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Atomic physics on a 50-nm scale: Realization of a bilayer system of dipolar atoms

Li Du∗,†, Pierre Barral†,‡, Michael Cantara†,§, Julius de Hond†,¶, Yu-Kun Lu, and Wolfgang Ketterle
Research Laboratory of Electronics, MIT-Harvard Center for Ultracold Atoms, and Department of Physics,

Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
(Dated: May 1, 2024)

Controlling ultracold atoms with laser light
has greatly advanced quantum science. The
wavelength of light sets a typical length scale for
most experiments to the order of 500 nanometers
(nm) or greater. In this work, we implemented
a super-resolution technique that localizes and
arranges atoms on a sub–50-nm scale, without
any fundamental limit in resolution. We demon-
strate this technique by creating a bilayer of
dysprosium atoms and observing dipolar inter-
actions between two physically separated layers
through interlayer sympathetic cooling and cou-
pled collective excitations. At 50-nm distance,
dipolar interactions are 1000 times stronger than
at 500 nm. For two atoms in optical tweezers,
this should enable purely magnetic dipolar gates
with kilohertz speed.

A major frontier in many-body physics is the realiza-
tion and study of strongly-correlated quantum phases [1–
3]. In ultracold atomic systems, the typical short-range
contact interaction has led to the creation of a variety of
exotic quantum phases [3, 4]. However, a wide range of
quantum phenomena require long-range dipolar interac-
tions [5–7]. But even for the most magnetic atoms such
as chromium, erbium and dysprosium (Dy), the magnetic
dipole-dipole interaction is rather weak. For Dy, with a
magnetic dipole moment of 10 Bohr magneton (µB), the
dipolar interaction at 500-nm distance is only h× 20 Hz,
where h is the Planck’s constant. Although such weak
interactions could be observed [8, 9], and supersolidity
and other forms of matter could be realized with mag-
netic atoms [5], there are major efforts to harness the
much stronger interactions of polar molecules [10, 11] and
Rydberg atoms [12]. The electric dipolar interaction of
molecules (at 3 D) can be 1000 times stronger than mag-
netic dipolar interaction (at 10 µB). In this work, we
show how this factor of 1000 can be compensated for by
decreasing the distance between two magnetic atoms to
50 nm. Studying dipolar physics with neutral atoms has
major advantages: It is simpler to cool atoms to quantum
degeneracy, and atoms have more favorable collisional
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properties.
It has been a long-standing goal to create optical po-

tentials with subwavelength components to enhance tun-
neling and interaction strengths. Early works on atom
lithography achieved deposition of metal structures with
spatial periods one-eighth the size of optical wavelengths
[13, 14] and feature sizes of tens of nanometers [15] us-
ing state-dependent potentials. With ultracold atoms,
many schemes have been suggested [16–20] and methods
such as dark states [21, 22], radio frequency-photon dress-
ing [23], stroboscopic techniques [24], and multiphoton
processes through Raman transitions between hyperfine
states [13, 25, 26] have been demonstrated. Challenges,
such as additional heating, limited coherence time, and
limited reduction of atomic spacing, have hindered a wide
adoption of these methods. In this work, we introduce
a method that has no fundamental limit. It is based on
the key concept of optical super-resolution microscopy:
One can determine the center of a diffraction-limited
Airy disk with a precision that exceeds the diffraction
limit. Similarly, a deep optical lattice or a strong tweezer
beam can localize an atom to 10 nm [15, 27, 28], limited
only by available power and heating from spontaneous
light scattering. In a typical super-resolution microscopy
experiment, molecules are imaged sequentially, whereas
for trapping atoms, simultaneous confinement on a sub-
wavelength scale is required. One possible solution is
to trap two different kinds of atoms with two different
colors of light. But, usually, for quantum science, one
needs identical atoms. The strategy we implemented
was to use two opposite spin states of Dy, and two dif-
ferent polarizations of light at different frequencies —
a dual-polarization and dual-frequency super-resolution
scheme. Unlike spin-1/2 and alkali atoms, ground-state
Dy has a strong tensor polarizability [29]. It can cause
detrimental two-photon Raman couplings between spin
states with different mJ quantum numbers, which are
suppressed by the frequency offset between the two opti-
cal potentials. The remaining diagonal part of the tensor
couplings makes our scheme much more robust since it
creates, for 162Dy, an isolated two-state Hilbert space
for mJ = ±8 spin states with a big energy gap to all the
other 15 spin states.

Spin-dependent potentials have been realized with
rubidium [30–34] and cesium [27, 35]. In contrast to
alkali atoms [36], very deep spin-dependent potentials
can be realized with Dy with negligible spontaneous
emission as a result of Dy’s electronic orbital angular
momentum in the ground state. Furthermore, with
a magnetic dipole moment of only 1 µB , the dipolar
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FIG. 1. Creation of the subwavelength bilayer array. (A) Experimental setup. Two overlapping laser beams with opposite
circular polarizations σ+ and σ− are retro-reflected by mirror (I) to form two optical standing waves. The two standing waves
are displaced at the position of the atoms (II), which is controlled by the frequency offset ∆ between the two laser beams.
Dy atoms in this configuration form an array of pancake-shaped bilayers of head-to-head dipoles with adjustable interlayer
distance s. (B) Contributions of different polarizability components. Solid lines denote adiabatic potential curves for different
mJ states (−8 ≤ mJ ≤ 8, represented by dark blue to dark red, assuming red detuning), and the shaded regions refer to the
intensities of the σ± light for a particular interlayer separation. (C) If the two laser beams have the same frequency ∆ = 0,
the off-diagonal part of the tensor polarizability mixes spin states. As a result, the two minima merge into a single minimum
for small separation s. This is avoided in our experiment by using two different frequencies for the σ± light. The color of the
curves indicate the mJ character of the adiabatic eigenstates. (D) Adiabatic loading of the bilayer array. (i) Starting with the
optical potential in the interlaced configuration in the presence of a dominating transverse magnetic field Bx = 200 mG, the
atoms are initialized in the mJ = −8 spin state along the x direction. (ii) As Bx is ramped down in 15 ms, the light shift
dominates over the Zeeman shift, thereby adiabatically loading the bilayer array. (iii) The power of the σ+ and σ− potentials
is adjusted for identical trap frequencies. (iv) The interlayer distance is adjusted to designated values in 0.5 ms.

interaction for alkali atoms is 100 times weaker than
for Dy. Therefore, previous work on alkalis has used
spin-dependent forces to control the overlap between
sites with spin up and down [27, 33] but not to study
interactions between nonoverlapping sites.

The subwavelength scheme

An illustration of the experimental scheme is shown in
Fig. 1B, which demonstrates a bilayer potential created
by two optical standing waves of σ+ and σ− polariza-
tions with a small spatial spatial displacement s. This
illustration also applies to the case of spin-dependent op-
tical tweezers. The figure shows the adiabatic potentials
of all 17 spin states (quantized along the z direction in
the lab frame), with different polarizability components
taken into account. With only a scalar polarizability αs,
the ac Stark shifts are the same for all 17 mJ states, so
there is only one potential minimum. The vector polar-
izability αv leads to ac Stark shifts that are linear in mJ

and therefore can be regarded as a Zeeman shift caused
by a fictitious sinusoidal magnetic field — it lifts the de-
generacy except for points where the fictitious magnetic
fields from the σ+ and the σ− standing waves cancel.

This creates a double well potential even for arbitrar-
ily small displacement of the standing waves. However,
small transverse magnetic fields would couple the degen-
erate states, leading to mixing among different mJ states.
This is where the tensor polarizability αt makes a qual-
itative difference. The diagonal part of the tensor light-
atom interaction (which has an m2

J dependence) partially
lifts the degeneracy. The mJ = ±8 ground states are sep-
arated from all other states by a large gap and are cou-
pled by transverse fields only in 16th order. Note that
the mJ = ±8 states are the local ground states of the σ±
potential minima, and therefore inelastic two-body losses
are prevented in each of the layers.

Although the tensor polarizability αt provides robust-
ness against transverse magnetic fields, it allows for two-
photon Raman processes with ∆mJ = ±2 using one
σ+ and one σ− photon. Figure 1C shows the effect of
the resonant Raman process caused by off-diagonal ten-
sor couplings when both polarization components have
the same frequency. This is the situation when the σ+

and the σ− standing waves are created by retro-reflecting
a single beam with rotated linear polarization, as often
used for alkalis (e.g., see [30, 31, 33]). For Dy, the Ra-
man couplings weaken the potential minima for separa-
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tions smaller than λ/10, where λ is the wavelength of
the light. For displacements of the standing waves of
less than λ/30, the double minima have merged. We
eliminated the Raman coupling by offsetting the frequen-
cies for the σ+ and σ− optical standing waves by more
than 300 MHz, much larger than the ac Stark shifts,
which makes the two-photon Raman process off-resonant
[37]. The conclusion is that the dual-polarization and
dual-frequency scheme isolates the Hilbert space for the
mJ = ±8 spin states and creates a double-minimum po-
tential that is not flattened out even for very small sep-
arations of the two minima.

Dy, with its high angular momentum of J = 8 in
the ground state, is the ideal atom for this scheme.
For a J = 8 → J ′ = 9 transition, the mJ = 8 state
has a transition strength ratio of 153 between the
σ+ and σ− transitions [38]. For atoms with J = 1
(2), the ratio is only 6 (15). Therefore, this stretched
transition in Dy is very similar to a hypothetically
isolated J = 1/2 → J ′ = 1/2 transition, where the
spin-up state sees only σ− light and vice versa. Dy is
even more ideal than the J = 1/2 case in which spin-up
and down states are directly connected by possible one-
or two-body couplings (e.g. transverse magnetic fields,
dipolar relaxation), whereas those couplings act only in
16th or 8th order in our Dy scheme. The robustness of
the scheme comes from the ac Stark shifts that stem
from the tensor polarizability.

Experimental protocol

Experimentally, we created a stack of bilayers by su-
perimposing red-detuned optical standing waves with σ+

and σ− polarizations operating near the Dy narrowline
transition at 741 nm (linewidth Γ/2π = 1.78 kHz) [39].
The two optical beams were delivered through the same
polarization-maintaining fiber, such that they shared the
same transverse Gaussian mode. The frequency of the σ−
standing wave can be dynamically tuned using a double-
passed phased-array acousto-optic deflector, leading to a
precise control of the interlayer distance s with a sensitiv-
ity of 4.7 nm/MHz [see Supplementary Materials (SM)].

The ground state of the bilayer was loaded using an
adiabatic transfer method, as depicted in Fig. 1D. First,
mJ = −8 atoms were prepared in a magnetic field with
a transverse component Bx = 200 mG and an axial com-
ponent Bz around 10 mG. We then ramped up the σ+

and σ− standing waves in the interlaced configuration
with s = λ/4 in 100 ms, loading all layers with atoms
aligned with the x axis (Fig. 1D, i). By ramping down
Bx in 15 ms, the potential depth increased while a bi-
layer array was formed with dipoles aligned head to head
(Fig. 1D, ii and iii). We ensured balanced loading by
making sure that the energy offset (including Zeeman en-
ergies) between the minima of the σ+ and σ− potentials
was zero. It was crucial that the atoms stayed in their
local ground state throughout the experiment to prevent
losses and heating caused by dipolar relaxation. There-

fore, the Zeeman shifts caused by the external magnetic
field Bz had to be smaller than the differential ac Stark
shift between the mJ = −8 and mJ = −7 states.

After loading a balanced bilayer array, the powers
of the two optical standing waves were ramped up,
ensuring that the two layers had the same trap frequen-
cies of typically (ωx, ωy, ωz) = 2π × (0.5, 0.5, 140) kHz.
The strong axial confinement resulted in a harmonic
oscillator length aHO =

√
ℏ/mωz of 21.1 nm, where

ℏ = h/2π and m is the atomic mass. We loaded 4.2×104

ultracold 162Dy atoms into an array of 42 bilayers, with
a temperature of 1.7 µK determined from the cloud size
after ballistic expansion (see SM) [40]. Subsequently, the
interlayer distance s was ramped from λ/4 to different
designated values in 0.5 ms by changing the frequency
of the σ− standing wave. The interlayer distance s was
calibrated with Kapitza-Dirac diffraction measurements
(see SM). At the end of each experimental sequence, the
atoms were released from the bilayer array within 1 µs
and were imaged after ballistic expansion. With the
small axial magnetic field Bz serving as a guiding field,
atoms remained in the mJ = ±8 states and were imaged
by a spin-resolved absorption imaging technique (see
SM). This method allowed us to measure the population
in each of the two layers simultaneously.

A

B

σ+ layer σ- layer

FIG. 2. Subwavelength control of the interlayer dis-
tance, as demonstrated by recording atom loss as
a function of layer separation. (A) Evolution of the
population in σ+ layers at two different interlayer distances
s = 185 nm and 0 nm. The loss is much faster when the layers
are overlapped. Initial loss rates Γ3b are obtained from the
fits to the decay curves. (B) Gaussian fits of the initial loss
rates Γ3b to the interlayer distances s according to Eq. (1)
(solid lines) provide a value of σz = 19 ± 1 nm for the layer
thickness.
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Demonstration of spatial control

We demonstrated the subwavelength spatial control
over the bilayer geometry by measuring the lifetime of
atomic samples at different layer separations. The sharp
peak in the loss rate as a function of interlayer distance s
in Fig. 2 is essentially the convolution between the den-
sity profiles of the two layers. Assuming that loss pro-
cesses occur at short range, we derived a rate equation
for the total loss rate Γ3b of each layer

Γ3b = Γintra + Γintere
− 1

3 (
s
σz

)2 =
Ṅtot

Ntot
(1)

where Ntot is the total number of atoms in a layer and σz

is the root-mean-square thickness of each layer. The loss
rate contains both an intra- and an interlayer contribu-
tion characterized by Γintra and Γinter. The factor of one-
third in the exponent of the interlayer term reflects that
the loss is caused by three-body recombination (see SM).
For spin-independent three-body collisions and thermal
clouds, we expect that Γintra = Γinter. Unexpectedly, we
observed about a 50-fold increase in the loss rate when
the two layers were overlapped, which implies that three-
body recombination involving mixed spin states is much
faster than recombination of three atoms all in the same
spin state. This strongly enhanced loss feature serves
as a highly sensitive monitor for the density overlap be-
tween the two layers; fitting the loss curve determines the
thickness of each layer σz = 19 ± 1 nm, consistent with
the calculated value of 1.31aHO/

√
2 ≈ 18.8±0.1 nm that

we obtained from trap frequency and temperature mea-
surements [40]. The observed losses in the two layers are
almost equal, which implies equal loss rates for three-
body collisions involving one spin-up and two spin-down
atoms, or vice versa. This measurement of the atomic
density distribution has no discernible broadening: The
measured and calculated widths agreed to within 1 nm.
Expressing this as an instrumental point spread function
gives an upper limit to the Gaussian width of the point-
spread function of 6 nm. This result can be compared
with what was achieved in dark-state super-resolution
microscopy. McDonald et al. [22] measured an atom
cloud size of 55 nm with a broadening of 32 nm due to
the width of the dark-state probe. A similar experiment
reported by Subhankar et al. [41] measured a size of 26
nm with a broadening of 11 nm from the probe.

We conclude from the loss measurement that the two
layers can be regarded as coupled predominantly by
long-range dipolar forces for s ⪆ 50 nm. The dipolar
energy Udd/h between two Dy atoms with opposite
spins at this separation is 20 kHz. This geometry now
allows us to study dipolar physics with strong interlayer
dipole-dipole interactions.

Interlayer thermalization

We applied our technique to study energy transfer
through interlayer dipolar interactions, or sympathetic
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FIG. 3. Observation of interlayer thermalization. (A)
Interlayer elastic scattering cross sections as functions of sep-
aration s calculated using the Born approximation. The grey
curves correspond to dipolar cross sections for infinitely thin
σz = 0 layers (thin grey) along with its large interlayer dis-
tance limit ks ≫ 1 (dashed, following Eq. 2) and for layers
with finite thickness σz = 14.9 nm (quasi 2D, solid grey). The
red curve is for simple contact interactions at the background
scattering length (red, quasi 2D), and the shaded area corre-
sponds to a 10-times-enhanced cross section. (B) Observed
thermalization rates Γ0 obtained from the pseudo-exponential
fits. The black and red solid lines show the expected thermal-
ization rate from dipolar and contact interactions (see SM).
The dashed line is for reference and is proportional to 1/s3.
Error bars represent the standard errors of the rates obtained
from the pseudo-exponential fits.

cooling between two atomic systems separated by vac-
uum [42, 43]. Each layer receives heat through the fluc-
tuating magnetic field created by the dipoles in the other
layer. For equal temperatures, in detailed balance, the
heat flows cancel. For unequal temperatures, the dipolar
fluctuations cause thermalization. Figure 3B shows the
experimental results.

We experimentally created a controlled temperature
difference between the two layers by heating up the σ+

layer through a parametric drive by modulating the σ+

light intensity at twice the transverse trap frequency for
30 ms, followed by a 5-ms hold to ensure any residual
breathing motion is damped out. This procedure pre-
pares the σ+ layer at 3.9 µK and leaves the σ− layer
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at 1.7 µK. We then adjusted the interlayer distance
over 0.5 ms and monitored the temperature evolution.
We fit the temperature difference between two layers to
a pseudo-exponential decay d∆T

dt = −Γ0
N(t)
N(0)∆T to ob-

tain the interlayer thermalization rate Γ0, where N(t)
accounts for the measured particle number decay caused
by inelastic collisions (see SM). Figure 3B shows that the
thermalization rate strongly drops with interlayer dis-
tance.

We could estimate the interlayer collision rate as
n2Dσddvrel, where n2D is the 2D density distribution and
σdd is the cross section for two dipolar atoms passing
each other at the separation s. Using the Born approx-
imation, we calculated the elastic cross section between
two atoms in thin layers separated by a distance s (see
SM), and the analytic large-s limit is

σ2D
dd = a2dd

π

k2s3
(2)

Here, add = 10.2 nm is the dipolar length and k is the
relative momentum between the colliding particles. For
s = 75 nm, the quasi-2D cross section σdd is 0.38 nm
(see Fig. 3A). With a typical 2D peak density of n2D ≈
1.3× 109 cm−2 and a thermal velocity of 2.1 cm s−1 one
obtains an interlayer collision rate of 100 s−1. The ob-
served thermalization times are much slower, around 160
ms (rate of 6 s−1). This can be fully accounted for by
the anisotropy of dipolar scattering peaked in the for-
ward direction, which reduces the effective cross section
by a factor of six, and by multiple averaging arising from
the inhomogeneity of our sample (see SM). In Fig. 3B,
we compare the observed thermalization rates to calcu-
lations (see SM). They do not have any adjustable pa-
rameters and fully take into account the momentum and
angular dependence of dipolar scattering and the finite
thickness of the layer. The calculations are in semiquan-
titative agreement with the observations. The drop-off
of the thermalization rate is much weaker than the steep
exponential decrease in density overlap and, therefore, in
the contact interactions between the two layers. This is
clear evidence for purely dipolar collisions in the range
of 50- to 100-nm interlayer distances.

The observed dependence on s roughly follows a 1/s3

dependence, which is less steep than predicted. This
is possibly a consequence of the assumption of purely
dipolar binary collisions. For small s, there can be an
interference term with s-wave contact interactions and
a contribution from nonuniversal short-range dipolar
s-wave scattering [44], which is not included in the
Born approximation. The largest separations s studied
are comparable to the interparticle separation, and
the binary collision approximation may no longer be
accurate; that is, there are now more then two particles
interacting with each other.

Coupled collective oscillations

In the second experiment, we looked for coupled collec-
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FIG. 4. Observation of coupled oscillations of the two
layers at 62 nm interlayer distance. The center-of-mass
oscillation of the σ+ layer is excited by suddenly switching
off a displacement force. The σ− layer oscillates because of
dipolar coupling. Error bars represent the standard errors of
the means of independent measurements.

tive oscillations of the bilayer system. Several theoretical
papers [45, 46] predicted the coupling of transverse os-
cillations by the mean dipolar field between the layers.
Indeed, when we excited transverse oscillations in one
layer, we found that they caused oscillations in the other
layer (Fig. 4). Experimentally, after loading a balanced
bilayer array and adjusting the interlayer distance to a
designated value in 0.5 ms, we adiabatically displaced the
σ+ layer along the transverse direction y in 10 ms using
an extra laser beam with σ+ polarization. This beam,
blue-detuned from the 626-nm transition by 458 MHz,
is misaligned from the atoms by about one beam waist
and displaces the atoms only in the σ+ layer (see SM).
A sudden switch-off of this beam hence creates a center-
of-mass oscillation of the σ+ layer at the transverse trap
frequency with an adjustable amplitude ranging from 0
to 8 µm, depending on the final power of the beam. As
a function of hold time, we obtained the in-trap veloc-
ity of each layer from time-of-flight images to reveal how
momentum is transferred between layers.

Figure 4 shows the time evolution of the velocity of
each layer at s = 62 nm, as obtained from ballistic ex-
pansion images. The harmonic oscillation of the σ+ layer
shows damping, whereas the σ− layer starts at rest and
shows a growing in-phase oscillation. Our observation
contrasts with the theoretical treatments [45, 46], where
the mean-field coupling potential would cause a beat
note, which is initially an oscillation 90◦ out of phase.
Furthermore, the predicted mean-field coupling [45, 46]
resulted in a normal-mode splitting of less than 1 Hz,
which is too slow to be observed on the experimental
time scale. Our observation is fully consistent with a
friction force caused by dipolar collisions: The time
constant for the damping of the relative motion between
the two layers of 25 ms is similar to the observed
interlayer thermalization times. These observations
establish dipolar drag between two physically separated
layers, which have features in common with Coulomb
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drag studied in bilayer semiconductors [47].

Discussion and outlook

We expect that the technique we developed here should
work for all atoms that have electronic orbital angular-
momentum in the ground state and allow strong vector
and tensor ac Stark shifts at sufficiently far detuning. Al-
though it requires the two layers to be in different spin
states, those states can be tilted by a transverse mag-
netic field to angles within 20◦. A modified scheme with
an in-plane quantization axis could realize attractive in-
teractions and interlayer pairing [7, 48].

Looking ahead, lower temperatures should lead to
strong correlations between the layers beyond a mean-
field description. Adding transverse optical lattices to
the layers will create large repulsive interaction energies
between pairs on the same lattice site [7] but can also
realize a system described by attractive interactions
between particles and holes analogous to electron-hole
pairs in bilayer excitons [49]. It is possible to project
separate arbitrary potentials into the σ+ and σ− lay-
ers, which could realize twisted bilayer potentials [50]
and more general geometries, including quasi-crystals.
These geometries should allow the study of many
phenomena that have been predicted for interacting
bilayers [7, 45, 46, 51–57]. Applying the super-resolution
technique to optical tweezers will allow the study of
super-radiance and radiative shifts at separations much

smaller than the optical wavelength as well as the study
of magnetic interactions and spin exchange between
two isolated atoms, which was done recently with polar
molecules [58–61]. The tweezer setup can be generalized
to a linear array of atoms alternating in spin-up and
spin-down states. Moving the spin-up atoms back
and forth would provide full connectivity along the
chain and realize a spin chain with strong magnetic
coupling between nearest neighbors. These ideas can be
generalized to higher dimensions.
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SUPPLEMENTARY MATERIALS

Sample preparation.— Typically, a Bose–Einstein
condensate (BEC) with 5× 104 162Dy atoms in the low-
est Zeeman state mJ = −8 is prepared by first loading
a 1064 nm crossed optical dipole trap (XODT) from the
626 nm spin-polarized magneto-optical trap [64]. Evap-
orative cooling is then performed in a magnetic field of
0.42 G by ramping down the depth of the XODT. The
trap frequencies of the XODT at the end of evaporation
are (Ωx,Ωy,Ωz) = 2π × (149, 43, 136) Hz. The conden-
sate fraction is about 45% and the temperature is 60 nK.

By following the sequence depicted in Fig. 1(d), ap-
proximately 4.2×104 atoms are subsequently loaded into
the bilayer potential. Due to the partial condensation of
the cloud and technical heating during the loading, we
simply assume a Gaussian distribution in the transverse
direction such that the atomic density is

n±
i,3D(ρ, z) = n0,3De

− 1
2

(
i λ
2σODT

)2

e
− 1

2

(
ρ

σ⊥

)2

e−
1
2 (

z±s/2
σz

)
2

(S1)
where i = 0,±1,±2, . . . is the index of the bilayer in the
whole array, and the superscript (±) denotes the σ+ or
σ− layer. The transverse width (RMS value of x and y)
is given by σ⊥ =

√
kBT
mω2

ρ
= 3.0 µm with ωρ = 2π×500 Hz

and T = 1.7 µK. The RMS thickness σz relates to the
oscillator length as σz = aHO/

√
2, therefore in the tight

direction σz =
√

ℏ
2mωz

= 14.9 nm for ωz = 2π×140 kHz.
We measured σODT by a matter-wave focusing tech-

nique [65, 66] which maps the spatial distribution into
momentum distribution which is imaged after ballistic
expansion. The procedure is the following: first, the
XODT is turned back on and the bilayer potential is
switched off suddenly after loading. After a quarter pe-
riod of oscillation in the XODT, the initial spatial distri-
bution is converted into a momentum distribution. Fi-
nally, atoms are released from the XODT for absorption
imaging after ballistic expansion for time t. The width
of the density distribution in the bilayer potential is re-
lated to the width of the cloud in the absorption image
by σODT = σTOF/(Ωzt) = 4.4 µm. This value agrees
with a value obtained by in-situ imaging of the bilayer
using detuned imaging light. As a result, we populate
about 4

√
πσODT/λ ≈ 42 bilayers with 700 atoms in each

layer of the central bilayer.
The peak density n0,3D is expressed in terms of ex-

perimentally measured quantities as n0,3D = 3N±
tot/Veff

with the effective trap volume of the whole bilayer ar-
ray Veff = 12π2σ2

⊥σz(2σODT/λ). We assume balanced
loading of the bilayers, so the peak 2D density n0 =√
2πσzn0,3D = 1.3× 109 cm−2 is the same in both layers

initially.
The bilayers are thermal since the temperature in-

creases to T = 1.7 µK at the end of the loading pro-
cedure, which is above the critical temperature for 2D
Bose-Einstein condensation of 0.5 µK. The energy scale
set by the temperature of each layer is much larger than

(I)

(II)

(III)

(IV)

FIG. S1. Characterization of the interlayer distance
using Kapitza-Dirac diffraction. The 1st-order fraction
of the Kapitza-Dirac signals N+1/Ntot versus relative detun-
ing ∆ with mJ = −8 Bose-Einstein condensates polarized
along the x direction. The Kaptiza-Dirac signal vanishes at
interlaced bilayer configurations (I) and (III), whereas it is
maximized for overlapped bilayer configurations (II) and (IV).

the transverse vibrational energy spacing kBT/ℏωx =
kBT/ℏωy ≈ 70 ≫ 1, but is small compared to the axial
vibrational energy spacing kBT/ℏωz ≈ 0.25 < 1. The ax-
ial thermal excitation is on the order of e−ℏωz/kBT = 0.02
(and 0.18 for the heated layer at 3.9 µK in the interlayer
thermalization experiment).

Control and characterization of interlayer
distances.— To control the distance between two lay-
ers, we shift the frequency of the σ− optical standing
wave, leading to a variable layer displacement due to the
accumulated phase shift of the standing wave at the po-
sition of the atoms that is distance L away from the retro
mirror. With δf = 80 MHz tuning range of the σ− opti-
cal frequency and 1.9 m of retro-path length, we are able
to shift the σ− layers by a distance L · δf/f = 375 nm
with respect to the σ+ layers, where f is the frequency
of the 741 nm laser.

The distance is calibrated using a Kapitza-Dirac exper-
iment [67] in which the diffraction patterns of atoms are
used to reveal the structure of the pulsed optical stand-
ing waves. This is done with a BEC in the mJ = −8
Zeeman state polarized along the transverse direction
x in a magnetic field of 1.3 G. After the prepara-
tion of the condensate, we simultaneously pulse on the
two optical standing waves with the same intensity for
τ = 5 µs, such that most of the population is in the
the first order of the Kapitza-Dirac diffraction pattern.
Since the transversely-polarized atomic spins see both
circular polarizations as a superposition of (σ−, π, σ+)
light with weights of (1, 2, 1), taking x as the quantiza-
tion axis, the light-atom interaction Hamiltonian for the
mJ = −8 state can be expressed as the superposition of
two phase-shifted sinusoidal potentials of the same am-
plitudes V0(x, y)[sin

2(kz) + sin2(kz + ϕ)]. Fig. S1 shows
the typical first-order Kapitza-Dirac signals in the short
pulse limit V0(x, y)τ/h ≪ 1. The result presents an oscil-



10

L1

L2

L3

L4

QWP

Wollaston prism

σ
+
 layer

...

...m
J
’ +7 +8 +9+6

m
J

+6 +7 +8

σ
+

σ
-

σ
-
 layer

...

...

m
J

m
J
’

-8 -7 -6

-8 -7 -6-9

σ
-

σ
+

Linearly-polarized

421nm resonant light

Atoms

FIG. S2. The spin-resolved absorption imaging scheme. The atoms are exposed to linearly polarized light that is co-
propagating with the bilayer optical beams and that is resonant with the 421 nm transition. After the relay lenses (L1 and L2)
and the magnification lenses (L3 and L4), the σ+ and σ− components of the imaging light are separated using a quarter-wave
plate (QWP) and a Wollaston prism. The spatially separated images of the σ+ and the σ− layers are recorded by a CMOS
camera.

latory behavior as we vary the relative detuning ∆. When
the bilayers are in an interlaced configuration (ϕ = π/2),
the first-order Kapitza-Dirac signal vanishes. When the
bilayers are in an overlapped configuration (ϕ = 0) the
amplitude of the sinusoidal potential is maximized, cor-
responding to the strongest Kapitza-Dirac signal. The
resulting oscillation period of the Kapitza-Dirac signal
indicates the tuning sensitivity of the interlayer distance
to be 4.7 nm/MHz with respect to the relative laser de-
tuning ∆.

Spin-resolved imaging.— Our spin-resolved absorp-
tion imaging system operates in the weak saturation limit
of the 421 nm cyling transition. It utilizes the big con-
trast of photon scattering rates of atoms in the stretched
mJ = ±8 Zeeman states for two opposite circular po-
larizations of light. The resonant imaging light address-
ing the 421 nm transition is linearly polarized along x,
and propagates along the axial direction z. Taking z as
the quantization axis, the imaging light contains equal
amount of σ− and σ+ polarization components. Due
to the big difference between the Clebsch–Gordan coef-
ficients for the |J = 8,mJ = −8⟩ → |J ′ = 9,m′

J = −9⟩
and the |J = 8,mJ = −8⟩ → |J ′ = 9,m′

J = −7⟩ electric
dipole transitions, the σ+ photons are predominantly
scattered by the atoms in the σ+ layer, whereas the
σ− photons are predominantly scattered by the atoms
in the σ− layer. The two polarization components are
then spatially separated by a 1◦ angle via a quarter-wave
plate and a Wollaston prism (see Fig. S2), leading to two
nearly-independent imaging channels for the σ+ and the
σ− layers on the camera. The duration of the imaging

pulse is adjusted to reduce optical pumping which would
lead to crosstalk between the two imaging channels.

Intra- and interlayer loss rates.— Here we provide
the details of the model for determining the three-body
loss rates for separated and overlapping layers. For tech-
nical reasons, these experiments were carried out with
different parameters. Instead of loading from a BEC,
the bilayers here were loaded from an ultracold thermal
cloud at T = 172 nK with no condensate fraction. The
thermal cloud follows a Gaussian density distribution
with widths of (σ̃x, σ̃y, σODT) =

√
kBT
m ( 1

Ωx
, 1
Ωy

, 1
Ωz

) =

(3.1, 11.0, 3.5) µm [68], and thus approximately 33 copies
of the bilayer are created. The density distribution
in each layer follows Eq. S1. The trap frequencies of
the bilayer were (ωx, ωy, ωz) = 2π × (0.7, 0.7, 153) kHz,
corresponding to an axial oscillator lengths of aHO =√
ℏ/mωz = 20.2 nm. The typical post-loading peak den-

sity is n0,3D = 3.8× 1014 cm−3.
For separated layers, the local density n decays by

three-body loss according to dn/dt = −βintran
3. By

integrating over the cloud and layers we obtain the first
term of the rate equation

dNtot

dt
= −βintra

N3
tot

V 2
eff

− βinter
N3

tot

V 2
eff

e−
1
3 (

s
σz

)2 (S2)

with Veff = 12π2σ2
⊥σz(2σODT/λ). The second term char-

acterizes interlayer loss when the layers overlap with a
rate constant βinter. The prefactor 1/3 in the exponent
assumes three-body loss. For two-body loss, it would
be 1/4. Although two-body spin relaxation between
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mJ = ±8 states becomes energetically possible when the
layers partially overlap, it requires a higher-order process
and should be negligible. The three-body recombination
rate is proportional to the square of the density. Assum-
ing that three-body collisions are independent of the spin
state on a microscopic level, one would naively expect a
fourfold increase of Γ3b when the layers fully overlap —
this is correct only in the case of a two-component Bose
condensate. For spin-independent three-body collisions
and a Bose condensate, we define β = βintra. We then get
βinter = 3β. For thermal clouds we have βintra = g(3)(0)β
and βinter = 3g(2)(0)β = βintra. and therefore an ex-
pected twofold increase of the loss rate for fully overlap-
ping layers.

Fitting the initial loss rates Ṅtot/Ntot as a func-
tion of the interlayer distances s using Eq. (1) gives
the intralayer three-body loss coeffcient βintra = 9.0 ×
10−28 cm6/s, the interlayer three-body loss coefficient
βinter = 4.8 × 10−26 cm6/s, and the RMS thickness of
each layer σz = 18.6 nm ≈ 1.3aHO/

√
2. The intralayer

three-body loss coefficient is of the same order of magni-
tude compared to the results in previous works [69, 70]
measured around 5 G magnetic fields away from Fesh-
bach resonances.

Excitation and measurement of center-of-mass
oscillations.— Oscillations of the σ+ layer are ex-
cited using a circularly-polarized beam blue-detuned by
458 MHz from the 626 nm transition. The focus of the
beam is misaligned along the y direction with respect
to the atoms, causing a force that displaces the atoms
along y due to the AC Stark shift gradient. The spin-
selectivity of the beam due to its circular polarization
guarantees that it predominantly addresses the σ+ layer.
By adiabatically ramping up the beam in 10 ms, we dis-
place the σ+ layer for various distances controlled by the
final power of the beam. A center-of-mass oscillation is
excited by suddenly switching off the beam.
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FIG. S3. Characterization of the displacement beam
crosstalk. The first three cycles of center-of-mass oscilla-
tions caused by suddenly switching off the circularly-polarized
626 nm beam with (a) only the σ+ layer loaded and (b) only
the σ− layer loaded. The resulting amplitudes of the σ+ and
σ− layers are 29.0 ± 0.5 µm/ms and 0.36 ± 0.09 µm/ms re-
spectively.

The displacement beam also displaces the σ− layer ow-
ing to crosstalk, but 100 times less. The crosstalk could
be observed only at much larger oscillation amplitudes
than shown in Fig. 4 in the main text. We determined
that the oscillation amplitude of the σ− layer caused by
the beam is 1.2(5)% compared to that of the σ+ layer by
measuring the amplitudes with only the σ+ or σ− layer
loaded (see Fig. S3). This is consistent with the Clebsch-
Gordon coefficients for the two polarizations.

When we explored the coupled oscillations for longer
times and for larger amplitudes and separations, we
found that the observations depended critically on a pre-
cise matching of the potentials of the two bilayers. Non-
isotropic radial confinement could cause two-dimensional
motion of the layers and Lissajous figure type orbits.
Nevertheless, all observations showed an initial in-phase
oscillation of the σ− layer consistent with a frictional
force.

Calculation of σdd.— The theoretical curves of
the thermalization rate Γ0 in Fig 3 use the distance-
dependant interlayer dipolar cross section σdd of two
atoms confined in two different layers. To compute
this quantity, we use the Born approximation similar to
Ref. [71, 72]. In the center-of-mass frame of two particles
(labeled 1, 2) confined in two layers separated by distance
s, the axial potential is reduced to a single harmonic os-
cillator potential V̂HO = 1

2µω
2
z(z − s)2, described by the

relative axial coordinate z = z2 − z1 and a reduced mass
µ = m/2. Writing the transverse part of the wavefunc-
tion in the form of

Ψ(ρ) = eikui·ρ + eiπ/4f(k, θ)
eikρ
√
ρ

(S3)

leads to a scattering amplitude

f(k, θ) =
µ

ℏ2
−1

2
√
2π3/2

1√
k

∫
dqzH(−qz)V(q) (S4)

with ui being the direction of the incident plane wave,
uρ being the direction of the scattered wave, cos θ =
ui · uρ being the scattering angle, and q = k(uρ − ui) +

qzuz. Here H(qz) = e−iqzs−σ2
zq

2
z is the Fourier transform

of the harmonic oscillator ground state density of the
two-particle potential V̂HO, and V(q) = 4π ℏ2

µ add(
q2z
|q|2 −1)

is the Fourier transform of the dipole-dipole interaction.
Integrating over the angle θ leads to the 2D interlayer
dipolar cross section

σdd =

∫ 2π

0

dθ |f(k, θ)|2 (S5)

This is the quasi-2D result presented in Fig. 3(a).
An analytic form of the cross section can be obtained

in the pure 2D limit σz = 0 where the thickness of each
layer is regarded as negligible. In this limit, the inte-
gral involved in the scattering amplitude can be sim-
plified as

∫
dqzeiqzs

(
q2z

q2ρ+q2z
− 1

)
= −qρπe

−qρs. Since
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qρ = k |uρ − ui|, the integral for the 2D cross sec-
tion is reduced to

∫ 2π

0
dθq2ρe−2qρs = 2k2

∫ 2π

0
dθ(1 −

cos θ)e−2
√
2ks

√
1−cos θ ≃ 2k2

∫∞
0

dθθ2e−2ksθ. For large
interlayer distance ks ≫ 1, the pure 2D dipolar cross
section asymptotes to

σ2D
dd = a2dd

π

k2s3
(S6)

This is the analytic result in Eq. 2 and the dashed curves
in Fig. 3(a).

It is known that the Born approximation breaks down
for overlapping layers s = 0 [73] due to the 1/r3 diver-
gence of the dipole-dipole interaction. In order for the
Born approximation to be valid, one requires the scat-
tered part of the wavefunction to be small. A sufficient
condition for this is

µ√
2πℏ2

∣∣∣∣∣
∫

d2ρ1
Vdd(ρ1)√

k |ρ1|

∣∣∣∣∣ ≪ 1 (S7)

This condition is fulfilled when ks3 ≫ 1.13a2dd. For our
temperature range, this is satisfied when s ≫ 13 nm.

Calculation of σc.— Eq. S4 can also be used to com-
pute the effective quasi-2D cross-section arising from the
contact s-wave interaction. For a scattering length as,
the effective potential Vc(q) =

2πℏ2

µ as gives

σc(k) =
πa2c
kσ2

z

e−2s2/σ2
z (S8)

We use the low-field background value of ac = 5.9 nm [74]
in our calculations. The scattering length for collisions
between -8 and +8 atoms is not known. The large three-
body losses (which asymptotically scales with the forth
power of the scattering length [75]) is an indication that
the cross section for collisions between -8 and +8 atoms
is 5 - 10 times larger. The shaded area in Figs. 3 and S4
indicates a range of a factor of 10.

Calculation of thermalization rate.— The ther-
malization rate Γ typically derives from the collision rate
γ. The latter is given by the product of density n,
the cross section σ and the average velocity v̄r. The
thermalization rate is then usually obtained by divid-
ing this quantity by the number of collisions necessary
to reach thermalization. However in our case, although
the dipolar potential in the x − y plane is isotropic,
the cross section σdd(k) is momentum dependent and
highly anisotropic since the scattering amplitude f(k, θ)
depends strongly on each of its variables. It is then neces-
sary to take the full momentum distribution into account
to compute the collision rate as in Ref. [76], which leads
to the definition of an effective averaged cross section σav
for collisions

γ =
1

23/2
n0,eff v̄rσav (S9)

where n0,eff = n
(−)
0 T (−)/T̄ is the effective 2D peak den-

sity, and each three
√
2 factors comes from the averaging
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FIG. S4. Calculation of normalized collision rates. Di-
mensionless, density normalized collision rates k̄rσ computed
for contact and dipolar potential. k̄r is the mean average mo-
mentum κ

√
π/2. The brown curve correspond to the contact

interaction from Eq. S8 with the shaded red area indicating
a 10 times larger cross section. The dashed gray, light blue
and navy curves correspond to dipolar interaction in the pure
2D large-s approximation, Eq. S6, S13 and S14, respectively.
The solid curves are for the quasi-2D cases, Eq. S5, S10 and
S12, respectively.

of the rate along the two radial directions of the pan-
cake and the discrete average over the stack of bilayer
given the initial width of the loaded cloud. Introducing

κ =
√

4kB T̄m
ℏ2 = (2/

√
π)(mv̄r/ℏ) we have

σav =
4√
π

1

κ3

∫ ∞

0

dkσ(k)k2e−k2/κ2

(S10)

The thermalization rate Γ also incorporates the
anisotropic redistribution of momentum between the two
clouds. Forward scattering is less efficient for thermal-
ization than scattering at larger angles. Therefore, we
introduce the effective thermalization cross section σth
such that

Γ =
1

23/2
n0,eff v̄rσth (S11)

with

σth =
2√
π

1

κ5

∫ ∞

0

dkk4e−k2/κ2

∫ 2π

0

dθ(1−cos θ) |f(k, θ)|2

(S12)
The definition is such that σav = σ for a momentum in-
dependent scattering amplitude. The ratio σav/σth is the
number of collision for thermalization. This ratio is 2/3
for an isotropic and momentum-independent scattering
in 2D. For dipolar scattering, the ratio is much larger
and depends on momentum and interlayer separation.

The contact interaction in 2D is a particular case where
the ratio is 1, and the averaged cross section is also equal
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to the non-averaged one taken at the mean relative mo-
mentum k̄r = κ

√
π/2, namely σc,av(κ) = σc,th(κ) =

σc(k̄r). The momentum-independent quantity k̄rσc is
plotted in Fig. S4. The impact of anisotopy is striking
for the dipolar case. In the pure 2D and large distance
κs ≫ 1 limits, the effective cross sections are

σdd, av = a2dd
2π

κ2s3
(S13)

and

σdd, th = a2dd
3π

κ4s5
(S14)

which are also plotted in Fig. S4. The cross section
σdd, th ∝ 1/s5 falls off with distance more rapdily than
the dipolar potential ∝ 1/s3 since the larger the distance,
the more pronounced forward scattering becomes. The
red and black curves shown in Fig. 3(b) are Γc and Γdd,
respectively.

Thermalization fit.— The thermalization rate Γdd

depends on n−
0 T

−/T̄ , σdd,th ∝ 1/k4r and vr ∝ kr. The
last two quantities purely depend on the relative mo-
mentum kr ∝

√
T̄ which is constant during the ther-

malization. The density scales with temperature as
n−
0 ∝ N−

tot/T
−, hence n−

0 T
−/T̄ ∝ N−

tot/T̄ which leaves
Γdd independent of the temperature difference between
the two layers ∆T = T+−T−. Therefore the only chang-
ing variable left out is the total atom number, and the
differential equation for ∆T is

d∆T

dt
= −Γ(t)∆T = −Γ0

N±
tot(t)

N±
tot(0)

∆T (S15)

We observe losses attributed to three-body recombina-
tion with a timescale of 100 ms, and therefore we take
them into account for fitting ∆T . Assuming a rate equa-
tion dN

dt = −ΓnN
3 leads to the evolution of the temper-

ature difference

∆T (t) = ∆T0e
Γ0

ΓnN2
0

(
1−

√
1+2ΓnN2

0 t
)

(S16)

from which we can extract the interlayer thermalization
rate Γ0, plotted in Fig. 3.


