, but
the w; themselves will in- general have poles at «-. We will see that if this algebraic portion of

the answer hzs poles at infinity, then the original problem was not integrable.

Lemma: [3] If v is a nonzero function such that v,u#0 with p a place over «, then

v,u’ = v,u + r where r is the ramification index of p.

Proof: The proof is identical to Lemma 2 except that vpt, is different. The p-adic expansion of
z is z=a_g "+ s0 y,(dz/d)= —r—~1 Thus v, =v,(dt/dz)=r+1 and

14

pu'a(vpu—l)+(r+1)=-qu+r.D

Lomma: [4] If u is a nonzero function such that vpu#0 at some place p, then

vpdu = vylU— 1.

Let us assume that the third term in equation (3) has poles at infinity. Since the original
integrand had zero residue at infinity, and the derivative of any algebraic function has zero
residue everywhere this third term must also have zero residue at infinity. Thus if it has poles
there, they must be at least double poles. If this term is integrable it must be expressible as an
algebraic function and a sum of constant multiples of logs. This algebraic function can not
have any finite poles, since the integrand has only simple poles in the finite plane. Thus chis

algebraic function must be expressible as a polynomial multiple of our basis elements w;. Since
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this function has a pole at inofinity, either one of the coefficients is a polynomial of positive
degree, or some non-constant basis element has a non-zero coefficient. Although the second
term in equation (3) could also have poles at infinity, when we add these functions those poles
do not cancel. The coefficients of the basis elements in the second term are all proper rational
functions, ie. degree of numerator less than degree of denominator. This is a consequence of
the fact that deg(B<deg(V) since each B; is computed modulo V. When we add this
polynomial multiple of our basis elements to the second term, we arrive at a function with at
least one coefficient that is an improper rational function. If this coefficient has a pole at
infinity then the functic~ itself has a pole at infinity since the basis is normal at infinity and
no basis elements have zeros at all places over infinity. If none of the coefficients have poles
at infinity, then some non-constant basis function must have a coefficient of order zero at
infinity. But since any nnn-constant basis function must have a pole at infinity, both possibili-
ties imply the complete algebraic part of the integral must have a pole at infinity. But by
Lemma 4 this would imply that the integrand would have a pole at infinity that contradicts our
initial assumption. Thus we see that if in the process of finding the algebraic part, we intro-
duce poles at infinity then the original problem was not integrable and there is no need to try
and remove these poles. We have demonstrated the following theorem and corollary:

Theorem: [1] If gdx is a differential with zero residues and no poles at infinity, then the
algorithm of the previous section computes a function h such that (g — k")dx has no finite
poles and is zero if gdx was integrable.

Corollary: If gdx also has non-zero residues then (g — A")dx has only simple poles in the finite

plane and has no poles at infinity if gdx was integrable.



-51-

CHAPTER 5 LOG TERMS AND DIVISORS

In this chapter we will present algorithms for finding the logarithmic or transcendental
part of the integral. Using the results of the previous chapter we can assume that the rational
part has been removed and the integrand has been reduced to a differential with only simple
poles. (sing Liouville’s theorem we know that if the. integral is expressible as an elementary

function, then it can be written as

[ Rexpdx = 3 ¢, log v(x,y) (1

where cieK' and vieK'(x,y) with K’ a finite algebraic extensior: of K. To find the rational part
of the integral no extension of the ground field was necessary, but the same is not true for the
logarithmic part. We will show that the residues of the integrand generate the unique K’ of
minimal degree over K sufficient to express the answer. Additionally these residues provide us

with clues about the orders of the poles and zeros of the v;.

SECTION 1. PROPERTIES OF LOGARITHMIC DIFFERENTIALS

We will start by examining the relationship between feK(x,y) and the differential i;-; We
are interested in the local behavior at a place p with ¢ as a uniformizing parameter. If a
function f has order k at p then f = tkg where g is a function whose value at p is finite and
nonzero. Any differential fdg can be written as Adt where h = f% The order at p of the
differential fdg is defined to be the order of the function / above. The residue at p of the

! tern: in the series expansion of 4 in powers of .

differential hdt is the coefficient of the ¢~
Both the residue and the order of a differential are indeperident of the choice of uniformizing

parameter.
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Next we examine the properties of differentials of the form gfi at a place p with local
uniformizing parameter ¢. If f has order k at p it can be written as f = tkg for some f{uuction g
of order 0 at p and similarly the differential can be rewritten as:

daf _ jdt . 98
Fo Tt

As shown in chapter four, since g has no pole at p, dg must have non-negative order at p also.

By construction g has order 0 at p and thus % bas non-negative order at p. Since ¢ is a local
uniformizing parameter at p the order of k% is the same as the-order of it‘. that is precisely -1
as long as k is nonzero. Similarly the residue of id?i is the same as the residue of k% that is
precisely k. Thus we have shown that the order of i’jé is always greater than or equal to -I,

and its residue at any place p is the same as the order of f.

This leads to a solution to a special case of our origina! problem. When can a differential
be expressed in the form 51}{ for some function f in our function field. The following two

necessary properties give quick failure tests:
1. The order of the differential must be greater than or equal to -1 everywhere.

2. The residues must all be integers since they correspond to the orders of the desired function

f.

If a differential passes those tests, then we try to determine if there exists a function whose
order at every place is equal to the residue of the differential at that place. Thus the residues
of the differential provide us with a formal specification of the !ncation and orders of the poles
and zeros of the desired function. Since the differential only has a finite number of poles, it
can only have nonzero residue at a finite number of places. A divisor is a formal integer
linear combination of places that has a finite number of non-zero coefficients. Divisors that
correspond to the orders of the poles and zeros of actual functions are called principal

divisors. A differential with integer residues everywhere immediately provides us with a
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divisor and we are left with the problem of determining whether or not it is principal. An

algorithm for answering this question will be presented later in this chapter.

The solution to the problem discussed in the previous paragraph leads to some computa-
tional difficulties, but no great theoretical problems. But if we generalize things slightly we
arrive at a problem that many mathematicians around the turn of the century worked on but
were unable to solve. In fact Hardy even went so far as to state “there is reason to believe
that no solution exists”. The generalization involves introducing one additional constant
coefficient. Ibnstead of asking whether a given differential can be expressed as g},{, we allow
one more degree of freedom and try to express it as l/mi’}i for some integer m. By the same
reasoning as above we see that if we ‘multiply all the residues of the original differential by m
we arrive at the desired divisor for f - But we don’t know the value of m . This is the source
of the theoretical difficulty. We derive a divisor from the residues of the integrand and we
can test whether or not it is principal. If it is then we are done. If it is not, however, perhaps
by scaling all the orders specified 5y two, we arrive at a principal divisor. If not try scaiing by
three, ... etc. The real difficulty is knowing when to stop. More formally given a divisor D we
need to be able to determine a bound M such that if for all positive integers j<M, jD is not
principal, then we are guaranteed that there exists no muitiple of D that is principal. It is oniy
in the last thirty years that a solution to this problem has been discovered using the technique
of good reduction from algebraic geometry. Basically the original coefficient field is reduced
to a finite field. There each divisor has finite order, ie. there is some finite value of j such
that jD is principal. This information is used to limit the potential set of j 's that needs to be

examined. We will present this construction in the next chapter.

Armed with some intuition from the previous special cases, we will now investigate the

fully general problem indicated by equation (1). We wish to write the given differential as

dv.
R(xp)dx = 3 c‘-—v;l @)
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for some constants c; and some rational functions v;(x,y). As indicated earlier the constants c;
and the coefficients of the v; will in general lie in a finite algebraic extension K’ of the field of
constants of the original function field. Our first step involves the construction of the minimal

extension of K sufficient to express the answer.

The decomposition of the R(x,y)dx indicated by equation (2) is certainly not unique. In
fact let bj be another set of constants such that each c; can be expressed as integer multiples
. . n N
of the b, c; = Z n;b;. Define new functions w; = I‘] v;is then:

dy. dw;
2 ¢ v,-’ = > b; wj,
j J

i

Since a linear dependence among the coefficients implies we can express the sum with fewer
terms, the answer with the smallest number of summands will have coefficients that are

linearly independent over the rationals.

We next inve'stigate the relationship between the coefficienis of the log terms and the
residues of the integrand. Since the residue of % is always an integer for any function v, we
see that the residues of the integrand are always integer linear comoinations of the c¢; 's. Thus
the coefficients of the log terms generate a Z-module that contains all the residues of the
integrand. We will show that the c¢; ’s can be chosen so that they generate the same vector
space over the rationals that the residues of the integrand do. Let a; form a basis for the
vector space generated by the residues. Let b, extend this basis to include the coefficients of
the log terms. Thus each c¢; can be written uniquely as Erijaj + Zs,b, where the rj and s;
are rational numbers. We will ia fact assume the ry and s, are integers, which can be

accomplished by suitably scaling the basis elements. Then as shown in the previous paragraph,

we can construct functions w; and u; such that:

dv; dw; du
Sem; = Zam + ey (3)
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Since however the a; ’s form a basis for the vector space containing all the residues of the

entire sum and the b, s and the a; ’s form a linearly independent set by construction, the

du

residues of each -u—'imust be zero everywhere. This implies that each u, has order zero
k

everywhere, is thus a constant. Since the differential of any constant is zero, the second sum

in equation (3) is identically zero.

We have shown that if a differential has a decomposition as in equation (2), it has one
where the coefficients form a basis for the vector space spaiined by the residues of R (x,y)dx.
If we compute such a basis r;, then by Lemma 1, we are guaranteed that there exist integers n;
such that ;—" can be chosen as the coefficients of the log terms. Let X’ be K extended by all
the residues of the integrand. Assume we have found a representation for the integrand fdx as
a sum of logarithmic differentials, X ¢ ,-d—;:i We have shown that we can assume the coefficients
of the log terms c; lie in K’. We wish to show that we can also assume that the v,.eK'(x,y). If

instead v,€E(x,y) where E is a finite algebraic extension of K’ of degree j then by appiying a

trace from E to K, tv . we arrive at a solution whose constant field is exactly K.
X

dv;

dv;
tr(fdx) = N tr(c.—+
(i) = 3, (e,
Since feK(x,y), tr(fdx) = jfdx and tr(dv/v) is the same as d(Nv)/(Nv) where N is the norm
from E to K'.

dNv;
Ny;

Jfdx = 3 ¢;

But Nv is a ratiopal function with coefficients in K/, so we have shown if the integral can be
expressed over some algebraic extension of K then in fact it can be expressed over the
extension of K generated by the residues of the integrand, and no smaller extension will

suffice.
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SECTION 2. COMPUTING THE RESIDUES

Now that we have de=monstrated the importance of ihe residnes of the integrand, we need
an efficient way to compute these residues. If the differential is expressed in the form fdr
where ¢ is the local uniformizing parameter for some place p, then the residue was defined to
be the coefficient of +~! in the series exparsion of f at p. If f is known to have order greater
than or equal to -1 at p, then we can just compute the value of ¢f at p. Thus we need to be
able to find local uniformizing par;Ameters for places, and be able to compute the value of
functions at places. We can view the Riemann surface associated with the differential as a
multisheeted covering of the complex X-plane. Thus each finite place p, can be asscciated
with some x-value x, by projection. The order of the line of projection at a place defines the
branch index of that place. Branch places are those where the line of projection is tangent to
the Riemann surface and thus have branch index greater than one. Since x = Xo is the
equation of the line of projection frem p io the X-plane, the order of the function x—x, at p is
equal to the branch index of p. If p is not a branch place, x—x, has order 1 and can thus be

used as a local uniformizing parameter.

Theorem: Let fdx be a differential with order greater than or equal to -1 at some place p with
branching index r centered at x;. The residue of fdx at p is equal to the value of the function

r(x—xq)f at p.

Proof: Let ¢ be a uniformizing parameter at p Since x—x, has order r at p, it can be writen as

x=xq = t'g (5)
where g has order zero at p
- dg
dx = (" g + =2 )dr
x = (ri" ‘g + a’t)

Since dg/dr has non-negative order at p, dx has order r ~ 1 at p and f must have order greater
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than or equal to -r at p
-1 re 98
fdx = rt"~ fgdt + lf(z)dt (6)

the second term on the right side of equation (6) is holomorphic at p so the residue of fdx at p
is the same as the residue of the first term on the right side of (6). By the arcument of the
preceding paragraph, this residue can be computed by evaluating the function rt’fg at p. Using

equation (5) this function can be written as r(x=x,)f. O

Theorem: Let fdx be a differential with at most simple poles in the finite plane. Let D(x) be a
polynomial whose roots include the x-projections of the poles of f. Let g = fD, then gdx is
holomorphic in the finite plane and the residue of fdx at any place p with branch index r

centered over a root of D(x) is equal to the value of rg/D’ at that place.

Proof: Since fdx has only simple poles in the finite plane, gdx has no finite poles. Let p be a
place over a root x, of D(x). From the previous theorem we only need to show that at p
(x = xp)f = .g_,. Let D(x) = (x—x)C(x). Then since f= %, (x—xo)f = %. But

D' = C + (x—x4)C’ and thus D’(xy) = C(x,) at p. O

We could use the previous theorem to compute separately each residue of the integrand,
but it will be more convenient to find them all at once. We will construct a polynomial whose
roots are rational multiples of the residues of the differential fdx. f is in general a rational
function of x and y. After rationalizing the denominator we can assume f(x,y) = g(x,y)/D{x)
where g and D are polynomials. Let Z be a new indeterminate and define R(Z) = [1ZD'—g
where the product is taken over all places centered above roots of D. The roots of R are the
residues of fdx divided by the branch orders. Since the branch orders are always positive
integers, the splitting field of R is precisely the minimum extension of K containing all the
residues of the integrand, and thus the smallest extension of the coefficient field in which the
integration can be performed. Similarly a Q-basis for the roots of R provides us with a Q-basis

for the residues. A key observation is that R can be computed without extending the coeffi-
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cient field. Let F(x,y) = 0 be the defining polynomial for our function field. For a particular
value of x, Xqs l'lZD'(xo) — 8(xg.y) taken over all places sitiing over x, is just the
resultant Y(ZD' (xg) — 8(x¢.Y),F(x,Y)) both viewed as polynomials in Y. Extending that
product over all roots x;, of D is just another resultant of the previous result with D(X), both

viewed as polynomials in X. Thus we can compute

R(Z) = resultant y(resultant Y(ZD'(X)—g(X,Y),F(X,}’)),D(X)) @)

Since the roots of R are nonzero rational multiples of the residues, the splitting field of R
is the minimal extension containing all the residues. We have found R using only rational
operations over K but to actually compute the log terms we will have to work in a coefficient
field that contains all the roots of R. [48] gives an algorithm for computing the splitting field
of R using algzbraic factoring. This step can be very expensive, since if R has degree n the
splitting field may be of degree n factorial. However there is no escaping this expense since

this is the smallest extension in which the answer can be expressed.

We next need to compute a basis for the vector space spanned by the roots of R over the
rationals. If the coefficients of R are all rational numbers, then we can view the splitting field
of R as a vector space over the rationals. Each root is thus a vector with rational coefficients,
and we are interested in finding a basis for the space spanned by these vectors. This can be
done using standard techniques from linear algebra. In general however the coefficients of R
will come from some finitely generated extension of Q. This occurs when the integrand
contains additional parameters or algebraic numbers. Let K be the field generated by the
coefficients of R. The splitting field of R is a vector space over K and thus each root of Ris
representable as a vector of elements of K with respect to some chosen basis of the splitting
field over K. We need to view these roots as elements of a finite dimensional vector space
over . We will do this by replacing each coefficient from K by a finite dimensional vector

over Q. Let b; be a basis for the splitting field of R over K Then the roots of R can be
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represented as ri= pX cijb,. where ¢;eK. The c¢; will in general be rational quantities but by a
different choice of basis elements we can guarantee they are polynomials in the generators of
K’ over K. Let d; be =. common denomizator for the ith components of all the vectors, i.c. for
c; with fixed i . If we choose as a new basis for K’ over K, b;/d; thea with respect to this
basis all the coefficients will be polynomials. Now we have represented the roots as vectors of
multivariate polynomials with rational coefficients. If we choose a basis for the set of
monomials appearing in these polynomials, then with respect to the tensor product of this
monomial basis and the original basis of X’ over K, our roots are expressible as vectors of
rational numbers and can thus be viewed as elemects of a finite dimensional vector space over
Q. At this point we apply gaussian elimination to this collection of vectors adjoined to an

identity matrix, to find a minimal basis over @, and the rational linear equations expressing all

the rcots in terms of this basis set.

SECTION 3. CONSTRUCTING DIVISORS

The basis for the residues over @ become our candidates for coefficients of the log terms.
They are only candidates since they may be integer multiples of the correct coefficients. For
each candidate we next proceed to compute an associated divisor. The minimum multiple of
this divisor that is principal will provide us with the appropriate scaling of the candidate
coefficient. We first need to construct a set of building blocks from which we will construct
our divisors. For each root of R we will construct a divisor that has order one at each place

where the integrand has that root as residue, and order zero elsewhere.

We assume the integrand is of the form (G(x,y)/D(x))dx as abovz . In order to simplify
matters we will also assume that all places centered above roots of D are not branch places. In
the next section we will show how to convert the general problem to satisfy this restriction.
Under this assumption the rcots of R are precisely the residues of the integrand, and at any

place above the root x of D, x—x is a local uniformizing parameter. By theorem 2 G/D is
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a function whose value over all places centered above roots of D is the residue of the integ-
rand. Let r be a root of R, then G/D'—~r is a function that vanishes wherever the integrand
has residue equal to r and at the other places above roots of D , has a nonzero value. Define

B(x) = D(x)/ged(D,D"). Then B contains all factors of D taken with multiplicity one.

Proposition: The minimum of the orders of B(x) and G—rD’ at any finite place p is equal to
: p q

one if the integrand has residue r at p and zero otherwise.

Proof: If the integrand has residue r at p then G — rD’ vanishes at p and B(x) vanishes to
order one at p . If p is any place over a root of D where the integrand has residue different
from r then G — rD’ has order zero at p . If p is a finite place not centered over a root of D

then B(x) has order zero at p . []

If our function field had unique factorization we would proceed by computing the greatest
common divisor of B(x) and G — rD’ and use these to build our divisors. But unless the
function field happens to have genus 0, we are not guaranteed that the notion of gcd is well
defined. We will work instead with the idea! generated by these two functions over the riag of
integral algebraic functious. In a gcd-domain this ideal would have a single generator but not

in general.

Now that we have created these ideal building blocks, we need algorithms for multiplica-
tion and division. In general a set of generators for the product of two ideals can be computed
simply as the set cross products of generators from one times generators from the other. This
means that the product of two ideals with m and n generators respectively will require mn
generators. Our primitive building blocks have only two generators, and we will first show how

this property can be maintained under multiplication and divisi~n.

First we will modify our building blocks slightly. We define the support of a divisor as
the set of places in the divisor with nonzero order. Qur building blocks are of the form

{h(x,y,r),B(x)}. We know that the zeros of & at places over roots of B coincide with the zeros
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of the desired divisor, but & can have zeros of multiplicity greater than one, which is compen-
sated in the ideal by the fact that B has only zeros of order one. Our first step is to modify A
so that it bas only simple zeros. This can be done by adding a random integer multiple of B to
h. For all but a small finite number of choices, this will produce an & witk only simple zeros at
places over the rcots of B. I'o complete this step we only need a test to guaraniee our randoin
integer was not ‘“unlucky.” The norm of 4 is a polynomial in X whose degree is the sum of the
order of the finite zeros of h. For any chosen integer j we can compute
N(x) = Norm(h + jB). We can split write ¥ = NN, where N, is the part of N that is
relatively prime to B. We wish to choose j so that ¥, has as small a degree as possible. When
this is done, the degree of N; will be the same as the number of places where the integrand
had residue r that is the same as the multiplicity of r in R(x). Thus j is “lucky” as long as

degree N, is the same as the multiplicity of 7 in R (x).

Now we have di\)isor descriptions of the form (h(x,y,r),4(x)) for divisor D and satisfying

the following properties:

1. order(h) =order(D) at all places over the roots of the A4(x)
2. order(D)=0 at all other places

3. both 4 and A4 are multiples of D except at infinity

(h,A) can be viewed as a locally principal model of the divisor D since at any place either the
order(D) = order(h) or order(D) = order(4). Given two such descriptions (4 ,(x,y),4,(x))
for divisor D and (hz(x,y),Az(.x)) for divisor D,, where the support of A, equals the support

of 4,, we claim the description (hlhz,A 1A45) is of the same form for divisor D,D,.

Quotients of divisors are slightly more complicated. k,/h, satisfies property 1 but not
necessarily property 3. It may have extraneous poles outside the support of D, and D,. These

can be removed by rationalizing its denominator and removing any factors that are relatively
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prime to 4, or A,. If we let h; be this normalization of &,/h, whose finite poles are all above

A, or A,, then (h4,4A4,) satisfies all three properties for the divisor D,/D,.

Now that we have the basic building blocks, and simple algorithms for multiplying and
dividing them, we are ready to construct the divisors associated with each of the residue basis
elements. Let b; be the ith basis elemeni. Each root ri of R(x) can be represented uniquely as
an integer linear combination of the basis elements rj= Ecijbi. Also each r; can be associated
with the set of places P; where the integrand had residue equal to rj. The divisor D; associated
with basis element b; is defined as.l'IPj"/. We have seen how to represent P; as the basic
building block associated with r, and we now construct D; as appropriate products and
quotients of the P i This gives us a computable representation for the divisors associated with
our candidate logands. In the next chapter we will see how to determine if there is some
multiple of these divisors that are principal and thus whose generators will furnish us with the

desired log terms.
SECTION 4. DEALING WITH BRANCH PLACES

In the previous section we assumed that the branch places of the function field did not lie
above any of the poles of the integrand. We now will show how to bring the integrand into
this form. If the integrand involves only a single unnested radical, then we claim this assump-
tion is guaranteed. In this case the defining polynomial for our function field is of the form
Y" = F(x). The integrand can be written as (2 Gi(x)Yi)d.x. As shown in the appendix, this is
integrable if and only if each summand is. Thus we are reduced to integrands of the form
G(x)Ydx with possibly a different choice of Y. We can also assume without loss of generality
that F(x) is a polynomial whose roots a’y have multiplicity less than n . In this case the finite
branch places occur precisely at the places above the roots of F . We claim that the integrand
cannot have a nonzero residue at any branch plac=. If p is a branch place centered above a

root x, of F with branch index r, then the order of G(x) must be a multiple of r and the order
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of dx is precisely r — 1. But the order of Y is some positive integer j less than r. In order for
the integrand to have a simple pole at p, we must have k*r + r -1+ j = — 1. But this
equation implies j is divisible by r contrary to our assumption. Thus with simple radicals we

never have nonzero residues at branch places.

In the more general situation we have to change our model of the function field to
achieve this condition. Branch places occur when the line of projection from our defining
curve down to the x-aXis is tangent to the curve. By a different choice of independent variable
we change tangency points and thus arrive at a different set of branch points. For each pole of
our integrand, there are only a finite number of projection directions that are tangent to the
curve. If we replace X by X + mY for some random integer m then for almost all choices of
m, the resulting function field will not have branch places above any of the poles of our
integrand. This can be checked by computing the discriminant of an integral basis for the new
presentation of the function field. The branch places all lie above roots of this discriminant so
we wish to choose m such the integrand has zero residue at all places above zeros of the
discriminant. If we let D(x) be this new discriminant and let g = fD(x) where fdx is the
integrand, then equation (7) computes the residues of the integrand over all roots of D(x). We

then check that R(Z) has no non-zero roots, i.e. is a pure monomial in Z.
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CHAPTER 6 PRINCIPAL DIVISORS AND POINTS OF FINITE ORDER

In this chapter we will present a decision procedure for computing the log term associated
with each element of a Q-basis for the residues. In chapter five we showed how to construct a
reduced divisor that described the pole zero ratios for the desired log term. We need to be
able to test whether there exists some multiple of this divisor that corresponds to an actual

function in K'(x,y).

We will first present an algorithm for determining whether the given divisor is principal,
i.e. is the divisor of a function in K'(x,y). If this algorithm succeeds then we are done, but if
not we need to try multiples of this divisor. If each of these tests fails then we need to know
when we can stop, i.e. when we are guaranteed that there is no multiple of this divisor that is

principal.

SECTION 1. PRINCIPAL DIVISORS

We start with a divisor description of the form (A(x,p),g(x)). This describes a divisor
whose order at places over o= is 0, and whose order at all other places is the minimum of the
orders of h(x,y) and g(x). We wish to determine if the divisor is principal, i.e. if there is a
single function that has exactly the same orders as this divisor at all places in our function
field. In particalar such a function is a multiple of our divisor, and we wiil base our construc-
tion on the f.ollowing proposition and corollary:

Proposition: Let hy,...,h, be functions and D be a divisor such that m‘_iu ordﬂh,- = ordpD at all

finite places. Then the ideal generated by the h; over the ring of integral functions coincides

with the multiples of D except at infinity.
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Preof: This is a restatement of the isomorphism between fractional ideals in an algebraic

function field and multiples of divisors ignoring places at infinity. [19]

Using the proposition we see that our desired principal generator will be an integral linear
combination of A(x,y) and g(x). Every such linear combination will be a multiple of D except
at infinity but most of them will have poles at infinity. If we can find one that has no poles at
infinity then it will be a multiple of D everywhere. Since the degree of D is zero, any such
function must have orders exactly equal to those specified by D and is thus uniquely deter-

mined up to scaling by a constant. This proves the following:

Corollary: If D is a divisor of degree 0 with no places at .ofinity, and hy,...,h, are as in the
proposition, then D is principal if and only if the ideal generated by the A ; has an element with

no poles at infinity.

 In chapter 2 we showed ho;ar to compute an integral basis [w,, ..., w,] for our functien
field. Any integral multiple of g(x,y) can thus be written as Z awg where a;eK[x]. Thus we
can rewrite our ideal as the K[x]-module generated by (w8, ..., w8, wih, ..., w, h). We need
to determine whether this module contains a function that has no poles at infinity. If we have
a K[x]-module basis for our ideal that is normal at infinity then a linear combination of basis
elements is integral at infinity if and only if each summand is. Since each summand is a
polynomial times a basis element and a polynomial can never have a a zero at infinity, if the
ideal contains a function with no poles at infinity, one of the bases elements must have no
poles at iofinity. Thus after computing a normal basis for our ideal, we only have to check
whether any of the basis elements have no poles at infinity.
Theorem: If D is a divisor of degree zero with no places at infinity, then D is principal if and
only if a normal basis for the ideal of multiples of D except at infinity has an element that is

regular at infinity.
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SECTION 2. GOOD REDUCTION

The algorithm in the previous section will enable us to determine whether any given
divisor is principal, but we need to know whether there is some power of the divisor that is
principal. This problem that was thought to be insoluble in the early 1900’s will be solved by
the technique of “good reduction”. Function fields in one variable whose éonstant fields are
finite fields have the property that any divisor of degrée zero has some power that is principal.
Thus if we start testing the successive powers of a divisor, we are guaranteed that this process
will terminate. Repeated applications of the algorithm in the previous section will enable us to
determine the minimum power of any divisor that is principal. Thus we need to be able to
reduce the constant field of our function field to a finite field in such a way that we can

calculate the order of a divisor from the order of its image.

If we assume the defining polynomial for our function field f(x,y) is monic in y and has
integer coefficients, then its coefficients can be reduced modulo p, a prime integer. As long 1s
the reduced polynomial remains irreducible, it defines a function field over the finite field 2/p
If the genus of the reduced field is the same as the original then we will say that our original
field has “good reduction” modulo p. It can be shown [19] for any particular defining

" polynomial, f(x,y), Q(x,y) has good reduction at all but finitely many primes.

More generally if we have a discrete valuation of our coefficient field, we can choose a
defining polynomial for our function field that is monic and such that all of its coeificients are
contained in the valuation ring. Then we can apply the natural homomorphism to the residue
class field of the valuation. If the resulting polynomial remains absolutely irreducible and the
genus of the reduced function field is unchanged, then we say we have “good reduction” at
that valuation. Again we will have good reduction at “almost all” valuations. In the rest of this
chapter when we say reduction mcdulo p, we mean reduction by a discrete valuation of the

constant field, which extends the natural p-adic valuation of the rationals.
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If we have good reduction then there is a homomorphism between the group of divisors of
K(x,y) and their images. Since principal divisors map to principal divisors, we in fact have a
homomorphism of the quotient group of divisors modulo principal divisors. Let D be a divisor
of K(x,y) that has finite order n, i.e. such that D" is principal. If n is relatively prime to the
characteristic of the reduced field then a consequence of good reduction is that the order of
the image of D under the reduction is also n. This is a consequence of the key theorem
observed by Risch [40] and Dwork and Baldassarri [4] that makes ‘“good reduction” useful.
Theorem: The homomorphism between divisor class groups under geod reduction is an
isomorphism when restricted to divisors whose orders are relatively prime to the characteristic

of the reducec. function field.
Let p be the characteristic of the reduced field,

Corollary: if the divisor D has order pkn where gcd(n,p)=1, then the reduction of D must have
order pin for some j<k.

Proof: Let the order of the reduction be pim. Since reduction is a group homomorphism, we
must have m |n and j<k. Since D-”’r bas order exactly n, its reduction must have order exactly

n. But the order of its reduction is a divisor of m and thus n | m and sc finally we have n = m.

We have shown that good reduction preserves the “prime to p” part of the orders of
divisors, but we need a way to recover the entire order of the divisor. The solution to this
problem is to use two different reductions whose residue fields have different characteristics.
Let p and g be the characteristics of the residue class fields of two different valuations each of
which gives good reduction. If the order of a divisor D is npiqk where n is relatively prime to
both p and g, reducing D by the first valuation enables one to determine n and k while the
second valuation provides a determination of j, thus completing the computation of the order
of D. Note that if the two values of n obtained from the two reductions do not match, then D
could not have finitz order, and we have a simple test that will frequently yield an early

termination to our computation.
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SECTION 3. ALGORITHMS FOR DIVISOR REDUCTION

The previous section discussed the properties of good reduction stemming from any
discrete valuation of our constant field. In general our constant field will be a finitely generat-
ed extension of Q. We can assume this is presented as a sequence of transcendental exten-
sions followed by a single algebraic extension. If n is the transcendence degree of our
constant field over @, then in order to reduce our constant field to a finite field we need to
perform n + 2 reductions as outlined in the previous secticn. The first n reductions will
replace parameters by integer values. After these substitutions the polynomial defining our
constant field may no longer be irreducible. The factors correspond to different choices of
discrete valuations we can make. So we might as well choose the least degree factor. At this
poiat we have reduced ouf constant field to a finite algebraic extension of @, and if all the
reductions were good all divisors of finite order will map to divisors of exactly the same order
(since the characteristic is still zero). Finally we need to choose two prime integers, p and g,
and perform reductions modulo p and then modulo.q. Instead of testing whether each
reduction step is *“good” it is enough that the reduction from the original coefficient field to

the finite fields are ‘““good”. This guarantees that all tke intermediate reductions were safe.
g g

We now need algorithms for reducing various objects of interest and guaranteeing that
our reductions are ‘“good”. For simplicity we will choose all our recuctions so that the
denominators and leading coefficients of all polynomials of interest do not vanish, ie. the
defining polynomial for our function field and the components of our divisor models and
integral basis. Again this will be true for “almost all” reductions. We can use the integral
basis algorithm in Chapter 2 to test both that the defining polynomial remains absolutely
irreducible and that the genus is unchanged. We merely need verify that our original integral
basis for our function field is still an integral basis, and that there are no non-constant
functions with no poles. The second condition guarantees absolute irreducibility and the first

implies that the genus remains unchanged.
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Given that our function field reduces well, we now ask whether sur divisor descriptors
reduce to locally principal models for the reduction of the desired divisor. Eichler [19] shows
that the image of a principal divisor is the divisor associated with the reduction of the
generator as long as the generator has a well-defined non-zero reduction. He also shows that
this can be accomplished by a proper scaling of the geperator. In our situation we have a
divisor descriptor of the form (g(x,y),p(x)) where g provides a locally principal model at
places over the roots of p and the divisor has order zero everywhere eise. Thus p defines the
projection of the support of the divisor. We assume that g and p have been appropriately
scaled so they have well-defined non-zero reductions. We first require that our reduced divisor
also have zero order at places over infinity. Since the reduction of p defines the projection of
the support of the reduced divisor, this is equivalent to the non-vanishing of the leading
coefficient of p. The remaining problem comes from the zeros and poles of g that did not lie
above roots of p. It is possible that they may reduce to a place that is above a root of p. In
order to epsure that our the reduction of our divisor model does in fact reduce to a model of
the desired divisor, we must guarantee this doesn’t happen. We compute another polynomial
g(x) which-is zero precisely at the finite zeros and poles of g that do not lie above roots of p.
By definition p and g have no common zeros. Our divisor model reduces well if this is still true
for the reductions of p and g. If this condition fails to hold, we can either éhoose a different
reduction cr choose a different g as a model for the desired divisor. Assuming we have chosen
g to have all of its extraneous poles at infinity, we can obtain another model for the divisor by
taking g + C‘pk where c is a constant and k bounds the order of of tﬁe zeros of our divisor.
With a g of this form, g represents the locations of the finite zeros of g that are not above
roots of p. The zeros of g are the poles of 1/g and these can be found by representing 1/g in
terms of our integral basis and computing a common denominator d(x) of the rational function
coeff.cients. d1 = d/ gcd(d,dl) has the same roots with multiplicity one. We can now compute
g = d1/gcd(d1,p). The test that our divisor description reduces well is then simply that the

leading coefficient of p doesn’t vanish and that p and g remain relatively prime.
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The preceding discussion can be re-expressed using the standard terminology from
algebraic geometry [22]. A locally principal or Cartier divisor is usually specified by giving a
collection of open sets U; and functions f; such that the open sets cover the Riemann surface
for our function field, and f;/f ; has no zeros or poles on UN U;. In our case it is convenient
to define two ciosed sets V' and V, which are the comglements of U  and U, respectively.
V, is the set of places over the roots of ¢ and at infinity. V, is the set of places over the roots
of p. We define f; = g and f, =1 . The condition that U, and U, are an open cover is
equivalent to the statement that closed sets ¥, and V, have no poiats in common. By con-
struction g has no zeros or poles on U,N U,, ie. the complement of V,UV,. Thus our initial
divisor description yields z well-defined Cartier divisor. We now check whether this remains
true after ‘“reduction modulo p.” Again ‘by construction g = f l/f2 has no zeros or poles
except at places above roots of p or ¢ or infinity. The condition that ¥, and V, have no
points in common translates to p and g remaining relatively prime and no roots of p moving to
infinity, i.e. the leading coefficient of p remaining non-zero. Thus we again arrive at the same

conditicns for good reduction of our divisor description.
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CHAPTER 7 CONCLUSIONS AND FUTURE RESEARCH

This thesis has presented an algorithm for integrating algebraic functions that i
“rational” in the sense that no algebraic extensions are made beyond those required to express
the answer. This yields a more efficient and direct solution to the problem than the previous
approach presented by Davenport and Risch. We have stressed the analogies between algebra-
ic function integration and the well-known techniques for rational function iategration. The
main source of complications comes from the lack of unique factorization in an algebraic
function field. We bhave restored unique factorization by working with ideals. The gcd of two
elements is represented by the ideal they generate. After performing the necessary arithmetic
on these ideals, we determine whether some power of the resulting ideal is principal giving rise
to a logarithmic term in the answer. This ability to give an explicit presentation for an ideal or
the associated divisor allows us to compute its order exactly instead of merely finding a upper
bound. We perform more work in algebraic function fields over finite fields in order to

perform less work over our original constant field where operations are much more costly.

Another central theme in our approach is the iterative reduction of singularities of the
integrand. By developing a Hermite-like reduction we are able to reduce non-integrable
problems to a simpler form. In fact we are able to prove as Hermite does tha: one can always

reduce the integral of an algebraic function to one which has only simple poles at finite places.

The fundamental construction that we use is the integral basis. This is used to determine
the actual singularities of the integrand, to find principal generators for ideals, and to test our
function field for “good reduction.” Two other useful applications of an integral basis are
computing the genus of our function field and verifying whether our defining polynomial is
absolutely irreducible. The existence of this basis allows us to reduce many problems to

elementary row operations on matrices of rational functions. If a more efficient algorithm can

o ) o
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be found for computing integral bases, then our entire algorithm will be similarly improved.
The integral basis provides us with a global affine non-singular model for our function field
and replaces the Puiseux series and Coates’ algorithm used by Davenport. A ‘‘rational”
algorithm to find the multiples of a divisor would yield a similar improvement in Davenport’s

implementation.

The natural extension of this work would involve handling mixed towers of algebraic,
exponential and logarithmic extensions, i.e. general elementary function fields. In the appendix
I have given a partial algorithm for thie case where you have a purely transcendental tower
followed by an unnested radical extension. As Davenport observes in [15] appendix 4, Risch’s
original transcendental algorithm holds over any differential function field in which one can
compute integrals and solve first order linear differential equations. Once you have computed
bounds for the orders of the poles in the differential equations, both the algorithms presented
here and those of Davenport would suffice for finding the solutions. Thus we can now also
perform integrations over any elementary transcendental extension of an algebraic function

field.

Extending this work for general elementary function fields may be simpler if first
performed using local power series expansions as advocated by Risch in [39]. Oance this local
approach is well understood, then perhaps a global “rational” approach can be developed. The
difficulties seem to involve dealing with places at infinity since one can no longer simply
transform infinity to a finite place without creating a non-elementary function field tower.
Also in attempting the solve a first order linear differential equation using “rational” techni-
ques, one seems to generate a system of coupled differential equations over the function field
one level down. This “reduction” seems to lead to an apparently more difficult problem. The
development of algorithms for finding solutions to systems of first order linear differential
equations over a given function field could yield a very elegant solution to the general problem

of integration in “finite terms.” [16]
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APPENDIX A. INTEGRATION OF SIMPLE RADICAL EXTENSIONS

Although Risch has presented an outlive of an algorithm for integrating mixed towers of
algel?raic and transcendental elementary functions in [39] and [40]; unfortunately his algor-
ithms require considerably more complex machinery than his earlier ones for purely transcen-
dental functions [38]). Moses’ implementation of the transcendental case [35] demonstrated its
practicality, whereas there are as yet no implementations for Risch’s more generai algorithm

[391.

This appendix will show how a combination of Risch’s earlier techniques and the algor-
ithms presented in this thesis can be generalized to begin to handle mixtures of transcendentals
and unnested radicals. While this may seem a severe restriction, perusing an integral table

such as [7] will show that fewer than 1 % of the problems are excluded.

We will assume the reader is familiar with the terminology and results of [38]. We will
use the term field to mean a differential field o-f characteristic 0. If F is a field with y
algebraic over F of degree n such that y"¢F, then we will call F(y) a simple radical extension
of F. Any element of F(y) can be written as a polynomial in y of degree n -- 1 with coeffi-

<1ents in F.

SECTION 1. STRUCTURE THEOREMS

Our first result will be a refining of Liouville’s structure theorem fo: simple radical
extensions. Let F be any differential field with K its field of constants and y radical over F.

Risch’s Strong Liouville Theorem states that geF(y) is integrable if and only if there is a
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veF(y), c;cK(d), and w; in F(y,d) with d algebraic over X such that:
f=vV+3 c.'_”i (1)
iw;
We will call v the rational part of the integral and the rest the transcendental part of the
integral. If we assume that F contains » a primitive n’® root of unity then there is a unique
differential automorphism of F(y) over F such that o(y) = wy. Define the operator

n-1 ;

1 o
T:‘;E"‘,-]
j=0 @

Note that T(y)) = )/ if i=j else 0. Thus letting g = gy’ and v=Zvy" we have
T(g) = gyi. Also noting that T; commutes with the derivation, T(v') = (viyi)'. Since T; sends
the transcendental part of the integral to a sum of the same form, by successively applying Tj
to equation (1) for 0<j<n — 1 we deduce that (1) g is integrable if and only if each g,.yi is

and (2) the rational part of [ gyi is viyi.

Now let G be a compositum of simple radical extemsions, ie. G = F(y,,....y;) where
YiieF and [G:F] = e, Any geG can be written as a polynomial in the y; ’s with coefficients
in F where the degree of y; in g is less than e; Then by repeating the previous argument for
each y; one can show g is integrable if and only if each term is integrable. The subfield of G
generated by a single such term over F is differentiaily isomorphic to a simple radical exten-

?

sion of F of degree at most the least common multiple of the e; ’s. Thus integrals over
compositums of simple radical extensions can be reduced to integrals over simple extensions

frequently of much lower degree.
SECTION 2. A GENERALIZED RISCH ALGORITHM

iLet F be arbitrary differential field and £ = F(8) where 8 is transcendental over F and F

and £ have the same constant subfield. We will additionally assume exactly one of the
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following is true:

(ne=1

(2) 8’ = V'/v for some veF, ie. £ = log (v)

(3) 8'/8 = V' for some veF, ie. 8 = exp(v)

We will be making use of the fact that F(8) is a constructive Euclidean domain. Thus we can
compute gcd's and hence square-free decompositions. We are interested in the case where
G = E(y) is a simple radical extension of degree n. Additionally we will require that p must
depend on 8, ie. " is not in F. By the previous section we are reduced to considering
integrands of he form Syi with SeE. We will find it convenient to rewrite this as R/ y"‘i
where R = S)". By changing our choice of y we can assume an integrand of the form R/ .
(Note this may involve changing our value of n). Without loss of generality we can finally

assume y” = P(8)eF[0] where P has no factors of multiplicity >n.

Let R = A/B with 4,B¢F[0] and B monic. After finding a square-free basis for P and B
and performing a partial-fraction decomposition on 4/B we can split our integrands into three
cases: C/( ka), C/( ka), and C/y where V is relatively prime to P but W is a square-free
factor of P. Unlike the previous section, integrability of R/y does not guarantee integrability
of each term in the partial fraction decomposition. However after the splitting we will be able
to apply a variety of reduction formulae to these cases. There will be a strong similarity
between our algorithms for reducing the integrands and Hermite’s algorithm for rational

function integration.

Since the case # = exp(v) has additional complications, we will treat it later. For the

remaining cases a polyncmial Q is square-free if and only if ged(Q,0") =1

The first problem we encounter is that y' introduces new denominators, so we will choose
a polynomial f such tbat (f/y)’ = g/y for some geF[8]. In fact we will need an f of least
possible degree. If P = 4Tl P is cur square-free decomposition of P into monic factors with

deF, then define [ = I1 P,
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U/ = fly(Z (1 = e/n)P//P=d'/nd) = g/y

Clearly geF[6].
Subsection 2.1. Case 1 C/( V"y) where gcd(V,f)=1

We want to find a function whose derivative when subtracted from the integrand will

decrease k and not introduce any new denominators. We want a polynomial B such that

(Bf y— ¢ __D
Vk—ly ka V“"ly

for some polynomial D. Since

(Bf y . (-KWV'Bf B'f+Bg
vk=ly vty vty

Thus we must choose B such that (1 — k)V'fB=C ( mod V). Since ged(fV’,¥) = 1 we can

find B as long as k>1. Thus we can continue this reduction process until k = 1.

Subsection 2.2. Case 2 C/(W*y) where W = Pj

Since W divides f we must start with an apparent denominator of the form ka. Letting

h = f/W we have

Thus we want to choose B such that Bg — kWh=C (mod W). W = Pj implies
g=(1-e;/n)Wh (mod W). Thus we have B(1 — k — e;/n)W'h=C (mod W). Since W'h is
relatively prime to W and e;<n, this equation is solvable for any k. Thus by repeated applica-
tions of this reduction step we can eliminate all factors of f from the denominators of our

integrands.
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Subsection 2.3. Case 3 C/y

Here we will try to find a B such that the reduced integrand has lower degree. Let

B = b with beF.
(bAf/yY = b/0'f/y + jb 0 f/y + bg/y ()
Letting m = degf we have two subcases depending on whether 4 is constant or not. If &’ = 0

then degree(g) = m — 1 else degree(g) = m. Let C = Eciei.

We will first assume that &’ = 0. If bj' = 0 then equation (2) has degree j + m — 1 else

degree j + m. Thus equating formally highest degree terms we obtain:
Com= U + Db 10 + b, ,1cf(g) + b/ (3)
where bj +1 is a constant. Lcf(g) is the leading coefficient of g.
lef(g) = 2 (1- e,'/")ICf(Pi,)
P = gk + a,-Bk—l + ... then lcf(Pi’) = k8 + a,-'. If 8’ = 1 then equation (3) reduces to :
Ciom= U+ 1+ 3 deg(P)(1 - e;/n))b; | 4)
If j + 1>0 then the coefficient of b i1 will always be nonzero. Thus we can always reduce C
until deg(C)<m - 1.
If 8 = log (v) then equation (3) takes the form
4 4
Cram=bj1 (U + DI + 3 (1 = &;/n)(deg(PY 3 + a/)) + b (5)
The coefficient of bj +lv'/ v in equation (5) is precisely the coefficient of b i1 in equation
(4) and is therefore nonzero if j + 12>0. If the original problem is integrable then Cjpm Must

be integrable. Just as in [38] & ip1 18 uniquely determined since 8 is a mo7omial over F while

bj is determined up to an additive constant. In this case we can reduce C until
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deg(C)<m — 1 only if either the original problem is integrable or at least the necessary set of

coefficients are integrable.

We will now treat the subcase where d’ is nonzero. Note that we must have 8 = log(v)
for this to hold. Here we must first assume that there is no constant s such that sd has an n 't

/n for G that puts us

. . . .1
root in F. If there is such an s then we can pick a new generator y(sd)
back in the previous subcase. Otherwise we have deg(g) = deg(f) aud after equating leading

’
terms we have ¢, == bk'—:—dbk. Our assumption about d guarantees that this equation can
have at most one solutio. in F. Thus we need to be able to solve first order linear differential

equations for a solution in F. If F is a tower of monomial extensions then [38] shows how to

do this. If all the equations we set up have solutions we will reduce C so that deg(C)<m.

Subsection 2.4. 0 = exp(v)

The disinguishing characteristic of the exponential function is that it is a factor of its
derivative. Thus we can no longer claim that a square-free polynomial must be relatively
prime to its derivative. It will only be necessary to treat factors of the form o* specially. We
begin by rewriting the square-free decomposition of P. P = den Pi" where no P; is divisible

by 8. We will again define f = I1 P; noting that now f is not divisible by 6. We next verify

that (f/y)’ still is of the form g/y for some geF[6].

(5 = (0= eomFomsim'-25) =&

After performing a partial-fraction decomposition of the integrand, we can deal with all
denominators other than @ just as in the previous cases. Thus we will now assume an integ-
rand of the form C/(Bk ), and we again write C = zc,.o"- We are again trying to decrease k

and letting B be an arbitrary polynomial we compute:
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(BLy - B'f + Bg—kV'Bf
Bky Bky

~

Requiring the numerator to be congruent to C modulo 8 is the same as equating constant

terms.
co = by'fo + bogo — kV'bofy

f pot divisible by 8 implies f; is ponzero, thus we can divide through by f,. Again 8 a
monomial will force this equation to have at most one soluti.u in F for k>0. As long as the

equation continues to have solutions, we can reduce k to 0.

Finally we must deal with integrands of the form C/y in the exponential case. Here
deg(g) = deg(f) always, and we again assume a solution of the form %ﬁ and equate leading

terms.

Skam = by’ + KV by + byIch(g) (6)

ef(g) = S2v=D + 3 (1~ e/mdeg (P’

Equation (6) will bhave at most one solution as long as the coefficient of v' is nonzero. This
coefficient is ? + = (1 — e;/n)deg(P,). Since the third term is always positive, k>0 or if

j = 0 then k>0 is sufficient to guarantee that v’ is present in equation (6).
SECTION 3. SUMMARY AND CONCLUSIONS

The reduction formulae in section 2 have enabled us to find the ratioaal part of our
integral if it exists. If the original problem was integrable, all the remaining integrands must
generate the transcendental portion of the integral. Note that cases 1 and 2 will always reduce
any integrand whether it be integrable or not. In particular, for the case 8’ = 1 we see that

any integral can be reduced to fA/(By) where B is square-free and
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deg(A)—deg(B)<deg(f) — 1.

We have shown that the question of computing integrals in F(8,y) can be reduced to the
problems of computing integrals in F and that of solving first order linear differential equa-
tions over F . If F was constructed as a tower of monomial extensions, then [38] shows that

these problems are solvable.

We claim that the algorithms presented here form a natural extenosion to those presented
in [38]. By restricting ourselves to this special but very important case, we are able to
genoerate the integral using nothing more than simple polynomial arithmetic. Although our
formulas are somewhat more complicated, we require no additional machinery than those
necessary in Risch’s original approach. [38] We have not worked out the details of the
logarithmic part of the integral, but the techniques introduced in chapters 5 and 6 of this thesis
should be generalizable to deal with this sitvation. The major problems involve dealing with
poles at infinity which were finessed by a changed of variables in the purely algebraic case.
The restriction to unnested radicals guarantees no simiple poles at branch places as in the
purely algebraic case. Formulae for the residue at infinity similar to equation (7) of Chapter 5
are needed. The fact that the principal parts of a function now only determines it up to a
function in one fewer variables instead of up to a constant could cause some additional
difficulty. We have presented what we hope are very usable practical algorithms, and we

intend to implement them in the near future.
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