
MIT Open Access Articles

Memory Checking Requires Logarithmic Overhead

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Boyle, Elette, Komargodski, Ilan and Vafa, Neekon. 2024. "Memory Checking Requires
Logarithmic Overhead."

As Published: 10.1145/3618260.3649686

Publisher: ACM

Persistent URL: https://hdl.handle.net/1721.1/155582

Version: Final published version: final published article, as it appeared in a journal, conference
proceedings, or other formally published context

Terms of use: Creative Commons Attribution

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/155582
https://creativecommons.org/licenses/by/4.0/

Memory Checking Requires Logarithmic Overhead

Elette Boyle
Reichman University

Herzliya, Israel
NTT Research
Sunnyvale, USA

eboyle@alum.mit.edu

Ilan Komargodski
Hebrew University
Jerusalem, Israel
NTT Research
Sunnyvale, USA
ilank@cs.huji.ac.il

Neekon Vafa
Massachusetts Institute of Technology

Cambridge, USA
nvafa@mit.edu

ABSTRACT

We study the complexity of memory checkers with computational

security and prove the �rst general tight lower bound.

Memory checkers, �rst introduced over 30 years ago by Blum,

Evans, Gemmel, Kannan, and Naor (FOCS ’91, Algorithmica ’94),

allow a user to store and maintain a large memory on a remote and

unreliable server by using small trusted local storage. The user can

issue instructions to the server and after every instruction, obtain

either the correct value or a failure (but not an incorrect answer)

with high probability. The main complexity measure of interest is

the size of the local storage and the number of queries the memory

checker makes upon every logical instruction. The most e�cient

known construction has query complexity $ (log=/log log=) and

local space proportional to a computational security parameter,

assuming one-way functions, where = is the logical memory size.

Dwork, Naor, Rothblum, and Vaikuntanathan (TCC ’09) showed

that for a restricted class of “deterministic and non-adaptive” mem-

ory checkers, this construction is optimal, up to constant factors.

However, going beyond the small class of deterministic and non-

adaptive constructions has remained a major open problem.

In this work, we fully resolve the complexity of memory checkers

by showing that any construction with local space ? and query

complexity @ must satisfy

? ≥
=

(log=)$ (@)
.

This implies, as a special case, that @ ≥ Ω(log=/log log=) in any

scheme, assuming that ? ≤ =1−Y for Y > 0. The bound applies to any

scheme with computational security, completeness 2/3, and inverse

polynomial in = soundness (all of which make our lower bound only

stronger). We further extend the lower bound to schemes where the

read complexity @A and write complexity @F di�er. For instance, we

show the tight bound that if @A = $ (1) and ? ≤ =1−Y for Y > 0, then

@F ≥ =Ω (1) . This is the �rst lower bound, for any non-trivial class

of constructions, showing a read-write query complexity trade-o�.

Our proof is via a delicate compression argument showing that

a “too good to be true” memory checker can be used to compress

random bits of information.We draw inspiration from tools recently

developed for lower bounds for relaxed locally decodable codes.

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0383-6/24/06
https://doi.org/10.1145/3618260.3649686

However, our proof itself signi�cantly departs from these works,

necessitated by the di�erences between settings.

CCS CONCEPTS

• Theory of computation → Cryptographic protocols; Crypto-

graphic primitives; • Security and privacy → Mathematical

foundations of cryptography.

KEYWORDS

Lower Bound, Memory Checking, Computational Security

ACM Reference Format:

Elette Boyle, Ilan Komargodski, and Neekon Vafa. 2024. Memory Checking

Requires Logarithmic Overhead. In Proceedings of the 56th Annual ACM

Symposium on Theory of Computing (STOC ’24), June 24–28, 2024, Vancouver,

BC, Canada. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/

3618260.3649686

1 INTRODUCTION

Consider a user who wishes to maintain and operate on a large

database but does not have su�cient local memory. A natural idea

is for the user to o�oad the database to a remote storage service

and perform accesses remotely. This solution, however, introduces

a trust concern: the user must trust the storage service to perform

its accesses reliably. Blum, Evans, Gemmel, Kannan and Naor [4]

addressed this issue more than 30 years ago by introducing the

concept of a memory checker : a method for a user to use its small

(but trusted) local storage to detect faults in the large untrusted

storage service. Since cloud storage and cloud computing have be-

come widespread and growing practices, the need to guarantee

the integrity of remotely stored data is paramount. Beyond merely

checking integrity of remotely stored data [4, 11, 12, 18, 28], mem-

ory checkers have found applications in various other real-world

applications, for example, provable data possession and retriev-

ability systems [3, 10, 20, 28, 35], various veri�able computation

systems [5, 6, 8, 30, 34, 37, 39, 40], and many more.

A memory checker can be thought of as a proxy between the

user and the untrusted remote storage. The checker receives from

the user an adaptively generated sequence of read and write opera-

tions to a large unreliable memory. For each such logical request, it

makes its own physical queries to the remote storage. The checker

then uses the responses, together with a small reliable local mem-

ory, to either ascertain the correct answer to the logical request or

report that the remote storage was faulty. The checker’s assertions

should be correct with high probability; typically, a small two-sided

error is permitted. The main complexity measures of a memory

checker are its space complexity (denoted ?), the size of the reli-

able local memory in bits, and its query complexity (denoted @),

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

1712

https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0009-0002-0360-8129
https://orcid.org/0000-0002-1647-2112
https://orcid.org/0000-0002-0555-4200
https://doi.org/10.1145/3618260.3649686
https://doi.org/10.1145/3618260.3649686
https://doi.org/10.1145/3618260.3649686

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada Ele�e Boyle, Ilan Komargodski, and Neekon Vafa

the number of physical queries made to the unreliable memory per

logical user request.

Blum et al.’s main results are e�cient memory checkers in two

di�erent settings, as stated next. Throughout, we use = to denote

the (logical) memory size.

• Construction 1: Space complexity ? = $ (_), where _

is the size of a cryptographic key, and query complexity

@ = $ (log=). These constructions assume that one-way

functions exist and that the adversary who controls the un-

reliable memory is computationally e�cient.

• Construction 2: Space complexity ? and query complexity

@ = $ (=/?). This construction is statistically secure.

Naor and Rothblum [26] showed that any memory checker with a

non-trivial query-space trade-o� (i.e., @ = > (=/?)) must be compu-

tationally secure and must be based on the existence of one-way

functions. Thus, Construction 2 from above is optimal among all

statistically secure constructions. Yet, whether more e�cient com-

putationally secure constructions than Construction 1 exist is a

long-standing open problem. In particular, is the logarithmic query

complexity necessary? In many applications, logarithmic overhead

per query is a signi�cant price to pay for data veri�cation, so if

more e�cient constructions exist, they may be preferable.

While this problem has been open for more than three decades,

only one workmanaged to make progress. This work, due to Dwork,

Naor, Rothblum, and Vaikuntanathan [13], showed that logarithmic

query complexity is inherent for a restricted class of memory check-

ers. They consider memory checkers where for each read/write

operation made by the user, the locations that the checker accesses

in the unreliable memory are �xed and known. They refer to such

checkers as deterministic and non-adaptive. While this class cap-

tures many known memory checker constructions, it is obviously

quite restrictive. For instance, a memory checker could be non-

deterministic, i.e., decide on its queries to the unreliable memory in

a probabilistic manner via randomness derived from freshly sam-

pled coins. Alternatively, a memory checker could be adaptive, i.e.,

choose sequentially which locations in the remote storage it reads

and writes, and choose these locations based on the contents of ear-

lier read locations or its reliable local memory contents. Of course,

a memory checker could be both non-deterministic and adaptive,

potentially resulting with more e�cient construction.

Indeed, there aremany computational models where randomness

and/or adaptivity are either necessary or make certain problems

easier. For instance, in the context of two-party communication

complexity it is well known (see [27]) that for every : ∈ N, random-

ization is more powerful than determinism in :-round protocols,

and further that having : rounds of adaptive communication is

(exponentially) better than having only : − 1 rounds. This shows

that randomness and adaptivity are computational resources that

have the potential to signi�cantly improve the complexity of certain

tasks. Additionally, in the context of oblivious RAM computation

(which we shall discuss in length below), randomness is known to

be necessary [17] and there is evidence that adaptivity is required

in certain non-trivial regimes of parameters [9].

Thus, the main question we address in this work is as follows:

What is the achievable complexity of memory checkers?

Do memory checkers with sub-logarithmic query complexity exist (under any

cryptographic assumption)?

1.1 Our Results

We fully resolve the complexity of memory checkers by showing

that logarithmic query complexity is inherent, no matter how the

scheme operates and no matter which computational assumptions

are used. Speci�cally, we prove the following theorem.

Theorem 1 (Informal; see Theorem 5). Every memory checker

(with computational security) for a logical memory of size = that has

query complexity @, and local state ? , must satisfy ? ≥ =
(log=)$ (@) .

In particular, @ ≥ Ω(log=/log log=) assuming that ? ≤ =1−Y

for Y > 0. As mentioned, the above theorem applies to all possible

schemes, including ones that use randomness and adaptivity to

decide which locations to access in the remote storage, and also in

the computational setting. Furthermore, the lower bound applies

even to schemes where the local state is private (from the adversary).

Lastly, the completeness of the memory checker in the theorem is

2/3 and soundness is inverse polynomial in =. Note that these make

our result only stronger because in constructions we usually aim for

perfect (or near-perfect) completeness and negligible soundness.

The lower bound is tight up to the constant hidden in the $ (·)

notation. A memory checker construction with matching complex-

ity, i.e., with @ = $ (log=/log log=), was given by Papamanthou

and Tamassi [31]. However, their construction requires private local

state (used to store a secret PRF key). We improve upon their result

and show (for completeness) a construction with quantitatively

matching complexity and with only (public) reliable local state. Our

construction requires the existence of sub-exponentially secure

one-way functions, as is needed in all other computationally secure

memory checker constructions with similar properties.

Theorem 2 (Informal; see Corollary 5 in the full version).

Assume the existence of sub-exponentially secure one-way functions.

For all su�ciently large @ ≤ log=/log log=, there is a deterministic

and non-adaptive memory checker for a logical memory of size =

with reliable local state, perfect completeness, and (computational)

negligible soundness in =, that has local space ? ≤ =
(log=)Ω (@) .

In particular, for some @ = Θ(log=/log log=), this construction

has local space ? = polylog(=).

We refer to Table 1 for a summary of known memory checker

constructions.

Reads vs. writes. Our lower bound rules out memory checkers

where the worst-case query complexity of all accesses is below

(quasi-)logarithmic. However, not all types of accesses necessarily

occur as often in applications. Depending on the application, it

could be that read operations are far more frequent than writes, or

vice versa. Our stated lower bound from above does not rule out a

memory checker where the read complexity is, say, constant but

writes have logarithmic complexity. In fact, no known lower bound,

not even for restricted classes of constructions (e.g., deterministic

and non-adaptive), rules out such a construction. We extend our

lower bound from Theorem 1 to this setting and prove a general

1713

Memory Checking Requires Logarithmic Overhead STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

Table 1: Complexity of memory checker constructions for a logical memory of size =.

Reference Read Complexity Write Complexity Secret State Remark

[4] $ (log=) $ (log=) No

[13] $ (3 log3 =) $ (log3 =) Yes 3 is arbitrary

[13] $ (log3 =) $ (3 log3 =) Yes 3 is arbitrary

[31] $ (log=/log log=) $ (log=/log log=) Yes

This work $ (log=/log log=) $ (log=/log log=) No

trade-o� between the local reliable space, the read query complexity,

and the write query complexity.

Theorem 3 (Informal; see Theorem 5). Every memory checker

(with computational security) for a logical memory of size = that has

read-query complexity @A , write-query complexity @F , and local state

? , must satisfy ? ≥ =
(@A@F log=)$ (@A)

.

In particular, the above theorem rules out amemory checker with

constant read-query complexity and sub-polynomial write-query

complexity, i.e., every memory checker with @A = $ (1) and local

space ? ≤ =1−Ω (1) must have @F = =Ω (1) . This bound is optimal

due to a construction of Dwork et al. [13] who showed a construc-

tion with write-query (resp. read-query) complexity $ (3 log3 =)

and read-query (resp. write-query) complexity $ (log3 =) for every

parameter 3 . Indeed, setting 3 = =$ (1) , we get a memory checker

with @A = $ (1) and @F = =$ (1) , which is optimal according to

our lower bound. Finally, we note that Theorem 1 is obtained as a

special case of Theorem 3 with @A = @F .

Interestingly, we do not know if the “reverse” bound also holds

in general, i.e., that if @F = $ (1) then @F must be large. We leave

this as an intriguing open problem. We make initial steps towards

this question by proving it for the restricted class of deterministic

and non-adaptive memory checkers.

Theorem 4 (Informal; see Theorem 6 in the full version).

Every deterministic and non-adaptive memory checker (with compu-

tational security) for a logical memory of size = that has read-query

complexity @A , write-query complexity @F , and local state ? , must

satisfy ? ≥ =
(@A@F log=)$ (min{@F,@A })

.

This theorem means that if either one of @A or @F are sub-(quasi)-

logarithmic, then the other one must be much larger. In other words,

the “reverse” bound of Theorem 3 holds for deterministic and non-

adaptive constructions: if @F = $ (1), then necessarily @A = =Ω (1)

(as long as the local space is not too large, i.e., ? ≤ =1−Ω (1)). By the

above-mentioned constructions of Dwork et al. [13] (that happen

to be deterministic and non-adaptive), we conclude that our lower

bound is tight, fully resolving the complexity of deterministic and

non-adaptive memory checkers. Lastly, we mention that we provide

some (weak) evidence that a “reverse” bound of Theorem 3 for

general (not necessarily deterministic and non-adaptive) schemes

would require relatively new ideas; see the full version for details.

We refer to Table 2 for a summary of known memory checker

lower bounds.

Table 2: Lower bounds on the local space ? of memory check-

ers for a logical memory of size = with @A read query complex-

ity and @F write query complexity. “Det.” is an abbreviation

of “deterministic.”

Reference Space/Query Trade-o� Limitation

[13] ? ≥ =
(log=)$ (max{@A ,@F }) Det. & non-adaptive

This work ? ≥ =
(log=)$ (@A)

None

This work ? ≥ =
(log=)$ (min{@A ,@F }) Det. & non-adaptive

1.2 Implications of our Lower Bounds

Lower bounds for memory checkers optimizing other metrics. As

an immediate application of our lower bound, we get general lower

bounds for memory checking in other models where di�erent no-

tions of e�ciency are considered. We mention two recent works

next. Mathialagan [24] extended the memory checking notion to

deal with Parallel RAM (PRAM) machines, and suggested a con-

struction for PRAMs with< CPUs with $ (log#) query blowup

and $ (log#) depth blowup, relying on the existence of one-way

functions. Since their constructions match (in query complexity) the

best known construction in the RAM setting, along with our lower

bound, we conclude that their scheme is optimal in this sense.Wang,

Lu, Papamanthou, and Zhang [38] studied the locality of memory

checkers (i.e., the number of non-contiguous memory regions a

checker must query to veri�ably answer a read or a write query).

They adapted the lower bound of Dwork et al. [13] to conclude that

Ω(log=/log log=) locality is necessary for any deterministic and

non-adaptive memory checker. Our lower bound implies (analo-

gously) that the same lower bound applies to all possible schemes.

Impossibility of e�cient black-box malicious Oblivious RAM com-

pilers. As mentioned, memory checkers are used to solve the trust

issue that arises when one o�oads a memory to a remote and un-

trusted server. However, there is also a privacy concern in doing

so which is not addressed by memory checkers. Since the remote

server fully controls the memory and executes instructions in the

user’s behalf, then it can see the user’s data and the program be-

ing executed. To obtain privacy, we need to hide the data (using

say an encryption scheme) and also “scramble” the observed ac-

cess patterns so that instructions look unrelated to the data or the

program being executed. The tool that achieves the latter goal is

called Oblivious RAM (ORAM), introduced in the seminal works of

Goldreich and Ostrovsky [14, 17, 29].

1714

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada Ele�e Boyle, Ilan Komargodski, and Neekon Vafa

The e�ciency of ORAM schemes is measured (similarly to mem-

ory checkers) by the number of physical queries in the oblivious

simulation per logical database query. We know that logarithmic

overhead is unavoidable, for any construction, even ones that rely

on cryptographic assumptions [7, 17, 21, 22].We also havematching

constructions with (worst-case) logarithmic overhead, where secu-

rity is computational and relying on one-way functions [1, 2, 32].

We note however that in the ORAM setting, one typically as-

sumes that the remote untrusted server is passive in the sense that it

behaves honestly except that it tries to learn information about the

underlying data or program from the observed access pattern. A nat-

ural question is whether it is possible to tolerate a malicious attacker

that may not behave honestly and actually tamper with the memory

while trying to learn something about the underlying data. It is

well-known (e.g., [23]) that by naively compiling every instruction

of the ORAM using a memory checker one obtains a “maliciously

secure” ORAM that achieves both privacy and integrity, simulta-

neously. This however comes at a cost: every logical instruction

will now require ORAMOverhead×MemoryCheckerOverhead

physical accesses, which is roughly Θ(log2 =) (using [1, 4]).1

Mathialagan and Vafa [25] recently improved upon the above

generic compiler and gave a construction (called MacORAMa) of

a“maliciously secure” ORAM with overhead $ (log=) (which is ob-

viously optimal). They achieve their result by a tedious process

of opening up every building block in [1, 2]’s construction and

turning it into a maliciously secure building block using various

constructions of memory checkers. As such, the construction is

overall very long and complex. [25] ask if such a white-box con-

struction and analysis is necessary or maybe there is a generic way

to compile ORAMs into maliciously secure counterparts with only

constant overhead. Towards this, a barrier was presented by [25]:

such a “black-box” compiler would imply a memory checker with

$ (1) query complexity. By our result (Theorem 1), such memory

checkers do not exist, no matter what, and so there is no way to

generically upgrade ORAMs into malicious with less than addi-

tional logarithmic blowup. See details and the formal statement in

the full version.

It is crucial for this corollary that our lower bound in Theorem 1

applies to all constructions of memory checkers, including ones that

use randomness and adaptivity. Indeed, the way Mathialagan and

Vafa obtain the above-mentioned “barrier” is by using an ORAM and

the malicious compiler to build a memory checker. Since ORAMs

are inherently randomized and (as far as we know [9]) require

adaptivity, their resulting memory checker is using randomness

and adaptivity.

1.3 O�line vs. Online Memory Checkers

We have considered memory checkers that need to report either a

correct value or an error (but never be wrong) after every logical

instruction. This notion of memory checkers is known as “online”

memory checkers. Prior works in this area additionally considered

a weaker notion called “o�ine” memory checkers. The latter are

required to report that some error has occurred only after a batch

1For speci�c ORAM constructions such as Path ORAM there are more e�cient com-
position methods, e.g., [33, 36], but since the ORAM itself is sub-optimal, they result

in similar ≈ log2 = overall complexity.

of requests. None of our lower bounds apply to this weaker notion,

and this is not surprising: there exist o�ine memory checkers that

achieve amortized $ (1) bandwidth (see [4] and [13, Section 5]);

these are even statistically secure and do not require any crypto-

graphic assumptions.

1.4 Organization

In Section 2, we provide a technical overview of our main lower

bound. In Section 3, we prove our main lower bound. All other

sections, including preliminaries, de�nitions, and other theorem

statements mentioned in the introduction are deferred to the full

version of the paper.

2 TECHNICAL OVERVIEW

We begin by describing the previous approach of Dwork et al. [13],

which as we mentioned, only gives a lower bound for deterministic

and non-adaptive memory checkers. We already mention that our

approach signi�cantly di�ers from theirs, and the main purpose of

this part of the overview is to explain why their approach seems

only applicable to the restricted class of deterministic and non-

adaptive constructions.

At a high level, they proceed as follows. First, they prove a lower

bound for a base case setting where the query complexity of the

memory checker is 1; this is done by a compression argument. Then,

they consider the general case, and show a reduction from high

query complexity to lower complexity at the expense of decreasing

the logical memory size, increasing the local space, and increasing

the physical word size. The reduction is performed iteratively until

they end upwith amemory checker with query complexity 1, where

they can invoke the base case lower bound. More details follow.

Base case. Suppose there is a deterministic and non-adaptive

memory checker with query complexity 1: namely, a single �xed

physical query takes place for each logical query. To obtain a lower

bound for this base case, they invoke a compression argument,

where Alice is to transmit a random string G ∼ {0, 1}= to Bob.

Consider a sequence of logical operations that �rst writes 0 to each

logical index, resulting in public database ��0 and local state st0.

(Alice and Bob can share ��0 and st0 for free since there is no

dependence on G .) Then, Alice uses the memory checker to write 1

to all 8 ∈ [=] such that G8 = 1, resulting in public database ��1 and

local state st1. Alice will send just st1 to Bob.

Bob’s decoding strategy is as follows: for all 8 ∈ [=], use the

memory checker to read logical index 8 using ��0 and st1. If the

answer is a bit value 1 ∈ {0, 1} value, set G̃8 = 1. Otherwise, if the

answer is ⊥, set G̃8 = 1. By soundness, for all 8 such that the answer

is a bit value, we know G̃8 = G8 . By completeness,2 since queries to

logical indices 8 must induce disjoint physical queries (here relying

on query complexity 1 and basic information encoding), if G8 = 0,

then we must recover the bit value 0, since ��0 and ��1 are con-

sistent at the corresponding 8th physical query location. Therefore,

for all 8 ∈ [=], G̃8 = G8 . Since Alice and Bob communicated = bits of

information, it follows by a counting argument that |st1 | ≥ =.

2They assume throughout that logical reads and writes query the same physical
locations, at the cost of a multiplicative factor of 2 blowup in query complexity in the
ultimate scheme.

1715

Memory Checking Requires Logarithmic Overhead STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

Reducing to the base case. Next, they show to reduce the query

complexity of a general memory checker to 1, at the cost of degrad-

ing the other parameters (the logical memory size, the local space,

and the physical word size). Roughly speaking, they condition on

the following: either there is a set of su�ciently many physical

locations that are su�ciently “heavy,” in the sense that many logical

queries touch that location, or there does not exist such a set. In

either case, the assumption that the construction is deterministic

and non-adaptive is crucial.

• If there does exist such a heavy set, then, they restrict the

memory checker to logical indices that frequently touch that

heavy set. In this case, they move the heavy part of the public

database into the local state and reduce query complexity, at

the cost of decreasing the logical memory size and increasing

the local space.

• If there does not exist such a heavy set, they argue that

one can prune o� (not too many) logical indices so that the

remaining logical indices have disjoint physical locations.

By restricting the memory checker to these logical indices

and increasing the physical word size, this becomes a mem-

ory checker with query complexity 1. (Then, the base case

applies.)

Without signi�cant new ideas, it seems hard to use the above

template to go beyond deterministic and non-adaptive construc-

tions, as we argue next. Both of the above main steps, i.e., the base

case and the reduction to the base case, rely on this assumption. We

would thus need to prove an analogue of the base case for general

constructions and then devise a reduction that works even if the

construction uses randomness and adaptivity. We believe that the

harder task is the latter one. It is not at all clear how one could

restrict logical indices in either of the two cases. In the �rst case,

one would need to at least de�ne the heavy set di�erently, and in

the second case, because of randomness and adaptivity, it is possible

that a memory checker can adaptively choose to have many logical

queries overlapping in random locations, making no single location

“heavy” and yet there will be no non-trivial subset of logical indices

with disjoint physical locations.

2.1 Our Lower Bound

Like Dwork et al. [13], we will also use a compression argument

using the local state of the memory checker, but this is where

the resemblance of our proofs ends. Their proof restricts memory

checkers into smaller and smaller ones, �nally arriving at a base

case compression argument. Ours, on the other hand, will directly

run a compression argument in “one shot,” without reducing the

memory checker into smaller ones.

Below, let the memory checker use physical words (i.e., blocks)

of sizeF ≤ polylog(=) bits. Furthermore, we let< denote the size

(i.e., number of words) of the remote server.

Suppose Alice wishes to communicate a random string of G ∈

{0, 1}= of Hamming weight : to Bob (where : is some parameter

set later). Alice and Bob can �rst initialize a memory checker with

“0”s logically written everywhere, producing some public database

��0 ∈ ({0, 1}F)< , independent of G . Then, Alice can use this

memory checker to write the value “1” to each of these indices

8 ∈ [=] where G8 = 1, which will result in some new, updated public

database,��1 ∈ ({0, 1}F)< . After doing this, Alice can send to Bob

the resulting local state st1 of the memory checker. Note, however,

that Bob does not see the updated database entries ��1.

Bob can then use the following decoding strategy to extract G :

using st1 from Alice and the (outdated) public database ��0 from

initialization, sequentially emulate a logical read operation on the

memory checker for each 8 ∈ [=], rewinding the local state st1
back between each logical read. Each such query is equivalent to a

true operation of the memory checker, with an adversarial remote

memory that replaces the true ��1 values with outdated ones from

��0. From the syntax of the memory checker, for each 8 , Bob will

receive either 0, 1, or ⊥. By the soundness guarantee of the memory

checker, if Bob receives 0 or 1 for some 8 , Bob knows it is the correct

value of G8 (with high probability). However, Bob cannot conclude

anything if receiving ⊥ from the memory checker. Our hope will be

to leverage the completeness guarantee of memory checker, which

says that if the memory checker always sees correct (i.e., fresh)

values of the public database—namely, ��0 is equal to ��1 in all

queried locations—then Bob will derive the correct binary, non-⊥

value. The challenge remains of how to do so, given that ��1 in

fact could di�er largely from ��0.

More precisely, let, ⊆ [<] represent the set of physical lo-

cations that were written to in Alice’s : writes (so ��0 and ��1
di�er only on,). In particular, |, | ≤ :@, where @ is the query

complexity to remote memory for each logical request. If for a given

read query, the physical locations accessed in [<] indeed avoid, ,

then we would be done, since Bob’s decoding strategy can recover G

by invoking completeness (and soundness) of the memory checker.

However, there is no reason that this guarantee should be true. For

example, in Merkle-tree style constructions, the root of the Merkle

tree is accessed for all logical queries.

One possible way to get around this is to partition the public

database into “heavy” and “light” locations. For heavy locations

(e.g., the root of a Merkle tree), one can add their contents to the

local space (or equivalently, in the communication game, have Alice

send the contents to Bob), and for the light locations (e.g., lower

levels of a Merkle tree), we hope that, does not hit too many of

them. It turns out, however, that such a naive approach will not give

us a useful lower bound, as we explain a bit later (see Remark 1),

after we develop some of our ideas further. Thus, we will need a

more intricate query partitioning mechanism that we explain next.

Tri-partitioning the public database. We use a more �ne-grained

partition into heavy, medium, and light locations I ∈ [<], denoted

by the sets�,", ! ⊆ [<], respectively, in the following sense: when

taking a uniformly random logical index 8 ∼ [=] and reading it with

local state st1 and public database ��1, and sampling a uniformly

random one of the corresponding @ physical queries, what is the

probability that it equals I? For thresholds implicitly set later, �

will contain the physical locations I with highest probability, !

the lowest probability, and" everything in between. Importantly,

the fact that we make the heavy and light sets further apart by

introducing the middle set" is crucial for us; see Remark 1.

With this partition in hand, we adjust our communication pro-

tocol between Alice and Bob as follows. As mentioned above, we

send the heavy locations in the clear; i.e., after Alice performs

the : writes, Alice will additionally send over ��1 |� (instead

1716

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada Ele�e Boyle, Ilan Komargodski, and Neekon Vafa

of just st1), i.e., the updated contents of the physical locations

in the heavy set � .3

Now, Bob has access to some “hybrid” public database �̃�, de-

�ned as ��1 on � and ��0 on ! ∪ " , and Bob will try reading

from �̃� instead of ��0 (still using the updated local state st1).

The set of “bad” physical locations that we are worried about is

BAD := , ∩ (" ∪ !) ⊆ [<]. As long as any given read from

Bob avoids BAD in all of its @ physical queries, we can invoke

completeness to say that Bob will receive the correct answer for

that logical index.

We can decompose BAD into (, ∩") ∪ (, ∩ !) and analyze

both cases separately. First, the medium thresholds for" will have

the property that for random 8 ∼ [=], the probability that all @

physical queries for logical read 8 avoid" is at least (say) 99/100.

Second, the light threshold for ! will have the property that for

all ℓ ∈ !, the probability (over random 8 ∼ [=] and a random one

of the @ physical queries) that the location is ℓ is at most X . By a

union bound, this means that a random read to 8 ∼ [=] will hit ℓ

for at least one of the @ physical queries with probability at most

@X . Since, ∩ ! ⊆ ! and |, ∩ ! | ≤ :@, the probability that a

random logical read to 8 ∼ [=] hits, ∩ ! is at most :X@2. We

now set : = Θ(1/(X@2)) so that this probability is at most (say)

1/100. Therefore, in total, the probability that a random read to

8 ∼ [=] avoids BAD is at least 98/100. This implies that Bob will be

able to recover at least Ω(:) bits of information about the random

string G . Thus, by sending st1 and ��1 |� , Alice has communicated

Ω(:) bits about G .

Let ? = |st1 | denote the local space of the memory checker. By

a standard encoding lemma, saying that the most communication

e�cient way to transmit uniformly random ℓ bits of information is

by sending them in the clear, we get the inequality

? + |� |F ≥ Ω(:) .

Rearranging and using our setting of : = Θ(1/(X@2)), this means

? ≥
1

Θ(X@2)
− |� |F. (1)

Remark 1 (On the necessity of the medium set). We now

explain why we need a “medium” set," . If we had just a heavy and

a light set, the same analysis as above applies. However, it is possible

that |� |F and 1/Θ(X@2) do not have enough of a gap, in which case

the right-hand side of (1) becomes very small. The medium set allows

for this gap to be large.

To explicitly see why this approach fails if there is no medium set,

consider the following setup. Suppose F = 4 ln(<) and we have a

distribution4 over [<] elements as follows:

Pr[8] :=

{
1
2 8 = 1,

1±> (1)
2 ln(<) (8−1)

8 ≥ 2.

For all choices of ! and X , as long as ! ≠ ∅, we have 1/X − |� |F ≤ 2,

which is tight when ! = [<] and X = 1/2. (Note that if ! = ∅, then

Alice is sending the whole updated database to Bob, which has no

compression.) This renders (1) useless.

3More precisely, for � ⊆ [<] and ��1 ∈ ({0, 1}F)< , we de�ne ��1 |� ∈

({0, 1}F) |� | to be the restriction of ��1 to indices in � .
4This distribution comes from Goldreich [15].

All that is left is the following: how exactly do we set our thresh-

olds for �,", ! (and thus X and |� |) to maximize the right hand

side, where the probability that all @ physical queries avoid" is at

least 99/100? To do this, we prove a generic partition lemma:

Lemma 1 (Partition Lemma (informal); see Lemma 2). Let -

be a random variable supported on a �nite set (. Let W > 1, and let

2, = ∈ N. Then, there is a partition (= ! ⊔ " ⊔ � such that the

following hold for some X ≥ 1/=:

• Pr[- = ℓ] ≤ X for all ℓ ∈ !,

• Pr[- ∈ "] ≤ 1/2 , and

• The set � satis�es

1

X
− |� |W >

=

(2W)2
.

Now, we can directly use Lemma 2 with (= [<], W = Θ(@2F),

and 2 = 100@ on the distribution over [<] described earlier. Plug-

ging this back into (1), we immediately have

? >

=

(@2F)$ (@)
.

In particular, ifF ≤ polylog(=) and ? ≤ =1−n for some n > 0, then

@ = Ω(log=/log log=).

Read and write query complexities. We can modify the above

analysis to the setting where the read query complexity (@A) and

the write query complexity (@A) di�er. Then, we set 2 = 100@A and

: = Θ(1/X@A@F), which arrives at

? >

=

(@A@FF)$ (@A)
.

Therefore, for example, if @A = $ (1), ? ≤ =1−n for some n > 0, and

F ≤ polylog(=), then @F = =Ω (1) . See Corollary 2 for more details.

Loose ends. There are a couple of issues swept under the rug in

the above exposition.

• First, the distribution over physical indices produced by the

logical read can adaptively change after each write, so Bob

does not know what �,", or ! are.

• Second, our setting of parameters is circular. That is, we set

: = Θ(1/(X@2)), and : is part of the description of the com-

munication game that Alice and Bob are playing. However, X

is only given after applying the partition lemma (Lemma 2),

which itself depends adaptively on the behavior of the mem-

ory checker.

For the �rst issue, we observe that Bob only needs to know what

� is, so that Bob can produce �̃�. Specifying � ⊆ [<] can be done

with |� | · ⌈log2<⌉ bits, so Alice can send this as well in her message

to Bob for free as long asF ≥ Ω(log=) and< ≤ poly(=).5

For the second (and more challenging) issue, we modify the

communication game as follows. Alice and Bob together e�ectively

“guess” a good value of X before beginning the protocol. In doing so,

Alice can also always feed the memory checker the same number of

writes (regardless of X), andwill instead set the “initialized” database

��0 to be after some number of writes depending on X . Thankfully,

5Note that the assumption that< ≤ poly(=) is somewhat without loss of generality.

Indeed, any construction where< = =l (1) can be generically transformed into a
construction where the physical database size is poly(=) (by “hashing” the memory
space via a pseudorandom function). See the full version for more details.

1717

Memory Checking Requires Logarithmic Overhead STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

our proof of the partition lemma additionally guarantees that there

are most 2 = Θ(@) possible choices for X , so guessing X correctly

occurs with noticeable Θ(1/@) probability.

Connection to Relaxed Locally Decodable Codes. Our technique

for partitioning [<] into heavy, medium, and light queries is in-

spired from a work of Goldreich [15] in revisiting lower bounds

on the length of relaxed locally decodable codes (rLDCs).6 In their

setting, partitioning indices of the codeword into heavy, medium,

and light is done in a di�erent manner and for di�erent reasons.

For example, instead of having Alice send Bob the heavy set (as

is done above), in the rLDC setting, each logical index 8 ∈ [=] has

a di�erent corresponding heavy set �8 , so Alice cannot a�ord to

send the database for all �8 . Instead, in the rLDC setting, Bob enu-

merates over all possible choices of ��1 |�8
and checks a certain

consensus condition. Furthermore, in the rLDC setting, there is

no notion of “writes,” as encodings of di�erent messages should

have large Hamming distance. As a result, there’s no equivalent of

a ��0 that makes sense for the rLDC setting, as there are no local

ways to update the codeword. On the other hand, rLDCs are secure

against all computationally unbounded adversaries that change a

certain fraction of the codeword, whereas memory checkers need

to be secure only for computationally bounded adversaries that can

tamper with the whole memory.

3 MAIN LOWER BOUND

We begin by describing our main technical theorem:

Theorem 5 (Main Theorem). Consider a memory checker for a

logical memory of size= and with logical word sizeFℓ = 1, supporting

2= logical queries. Assume that the physical database is of size< and

with physical word sizeF , the read query complexity is @A , the write

query complexity is @F , and the local space is ? . If completeness is

99/100 and soundness is 1/(104 ·= ·@A · 2
@A), then there is a universal

constant � ≤ 103 such that for = ≥ � ,

? ≥
=

(�@A@F (F + log<))� ·@A
− log@A −�.

Next, we state a couple of corollaries of this theorem. These

corollaries, together with Theorem 5, are the precise and elabo-

rate versions of Theorems 1 and 3 from the introduction. The �rst

corollary gives a (quasi-)logarithmic lower bound on the worst-case

query complexity of every memory checker where the reads and

writes cost the same. The second corollary allows us to conclude

that if the read query complexity is small, then the write complexity

must be large. In the full version, we show how these corollaries

follow from Theorem 5. We prove Theorem 5 in Section 3.1.

Corollary 1. In the setting of Theorem 5 and further assum-

ing that @ = max{@F , @A }, < ≤ poly(=), and F ≤ polylog(=), if

completeness is 2/3 and soundness is 1/=1+> (1) , it holds that

? ≥
=

(log=)$ (@)
−$ (log log=) .

In particular, if ? < =1−Y for some n > 0, then@ ≥ Ω(log=/log log=).

6A locally decodable code is an error correcting code that allows for recovery of any
particular input bit of the message with a small number of queries to the possibly
corrupted codeword. A relaxed locally decodable code (rLDC) is one that allows the
recovery procedure to output ⊥ if the codeword is indeed corrupted.

Corollary 2. In the setting of Theorem 5 and further assuming

that< ≤ poly(=),F ≤ polylog(=), and ? ≤ =1−Y for some Y > 0, if

completeness is 2/3 and soundness is 1/=1+> (1) , it holds that,

• If @A = > (log=/log log=), then @F = (log=)l (1) .

• If @A = $ (1), then @F = =Ω (1) .

Remark 2 (On super-polynomial public database size). It

makes sense to assume that< is bounded by some a priori unspeci�ed

polynomial in = (i.e., < ≤ poly(=), as we assume in Corollaries 1

and 2), and in this case the lower bounds from Theorem 5 and Corol-

laries 1 and 2 are unconditional. But what if< is super-polynomial

in =? Interestingly, we can still get a meaningful result. First, one

can generically reduce the public database size from< ≤ 2poly(=) to

< ≤ poly(=) in any memory checker construction, by hashing the

address space using a PRF (see the full version for details). This trans-

formation, on its own, relies on the existence of one-way functions, but

we recall that a memory checker satisfying a non-trivial relationship

between ? and @ (i.e., ? · @ = > (=)) already implies the existence of

(in�nitely often) one-way functions [26] which in turn can be used to

get an (in�nitely often) PRF [16, 19].

3.1 Proof of Theorem 5

As explained in the technical overview, the proof proceeds by a

compression argument where we utilize a memory checker to con-

vey information from Alice to Bob. Furthermore, the main technical

tool that we use is a partition lemma that allows us to classify and

split physical locations into heavy, medium, and light. We �rst state

and prove the partition lemma inspired by [15, Claim 2.6] and then

proceed with the main proof.

Lemma 2. Let - be a random variable supported on a �nite set (.

Let W > 1, and let 2, = ∈ N. Then, there is a partition (= ! ⊔" ⊔ �

such that the following hold for some X ≥ 1/=:

• Pr[- = ℓ] ≤ X for all ℓ ∈ !,

• Pr[- ∈ "] ≤ 1/2 , and

• The set � satis�es

1

X
− |� |W >

=

(2W)2
.

Moreover, there exists 8 ∈ [2] such that the conditions above hold for

X = (2W)8−1/=.

Looking ahead, we use this last property of X to argue that for

�xed W, 2 and =, one can guess a valid value of X with probability

1/2 without knowing the distribution of - .

Proof of Lemma 2. We de�ne the sets

�1 :=

{
B ∈ (: Pr[- = B] ∈

[
0,
2W

=

)}
,

�8 :=

{
B ∈ (: Pr[- = B] ∈

[
(2W)8−1

=
,
(2W)8

=

)}
for 2 ≤ 8 ≤ 2 − 1,

�2 :=

{
B ∈ (: Pr[- = B] ∈

[
(2W)2−1

=
,∞

)}
,

where we have (=
⊔

8∈[2] �8 by construction. By an averaging

argument, we know there must exist some particular index 9 ∈ [2]

such that Pr[- ∈ � 9] ≤ 1/2 . We then set ! =
⋃

8≤ 9−1 �8 , " = � 9 ,

and � =
⋃

8≥ 9+1 �8 . Clearly, Pr[- ∈ "] ≤ 1/2 by construction.

1718

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada Ele�e Boyle, Ilan Komargodski, and Neekon Vafa

Since for all ℎ ∈ � we have Pr[- = ℎ] ≥ (2W) 9/=, by summing

over ℎ ∈ � , we know |� | ≤ =/(2W) 9 . On the other hand, by de�ni-

tion of !, we know that for all ℓ ∈ !, Pr[- = ℓ] < (2W) 9−1/=. (Note

that this is vacuously true for 9 = 1.) We have (2W) 9−1/= ≥ 1/=

since W > 1 and 9 ≥ 1, so we can set X = (2W) 9−1/=. Combining the

inequalities above, we have

1

X
− |� |W ≥

=

(2W) 9−1
−

=

(2W) 9
· W =

=

2 · (2W) 9−1
>

=

(2W)2
,

as desired. □

We now proceed with the proof of the main theorem, Theorem 5.

We start by setting a few parameters in anticipation of apply-

ing the partition lemma (Lemma 2) to a distribution over physical

memory locations. Let 2 = 100@A and W = 200@A@F (F + log< + 2)

as needed for Lemma 2. For 9 ∈ [2], let X 9 := (2W) 9−1/= as given by

Lemma 2, and let: 9 := ⌊1/(100X 9@A@F)⌋, where one should think of

: 9 (for 9 ∈ [2]) as the number of 1s written to the memory checker.

Later on in the proof, the choice of these parameter settings will

become more clear. (Speci�cally, 2 and : 9 are set by Claim 2, and W

is set at the end of the proof.) Observe that since X 9 ≥ 1/=, we have

: 9 ≤ 1/(100X 9) ≤ =/100. Throughout, we assume = is a multiple

of 10 for simplicity, but our proof can be easily modi�ed to handle

arbitrary, su�ciently large =.

Using the memory checker, we directly construct a public-coin

protocol for Alice and Bob to send 2 strings G (1) , · · · , G (2) , dis-

tributed as follows: for each 9 ∈ [2], G (9) ∈ {0, 1}9=/10+: 9 is inde-

pendently chosen uniformly at random subject to the constraint

that ∥G (9) ∥0 = : 9 (i.e., the Hamming weight of each G (9) is : 9). At

a high level, the size of Alice’s message will be closely related to

the local space ? of the memory checker, so success of this protocol

will yield a lower bound on ? .

Protocol description. Before Alice sees G (1) , · · · , G (2) , Alice and

Bob together (using shared randomness) run a memory checker

and logically write 0 to all indices 8 ∈ [=]. Then, Alice and Bob

together sample 9∗ ∼ [2] independently and uniformly at random.

We urge the reader to think of 9∗ as a guess for 9 ∈ [2] for which

X = (2W) 9−1/= will appear when applying Lemma 2 later on in the

protocol. Since the memory checker could be adaptive, we may not

know the right value of 9 beforehand, so we guess it. For simplicity,

on a �rst pass, one may think of 9 as being “�xed” to the right value,

although Alice has no way of knowing this beforehand.

Alice and Bob then sample uniformly random ~ ∈ {0, 1}= with

∥~∥0 = =/10 − : 9∗ and logically write 1 to all indices 8 ∈ [=] such

that ~8 = 1 in a uniformly random order. This gives Alice and Bob

the public database ��0 ∈ ({0, 1}F ∪ {⊥})< after these writes as

well as the local state st0 ∈ {0, 1}? . (This can all be formalized by

Alice and Bob sharing a su�ciently long uniformly random string

and running the memory checker on that string.)

For the remainder of the protocol, Alice and Bob agree on some

mapping c : [9=/10+: 9∗] → [=] that maps [9=/10+: 9∗] bijectively

to the indices 8 ∈ [=] where ~8 = 0. For notational simplicity, we

set G = G (9
∗) and : = : 9∗ for the rest of the proof.

Alice’s encoding. In short, for all 9 ≠ 9∗, Alice will directly encode

G (9) , but for 9 = 9∗, Alice will write 1 to logical indices c (G) :=

{c (8) : 8 ∈ [9=/10 +:], G8 = 1} of the memory checker in a random

order and send some information related to the memory checker at

the end of the writes.

More precisely, Alice tosses coins and uses the memory checker

(with ��0 and st0) to write 1 to every logical index in the set c (G)

in a uniformly random order. This produces a new public database

��1 and local state st1. Now, Alice de�nes a distribution D over

[<] as follows:

(1) Sample 8 ∼ [=] uniformly at random.

(2) Use the memory checker to read index 8 from local space

st1 and public database ��1. This de�nes a distribution over

sequences of length @A of the physical database locations,

corresponding to the locations accessed for logical read 8 .

Sample such a sequence ' from this distribution (i.e., |' | =

@A).

(3) Finally, sample E ∼ ' uniformly at random and output E .

Alice now applies Lemma 2 to this distribution D with parameters

2 and W to partition the physical locations into [<] = ! ⊔" ⊔ �

and getting a parameter X of the form X = (2W) 9̃−1/= for some

9̃ ∈ [2] (e.g., choosing the smallest possible 9̃ for which the above

holds). If 9̃ ≠ 9∗, Alice aborts and the whole protocol fails (This can

be formalized by Alice sending the all 0s string.) See Figure 1 for

explicit details.

We make the following claim, whose proof we defer to the

full version:

Claim 1. The random variables 9∗ and 9̃ are independent. In partic-

ular, Pr
[
9̃ = 9∗

]
= 1/2 , where the probability is over all randomness

sampled by Alice and Bob in the protocol.

For the rest of the protocol description, we condition on the event

that 9̃ = 9∗. Thus, Alice sends the following information to Bob:

• A direct encoding of
(
G (1) , · · · , G (9

∗−1) , G (9
∗+1) , · · · , G (2)

)
,

• The updated local state st1,

• A description of � ⊆ [<],

• ��1 |� , i.e., the contents of ��1 at the locations in � , and

• Some auxiliary string aux (speci�ed later in the proof) which

will help Bob complete Alice’s information into a full descrip-

tion of G .

Because the physical database has size<, the description of � can

be represented using ⌈log
(<
|� |

)
⌉ ≤ |� | ⌈log(<)⌉ bits. As such, the

total size of this message (in bits) can be upper bounded7 by

log
©­
«

∏
9∈[2], 9≠9∗

(
9=/10 + : 9

: 9

)ª®
¬
+ ? + |aux| + |� | (F + log< + 2) + 1.

Bob’s decoding. Given� and��1 |� from Alice, Bob can recreate

some partially updated public database �̃� ∈ ({0, 1}F ∪ {⊥})< ,

which is de�ned as ��1 on locations in � and ��0 on � = ! ⊔" .

In short, Bob’s strategy will simulate the memory checker on the

next logical read to all possible 8 ∈ [=], rewinding back each time,

using �̃� and st1 from Alice.

7As a technicality, as stated, the length of this message is not �xed, but rather is
a random variable that depends on the protocol’s execution. Our proof, essentially,
will show that with su�ciently high probability, this random variable can be upper
bounded by a small enough �xed quantity to invoke the communication complexity
lower bound and obtain a lower bound on ? = |st1 | .

1719

Memory Checking Requires Logarithmic Overhead STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

Shared by Alice and Bob: 9∗, ��0, st0, ~, c

Alice’s Private Input:
(
G (1) , · · · , G (2)

)
(1) Let G := G (9

∗) , and let G (− 9∗) be a direct encoding of(
G (1) , · · · , G (9

∗−1) , G (9
∗+1) , · · · , G (2)

)
.

(2) Let c (G) := {c (ℓ) ∈ [=] : ℓ ∈ [9=/10 + : 9∗], Gℓ = 1}.

(3) Using ��0 and st0, use the memory checker to write “1”

to all indices in c (G) ⊆ [=] in a uniformly random order.

This results in updated ��1 and st1.

(4) Using ��1 and st1, apply Lemma 2 to the resulting dis-

tribution D to get [<] = � ⊔" ⊔ ! and 9̃ ∈ [2].

(5) If 9∗ ≠ 9̃ , immediately abort the whole protocol.

(6) Run Steps 2-4 of Bob’s strategy (Figure 2) to generate the

subset* ⊆ [=].

(7) Let aux be an encoding of the subset* ∩ c (G) ⊆ * .

Output:
(
G (− 9∗) , st1, �, ��1 |� , aux

)
.

Figure 1: Alice’s Encoding Strategy.

More formally, let A ∈ {0, 1}C denote the random bits used by the

memory checker (for this �nal read). Let"� (8, ��, st; A) ∈ {0, 1,⊥}

denote the output of the memory checker upon performing a logical

read to index 8 ∈ [=] from local state st and public database ��

using randomness A . Let BitMajority : {0, 1,⊥}2
C
→ {0, 1,⊥} be the

function that takes in the bit-wise majority of the inputs, mean-

ing outputting the majority bit if such a bit exists, and otherwise,

outputting ⊥. For each 8 ∈ [=], Bob will set

Ĩ8 := BitMajority

(
"�

(
8, �̃�, st1; A

)
A ∈{0,1}C

)
.

That is, Bob will brute force over all 8 ∈ [=] and random bits

used by the memory checker for this read, and Bob will deduce

a bit value Ĩ8 for I8 , the 8th logical bit of the memory checker, if

there is a strict majority of choices of randomness that agree on

a bit (not ⊥) to output. Otherwise, Bob will put some placeholder

value for the 8th bit and use aux from Alice to �ll it in. Reading o�

the values at the indices in c ([9=/10 + :]) ⊂ [=] will then yield

Bob’s output G̃ ∈ {0, 1}9=/10+: . See Figure 2 for explicit details.

Note that Bob’s decoding strategy may not be computationally

e�cient; however, this is not an issue for the information theoretic

compression argument.

We now analyze how successful Bob will be. At a high level:

• We use completeness of the memory checker to argue that

whenever �̃� and ��1 are consistent for a read (which will

happen pretty often per Claim 2 below), then Bob learns I8 .

• We use soundness to argue that Bob never learns the wrong

value of any I8 (but could get ⊥ from the memory checker).

This communicates some information from Alice to Bob, which we

show is enough to get the desired lower bound. The string aux is

used so that Alice can complete Bob’s partial information into full

information about G .

Recall that ��0 and ��1 can di�er only at locations that Alice

accessed in writing indices c (8) where G8 = 1. Since ∥G ∥0 ≤ : , this

is at most : · @F locations, which we will call, ⊆ [<]. De�ne

BAD :=, ∩ (! ∪") =, ∩� to be the set of locations that Alice

Shared by Alice and Bob: 9∗, ��0, st0, ~, c

Alice’s Message:
(
G (− 9∗) , st1, �, ��1 |� , aux

)
.

(1) Parse G (− 9∗) as
(
G (1) , · · · , G (9

∗−1) , G (9
∗+1) , · · · , G (2)

)
.

(2) Using ��0 from the shared input and� and ��1 |� from

Alice, de�ne the database �̃� ∈ ({0, 1}F ∪ {⊥})< as

follows:

�̃� [E] :=

{
��1 [E] if E ∈ �,

��0 [E] otherwise.

(3) For all 8 ∈ [=], let

Ĩ8 := BitMajority

(
"�

(
8, �̃�, st1; A

)
A ∈{0,1}C

)
∈ {0, 1,⊥}.

(4) De�ne * := {8 ∈ [=] : Ĩ8 = ⊥}.

(5) Parsing aux ⊆ * , de�ne I ∈ {0, 1}= by

I8 :=



Ĩ8 if Ĩ8 ≠ ⊥,

1 if Ĩ8 = ⊥ and 8 ∈ aux,

0 if Ĩ8 = ⊥ and 8 ∉ aux.

(6) De�ne G ∈ {0, 1}9=/10+: 9∗ by Gℓ := Ic (ℓ) ∈ {0, 1}.

Output:
(
G (1) , · · · , G (9

∗−1) , G, G (9
∗+1) , · · · , G (2)

)
.

Figure 2: Bob’s Decoding Strategy.

wrote to that are not included in � . That is, ��1 and �̃� di�er only

at physical locations in BAD. (We emphasize that Bob does not

know the set BAD.)

We now argue that Bob’s physical queries avoid BAD with con-

stant probability. Let '(8, ��, st; A) ⊆ [<] denote the set of (at most

@A) physical locations queried by the memory checker upon per-

forming logical read to index 8 ∈ [=] using public database ��,

local state st, and internal randomness A .

Claim 2. Assuming 9̃ = 9∗,

Pr
8∼[=],A∼{0,1}C

[' (8, ��1, st1; A) ∩ BAD = ∅] ≥
98

100
.

Proof. Since BAD = (, ∩") ∪ (, ∩!), we can argue the two

cases separately.

For - ∼ D, we know that Pr[- ∈ "] ≤ 1/2 = 1/(100@A). By

construction of D and the union bound, this implies

Pr
8∼[=],A∼{0,1}C

['(8, ��1, st1; A) ∩ (, ∩") ≠ ∅]

≤ Pr
8∼[=],A∼{0,1}C

['(8, ��1, st1; A) ∩" ≠ ∅]

≤ @A · Pr
-∼D

[- ∈ "] ≤
1

100
.

For the other case, by de�nition of ! and X 9∗ , and for - ∼ D, we

know that

Pr
-∼D

[- ∈, ∩ !] =
∑

ℓ∈,∩!

Pr
-∼D

[- = ℓ] ≤ |, ∩ ! |X 9∗ .

1720

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada Ele�e Boyle, Ilan Komargodski, and Neekon Vafa

Thus, by construction of D,

Pr
8∼[=],A∼{0,1}C

['(8, ��1, st1; A) ∩ (, ∩ !) ≠ ∅]

≤ @A · Pr[- ∈, ∩ !] ≤ @AX 9∗ |, ∩ ! |

≤ @AX 9∗ |, | ≤ :@F@AX 9∗ ≤
1

100
,

where the last inequality holds since : = : 9∗ = ⌊1/(100X 9∗@A@F)⌋.

By a union bound over both cases, since BAD = (, ∩") ∪ (, ∪!),

we have

Pr
8∼[=],A∼{0,1}C

['(8, ��1, st1; A) ∩ BAD ≠ ∅] ≤
1

100
+

1

100
=

2

100
.

□

Given the above claim, we can invoke completeness of the mem-

ory checker, since avoiding BAD means that the physical locations

accessed are correct. Explicitly, we invoke completeness on the

sequence of logical queries that writes 0 everywhere, writes 1 to

=/10 random locations denoted by I, and lastly reads to a random

location, denoted by 8 . We will use completeness for the last logical

read, i.e., query number = + =/10 + 1.

Let A1 and A2 denote the randomness of the memory checker

used for all of the logical writes and randomness of the memory

checker used for the �nal logical read, respectively. Let I8 denote

the 8th logical bit of the memory checker, i.e., I8 = ~8 ∨ 1[8 ∈ c (G)].

By completeness, we know that

Pr
A1,A2,I,8

["� (8, ��1, st1; A2) = I8] ≥
99

100
,

where we emphasize that ��1 and st1 are random variables that

depend on A1 and I. Since the event that 9̃ = 9∗ is independent of

the memory checker by Claim 1, we know

Pr
A1,A2,I,8

[
"� (8, ��1, st1; A2) = I8

���� 9̃ = 9∗
]
≥

99

100
.

Given 9̃ = 9∗, we can invoke Claim 2 and the inclusion-exclusion

principle to get

Pr
A1,A2,I,8

[
"� (8, ��1, st1; A2) = I8 and

' (8, ��1, st1; A2) ∩ BAD = ∅

���� 9̃ = 9∗
]
≥

99

100
+

98

100
− 1 =

97

100
.

If ' (8, ��1, st1; A2) ∩ BAD = ∅, we know that the memory checker

using �̃� and ��1 are identical (since they are di�erent only in

BAD), so we have

Pr
A1,A2,I,8

[
"�

(
8, �̃�, st1; A2

)
= I8 and

' (8, ��1, st1; A2) ∩ BAD = ∅

���� 9̃ = 9∗
]
≥

97

100
,

which, by dropping the conjunction with the second event, implies

Pr
A1,A2,I,8

[
"�

(
8, �̃�, st1; A2

)
= I8

���� 9̃ = 9∗
]
≥

97

100
.

Then, by an averaging argument8,

Pr
A1,I

[
Pr
8,A2

[
"�

(
8, �̃�, st1; A2

)
= I8

���� A1, I, 9̃ = 9∗
]
>

9

10

���� 9̃ = 9∗
]
≥

2

3
.

Let � denote these “good” values of (A1, I) (with density at least

2/3). By another averaging argument, by restricting to a good value

of (A1, I),

Pr
8∼[=]

[
Pr
A2

[
"�

(
8, �̃�, st1; A2

)
= I8 | (A1, I) ∈ �, 8, 9̃ = 9∗

]
>

1

2���� (A1, I) ∈ �, 9̃ = 9∗
]
≥

8

10
.

Since Ĩ8 = BitMajority

(
"�

(
8, �̃�, st1; A

)
A ∈{0,1}C

)
, this inner event

would correspond to success for Bob, so

Pr
8∼[=]

[
Ĩ8 = I8

���� (A1, I) ∈ �, 9̃ = 9∗
]
≥

8

10
.

Let � ⊆ [=] denote these “good” values of 8 , where we have

|� | ≥ 8=/10. Assuming 9̃ = 9∗ and (A1, I) ∈ � , we notice that

this inner probability event corresponds to whether Bob decodes

correctly on read 8 . Assuming 9̃ = 9∗ and (A1, I) ∈ � , we therefore

know that Ĩ8 = I8 is the correct value for all 8 ∈ � , so Bob can

recover a constant fraction of the memory checker’s logical bits.

That is, there exists � ⊆ [=] with |� | ≥ 8=/10 such that(
9̃ = 9∗ ∧ (A1, I) ∈ �

)
=⇒ ∀8 ∈ � , Ĩ8 = I8 .

Now, we argue that with good probability, for all 8 ∈ [=], Ĩ8 ∈

{I8 ,⊥}. More precisely:

Claim 3. There exists a “good” set � ′ satisfying PrA1,I [(A1, I) ∈

� ′] ≥ 2/3 and(
9̃ = 9∗ ∧ (A1, I) ∈ � ′

)
=⇒ ∀8 ∈ [=], Ĩ8 ∈ {I8 ,⊥}.

That is, assuming 9̃ = 9∗ and (A1, I) ∈ � ′, then Bob does not

decode “incorrectly” for any 8 ∈ [=]. We defer the proof of the

claim to the full version, but very brie�y, we use soundness of the

memory checker against the computationally e�cient adversary

described in Figure 3.

In summary, assuming throughout that 9̃ = 9∗ and (A1, I) ∈

� ∩� ′, none of Ĩ8 will be the incorrect bit, and moreover, for 8=/10

values of 8 ∈ [=], Ĩ8 will be the correct bit. In particular, Bob can

use the map c to pass these values to G , where Bob now only needs

to learn which bits of the remaining at most = − 8=/10 = =/5

placeholder values of G are 1.

We now specify Alice’s auxiliary string. Alice can run Bob’s

whole strategy and deduce where Bob will put placeholder values.

Alice will simply send some compressed representation of these

placeholder values. Explicitly, Alice must send at most =/5 bits of I

in the worst case. This will be at most⌈
log

(
=/5

9

)⌉

8Here and later, we use the averaging argument that for all n, n1, n2 ∈ (0, 1) such
that n1 · n2 ≥ n , if Pr-,. [5 (-,.) = 1] ≥ 1 − n , then Pr- [Pr. [5 (-,.) = 1 |-] >

1 − n1] ≥ 1 − n2 .

1721

Memory Checking Requires Logarithmic Overhead STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

• For the �rst = + =/10 queries (i.e., for the logical writes):

– Behave honestly, and record all physical queries made

by the memory checker.

• Let ��1 ∈ ({0, 1}F ∪ {⊥})< denote the updated (hon-

est) database after the = + =/10 queries.

• For query = + =/10 + 1 (i.e., for the logical read):

– Sample 9∗ ∼ [2] uniformly at random, and let : := : 9∗ .

– Let ��0 ∈ ({0, 1}F ∪ {⊥})< be the database rewound

to the end of the �rst = + =/10 − : logical queries.

– Generate �̂� ∈ ({0, 1}F ∪ {⊥})< so that for all

E ∈ [<], �̂� [E] = ��0 [E] with probability 1/2 and

�̂� [E] = ��1 [E] with probability 1/2, independently

over all E ∈ [<].a

– Perform all physical queries from the memory checker

with respect to �̂�.

aEven if< = =l (1) , the adversary can lazily generate ��0, ��1, �̂� on the �y
by storing all physical queries from the memory checker.

Figure 3: Description of Memory Checking Adversary (for

Soundness).

bits for some 9 ≤ : , where 9 corresponds to the number of 1s in the

=/5 placeholder bits. Since : ≤ =/100, this quantity is maximized

when 9 = : . As a result, we have the bound

|aux| ≤

⌈
log

(
=/5

:

)⌉
.

Moreover, notice that by de�nition of � and � ′ and the union

bound, the probability that 9̃ = 9∗ and (A1, I) ∈ � ∩� ′ is at least

1/2 · 1/3 = 1/(300@A). Therefore, the success probability of this

protocol is at least 1/(300@A).

We are �nally ready to invoke a compression lemma (see details

in the full version). By the information that Alice is communicating

to Bob, we have

log
©­«

∏
9∈[2], 9≠9∗

(
9=/10 + : 9

: 9

)ª®¬
+ ? + |aux| + |� | (F + log< + 2) + 1

≥ log
©­«
∏
9∈[2]

(
9=/10 + : 9

: 9

)ª®¬
− log(300@A) .

This simpli�es to

? + |aux| + |� | (F + log< + 2) ≥ log

(
9=/10 + :

:

)
− log(300@A) − 1,

which implies, by using the standard bounds on Binomial coe�-

cients (=/:): ≤
(=
:

)
≤ (4=/:): , that

? ≥ log

(
9=/10

:

)
− log

(
=/5

:

)
− |� | (F + log< + 2)

− log(300@A) − 2

≥ : log(45/(104)) − |� | (F + log< + 2) − log(300@A) − 2.

By further simplifying, we get that

? ≥
:

2
− |� | (F + log< + 2) − log(300@A) − 2

≥
1

200@A@FX 9∗
− |� | (F + log< + 2) − log(300@A) −

5

2

=
1

200@A@F

©­­­«
1

X 9∗
− |� | · 200@A@F (F + log< + 2)︸ ︷︷ ︸

W

ª®®®¬
− log(300@A) −

5

2
.

Finally, using the guarantee from Lemma 2, we get that

? >

1

200@A@F
·

=

(400@A@F (F + log< + 2))2
− log(300@A) −

5

2

≥
=

(400@A@F (F + log< + 2))100@A+1
− log(@A) − 11,

≥
=

(600@A@F (F + log<))202@A
− log(@A) − 11,

as desired.

ACKNOWLEDGMENTS

We thank Moni Naor and Omri Weinstein for very useful discus-

sions. For the third author, research was partially done at NTT

Research. His research is further supported in part by DARPA un-

der Agreement No. HR00112020023, NSF CNS-2154149, NSF DGE-

2141064, and a Simons Investigator award.

REFERENCES
[1] Gilad Asharov, Ilan Komargodski, Wei-Kai Lin, Kartik Nayak, Enoch Peserico,

and Elaine Shi. 2023. OptORAMa: Optimal Oblivious RAM. J. ACM 70, 1 (2023),
4:1–4:70. https://doi.org/10.1145/3566049 4

[2] Gilad Asharov, Ilan Komargodski, Wei-Kai Lin, and Elaine Shi. 2023. Oblivious
RAM with Worst-Case Logarithmic Overhead. J. Cryptol. 36, 2 (2023), 7. https:
//doi.org/10.1007/S00145-023-09447-5 4

[3] Giuseppe Ateniese, Randal C. Burns, Reza Curtmola, Joseph Herring, Lea Kissner,
Zachary N. J. Peterson, and Dawn Xiaodong Song. 2007. Provable data possession
at untrusted stores. In Proceedings of the 2007 ACM Conference on Computer and
Communications Security, CCS 2007, Alexandria, Virginia, USA, October 28-31,
2007, Peng Ning, Sabrina De Capitani di Vimercati, and Paul F. Syverson (Eds.).
ACM, 598–609. https://doi.org/10.1145/1315245.1315318 1

[4] Manuel Blum, William S. Evans, Peter Gemmell, Sampath Kannan, and Moni
Naor. 1994. Checking the Correctness of Memories. Algorithmica 12, 2/3 (1994),
225–244. https://doi.org/10.1007/BF01185212 1, 3, 4

[5] Dan Boneh, Justin Drake, Ben Fisch, and Ariel Gabizon. 2021. Halo In�nite:
Proof-Carrying Data from Additive Polynomial Commitments. In Advances in
Cryptology - CRYPTO 2021 - 41st Annual International Cryptology Conference,
CRYPTO 2021, Virtual Event, August 16-20, 2021, Proceedings, Part I (Lecture Notes
in Computer Science, Vol. 12825), Tal Malkin and Chris Peikert (Eds.). Springer,
649–680. https://doi.org/10.1007/978-3-030-84242-0_23 1

[6] Jonathan Bootle, Alessandro Chiesa, Yuncong Hu, and Michele Orrù. 2022. Gem-
ini: Elastic SNARKs for Diverse Environments. In Advances in Cryptology - EURO-
CRYPT 2022 - 41st Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Trondheim, Norway, May 30 - June 3, 2022, Proceed-
ings, Part II (Lecture Notes in Computer Science, Vol. 13276), Orr Dunkelman and
Stefan Dziembowski (Eds.). Springer, 427–457. https://doi.org/10.1007/978-3-
031-07085-3_15 1

[7] Elette Boyle and Moni Naor. 2016. Is There an Oblivious RAM Lower Bound?. In
Proceedings of the 2016 ACM Conference on Innovations in Theoretical Computer
Science, Cambridge, MA, USA, January 14-16, 2016, Madhu Sudan (Ed.). ACM,
357–368. https://doi.org/10.1145/2840728.2840761 4

[8] Benedikt Bünz, Mary Maller, Pratyush Mishra, Nirvan Tyagi, and Psi Vesely. 2021.
Proofs for Inner Pairing Products and Applications. In Advances in Cryptology -
ASIACRYPT 2021 - 27th International Conference on the Theory and Application of
Cryptology and Information Security, Singapore, December 6-10, 2021, Proceedings,
Part III (Lecture Notes in Computer Science, Vol. 13092), Mehdi Tibouchi and

1722

https://doi.org/10.1145/3566049
https://doi.org/10.1007/S00145-023-09447-5
https://doi.org/10.1007/S00145-023-09447-5
https://doi.org/10.1145/1315245.1315318
https://doi.org/10.1007/BF01185212
https://doi.org/10.1007/978-3-030-84242-0_23
https://doi.org/10.1007/978-3-031-07085-3_15
https://doi.org/10.1007/978-3-031-07085-3_15
https://doi.org/10.1145/2840728.2840761

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada Ele�e Boyle, Ilan Komargodski, and Neekon Vafa

Huaxiong Wang (Eds.). Springer, 65–97. https://doi.org/10.1007/978-3-030-
92078-4_3 1

[9] David Cash, Andrew Drucker, and Alexander Hoover. 2020. A Lower Bound
for One-Round Oblivious RAM. In Theory of Cryptography - 18th International
Conference, TCC 2020, Durham, NC, USA, November 16-19, 2020, Proceedings, Part I
(Lecture Notes in Computer Science, Vol. 12550), Rafael Pass and Krzysztof Pietrzak
(Eds.). Springer, 457–485. https://doi.org/10.1007/978-3-030-64375-1_16 2, 4

[10] David Cash, Alptekin Küpçü, and Daniel Wichs. 2017. Dynamic Proofs of
Retrievability Via Oblivious RAM. J. Cryptol. 30, 1 (2017), 22–57. https:
//doi.org/10.1007/S00145-015-9216-2 1

[11] Dwaine E. Clarke, G. Edward Suh, Blaise Gassend, Ajay Sudan, Marten van Dijk,
and Srinivas Devadas. 2005. Towards Constant Bandwidth Overhead Integrity
Checking of Untrusted Data. In 2005 IEEE Symposium on Security and Privacy
(S&P 2005), 8-11 May 2005, Oakland, CA, USA. IEEE Computer Society, 139–153.
https://doi.org/10.1109/SP.2005.24 1

[12] Victor Costan and Srinivas Devadas. 2016. Intel SGX Explained. IACR Cryptol.
ePrint Arch. (2016), 86. http://eprint.iacr.org/2016/086 1

[13] Cynthia Dwork, Moni Naor, Guy N. Rothblum, and Vinod Vaikuntanathan. 2009.
How E�cient Can Memory Checking Be?. In Theory of Cryptography, 6th Theory
of Cryptography Conference, TCC 2009, San Francisco, CA, USA, March 15-17, 2009.
Proceedings (Lecture Notes in Computer Science, Vol. 5444), Omer Reingold (Ed.).
Springer, 503–520. https://doi.org/10.1007/978-3-642-00457-5_30 2, 3, 4, 5

[14] Oded Goldreich. 1987. Towards a Theory of Software Protection and Simulation
by Oblivious RAMs. In Proceedings of the 19th Annual ACM Symposium on Theory
of Computing, 1987, New York, New York, USA, Alfred V. Aho (Ed.). ACM, 182–194.
https://doi.org/10.1145/28395.28416 3

[15] Oded Goldreich. 2023. On the Lower Bound on the Length of Relaxed Lo-
cally Decodable Codes. Electron. Colloquium Comput. Complex. TR23-064 (2023).
ECCC:TR23-064 https://eccc.weizmann.ac.il/report/2023/064 6, 7

[16] Oded Goldreich, Sha� Goldwasser, and Silvio Micali. 1986. How to construct
random functions. J. ACM 33, 4 (1986), 792–807. https://doi.org/10.1145/6490.6503
7

[17] Oded Goldreich and Rafail Ostrovsky. 1996. Software Protection and Simulation
on Oblivious RAMs. J. ACM 43, 3 (1996), 431–473. https://doi.org/10.1145/233551.
233553 2, 3, 4

[18] William Eric Hall and Charanjit S. Jutla. 2005. Parallelizable Authentication
Trees. In Selected Areas in Cryptography, 12th International Workshop, SAC 2005,
Kingston, ON, Canada, August 11-12, 2005, Revised Selected Papers (Lecture Notes in
Computer Science, Vol. 3897), Bart Preneel and Sta�ord E. Tavares (Eds.). Springer,
95–109. https://doi.org/10.1007/11693383_7 1

[19] Johan Håstad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. 1999. A
Pseudorandom Generator from any One-way Function. SIAM J. Comput. 28, 4
(1999), 1364–1396. https://doi.org/10.1137/S0097539793244708 7

[20] Ari Juels and Burton S. Kaliski Jr. 2007. Pors: proofs of retrievability for large �les.
In Proceedings of the 2007 ACM Conference on Computer and Communications
Security, CCS 2007, Alexandria, Virginia, USA, October 28-31, 2007, Peng Ning,
Sabrina De Capitani di Vimercati, and Paul F. Syverson (Eds.). ACM, 584–597.
https://doi.org/10.1145/1315245.1315317 1

[21] Ilan Komargodski and Wei-Kai Lin. 2021. A Logarithmic Lower Bound for Obliv-
ious RAM (for All Parameters). In Advances in Cryptology - CRYPTO 2021 - 41st
Annual International Cryptology Conference, CRYPTO 2021, Virtual Event, August
16-20, 2021, Proceedings, Part IV (Lecture Notes in Computer Science, Vol. 12828), Tal
Malkin and Chris Peikert (Eds.). Springer, 579–609. https://doi.org/10.1007/978-
3-030-84259-8_20 4

[22] Kasper Green Larsen and Jesper Buus Nielsen. 2018. Yes, There is an Oblivious
RAM Lower Bound!. In Advances in Cryptology - CRYPTO 2018 - 38th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2018,
Proceedings, Part II (Lecture Notes in Computer Science, Vol. 10992), Hovav Shacham
and Alexandra Boldyreva (Eds.). Springer, 523–542. https://doi.org/10.1007/978-
3-319-96881-0_18 4

[23] Jacob R. Lorch, Bryan Parno, James W. Mickens, Mariana Raykova, and Joshua
Schi�man. 2013. Shroud: ensuring private access to large-scale data in the data
center. In Proceedings of the 11th USENIX conference on File and Storage Tech-
nologies, FAST 2013, San Jose, CA, USA, February 12-15, 2013, Keith A. Smith and
Yuanyuan Zhou (Eds.). USENIX, 199–214. https://www.usenix.org/conference/
fast13/technical-sessions/presentation/lorch 4

[24] Surya Mathialagan. 2023. Memory Checking for Parallel RAMs. In Theory of
Cryptography - 21st International Conference, TCC 2023, Taipei, Taiwan, November
29 - December 2, 2023, Proceedings, Part II (Lecture Notes in Computer Science,
Vol. 14370), Guy N. Rothblum and Hoeteck Wee (Eds.). Springer, 436–464. https:
//doi.org/10.1007/978-3-031-48618-0_15 3

[25] Surya Mathialagan and Neekon Vafa. 2023. MacORAMa: Optimal Oblivious
RAM with Integrity. In Advances in Cryptology - CRYPTO 2023 - 43rd Annual
International Cryptology Conference, CRYPTO 2023, Santa Barbara, CA, USA,
August 20-24, 2023, Proceedings, Part IV (Lecture Notes in Computer Science,
Vol. 14084), Helena Handschuh and Anna Lysyanskaya (Eds.). Springer, 95–127.
https://doi.org/10.1007/978-3-031-38551-3_4 4

[26] Moni Naor and Guy N. Rothblum. 2009. The complexity of online memory
checking. J. ACM 56, 1 (2009), 2:1–2:46. https://doi.org/10.1145/1462153.1462155
2, 7

[27] Noam Nisan and Avi Wigderson. 1993. Rounds in Communication Complexity
Revisited. SIAM J. Comput. 22, 1 (1993), 211–219. https://doi.org/10.1137/0222016
2

[28] Alina Oprea and Michael K. Reiter. 2007. Integrity Checking in Cryptographic
File Systems with Constant Trusted Storage. In Proceedings of the 16th USENIX
Security Symposium, Boston, MA, USA, August 6-10, 2007, Niels Provos (Ed.).
USENIX Association. https://www.usenix.org/conference/16th-usenix-security-
symposium/integrity-checking-cryptographic-�le-systems-constant 1

[29] Rafail Ostrovsky. 1990. E�cient Computation on Oblivious RAMs. In Proceedings
of the 22nd Annual ACM Symposium on Theory of Computing, May 13-17, 1990,
Baltimore, Maryland, USA, Harriet Ortiz (Ed.). ACM, 514–523. https://doi.org/10.
1145/100216.100289 3

[30] Alex Ozdemir, Riad S. Wahby, Barry Whitehat, and Dan Boneh. 2020. Scal-
ing Veri�able Computation Using E�cient Set Accumulators. In 29th USENIX
Security Symposium, USENIX Security 2020, August 12-14, 2020, Srdjan Cap-
kun and Franziska Roesner (Eds.). USENIX Association, 2075–2092. https:
//www.usenix.org/conference/usenixsecurity20/presentation/ozdemir 1

[31] Charalampos Papamanthou and Roberto Tamassia. 2011. Optimal and Parallel
Online Memory Checking. Cryptology ePrint Archive (2011). 2, 3

[32] Sarvar Patel, Giuseppe Persiano, Mariana Raykova, and Kevin Yeo. 2018.
PanORAMa: Oblivious RAM with Logarithmic Overhead. In 59th IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2018, Paris, France, Oc-
tober 7-9, 2018, Mikkel Thorup (Ed.). IEEE Computer Society, 871–882. https:
//doi.org/10.1109/FOCS.2018.00087 4

[33] Ling Ren, Christopher W. Fletcher, Xiangyao Yu, Marten van Dijk, and Srinivas
Devadas. 2013. Integrity veri�cation for path Oblivious-RAM. In IEEE High
Performance Extreme Computing Conference, HPEC 2013, Waltham, MA, USA,
September 10-12, 2013. IEEE, 1–6. https://doi.org/10.1109/HPEC.2013.6670339 4

[34] Srinath T. V. Setty. 2020. Spartan: E�cient and General-Purpose zkSNARKs
Without Trusted Setup. In Advances in Cryptology - CRYPTO 2020 - 40th An-
nual International Cryptology Conference, CRYPTO 2020, Santa Barbara, CA,
USA, August 17-21, 2020, Proceedings, Part III (Lecture Notes in Computer Sci-
ence, Vol. 12172), Daniele Micciancio and Thomas Ristenpart (Eds.). Springer,
704–737. https://doi.org/10.1007/978-3-030-56877-1_25 1

[35] Hovav Shacham and Brent Waters. 2013. Compact Proofs of Retrievability. J.
Cryptol. 26, 3 (2013), 442–483. https://doi.org/10.1007/S00145-012-9129-2 1

[36] Emil Stefanov, Marten van Dijk, Elaine Shi, T.-H. Hubert Chan, Christopher W.
Fletcher, Ling Ren, Xiangyao Yu, and Srinivas Devadas. 2018. Path ORAM: An
Extremely Simple Oblivious RAM Protocol. J. ACM 65, 4 (2018), 18:1–18:26.
https://doi.org/10.1145/3177872 4

[37] Riad S. Wahby, Ioanna Tzialla, Abhi Shelat, Justin Thaler, and Michael Wal�sh.
2018. Doubly-E�cient zkSNARKs Without Trusted Setup. In 2018 IEEE Sympo-
sium on Security and Privacy, SP 2018, Proceedings, 21-23 May 2018, San Francisco,
California, USA. IEEE Computer Society, 926–943. https://doi.org/10.1109/SP.
2018.00060 1

[38] Weijie Wang, Yujie Lu, Charalampos Papamanthou, and Fan Zhang. 2023. The
Locality of Memory Checking. In Proceedings of the 2023 ACM SIGSAC Conference
on Computer and Communications Security, CCS 2023, Copenhagen, Denmark, No-
vember 26-30, 2023, Weizhi Meng, Christian Damsgaard Jensen, Cas Cremers, and
Engin Kirda (Eds.). ACM, 1820–1834. https://doi.org/10.1145/3576915.3623195 3

[39] Tiancheng Xie, Jiaheng Zhang, Yupeng Zhang, Charalampos Papamanthou, and
Dawn Song. 2019. Libra: Succinct Zero-Knowledge Proofs with Optimal Prover
Computation. In Advances in Cryptology - CRYPTO 2019 - 39th Annual Interna-
tional Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2019, Proceed-
ings, Part III (Lecture Notes in Computer Science, Vol. 11694), Alexandra Boldyreva
and Daniele Micciancio (Eds.). Springer, 733–764. https://doi.org/10.1007/978-3-
030-26954-8_24 1

[40] Jiaheng Zhang, Tiancheng Xie, Yupeng Zhang, and Dawn Song. 2020. Transparent
Polynomial Delegation and Its Applications to Zero Knowledge Proof. In 2020
IEEE Symposium on Security and Privacy, SP 2020, San Francisco, CA, USA, May
18-21, 2020. IEEE, 859–876. https://doi.org/10.1109/SP40000.2020.00052 1

Received 12-NOV-2023; accepted 2024-02-11

1723

https://doi.org/10.1007/978-3-030-92078-4_3
https://doi.org/10.1007/978-3-030-92078-4_3
https://doi.org/10.1007/978-3-030-64375-1_16
https://doi.org/10.1007/S00145-015-9216-2
https://doi.org/10.1007/S00145-015-9216-2
https://doi.org/10.1109/SP.2005.24
http://eprint.iacr.org/2016/086
https://doi.org/10.1007/978-3-642-00457-5_30
https://doi.org/10.1145/28395.28416
https://eccc.weizmann.ac.il/report/2023/064
https://doi.org/10.1145/6490.6503
https://doi.org/10.1145/233551.233553
https://doi.org/10.1145/233551.233553
https://doi.org/10.1007/11693383_7
https://doi.org/10.1137/S0097539793244708
https://doi.org/10.1145/1315245.1315317
https://doi.org/10.1007/978-3-030-84259-8_20
https://doi.org/10.1007/978-3-030-84259-8_20
https://doi.org/10.1007/978-3-319-96881-0_18
https://doi.org/10.1007/978-3-319-96881-0_18
https://www.usenix.org/conference/fast13/technical-sessions/presentation/lorch
https://www.usenix.org/conference/fast13/technical-sessions/presentation/lorch
https://doi.org/10.1007/978-3-031-48618-0_15
https://doi.org/10.1007/978-3-031-48618-0_15
https://doi.org/10.1007/978-3-031-38551-3_4
https://doi.org/10.1145/1462153.1462155
https://doi.org/10.1137/0222016
https://www.usenix.org/conference/16th-usenix-security-symposium/integrity-checking-cryptographic-file-systems-constant
https://www.usenix.org/conference/16th-usenix-security-symposium/integrity-checking-cryptographic-file-systems-constant
https://doi.org/10.1145/100216.100289
https://doi.org/10.1145/100216.100289
https://www.usenix.org/conference/usenixsecurity20/presentation/ozdemir
https://www.usenix.org/conference/usenixsecurity20/presentation/ozdemir
https://doi.org/10.1109/FOCS.2018.00087
https://doi.org/10.1109/FOCS.2018.00087
https://doi.org/10.1109/HPEC.2013.6670339
https://doi.org/10.1007/978-3-030-56877-1_25
https://doi.org/10.1007/S00145-012-9129-2
https://doi.org/10.1145/3177872
https://doi.org/10.1109/SP.2018.00060
https://doi.org/10.1109/SP.2018.00060
https://doi.org/10.1145/3576915.3623195
https://doi.org/10.1007/978-3-030-26954-8_24
https://doi.org/10.1007/978-3-030-26954-8_24
https://doi.org/10.1109/SP40000.2020.00052

	Abstract
	1 Introduction
	1.1 Our Results
	1.2 Implications of our Lower Bounds
	1.3 Offline vs. Online Memory Checkers
	1.4 Organization

	2 Technical Overview
	2.1 Our Lower Bound

	3 Main Lower Bound
	3.1 Proof of Theorem 5

	Acknowledgments
	References

