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PHYSICAL LIMITATIONS ON ANTENNAS

John Ruze

Submitted to the Department of Electrical Engineering on
May 9, 1952, in partial fulfillment of the requirements for the
degree of Doctor of Science.

ABSTRACT

This thesis is concerned with physical limitations on the
realizability of a given radiation polar diagram from an antenna
aperture of a finite extent. It is convenient to divide the
problem into three related parts; namely:

1). Limitations Imposed by Aperture Distribution Errors.

Inherent aperture illumination errors or deviations from
the theoretical distribution cause corresponding deviations
from the theoretical polar diagram. The nature of the illumina-
tion errors is examined and such errors are divided into sys-
tematic or "predictable" errors and "random" errors. Exist-
ing methods,available in the literature, for the treatment of
systematic errors, are reviewed. Random errors form a statisti-
cal problem and have not been treated* A theory is formulated
for their treatment, in both the discrete and continuous aperture
cases. This theory indicates that the effect of random errors
is first manifested in the minor lobe region where the errors
tend to cancel the almost complete destructive interference from
various elements of the aperture. Random errors therefore im-
pose a physical limitation on the obtainable minimum side lobe
level. It is shown that, in the discrete case where the current
errors are assumed independent from element to element, the
average spurious radiation of an ensemble of similar antennas
is spatially constant and proportional to the mean squared error
and inversel' to the gain of the array. In the continuous aper-
ture where independence of neighboring errors cannot be assumed,
it is necessary to define a correlation interval beyond which
the errors are essentially independent. It is shown that in
this case the spurious radiation is now proportional not only
to the mean squared error but also to the sizte of the correlated
region in square wavelengthst The radiation is no longer spatially
constant but directed along the axis of the aperture; the directi-
vity increasing with the size of the correlated region. It is
further shown that such spurious radiation is distributed in a
modified Rayleigh manner with the Rayleigh and Gaussian distribu-
tions being the limiting cases of large and small errors respectively.
Experimental work on a broadside array and on a "randomly" distorted
parabolic mirror provide a verification of the theory.



2). Limitations Imposed by the Synthesis Procedure.

The antenna synthesis problem is one wherein we are given
the shape of the desired polar diagram and we are required to
find an aperture distribution of a given finite width whose radia-
tion pattern approximates the desired one under some condition of
optimization. The existing synthesis procedures are examined.
These consist of the a) Fourier Series or Fourier Integral method
where the function is approximated in a least square sense but
the approximation exhibits a Gibb's phenomena at every point of
discontinuity; b) the Levinson-Woodyard method wherein the pat-
tern is fitted with (sin x)/x or cardinal functions.

The nature of the optimization condition is examined and
two procedures are suggested for approximating a function in
an approximate Tschebyscheff sense. In one of these use is made
of the Tschebyscheff polynomials and an approximation is obtained
wherein approximately equal deviations from the desired curve are
obtained with the exception of points of discontinuity. The
magnitude of the deviations or ripple may be adjusted to any de-
sired value by the proper choice of the Tschebysoheff function.
Although no rigorous condition of optimization is derived for
approximating an arbitrary function the method of derivation sug-
gests that the resulting approximation obtained yields at least
approximately the greatest slope at di.scontinuities or rapid
changes of the function for a given deviation or ripple. A number
of worked out examples are included.

3). Limitations Imposed by the Aperture "Q
It is shown by direct integration of the Poynting vector

over the antenna aperture that those field components which possess
spatial variation of a period smaller than a wavelength contribute
essentially to reactive power. They therefore increase the "Q"
of the aperture and impose a physical limitation on the synthesis
procedure or on the possible polar diagrams.

Thesis Supervisor: L. J. Chu
Title: Professor of Electrical Engineering
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I. INTRODUCTION

This thesis is essentially concerned with the physical

realizability of a given radiation polar diagram from an

antenna system of finite extent. It has been found convenient

to divide the problem into three related parts; namely:

1). Limitations Imposed by Aperture Distribution Errors on

the Radiation Pattern

The antenna designer can readily compute by means of

existing synthesis methods the aperture excitation necessary

for a desired polar diagram. However, when he constructs his

antenna and measures its performance he will find that his ex-

perimental pattern only approximates the theoretical one.

This is because he has not achieved the necessary theore-

tical aperture distribution in his model. The question naturally

arises what aperture distribution tolerance is necessary to ob-

tain a given approximation to the theoretical radiation pattern

and conversely what pattern distortion and reduction in gain

is obtained with given aperture excitation errors.

The problem has attracted considerable attention in the

literature when the error is of a prescribed form; such as a

periodic phase or amplitude error or when it is expandable in

a power series such as a defocussing error in a parabolic mirror

or coma in a metal plate lens. However, no work has been done

on the case when the error is of a random nature. Such random
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errors occur, for example, due to machining errors in a slot

array or due to random distortions of a parabolic antenna.

Random errors form a statistical problem and we can speak

only about the average behavior of a large number or "ensemble"

of seemingly identical antennas and the liklihood or probability

distribution of members of the ensemble about this average

pattern.

In Section II of the thesis a theory is formulated for

the treatment of random distribution errors for both a dis-

crete array of elements and a continuous aperture.

2). Limitations Imposed by the Synthesis Procedure

The antenna synthesis problem is one wherein we are given

the shape of the polar diagram and we are required to find an

aperture distribution of a given finite width whose radiation

pattern approximates the desired one under some condition of

optimization.

The synthesis problem assumed importance during the last

war when it was necessary to design antenna equipment with a

prescribed radiation pattern for radar purposes. As a result

a number of standard procedures are available in the literature.

As the radiation pattern and the aperture excitation form

a Fourier Transform pair, the Fourier Integral method, and its

counterpart for discrete arrays, the Fourier Series method,

suggested itself early to investigators. This procedure yields

an approximation which is optimum in the least square sense.

-2-



An alternate procedure was suggested by Levinson at the

Radiation Laboratory and by Woodyard in England. This method

approximates the desired function by sin x/x functions; functions

which the finite aperture can readily generate. The approxima-

tion obtained by this procedure is no longer optimum in the

least square or Gaussian sense but fits the desired function

exactly in a number of equispaced points.

The various approximation procedures are examined in Sec-

tion III of the thesis and a synthesis procedure is suggested

which is optimum in a Tschybyscheff sense.

3). Limitations Imyosed by APerture2"

During the war years considerable speculation existed as

to whether it was possible to construct an antenna with greater

gain than that predicted by conventional theory. This problem

of "supergain" antennas has only recently been settled by a

series of papers. It is indeed possible, at least theoreti-

cally, to postulate an antenna of a given finite aperture with

an arbitrarily large gain. However, such "supergain" antennas

are characterized by extremely large and spatially rapidly vary-

ing currents. If it were possible to construct such antennas

with conventionally available metallic materials they would

possess prohibitive ohmic losses. Of greater theoretical diffi-

culty is the 'fact that such radiators are associated with a

very large reactive field. Supergain antennas are therefore

inherently high Q devices. Unfortunately their "Q" increases

at an astronomical rate as soon as we attempt to achieve gains
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in excess of those predicted by the conventional analysis.

In Section IV of this thesis the limitations imposed by

the antenna "Q" on the synthesis procedure is made evident.

The complex power flow thru the antenna aperture for an arbi-

trary aperture excitation is determined and the antenna "Q"

is defined as the ratio of reactive to radiated power. The

antenna "Q" is shown to exert a physical limitation not only

on available gain but also on the polar diagram, that is a

limitation on the synthesis procedure.

4-



II. LIMITATIONS IMPOSED BY APERTURE DISTRIBUTION ERRORS

ON THE RADIATION PATTERN

1). Introduction

The radiation polar diagram of a specified current distri-

bution may be obtained from the basic Maxwell' s Equations.

Two methods of doing this are available. In one, with the

aid of auxiliary functions called potentials, Maxwell's Equa-

tions are put into a form involving only these potentials and

the source functions. The resulting differential equation can

be expressed as an integral solution involving the source Green's

Function. The electromagnetic fields can be obtained from the

potential defining equations. (Stratton, pg. 430 and 23.) An

alternate procedure is that of direct integration of Maxwell's

equations with the aid of the vector Green's theorem (Stratton

and Chu). Both procedures give the same results.

For our application we are content with the far field of

a current distribution of finite extent. The vector field

components for an arbitrary electric current distribution may

be written from the literature (Silver, pg. 89)

t~y')= ~A~aj . ser

V

* Notation Note: f is a vector, 2 corresponding scalar magnitude.
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In the far field approximation the radial electric component

becomes negligibly small. The coordinate system is the standard

one and is shown in Fig. No. 1. 7 is the unit vector in the

direction of observation and A the source position vector.

Z

Fig. No. I

As we are interested primarily in the normalized polar

diagram we need only consider the integral of (1) + (2) as

that alone is angularly dependent. We further lose no gener-

ality if we consider only an electric current flowing in the

x-direction - the effect of other current components may be

taken into account by superposition.

With these simplifications our basic equations become

S =C 010 c-q6-



r000

if we are dealing with a surface current distribution,

the above integration is restricted to this surface. In

particular let us consider a plane aperture lying in the

xy plane. Then since

WP=Ainw covW 4' 4dtOCQ.tP t a" ICodP /k.

and our formulas become

P ySVet6A co yf 4in 5l

%~(, )= ~ec"0 f SOe 4

We can obtain the equations for a discrete array such as

an array of infinitesimal elements or dipoles located in the

xy plane by letting

c"ksr-ZZ'T '; & mc.i) Jpn)Ino()

where, for simplicity, we have considered our elements equi-

spaced. Inserting this delta function formulation into our

basic equation we have

T(g YO)= -CodSe oy 72: 4e4)

S4059 f22z Ei-n (s)
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Various types of polar diagrams can be obtained by a suit-

able choice of the current distribution. The determination of

the necessary current distribution is the synthesis problem

which is treated in Section III of this thesis.

As a means of introduction let us consider a uniform cur-

rent distribution and obtain the polar diagram in the principal

plane 9 s 900. Applying (lb) we obtain

) (6).

This imple case yields the well known sin x/x pattern. It

possesses a main beam of half-power width of 50.40 /a and de-

creasing minor lobes. The successive minor lobes have the

intensity of 13.2 db, 17.8 db, 20.8 db, etc. The uniform dis-

crete aperture has similar behavior. (silver, pg. 180.)

Even in the early days of radio these minor lobes in dis-

crete arrays proved troublesome and it was proposed that the

individual elements have amplitudes proportional to the coef-

ficients of the binomial series (Stone). Such an array has a

radiation pattern with no side lobes; however this is achieved

at the expense of approximately doubling the beamwidth and

utilizing large current ratios in the array. Alternate less

severe tapering schemes were usually employed and the resultant

polar diagram was computed until a satisfactory arrangement was

obtained.
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Recently the use of the Tschbyscheff polynomials was pro-

posed to obtain a current distribution for discrete arrays

(Dolph). It has been shown that this arrangement yields an

antenna of maximum gain and minimum beamwidth for a previously

specified side lobe level. The minor lobes are all of equal

amplitude and tbair magnitude may be chosen as low as desired.

The limiting case of zero minor lobes reduces to the binomial

distribution of Stone. (Kraus, pg. 109.)

With the advent of radar and the use of microwave frequen-

cies similar tapering schemes were worked out for continuous

apertures (Silver, pg. 187). Radar particularly required an-

tennas with low minor lobes as targets in these directions

would produce false indications. Theoretically at least, the

side lobe level could be chosen as low as desired - greater

side lobe suppression, in general, calling for a larger current

taper and resulting in lower gain and wider beamwidth.

We inquire what is the effect of aperture distribution

errors on the resulting polar diagram? We would expect that

the effect of these errors is first manifested in the side lobe

region where the radiation is low as the errors tend to destroy

the almost complete destructive interference of the contribu-

tions from the different portions of the aperture.

Before we consider the effect of such aperture errors, let

us first examine the types of possible antenna errors.

2). Nature of Aperture Distribution Errors

The aperture distribution errors or the deviation from

the theoretical aperture excitation may be of many kinds and

-9-



due to many causes. Certain types of antenna systems may be

prone to a particular error and that one may predominate.

However in any case, we may divide the aperture errors into

two general types; namely: (a) the first kind, which lack-

ing a better name, we call "predictable" errors and (b) the

second, called "random errors".

Predictable errors are those which occur due to the omission

of some factor in the design or engineering analysis. In this

classification we would include errors caused by such factors

as (1) mutual impedance between elements, (2) diffraction at

a lens antenna step, (2) termination mismatch of a broadside

or slot array, (4) fixed error due to machining or faulty r.f.

measurements, (5) incorrectly positioned feed in a parabolic

mirror, etc. A number of antennas of the same type will have

the same "predictable" error. Once this error is known, either

from theory or experiment, its effect on the polar diagram can

be computed by standard methods.

In contrast, "random errors" are caused by accidental

and usually slight deviations of the antenna parameters from

their design value. Examples of such random errors are (j)

machining errors in a broadside or slot array - these may cause

an error in the current delivered to an element or actually

radiated from it, (2) r.f. measurement errors incurred in ad-

justing the array, (3) wall spacing errors in metal plate lenses,

(4) random distortion of the surface of a parabolic mirror, etc.

These "random" errors will vary from antenna to antenna among

seemingly identical antennas. They create a statistical problem

- 10-



and we can speak only about the average behavior of the .

"ensemble" and the probability distribution of its members.

In a constructed antenna it may be difficult to differen-

tiate the two classes of errors - however, they can always be

theoretically resolved for, if we designate by J0 (x) the de-

sired aperture distribution, by J(x) the distribution of a

given antenna and by J(x) the system average distribution, i.e.

the average distribution of a large number of similar antennas,

then the predictable error is given by

JjX)) ()

and the random error by

J& - Jh) (8)

As mentioned, standard methods may be applied to determine

the effect of the "predictable" errors once these errors are

known. A brief review of this treatment and references to the

literature will be presented in the next subsection. Random

errors have not received treatment in the literature and a

theory will be formulated for them in the remainder of this

section.

3). Predictable Errors

To illustrate the methods of treating known aperture

errors it is sufficient to consider the two dimensional problem -

that is the pattern of a line source. Referring to equations

(1a) and (2b) and changing our notation slightly to conform

-11-



with that usual in the literature for this analysis (Spencer -

Austin) we have, outside of the obliquity factors,

where g0(u) is the field strength pattern, f(x) the source

distribution, "x" is measured in wavelengths and u = sin e.

If we now consider the amplitude distribution to be in

error by f(x) - f,(x), the new distribution can in general be

expanded in a power series

A = 4**(0)

The resulting pattern can be written

W

-it/

Now since

we can write for the new pattern

-(Oa d
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The modified pattern is therefore seen to be a linear

sum of the original pattern and its derivatives.

A similar technique can be applied to a pure phase error,

that is ir

C9 /X) e lc)rO / 2 rewV f.3

However, only for small phase errors can the exponential be readily

expanded and a result similar to (12) obtained. In addition,

special cases may be worked out directly from (13) - for in-

stance if we have only a linear phase error this produces a

tilt of the beam or a square law phase error may be evaluated

for uniform illumination in terms of the Fresnel integrals.

(Friis and Lewis, pg. 243) For pencil beams several important

cases of phase error are evaluated in the literature in the

form of plotted curves, especially in (Spencer - Austin).

The above method of analysis of errors is especially

useful for computation of defocussing errors and coma scanning

errors in parabolas or lens antennas. An alternate analysis,

more suitable for use in the case where the error is periodic

as in slot or lens antennas, is found in (Brown). In this case

the amplitude error is expanded in a Fourier Series instead

of a power series.

A(41
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"d" may be any fundamental period, although the function will

be used only in the interval -W 4 x < W; any convenient

functional extension may be used outside this interval.

The radiation pattern due to (14) may be computed as

j2rxq cIj xu.n

eLO-V f

QO.

It is seen that the modified pattern now consists of the

original pattern plus patterns of the same shape displaced

from the origin by the amount n/d. This is illustrated in

Fig. No. 2 for the first harmonic.

Fig. No. 2/6

Successive harmonics would create additional patterns at

2/d, 3/d, etc. For large periods the additional error

lobe is not distinqt from the main beam and serves largely

in distorting the desired radiation. For smaller periodicities

-14-



the disturbing lobes become distinct and frequently the

source of error may be located by computing its fundamental

period.

It should be noted that for n/d > 1 or for periodicities

less than a wavelength the spurious lobe occurs at sin B > I

and therefore does not appear in the actual pattern. A

similar expansion can be made for an arbitrary phase error

and for small errors the exponential can again be expanded

yielding a similar pattern structure.

The power series and the Fourier series treatment of

aperture errors will yield the same result provided a suf-

ficient number of terms are taken in each case. However, in

a particular problem one may be of considerable advantage over

the other.

Having briefly considered "predictable" errors we turn

our attention to "random" errors. The next subsection serves

as a statistical introduction.

4). Statistical Introduction (Cramer, Cptrs. 15 to 20)

We can begin our study of "random" errors by first con-

sidering the simpler discrete array. In this case we assume

that the individual elements of the array are independently

in error. From eq. (4) and (5) we see that we are dealing

with sums of quantities which have a random component. We

first inquire what are the statistical properties of sums.

a). Gaussian Distribution

Let us consider the sum "S" of a large number of

independent random scalar variables xk:

-15-



5= XK' (7)

The Q s are samples chosen at random from N distributions,

not necessarily the same, and we inquire, what is the distri-

bution or likelihood of their sum. The Central Limit Theorem

of statistical theory, subject to rather general conditions,

states that the sum will be disbtributed in an asymptotically

Gaussian manner with a mean "Im" and variance "(" which are

the sum of the individual N distributions, that is

7 = Qoa).

and the distribution of "S" is (m,o ), or

c- mt/v

0 -(20).

The theorem may be derived by the characteristic function

method and for the case where the individual distributions

are the same and normal the derivation is quite simple. How-

ever, for different and non-Gaussian distributions the deriva-

tion is mathematically more subtle and is obtained by a limiting

process. It may be found in the literature (Cramer pg. 212).
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Briefly the derivation assumes that the number of com-

ponents "N" is large and that the third absolute moment of

Xk about its mean

is finite for every "k" and that the limit

where

Eq. 21 and 22 are therefore the conditions of applicability

of the Central Limit Theorem.

We note that the theorem requires only condition (21)

when the "xk" come from the same distribution, as then

and /00(24)
and

0- (26)
so that

This less stringent condition is also sufficient when

the individual components come from proportional distributions

as then 'I

,r.0 ( - -Z -/ (272

*The symbol E( ) has the usual statistical significance of

expected value.
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Although the theorem is only asymptotically true, that

is we only approach a Gaussian distribution, it has been found

that if the number of components is above say six the result-

ing distribution is already closely Gaussian. In particular

if the individual components originally come from a Gaussian

distribution themselves no restriction need be placed on the

number in the sum.

The Gaussian or normal distribution is shown in Fig. No. 3.

Fig. No. 3

It is characterized by a mean "Im" and a variance c and it

can be computed that approximately 68 percent of the sums lie

within m Cr and 95 percent between m 20- .

The Gaussian distribution may in a sense be termed the

"natural" distribution in that it occurs in physical phenome-

na. As the deviation of a physical quantity from a theoreti-

cal value is generally due to a number of independent causes,

the Central Limit Theorem informs us that the quantity will

be distributed in an asymptotically Gaussian manner about its

mean.

- 18-



The normal distribution of the sum (17) can be applied

to electrical problems as it may be interpreted as the sum

of a large number of d.c. or in-phase voltages or vectors.

We next inquire what is the effect of adding a constant

value to our (17), that is, what is the distribution of the

sum

= Q X(28)

We would expect that the distribution W(S) would still be

Gaussian but now displaced by the amount "a", that is, it

would be characterized by (m+a,O).

We can utilize this very simple example to introduce

the characteristic function method and statistical manipula-

tions in general.

Given a distribution function W(x), the characteristic

or moment generating function is defined as

x ff &e -y-(x) a(Z

.(29)

This function is called the moment generating function as, if

the exponential is expanded

a

it is seen that the "nth" moment of W(x) can be obtained

directly from the characteristic function by

-19-



Furthermore, by the Fourier Integral Theorem the proba-

bility distribution and the characteristic function (29) form

a Fourier Transform pair, so that:

a

(sZ

Now let us consider the sum, z, of two random and inde-

pende-ut variables, x and y; then

ab

but

As we are dealing with independent variables, the expected

value or mean of a product is the product of the means, so

that

zry

or

-20-



We can extend this to any number of independent variables and

have the important theorem on characteristic functions, namely

that:

"The characteristic function of a sum of independent

variable s is equal to the product of the characteristic

functions of the terms."

As we wish the distribution of "z" we must take the in-

verse transform of eq. (33). This can be readily done by the

use of the convolution theorem and the desired distribution

may be expressed in terms of the original component distributions

0@

7e0 (z,) == r'r(-x) wi c%) dx

or

W r) (J7ZF(z - x) Wy- (4r),

This same result could have been obtained directly by the

consideration of the joint probability of independent events.

The probability of a given value of "z" is

Oe

-fw8(X)Wy)dx 
(as)

As we are subject to the restriction z = x + y , this becomes

Z) (K) 74rv (Z- K)OX

whic h is the same re sult as (34).

Returning now to our displacement problem as presented

by eq. (28), by the Central Limit Theorem the sum is Gaussian

-21-



and the constant is distributed as a delta function

Applying eq. (34)

J 8/-a ~--a) W

1-2 )=

/I, ttt

- --

a.0,

which is the expected result, that is, Gaussian with (m+a, o).

b). Diverse Non-normal Distributions

Due to the generality of the Central Limit Theorem,

there is the danger of assuming that all sums of a large num-

ber of elements are distributed in a Gaussian manner and that

therefore all physical quantities involving a number of additive

components are at least asymptotically Gaussian.

This fallacy can be readily demonstrated by the con-

sideration of some examples. Although S a Ex is normally

distributed, the magnitude M |xj is not. If S is normal-

ly distributed with zero mean, then the distribution of the

magnitude

:-(r -le

/1 o

/4f (4/)

-22-

(- a).

or

-(o) =



will be of the form of a folded over normal curve (Fig. 4)

Fig. No. 4

Another non-Gaussian distribution of interest is the

distribution of p = ( ak)2, which could be used to represent

the distribution of the power in d.c. circuits when the indi-

vidual voltages are random in magnitude.

To obtain the distribution of "p" we can make a change

in variable in eg. (20) as the sum, by itself, is Gaussian;

that is, we let

P.- CSa OR/ = 23d5

and since

-vr~(p)dp2 ==Lw-XSdS a4 po

2r5p) -

where we have assumed that the original normal distribution

(38)

<o a
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had zero mean. Fig. No. 5 shows this distribution.

Fig. No. 5

A distribution of greater interest to our problem is that

of

P = & w/r(t.t25rt1(9

By the Central Limit Theorem the individual sums will be

Gaussian. For our application we can assume that they have

zero mean and both have the same variance. This distribution

can be used to represent the distribution of power in an a.c.

circuit where the individual a.c. voltages have random magni-

tudes and all phase angles equally likely. The zero mean and

identical variance is statistically assured by the equally

likely phase angle condition.

The distribution of "p ", W(p) can readily be obtained by

means of characteristic functions or by means of the convolu-

tion integral, eq. (34). The individual distributions W(I)

and W( ) are given by eq. (38), and



( ?n-, r Arj) d00O

21T

-P/acr

eil
crx

This can be readily integrated by the substitution

-L
fam-'ri

with the result

dw= =
wit

flC(p)
C rix

~"Wcrx clip-otSI
This can be put into a more convenient form as

?A \ 4r

=EaM +r 1
== =7

n wmlw IOtE

hence

e P/-'

=- C

This distribution is therefore characterized only by the mean

power = crL and it is shown graphically in Fig. No. 6.
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Fig. No. 6

c). Rayleigh Distribution

The Rayleigh distribution W(r), is the distribution

of the magnitude

N=I(K~+ QZ$ 4Z

wherein the individual sums have zero mean and identical variance.

It can be derived simply from the distribution W(p), Eq. (41),

by the substitution p = r2, dp = 2rdr with the result

This distribution may be applied to a number of physi-

cal problems, that is, to those which satisfy eq. (42). This

equation expresses the magnitude of a vector sum and the zero

mean and identical variance conditions require having all di-

rections equally likely.

This distribution was first investigated by (Rayleigh)

in connection with the problem of the random walk and in the

-26-



incoherent addition of acoustic waves. In the random walk a

particle suffers a large number of random displacements, with

all directions equally likely, the magnitude and direction of

each displacement being independent of all previous ones. We

inquire about the probability that after "N" displacements the

particle lies in the circular strip of "N" to " L+dN". As

the particle's final position is given by (42), the probability

distribution will be given by (43) with Cr'equal to the mean

square total displacement.

As the resultant voltage of a large number of random a.c.

voltages of arbitrary phase can be represented by a vector sum,

the resultant voltage magnitude will be Rayleigh distributed

with CT equal to the mean power. We can therefore apply this

distribution to a number of electrical problems. These include

the distribution or likelihood of a given: (1) voltage stand-

ing wave ratio on a transmission line caused by randomly located

discontinuities, (2) the radar return from a group of random

scatterers, (3) transmission in the rejection band of an electri-

cal filter caused by errors in its circuit components, (4) side

lobe level of an antenna caused by aperture excitation errors.

As an illustration of the Rayleigh distribution, consider

25 a.c. generators connected in series. The individual phases

or shaft positions are at random and the generators may have

either equal voltages of one volt or they may be taken from

any population of unit variance. If this population were Gauss-

ian then 68 percent of the generator voltages will be less than

-27-



one volt and 95 percent of them would be less than two. To

apply eq. (43) we must evaluate the mean power

where "n" is the number of voltages. This is the well known

result that the intensity resulting from the superposition of

"n" waves with random phases is just "a" times that due to a

single wave. However, this is merely the expected or average

value and if individual readings were obtained with different

shaft positions we would obtain a distribution of values rang-

ing from 0 to a2 . Fig. No. 7 shows this distribution for the

case of n = 9 and n = 25.

To better illustrate the nature of the distribution we

compute the cumulative probability, that is, the probability

that the magnitude greater than a specified value will occur.

This is equal to

which is plotted in Fig. No. 8.

As another illustration of the Rayleigh distribution, con-

sider the light incident on this page. As it is due to a large

number of incoherent atomic sources, its intensity will be dis-

tributed in a Rayleigh manner. We do not "see" this variation

of intensity as our perception is too coarse and too slow.

-28-



$4

'0.

H -7

0.07

o 20 40 60 80 Intensity r
0 3 4 5 6 7 8 9 Amplitude r

Fig. No. 7
r4

.d100

S80 ~77 A > --C

01

60

10

4-$

S20 n-9 n2

60 0 20 40 0 0 r3 8 9 Amplitude
0i6N.2

Fig. No. 8

-29-



401

However, our statistical analysis indicates that 1 percent

of the area has an incident intensity greater than twice the

mean and only 2 percent greater than four times the average.

A photocell measures the average intensity as it performs an

integration over its sensitive area.

Finally the Rayleigh distribution may be considered as

being compounded from two perpendicular and independent Gauss-

ian distributions. The probability density surface is shown

in Fig. No. 9.

Fig. No.9

The distribution of "r" could have been alternately derived

by performing the "0" integration.. Another method of deriv-

ing the Rayleigh distribution is by the use of characteristic

functions. This is done in (chandrasekhar) and in (Uhlenbeck,

pg. 50).

d).. Modified Rayleigh Distribution

Let us now consider the addition of a constant dis-

placement "a" to the Rayleigh distribution or the distribution

-30-



of "r" where

No generality is lost in adding the constant to only one of

the sums as the axes can always be rotated so that the dis-

placement coincides with the "x" axis. In the antenna problem

the constant "a" would correspond to the signal present due

to the existing or inherent side lobes of the zero error aperture.

To derive the modified distribution of eq. (45) we displace

the two dimensional Gaussian distribution of Fig. No. 9 to the

point (a,O). Fig. No. 10 indicates the result with the necessary

coordinate system.

yIx

itx-

(%o) 

Fig. No. 10
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now

OLx,$ =W W(%) x = -- ' eke e L

W 4L

a-a
-T

2n e COZa.l.t(0

The last integration may be found in (McLachlan, pg. 162).

I1 z] is the modified Bessel Function of the First Kind.

we can call (46) a modified Rayleigh distribution. It

was discussed by (Blake) in connection with the probable radar

return from random sea clutter with a direct signal present.

Fig. No. 11 shows this modified Rayleigh distribution for

various values of the displacement "a". Fig. No. 12 gives the

cumulative probability. This was calculated by graphical inte-

gration of Fig. No. 11. For small values of "a" this modified

distribution naturally approaches the Rayleigh curve and for

large values of "a", due to the asymptotic behavior of the

Bessel function, we obtain
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or approximately Gaussian behavior with (a, o ).

We still need to find the mean power of the modified dis-

tribution. This may be done by computing the expected value

of "ir2 ", from W(r), eq. (46), or simply from eq. (45).

where we have realized that the mean of the sum of independent

variables is the sum of the means and that \ = 0. The

result is as we would expect from the incoherent addition of

powers.

5). Application to a Discrete Array

a). Effect of Distribution Errors on Antenna Pattern

Having introduced the necessary statistical tools,

we are in a position to analyse the effect of aperture dis-

tribution errors on the performance of a discrete array. We

have mentioned that by the use of the (Dolph) distribution

it is possible, at least theoretically, to obtain a side lobe

level as low as desired. Fig. No. 13 shows the polar diagram

of a broadside array of 25 elements designed for side lobe

suppression of 29 db. We note that the radiation is practical-

ly confined to an angular width of "2 .". Outside of this

-"a50
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region, due to almost complete destructive interference of the

contributions from the various members of the array, the radia-

tion magnitude does not exceed this previously specified small

value.

Fig. No. 14 gives a physical explanation of the pattern

formation. In the main beam direction the individual element

contributions add up in phase creating a large amplitude. Where-

as in the side lobe region the vectors spiral around many times

but their resultant lies within the 29 db circle. It is evident

that our individual vector magnitudes must be carefully chosen

and precisely maintained so that no where does their sum exceed

-29 db. Furthermore, we suspect that greater side lobe suppres-

sion requires not only a greater current taper but also a greater

current accuracy.

The engineering question naturally arises as to what pre-

cision must the currents be maintained for a given side lobe

suppression, or conversely what side lobes are caused by a

given current error. It is suspected that if great side lobe

suppression is utilized the side lobe level will be determined

not by the current taper but by the error or deviation of the

antenna currents from their theoretical values.

If the individual contributions are in error at random,

say both in phase and magnitude, the resultant electric intensity

would be of the form

=+



V
Xbb

SIDE LOSE REGION
NORMAL TO ARRAY

m - 0

Figure No. 14



where g0(u) is the intensity with no error. In the side lobe

region where the contributing vectors have spiraled around

many times, the sums in (49) would have statistically zero

mean and identical variance. Furthermore, as we are dealing

with a large number of elements, at least greater than six,

the individual sums would be asymptotically Gaussian accord-

ing to the Central Limit Theorem. As Eq. (49) is of the form

of eq. (45) and we have satisfied the necessary conditions,

the resultant electric intensity will be distributed in a

modified Rayleigh manner with g0(u) playing the role of the

previously introduced displacement "a".

If we could now determine the mean power, our distribution

would be completely specified. The mean power or the average

power of a large "ensemble" of similar antennas can be found

from the radiation patterns by standard statistical methods.

Let us apply our analysis to the important case of a broadside

array of MN elements spaced a distance "d" apart, quarter wave

in front of a reflecting screen. The far-field field-component

intensities are given, outside of distance and proportionality

factors, by eq. (4) and (5), (section II, 1)

^t/ M j~4i9? [nidAAbe 97nclyrtI]

e , oos9 CO6/2ZZ' 2- e (4)
M1#9t fafr 0yCndAogt

4Q& ( 2



The coordinates are the usual right-handed system, with the

array in the xy plane and directed along the z or 9 - 0 axis.

The current is assumed to flow in the x-direction. The above

formulas should be multiplied by a screen factor of sin(fcos 0),

however we shall use the closely related function iCos G

to preclude later integration difficulties. The two functions

are shown in Fig. No. 15. As we will be primarily concerned

with highly directive arrays, the difference is not significant.

Now let us consider the individual element currents inde-

pendently in error, both in phase and magnitude; that is, our

currents become LZA. (/ + A4,n) e' , where the phase

angle is measured in radians. The power patterns may be ob-

tained from (4) and (5) by forming the complex conjugate.

Writing the summation term only we have:

MtdbV

27 9JAnp7(i An) IDe9

The desired or no-error pattern is

'0(9'f) Oe ' V
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Lot us now compute the "system average" pattern, that is, the

average pattern of a large number of similar arrays. Designat-

ing this pattern by P(@j7 and assuming, as is likely, that

the mean error is zero or that 4,, = j, 0, we have:

where we have let y and realized that the mean

of the sum of independent variable s is the. sum of the means.

We must now evaluate the mean of cos y and sin y where

our fundamental random variable is "" We may assume that

"T" is distributed in a normal manner. This will be asymptoti-

cally true if the phase error is due to a number of causes

and such errors are small, so that a first order or linear

relation exists t .. tween the cause of the phase error and the

error itself.

"tY " then be come s a rand om variable generate d asa the d if-

ference of two samples from a normal distribution. Fig. No. 16

shows the generation of this variable, commonly called the

trange" in statistics.

Fig. No. 16
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The distribution "W(y)" is given by

(51Z)do

where

wAC(S) W=
/ eomm

(54)

and

Arr /

eo Amn t # 2S&
#59

Performing the integration we obtain

V4

and

c&art, e

(647)v

Applying these results to (52), making use of (51), and adding

the two component powers (4) and (5)

=+7.
(58)

== tot rQ,() el
-0s

fnny

"%*.r ( ts)

=: unom



where the obliquity factor is reintroduced, being

%69.po) = cot e/eoatecoa& ' (sv).

Normalizing our pattern and calling the total mean square

error

=1 4--e~ (to)

f(G -ffr= fl(4y') +7' 9 r _{,

Equation (61) gives the "average system" pattern. We

note that the effect of the error distribution is to add a

spatially constant (outside of an inherent obliquity and screen

factor) power level proportional to the mean squared error.

Individual arrays and particular spatial directions will show

side lobe radiation differing from this constant value and

distributed in a modified Rayleigh manner with the following

constants

It should be noted that when the errors are small so that

a 2lO , the field strength will be distributed approximately



Gaussian about the no-error pattern; whereas for large errors

where 0"&|> ';|P a2  and the original minor lobe radiation may be

neglected, we have Rayleigh behavior.

The formula also indicates that relatively smaller spurious

radiation will occur for a larger number of elements, in fact

the error contribution depends approximately on 1/NM. Hence.,

for a given current precision low side lobes are more readily

realized with large antennas. This is not suprising physically

as the main beam intensity increases as the square of the number

of elements or as (NM)2, whereas the spurious radiation, being

incoherent, increases only as NM.

To illustrate the application of our result, eq. (61),

we consider our 25 element array designed to suppress the

minor lobes to 29 db. Following the Dolph procedure, we compute

the current distribution to be

I0 -1.00 17 - 0.627

Il = 1.00 18 = 0.535

12 = 0.970 19 = 0.445

I3 = 0.923 110 = 0.358

14 = 0.863 Ill 0.278

I5= 0.795 112 -0.418

16 0.715 and I-k Ik

from which tie

o .,M= /6..6
A/

AR Z8W7
.45-
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In Fig. No. 17 we plot, for those angular positions where

the no-error minor lobes have maxima, the probability that the

radiation will be below a specified number of db when a given

mean error exists in the antenna currents. Fig. No. 12 is

used to compute the necessary cumulative probability of the

modified Rayleigh Distribution. A 50 element antenna with the

same taper would have roughly 3 db lower spurious radiation.

Finally, we compute an actual pattern of our 29 db antenna

with a specific set of error currents. The error chosen was

one wherein each element was assumed to be in error by the

addition of a current 40 percent in magnitude and at random

phase. The'random phases were obtained by drawing, at random,

from a hat containing the numbers from 0 to 359' The random

phases could preferably have been taken from a table of random

angles (Morse - Table II). The author was unaware of the ex-

istence of these tables, which have been specifically checked

for randomness, at the time this computation was made. Figure

No. 18 shows both the no-error and the error pattern ( C = 0.16).

Figure No. 19 plots the distribution of side lobe magnitudes

as obtained from the error pattern and from the Rayleigh dis-

tribution. The limiting form of the Rayleigh case is used as

the error currents are so large that the inherent no-error

radiation is negligible.

It is worthwhile to point out that the actual computation

of the error pattern is a very time consuming operation. At

each angular position 25 inphase and phase quadrature terms

must be summed and their magnitude obtained. The entire

-46-
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operation must be performed with sufficient accuracy to repro-

duce the pattern in the side lobe region where almost complete

cancellation exists under the no-error condition. The pattern

drawn in Fig. No. 18 was actually computed by an electric analog

antenna pattern calculator at the Naval Research Laboratory in

Washington, D.C. Figure No. 19 indicates that our statistical

theory gives our side lobe distribution without any tedious

calculations.

The excellent agreement in Fig. No. 18 indicates that we

can use the Rayleigh distribution in the case of a 25 element

array, although it is only asymptotically applicable.

b). Effect of Distribution Errors on Antenna Gain

Let us now consider the effect of the current errors

on the antenna gain. The gain G, over an isotropic radiator,

may be written as the ratio of the radiated power of the iso-

tropic radiator to that of the test antenna when both antennas

create the same field strength. We therefore have the gain

formula

4r

Letting G be the gain of the antenna with the error distribu-

tion and G0 that of the no-error antenna, we have, upon insert-

ing the average pattern (61) and performing the evident integra-

tions

-50-
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As G is usually a large number, we can write approximately

/6t (6&6).

Into eq. (66) we can insert the value of Go as measured

by experimental means or determined by graphical integration

from the theoretical antenna patterns. It would be desirable

to have a simple, even though approximate, expression for the

gain of a braodside array that could be used to further simplify

eq. (66). search of the literature has failed in finding such

a useful expression. We can, however, derive such an approxi-

mate value from its continuous aperture counterpart. The gain

of a uniformly illuminated aperture of area at least one square

wavelength is given by (Silver, pg. 177)

O. -= 2. 0

-1"-1s



If now the same aperture were to consist of discrete

radiators with equal excitation, the radiation pattern would

hardly change provided the elements are spaced closer than a

wavelength so that the second order diffraction maximums do

not occur. As the pattern has not changed, the gain is un-

altered and may be written as

where "M" is the number of columns, "N" the number of rows,

and "d" the spacing. If now the excitation be altered, so

that the "math" element carries the current Imn, then the "on-

axis" radiation will become

and the input power becomes

~2.

provided that we assume negligible coupling between elements.

Inserting these modifications into (68) we have for the gain

of a broadside array, quarterwave in front of a reflecting

screen

.(%9)
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Using this useful though approximate expression in (66)

we have for the reduction in gain due to errors

-/ G (ga)i

A result independent of the current distribution and the size

of the array.

6). Application to a Continuous Aperture

a). Effect of Distribution Errors on Antenna Pattern (Booker)

In general the same statistical considerations apply

to the aperture antenna as to the discrete array. However, an

additional factor is introduced which considerably alters the

final result. In the discrete case we assumed that the error

current in one element was independent of the error currents

in adjacent elements. This assumption is untenable in an aper-

ture antenna as if the error is large at one point it will proba-

bly be large in the immediate neighborhood. The size of the

correlated region will be found to affect both the magnitude

and the directional characteristics of the spurious radiation.

Let us begin our discussion by considering a circular

aperture excited by an electric current in the x-direction.

Fig. No. 20 shows the coordinate system. As we are interested

primarily in parabolic mirrors we will consider only a pure

phase error, "6S", expressed in radians.

- 5>s
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Following closely our discrete analysis and avoiding

needless repetition, we write the far field, outside of the

obliquity factor, from eq. (la)

T7T0 ol

For a paraboloid the integration is performed over the mirror

surface and the current is equal to the tangential magnetic

component of the incident field. With a position dependent

phase error the far field becomes

and the power pattern (corresponding to eq. (50) in the discrete

case) formed by multiplication by means of the complex conjugate..

becomes

, fk- Or-f) 7Ctr) -. scr')IJfZpl)n-) $4re( t tr e e t (70

changing tte vector position variable, so that (r-ir') =

C= ) 1 SC/6- dJr



and with the same notation as previously, we obtain for the

mean pattern

.a 0 ml

rctr*#77 04

fir il(*YXOO

Now "y", the phase difference of two points on the aper-

ture spaced a distance 7apart, has zero mean as positive and

negative errors are equally likely. For large values of '

the phase errors are uncorrelated and the mean square has the

same value as previously, namely y2  = 2 . For 7m = 0,

the mean square phase difference is obviously zero. The mean

square value therefore depends on /r and we have only its limit-

ing values. We must assume some functional form to fit these

two conditions. Assuming that:

r-(r) P (7s)Tr) ==2 6-2 -

where "C" may be defined as a "correlation interval", that is,

that distance "on average" where the errors become essentially

independent. Equation (73) has the form indicated in Figure

No. 21.

w-

Fig. ?lo. 21



In equation (73) we have purposely neglected the vector

character of 'r ; this means that we are assuming that the

mean square phase difference between two points spaced a dis-

tance *r apart is independent of the direction in which we

choose the second point. This is a good assumption if the

errors are uniformly distributed over the aperture.

Inserting (73) into (56) and defining the aperture auto-

correlation function

KV) /Yorm r)WWO

eq. (72) becomes

'y df.r e a- . 'Sc (k

Expanding the exponential and realizing that the undistorted

pattern is

Aa)fAJF)

we have

/71.P P,)=T7i4, )e vte rdt oC

(77
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Now $(?), the no-error aperture

a slowly varying function, with

at twice the apertur& diameter.

tially vanishes beyond the error

for '7PfC. This is illustrated

auto-correlation function, is

0(0) = 1 and decreasing to zero

Whereas the exponential essen-

correlation interval, that is

in Fig. No. 22.

Fig. No. 22

We make little error in taking %(yr) as unity as the contribu-

tion to the integral for mrv c where 0(7r) differs from one is

negligible.

Now

criwvrm Cod/PrfP

7r - lCoo/esso cor

inserting and performing the "s" integration (McLachlin, pg. 157),

we obtain with the notation, u = sin Q:
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p~eg) = 6~9(,) e, +

We are now faced with the evaluation of the integral

1= f n "7(wr)dr (o)

This integral is of some interest as the identical form would

occur for the polar diagram of a circular aperture excited

with a Gaussian taper (silver, pg. 194). To evaluate we in-

sert for the Bessel function Schlafli's contour integral form

(Copson, pg. 319)

2ri Jt
C

The integration contour runs as indicated in Fig. No. 23

ChC

Fig. No. 23
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We have now

1z a 447 trI f r e tr-C% rdre4

where b = u. The integration over or can be readily

evaluated leading to the form

Thisn last c.1b
This last integration can be performed by the method of

residues as it has a simple pole at t cb . We obtain
4n

2n

This is a rather interesting result as, since (80) could be

interpreted as the polar diagram of a circular aperture with

a Gaussian taper, the polar diagram is again Gaussian. This

is rather suprising as circular apertures normally have Bessel

functions for their radiation patterns.

Inserting (81) into (79)

P(pf) =1?(ep e + f0c'7 e e (82)
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normalizing by dividing by the factor /fJ -9r Vj7 and

using the approximate though generally accepted formula for

the gain of equiphase aperture (Silver, pg. 177)

A fYI0 To) /S

we obtain

/ 7rCtCI4g/

r~9=t~&#4ts niZL-&e r c)

where we have further summed the two component powers and

introduced our obliquity and screen factors.

Equation (84) is comparable to eq. (61) and gives the

average system pattern. For small phase errors we need to

consider only the first term of the summation the distrub-

ing pattern then is

We note that the spurious radiation is again proportional

to the mean squared error but in addition is proportional to

the square of the correlation interval in wavelengths. Further-

more, this radiation is no longer essentially uniformly spatially
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distributed but becomes, on the average, directionally directed

along the axis of the aperture. The directivity increases with

the size of the correlated region, so that for "rough" reflec-

tors, where the correlation interval is small, energy is scatter-

ed uniformly. This is not at all suprising physically, for

regions large compared to a wavelength (which are at the same

phase) will scatter more strongly and more directively. As we

have many such regions randomly located and oriented, there will

be a concentration of the "average ensemble" radiation along the

axis of the reflector.

The importance of the accuracy of the reflector shape is

well known in antenna design. A thirty-second of a wavelength

tolerance on the reflector surface (sixteenth on the resulting

phase front) is a common criteria. Our analysis introduces

the like importance of the size or extent of the distortion.

If errors are unavoidable in a reflecting surface, one should

endeavor that they be small in extent - furthermore, small dis-

turbances such as heads of screws and rivets holding the re-

flector in place will have but a small deleterious effect on

the antenna performance.

The theory reveals that if we consider two reflectors of

the same mechanical tolerance but of different values of "c",

that is, the mechanical errors in one, although having the

same average magnitude, have a larger period (Fig. No. 24),

then the "rougher" reflector (smaller "c") will have lower side

lobes and they will be more uniformly distributed in angular

direction.
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Smooth Reflector "Rough" Reflector

Large "Ce Small "c"

Fig. No. 24

Unfortunately the analysis indicates that a reflector of

given gain will degenerate much more rapidly than had been

previously expected as the frequency is raised. Increasing

the frequency increases the scattered energy both due to the

increase in the correlation interval and due to the increase

in the phase error. For reflectors of the same gain (same

diameter in wavelengths) the relative side lobe level will in-

crease as the fourth power of the frequency or 12 db per octave.

As the factor "c" occurs directly in our basic formula,

it is of interest to speculate on its probable value in a

typical reflector. The constant appears in relation to the

wavelength so that for antennas in the "L" band (25 cm.) "c"

may be quite small, say of the order of a tenth or a fifth,

whereas in the "K" band (1.25 cm) values of "c" of the order

of two or four would not be uncommon. Very large values of

"c" would occur if the reflector is subjected to random warping



as would be caused by temperature changes or mechanical stress.

Furthermore, if the reflector is carefully made so that many

mechanical check points exist, then "c" would also be small

thereas if great care is not utilized so that large mechanical

errors occur they most likely would extend over quite a region

making "c" large.

The higher order terms of eq. (84) are of lower directivity

and hence have the same effect as a smaller correlation interval.

This again has physical basis due to the periodic nature of the

trigonometric functions; wherein a phase error of 3600 represents

no error at all but merely an effect similar to a reduction in

the correlation interval. It should be noted that the correla-

tion interval is not cut in half due to the Gaussian distribu-

tion of phase errors or in other words there will not be many

places where the error exceeds 3600.

(1) Application to a Parabolic Mirror

We began the discussion of the continuous aper-

ture by considering a plane circular aperture with an electric

current flowing in the "x" direction. The result obtained,

eq. (84), is of considerable greater generality. By the intro-

duction of the concept of the correlated region and the assump-

tion that the errors are uniformly distributed over the aperture,

we have separated the error integration over essentially only

the correlated region, eq. (77). The coherent term or the no-

error pattern appeared as the first term of our expansion. This

term contained the integration over the entire aperture.
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If the aperture had a different cross-section, say

elliptical or the integration were to be performed over a dif-

ferent surface, say parabolic or specially shaped, the no-error

pattern would require modification, The effect on the scattered

radiation would only be in relative level as expressed by the

no-error gain of the antenna. Our result, therefore, holds

for any continuous aperture provided we use the appropriate

pattern and gain. Further, current separability is not required.

By this dodge we have circumvented the difficult electro-

magnetic theory problem of determining the complex currents on

a shaped reflector when fed by a directive feed. Our result

merely gives the spurious radiation that results when these

currents are in error. The actual coherent or no-error pattern

can be determined by existing approximate means or measured

experimentally.

To apply our result to a parabolic reflector we need

to determine the relation between the reflector error in wave-

lengths and the corresponding phase error of this contribution

in the far field. For shallow reflectors this relation is

where "d" is the mechanical distortion measured in the same

units of length as the wavelength.

A number of graphs were prepared to illustrate the

effect of the reflector error and correlation interval on the
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spurious side lobe level. The inherent coherent level is to

be added to these curves. Although the "average" side lobe

magnitude is spatially directive, we plot only the close-in

lobes, that is, we set u = 0 in eq. (84). As we are dealing

with highly directive systems these close-in lobes are of primary

interest. Figure No. 25 plots the expected minor lobe level

as a function of the r.m.s. reflector error for uniformly il-

luminated apertures of various diameters. Again we see the

lower spurious radiation obtainable with the larger diameters

for the same tolerance. Figure No. 26 is a similar plot for

a cosine squared illumination which illumination yields an

antenna of lower gain. This illumination is typical of current

practice. Figure No. 27 shows the effect of the correlation

interval. Finally, Fig. No. 28 shows the angular pattern of

our system average pattern as it is affected by various amounts

of phase error.

b).- Effect of Distribution Errors on Antenna Gain

The average reduction in gain can be obtained as in

the discrete case by inserting into eq. (64) which is the exact

expression for antenna gain, eq. (84). This yields for the

ratio of the gains

C" ooeo*C GA ffje 4 kaoadff
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Confining our attention to the integral, performing the "%"

integration and writing c a 2

/ 
...QAIfl S

Expandin theex+coponential

Expanding the exponential

Gtl'S

mAo

hi A*n 
M6') .' 4o90

A in'i

/j O

the integrals can be evaluated (Grobner, pg. 95) so that the

bracketed term becomes

22(r>~7

Inserting and simplifying

Cho
~f 2 (+2j/

- 71e
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so that we have finally a rather complex expression for the

gain ratio

Canf aL(f7

The above formula was used in the preparation of Fig. No. 29

giving the reduction in gain of a parabolic mirror for a given

reflector mean deviation. It is possible to obtain simpler

formulas than (87) for the limiting cases of small and large

correlation intervals.

(a) Small correlation interval, c/X< 1 - the

exponential in eq. (86) is essentially constant and the

reduction in gain approaches

-- c--+ -(a5).

-=/ li/l

Further, for small reflector errors

- "%00 f.-r 3rZ cazrt

(b) Large correlation interval, xc/X?? 1 - the

exponential dies down rapidly and the integral in (86)

can be written as (we need concern ourselves only for
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small values of 0 as for appreciable values the exponen-

tial has vanished)

7C ag$

Therefore

/ -
GO Z

/t+z/ ,r./

and for small reflector errors

In Fig. No. 29 we have also drawn a curve marked "Spencer's

Limiting Value". This is based on an analysis of (Spencer, II)

wherein he shows that the fractional loss of gain of an aperture

is equal to the mean square phase error weighted according to

the excitation amplitude. A similar expression is obtained by

(Marechal) in the optical theory of aberrations. These results

are derived by means of a much simpler analysis that that pre-

sented in this thesis. As the connection is of some interest

it will be presented here. a

The analysis is not statistical but it may readily be

modified for our random error problem. The analysis is essentially

based on the on-axis gain formula, eq. (83)



yw fr Id
j cr.CrC)

It is argued that if the distribution possesses a phase error

then the gain is

g e
A1~~t fcZ) 7 t9d

for small phase errors the exponential is expanded so that

/

Desiring only the first order effect we retain the first three

terms in the numerator and performing the ensemble average with

the mean phase error equal to zero we can write

f 'z -o Jfrcroc(sf4)as,

- 75a,
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if now the ensemble mean square error is constant over the

aperture, this becomes

G6

a result identical to our eq. (91).

The question naturally arises why doesn't the correlation

interval appear in this analysis. The reason lies in the ap-

plicability of eq. (83). This equation is frequently used for

the gain of an aperture; however, it is based on the plane wave

assumption. As the denominator represents the power transferred

by a plane wave it gives, the gain only for the limiting case

of an aperture large in wavelengths and of uniform phase. When

the aperture excitation has errors and thereby departs from a

plane wave, then the denominator no longer represents the power

transferred through the aperture. If the correlation interval

is small this departure becomes marked. We would expect, there-

fore, that the approximate formula would agree with our analysis

for large correlation intervals and small phase errors, as in-

deed it does.

Before we leave the subject of antenna gain, it is necessary

to discuss the distribution of gain of the various members of the

ensemble. The loss of gain which we have plotted in Fig. No. 29

is the average loss of a large number of seemingly identical

antennas. Particular members will have gains both abovp and be-

low this value. In fact, due to the strong coherent signal in

the main beam direction, the field strength distribution will be

asymptotically Gaussian and very closely 50 percent of the antennas

will have gains greater than that indicated by Fig. No. 29.
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The distributions of the major lobe field intensities

will follow the Gaussian limit of the Modified Rayleigh distri-

bution, eq. (47), with

* 4c7E~a

where we have used only the first term of the summation in

eq. (84), and thereby confined our attention to small errors

(a good approximation as the next term adds only 25 percent

for an r.m.s. error of one radian). From eq. (47), the charac-

teristics of this Gaussian distribution are (1,crxi).

To illustrate the distribution of gains we employ an ex-

ample which we shall later use for experimental work. Consider

a 30 inch parabolic dish at X-band (3.2 cm. wavelength), with

a focal length of 10 inches. This antenna will have a power

gain of 3340 or 35.2 db. let us now randomly distort the re-

flecting surface so that it has a r.m.s. error of 0.39 radians.

The resulting phase front will have an error of 0.78 radians.

If the dents of the surface are uncorrelated beyond a wavelength,

(c % x), then from Fig. No. 29 we would expect a loss of 2.75 db.

Knowing the variance we can compute the probability of a

given dish lying between given gain limits. With the use of

a table of normal probability functions, we have that 68 per-

cent of the dishes will have gain reductions in the interval

2.27 - 3.23 db and 95 percent in the interval 1.81 - 3.69 db.
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It is also of interest to compute the probability of obtaining

a gain with this battered dish at least as great as a perfect

dish. This works out to be the infinitesimal likelihood of

0.15 x 10- percent.

The distribution of gains, according to eq. (93), depends

on the correlation interval, the mean square error and the

normal gain. Curves could be computed for a particular size

and estimated machining tolerances. It should be noted that

the gain distributions become more peaked as the gain increases

and the errors become smaller, so that large dishes with moderate

errors would cluster around our mean gain curve, Fig. No. 29,

very closely.

7). Basic Assumptions in the Analysis

A aumber of assumptions have been made in the here develop-

ed theory of antenna errors. It is desirable to make them evi-

dent. The assumptions naturally stem from our application of

statistical theory to our antenna problem. Similar assumptions

invariably occur whenever statistics is applied to small sample

physical phenomena.

In noting these assumptions, it should be borne in mind

that in the application of the theory to an actual antenna it

is necessary to make rather rough estimates of the error magni-

tudes. Our result cannot be better than the estimate of its

cause and for this reason we would expect only an order of

magnitude accuracy unless special means are taken to determine

the error magnitudes.
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The discussion is facilitated by again separating the

discrete and continuous apertures.

a). Discrete Arrays

To derive our mean pattern eq. (61), it was necessary

to assume:

(1) That the relative error was uniformly distributed

over the aperture. This does not mean that in a given antenna

the error need be the same for each element but merely "on the

average "t Actually it is probable that the strongly fed ele-

ments will have relatively smaller error due to more accurate

adjustment and lower mutual effects.

(2)- That the error currents were independent from

element to element. This will be only approximately the case

as we have interaction due to mutual coupling and internal

circuitry. Furthermore, the cause of the error may be of a

type wherein it affects several elements, for example, plate

spacing error in a metal plate lens.

(2) That the phase error was distributed in a Gauss-

ian manner. This will be approximately true for small errors

on the basis of the Central Limit Theorem. This assumption

was necessary to evaluate integral (56). Actually any dis-

tribution could have been assumed and the integral evaluated

by graphical means.

It should be noted that taking the errors to, have

zero mean is really not an assumption as the non-mean error

really forms a part of the "predictable" error problem, as

such errors exist in the average ensemble antenna.
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To apply our Modified Rayleigh distribution, it is

necessary to assume that our error vectors have all directions

equally likely and that there are a large number of elements.

This condition is fulfilled for large arrays and in the side

lobe region of the antenna pattern where the component vectors

have spiraled around many times.

b). continuous Aperture

The derivation of the mean pattern, eq. (84), required

the assumption:

(1) That the errors be uniformly distributed over

the aperture. In this connection it should be noted that if

the aperture errors are caused by a shaped reflector such as

a parabolic morror, the distribution of phase errors is no

longer uniform unless larger distortions exist around the edges

which contribute smaller phase errors. This effect is small

for shallow reflectors and can be taken care of very closely

by using a smaller r.m.s. error when the reflector has uni-

form tolerance. This uniform error assumption was necessary

in order to neglect the vector character of ?r and the depend-

ence of the mean square error, , on relative position in

the aperture, both in eq. (73).

(2) That the various correlated error regions in the

aperture are independent. Although we have taken care of the

fact that error correlation exists in the immediate neighborhood

we still assume that independence exists among the correlated

regions themselves. This assumption is necessary to perform

the averaging process indicated by eq. (72).
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(3) That the phase error was distributed in a Gauss-

ian manner and that the mean square phase correlation is ex-

pressed by the functional form (7). Actually any form could

have been chosen if we resorted to graphical integration. How-

ever, the form chosen is reasonable. This assumption is identi-

cal to that made in turbulence or radio scattering theory as

to the shape of the correlation curve. Actually, as we shall

see, in subsection 8, this assumption has considerable theore-

tical justification.

(4) That the size of the error correlated region

is small compared to the average distance on the aperture over

which we have an appreciable change in illumination. This as-

sumption was necessary to extract the aperture illumination

auto-correlation function from behind the integral (77). The

assumption is well justified for moderate or large apertures

with slowly varying illumination tapers where the aperture size

is large compared to the correlation interval.

There further exists a physical limitation to the

application of our analysis to correlation intervals which are

much smaller than a wavelength. This is not really an assump-

tion as the formal mathematics leading to eq. (84) is valid

for any value of "c" and the final result would be valid if

the aperture currents actually were in error over this small

correlation interval. However, a small correlation region

indicates a rapid spatial variation of field. In our parabolic

application we are inherently assuming that the correlation

interval is not much smaller than a wavelength as we are using
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the geometrical optical approximation that the reflector sur-

face current is equal in magnitude to the tangential magnetic

field impinging from the feed. The geometrical optical approxi-

mation implies that the radii of curvation of the equiphase

surfaces are large compared to a wavelength (Silver, pg. 116).

8). Experimental Verification

The verification of a statistical theory involves some

difficulty as, in general, a large number of samples must be

examined. In this problem, we are faced further with the fact

that many-element antennas, to which the theory applies, are

expensive and, furthermore, the determination of the actual

antenna currents with sufficient accuracy for theoretical veri-

fication is a difficult task.

Realizing the need of some experimental justification,

the author proceeded: firstly, to examine an already construct-

ed antenna, estimate its errors and predict its performance on

the basis of this thesis and compare this prediction with the

experimental polar diagram; and secondly, to eliminate the

necessary estimates in the first procedure, to construct an

antenna with a built-in "random" error and measure its perfor-

mance, in comparison to a "no-error" antenna. As an almost per-

fect "no-error" antenna is necessary, a parabolic mirror was

chosen for this purpose. The introduced "random" errorLwas

made large enough to cause a measurable effect.



a). Evaluation of 25 Element Broadside Array*

The U. S. Air Force Cambridge Research Center has

constructed and tested a 25 element broadside array. Pro-

visions are incorporated for slewing the beam by means of

phasing rings. The technique is identical to that described

by (Bacon) and illustrated by Fig. No. 50. The beam direction

is determined by the position of the phasing arm. The dia-

meters of the various rings are proportional to the distance

of the corresponding elements from the center of the array.

The antenna is fed so that the various elements have a Tschby-

scheff - Dolph taper to yield a side lobe suppression of 29 db.

The theoretical pattern is that shown in Fig. No. 18.

A broadside array of this type has a number of possi-

bilities of error:

(1) Mutual effect between elements, which occurs by

two means; namely, by coupling between dipole elements and by

coupling between phasing rings. The currents induced in an

element when the adjacent one is excited were measured by the

author. These measurements indicated a 10 percent excitation

due to the element coupling and a 5 percent excitation between

adjacent rings. Smaller couplings existed between more distant

elements. Although this is actually a "predictable" error,

its determination for a given phasing ring arm position is a

hopeless task, especially when we consider 25 elementsand

* Security restrictions prohibit giving detail information

on this equipment and its purpose.
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12 phasing rings whose mutual couplings depend not on free

space conditions but on a resonant supporting framework. In

statistical analysis, where we are interested in order of

magnitude, we may take this error as equal to a mean deviation

of the order of 10 percent.

(2) Pure phase errors occur at a number of places

in the system. The various elements are connected by means

of solid dielectric cable. It was found that such cable with

attached connector could not be cut and assembled to better

than two electrical degrees. Considering shop production,

temperature changes and aging, and the use of a number of

cable elements in series, it is felt that 6 degrees is not

an excessive estimate for this cable length error. Another

6 degrees can be added due to machining and assembly errors

in the phasing rin6 s and various matching transformers.

(3) The operation of the current distribution and

phasing arrangement, Fig. No. 30, depends on maintaining

matched conditions in the entire system. Standing waves will

alter the distribution of power. In addition, since the phase

shift of a mismatched line is not equal to its electrical

length, standing waves will create phase errors. The situa-

tion is especially complex as the phasing arm, during the scan-

ning operation, feeds the different elements at different im-

pedance levels depending on the relative standing waveposi-

tions on the phasing rings. This error in matching is essen-

tially a random error as the various components were designed

to be matched and they are connected by cables which are of



unequal length due to the necessity of making up the required

electrical distance lost by the smaller diameter rings. Im-

pedance measurements indicated an average VSWR of 1.25. Ele-

ment impedance, connector discontinuity, phasing ring charac-

teristic impedance variation, and impedance transformer errors

contribute to this figure. This mismatch will cause approxi-

mately a 25 percent current error.

(if) R.F. measurement errors occur in the design of

each component. It is estimated that such errors are equi-

valent to a current error of 15 percent. This figure may at

first seem high as only relative measurements are made and

these with skilled personnel. However, we are dealing with

r.f. measurements where, with the presence of stray currents,

it is a question of exactly "what" we measure.

The individual errors, being incoherent, are not

summed directly but as their squares, with the result that

the actual antenna currents are in error with a mean devia-

tion of about 37 percent. Fig. No. 17 indicates that for a

r.m.s. error of 0.37 we would expect a side lobe level of about

18 db for 84 percent of the time and occasionally lobes as high

as 16 db. Various spatial directions, different scan angles

and different frequencies in the operating band serve as

statistical samples. Actual pattern measurement verified this

prediction.

The practical result of this application is that the

original equipment specification of 29 db was unrealistic.

Furthermore, as the side lobe level was determined by the
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current errors and not the current distribution, there was no

advantage in using so heavy a taper. A more efficient utiliza-

tion of the anktenna aperture would have resulted if only a

20 db Tschbyscheff taper had been used.

b). Slot Array Work at Huges Aircraft Co.

The author presented the material in subsection 5 at

the National Convention of the Institute of Radio Engineers in

New York in March 1951. The material aroused some interest as

low side lobe antennas are required for many applications and

this paper presented a physical limitation imposed by the ac-

curacy of the techniques employed. It developed that the en-

gineers of the Hughes Aircraft Company have been thinking along

similar lines. In particular, they were concerned about the

effects of machining tolerance on microwave slot arrays. They

considered only small errors in discrete arrays and their theory

is the Gaussian limiting case of this more general analysis.

The Hughes Company constructed a number of arrays with a machin-

ing tolerance of 0.002". -Their report (Bailin and Ehrlich) in-

dicates agreement with the theory.

As the effect of errors on a slot array can be readily

computed, it is worthwhile to determine the side lobe level for

a given machining tolerance. Considering as the major sources

of error: (1) the variation in the amplitude of excitation

due to randomness in the transverse displacement of the slot "x",

(2) the variation in phase due to randomness in the longitudinal

distance "d", (3) the variation in phase due to randomness in

slot length "1". Mutual effects and wall spacing errors are

neglected.
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Considering these errors in order:

(1) A change in the transverse position of the

slot will cause an amplitude change due to a change in slot

excitation. (Stevenson) has shown that the conductance of a

slot in the broad face of a rectangular guide is

eZ

The radiated power is proportional to GV and consequently the

radiated field to G. The relative change in field due to a

change in "x" may be written

41 =

1W
4r 7rx
92 a

- eotl.zr Ax

The mean square amplitude error becomes

Orr

(2) The phase of the contribution from an ele-

ment a distance "d" may be written (see Fig. No. 31)

70 =2 rd_& 9gZ.zPor -469 A.t

I\

NO cm

Li
a

~s. Ate. S/
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Making the assumption that the slot spacing is not measured

serially and, consequently, the errors in spacing do not ac-

cumulate, the mean square phase error is

W /2 (

(3) An error in the length of the slot will

alter the phase of the field radiated from it. This effect

can most readily be determined by measurement of the phase

change. Such data is shown in Fig. No. 32. This curve can

be approximated for small errors by

with the resulting mean square error of

(4.(45(e

The error contribution represented by (96), (98), (100)

are assumed independent so that their square values may be

added. Their relative magnitudes are computed for K-band

guide as 1.15, 1.18 and 54.3 respectively, bringing us to the

cuaclusion that tolerance on slot length is most critical.

Fig. No. 33 gives the predicted performance of a 25 element

slot array as a function of machining tolerance.
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c). Distorted Parabolic Mirror

Although our theoretical analysis was useful in

predicting the performance of the broadside and slot arrays,

it cannot be considered as an experimental check of the theory.

In. the first case we made estimates of the various errors and

in the slot array the assumption was made that an 0.002" machine

shop tolerance actually resulted in the array. In neither case

can we state with definiteness what the error is and how it

is distributed.

To provide a more convincing check it was decided

to take two commercial parabolic mirrors, distort one in a

"random" and prescribed manner consistent with the theoretical

assumptions and compare its performance with the undistorted

mirror. Deliberate distortion was resorted to, instead of

using a poorly made dish or one that was battered in use, due

to the difficulty of accurately measuring the mechanical devia-

tions of the reflector surface. Comparatively large distortions

were used so that a measurable effect could be observed.

The dish chosen was a 30" diameter, 10" focal length

paraboloid fed by a double dipole waveguide feed (Sichak).

The frequency used was 9380 Mc (3.2 cm). The experimental work

was performed at the Ipswich Field Station of the Air Force

Cambridge Research Center. This antenna measuring installation

was originally set up by the Radiation LAboratory at M.I.T.

and is described in (Hiatt).

In order to find the necessary distortions, we con-

sider an indentation on the parabolic surface of the form
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Such an indentation is characterized by the constants (k,m)

and will create a phase front error of approximately

Z~s ke (,o z)

Our analysis requires knowledge of the mean square of "y",

eq. (74)

y(n)zC&*)-&4r>

forming the mean square
00

6) -f/J (4)YJT&*r)Jdn1

Substituting and performing the integration

Comparing with eq. (73) we see that the constant "m" is re-

lated to the correlation interval by
It

2m (o# i)
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We have yet to find the mean square indentation. If

the indentation, eq. (101) extends over the area "S", then

the mean square indentation is

K2  f'vn/c(os

As the indentations are well separated so that there is negli-

gible overlap, the integration may be extended to infinity with

little error and

a7--- Co (06)

If we now consider "N" such indentations and if these in-

dentations are independent with values of indentation depth

"ka " coming from some population, we have

_ rz / A M z =(167)

4$ N 4 5

We are now in a position to design our "randomly" dis-

torted reflector. If we make our r.m.s. reflector deviation,

, equal to 0.39 radians and our correlation interval equal

to a wavelength, we have from Fig. No. 29 a mean reduction of

gain of 2.75 db. If further we space our indentations on cen-

ters 4" apart, we compute that the mean indentation depth is

0.282" at x-band. The various independent indentation depths

may be chosen from a Gat-ssian population. Table III in (Morse)

may be used for this purpose with the result for a set of
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indentations in inches:

.225 -.195 .107 .037 .488

-.152 -.059 -.169 -.450 -.169

.118 .470 .189 .017 .386

-.135 -.320 .141 -.054 .333

.o45 -.172 .208 .327 .105

The values of the above table are still to be corrected

for the effect of the reflector curvature, that is a given

reflector error will cause a smaller phase error when this

reflector deviation is located at the reflector edge than

in the center. The correction formula is given by (Cutler,

eq. 5) as

2. (/08;

where 0 is the angle between the reflector axis and the re-

flector indentation. This correction amounts to 50 percent

at the reflector edge.

The reflector was distorted by forcing into the parabolic

surface a metal die shaped according to eq. (101). The depth

of penetration was adjusted according to the above table cor-

rected by eq. (108). The completed reflector is shown in

Fig. No. 34, with the indentation depths marked in inches.

This reflector fulfills our conditions that a) the errors are

on the average" uniformly distributed over the aperture, b)

the mean square phase error is such as to cause a mean loss

of gain of 2.75 db, c) the correlation interval is one wavelength,
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d) the individual indentations are independent, e) the phase

errors come from a Gaussian population.

Before discussing the experimental results it should be

pointed out that the shape of the mean square phase difference

between two points a distance 7 apart, eq. (103) which here

resulted as we have chosen a Gaussian indentation would have

occurred asymptotically for any shaped indentation, provided

that the number of such indentations are large. This follows

as we are actually interested in the phase difference averaged

over the aperture and over a number of seemingly identical

antennas and as this is an additive process, the Central Limit

Theorem therefore applies. Hence considerable theoretical

justification exists for the choice of the functional form

eq. (73) (see also subsection on assumptions, 7(b)(3)).

To evaluate the theory, the gain of the battered dish

was first compared with a "perfect" dish. Fig. No. 35 shows

the comparative pattern, indicating a loss of gain of 2.5 db.

As our statistics indicate that 68 percent of such distorted

dishes should lie between 2.27 and 3.23 db our theoretical

predictions are verified. This verification is all the more

startling when photograph Fig. No. 34 is examined. In several

places the reflector error is sufficient to cause an aperture

phase error of almost a complete wavelength. This large error

is permitted, in a few places, by our Gaussian distribution

of indentations and in that we are interested only in the mean

square error. As it is common in the industry to specify re-

flector tolerance to one thirty secondth of a wavelength the
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performance of this excessively distorted reflector was

suprising to antenna engineers.

Other characteristics of interest are: 1) the angular

distribution of the side lobes, and 2) the distribution of

magnitudes of the minor lobes. To check this with the theory

a number of such battered dishes would have to be examined.

To avoid this expense, patterns were taken only on a single

dish. However, for each pattern the dish was rotated 150 so

that 11 different patterns were taken. These experimental

patterns are superimposed in Fig. No. 36. In this figure,

we also show the theoretical no-error pattern, the mean en-

semble power pattern and the statistical patterns that indi-

cate the probability that the experimental patterns lie 84

percent, 95 percent and 99 percent below these lines. The

mean power pattern is equivalent to roughly a 60 percent

probability line (see Fig. No. 12).

The data of Fig. No. 36 may be interpreted as follows:

(1) The angular distribution of the side lobe

magnitudes follows the theoretical predictions rather well.

(2) Higher side lobes are present than would be

indicated by the statistical theory - that is more patterns

are found between the 99 percent and the 84 percent lines than

15 percent of the eleven polar diagrams recorded. This can

be explained by the fact that we are basing our prediction

on the theoretical antenna pattern. Even a "perfect" dish

does not follow the theoretical pattern exactly, as Fig. No. 35

indicates. In general it is found that experimental side lobes
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are unequal and higher than theoretical. By jockeying the

feed, pattern symmetry frequently may be restored. This be-

havior of good dishes is due to a number of causes, such as:

a) A non-spherical and an unsymmetrical primary pattern of

the feed; b) Stray currents on the feed supporting structure;

c) Field interaction between the feed and the dish; d) Secon-

dary aperture blocking by the field structure; e) Direct radia-

tion from the primary feed. In view of these neglected ef-

fects, it is not surprising that our distribution is shifted

upward. However, we can say roughly that the agreement with

our statistical theory, obtained with the battered dish, is

as good as that normally obtained for so'called "good" dishes

by the plane aperture calculations.

(5) In the vicinity of 220 off the major lobe,

there exists a violent disagreement with statistical predic-

tions in that spurious radiation is found, for some patterns,

6 db higher than expected by the 99 percent line. Actually

5 of the 11 patterns are in the region where only 1 percent

is permitted. This at first appears as a violation of our

statistical analysis. However, a little consideration reveals

the cause of these lobes. Our battered reflector was con-

structed with indentations of random depth spaced 4 inches

on centers. This introduced a periodic error whose fundamen-

tal period is 4 inches. This period will be in everymember

of the ensemble although its mean is zero. Referring to our

subsection II. 3. on the effect of periodic errors, we note

that such errors will generate lobes in the directions
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u M n/d. Converting our 4 inch period into wavelengths and

computing this lobe position, we find that we would expect

stronger radiation at 230, 390 and 720. This validates our

statistical analysis and reveals the hidden periodicity we

have invertently built into our battered dish.

9). Application of Similar Techniques to Other Fields

The statistical technique applied in this section to' the

antenna problem has been used for the investigation of the

scattering of electromagnetic waves from randomly located

scatterers such as a rough sea or a turbulent ionosphere.

It has been mentioned that it also may be applied to the

determination of the voltage standing wave ratio on a trans-

mission line with randomly located discontinuities. Two

other applications suggest themselves and are mentioned below.

a). Appliqation to the Theor; f Aberrations of

Optical Instruments

The analysis which was presented relates the effect

of the aperture distribution errors on the far field. This

distribution and the far field are related by the Fourier

Transform pair (eq. No. 9)

)0

t
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The problem may be inverted and we inquire about the be-

havior of a converging wavefront (Fig. No. 37).

elo

Fig. No. 37

Consider such a system of rays as would be formed by an

optical instrument. It is well known in optical theory that

a converging wavefront does not focus to a point but that

the intensity distribution in the focal plane is given by

the Fourier Transform pair above. In particular, if the con-

verging wavefront is spherical and of uniform phase, the focal

plane distribution is identical in functional form to the
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polar diagram of a uniformly illuminated circular aperture,

that is, roughly a (sin x)/x function or strictly a J1(x) /x

relationship (Silver, pg. 194). This focal plane intensity

distribution is termed an Airy disc (Born, pg. 195).

The converging wavefront is normally formed by a

system of lenses. These lenses are subject to mechanical

tolerances which lead to optical errors of a form that the

phase front is not spherical but has phase errors. As we are

dealing here with identical functional forms, the statistical

analysis developed can be applied directly to the optical

aberrations.

Unfortunately our analysis contributes little, ex-

cept academic interest, to the optical problem; for there we

are dealing with correlation intervals of many wavelengths

where Spencer's Limiting Value applies and (Marechal's)

theory of optical aberrations is sufficient.

b). Application to Electrical Filters

Electrical filters are generally designed for very

low transmission in the attenuation band. The question arises

as to what occurs to their performance when they are construct-

ed, especially with inexpensive components. This again re-

solves itself into a statistical problem. The effect of cir-

cuit parameter deviations from the design value can be taken

care of, to the first approximation, by the compensat16n

theorem. At the filter output there will arise, in addition

to the predicted output, a random and independent sum of

voltages depending on the parameter tolerance and on the position
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of the circuit element in question in the circuit.

The question arises, similarly, as in the antenna

problem, as to what tolerances are required for a given at-

tenuation and conversely for a prescribed attenuation how

precise must our circuit components be? In addition, we

query: "What types of circuits are least susceptible to com-

ponent error"? It is believed that the type of analysis pre-

sented in this section may prove useful in this connection.



III. LIMITATIONS IMPOSED BY THE SYNTHESIS PROCEDURE

As stated in the introduction, the synthesis problem is

one wherein we are given the shape of the polar diagram and

we are required to find an aperture illumination of finite

width, whose radiation pattern approximates the desired one,

under some condition of optimization.

As we are primarily interested in synthesis methods and

not in integration difficulties, we will restrict our dis-

cussion to antenna current distributions which are separable,

that is, in eq. (lb) and (2b)

,r~-.Y,, . .dCr) JXiy)

and to the principal planes, $ = 0 or $ = 900. Under these

conditions, eq. (lb) or (2b), for a plane aperture, reduce to

the form

1'V

and for a discrete array of (2N + 1) equispaced elements we

have

tFZ 
0(fo)'

where we have written u = sin 0 and "x" and "d" are measured

in wavelengths; g(u) is the polar diagram and f(x) the continuous
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and I. is the discrete current distribution. We have made no

assumption in neglecting any obliquity or screen factors as

these can always be taken care of in our synthesis procedure

by considering as the desired polar diagram the given pattern

divided by any such obliquity factors.

In a practical problem we must deal with "restricted"

apertures, that is, apertures of finite length. If further,

we require that the antenna be a low "Q" device or one with

a low ratio of reactive to radiated power, then certain res-

trictions are imposed upon the spatial variation of the current

distribution. These restrictions will be made evident in

Section IV of this thesis. As only certain functional forms

of the current distribution will turn out to be permitted by

our reactive power consideration, we can only approximate the

desired polar diagram. The question discussed in this section

is how to obtain this current distribution and what is the

nature of the approximation.

We begin by introducing the two standard methods of antenna

pattern synthesis, namely, 1) the Fourier-Series and Fourier-

Integral method, and 2) the Woodyard-Levinson method. Then

we discuss the nature of the approximation problem, particularly

approximation in the Gaussian and the Tschbyscheff sense.

Finally we introduce two methods of synthesis yielding an ap-

proximation optimum in an approximate Tschbyscheff man 1 er.
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1). Fourier Series and Fourier Integral Method

The Fourier Series synthesis procedure was probably first

introduced into antenna array work by (Wolff). This method

follows immediately upon recognition that the expression (110),

for a discrete array, is a finite trigonometric series. As

the function g2(u) is periodic in "u", the various current

coefficients In can be obtained by Fourier decomposition,

giving

where the integration is to be extended over the period "1/d".

In eq. (110) we have dropped a constant factor. We shall

neglect such constants in what follows as we are only interest-

ed in normalized polar diagrams and relative current distributions.

If now we ate given an arbitrary function g (u), specified

in the interval -1 < u < +1 , we can extend it periodically

over the entire u-space. In general, for exact synthesis we

would require an infinite trigonometric series. Since we are

restricted to (2N+1) elements, we obtain only an approximation

as we can only use (2N+1) terms. The excitation coefficients,

however, are still given by

2 Ov( a) e 

w

LVbD
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The approximating pattern ga(u) is given by (110) as

4V I'I 1 fln (4.-u9

acac&=| |jfN() e do,

interchanging order of summation and integration

®a() / (' a2rQ(-' a

the bracketed term is equivalent to (Jackson, pg. 17)

t 2 M ol20rndd- _ =(4ti)dr4'a

so that we can express the approximation pattern in terms of

the desired pattern as

<! (Z2ft)4&rdrwg- u7

If we had considered an even array instead of an odd ar-

ray, we would have a similar expression so that we write for

an array of any number of elements "U"

Amfl Td4-SI9 (/2)

/1N4At rd 1-a/
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During the war years synthesis procedures were necessary

for microwave aperture antennas. The discrete analysis of

Wolff was extended to the continuous case (Ramsey) (Spencer, 3).

This extension follows from (109) as f(x) a 0 for

jX41 W and the integral can be extended to infinity. The

Fourier Integral theorem may be applied and we obtain the

Fourier Transform pair

-Co

so that given a required g(u) we can find the necessary f(x).

However, this so determined f(x) will not, in general, be

restricted to an aperture width of "2W". With this restricted

aperture we will only obtain an approximation given by

").-
erg)

The order of integration can be interchanged and that

respective to the aperture performed. The result, similar to

eq. (112) for the discrete case, is given by

**

= 2//ft4a}402fls/r-a'M) d"Qv
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Results eqs. (112) and (114) are known as the Dirichlet

formulation of the approximation.

As will be shown in subsection 3, the approximation in-

dicated by eq. (112) or (114) is such that the squared error

is minimized. It is therefore said to be optimum in the least

square or Gaussian sense. As the number of terms is increased

or as the aperture becomes larger the approximation becomes

better. However, at every discontinuity or rapid change of

the desired function there occurs in the approximating function

an oscillating overshoot. This overshoot does not decrease

in magnitude as the number of terms is increased, although

the frequency of the oscillation is increased and it moves

closer to the point of discontinuity. This overshoot has a

limiting magnitude of about 9 percent of the total discontinuity.

This behavior of the approximation is termed Gibb's phenomena

(Guillemin, pg. 485).

The Fourier Series or Transform method therefore creates

a side lobe intensity of about 21 db when it is applied to the

synthesis of a square or cosecant beam. It approximates the

desired function very well tar from points of rapid change;

however, at points of discontinuity it has its characteristic

overshoot. The mettsod is rather inflexible in that even though

we may be willing to accept greater deviations at some points

in return for a smaller overshoot, or a greater slope at points

of rapid change, nothing cadi be done about this as the final

result is given by eq. (112) or (114).
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Figure No. 38 gives the approximation to a 900 square

beam obtained by this method. (Fig. No. 38 on page 118.)

2). Woodyard-LevinsonMthod (Woodyard) ~

This method was introduced by Levinson at the Radiation

Laboratory during the war years and has since appeared in the

literature in a paper by Woodyard, who probably developed the

method independently in England. Restricting our discussion

to the continuous aperture, the method may best be introduced

as follows:

Consider an arbitrary aperture distribution f(x) and its

Transform g(u), illustrated in Fig. No. 39

GPM

U-,

t

4964V

9
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C

Fig. No. 39
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The function f(x) may be expanded as a Fourier Series

of fundamental period "2W", so that:

000 . 2?rnjr

too=o / />

The coefficients "Ca" are given by:

Comparing eq. (109) and (116) we see that:

Now f(x) is completely determined by its Fourier coefficientB

"C.", or because of eq. (117) by the value of the polar dia-

gram, g(u), at the infinite set of points u - n/2W. As f(x)

is completely determined, so is g(u). We conclude that if a

radiation pattern is due to an aperture of width "2W" then it

and the corresponding aperture distribution is determined

uniquely by the values g(n/2W). This is analogous to a theorem

proved by Shannon for electric circuits (Shannon). The theorem

as given by Shannon is: "If a function f(t) contains no fre-

quencies higher than W cps., then it is completely determined

by giving its ordinates at a series of points spaced 1/2W

seconds apart."
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The radiation pattern may be computed from the aperture

Fourier series expansion, as:

AV

C 0 *j'Zr(1(a8).

4t27fl/' W)RrW ur2 (its

The polar diagram is thereby expressed as a sum of functional

forms which the aperture can generate. As any arbitrary func-

tion f(x) may be expanded in a Fourier series the expression

(118) must include all possible patterns from the aperture of

width "2W".

Sums of type (118) have been extensively treated in in-

terpolation theory. The sum is called a cardinal series and

the function (sin x)/x the cardinal function. (W. L. Ferrar)

has proved an important property of this series and called

by him its "consistency". Namely: if a function is constricted

from n/2W equispaced ordinates in the form of a cardinal series

and then if another set of displaced n/2W ordinates are chosen

from this constructed curve and the corresponding cardinal

series is formed, it will be found that the two series represent
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the same func tion.

Our synthesis problem by means of this method reduces to

choosing the arbitrary coefficients "C " so that the cardinal

series fits as closely as possible to the desired pattern.

The individual terms have an interesting property that at an

ordinate "m/2W" all the terms except the "mth" are zero.

Fig. No. 40 illustrates this phenomena.
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Fig. No. 40

This permits a very simple method of synthesis by choos-

ing the Cm coefficient as equal to the desired pattern ordinate

at the mth point. The approximating pattern then becomes:
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This approximating curve will pass exactly through the chosen

ordinates, however in between it will deviate from the desired

pattern by an unknown, but in a particular case a calculable,

amount.

Actually the Woodyard method has considerable flexibility.

We have at our disposal an infinite set of arbitrary constants

and if we are interested in specifying g(u) in only a finite

interval, say in the angular region of - c <

or -1 <u <+1 , and are not interested in its behavior out-

side this interval then a radiation pattern of any arbitrary

shape or sharpness may be synthesized from an aperture of any

specified width.

This striking statement brings us to the problem of "super-

gain". In order to obtain this arbitrary sharpness it is neces-

sary to use contributions which have their maxima at the points

u s | 1. Such contributions, due to the decreasing nature

of the (sin x)/x functions, have little effect in the real angular

region, so that terms of large magnitude must be used to be ef-

fective in fitting the function in the region of interest. It

will be shown, in Section IV, that such terms contribute but

little to the radiated power and represent reactive power flow

through the radiating aperture. They therefore contribute to

the reactive energy stored in the immediate vicinity of the

antenna and raise its "Q". As we are primarily interested in

physically realizable or low "Q" antennas, we must restrict

the order of our coefficients to I1 | 1. This condition elimi-

nates those terms which contribute, in the large, to reactive
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power. In f(x) they represent harmonics of spatial period

smaller than a wavelength.

We still have available "4W" terms, where "W" is expressed

in wavelengths, for fitting. We can, as we have done in eq.(119)

choose equi-distant points, in which case the determination of

the arbitrary coefficients becomes exceedingly simple being equal

to the ordinates of the desired pattern at those points. We are

also permitted to place our "4W" points at will, perhaps cluster

them where we desire a closer fit. However, we then must solve

a set of "4W" linear equations in the "4W" arbitrary constants.

This latter method has the further disadvantage that terms which

have their maximum value far from the cluster and are forced

to form a better fit at this point will cause a large deviation

from the desired pattern at their point of maximum value due

to their weakness of control at the distant point.

It is of interest to compare the Fourier Integral approxi-

mation with that of the LAvinson-Woodyard method using the ordi-

nates at the equidistant points. At the n/2W points the Fourier

Integral method yields for the ordinates (eq. 114):

4,

2'v = W o 6~ ~f2VWPM ( "14/

and the Ivinson method

Y= -
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If these were equal the two approximation patterns would be

identical - as n/2W ordinates, for an aperture of width 2W,

determine the pattern everywhere. The Levinson method yields

ordinates that are equal to the desired pattern at these points

and is dependent only on the value of the function at these

ordinate s, being independent of the value of the desired func-

tion in between. Whereas the Fourier Integral representation

due to its integral formulation yields ordinates that depend

on the value of the desired function everywhere. However, the

ordinates as determined by the Fourier Intagral method are

heavily weighted at and near the point n/2W. This is due to

the delta function nature of

/or 27/~X1 t1O n2z/

,eo, Lzrat - 1W)02W er*i'Vot-%w)

so that as W is made large or if g0 (u) does not change ap-

preciably in the vicinity of n/2W, we have

240227wat0v/w

Hence, the two methods approach each other for large apertures,

with the exception of the vicinity about the discontinuities

of g0 (u). As the ordinates of g0 (u) correspond to the Fourier

harmonics of f(x) the two methods yield similar aperture dis-

tributions with the exception of those harmonics corresponding
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to ordinates near the discontinuities of g0 (u).

Although both functional approximations approach the

given function the behavior is different in the immediate

neighborhood of discontinuities. Fig. No. 41 shows the result

obtained by applying the Levinson procedure to a square beam.

The overshoot has been substantially reduced to a value of

1.03, however, the average slope has decreased to 0.5(2W), a

loss of 39 percent.

As the Levinson procedure differs from the Fourier Integral

representation it is not a least square fit and therefore possesses

a greater mean square error.

3). Some Remarks on Tschebyscheff and Gaussian Aproximations

The approximation problem is one of fitting a given func-

tion go(u), "as well as possible",, by a finite sum of "a" terms

of "suitable" functions. We have for our composition:

**1)

The problem is the choice of the arbitrary coefficients

"Cn" to achieve a "best fit". We inquire into the definition

of the term "best fit". Until quite recently the definition

of "best fit" has been taken, largely due to the investigations

of Gauss, so that the integral of the squared error be t minimum.

This condition may be expressed mathematically as:

(n
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The coefficients may be readily chosen to satisfy this

condition for:

Coo

my- = _1a t'g<> sc <>

Io 00loom"

If the terms of our approximating function are orthomonormal or:

co

f 6r()ARe() da =

then the error integral becomes:

r40

- o

-Co p64

We wish to determine the coefficients so that the error be a

minimum or:
-- =

Coc e



Differentiating, we arrive at the condition for the coefficients:

Cc, (123).

As the members of the trigonometric series form such an

ortho-normal set, the Fourier Series approximation or the limit-

ing case of the Fourier Integral yield an approximation optimum

in the least square sense. The cardinal functions also, as we

shall show in the appendix, are ortho-normal and may be used

to approximate the pattern in a least square sense* That is

the arbitrary coefficients in

Z-rw(u-n)

may be chosen by the condition (123) so that:

44v+2yW("C %v)d/.
2rW(A--/w)

but this is the same as the result obtained by the Fourier

Integral method * We therefore obtain nothing new by using the

cardinal functions as an ortho-normal set.

The definition of "best fit" could just as well haye been

taken so that we would determine the arbitrary coefficients

from the condition that the integral of the mth power of the

absolute error be a minimum; that is:
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The advantage of the Gaussian approximation (ms2) is that

it Le amenable to a simple determination of the coefficients.

It commands no preference on purely physical grounds. In fact

its occurrence in nature is probably very rare. As an example,

if a circuit is adjusted to generate what appears the best square

wave on a cathod ray tube, a harmonic decomposition of the wave

will generally not yield a Fourier decomposition.

Although mathematical methods do not exist for the deter-

mination of the coefficients except in the Gaussian sense, exist-

ence theorems are available that state that such decompositions

exist for all integer values of the exponent and that such de-

compositions are unique (Jackson, 2, pg. 86).

As we increase the value of "m" in eq. (124) the larger

errors are weighted more heavily, so that we would expect small-

er overshoots in the vicinity of discontinuities and a more

equal deviation distribution. In the limiting case when "m"

becomes infinite, the maximum deviations become all equal in

magnitude and we have an approximation in the Tschebyscheff sense

or:

/r&(u -gacc</ c Eirs)
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A Tschebyscheff approximation is much more useful if we

have to do with the design of equipment, such as electrical

filters or antennas, as we can "guarantee" that the error will

not exceed a prescribed value. Furthermore, in many applica-

tions we are interested in the maximum possible error and not

its average squared value.

Even though the Tschebyscheff approximation has a larger

mean square error than the Gaussian it would be more generally

used if there were some simple mathematical technique of de-

termining the coefficients of expansion. It would be of im-

portance not only in antenna synthesis but also in the repre-

sentation of periodic electric waveforms and electric transients.

(Guillemin, pg. 506) indicates that such a method would be de-

sirable and that this problem has received little attention to

date. We shall present two such methods wherein we achieve

approximation at least in an approximate Tschebyscheff sense.

These methods will be presented in antenna terminology, how-

ever they may be readily converted for use for the representa-

tion of periodic and transient electrical signals.

4). Pattern Synthesis in an Approximate Tschebyscheff Sense

Using the Cardinal Functions.

As the coefficients of the cardinal series are equal in-

dividually to the ordinates of the polar diagram at the n/2W

points, this series forms a convenient means of approximating

a desired pattern in the Tschebyscheff sense. We can even

choose a different tolerance in different regions. Fig. No. *42
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illustrate s this procedure, where we require a tolerance of

"h" in the pattern region and "e" in the remaining real region.

It is evident from the nature of the (sin x)/x function that

if alternate coefficients take on the permitted error with op-

posite sign then the rise time will be incrksed.

re
,r-

C,I', '
'I '

1 I
D 9 I

I1 /
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/ I I to
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%. /A. ~

Fig. No. 42
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We apply this procedure in Fig. No. 43 to our 900 square pulse.

In Fig. No. 43 we have permitted a 5 percent error in the radia-

tion region and approximately zero tolerance in the side lobe

part.

The procedure suggested above has only approximate Tacheby-

scheff behavior as at the points of discontinuity the error ex-

ceeds our tolerance. However, this cannot be helped if'we at-

tempt to approximate a discontinuous function with a finite sum.

The choice of coefficients is also not rigorous as we do not

know the extreme values of the approximation. Especially near

-123-
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discontinuities and for small tolerances the extremes do not

occur exactly at the equally spaced ordinates. However, as

each component

- Ato 21A'a- '2w)

2r W - f"/4)

function is largely effective only in the vicinity of the

point n/2W and exercises only a small effect far from this

point, the function may be fitted rather closely with a small

amount of labor. A similar procedure with trigonometric.

functions would be impossible.

5). Pattern Synthesis in an Approximate Tschebyscheff Sense

by the Use of the Tschebyscheff Functions

We recall eq. (114) giving the approximation pattern due

to the Fourier Transform method:

=2W/$Ccc!)AkfWu)
J 2rW/(a-u2 et

or if we let

5(gc...a) ... 2Mi$7 N

27rW/fa-a'/

then cc

ifd") =. fy 0 0') J -cda' (n)



We can look upon this equation as physically representing a

scanning operation. The approximation pattern is obtained by

integrating the product of the desired pattern and a scanning

function located at the general point "u". Fig. No. 44 indi-

cates the operation:

Fig. No. 44

The overshoot or Gibb's phenomena can now be seen to be

a property of the scanning function, and its maximum value

may be expressed as:

f Y Cat) (0rO.

- 2/1

/57+ /86 t.O?
3.14.
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giving the accepted 9 percent overshoot.

The required aperture distribution can be written in

terms of the scanning function, for:

/'Cx) == ,c(c) 4

en

ff8 (4) Y a S

letting

VI1 da=c~'

Tk

tk

e-

2e second integral can be readily evaluated as it is merely

te transform of the scanning function, or:

el ..j r r y -g14 W/;40e' y - Z f V
-n - 2 rss 7

where F(.) has the functional form

rcTn)

- 4l
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The required aperture distributioin bec omes:

') =0

aaa
F(') f;.&Q e~ Rn

Although we have obtained no new re sults, our Fourier

Integral example has served to introduce the concept of the

scanning operation. We can also look upon this phenomena as

a convolution of the desired pattern and the scanning function

so that the final aperture distribution is given as the pro-

duct of the transforms of the scanning function and the de-

sired pattern, i.e.

ai
kvr>. wrcx),Cn jta

where

40
dwgmw f (cc) S("qpce)d"

CFO
ow wo

and

00

f(5(a) eC C

-*n

(f )S Zcrx

I
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We inquire whether it is possible to construct a scanning

function which would be more useful than the previously intro-

duced (sin x)/x function. Suppose we were to construct a func-

tion of the type

Then if we were to scan a unit step we would expect a result

of the following type:

If our special scanning function had side lobes of equal area

then the deviations in the approximating pattern would have

equal value and could be expressed as a ratio of the side lobe
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area to the main beam area of the scanning function. If,

furthermore, we could arbitrarily set the value of the side

lobe area by adjusting the side lobe magnitude and if we could

show that for a given area the width of the main beam were a

minimum, then we would have a quite useful function. At least

in the case of approximating a unit step we would have the

greatest average rate of rise for a prescribed deviation which

we would not exceed.

When we approximate an arbitrary function with our special

scanning function, we can no longer make definite statements

about the deviations which will occur. The deviations will

now no longer be equal and we cannot state definitely what

they will be. However, for functionally smooth curves we would

not expect any violent behavior.

Although we are not able to state anything with mathema-

tical rigor as to the result of our approximation, it is felt

that the procedure to be outlined can be useful in synthesiz-

ing antenna patterns or electric waveforms. This inability to

judge the closeness of our approximations is not at all sur-

prising if it is recalled that even in a finite Fourier approxi-

mation we cannot state with certitude the value of the devia-

tion at any point. It is true that in the Fourier approximation

we can say that the fit is optimum in the least square sense.

However, this is of doubtful value as every approximatton is

optimum in some sense; that is there is a minimum value of the

integral



(12 

where w(u) is some weighting function.

To be useful the scanning function should have the followe

ing properties:

1. It should be generatable by an aperture of

width "2W".

2. The side lobe level should be capable of ad-

justment to any desired value.

3. The side lobe areas should be roughly equal.

4. It would be desirable to show that the scanning

function used was the greatest rate of rise

of all possible functions generatable, by the

specified aperture.

A scanning function fulfilling the above can be constructed

based on the Tschebyscheff polynomials. These polynomials are

defined by

~%8x) - coy (arac coo x)

ZX) = cov A/n anc e oez)

They are of degree "an" and have the graphical development shown

in Fig. No. 45 for the special case of n - 7.
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If we make the transformation

we obtain the periodic function in "U", shown in Fig. No. #6,

and of the mathematical form

7v== o t/nate eoW r. toe rail

It is characterized by side lobes, all equal, and of relative

magnitude 1/R. The zeros of this function are almost equally

spaced being determined by

t. dd rZ 4  = cot (M-2ss/.)

where "x0" is determined by the ratio 1/R and is a number

slightly greater than unity.

Equation (132) is a polynomial in cos u of the nth order.

As the powers of the cosine may be expanded into terms of multiple

angle, (132) represents the pattern of an array of "n+l" elements

spaced half wavelength apart. The excitation of the various ele-

ments are chosen according to the'equation

2'4 Cot #r , = ed/ LOCdot r(Zot 4e1/A

An array excited with the coefficient "AJ" will therefore

yield a radiation pattern with all minor lobes equal and of

the previously specified magnitude I/R. The analysis presented

is based on the work of (Dolph) who has shown in addition that
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for a given side-lobe level the beam width (i.e., the number

of degrees to the first null) is minimized.

We'will use (132) as our scanning function in the approxi-

mation procedure for the discrete case. Although (132) is

characterized as having minimum beam width, for a given minor

lobe level and a given number of terms, it does not necessarily

follow that the resulting approximation, to an arbitrary func-

tion, will have minimum rise time and possess exactly equal

deviations in the Tschebyscheff sense. However, it is felt

that this behavior will be approached and the procedure may

prove quite useful. Let us apply it to some functional forms

and examine the nature of the resulting approximations.

According to (128) the desired current distribution may

be obtained by simply multiplying the coefficients as obtained

by the Fourier Series method by the Tschebyscheff-Dolph coeffi-

cient Ak. It is convenient to have curves of Ak for various

minor lobe levels or rise times. Figure Nos. 47 and 48 are

plots of these values for an 8 and a 16 element array. The

abscissa used is the rise time or beam width between first

nulls relative to that obtained by the Fourier or least square

fit. Figures 47 and 48 may just as readily be used for modify-

ing the Fourier coefficients obtained in approximating electric

wave forms.

The minor lobe level of our specially constructeO scanning

function can be obtained, for a specific relative beam width,

from Figs. 47 and 48, with the aid of the equation
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The coefficients as obtained cannot be used directly but must

be normalized by multiplication with (for even array)

#V/Z

-/

X-/

Figure No. 49 illustrates the result of applying this

procedure to approximating a square beam by an array of eight

elements spaced a half wavelength. The figure is equally valid

for a periodic rectangular pulse with four harmonic frequenv ies.

Figure No. 49a shows the Fourier Series or least square approxi-

mation with its characteristic Gibb's overshoot which amounts

to 10 percent in this case (the 9 percent value quoted previously

is only the limiting value for a unit step or very long pulse).

Figure No. 49b shows the approximation obtained by the use of

the suggested procedure with a scanning function rise time

equal to the least square case. The deviation has become a

uniform ripple of 6 percent. This is a reduction from the 10

percent overshoot; however the error is greater in the center

of the pulse. Figures Nos. 49c and 49d give the approximations

obtained with a 10 percent greater and a 10 percent smaller

rise time respectively.
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In examining Fig. No. *49 it is meaningless to ask which

is the "best" approximation. "a" has the least square error;

however if only a 4 percent overshoot is permitted and a con-

tinuing ripple of that magnitude is not objectionable, "c" is

to be preferred. Similarly, if rise time is the consideration

and a 10 percent ripple can be tolerated, "d" is preferable.

The suggested procedure, however, provides a means of obtain-

ing any desired ripple.

Let us apply our procedure to a more complex example.

Consider the design of a cosecant squared antenna (Silver,

pg. 465) with the following characteristics: beam to rise

at zero degrees and continue at uniform intensity till six

degrees, then the radiated power is to decrease in a cosecant

squared manner until sixty-four degrees is reached, beyond

which we desire no radiation.

Figure No. 50 shows the desired pattern with the Fourier

Series approximation obtained by a 16 element array. Figure

No. 51 gives the result of applying our procedure with equal

rise time. Figures Nos. 52 and 53 present the approximations

obtained with a 10 and a 20 percent reduction in rise time.

Above we have presented, for discrete arrays, a synthesis

procedure which possesses approximate Tschebyscheff behavior.

We inquire about its extension to a continuous aperture. If

we were to take the convolution of our delta function current

distribution and another function, the resulting radiation

pattern would be the product of the patterns of the function

and the array. A convenient function is
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as then we would have the correct value at the half wave points,

the mean in between and a smooth interconnection. The pattern

of (137) is

-nJ(

ru/-~ ua

If we were to divide the desired pattern by (138) before apply-

ing the synthesis procedure, the final pattern of the continuous

aperture would approximate the original desired pattern.

g/a)

6 AocN < Az di/



IV. LIMITATIONS IMPOSED BY THE APERTURE "Q"

Throughout the the sis we have assumed that spatial current

variations of rapidity greater than a wavelength were associat-

ed with reactive energy stored in the immediate vicinity of the

aperture. This imposed a physical limitation on our synthesis

method as it prohibited the use of those components in the cardi-

nal series whose maxima occur in the region Jul% 1. This re-

striction to low Q structures prevented the realization of pat-

terns of arbitrary sharpness from a given finite aperture or

of "super gain" antennas.

The fact that the region of real angles, that is lul< 1,

is associated with real or radiated power is well known. How-

ever, the association of reactive or stored energy with the

region Jul > 1 is only alluded to in the literature. As no

investigation of the power flow through an arbitrarily illumina-

ted aperture has been found, this section is devoted to an exami-

nation of this question. Such an examination is necessary to

provide justification for the assumption made in previous sec-

tions of this thesis.

We restAct oxr discussion to the two dimension case. We

first introduce the concept of an angular spectrum of plane

waves (Woodyard and Lawson) (Booker and Clemmow).
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1). Angular Spectrum of Plane Waves

Lot a rectangular coordinate system be chosen such that

xwO represents the aperture plane. Let two semi-infinite con-

ducting sheets be so placed as to form an infinite slot aper-

ture of width "2W". let us consider a two dimensional field

independent of "z" in this system.

re

()or (cp9

V

z
*
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Next consider a plane wave propagating in the B direction.

For simplicity let one of the field vectors be parallel to the

"z" axis. The electric vector will first be so chosen, although

the analysis can be equally well carried out with the magnetic

vector. A combination of them will yield the most general two

dimensional field.

The electric component at the general point xy may be ex-

pressed as

V=. CO e I .= MEz

The corresponding magnetic field can be obtained from

Maxwell' s equation, namely:

and the plane wave components may be written,

'zkz soW + 7 s)

.i/r9oW#y =)(19)

y/a<xs>- CodS fA~e
ze



Now all solutions of Maxwell's equation may be built up

of a superposition or spectrum of such waves each propagating

in a different "" direction and of arbitrary magnitude. The

angle "0", however, may accept all values including complex

ones. We attempt to find that superposition which will satisfy

the boundary conditions on the metal plates and at infinity.

As we are interested in waves radiating through the aper-

ture into the right-half space all values of "G" are not per-

mitted. The exponent -jk(x co 0 + y sin o) determines the

necessary values of "0". The coefficient of "x" cannot have

a positive real part nor can the coefficient of "y" have any

real part. Otherwise the plane waves will grow exponentially

as x-% to and/or y.r 4o. We also exclude real values of

"e" confined to < 0< as these waves represent plane

waves travelling in from infinity.

The required range of "0" or contour of integration can

be obtained readily from the expansion

CW9f = CO4&ottiA == eoss& a 4sl r~S
Autf(0 As'de reo.e1XolV/r8fr

It was shown by Woodyard and lawson to be as indicated in the

following figure: A
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AI

_iriso 0,

complex 0-plane

The general two dimensional field which satisfies the conditions

at infinity can be written:

-, i itcooS49
e a'6.v do.4(e)

Yx (Zt,) = ze
f

c(xoegse

.j. k A & e m 49+ A' " g 9)
/-,(~p -<14- 0 E ) cole ~ d.

C6
(64 f
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We next attempt to satisfy the boundary conditions on

the metal plates. Here for\"y" > W, z(Oy) a 0 and within

the aperture the z-oomponent of the electric vector has sow

arbitrary behavior.

fto -

44 (0y0

4

#141

From (140) we can write the tangential components of the field

in the plane of the aperture (x s 0)

I 
ky AMGs

00
a en0

sly = J z (e ) ec4GCfd
CV z.

If we change variable and let u sin B, du - coo B Bd,

then

C/al
-a/-- 

49
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The path of integration now runs over the entire real range

of "u" and (141) becomes:

- 2UCy) =f 5-*(--z) e2rdf
- tin C d

/-y ( = y toe

where my" is measured in wavelengths.

The angular spectrum may be obtained from either equation

by means of the Fourier Integral Theorem.

4F4
cow

twa) = -z.f(o,Y)C
,1 27ryet

a'y

In the first integral we may restrict the range of integration

to the aperture "2W" due to the boundary conditions. We are

unable to do this in the second expression unless we assume

the screen to be a perfect magnetic wall.

It should be noted that (140) expresses the field anywhere

in the right-half space and that by inserting the expression

for the angular spectrum given by (143) we satisfy the boundary

(42).

(isa)
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conditions on the metal plates and in the aperture. We have

thus e sentially solved a boundary value problem and our solu-

tion includes both the Fraunhofer and Fresnel solutions.

Let us now extend our consideration to a subject not

covered in the literature, namely the complex power associated

with our aperture. The complex power flow is given by the

Poynting vector theorem as:

he X/H d 'ON

%~f(x/2.y -zmumU dY(44)
-".PV -W

Substituting (142) we have

We may integrate over the aperture

P= 2&644oEc}< AstftrW(uu}'a)t
z* J J/ /-as27rW(eu-)

.... 00in l

Although (145) is a rigorous expression, it does not place in

evidence the real and reactive components of the power. In
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order to do th$.s let us expand the arbitrary aperture distribu-

tion as a Fourier Series, that is we write

00 27'
00

As a general function, subject only to rather wide restrictions,

may be so expanded we have lost little generality by means of

this artifice. The angular spectrum now becomes from (143a)

' w(u j.)

O $$ = f/ g-w

or

00 0 V, 7iy,// )
4aw> 2/- Cn/(46)

Substituting (146) into (145), we have for the complex power

flow

3

Pw r ff Is/wba r W~u*,g 0 ft7I/- W)A/)$1|Oxpi ?lINi-aa - 7kii(M- ) $ -li('- 2rn'pi(u-a/f

.f-uidgdg
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recalling that (proof is given in the appendix):

/11rw'

J ZrWu'
4poo

ZrWf '

we may therefore perform our Out" integration and obtain

0

--ne 2-rM-v 2) 2 7r

We can interchangs our subscripts and obtain an identical

expression

2 4'T2ot AW(a2$

dZ ZJV(a-A)

A~Of
2rW#a-6421ftf/im--o

Therefore we may write in symmetric form:

A,ALnn .9rr7 rni'.. )AAVw e& zeW

am WO24?ZrW(u-,$} ffw(a

-154-

/



Equation (147) places in evidence the real and reactive

paver as all factors with the exception of iT U are

real. In the interval -1 < u < +1 this factor is real and

that portion of the integral represents real power, whereas

in the remaining region the factor is imaginary and we have

reactive power.

It remains for us to show the connection between the

angular spectrum of plane waves and the radiation pattern of

the aerial. Further it should be possible to show the equality

of the real power traversing the aperture and the radiated

power as obtained by integration in the far-field of the aerial.

2). Radiation Pattern and Radiated Power

The complete field anywhere is given by (140). Let us

introduce polar coordinates for the general field point

x - r cow o ; y a r sin $ ; then the electric field anywhere
becomes:

&4COC

In the far field or Fraunhofer region, "r" is large and the

integral can be evaluated by the method of stationary phase

(Jeffries). This yields

E,01p): e *Ei~) = k) .(f)(M*

4(4y9~ (Ns
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We see that the angular dependence of the far field is identical

with the angular spectrum. This result was indicated by (Booker

and Clemmow). Let us return to our power considerations. The

total real paver radiated is expressed as:

Substituting from (146)

(c r wO/) vO r~j}

we obtain:

(149)

Now (149) for the radiated power obtained by integrating

the radiation pattern is identical to the real part of (147)

giving the real power flow through the aperture as obtained

by the Poynting vector theorem. We, of course, would expect

to obtain this agreement. Equation (149) has physical
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significance only for real angles. We can, however, extend

our far field integral over our previously defined contour

and, as now this extension of the integral is identical to

the aperture integral yielding the reactive power, we can as-

sign to the imaginary portion of the far-field integral the

significance of reactive power stored in the neighborhood of

the aperture* Hence we can write

jAn PtyQ
f PI /)P

where the radiated power is:

7r/

/-of-
fz-"/a

3). "Q" of an Aperture

We may finally define the "Q" of an aperture as the ratio

of reactive to dissipated power, that is:

IP(f)daf7 f9 a'C,/

If/

cip)a

-.m15 -

(o)
it



4). ComplementarY Case

In order to bring in some interesting connections, we

wish to present briefly the corresponding formulas applicable

to the case where the magnetic vector is taken parallel to

the slot - however, the aperture plane is still an electric

wall. The two cases are not complementary in the electro-

magnetic sense unless we replaced the electric wall with a

magnetic one.

We have for the field anywhere (corresponding to (140)):

*Wzf,6) =f11o)e(Co oaoe)
c1

C

r 02*r1v c o lsy,sic 9
ry) = z6e

f

f~r'&eo ioe

The field in the aperture plane becomes:

i7Qy) rfe)-&&
ry~ ~~ Jqz z ia~
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We still express the angular spectrum in terms of the tangential

electric field in the aperture plane as the tangential component

vanishes on the metal plates. The angular spectrum becomes

=do

The complex power flow through the aperture is

AL27rVawN'
(/1c)

We can as previously expand the aperture distribution in a

Fourier Series. Substituting this expansion in (143ac)

/rkru) = eWE n~ ri/u
2ff (f

Substituting this into (145c) and performing the evident

integration we obtain for the complex power

2. ,do,, 40 4/> k $

z.. .. :2ZrW -f 4 ) 2rW%-)
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The real part of this power can again be checked by far field

integration of the radiation pattern.

Investigation of this alternate case has revealed that

the sign of the reactive power has changed. As the root re-

presents the cosine of the angle B it must be taken as posi-

tive. The condition where the tangential electric vector

lies across the slot is therefore capacitive whereas when it

is parallel to the slot the reactive power is inductive. This

agrees with waveguide theory as to the sign of an inductive

or capacitive iris.
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APPENDIX

On page we assumed that the cardinal functions were

ortho-normal and on page we assumed the value of the integral

2ir1u 4f/27r lUtr)(zr eta =4(u 7 ,anrrV r

As this integral form is not found in standard integral

tables, it is evaluated in this appendix. This may be most

readily accomplished by means of the convolution theorem. We

proceed by noting the integral is of the auto-correlation form

trix = r #) r cti.
d-v U7)

since

*End
mw

then

do=

-e"J ~wo ro d wlo
-e-x 

-e 1/

i!rr7 rr I' j fXU
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Therefore

rea4

Scffe 1)ey mw lox

Applying this result to the case where

f49= 2At/4 Zn/a/

2;r n/a

then f(x) will have the functional form

4o

I z

Therefor e

27rWrMA-rj

_____frg/w 4jfl2rT~14/r) dc =
(2W 2r#u Zrwv(iro)

As-

j2r x rfeoO

444 Zn I&

Znrr-
it
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by a change of variable the ortho-normal relation results,

JA#Zrow -A;,a _ _ _ _ _ _ _

2ffwtw-'S,) Zn, MA

where S.n,. 1 for a - m

for a m
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