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ABSTRACT

This thesls 1s concerned with physical limitations on the
reallzability of a given radiation polar diagram from an antenna
aperture of a finite extent. It 1s convenient to divide the
problem Into three related parts; namely:

1). Limitations Imposed by Aperture Distribution Errors.

Inherent aperture illumination errors or deviations from
the theoretical distribution cause corresponding deviations
from the theoretical polar diagram. The nature of the illumina-
tion errors 1s examined and such errors are divided into sys-
tematic or "precdictable” errors and "random" errors. Exist-
Ing methods, available in the literature, for the treatment of
systematic errors, are reviewed. Random errors form a statlistl-
cal problem and have not been treated. A theory 1s formulated
for their treatment, in both the discrete and contlnuous aperturs
cases, This theory ilndicates that the effect of random errors
1g first manifested in the minor lobe reglon where the errors
tend to cancel the almost complete destructive interference from
various elements of the aperture. Random errors therefore im-
pose a physical limitation on the obtainable minlmum side lobe
level. It is shown thet, In the dliscrete case where the current
errors are assumed Iindependent from element to element, the
average spurlous radistion of an ensemble of similar antennas
1s spatially constant and proportional to the mean squared error
and inverselr to the gain of the array. 1In the coantianuous aper-
ture where independence of neighboring errors cannot be assumed,
it 1s necessary to define a correlation interval beyond which
the errors are essentially Independent. It 1s shown that in
this case the spurious radiation 1s now proportional not only
to the mean sguared error but also to the size of the correlated
region in square wavelengths. The radiation is no longer spatially
constant but directed along the axis of the aperture; the directi-
vity increasing with the size of the correlated region. It 1is
further shown that such spurious radlation 4s distributed in a
modified Rayleigh manner with the Raylelgh and Gaussian distribu-
tions being the limiting ceses of large and small errors respectively.
Experimental work on & broadside array and on & "randomly" distorted
parabolic mirror provide a verification of the theory.



2). Limitations Imposed by the Synthesis Procedure.

The antenna synthesis problem 1s one wherein we are given
the shape of the desired polar dlagram and we are required to
find an aperture distribution of & given finite width whose radia-
tion pattern approximates the dasired one under some condition of
optimization. The existing synthesls procedures are examined.
These conslst of the &) Fourier Series or Fourier Integral method
where the function is approximated in & least square sense but
the approximation exhibits a Gibb's phenomena at every polnt of
discontinuity; b) the Levinson-Woodyard method wherein the pat-
tern is fitted with (sin x)/x or cardinal functions.

The nature of the optimization condition 1s examined and
two procedures are suggested for approximating a function in
an approximate Tschebyscheff sense. In one of these use is mede
of the Tachebyscheff polynomials and an approximation 1s obtained
whereln approximately equal deviatione from the desired curve are
obtained with the exception of points of dliscontinuity. The
magnitude of the deviations or ripple may be adjusted to any de-
sired value by the proper choice of the Tschebyscheff function.
Although no rigorous condition of optimlzation is derived for
approximating an arbitrary function the method of derivation sug-
gests that the resulting approximation obtained ylelds at least
approximately the greatest slope at discontinuities or rapid
changes of the function for a given deviation or ripple. A number
of worked out examples are included.

3). limitations Imposed by the Aperture "Q"

It is shown by direct lntegration of the Poynting vector
over the antenna aperture that those field components which possess
spatial variation of a period smaller than a wavelength contribute
essentially to reactive power. They therefore increase the "Q"
of the aperture and impose & physical limitation on the synthesis
procedure or on the possible polar diagrams.
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I. INTRODUCTION

This theslis 1s essentially concerned with the physical
realizability of a given radlation polar diagram from an
antenna system of finite extent. It has been found convenient

t0 divide the problem into three related parts; namely:

1). Limitations Imposed by Aperture Distribution Errors on
the Radietion Pattern

The antenna desligner can readlly compute by means of
existing synthesls methods the aperture excitation necessary
for a desired polar diagram. However, when he constructs his
antenna and measures its performance he will find that his ex-
perimental pattern only approximates the theoretical one.

This 18 because he has not achleved the necessary theore-
tical aperture distribution in his model. The questlion naturally
arises what aperture distribution tolerance is necessary to ob-
tain a given approximation to the theoretical radiation pattern
and conversely what pattern distortion and reduction in gain
is obtained with given aperture excitation errors.

The problem has attracted comnsiderable attention in the
literature when the error is of a prescribed form; such as a
periodic phase or amplitude error or when it is expandable in
a power serles such as a defocussing error in a parabolic mirror
or coma in & metal plate lens. However, no work has been done

on the case when the error is= of a random nature. Such random
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errors occur, for example, due to machining errors in a slot
array or due to random distortions of a parabolic antenna.
Random errors form a statistical problem and we can speak
only about the average behavior of a large number or "ensemble”
of seemingly identlcal antennas and the liklihood or probabllity
distribution of members of the ensemble about this aversge
pattern.
In Sectlion II of the thesis & theory is formulated for
the treatment of random distribution errors for both a dis-

crete array of elements and a continuous aperture.

2). Limitations Imposed by the Synthesis Procedure

The antenna synthesis problem is one whereln we are given
the shape of the polar diagram and we are required to find an
aperture distribution of a given finite width whose radiation
pattern aﬁproxim&tes the desired one under some condition of
optimization.

The synthesls problem assumed lmportance during the last
war when it was necessary to design antenna equipment vwith a
prescribed radiation pattern for radar purposes. As & result
& number of standard procedures are available in the literature.

As the radiation pattern and the aperture excitation form
a Fourler Transform pair, the Fourlier Integral method, and its
counterpart for discrete arrays, the Fourler Series method,
suggested itself early to investigators. This procedure ylelds

an approximation which is optimum in the least square sense.



An alternate procedure was suggested by Levinson at the
Radlation Laboratory and by Woodyard in England. This method
approximates the desired function by sin x/x functions; functions
which the finite aperture can readily generate. The approxima-
tion obtained by this procedure 1s no longer optimum in the
least square or Gaussian sense but fits the desired function
exactly in a2 number of equlspaced polats.

The various approximation procedures are examined in Sec-
tion III of the thesis and a synthesis procedure 1s suggested
which 1s optimum in & Tschybyscheff sense.

3). Limitations Imposed by Aperture "Q"

During the war years conslderable speculation existed as
£0 whether 1t was possible to construct san antenna with greater
gain than that predicted by conventional theory. This problem
of "supergain” antennas has only recently been settled by a
series of papers. It 1s indeed possible, at least theoreti-
cally, to postulate an antenna of a given finite aperture with
an arbitrarily large gein. However, such "supergain” antennsas
are charactsrized by extremely large and spatially rapidly vary-
ing currents. If 1t were possible to construct such antennas
with conventionally availeble metallic materisls they would
possess prohibitive ohmic losses. Of greater theoretical diffi-
culty is the fact that such radiators are associated with a
very large reactive field. BSupergain antennas are therefore
inherently high Q devices. Unfortunately their "Q" increases
at an astronomical rate as soon as we attempt to achieve galns
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in excess of those predicted by the conventional analysis.
In Section IV of this thesis the limitations imposed by
the antenna "Q" on the synthesis procedure is made evident.
The complex power flovw thru the antenna aperture for an arbi-
trary aperture excitation is determined and the antemnne "Q"
is defined as the ratio of resctive to radlated power. The
antenna "Q" is shown to exert a physical limitation not only
on avallable gain but also on the polar diagram, that is a

limitation on the synthesis procedure.



I1. LIMITATIONS IMPOSED BY APERTURE DISTRIBUTION ERRORS
ON THE RADIATION PATTERN

1). Introducticn

The radiation polar dlagram of & specifled current distri-
bution may be obtainsd from the basic Maxwell's Equations.
Two methods of dolng this are available. In one, with the
aid of auxiliary functlions called potentials, Maxwell's Equa-
tions are put into a form involving only these potentials and
the source functions. The resulting differential equation can
be expressed as an lntegral solution involving the source Green's
FPunction. The electromagnetic flelds can be obtalned from the
potential defining equations. (Stratton, pg. 430 and 23.) An
alternate procedure is that of direct integration of Maxwell's
equations with the aid of the vector Green's theorem (Stratton
and Chu). Both procedures give the same results. ‘

For our application we are content with the far field of
& current distribution of finite extent. The vector field
components for an arbitrary electric ;urrent distribution nmay

be written from the literature {Silver, pg. 89)

: YR 4
‘zi;(@ajﬁ):= “:éigﬁg. ¢77:4b19 o 2 )
Trteg) = /g [7ipe™ P 2
Y :

* Notation Note: Z 1is a vector, ZF corresponding scalar msgnitude.
-5..



In the far field approximation the radial electric component

becomes negiigibly small. The coordinste system 1s the standard

one and is shown in Fig. No. 1. 78 18 the unit vector in the

direction of observation and ;v the source position vector.

z

= ?—?-W
£ = 27

Fiso No. 1

As ve are interested primarily in the normalized polar
diagram ve need only consider the integral of (1) + (2) as
" that alone is angularly dependent. We further lose no gener-
ality if we consider only an electric current flowing in the
x-direction - the effect of other current components may be
taken inte account by superposition.

With these simplifications our basic equations become

ACTIE cord coas :gg'e,“hlgp‘ﬁ:zr
Y
Hep = Ampfare’ T,

(r@)

(2a)



If we are dealing with a surface current dlstribution,
the above integration is restricted to this surface. 1In

particular let us consider & plane aperture lying in the

xy plane. Then since

p=rcryy
R =_Aimb cotP & + AmE coa@Jl + cod & /£,

fﬂ“aP:=jﬂubtéﬂ(2:coﬂyﬂqtjpddvygf

and our formulas bhecome

Kamo/x ;
Z‘(Qf?.—:co{&mf[d.’&,we/ 2 [m;’#y,dmﬁq’y
: £oinBlx cosp+ 4 ommg
% (6¢)= Aarz?a‘!J:(z:y/e" s if,eq’f

We can obtaln the equations for & discrete array such as

an array of infinitesimal elements or dipcles located in the

Xy plane by letting

dtty) = =3 §(t- md) $-7) Lo

vhere, for simplicity, we have considered our elements equil-

spaced. Inserting this delta function formulation into our

basic equation we have

£ ind e .
F@y)= cotocospZ'S Tum e’ Adin8[mcosgp 4 n gis]

| rhd 4i J/MCo:i ;
T log) = AmPg g Lme

(74)

(26),

(3.

4)

(5



various types of polar diagrams can be obtained by a sult-
able choice of the current distribution. The determination of
the necessary current distribution is the synthesls problem
which 18 treated in Section III of thls thesis.

As a means of introduction let us consider a uniform cur-
rent distridbution and obtain the polar dlagram in the principal
plane 39 = 90°. Applying (1b) we obtain

.. PP
77, -
—/.I—-Améy

This simple case ylelds the well known sin x/x pattern. It
possesses & mein beam of half-power width of 50.4% »/a and de-
creasing minor lobes. The successive minor lobes have the
intensity of 13.2 éb, 17.8 db, 20.8 db, etc. The uniform dis-
crete aperture has similar behevior. (Silver, pg. 180.)

Even in the early days of radio these minor lobes 1in dils-
crete arrays proved troublesome and 1t was proposed that the
individual elements have amplitudes proportional to the coef-
ficients of the binomial series (Stone). Such ;ﬁ array has &
radiation pattern with no side lobes; however this is achleved
at the expense of approximately doubling the beamwidth and
utilizing large current ratios in the arrey. Alternate less
severe tapering schemes were usually employed and the resultant
polar dlagram was computed untll & satisfactory arrangement was
pbtalined.

-8«
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Recently the use of the Tschbyscheff polynomials was pro-
posed to obtaln a current distribution for discrete arrays
(Dolph). It has been shown that this arrangement yields an
antennad of maximum galn and minimum beamwidth for & previously
specified side lobe level. The minor lobes are all of equal
amplitude and thair magnitude may be chosen as low as desired.
The limiting case of zero minor lobes reduces to the binomial
distribution of Stone. (Kraus, pg. 109.)

With the advent of radar and the use of microwave frequen-
cles simlilar tapering schemes were worked out for continuous
apertures (Silver, pg. 187). Radar particularly required an-
tennas with low minor lobes as targets in these directions
would produce false indications. Theoretically at least, the
side lobe level could be chosen as low as desired - greater
slde lobe suppression, in general, calling for a larger current
taper and resulting in lower gain and wider beamwidth.

We ingquire vhat 1s the effect of aperture distribution
errors on the resulting polar diagram? We would expect that
the effect of these errors 1s first manifested in the side lobe
reglon where the radiaticn is low as the errors tend to destroy
the almost complete destructive interference of the contribu-
tions from the different portions of the aperture.

Before we conslder the effect of such aperture errors, let

us first examine the types of possible antenna errors.

2). Nature of Aperture Distribution Errors

The aperture distribution errors or the deviation from

the theoretical aperture excitation may be of many kinds and

e



due to many causes. Certein types of antenna systems may be
prone to & partlcular error and that one may predominate.
However in any case, we may divide the aperture errors into
two general types; namely: (&)} the first kind, which lack-
ing & better name, we call "predictable” errors and (b) the
second, called "random errors”.

Predictable errors are those which occur due to the omission
of some factor in the design or engineering analysis. In this
classification we would include errors caused by such factors
as (1) mutual impedance between elements, (2) diffraction at
& lens antenna step, (3) termination mismatch of a broadside
or slot array, (4#) fixed error due to machining or faulty r.f.
measurements, (5) incorrectly positioned feed in a parabolic
nirrer, etc. A number of antennas of the same type will have
the same "predictable" error. Once this error is known, either
from theory or experiwent, 1ts effect on the polar dlagram can
be computed by standard methods.

In contrast, "random errors" are caused by accidental
and usually slight deviations of the antenna parameters from
their design value. Examples of such random errors are (1)
machinling errors in a broadside or slot array - these may cause
an error in the current delivered to &an element or actually
radiated from it, (2) r.f. measurement errors incurred in ad-
justing the array, (3) wall spacing errors in metal plate lenses,
(4) random distortion of the surface of & parabolic wirror, etc.
These "random™ errors will vary from antenna to antenna among

seemingly identlcal antennas. They create a statistical problem

-10-



and we can speak only about the average behavior of the
“ensemble” and the probability distribution of its members.

In & constructed antenna 1t may be difficult to differen-
tiate the two classes of errors - however, they can always be
theoretically resolved for, if we designate by Jo(x) the de-
sired aperture distribution, by J(x) the distribution of a

given antenna and by J(X) the system average distribution, i.e.
the average distribution of a large number of similar antennas,

then the predictable error is given by

Jix) — Jo (x) (7)

and the random error by

JEX) — J(L) (&)

As mentioned, standard methods may be applied to determine
the effect of the "predictable” errors once these errors are
known. A brief review of this treatment and references to the
literature will be presented in the next subsection. Random
errors have not received treatment in the literature and a
theory will be formulated for them in the remalinder of this

section.

3). Predictable Errors

To illustrate the methods of treating known aperture
errors 1t 1s sufficient to consider the two dimensional problem -
that is the pattern of a line source. Referring to equations

(la) and (2b) and chenging our notation slightly to conform

-1l1l-



with that usuasl in the literature for this analysls (Spencer -
austin) we have, outside of the obliquity factors,

W
_ S Ok
Go(er) = lwé’(x)e 2y ¢

where go(u) is the field strength pattern, f (x) the source

distribution, "x" 1s mweasured in wavelengths and u = sin 6.
If we now conslider the amplitude dlstribution to be in

error by f(x) - fo(x), the new distribution can in general be

expanded in a power series

A= £ [Go+ @4 +GQx+ .. ] (v0)

The resulting pattern can be written

¥4/ 477 4

f/a/g'"zf ﬂ%”£(75)6 ey (1)

Now aince

W

0/” ¥? J£b7ux' ” w 27y

ve can write for the new pattern
= a”
7 = {/zrr) dar I ~ 2),
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The modified pattern is therefore seen to be & linear
sum of the original pattern and its derivatives.
A similar technique can be applied to a pure phase error,

that is 1-

W
i)
y(u)= fﬁ,(ge" effz”‘“a,‘, (13)
-—w

Hovever, only for small phase errors can the exponential be readily
expanded &nd & result similar to (12) obtained. In addition,
special cases may be worked out directly from (13) - for in-
stance if we have only a& llnear phase error this produces a
tilt of the beam or a square law phase error may be evaluated
for uniform illumination in terms of the Fresnel integrals.
(Friis and Lewis, pg. 243) For pencil beams several important
cases of phase error are evaluated in the literature in the
form of plotted curves, especially in (Spencer - Austin).

The above method of analysis of errors is especially
useful for computation of defocussing errors and coms scanning
errors in parabolas or lens antennas. An slternate analysis,
more sultable for use in the case where the error i1s periodic
%8 1in slot or lens antennas, is found in (Brown). In this case
the amplitude error 1s expanded in a Fourier Series instead

of a power series.

; 27"

//l’) = £{x)ﬁ 1"?” Cin ed—';—x . (/4)

-13-



"3" may be any fundamental period, although the function will

be used only in the interval -W < x < W; any convenient

functional extension may be used outside this interval.

The radiation pattern due to (14) may be computed as

w W
S TN ~ . .
f () = f e ax +_~Z‘ Go | £ ) e’ 2mxlu /d)arx“ ¢s)

f/“} = f(«) *_?anyo(l(f- ") ”

It 1s sesen that the modified pattern now conslists of the
original pattern plus patterns of the same shape displaced
from the origin by the smount n/d. This 1is illustrated in

Fig. No. 2 for the first harmonic.

(70(“)
Q..g,(”* %() 4 argo ﬂ"" %’)
> S 7 A TR N . )0-
_% - %
Fig. No. 2 U= 670

Successive harmonlcs would create additional patterns at
t o/, t 3/d, etc. For large perlods the additiomal error
lobe is not distingt from the main beam and serves largely
in distorting the desired radiation. For smaller periodicities
-14-



the disturbing lobes become distinct and frequently the
source of error may be located by computing its fundamental
period.

It should be noted that for n/d > 1 or for periodicities
less then a wavelength the spurious lobe occurs at sin & > 1
and therefore does not appear in the actual pattern. A
gimilar expansion can be made for an arbitrary phase error
and for small errors the exponential can again be expanded
yielding a similar pattern structure.

The power series and the Fourier series treatment of
gperture errors will yield the same result provided a suf-
ficient number of terms are taken in each case. Howsever, in
a particular problem one may be of considerable advantage over
the other.

Having briefly considered "predictable” errors we turn
our attention to "random" errors. The next subsection serves

as a statistical introductlon.

4), 8statistical Introduction (Cramer, Chptrs. 15 to 20)

We can begin our study of “random” errors by first con-
sidering the simpler dliscrete array. In this case we assume
that the individusl elements of the array are lndependently
in error. From eq. (4) and (5) we see that we are dealing
with sums of quantities which have a random component. We
first inguire what are the statlstical properties of sums.

&). Gaussien Distribution

Iet us consider the sum "S" of a large number of

independent random scalar variables Xyt
-15-



N
S = =X« (}Z)

The xk's are samples chosen at random from N distributions,
not necessarily the same, and we inquire, what is the distri-
bution or likelihood of their sum. The Central Limit Theorem
of statistical theory, subject to rather general conditions,
states that the sum will be distributed in an asymptotically
Gaussian manner with a mean "m" and variance " o" which are

the sum of the individual N distributions, that is

7 = Zﬂ:"mk . (18).
z M2
a— o
o.x = 2 x (/?)‘

and the distribution of "s" is (m,o%), or

— 6S-ﬁzgdéo’
S/ = /_ _L e *
w(s) o (20)

N

The theorem may be derived by the characteristic function
method and for the case where the individual distributions
are the same and normel the derivation is gquite simple. How-
ever, for different and non-Gaussian distributions the deriva-
tion is mathematically more subtle and is obtained by a limiting

process. It may be found in the literature (Cramer pg. 212).

=16-



Briefly the derivation assumes that the number of com-

ponents "N" i1s large and that the third absolute moment of

sbout its mean

fe=Z (/5= 1m0y )" = /;Xk-mx/:f(x)cév (%)

is finite for every "k" and that the limit

Xy

Lo L.
v — —¥r O
2
Ny Fx (2)
where
3 A

Eq. 21 and 22 are therefore the conditions of applicability
of the Central Limit Theorem.

We note that the theorem requires only condition (21)

when the "xk" come from the same distribution, as then

Vs W ﬂ" (24)

and
Now (29)
so that
Lm A2 = Lt f‘ .‘,/',:7 - © (26)

This less stringent condition is also sufficient when

the individual components come from proportional distributions

as then //
3
y g [ 21/
Wro @ & Jzialdt 27)

* The symbol E{( ) has the usual statistical significance of
expected value.
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Although the theorem is only asymptotically true, that
is we only approach & Gaussian distribution, i1t has been found
that if the number of components is above say six the result-
ing distribution 1s already closely Gaussian. In particular
if the individual components originally come from a Gaussian
distribution themselves no restriction need be placed on the

number in the sum.

The Gaussian or normel distribution is shown in Fig. No. 3.

W (x)
m-oy ”»” "+ O}, x
Figo No« 3

It 1s characterized by 8 mean "m" and a variance o and it
can be computed that approximately 68 percent of the sums lie

320-.

within m ¥ & and 95 percent between m
The Gaussian distribution may in a sense be termed the
"natural® distribution in that it occurs in physical phencume-
ng. As the deviation of a physical-quautity from a theoretl-
cal value ls generally due to a number of lndependent causes,
the Central Iimit Theorem informs us that the gquantity will
be distributed in an asymptotically Gaussian msaner about 1its

moaitl.

-18-



The normal distribution of the sum (17) can be applied
to electrical probleme as it may be interpreted as the sum
of a large number of d.c. or in-phase voltages or vectors.

We next inquire what 1s the effect of adding & constant
value to our (17), that is, what is the distribution of the

suam
N

5=Q+Zxk

We would expect that the distribution W(S) would still be
Gaussian but now displaced by the amount "a", that is, 1t
would be characterized by (mea,d).

We can utilize this very simple example to introduce
the characteristic function method and statistical manipula-
tions in general.

Given a distribution function W(x), the characteristic

or moment generating function 1s defined as

ﬁ/ﬁ:fet'xfw_(x)dx

This function is called the moment generating function as, 1f

the exponential 1s expanded

NE o

L]
72(;‘):_— f;‘(z'f)" X "G Ok

it is seen that the "nih" moment of W(x) can be obtained

directly from the charscteristic function by

-19-
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Fox)= (7)) 2L 7%&9/ )
oz #=0

Furthermore, by the Fourier Integral Theorem the proba-
bility distribution and the characteristic function (29) form

8 Fourier Transform pair, so that:

U (t) = ;’,;.jé‘ﬁﬁ &) ot (32)

Now let us consider the sum, z, of two random and inde-

pendent variables, x and y; then

#E = [ oo = Z (e

but . o
F(e®) = F M) = Fe*e )

As we are dealing with independent variables, the expected
value or mean of & product is the product of the means, 80

that
F e = f/e”ﬁf{e‘y?_

or

A = 70 7 | (33)‘



We can extend this to any number of lndependent variables and
have the important theorem on characteristic functions, namely

that:

“The characteristic function of a sum of independent
variables is equal to the product of the characteristic

functions of the terms."”
As we wish the distribution of "z" we must take the in-
verse transform of eg. (33). This can be readlly done bﬁ the
use of the convolution theorem and the desired distributlon

may be expressed 1n terms of the original component distributions

wiex) = fwslenmi oo
- 00 (3 ‘).

or
a0
W (z) = /74&' (Z~x) wy (x)ay
- O

This same result could have been obtained directly by the
consideration of the joint probabllity of independent events.

The probability of a given value of "z" is

wE(z) = fw; (x) Wy (y) d'x (35)

As we are subject to the restriction z = x + y , thls becomes

wice) = _fwi (g wy (z-x) ot

vhich 1s the same result as (34).
Returning now to our displacement problem as presented

by eq. (28), by the Central Limit Theorem the sum is Gausslan



and the constant is distributed as a delte function $(x - a).

Applying eq. (34%)

- —(S-x-m) o
()= Joa L & e Vol

or

4 L g (== /205 (3¢)

W(oj= ’/Z”T o,

which 18 the expected result, that is, Gaussian with (m+a,cao.

b). Diverse Non-normal Distributlons

Due to the generality of the Central Limit Theorem,
there 1s the danger of assumling that all sums of & large num-
ber of elements are distributed in a Gausslian manner and that
therefore all physlcal quantities involving a number of addipive
components are at least asymptotically Gausslan.

This fallacy can be readily demonstrated by the con-
sideration of some examples. Although S = 2xk is normally
distributed, the magnitude M = |Ix, | 1s not. If 5 is normal-
ly distributed with zero mean, then the distribution of the

magnitude

— M

/ 2o

w () = 3/.e. —e » M>o
7 o~

M<LOo

(37)

w(r7) =o

-



will be of the form of a folded over normal curve (Fig. &)

W (M

|

Fig. No. &4

Another non-Gaussian distribution of interest 1s the
distribution of p = (sz)a, which could be used to represent
the distribution of the power in d.c. circuits when the indi-
vidual voltages are random in magnitude.

To obtain the distribution of "p" we can make & change
in variable in eq. (20) as the sum, by itself, is Gaussian;

thet 1s, we let

p=S° Op = 25d5
and since
wi(p) dp = Zw(Jas as pxo
— Plogt
W (p)=2w (3> /I_ 1 e V20, >0
wi(p) =o £ e

wvhere we have assumed that the original normal distribution

-23-



had zero mean. Fig. No. 5 shows this distribution.

wp |\

F18° No. 5

A distribution of greater interest to our problem is that

of

p=(Sn)+ (Z9)= 7+ (39

By the Central Limit Theorem the lndividual sums will be
Gaussian. For our application we can assume that they have
zero mean and both have the same variance. This distribution
can be used to represent the distribution of power in an a.c.
circuit where the individual a.c. voltages have random magni-
tudes and all phase angles equally likely. The zero mean and
identical variance 1s statisticaelly assured by the equally
likely phase angle condition.

The distribution of "p", W(p) can readily be obtained by
means of characteristic functions or by means of the convolu-
tion integral, eq. (34). The individual distributions w(1)
and w(‘) are given by eqg. (38), and

=24



W (p) = S""r{ Ce-) wWin) d'l

P e;iyézai
_ 2\
w(p = >u 30_} F\.l_‘_p_:{ d'(

Thls can be readlly integrated by the substitution

o= o= _ L d
with the result 7\
<
-P/2o% -P/2o*
_W..(P) — E - - dOL — e §7;
N Cx o'{ F)-c(z Za'ct:
Thls can be put into a more convenlent form as
P = §+r\
—_— T+_ —— G?- T 'y .
P= 171 = Ox+0y = 20, =0 (40)
hence
_.Fvé,z
'\N'(P) = e >
R P>o &4“'
wi(p = o | P <o

This distribution 1s therefore characterized only by the mean
power P = o= and it is shown graphically in Fig. Ro. 6.
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Figo No. 6

c). Rayleigh Distribution

The Reyleigh distribution W(r), is the distribution

of the magnitude
=V (23 (S (42)

wherein the individusal sums have zero mean and ldenticel variance.

It can be derived simply from the disetribution W(p), Eq. (%1},
by the substitution p = r2, dp = 2rdr with the result

W)= 2nr S Zh @3}

This distribution may be applied to & number of physi-~
cal problems, that is, to those which satisfy eq. (42). This
equation expresses the magnitude of a vector sum and the zero
mean and identical variance conditions require having all di-
rections equally likely.

This distribution was first investigated by (Rayleigh)
in connection with the problem of the random walk and in the

2=



incoherent addition of acoustic waves. In the random walk a
particle suffers a large number of random displacements, with
all directions equally ilkely, the magnlitude and direction of
each displacement belng independent of all previous ocnes. We
inquire about the probability that after "N" displacements the
pariicle lies in the circular strip of "p" to "n +dyL". AS
the particle's final position 1s given by (42), the probability
distribution will be given by (43) with O “equal to the mean
square total dlsplacement.

As the resultent voltage of a large number of random &.c.
voltages of arbitrary phase can be represented by & vector sum,
the resultant voltage magnitude will be Reyleigh distributed
wlth crtequal to the mean power. We can therefore apply this
distribution to a number of electrical problems. These include
the distribution or likelihood of & given: (1) voltage stand-
ing vave ratio on a transmission line caused by randomly located
discontinuities, (2) the radar return from a group of random
scatterers, (3) transmission in the rejection band of &n electri-
cal filter caused by errors in its circuit components, (4) side
lobe level of an antenna caused by aperture excitation errors.

As an 1llustration of the Raylelgh distribution, considgr
25 a.c. generators connected in series. The lndividual phases
or shaft positions are at random and the generators may have
either equal voliages of one volt or they may be taken from
any population of unit variance. ;f this population were Gauss-

lan then 68 percent of the génerator voltages will be less than



one volt and 95 percent of them would be less than two. To

apply eq. (43) we must evaluate the mean power

—

P=0 = (Zx) + (24" = XU+ G

“‘S:‘" 2(9(:+13"K)=r\
vhere "n" 1s the number of voltages. This is the well known
result that the intensity resulting from the superposition of
"n" waves with random phases is just "n" times that due to &
single wave. However, this i1s merely the expected or average
value and if individual readings vwere obtalned with different
shaft positions we would obtaln a dlstribution of values rang-
ing from Q to n®. Fig. No. 7 shows this distribution for the
cage of n =9 s8nd n = 25.
To better illustrate the nature of the dlstribution we
c ompute the cumulative probability, that 1s, the probabllity

that the magnitude greater than & speciflied value will occur.

This 18 equal to

"_F>‘-7'F:1 = w(r)ydn = ;EhGVGrt Q14\_

™

which is plotted in Fig. No. 8.

As snother illustration of the Rayleigh distribution, con-
sider the light incident on this page. As 1t 1s due to a large
number of incoherent atomic sources, its intensity will be dis-
tributed in a Reyleigh manner. We do not “"see" this variation

of intensity as our perception is too coarse and too slow.

=28~
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However, our statistical analysis indicates that 13 percent

cf the area has an incident intensity greater than twice the
mean and only 2 percent greater than four times the average.
A photocell measures the average intensity as 1t performs an
integration over 1t{s sensitive area.

Finally the Rayleligh distribution may be considered as
being cowmpounded from two perpendicular and Independent Gauss-
ian distributions. The probability density surface is shown
in Fig. No. 9.

W (x4) = WO (y)

Fig. No. 9

The distribution of "r" could have been alternately derived
by performing the "" integration. Another method of deriv-
ing the Rayleigh distribution is by the use of characteristic
functions. This 1s done in (Chandrasekhar) and in (Uhlenbeck,
pge. 50).

d). Modified Rsyleigh Distribution

Let us now consider the addition of a constant dis-

placement "a™ to the Rayleigh distribution or the distribution

-30-



w‘r’-

of "r" where
- /o 2 T2
K= @+=x) + (Byy) = [(CH'D + ¥ 43).

No generality 1s lost in adding the constant to only ﬁne of

the sums as the axes c&n always be rotated so that the dils-
placement colncides with the "x" axis. In the antenna problem
the constant "a" would correspond to the signal present due

to the exlsting or inherent side lobes of the zero error aperture.

To derive the modified distribution of eq. (4#5) we displace

the two dimensioconal Gaussian distribution of Fig. No. 9 to the
pcint (a,0). Fig. No. 10 indicates the result with the necessary

coordinate system.

w(‘rﬂ)
Y
— x
o up.)
4
N
n } ¢
4 1
] A g
(Q,0) x
Fig' No. 10



Now .
-— - k 8 X L X
W (X, ‘j) = w(x)-w-—(..;\ - e (x 0)/2-3,, \ é /7"’5.

\
{2 O, r—'.z“_ o

A

W(X) W(\s\ —_— __!__ - ‘-‘.Ll * G}-— ZQ}L Q%e] /0.3.

A
w o*
W dn = Sw(x)wcug ndedn

-W

wWn) = " E("}*T&)/o-"s
wot

2aneon © fo

e

-

wi = Zn gAY 2] o

O'I. c-'l.

The last integration msy be found in (Mclachlan, pg. 162).
1,{z] 1s the modified Bessel Function of the First Kind.

We can call (46) a modified Rayleigh distribution. It
vas discussed by (Blake) in connection with the probable radar
return from random see clutter with a direct signal present.

Fig. No. 11 shows this modified Rayleigh distribution for
various values of the displacement "a". Fig. No. 12 gives the
cunulative probability. This was calculiated by graphical inte-
gration of Fig. No. 1l. For smsll values of "e" this modified
distribution naturally approaches the Rayleigh curve and for
large values of "a", due to the asymptotic behavior of the

Bessel function, we obtain
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W —> = Lk s @Yo

or approximately Geaussian behavior with (a, W/fi).

We stilll need to find the mean power of the modified dis-
tribution. This may be done by computing the expected value
of "r°" from W(r), eq. (46), or simply from eq. (45).

—_ = — ——
]’(_z = (Q-t-ro + v' = Q*+ vl"+ 1" = a*+6"
where we have realized that the mean of the sum of Independent

variables is the sum of the means and that Y\ = M =0 The

result is as we would expect from the incoherent addition of

powers.

5). Application to a Discrete Array

a). Effect of Distribution Errors on Antenna Pattern

Having introduced the necessary statlstical tools,
ve are in a position to analyse the effect of aperture dis-
tributioﬁ errors on the performance of a discrete array. Wwe
have mentlioned that by the use of the (Dolph) distribution
it is possible, at least theoretically, to obtain a side lobe
level as low as desired. Fig. No. 13 shows the polar diagram
of & broadside array of 25 elements designed for side lobe
suppression of 29 db. We note that the radiation is practical-
ly confined to an angular width of "2o(J'. Outside of this

-5
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region, due to almost complete destructive interference of the
contributions from the various members of the array, the radia-
tion magnitude does not exceed this previously specified emall
value.

Fig. No. 14 gives a physical explanation of the pattern
formation. In the main beam direction the individual element
contributions add up in phase creating a large amplitude. Where-
&s in the side lobe region the vectors spiral around many times
but thelr resultant lies within the 29 4db circle. It 1s evident
thet our individual vector magnlitudes must be carefully chosen
énd precisely maintained so that no where does their sum excesed
-29 db. Furthermore, we suspect that greater side lobe suppres-
slon requires not only a greater current ﬁaper but also a greater
current acgguracy.

The engineering question naturally arises as to what pre-
cision muast the currents be maintained for a given side lobe
suppression, or conversely what side lobes are caused by a
glven current error. It 1s suspected that 1f great side lobe
suppression is utilized the side lobe level will be determined
not by the current taper but by the error or deviation of the
antenna currents from their theoretical values.

If the individual contributions are in error at random,
say both in phase and magnitude, thetrasultant electric intensity

would be of the form

%(u.) = \f[% (w) +2xx}‘+ [?‘_.3“? W\

3T



-I:-_;Idl-— —-IK I2 In

N db CIRCL
$1x 29 db CIRCLE
h ' /
SIDE LOBE REGION
NORMAL TO ARRAY
§=0°

Figure No. 14

8-



where g (u) 1s the intensity with no error. In the side lobe
region where the contributing vectors have spiraled around
wany times, the sums in (49) would have statistically zero
mean and ldentlcal variance. PFurthermore, a&s we &are dealing
with a large number of elements, at least greater than six,
the individual sums would be asymptotically Gaussian accord-
ing to the Central Limit Theorem. As Eq. (49) is of the form
of egq. (45) and we have satisfisd the necessary conditions,
the resultant electric intensity will be distributed in a
modified Rayleligh manner with go(u) playing the role of the
previously introduced displacement "a®.

If we could now determine the mean power, our distribution
would be completely specified. The mean power or the average
power of a large "ensemble" of similar antennas can be found
from the radiation patterns by standard statlstical methods.
Iet us apply our analysis to the lmportant case of a broadside
array of MN elements spaced & distance "d" apart, quarter wave
in front of a reflecting screen. The far-fleld field~-component
intensities are given, outside of distance and proportionality

factors, by eq. (4) and (5), (Section II, 1)

N 27 Ky /"2 +nd 4y
% (8 %) = cos6 cosp> ;é‘ T @ HEET 2 (4
_ -~ 7 -4§dg7526%u/caﬂ fwnaadéﬂfa7
4§§ﬂgfg):= ,440{79;§;,§; Tom ©Y 7 (5)



The coordinates are the usual right-handed system, with the
array in the xy plane and directed along the z or © = 0 axis.
The current 1s assumed to flow in the x-direction. The above
formulas should be multiplied by a screen factor of sin(%"cos e),
however we shall use the closely related function 1&55:%:
to preclude later integration difficulties. The two functions
are shown in Fig. No. 15. As we wlll be primarily concerned
with highly directive arrays, the difference is not significant.
Now let us conslder the individual element curreants inde-
pendently in error, both in phase and magnitude; that 1s, our
currents become _Z m (/ + é]..m) e‘f e , Vvhere the phase
angle 1s measured in radians. The power patterns may be ob-
tained from (%) and (5) by forming the complex conjugate.
Writing the summation term only we have:

rM o A

—'\'—-—;A’\ S— — ¥
Pl ) = 22 ,Z?’ Liun Lpg (14 Biwa) (1 + Dpg) =
é?‘/'4545““914a”—;9(chdyﬂ+ (h-fddidéufefr
X

) Cr.mn— 3,
o (- . (50)

The desired or no-error pattern is

AT N - 'é‘ég&/(mw) dfﬂﬂf 4 (”'f)d/kf_/‘
=\ v
Rp) 2222 L dpy € (),
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let us now compute the "system average" pattern, that is, the
average pattern of a2 large number of similar arrays. Designat-
ing this pattern by P(Q; ) and assuming, as is likely, that

the mean error 1s zero or that 2£;ﬂ= 5;,; 0, we have:

Z

~M N
S Loy *

5|

/aﬁé;gﬂ P, 2
NN M N ¥ —

o 98 [ -p) @ o030 wn-g) dsin ]

vhere we have let ¥y = J;my-—&, and realized that the mean
of the suwm of independent variables 1s the sum of the means.

We must now evaluate the mean of cos y and sin y where
our fundamental random variable is "§". We may assume that
“§" 1s distributed in a normal manner. Thls will be asymptoti-
cally true 1f the phase error ls due to a number of causes
and such errors are small, so that a first order or linear
relation exlsts tustween the cause of the phase error and the
error itself.

“y" then becomes & random variable generated as the dif-
ference of two samples from & normal distribution. Fig. No. 16
shows the generation of this variable, commoniy called the

"range" in statistics.

w(s)

-4

A Se/ s
Fig. No. 16
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The distribution "w(y)" is glven by

Wiy = S"":(S)WT(S-l-g)dS (53
vhere
- §/257
2 5 &9
and

/ - 945"
W (4) =
3 In g2 € €rY,
and
3 -9% _5
coty = J cody w(y) dy=e =e¢e (56)
7= [y iy - Q)

Applylng these results to (52), making use of (51), and adding

the two component powers (4) and (5)

Pigg) = z?/e;a)é': # J(e,a)[d_’-.&/- § Z”' Z“’ (58

B



where the obliguity factor 1s reintroduced, being

(@) = cod 9[003‘9@.1'79 “"‘;";0_/ (59)

Normalizing our pattern and calling €% the total mean sguare

error

< - /F Y
€ = /8 v (1-€)fe’ ~ F,5T (60

;fptﬁiye) = £2(6¢) @) €. :ééféé.:ﬂ:w
r@p) + s ’a)efz'zr,.,./‘ (¢4)

Equation (61) gives the "average system" pattern. We
note that the effect of the error distribution is to add a
spatially constant (outside of an inherent obliguity and screen
factor) power level proportional to the mean squared error.
Individual arrays and particular spatial directions will show
side lobe radiation differing from thls constant value and
distributed in a modified Rayleigh manner with the followilng

conetants

@'= p(ep) €2

C3“2=== -571?72) E;i- :EE\:EE: ;Z:ﬁno

/225,

G

It should be noted that when the errors are small so that
az:ercr", the field strength will be distributed approximately

~b4
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Gausslan about the no-error pattern; whereas for large errors
where O"') 7 & and the original minor lobe radiation may be
neglected, we have Rayleigh behavior.

The formula also indicates that relatively smaller spurious
radlation will occur for a larger number of elements, in fact
the error contribution depends approximataly on 1/NM. Hence,
for a given current precision low side lobes are more readily
realized with large antennas. This i1s not suprising physically
a8 the maln beam intensity increases as the square of the number
of elements or as (NM)a, wvhereas the spurious radiation, being
incoherent, increases only as NM.

To 1llustrate the application of our result, eq. (61),
we consider our 25 element array designed fo suppress the
minor iobses to 29 db. Following the Dolph procedure, we compute

the current distributlion to be

IO = 1-00 IT - 00627
I1 = 1.00 18 = 0.535
I, = 0.970 I, = 0.445
15 = 0‘925 Ilo = 0'558
I“‘ = 0-863 Ill = 00278
Is = 0'795 112 = 0-418
Ig = 0.715 and I_, = I,
from which #12

2 1. = /685

&

sz

S Ti = 1287

L 4
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In Fig. No. 17 we plot, for those angular positions where
the no-error minor lobes have maxime, the probability that the
radiation will be below & specified number of db when a given
mean error exists in the antenna currents. Fig. No. 12 is
used to compute the necessary cumulative probability of the
modified Rayleigh Distribution. A 50 element antenna with the
same taper would have roughly 3 db lower spurious radiation.

Finally, ws compute an actual pattern of our 29 db antennsa
with a specific set of error currents. The error chosen was
one wherein each element was assumed to be in error by the
addition of a curreant 40 percent in magnitude and at rendom
phase. The random phases were obtained by drawing, at random,
from a hat containing the numbers from O to 359. The random
phases could preferably have been taken from a table of random
angles (Morse - Table II). The author was unavare of the ex-
istence of these tables, which have been specifically checked
for randomness, at the time this computation was made. Figure
No. 18 shows both the no-error and the error pattern ( Ei.= 0.16).
Figure No. 19 plots the distribution of side lobe magnitudes
as obtained from the error pattern and from the Rayleigh dis-
tribution. The limiting form of the Rayleligh case is used as
the error currents are so large that the inherent no-error
radiation is negligible.

It is vorthwhlle to point out that the actual computation
of the error pattern is a very time consuming operation. At
each angular position 25 inphase and phase gquadrature terms

must be summed and thelr mesgnlitude obtained. The entire
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operation must be performed with sufficlent accuracy to repro-
duce the pattern in the side lobe region where almost complete
cancellation exlists under the no-error condltion. The pattern
drawn in Fig. No. 18 was actually computed by an electric analog
antenna pattern calculator at the Naval Research Laboratory in
Washington, DeC. Figure No. 19 indicates that our statistical
theory gives our side lobe distribution without any tedious
calculstions.

The excellent agreement in Fig. No. 18 indicates that we
can use the Rayleigh distrlbution in the case of & 25 element
array, although it 1s only asymptotically applicable.

b). Effect of Distribution Errors on Antenna Gain

let us now consider the effect of the current errors
on the antenna gain. The gain G, over an isotroplc radiator,
may be written as the ratio of the radiated power of the iso-
tropic radiator to that of the test antenna when both antennas
create the same fleld strength. We therefore have the gain

formula

/ﬂ (e.p) 02
<

Ietting G be the gain of the antenna with the error distribu-

tion and Go that of the no-error antenne, we have, upon insert-
ing the average pattern (61) and performing the evident integra-

tions
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— D= Zan g%
;) # *"/z*z‘_z:m.]‘e (65)
& / » 26 F EE L0 T '
[==T.]

D

AsB Go is usually a large number, we can write approximastely

g = 4 — (¢¢)
e / é e.z 2 E‘Imn eJ"'
[ZZ Tonf?

Into eq. (66) we can insert the value of G, as measured

by experimentel means or determined by graphical lntegration
from the theoretical antenna patterns. It would be desirsable

to have a simple, even though approximate, expression for the
gain of a braodside array that could be used to further simplify
eq. (66). Search of the literature has falled in finding such
& useful expression. We can, however, derive such an approxi-
mate value from its continuous aperture counterpart. The gain
of & unifeormly illuminsted aperture of area at least one square

wvavelength is given by (Silver, pg. 177)

G = 227 (¢7)
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If now the same aperture were to conslst of discrete
radistors with equal excitation, the radiation pattern would
hardly change provided the elements are spaced closer than a
wavelength so that the second order diffraction maxlmums do
not occur. As the pattern has not changed, the gain 1s un-

altered and way be written as
77 P4
Go = LZ v (¢8).

where "M" 1s the number of columns, "N" the number of rovs,

and "d" the spacing. If now the excitation be altered, so

that the "mnth" element carries the current I ., then the "on-

2‘227..:/ £
MN

axis" radiation will become

end the lnput power becomes
m—— .._-z
= 2 L
MV

provided that we assume negligible coupling between elements.
Inserting these modifications into (68) we have for the gain
of a broadside array, quarterwave in front of & reflecting

screen

C= ar (g EZZLL (¢9)
' 22 Lo
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Using this useful though approximate expression in (66}

wve have for the reduction in geain due to errors

/
é 3. /o )EF
/+_4-7r(;1—/€

A result independent of the current distribution and the size

of the array.

6). Application to a Continuous Aperture

a). Effect of Distribution Errors on Antenna Pattern (Booker)

In general the same statistical considerations apply
to the aperture antenna as to the dlscrete array. However, an
additional fector is introduced which considerably zlters the
final result. In the dlscrete case we assumed that the error
current in one element was independent of the error currents
in adjacent elements. Thls assumption is untenable in an aper-
ture antenna as 1f the error is large at one point it will proba-
bly be large in the lmmediate nelghborhood. The size of the
correlated region will be found to affect both the magnitude
and the directional characterlistics of the spurious radiation.

Iet us begin our discussion by considering & circular
aperture excited by an electric current in the x-direction.
Fig. No. 20 shows the coordinate system. As we are interested
primarily in parabolic mirrors we will consider only a pure

phase error, "&", expressed in radians.

-55—
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Coordinate &System

Flg. No. 20
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Following closely our discrete analysis and avoiding
needless repetition, we write the far field, outside of the

obliquity factor, from eq. (la)

F o) =/J,‘rr) eV s

For & parsboloid the integration is performed over the mirror
surface and the current 1s equal to the tangentlal magnetic
component of the lncident fleld. With a position dependent

phase error the far fleld becomes

T/é,f}::-fcz_(ﬂﬁe

and the power pattern (corresponding to eq. (50) in the discrete

4P K; J ‘Y("'j?,'x_ /6 ?)

case) formed by multiplication by means of the complex conjugate

hecomes

- . (r-m!) . /S-S )]
73/5,’;0) = /fJ:(d .Z'(ﬂ"JeJ eJ oS, IS (7e)

changing the vector position variable, so that (ﬂ'-ﬂj) = 7,

Jler [SGrem) - Scmff (7).

p@jﬂ) = f/«Zf{rm)I;a-)e e oS- IS, i
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| A

and with the same notation as previously, we obtain for the

mean pattern
,0@?0) — fJ’(rrnj JE;)[EET% t'Adtg]de oS, (

Now "y", the phase difference of two points on the aper-
ture sgpaced a dlstance 7r'apart, has zero mean 8s positive and
negative errors arse equally likely. For large values of 7
the phase errors are uncorrelated and the mean square has the

| same velue as previously, namely F = 2?- For 7 = 0,
the mean square phase difference 1is obviously zero. The mean
square value therefore depends on 77 and we have only its limit-

ing values. We nust assume some functional form to flt these

two conditions. Assuming that:

— _ /et
#') =25° 7-& " (73)

where "C" may be defined as a “correlation interval”, that is,
that distance ™on average" where the errors become essentially
independent. Equation (73) has the form indicated in Figure
No. 21. ar)

28¢%

4
4,
3
»

Fip. No. 21
g =6



In equation (73) we have purposely neglected the vector
character of 7 ; this means that we are assuming that the
mean square phase difference between two polnts spaced a dis-
tance 7T apart 1s independent of the direction in which we
choose the second point. This 1s a good assumption 1f the
errors are uniformly dlstributed over the aperture.

Inserting (73) into (56) and defining the aperture auto-

correlation function

“

eq. (72) becomes

/ Terem) T ol

e — T
e %

CY N J/J?ﬂﬂdf 70(")9 e oS, (75

Expandlng the exponential and resalizing that the undistorted

pattern is

Rep)= f Timas. [ e’ Gs, (%)

we have

Jer "7 /

._J‘ ~3 a ke
Par) = Rape s’ [T 2 [pre Vi g

(77).



Now #(7?), the no-srror aperture auto-correlation function, 1is

a slowly varying function, with g(0) = 1 and decreasing to zero
at twice the aperture dlameter. Whereas the exponentlal essen-
tially vanishes beyond the error correlation interval, that is

for 77>»>C. This 18 illustrated in Fig. No. 22.

Figo No. 22

We make little error in taking g(77) as unity as the contribu-
tion to the integral for F»»C where g(®) differs from one is
negligible.

Now

,{//. 7 = _%3_7 7 /MO /cw;ﬂ Coda + Aix;ﬂ,da'tq/

- Ep.7m— 277 4o [004'(70—«,3/ (76’)

A

inserting and performing the ", " integration (McLachlin, pg. 157),

ve obtain with the notation, u = sin 6:

-58-



i r——_rr————

Ary—

Pley) = ?(a;ﬂ)e_y #

/Jgdo’«ﬂg'[ﬁ/" J;/eru’))é'nf:/r
S 7/ v A (3729

We are now faced with the evaluation of the integral

T= [+e” ?%:Z‘(%Iavj ar (50)

o

This integral 1s of some interest as the identical form would
occur for the polar diagram of a circular aperture excited
with a Geaussian taper (Silver, pg. 194). To evaluate we in-
sert for the Bessel function Schlafli's contour integral form

(Copson, pg. 319)

#- TVt
(Z(Z)_—: /_ < ot
2w 7
C

The integration contour runs as Indicated in Fig. No. 23

zﬂlpézoe

ey A b A Yoeame 8T r e sEan e e e R e -

3
:
A

Fis- No. 23
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We have now

/=

Z+ 626%70 2
/'r'e Zcin 7T drdt

oW

vhere b = 5 u. The integration over 7 cean be readily

evaluated leading to the form

&
T = ! c?e” off
4ren Z 4 c2b®
%
Pt
This last integration can be performed by the method of
2,2 *
residues as 1t has & simple pole at ¢ = - °4b . We obtain
‘ n
2772,,2
cru
c® - z . (234)
I'= e A2
2

| This is a rather interesting result as, since (80) could be
interpreted as the polar diagram of a circular aperture with
a Gaussian taper, the polar diagram is agaln Gsussian. This
is rather suprising as circular apertures normally have Bessel
functions for thelr radiation patterns.

Inserting (8l) into (79)

2‘[57 S At jfgdd«f
%) pln Czi%)

Peg) =7 (9f)e Fene?
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4
normaelizing by dividing by the factor [j\T'Cf')d{/ and
using the approximate though generally accepted formula for

the gain of equiphase aperture (Silver, pg. 177)

C o 4r /fJ'cr-)dJ/z (63

;? V’272h);r229615-

we obtain

2, 2 © T3z "—f_ 77-‘1”2” 2
jﬁyﬁgzy:=qufﬁafe)'*-4’j;;:;6-;,(ia’aﬁﬁg?‘:f;f;J/ o c //:7 65“61

where we have further summed the two component powers and
introduced our obliquity and screen factors.

Equation (8%) is comparable to eq. (61) and glves the
average system pattern. For small phase errors we need to
consider only the first term of the summation - the distrub-

ing pattern then 1is

—_— z
4167177J:'6'2 e?_.77 blzc:;4§’=

7€, (85).

s@,p)

We note that the spurious radiation is again proportional
to the mean squared error but in addition is proportional to
the squere of the correlation interval in vavelengths. Further-

more, this radiation is no longer essentially uniformly spatially
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distributed but becowes, on the average, directlonally directed
along the &xis of the aperture. The directivity increases with
the size of the correlated region, so that for "rough" reflec-
tors, where the correlation interval is small, energy is scatter-
ed uniformly. This 1s not at all suprising physically, for
regions large compared to a wavelength (which are at the same
phase) will scatter more strongly and more directively. As we
haeve many such regions randomly located and oriemnted, there will
be a concentration of the "average ensemble" radiation along the
axis of the reflector.

The importance of the accuracy of the reflector shape is
well knovn in antenna deslgn. A thirty-second of a vavelength
tolerance on the reflector surface (sixteenth on the resulting
phase front) 1s a common criteria. Our analysis introduces
the like importance of the size or extent of the distortion.

If errors are unaveidable in a reflecting surface, one should
endeavor that they be small in extent - furthermore, small dis-
turbances such &8 heads of screws and rivets holding the re-
flector in place will have but a =mall deleterlious effect on
the antenna performance.

The theory reveals that if we consider two reflectors of
the same mechanical tolerance but of different values of "c",
that is, the mechanical errors in one, although having the
same average magnitude, have a larger period (Fig. No. 2%4),
then the "rougher" reflector (smaller "c") will have lover side

lobes and they will be more uniformly distributed in angular

direction.
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Figt No. 24

Unfortunately the analysis indicates that a reflector of
‘given gain will degenerate much more rapldiy then had been
previously expected as the frequency is raised. Increasing
the frequency lncreases the scattered energy both due to the
increase 1n the correlation interval and due to the increase
in the phase error. For reflectors of the ‘same gein {same
diameter in wavelengths) the relative side lobe level willl in-
crease as the fourth power of the frequency or 12 db per octave.

AS the factor "¢ occurs directly 1ln our hasic formula,
it is of interest to speculate on its probable value in a
typical reflector. The constant appears in relation to the
wavelength so that for antennas in the "L" band (25 cm.)} "c¢"
may be quite small, say of the order of a tenth or a fifth,
vhereas in the "K® band (1.25 cm) values of "¢" of the order
of two or four would not be uncommon . Very large values of

"e" would occur if the reflector 1s subjected to random warping
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as would be caused by temperature changes or mechanical stress.
Furthermore, 1f the reflector is carefully made 80 that many
wechanical check points exist, then "c” would also be small
hereas 1f great care is not utilized so that large mechanical
errors occur they most likely would extend over quite a region
making "c¢" large.

The higher order terms of eq. (84) are of lower directivity
and hence have the same effect as a smaller correlation interval.
This again has physical basis due to the periodic nature of the
trigonometric functicons; wherein a phase error of 360o represente
no error &t all but merely an effect similar to a reduction in
the correlation interval. It should be noted that the correla-
tion Interval is not cut in half due to the Gaussian distribu-
tion of phase errors or in other words there will not be many
places where the error exceeds 3600.

(1) Application to a Parabolic Mirror

We began the discussion of the continuous aper-
ture by considering & plane circular aperture with an electric
current flowing in the "x" direction. The result obtained,
eg. (84), is of considersble greater generallty. By the intro-
duction of the concept of the correlated reglon and the assump-
tion that the errors are uqiformly distributed over the aperture,
we have separated the error integration over essentlally only
the correlated region, eq. (77). The coherent term or the no-
grror pattern appeared as the first term of our expansion. Thils

term contained the integration over the euntire aperture.
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If the aperture had a different cross-section, say
elliptical or the integration were to be performed over a dif-
ferent surface, say parabolic or specially shaped, the no-error
pattern would require modification, The effect on the scattered
rr.dlation would only be in relative level as expressed by the
no-error galn of the antenna. Our result, therefore, holds
for any continuous aperture provided we use the appropriate
pattern and gasin. Further, current separability 1s not required.

By this dodge we have circumvented the difficult electro-
magnetic theory problem of determining the complex currents on
a shaped reflector when fed by a directive feed. Our result
merely gives the spurious radiation that results when these
currents are in error. The actual coherent or no-error pattern
can be determlned by exlsting approximate means or measured
experimentally.

To apply our result to a parabolic reflector we need
to determine the relation between the reflector error in vave-
lengths and the corresponding phase error of this contribution

in the far field. For shallow reflectors this relation is
P 2 —

2

S=202Z)d or 5= 4(_2'{: o

where "d" is the mechanical distortion measured in the same

units of length as the wavelength.
A number of graphs were prepared to illustrate the

effect of the reflector error and correlation interval on the
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spurious side lobe level. The inherent coherent level 1is to

be added to these curves. Although the "average'" side lobe
magnitude 1s spatially directive, ve plot only the close-in
lobes, that is, ve set u =0 1in eq. (84). As we are dealing
with highly directive systems these close-in lobes are of primary
interest. Figure No. 25 plots the expected minor lobe level

as & function of the r.m.s. reflector error for uniformly 1l-
luminated apertures of various dlameters. Again we see the
lower spurious radiation obtainable with the larger dlameters
for the same tolerance. Figure No. 26 is a similar plot for

& cosine squared illumination which illumination yields an
antenna of lower gain. This illumination 1s typical of current
practlice. Figure No. 27 shows the effect of the correlation
interval. Finally, Fig. No. 28 shows the angular pattern of
our system average pattern as it is affected by various amounts

of phase error.

b).- Effect of Distribution Errors on Antenna Gain

The average reduction in gain can be obtained as in
the dlscrete case by inserting into eq. (64) which is the exact
expression for antenna gain, eq. (84). This yields for the

ratio of the galns

e /
go - 2 ZEI- !'\ red =/ Az
/ + f__i? ‘] ./kwacoafi-twgﬂmf/e Am;a@df

”nzy n/ﬂ
(5¢)

L
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Confining our attention to the integral, performing the "g"

integration and writing nrc = a?

A.

@lgore 9

//E‘OJGAm6+ code/dwe/e IR

Expanding the exponential

aGigen’e .
= » 2y rop
e 7 == ) @ 4”5
/=0 ”ln

and

_ _/) dlm a/
Z=> 7 cor B & aE + w;gm- "6 76
m-o y A

the integrals can be evaluated (GrSbner, pg. 95) so that the

bracketed term becomes

(Ve ), S el
2/ r3) 2 [+ %)

Inserting and simplifying

7 =§1 //)ma (7 +3)

mzo n” 2 (kﬂ?hgll

-Tl-



so that we have finally 8 rather complex expression for the

gain ratio

G _ /
G° - /1‘ C"”‘_z_'_-_"'_ oo oo [-s-'zjn-l (_l)ma 2m (m+3) (87)
2‘ 2 Az/ mce ﬂ_’” nm (m-f,y./

The above formula was used in the preparation of Fig. No. 29
giving the reduction in gain of & parabolic mirror for & given
reflector mean deviation. It 1s possible to obtain simpler
formulas than (87) for the limiting cases of small and large
correlation intervals.
(a) Small correlation interval, ¢/A<<1 - the
exponential in eq. (86) is essentially constant and the

reduction in galn approaches

— &8).

4 Az n=y ”‘/”
Further, for small reflector errors
E . /35T (&9)
Go e At

(b) Large correlation interval, ¢/A>»> 1 - the
exponential dies down rapidly and the integral in (86)

can be written as (we need concern ourselves only for
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small values of @ as for appreciable values the exponen-

tial has vanished)

7z
- -micromi”

=2 fe /,Mry — A"

o ZT‘C"

Therefore
& / -8
= = = & 90)
& /%Z[I‘./' @
n=r 27

and for small reflector errors

g _ , FT
S = /-7 4.

In Fig. No. 29 we have aleo drawn & curve marked "Spencer's
iimiting‘Value". This is based on an analysis of (Spencer, II)
wherein he shows that the fractional loss of gain of an aperture
is equal to the mean square phase error weighted according to
the excltation amplitude. A similar expression is obtalned by
(Marechal) in the optical theory of sberrations. These results
are derived by means of a much simpler analysis that that pre-
sented in thls thesls. As the connection 1s of some interest
it will be presented here. ,

The analysis is not statistical but it may readily be
modified for our rendom error problem. The analysis 1s essentlally

based on the on-axis gain formula, eqg. (83)

-Th=



G = T '/wa/z (8
4* NECETS

It is argued that if the distribution possesses & phase error
then the gain 1s

- dcr)
L /// Jer) e o 2
(;; = A2 - (?Z)
f J) T yas

for small phase errors the exponential 1s expanded so that

“ !C’zza@)aﬂf’ﬁ/.lnfﬁq)Jthcfd'-w if‘laé"?h)c7zn9513tf...//2:

G / f T/

Desiring only the first order effect we retain the first three

terms 1n the numerator and performing the ensemble average with

the mean phase error equal to zero we can write

-_5__, * , / —— g ,
é._ /o S TS [ridas’s [5@) J?a)dJ’fJ?n)ds
Go 2 W ;
/JEa.) as ./J'(ﬂj as




If now the ensemble mean square error is constant over the
aperture, this becomes
S - - SF
G
a result identical to our eq. (91).

The questlion naturally arises why doesn't the correlation
interval appear in ?his analysis. The reason lies in the ap-
plicability of eq. (83). This equation is frequently used for
the gain of an aperture; however, it is based on the plane wave
assumptlion. As the denominator represents the powor transferred
by a plane wave it gives_ the gain only for the limiting case
of an aperture large in wavelengths and of uniform phase. When
the aperture excitation has errors and thereby departs from a
plane wave, then the denominator no longer rgbresents the power
transferred through the aperture. If the correlation interval
is small this departure becomes marked. We would expect, there-
fore, that the approximate formula would agree ﬁith” our analysis
for large correlation intervals and small phase errors, as in-
deed 1t does.

Before we leave the subject of antenna gain, it is necessary
to discuss the distribution of gain of the various members of the
ensembls. The loss of gain which we have plotted in Fig. No. 29
is the average loss of a large number of seemingly ldentical
antennas. Particular members will have gains both above and be-
low this value. In fact, due to the strong coherent signal in
the main beam direction, the field strength distribution wilil be
asymptotically Gaussian and very clossely 50 perceat of the antennas
will have gains greater than that indicated by Fig. No. 29.
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The distributions of the major lobe fleld intensities
will follow the Gsussian limit of the Modifled Raylelgh distri-
bution, eg. (47), with

2=/ + 4"';’:;Jz = / (72)
=3
ot #IT S (93)

where we have used only the first term of the summation in

eq. (84), and thereby confined our attention to small errors

(a good approximation &s the next term adds only 25 percent
for an r.m.s. error of one radian). From eg. (47), the charac-
teristics of this Gauseian distribution are (1, "/'é‘ )

To 1llustrate the distribution of gains we employ an ex-
ample which we shall later use for experimental work. Consider
a 30 inch parebolic dish at X-band (3.2 cm. wavelength), with
a focal length of 10 inches. This antenna will have & power
gain of 3340 or 35.2 db. Let us now randomly distort the re-
flecting surface so that it haes & r.m.s. error of 0.39 radisns.
The resulting phase front will have &n error of 0.78 radians.

If the dents of the surface are uncorrelated beyond & wavelength,
(¢ = M), then from Fig. No. 29 we would expect a loss of 2.75 db.
Knowing the variance we cen compute the probability of &
given dish lying between given galn limits. With the use of
a table of normal probebility functions, we have that 68 per-
cent of the dishes will have galn reductions in the interval

2.27 - 3.23 db and 95 percent in the interval 1.81 - 3.69 db.
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It 1s also of interest to compute the probability of obtalinling
a gain with this battered dish at least as great as a perfect
dish. This works out to be the infiniteslmal likellhood of
0.15 x 10-8 percent.

The distribution of gains, according to eq. (93), depends
on the correlation interval, the mean square error and the
normel gain. Curves could be computed for a perticular slze
and estimated machining tolerances. It should be noted that
the gain distributions become more peaked as the galn increases
and the errors become smeller, so that large dishes with moderate
errors would cluster around our mean gain curve, Fig. No. 29,

very closely.

7). Basic Assumptions in the Analysis

' A aumber of assumptions have been made in the here develop-
ed theory of antenna errors. It is desirable to make them evi-
dent. The assumptions naturally stem from our application of
statistical theory to our antenna problem. Similar assumptlons
invariably occur whenever statistics is applied to small sample
physicael phenomena.

In noting these assumptions, it should be borne in mind
that in the application of the theory to an actusl antennsa it
is necessary to make rather rough estimates of the error magni-
tudes. Our result cannot be better than the estimate of lts
cause and for this reason we would expect only &n order of

megnitude accuracy unless special means are taken to determine

the error magnitudes.
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The discussion is facillitated by again separating the
discrete and continuous apertures.

a). Discrete Arrays

To derive our mean pattern eq. (6l1), it was necessary
to assume:

(1) That the relative error was uniformly distributed
over the aperture. 7This does not mean that 1in & given antenna
the error need be the same for each element but merely "on the
average ". Actually it 1s probable that the strongly fed ele-
ments will have relatively smaller error due to mcre accurate
adjustment and lower mutual effects.

(2). That the error currents were independent from
element to element. This wlll be only approximately the case
as we have Interaction due to mutual coupling and internal
circultry. Furthermore, the cause of the error may be of a
type wherein it affects several elements, for example, plate
spacing error in a metal plate lens.

(3) That the phase error was distributed in a Gauss-
ian manner. This will be approximately true for small errors
on the basis of the Central Limit Theorem. This assumption
was necessary to evaluate integral (56). Actually any dis-
tribution could have been assumed and the integral evaluated
by graphlical means.

It should be noted that taking the errors to, have
zero mean is really not an assumption &s the non-mean error
really forms a part of the "predictable" error problem, as

such errors exist in the sverage ensemble antenna.
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To apply our Modified Rayleigh distribution, it is
necessary to assume that our error vectors have all directions
equally likely and that there are a large number of elements.
This condition is fulfilled for large arrays and in the side
lobe region of the antenna pattern where the component vectors
have spiraled around many times.

b). Continuous Aperture

The derivation of the mean pattern, eqg. (84), required
the assumption:

(1) That the errors be uniformly distributed over
the aperture. In this connection it should be noted that if
the aperture errors are ceused by & shaped reflector such as
a parabolic morror, the distribution of phase errors is no
longer uniform unless léfger distortions exist around the edges
which contribute smaller phase errors. This effect is small
for shellow reflectors and can be taken care of very closely
by using & smaller r.m.s. error when the reflector has uni-
form tolerance. Thls uniform error assumption was necessary
in order to neglect the vector character of 77 and the depend-
ence of the mean square error, EFE_, on relative position in
the aperture, both in eq. (73).

(2) That the various correlated error regions in the
aperture are independent. Although we have taken care of the
fact that error correlation exists in the immediate neighborhood
we still assume that independence exists among the correlated

regions themselves. This assumption 1s necessary to perform

the averaging process indicated by eq. (72).
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(3) That the phase error was distributed in a Gauss-
ian manner and that the mean square phase correlation is ex-
pressed by the functicnal form (73). Actually any form could
have been chosen if we resorted to graphical integration. How-
ever, the form chosen is reasonable. This assumption 1s identi-
cal to that made in turbulence or radio scattering theory as
to the shape of the correlation curve. Actually, &s we shall
see, in subsection 8¢, this assumption has considerable theore-
tical justification.

(4) That the size of the error correlated region
is small compared to the average distance on the aperture over
which we have an appreclable change in 1llumination. This as-
sumption was necessary to extract the aperture illumination
auto-correlation function from behind the integral (77). The
assumption 1s well justified for moderate or large apertures
with slowly varying illumination tapers where the aperture size
is larée compared to the correlation interval.

There further exlsts & physical limitation to the
spplication of our analysis to correlation intervals which are
much smaller than a wavelength. This 1s not really an assump-
tion as the formal mathematics leading to eq. (84) 1s valig
for any value of "c" and the final result would be valid if
the aperture currents actually were in error over this small
correlation interval. Hovever, a small correlation region
indicates a rapid spatial variation of field. In our parabolic
application we are inherently assuming that the correlation

interval 1s not much smaller than a wavelength as we are using
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the geometrical optical approximation that the reflector sur-
face current 1s equal in magnitude to the tangentisl magnetic
field impinging from the feed. The geometrical optical approxi-
mation implies that the radii of curvation of the equiphase

surfaces are large compared to a wavelength (Silver, pg. 116).

8). Experimental Verification

The verification of a statistical theory involves some
difficulty as, in general, a large number of samples must be
examined. In this problem, we are faced further with the fact
that many-element antennas, to which the theory applies, are
expensive and, furthermore, the determination of the actual
antenna currents with sufficient accuracy for theoretical veri-
‘fication 1s a difficult task.

Realizing the need of some experimental justification,
the author proceeded: firstly, to examine an already construct-
ed anteﬁh&, estimate its errors and predict its performance on
the basis of this thesis and compare this prediction with the
experimental polar diagram; and secondly, to eliminate the
necessary estimates in the first procedure, to construct an
antenna with a built-in “random" error and measure its perfor-
mance, in comparison to a "no-serror" antenna. As an almost per-
fect "no-error" antenna is necessary, a parsbolic mirror was
chosen for this purpose. The introduced "random" error'was

made large enough to cause a measurable effect.
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a). Evaluation of 25 Element Broadside Array*

The U. 8. Air Force Cambridge Research Center has
constructed and tested & 25 element broadside array. Pro-
vislons are lncorporated for slewing the beam by means of
phasing rings. The technique 1s identical to that described
by (Bacon) and illustrated by Fig. No. 70. The beam direction
1s determined by the positlon of the phasing arm. The dia-
meters of the various rings are proportional tc the distance
of the corresponding elements from the center of the array.

The antenna 1s fed s0 that the various slerments have a Tschby-
scheff - Dolph taper to yield a side lobe suppression of 29 db.
The theoretical pattern is that shown in Fig. No. 18.

A broadside array of this type has a number of possi-
bllitlies of error:

(1) Mutual effect between elements, which occurs by
twe means; namely, by coupling between dipole elements and by
coupling between phasing rings. The currents induced in an
element when the adjacent one is excited were measured by the
author. These measurements lndicated a 10 percent exciltation
due to the element coupling and a 5 percent excitation between
ad jacent rings. Smaller couplings existed between more distant
elements. Although this is actually a "predictable" error,
its deternination for s given phasing ring arm positlon 1is a

hopeless task, especially when we consider 25 elements.and

*¥ Security restrictions prohibit giving detall information
on this equlpment and its purpose.
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12 phasing rings whose mutual couplings depend not on free
space conditions but on a resonant supporting framework. 1In
statistical anslysis, where we are interested in order of
magnitude, wve may take this error as equal to & mean deviation
of the order of 10 percent.

(2) Pure phese errors occur at & number of places
in the system. The various elements are connected by means
of solld dielectric cable. It was found that such cable with
attached connector could not be cut and assembled to better
than two electrical degrees. Considering shop production,
temperature changes and aging, end the use of a number of
cable elements in series, it is felt that 6 degrees is not
an excesslive estimate for this cable length error. Another
6 degrees can be added due to machining and assembly errors
in the phasing rings and various matching transformers.

(3) The operation of the current distribution and
phasing asrrangement, Fig. No. 30, depends on maintaining
matched conditions in the entire system. Standing waves will
alter the distribution of power. In addition, since the phase
shift of a mismatched line is not equal to its electrical
length, standing waves will create phase errors. The situa-
tion 1s especially complex &s the phasing arm, during the scan-
ning operation, feeds the different elements &%t different im-
pedance levels depending on the relative standing wave, posi-
tions on the phasing rings. This error in matching is essen-
tially a random error as the various components were designed

to be matched and they are connected by cables which are of
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unequal length due to the necessity of mekling up the required
electrical distance lost by the smaller diameter rings. Im-
pedance measurements indicated an average VSWR of 1.25. Ele-~
ment 1mpedance, connector discontinuity, phasing ring charsac-
terlstic impedance variation, and lmpedance transformer errors
contribute to this figure. This mismatch will cause approxi-
mately a 25 percent current error.

(4) R.P. measurement errors occur in the design of
each component. It 1s estimated that such errors are equi-
valent to & current error of 15 percent. This figure may at
first seem high as only relative measurements are made and
these with skilled personnel. However, we are dealing with
r.f. measurements where, with the presence of stray currents,
it is a question of exactly "what" we measure.

The individual errors, belng incoherent, are not
summed directly but as thelr squares, with the result that
the actual antenna currents are in error with a mean devia-
tion of about 37 percent. Fig. No. 17 indicates that for s
r.m.s8. error of 0.37 we would expect a side lobe level of about
18 db for 84 percent of the time and occasionally lobes as high
as 16 db. Various spatial directions, different scan angles
and different frequencies in the operating band serve as
atatistical samples. Actual pattern measurement verified this
prediction. ]

| The practical result of this application is that the
original equipment specification of 29 db was unrealistic.

Furthermore, as the side lobe level was determined by the



current errors and not the current distribution, there was no
advantage in using so heavy & taper. A more efficlient utilize-
tion of the antenna aperture would have resulted if only &

20 db Tschbyscheff taper had been used.

b).' Slot Array Work at Hughes Aircraft Co.

The author presented the material in subsectlion 5 at
the National Convention of the Institute of Radlio Engineers in
New York in March 1951. The material aroused some interest as
low side 1lobe antenpas are required for many applications &nd
this paper presented a physical limitation imposed by the ac-
curacy of the technigues employed. It developed that the en-
gineers of the Hughes Aircraft Company have been thinking along
similar lines. In particular, they were concerned about the
effects of macpining tolerance on microwave slot arrays. They
considered only small errors in discrete arrays and their theory
1s the Gausslan limiting case of this more general analysis.

The Hugﬁes Compaﬁy constructed a number of arrays with & machin-
ing tolerance of 0.002". Their report (Bailin and Ehrlich) in-
dicates agreement with the theory.

As the effect of errors on a slot array can be readily
computed, it is vworthwhile to determine the side lobe level for
& given machinlng tolerance. Considering as the major sources
of error: (1) the variation in the amplitude of excitation
due to randomness in the transverse displacement of the. slot "x",
(2) the variation in phase due to randomness in the longitudinal
distance "d", (3) the variation in phase due to randomness in

slot length "1". Mutual effects and wall spacing errors are

neglected.
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Conslidering these errors in order:
(1) A change in the transverse position of the

slot will cause an amplitude change due to a change in slot
excitation. (Stevenson) has shown that the counductance of a

glot in the broad face of a rectangular guide is

G’_zoyie 62 eaa( /Am(”"\") (74)

The radiated power 1s proportional to Gv2 and consequently the

radiated field to G. The relative change in field due to a

change in "x" may be written

4 7TX
/& — C0d —&— A4Xx
/6 _ = < = L eol7ZIX Ax (5)
{2 Adie TX £ a :

The mean square amplitude error becomes

. 2 2 2 (;QQ)
lop® 'z eoZ‘ 77X .

(Z) et 7x
(2) The phase of the contribution from an ele-

ment & distance "d" may be written (see Fig. No. 31)

7o = 272 4o - 27’0’ (97)

T A As

o/,

O N\ % |
2 p

o & oy [
- =

- X9, Mo. 3/




Making the assumption that the slot spacing is not measured
serially and, consequently, the errors in spacing do not ac-
cumulate, the mean square phase error 1s

5= A 77’;/:,

(3) An error in the length of the slot will
alter the phase of the field radlated from it. Thils effect
can most readily be determined by measurement of the phase
change. Such data is shown in Fig. No. 32. This curve can

be approximsted fo; small errors by
— 4 -

with the resulting mean square error of
—_— - 2 2

2 (’ al
£ = 4557) (_e_/

The error contribution represented by (96}, (98), (100)
are assumed independent so that their equare values may be

added. Their relative magnitudes are computed for X-band

guide as 1.15, 1.18 and 54.3 respectively, bringing us to the

cunclusion that tolerance on slot length is most criticsl.
Fig. No. 33 gives the predicted performance of & 25 élement

slot array as & function of machining tolerance.
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c). Distorted Parabolic Mirror

Although our theoretical analyslis was useful in
predicting the performence of the broadside and slot arrays,
it cannot be considered as an experimental check of the theory.
In the first case we made estimates of the various errors and
in the slot array the assumption was made that an 0.002" machine
shop tolerance actually resulted in the array. 1In nelther case
can we state with definiteness what the error is and how it
is distributed.

To provide a more coavinclng check 1t was decided
to take two commercial parabolic mirrors, distort one in a
“"random" and prescribed manner consistent with the theorstical
assumptions and compare lts performasnce with the undistorted
mirror. Deliberate distortlon was resorted to, instead of
using & poorly made dish or one that was battered in use, due
to the difficulty of accurately measuring the mechanlcal devia-
tions of the reflector surface. Comparatively large distortions
wvere used so that a measurable effect could be observed.

The dish chosen was a 30" diameter, 10" focal length
paraboloid fed by a double dipole waveguide feed (Sichsk).
The frequency used was 9380 Mc (3.2 cm). The experimental work
vas performed at the Ipswich Field Station of the Alr Force
Cambridge Research Center. Thls antenna measuring installation
was originally set up by the Radiation Iaboratory at M.I1.T.
and is described in (Hiatt).

In order to find the necessary distortions, we con-

sider an indentation on the parabolic surface of the form
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o = ke_ﬂz/'”z

(01)

Such en indentation 1s characterized by the constants (k,m)

and will create a phase front error of approximately

In) = 2o (r02)

Our analysis requires knowledge of the mean square of "y",
eq. (74)

-2Ym: _ ﬂz+1ﬂ:/':
i ) = £ TR

forming the mean square
L ]

] 2?,:(;7 ==,.]f:(iqu)..cfcz,u¢y7:nz

Substituting and performing the lntegration

;"(r) = K Zm w1/l — e—r%’”f/ (/03)'

Comparing with eq. (73) we see that the constant "m" 1s re-

lated to the correlation interval by

2m2= C'z (/04)



We have yet to find the mean square indentation. If
the indentation, eq. (101) extends over the area "s", then
the mean square indentation is

O/z Kz - 4/‘%“
= e V. L7 X/

A

As the lndentations are well separated so that there 1s negli-

glble overlap, the integration may be extended to infinity with

l1ittle error and

2 c:l

5% = 7 K&
s 4

If we nowv consider "N" such indentations and if these in-

dentations are independent with values of indentation depth

"kn" coming from some population, we have

I & N L ———
= T LBkl = IR

We are now in a position to design our "randomly" dis-
torted reflector. If we meke our r.m.s. reflector deviation,
fisf; equal to 0.39 radians and our correlation interval equal
to a wavelength, we have from Fig. No. 29 a mean reductlon of
gain of 2.75 db. If further we space our indentations on cen-
ters 4" spart, we compute that the mean indentation depth 1s
0.282" at x-band. The various independent indentation depths
may be chosen from a Gaissian population. Table III in (Morse)

may be used for this purpose with the result for a set of

Q3=

-

(03)

(v06)

(707)



indentations in inches:

.225 -+195 .107 037 -488
-.152 -.059 -.169 -850 -.169
.118 470 .189 017 .386
-.135 -+320 J141 - 054 333
045 -.172 «208 327 «105

The values of the above table are still to be corrected
for the effect of the reflector curvature, that is a given
reflector error will cause a smeller phase error when this
reflector deviation is located at the reflector edge than

in the center. The correction formula is given by (Cutler,

eg. 5) as

/ f-zz. =) (?o{i!
Cod

wvhere 6 1s the angle hetween the reflector axis and the re-
flector_indentation. This correction amounts to 50 percent
et the reflector edge.

The reflector was distorted by forcing into the parabolic
surface & metal die shaped according to eg. (101). The depth
of penetration was adjusted according to the above table cor-
rected by eq. (108). The completed reflector is shown in
Fig. No. 34, with the indentation depths marked in inches.
This reflector fulfills ocur conditions that a) the erroers are
"on the average" uniformly distributed over the aperture, b)
the mean square phase error 1s such as to cause a mean loss

of gain of 2.75 db, c¢) the correlation interval is one wavelength,
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d) the individual indentatione are independent, e) the phase
errors come from 8 Gaussian population.

Before discussing the experimental results it should be
pointed out that the shape of the mean square phase difference
between two points a distance 7r'apart, eq. (103) which here
resulted &as we have chosen a Gaussian indentation would have
occurred asymptotlcally for any shaped indentation, provided
that the number of such lndentatlons are large. This follows
as we are actually interested in the phase difference averaged
over the aperture and over a number of seemingly ldentical
antennas and as this i1s an additive process, the Central Limit
Theorem therefore applies. Hence considerable theoretical
justification exists for the choice of the functional form
eq. (73) (see also subsection on assumptions, 7(b)(3)).

To evaluate the theory, the galn of the battered dish
vas first compared with & "perfect™ dish. Fig. No. 35 shows
the comparative\pattern, indicating a loss of gain of 2.5 db.
As our statistics indicate that 68 percent of such distorted
dishes should lie between 2.27 and 3.23 db our theoretical
predictlions are verified. Thls verification 1s all the more
startling when photograph Flg. No. 34 18 examined. In seversal
places the reflector error is sufficient to cause an aperture
phase errcr of almost a complete wavelength. This large error
is permitted, in a few places, by our QGausslan distriﬁution
of indentations and In that ve are interested only in ths mean
square error. As it is common in the industry to specify re-

flector tolerance to one thlrty secondth of & wavelength the

=96
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performance of thls excessively distorted reflector was
suprising to antenna engineers.

Other characteristics of interest are: 1) the angular
distribution of the side lobes, and 2) the distribution of
magnitudes of the minor lobes. To check this with the theory
a number of such battered dishes would have to be examined.
To avold this expense, patterns were taken only on & single
dish. However, for each pattern the dish was rotated 15° S0
that 11 different patterns were taken. These experimental
patterns are superimposed in Fig. No. 36. 1In this figure,
we also show the theoretical no-error pattern, the mean en-
semble power pattern and the statistlical patterns that 1ndi-
cate the probability that the experimental patterns lie 84
percent, 95 percent and 99 percent below these llnes. The
mean power pattern 1s equivalent to roughly a 60 percent
probability line\(see Fig. No. 12).

.The data of Fig. No. 36 may be interpreted as follows:

(1) The sngular distribution of the side lobe
megnitudes follows the theoretical predictions rather well.

(2) Higher side lobes are present than would be
indicated by the statistical theory - that is more patterns
are found between the 99 percent and the 84 percent lines than
15 percent of the eleven polar dlagrams recorded. This can
be explained by\the fact that we are basing our prediction

on the theoretical antenna pattern. Even a "perfect" dish

does not follow the theoretical pattern exactly, as Flg. No. 35
indicates. In general it is found that experimental slde lobes
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are unequal and higher than theoretical. By jockeying the
feed, pattern symmetry frequently may be restored. This be-
havior of good dishes is due to & number of causes, such as:
&) A non-spherical and an unsymmetrical primary pattern of
the feed; b) Stray currents on the feed supporting structure;
c) Field interaction between the feed and the dish; d) Secon-
dary aperture blocking by the field structure; e) Direct radia-
tion from the primary feed. In view of these neglected af-
fects, 1t 1s not surprising that our dilstribution 1s shifted
upwafd. Hovever, we can say roughly that the agreement with
our statistical theory, obtained with the battered dish, is
as good as that normelly obtained for so'called "good" dishes
by the plane aperture calculations. |

(3) 1In the vicinity of 22° off the major lobe,
there exists a violent disagreement with statistlical predic-
tions in that spurious radiation ;s found, for some patterns,
6 db higher than expected by the 99 percent line. Actually
5 of the 11 patterns are in the region where only 1 percent
is permitted. This at first appears as a violation of our
statistical analysis. However, a little consideration reveals
the cause of these lobes. Our battered reflector was con-
structed with indentations of random depth spaced # inches
on centers. This introduced & periodic error whose fundamen-
tal period is 4 inches. This period will be in every.member
of the ensemble although its mean is zero. Referring to our
subsection II. 3. on the effect of periodic errors, we note

that such errors will generate lobes in the directions
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u = tn/d. Converting our ¥ inch period into wavelengths aad
computing this lobe position, we find that we would expect
stronger radliation at 23°, 59° and 72°. This validates our
statistical analysis and reveals the hidden periodicity we
have invertently bullt into our battered dish.

9). Application of Similar Techniques to Other Filelds

The statistical technique applied in this section to the
entenna problem has been used for the investigation of the
scattering of electromagnetic waves from randomly located
scatterers such &8s a rough sea or & turbulent lonosphers.

It hes been mentioned that it alsc may be sapplied to the
determination of the voltage standing wave ratio on a trans-
mission line with randomly located discontinulities. Two
other applications suggest themselves and are mentioned belowe.

a). Application to the Theory of Aberrations of
Optical Instruments

The analysls whlch was presented relates the effect
of the aperture distrlibution errors on the far field. This
distribution and the far field zre related by the Fourier

Transform pair {eq. No. 9)

N
" Zrresx
G ) = f’["‘)"—""/ e
-

oo
A = f F¢ e T
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The problem mey be lnverted and we inquire about the be-

havior of a converging wavefront (Fig. No. 37).

,’ncritol

Soeal plarne

Figo No. 5?

Conslder such & system of rays as would be formed by an
optical instrument. It 18 well known 1in optical theory that

a converglng wavefront does not focus to a polint but that

the intensity distribution in the focal plane is glven by

the Fourier Transform pair above. In particular, if the con-
verging wavefront is spherlcal and of uniform phase, the focal

plane distribution is identical in functional form te the
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polar diagram of a uniformly illuminsted circular aperture,
that 1s, roughly a (sin x)/x function or strictly a J,(x) /x
relationship (Silver, pg. 194). This focal plane intensity
distribution is termed an Airy disc (Born, pg. 195).

The converging wavefront 1s normally formed by a
system of lenses. These lenses are subject to mechanical
tolerances which lead to optical errors of a form that the
phase front is not spherical but has phase errors. As we are
dealing here with identical functional forms, the statistical
analysls developed can be applied dirsctly to the optical
aberrations.

Unfortunately our analysis contributes little, ex-
cept academic interest, to the optical problem; for there we
are dealing with correlation intervals of many wavelengths
where Spencer's Limiting Value applies ané {Marechal's)
theory of optical aberrations is sufficient.

b). Application to Electrical Filters

Electrical filters are generally designed for very
low transwission in the attenuation band. The questlion arises
as to what occurs to their performance when they are construct-
ed, especislly with lnexpensive components. This again re-
solves itself into a statistical problem. The effect of cir-
cult parameter deviations from the désign value can be taken
care of, to the first approximatlon, by the compensatidn
theorem. At the filter output there will arise, 1in additlon
to the predicted output, a random and independent sum of

voltages depending on the parameter tolerance and on the position

=103~



of the circuit element in question in the circuit.

The question &arises, similarly, &s in the antenna
problem, 28 to what tolerances are required for a given at-
tenuation and conversely for a prescribed attenuation how
precise must our circuit components be? In additlion, we
query: "what types of circuits are least susceptible to com-
ponent error"t It is belleved that the type of analysis pre-

sented in thls section may prove useful in this connection.
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III. LIMITATIONS IMPOSED BY THE SYNTHESIS PROCEDURE

As stated in the Introduction, the synthesis problem is
one wherein we are given the shape of the polar diagram and
ve are required to find an aperture iliumination of finite
width, whose radiatlion pattern approximates the desired one,
under some condition of optimization.

As we are primarily interested in synthesis methods and
not in integration difficulties, we will restrict our dis-
cussion to antenna current distributions which are separable,

that 1s, in eq. (1b) and (2v)

Lixy) = e Txly)

and to the principal planes, § = 0 or # = 90°. Under these

conditions, eq. (1b) or (2b), for a plane aperture, reduce to

the form
N
__ S ETUX
G« = /""’96’ v 09),
4

and for a discrete array of (2N + 1) equispaced elements we
have

J;J?nnncnb

uh
Frl) = Z Lue N2

where we have written u = sin 6 and "x" and "d" are measured

in wavelengths; g(u) 1s the polar diagram and f(x) the continuous

=105~



and I 1s the discrete current distribution. We have made no
assumption in neglecting any obliquity or screen factors as
these can always be taken care of in our synthesis procedure
by considering as the desired polar dilagram the glven pattern
divided by any such obliquity factors.

In a practical problem we must deal with "restricted”
apertures, that is, apertures of finite length. If further,
we require that the antenns be & low "Q" device or one with
a low ratlio of reactive to radiated power, then certain res-
trictions are imposed upon the spatial variation of the current
distribution. These restrictions will be made evident 1in
Section IV of this thesis. As only certain functional forms
of the current distribution wiil turn out to be permitted by
our reactive power consideraticn, we can only approximate the
desired polar diagram. The question discussed in this section
1s how to obtalin this current distribution and what 1s the
nature of the approximation.

We begin by introducing the two standard methods of antenna
pattern synthesis, namely, 1) the Fouriler-Series and Fourier-
Integral method, and 2) the Woodyard-Levinson method. Then
we discuss the nature of the approximation problem, particularly
approximation in the Gaussiap and the Tschbyscheff sense.
Finally we introduce two methods of syntheslis yilelding an ap-

proximation optimum in an approximate Tschbyscheff manner.
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1). Fourier Series and Fourier Integral Method

The Fourier Serles synthesis procedure was probably flirst
introduced into antenna array work by (Wolff). This method
follows immediately upon recognition that the expression (110),
for a discrete array, is a finite trigonometric series. As
the function g,(u) is periodic in "u", the various current
coefficlents In can be obtained by Fourler decomposition,

glving

-JZ; ==:ul,f;%tﬁg)é;juﬁaﬁMZzh“ 0%9

where the integration 1s to be extended over the perlod ®1/a".

In eq. (110) we have dropped a constant factor. We shall

neglect such constants in what follows as we are only interest-

ed in normalized polar diagrams and relative curreat distributions.
If nov we are given an arbitrary function go(u), specified

in the interval -1 <u < +1 , we can extend it periodically

over the entire u-space. In general, for exact synthesls we

wvould require an infinite trigounometric serles. ©Slnce we are

restricted to (2N+1l) elements, we obtailn only an approximation

as we can only use (2N+L) terms. The excitation coefficlents,

however, are still given by

, — 2many
7, = f Jow e ”» lira)
7
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The approximating pattern ga(u) is given by (110) as
N S ETER (et~ ea’)
f““)“".?.[f““)e %
/o

interchanging order of summation and integration
Yy / 4 ’ d /
ja (e) = Jo (e /Z /fZ)Z‘eaJana’(u-u) w
the bracketed term is equivalent to (Jackson, pg. 17)

dim (2N 1) (-t
AT (et-ct)/

/+2 é eMZIrnd/z/-tly =
/

80 that ve can express the approximation pattern in terms of

the desired pattern as

o) AT i)
7 —;éfj.( )@4/*‘494/2(74/#—”7 au

If ve had coneidered an even array instead of an odd ar-
ray, ve wvould have a similar expression so that we write for

an array of any number of elements "M"

f‘(“):‘- o(ay A /‘/?7'0//”—“'} dul
MAmad fu-u)
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puring the war years synthesls procedures were necessary
for microvave aperture antennas. The discrete analysis of
Wolff was extended to the continuous case (Ramsey) (Speacer, 3).
This extension follows from (109) as f(x) = 0 for
{x} > W end the integral can be extended to infinity. The
Fourler Integral theorem may be applied and we obtaia the
Fourler Transform pair
)
g4 = f Fewe’ zn‘;/,
- 0
-

S RTXL
7425) ‘J/tj?(hy e au

so that given a required g(u) we can find the necessary f(x).

(113)

However, this =0 determined f(x) will not, in general, bhe
restricted to an aperture width of "2W". With this restricted

aperture we will only obtain an approximation given by

er(u-aj
a (e
S = [/’a? w)e” A ol

The order of integration can be interchanged and that
respective to the aperture performed. The result, similar to

eq. (112) for the discrete case, is given by

f,_(“) = 2w /’ i, (ﬁ‘y A erh/fﬂ-uy Qu’ (//4)
| 2n W (u-u’) .
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Results egqs. (112) and (llhj are known as the Dirichlet
formulation of the approximation.

As wiil be shown in subsection 3, the approximatioan in-
dicated by eq. (112) or (ll4) is such that the squared error
is minimized. It 18 therefore ssild to be optimum in the least
square or Gaussian sense. As the number of terms 1s increased
or as the aperture becomaes larger the approximation becomes
better. However, at every discontinuity or rapid change of
the desired function there occurs in the approximating function
an oscillating overshoot. This overshoot does not decrease
in magnitude as the number of terms is increased, although
the frequency of the oscillation is increased and it moves
closer to the point of discontinuity. This overshoot has a
limiting magnitude of about O percent of the total discontinuity.
This behavior of the approximation is termed Gibb's phenomena
(Guillemin, pg. #85).

The Fourier Series or Transform method therefore creates
& slde lobe intensity of about 21 db when it is applied to the
synthesis of & square or cosecant beam. It approximates the
desired function very well rar from polnts of rapid change;
howvever, at points of discontinuity it has its characteristic
overshoot. The metuod is rather inflexible in that even though
we may be willing to saccept greater deviations at some points
in return for a smaller overshoot, or a greater slope a} points
of rapid change, nothing can be done about this &s the final
result is given by eq. (112) or (114).
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Figure No. 38 gives the approximation to a 90° square
beam obtained by this method. (Fig. No. 38 on page 118.)

2). Woodyard-Levinson Method (Woodyard)

This method was introduced by Levinscn at the Radistion
Laboratory during the war years and has since appeared 1n'th9
literature in & paper by Woodyard, who probably developed the
method independently in England. Restricting our discussion
to the continuous aperture, the wmethod may best be introduced
ag follows:

Consider an arbitrary aperture distribution f(x) and its

Transform g(u), illustrated in Fig. No. 39

/bo
-w *iv x
§l)
_ T\M
../ +*7 «
Fig. No. 39
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The function f(x) may be expanded a&s a Fourier Series

of fundamental period "aw"} 80 that:

oo -c 2wy
/(X) == —g Chn € W /«/4‘4/
(15)
16%%0 =0 /x/>W

The coefficients "Cn" are given by:
4
(-J?ﬂvvx
G = [Pooe’ 2V gy 0,
-

Comparing eq. (109) and (116) we see that:

= g(za)

Nov f(x) is completely determined by its Fourler coefficients

(17)

"C,"», or because of eq. (117) by the value of the polar dia-
gram, g(u), at the infinite set of points u = n/2W. As f(x)
iz completely detofmined, so 18 g(u). We conclude that if a
radiation pattern is due to an &perture of width "2w" then 1t
and the corresponding aperture distribution is determined
uniquely by the values g(n/2W). This is anslogous to a theorem
proved by Shannon for electric circuits (Shannon). The theorem
as given by Shannon is: "If & function f(t) contains no fre-
quencies higher than W cps., then 1t is completely determined
by giving ite ordinates at a series of points spaced 1/2w

seconds apart.”
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The radiation pattern may be computed from the aperture

Fourier series expansion, as:

¥ 4
Ju?»nru'
é?té%)-== ‘)rZQ5§>e? Ol
-w
w

s -Zbrar(il—-gz_
:::'__ﬂ J 2
..% Co € ax.

-
o) = S, A ETHY Z) (18)
—eo 2m W (u- P

The polar diagram is thereby expressed as a sum of functional
forms which the aperture can generate. As any arbitrary func-
tion f(x) may be expanded in a Fourier series the expression
(118) must include all possible patterns from the aperture of
width "aw".

Sums of type (118) have been extensively treated in in-
terpolation theory. The sum is called & cardinal series and
the function (sin x)/x the cardinel function. (W. L. Ferrar)
has proved an important property of this series and called
by him its "consistency". Namely: if a function is constructed
from n/2W equispaced ordinates in the form of a cardinal series
and then if another set of displaced n/2W ordinates are chosen
from this constructed curve and the corresponding cardinal

series 1s formed, it will be found that the two series represent
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the same function.

Qur synthesis problem by means of this method reduces to
choosing the arbitrary coefficients “Cn” s0 that the cardinal
series fits as closely as possible to the desired pattern.
The individual terms have an interesting property that at an
ordinate "m/2W" all the terms except the "mth" are zero.

Pig. Ko. 40 illustrates this phenomens.

NS &«
Fig. No. 40
This permits 8 very simple method of synthesls by choos-
ing the C, coefficient as equal to the desired pattern ordinate
at the mth point. The approximating pattern then becomes:
oo in S W (¢- "YVew)
Gale) = = o) = (+/9).
Zos 2w. 2ru (u-— n/zu)
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This approximating curve will pass exactly through the chosen
ordinates, however 1ln between it will deviate from the desired
pattern by an unknown, but in & particular case a calculable,
amount.

Actually the Woodyard method has considerable flexibility.
We have at our disposal an infinite set of arbitrary constants
and if we are interested in specifying g(u) in only & finite
interval, say in the angular region of - z—'”-— < O« 27’.'."
or -1l <u <+l , and are not lnterested in its behavior out-
side this interval then a radiation pattern of any arbitrary
shape or sharpness may be synthesized from an aperture of any
specified width.

This striking statement brings us to the problem of "super-
gain”. 7In order to obtain this arbitrary sharpness it is neces-
sary to use contributions which have their maxima at the points
u = lé%l.? 1. Such contributions, due to the decreasing nature
of the (sin x)/x functions, have little effect in the real angular
region, soc that terms of large magnitude must be used to be ef-
fective in fitting the function in the regien of interest. It
vill be shown, in Section IV, that such terms contribute but
little to the radiated power and represent reactive power flow
through the radiating aperture. They therefore contribute to
the reactive energy stored in the immediate vicinity of the
antenna and raise its "Q". As ve are primerily interested in
physically realizable or low "Q" antennas, we must restrict
the order of our coefficients to |zm| < 1. This condition elimi-

nates those terms which contribute, in the large, to reactlve
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pover. In f(x) they represont harmonics of spatisl period
smaller than & wavelength.

We still have available "4W" terms, where "W" 1a exnressed
in vavelengths, for fitting. We can, as we have done in eq.(119)
choose equi-distant points, in wvhich case the determination of
the arbitrary coefficients becomes exceedingly simple being equal
t0 the ordinates of the desired pattern at those points. We are
also permitted to place our "4W" points at will, perhaps cluster
them where we desire a closer fit. Howvever, we then must solve
a set of "AW" linear equations in the "4W" arbitrary constants.
This latter method has the further disadvantage that terms which
have their maximum velus far from the cluster and are forced
to form & better flt at this point will cause a large deviatlion
from the desired pattern at thelr point of maximum value due
to thelr veakness of control at the distaant point.

It 1s of interest to compare the Fourier Integral approxi-
mation wvith that\or the lesvinson-Woodyard method using the ordi-
nates &t the equidistant points. At the n/2W points the Fourier
Integral method yields for the ordinates (eq. 114):

/o2 = 28 [ @ (e’ Aot Zow (¢~ ) o’
7 (2 _q”/ S e o)

and the Levinson nmethod

ﬁ/ﬁ?ﬂzf’(é:,)

~115b-
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If these were equal the tvo approximetion patterns would be
identical - as n/2W ordinates, for an aperturea of width 2W,
determine the pattern everyvhere. The Levinaon method ylelds
ordinates that are equal to the desired pattern at these points
and i1s dependent only on the value of the function at these
ordinates, being independent of the value of the desired func-
tion in between. Wheresas the Fourier Integral representation
due to its integral forpulation yields ordinates that depend
on the value of the desired function everyvhere. However, the
ordinates as determined by the Fourier Intagral method are
heavily veighted at and near the point n/2W. This is due to
the delta function nature of

i 2w (4= Yow)

cw Ervlec—-"Ysw)

so that as W is made large or 1if go(u) does not change ap-

preciably in the vicinity of n/2W, we have

. A0pe P ('~ Yow) A’ —> Q[0
et E?Zrlaquff—-‘ﬂdén{} Cf?(cénﬁz

Hence, the two methods approach each other for large apertures,
with the exception of the vicinity about the dlscontinuitles
of go(u). As the ordinates of go(u) correspond to the Fourier
harmonics of f(x) the two methods yleld similar aperture dis-

tributions with the exception of thoss harmonics corrssponding
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to ordinates near the diescontinuities of go(u).

Although both functional approximations approach the
glven function the behavior is different in the immediate
neighborhood of discontinuities. Pig. No. 41 shows the result
obtained by applying thé Levinson procedurs to & square beaum.
The overshoot has been substantlally reduced to a value of
1.03, however, the average slope has decreased to 0.5(2W), a
loss of 39 percent.

As the levinson procedure differs from the Fourlier Integral
representation 1t is not & least square it and therefore pocsesses

a greater mean square error.

3}). Some Remarks on Tschebyscheff and Qaussian Approximations

The approximation problem 1s one of fitting & given func-
tion go(u), "as well as possible”, by a finite sum of "n" terms

of "suitable™” functions. We have for our composition:

+ 4
[ () = = Cn'fon(«) (12/)

The problem is the cholce of the arbitrary coefficlents
“Cn" to achieve & "best fit”. We inquire into the definition
of the term "best fit". Until quite recently the definition
of "best fit" has been taken, largely due to the investigstions
of Gauss, so that the integral of the squared errcr be & minimum.

This conditlion may be expressed mathematically as:

J][j.(u)—ja(uy:m =0 (z2)
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The coefficients may be readily chosen to satlsfy this

condition for:

I=/[je(“)*—g¢(u?]:’(u :f[go(“)"-?ckpr(“);]z@.

:'-fff(“)ﬁ&( - ZZ'(xfgo(“)px(“)dﬂa

_/.ZEG Gfﬂ(“)ﬁe(u)dt(

If the terms of our approximating function are ortho-normal or:
O
/pr“),oefu)da = due
-— P .

where
J"’C =/ é:@

gxe =0 ‘g#f

then the error integral becomes:

I = jg.(u)du - zi'o‘fﬁ'(a),o.cu)du + T Ca

- D

We wish to determine the coefficients so that the error he &

mininum or: é I

—_— =0

OCx
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Differentiating, we arrive at the condition for the coefficlents:
oo
Ca = j'g,(u)px () Qlec (723,
- 00

As the members of the trigonometric series form such an
ortho-normal set, the Fourier Serles approximation or the limit-
ing case of the Fourier Integral yield an approximation optimum
in the least square sense. The cardinal functions also, as ve
shaell shov in the appendix, ars ortho-normal &nd may be used
to approximate the pettern in & least square sense. That is

the arbitrary coefficients in

AN Brr (v~ "/z/n/)
Z2mW(u—"hw)

f/“/ = Cn

may be chosen by the condition (123) so that:

o = 2Wf Go ) AREZTHE o)
4 ‘EWVIV?QV—‘eénﬁ}

but this 18 the same as the result obtained by the Fourler
Integral method. We therefore obtain nothing nev by using the
cardinal functions as an ortho-normal set.

The definition of "best fit" could just as well haye been
taken s0 that we would determine the arbitrary coefficients
from the conditien that the integral of the mth power of the

absolute error be a minioum; that is:
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The advantage of the Gaussian approximation (m=2) is that
it 1= awenable to & simple determination of the coefficients.

It commands no preference on purely physical grounds. In fact
its occurrence in nature is probably very rare. As an example,
1f a circuit 1s adjusted to generate what appears the best square
vave on a cathod ray tube, & harmonic decomposition of the wave
vill generally not yield a Fourier decomposition.

Although mathematical methods do not exist for the deter-
mination of the coefficients except in the Gaussian sense, exist-
ence theorems are avallable that state that such decompositions
exist for all integer values of the exponent and that such de-
compositions are unique (Jackson, 2, pg. 86).

AB Ve 1ncro;se the value of "m" in eq. (124) the larger
errors are weighted more heavily, so that we would expect small-
er overshoots in the vicinity of discontinuities and & more
equal deviation distribution. In the limiting case when "m"
becomes infinite, the maximum deviations become all equsl in

megnitude and we have an approximstion in the Tschebyscheff sense

or:

/ Fol®) - GaCw)/ = € (125),
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A Tschebyscheff approximation is much more useful if wve
have to do with the design of equipment, such as electrical
filters or antennas, as ve can "guarantee™ that the error will
not exceed a prescribed value. Furthermore, in many applioca-
tions we are interested in the maximum possible error and not
its average squared value.

Even though the Tschebyscheff approximetion has & larger
mean square error than the Gaussian it would be more generally
used if there vere some simple mathematical technique of de-
termining the coefficients of expansion. It would be of inm-
portance not only in antenna synthesis but also in the repre-
sentation of periodic electric wvaveforms and electric transients.
(Guillemin, pg. 506) indicates that such & method would be de-
sirable end that this problem has received little attention to
date. We shall present two such methods wherein we achlieve
approximation at least in an approximate Tschebyscheff sense.
Theses methods wiil be presented in antenna terminology, how-
ever they mey be readily converted for use for the representa-

tion of periocdic and transient electrical signsals.

k). Pattern Synthesis in an Approximate Tschebyscheff Sease
Using the Cardinal Functions.

As the coefficlents of the cardinal serles are equal in-
dividually tq the ordinates of the polar diagram at tho‘n/aw
points, this series forms & convenient means of approximating
a desired pattern in the Tschebyscheff sense. We can even

choose a different tolerance in different regions. Fig. No. 42
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iliustrates this procedure, wvhere we require a tolerance of
"h* in the pattern region and "e" in the remaining real region.
It 1s evident from the nature of the (sin x)/x function that
if alternate boefficients take on the permitted error with op-

posite sign then the rise time will be 4ncrebsssd.

Fig. No. #2

We spply this procedure in Fig. Ko. 43 to our 90% square pulse.
In Flg. No. k3 ve have permitted a 5 percent error ln the radia-
tion region and approximately zero tolerance in the side lobe
part.

The procedure suggested above has only approximate Tscheby-
scheff behavior as at the points of discontinuity the error ex-
ceeds our tolerance. However, this cannot be helped if:-we at-
tempt to approximate a discontinuous function with & finite sum.
The choice of coefficlente is also not rigorous as we do not

knov the extreme values of the approximation. Especially near
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discontinuities and for small tolerances the extremes do not
occur exactly at the equally spaced ordinetes. However, as

each component
R 2o i («- Y2w)
2m W(u- "y)
function is largely effective only in the vicinity of.the

point n/2W and exercises only & small effect far from this
point, the function may be fitted rather closely with a emall
smount of labor. A similar procedure with trigonometric '

functions would be impossible.

5). Pattern 3ynthesis in an Approximate Tschebyscheff Sense
by the Use of the Tschebyscheff Functions

We recall eq. (114) giving the approximation pattern due

to the Fourier Transform method:

fa(u)x.:.- 2}1//30((49 ’0”’2”-”(“*“9 giu’ 6’/4)
v 2mnlu-u)

or if ve let

Stu—u) = LPw L 2 Wi’
2T w(a-u’)

then

ja(u) = jfo(aj S - a)alu’ (t2¢)
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we can look upon this eguation as physicelly representing a

scanning operation. The approximetion pattern is obtained by
integrating the product of the desired pattern and a scanning
function located at the general point "u". Pig. No. 44 indi-

cates the operation:

S (ee-c?)
M P

n {\l\ |
Y YELVA: Y
1 4
Figo No. ‘“‘

The overshoot or Gibb's phenomens can now be seen to be
a property of the scanning function, and its meximum value

may be expressed as:

U}fﬁf(ﬁ)tih; 1£.j,f512£)aﬁ1

C 7 (27).
jJ(u)d“ :
- D

57+ 186 __ 3.43
3./¢ T 3.4




giving the accepted 9 percent overshoot.
The required aperture distribution can be written in

terms of the scanning function, for:

@S
76(?:) = /.( BT X«
Jacoe Qee

cRMNL
S A,

-0 _oo

letting
é/-ﬂlr-y e = %

ap vy

- e -

The second integral can be readily evalusated as 1¢ 1s merely

the transform of the scanning function, or:

oo a0
S &y A Prr Wy -5 7xy
S(y) e = 2W e’ _
/ ) ay zriy, € =
oy )

where F(i) has the functional form’

A (x) s0 s

-w oy x

"1!69-

F(x)



The regquired apsrture distribution becomes:

-J ' BT XL

/(*) - 76‘)/3 e’ it | (/28) |

Although ve have cbtained no new results, our Fourler
Integral example has served to introduce the concept of the
scanning operation. We can also look upon this phenomena as
a convolution of the desired pattern and the scanning function
s0 that the final aperture distribution le given as the pro-
duct of the transforms of the scanning function and the de-

sired pattern, i.e.
) = Foo f Fe ) €’ "'”’d«

wvhere
o

(74 (u) = j.(“j SCu-u)de’
and

FO) = J’p.j'(it e?'/:? “:56‘
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We ingquire whether it is possible to construct a scanning

function which wvould be more useful than the previously intro-

duced (sin x)/x function.
tion of the type

Suppose we were to construct & func-

S(«)

LN /\ ]

N/ N/

\_ N\ '
N/ \//\ e«

]

V7

Then if ve were to scan & unit step we would expect a result

of the following type:

jﬁ(h)

/.

I e e

NS NS

N N\ /
NS

I-e

o, __;1

If our special scanning function had side lobes of equai aresa

then the deviations in the approximating pattern would have

equal value and could be expressed as & ratio of the side lobe
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arsa to the main beam area of the scanniag function. If,
furthermore, we could arbitrarily set the value of the side
lobe ares by adjusting the side lobe magnitude and if we could
shov that for a given area the width of the main beam_wbrﬁ a
miniaum, then we would have a quite useful function. At least
in the case of approximating a unit step we would have the
greatest average rate of rise for a prescribed deviation which
ve would not exceed.

When ve approximate an arbitrary function with our speclal
gscanning function, we can no longer_make definite statements
about the deviations vhich will occur. The deviations will
now no longer be equal and we cannot state definitely what
they will be. However, for functionally smooth curves we would
not expect any violent behavior.

Although we are not able to state anything with mathems-
tical rigor as to the result of our spproximation, it is felt
that the procedure to be outiined can be ussful in synthesiz-
ing antenna patterns or electric waveforms. This inability to
Judge the closeness of our approximations 1s not at all sur-
prising if it 1s recalled that even 1n a finite Fourlier approxi-
mation we cannot state with certitude the value of the devia-
tion at any point. It is true that in the Fourler approximation
we can eay that the fit 1s optimum in the least square sense.
However, this is of doubtful value as every approximation 1is

optimum In some sense; that is there i1s a minimum value of the

integral

~120.



fw-(u)/jg (w) - F (a)/ z{“ (129)

vhere w(u) is some weighting function.
To be useful the scanning function should have ths follow-
ing properties:
1. It should be gensratable by an aperture of
width "ew™.
2. The side lobe level should be capable of ad-
justment to any desired value.
%, The side lobe areas should be roughly equal.
4, It would be desirable to show that the scanning
function used vas the greatest rate of rise
of all possible functions generatable by the
specified aperture.

A scanning funotion fulfilling the above can be constructed
based on the Tschebyscheff polynomials. These polynomials are
defined by

7a(x) = co¥ (7 arc coox) x</

72
7nlx) = codh (2 anc eosh x) x>/

£

They are of degree "n' and have the graphical development shown

in Fig. No. 45 for the special case of n = 7.
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If wve make the transformation
Y= % s Tu (731)

ve obtain the periodic function in "u", shown in Fig. No. 46,

and of the mathematical form

— 732
7a () = Cod [nane eod (o eov%&;)/ ¢32)

It 1s characterized by side lobes, all equal, and of relative
magnitude 1/R. The zeros of this function are almost equally
spaced being determined by

2. o3 T oy — C03 (RE-1) T ?33)
2 77 2

where "x " is determined by the ratio 1/R and is a number
slightly greater than unity.

Equation (132) is a polynomial in cos gru of the nth order.
As the powers of‘tho cosine may be expanded into terms of multiple
angle, (132) represents the pattern of an array of "n+1"” elements
spaced half wavelength apart. The excitation of the various ele-

ments are chosen according to the equation

_ 734)
= Fe eoffg'” = coffnancess (1 eos zzzz,/j ¢

An array excited with the coefficient "Ak” will therefore
yield a radiation pattern with all minor lobes equal and of
the previously specified magnitude 1/R. The analysis presented
is based on the work of (Dolph) who has shown in addition that
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for 'a given side-lobe level the beam width (i.e., the number
of degrees to the first null) is minimized.

We will use (132) as our scanning function in the approxi-
mation procedure for the discrete case. Although (132) 1is
characterized as having minlimum beam width, for a given minor
lobe level and a given number of terms, it does not necessarily
follow that the resulting approximation, to an arbitrary func-
tion, will have minimum rise time and possess exactly equal
deviations in the Tsachebyscheff sense. Hovever, it is felt
that this behavior will be approached and the procedure may
prove quite useful. Let us apply it to some functicnal forms
and examine the nature of the resulting approximations.

Accordihg to (128) the desired current distribution may
be obtained by simply mmltiplylng the coefficients as obtained
by the Fourier Series method by the Tschebyscheff-Dolph coeffi-
clent Ak' It ;s convenient to have curves of Ak for wvarious
minor lobe levels or rise times. Figure Nos. 47 and 48 are
plots of these values for an 8 and a 16 element array. The
abscissa used is the rise time or bsam width between first
nulls relative to that obtained by the Fourier or least square
fit. PFigures 47 and 48 may just as readily be used for modify-
ing the Fourier coefficients obtained in approximating electric
vave forms.

The minor lobe level of our specially constructed scanning
function can be obtained, for a specific relative beam width,
from Figs. 47 and 48, with the aid of the equation

=13 4
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A = _-_2—‘,4,‘ (738)

The coefficients as obtained cannot be used directly but must

be normalized by multiplication with (for even array)

/2

i%-/ (/3‘)
= ”%-/

Figure No. 49 illustrates the result of applying this

procedure to approximating & square beam by an array of eight
elements spaced a half wavelength. The figure is equally valid
for a periodic rectangular pulse with four harmonic frequenc lesa.
Filgure No. 49a shows the Fourler Series or least square approxi-
wation with its characteristic Glbb's overshoot which amounts
to 10 percent in this cass (the 9 percent value quoted previously
is only the limiting value for a unit step or very long pulse).
Figure No. 49b shows the approximation obtained by the use of
the suggested procedure with & scanning function rise time
equal to the least square cass. The deviation has become a
uniform ripple of 6 percent. This 13 a reduction from the 10
percent overshoot; however the error is greater in the center
of the pulse. Figures Nos. 49c and 494 give the approximations
obtained with a 10 percent greater and a 10 percent smaller

rise time respectively.
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In examining Fig. No. 49 it is meaningless to ask which
is the "pest™ approximation. "a' has the least sqQuare error;
hovever if only & 4 percent overshoot is permitted and a con-
tinuing ripple of that magnitude is not objectionable, "c" is
to be preferred. Similarly, if rise time is the consideration
and a 10 percent ripple can be tolerated, "d" is preferable.
The suggested procedure, however, provides a means of obtain-
ing any desired ripple.

Let us Apply our procedure to a more complex example.
Consider the design of & cosecant squared antenna (Silver,
pge #65) with the following characteristics: beam to rise
at zero degrees and coantinue at unirérm intensity till six
degrees, then the radlated power 1s to decrease in a cosecant
squared manner until sixty-four degrees is reached, beyond
vwhich ve desire no radiation.

Figure No: 50 shows the desired pattern with the Fourier
Series approximation obtained by a 16 element array. Figure
No. 51 gives the result of applying our procedure with equal
rise time. Figures Nos. 52 and 53 present the approximations
obtained with a 10 and a 20 percent reduction in rise time.

Above we have presented, for discrete arrays, a synthesls
procedure which possesses approximate Tschebyscheff behavior.
We inquire about its extension to & contlnuous aperture. If
we were to take the convolution of our delta function current
distribution and another function, the resulting radiation
pattern would be the product of the patterns of the function

and the arraye. A convenlent function 1is

-139~
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2 A
cos lfi}’_ (-2-<x<'_;i) ﬂ’-’?)

as then ve vould have the correct value at the half wave polnts,
the mean in between and & smooth interconnection. The pattern

of (137) 1is

It

72
. 27,
f/“) /@J:_g_{e., Y Uxa/l

- %4

At 7T et (738)

f “ 7u /'/_ Jlf/

I

If ve vere to divide the desired pattern by (138) before apply-
ing the syntheslis procedure, the final pattern of the continuous

aperture would approximate the original desired pattern.
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IV. LIMITATIONS IMPOSED BY THE APERTURE "Q"

Throughout the thesls we have assumed that spatial current
variations of rapldity greeater than a wavelength were associat-
ed with reactive energy stored in the immediate vicinity of the
" aperture. This imposed & physical limitation on our synthesis
method as it prohibited the use of those components in the cardi-
nal series whose maxima occur in the region |u| > 1. This re-
striction to low Q structures prevented the resalization of pat-
terns of arbitrsry sharpness from a given finite aperture or
~of guper gein" antennas.

The fact that the region of real angles, that 1s |u|< 1,
is assoclated with real or radiated power is well known. Hov-
ever, the assoclation of reactive or stored energy with the
region |u| > 1 1s only alluded to in the literature. As no
investigation of the power flow through an arbitrarily iliumina-
ted aperture has been found, this section is devoted to an exami-
nation of this questicn. Such an examinatlion is necessary to
provide justification for the assumption made in previous sec-
tions of this thesis.

We rest.dct omar discussion to the two dimension case. We
first introduce the concept of an angular spectrum of plane

vaves (Woodyard and Lawson) (Booker and Clemmow).
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1). Angular Svectrum of Plane Waves

Let a rectangular coordinate system be chosen such that
x=0 represents the aperture plane. Let two semi-infinite con-
ducting sheets be so placed as to form an infinite slot aper-
ture of width "2W". Let us consider a two dimensional field

independent of “z" in this system.

(x,4) o (7. P)

(o;w)

~146-



Next consider & plane vave propageting in the @ direction.
For simplicity let one of the field vectors be paralle]l to the

2" axis. The electric vector will first be so chosen, although

z
the analysis can be equally well carried out with the magnetic
vector. A combination of them will yleld the moat general two
dipensional field.

The electric component at the general point X,y may be ex-

pressad as

-7 ~j K (x coy® # YA S)
_E; = %€ = E‘z e

The corresponding magnetic fleld can be obtained from

Maxvell's equation, namely:

GxE = — 2B — _ jwun #
3F /A
and the plane wave components may be written,

o tny) - _J'k(xeod9+74""9)
x (XY = z €

, _ _-k(xeowﬁry,ma) g (¢39).
H, (%g) = A8 %z o

<o

&
Hytng) = — o016 £z g’ Kl o964 4 &) J

Zo

£
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Nov all solutions of Maxwell's equation may be built up
of & superposition or spectrum of such vaves each propagating
in & different "é" direction and of arbitrary magnitude. The
angle "8", however, may accept all values including complex
ones. We attempt to find that superposition which will satisfy
the boundary conditions on the metal plates and at infinity.

As ve are interested in vaves radiating through the aper-
ture into the right-half space &ll values of “@" are not per-
mitted. The exponent -Jk(x cos @ + y sin &) determines the
necessary values of "@". The coefficient of “x" cannot have
a positive real part nor can the coefficient of "y” have any
real part. Otherwise the plane waves will grov exponentiaily
as x—y v and/or y-»fa. Ve also exclude real values of
"e¥ confined to %—r—< < -g- as these waves represent plane
wvaves travelling in from infinlty.

The required rangs of "¢" or contour of integration cen

be obtained readily from the expansion

oo = cod(oe,:,',e) = eodd 6041/3 -J'Aa'zof,wh:(/

RO = A () = Aot 00448 + J'wdaf/:dz[ﬁ.

It was shown by Woodyard and Lawson to be as indiocated in the

&

following figure:
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Complex @-plane
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L4

The general tvwo dimensional field which satisfies the conditions

at infinity can be written:

B (o6 +44irt E) .\
Frlry) = fz,(e)e 7 ab.
C

 B(xc010+4 piit )9 (140)

Helrg) = = f Ex(e)smb e’

Hylty) = "z E;(Q)c'adee"g(xme*"’magfﬁ
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We next attempt to satisfy the boundary conditions on
the metal plates. Here ror\”y”l> W, Ez(o,y) = 0 and within
the aperture the z-component of the electric vector has some

arbitrary behavior.

& (oy)

T~

~w +

From (l40) we can write the tangential components of the field
in the plane of the aperture (x = 0)

‘_U;AQVALnJQ
Fe(0y) = f.f;(e)e ade
c

: _ g mO
4y ag = - JE@ anoc? T ge
4 J =,

If we change variable and let u = sin 6, du = cos O 4@,
then

o6 =. o'w *
V/i-w=

=150~



The path of integration now runs over the entire real raunge
of "u" and (141) becomes:

@

E,(w)  =jRTYH
% (0 y) =-‘f = ¢’

Ry

—f EWYy U
Hy (@) -—-—é;/&mw" P du

(42).

vhere "y" i1s measured in vavelengths.
The angular spectrum may be obtained from either equation

by means of the Fourier Integral Theorem.

W
P4 e«
L) = /- Uz/-sz (Qy)eﬁ rya/y (743<)
: -
> JZ?rga
W) = - ZofHy(ey)e dy (/436).

-y -

In the first integral wve may restrict the range of integration
to the aperture "2w" dus to the boundary conditions. We are
unable to 4o this in the second expression unless we assums
the screen to be a perfect magnetic vall.

It should be noted that (140) expresses the riela anyvhere
in the right-half space and that by inserting the expression
for the angular spectrum given by (143) we satisfy the boundary
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conditions on the metal plates and in the aperture. We have
thus essentially solved & boundary value problem and our solu-
tion includes both the Fraunhofer and Fresnel solutions.

It us now extend our consideration to a subject not
covered in the literature, nawely the complex power associated
vith our sperture. The complex power flow is given by the

Poynting vector theorem as:
W 74 "
= /(fx:Hv. dy = —ff.} (4) ﬁ//(j)dy (744)
- -

Substituting (142) we have

4
) oy s R
.-_-—Lﬂ WED) oY e’y
Lo V 71— u?
_W-@-QD

We may integrate over the aperture

aoQ

= r £ () £ ; :
P= '?ff"//f WEW ARIHNOY) oyt G45)
- 00 —00

I//--— V7 27?'/4/(4(1“)

Although (14%5) is & rigorous expression, it does not place in

svidence the real and reactive components of the power. 1In

-152-




order to de¢ this let us expand the arbitrary aperture distribu-

tion as a Fourier Series, that is we write
oo - 71
Z(y) = S='Cn e ~ Zw 7 ;4)1- ,y{/li//

_IE; (30, —o fg>' 5?.2:1090/

As a general function, subject only to rather wide restrictions,
may be so expanded we have lost little generallty by means of
this artifice. The angular spectrum nov becomes from (1l43a)

2y (u- 2L
(a)_/,——;;;‘Z@f/ g zmdj

or

AM’ZW'/V/” %w)
L= 2W{—ar Z = W (4o (4¢)

substituting (146) into (145), ve have for the complex power
flow

_ (. C' At Zo W - u) diiniaw - ) Mm//a.a/
Pen) 22[ rwl-35) AWt ) 2uWla-a) ~

Jra? duda’
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recalling that (proof is givemn in the appendix)s

f,dm.?rﬂ/a ARETW(u'+7) 4, | AHETW T
ZiWa’  Zrwlu't) | W ZawT

- GO

ve may therefore perform our "u'” integration and obtain

o %
D 4W‘ > i A Bl 735) Ao ZTN/ (i~ )
2‘.2 / 2m W (a- 2L ) z;rw(“_,r:;d“'

-”

We can interchange our subscripts and obtaln an identical

expression
2 > = ‘ - )
A %@Z ZGG* 7’/:74_ Am&u/ﬂ/- ),dw.?ﬂ'/(//(/—;%)du
© Lo - 277”(((-2”) Zyu/{a_}%—

'Thorerore we may write in symmetric form:

-
= y : my "
7 .‘Z_‘f =2 "“'2" " G ;&mnmﬂrﬂ(v:u) At ?V‘V(””zw) S
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Equation (147) places in evidence the real and reactive
pover as all factors wvith the exception t:af“'r l - u2 are
real. In the interval -1 u ¢ +1 this factor 1s real and
that portion of the integral represents real power, vhereas
in the remaining regiocn the factor is imaginary and ve have
reactive pover.

It remains for us to show the comnection bhetween the

angular spectrum of plene waves and the radiation patiern of

the aerial. Further it should be possible to show the equality

of the real power traversing the aperture and the radiated

pover as obtained by integration in the far-field of the aerial.

2). Radlation Pattern and Radiated Power

The complete field anywhere is given by (140). Ilet us
introduce polar coordinates for the general field point
x=rcosf ; y=r sin g ; then the electric field anyvwhere

becomes:

e.‘/' Zmpeod (6- )

Lop= [6@ 2
C

In the far field or Fraunhofer region, "r" i1s large and the

integral can be evaluated by the method of stationary phase

(Jeffries). This ylelds

‘=

£ = *WED

1/7G&ra1¢5§)
Gopz £
g

~155-
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We see that the sngular dependence of the far field 1s identical
with the angular spectrum. This result was indicated by (Booker
and Clemmow). Let us return to our powver considerations. The

total reel pover radisted 1s expressed as:

7% 7%
-
pe [EtD ey — [E0E
% Zo Lo

~772

Substituting from (146)

EP &) _ 414/ 2" 2‘ o SnIn e - Zw) S ZrWla- )
<o 2”'”(”'3«) Zrw(u-35

ve obtain:
/
P= WSS, o fe ~ 2) gin 27 W (4~ F)
=22 CC Y L Zrt (4- 2w ) A0t o
6 W (U-z) 2T w(u- )
(149)

Now (149) for the radiated pover, obtained by integrating
the radiation pattern is identical to the real part of (147)
giving the real power flow through the aperture as ob%ainad
by the Poynting vector theorem. We, of course, would expect

to obtain this agreemsnt. Equation (149) has physical
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significence only for real angles. ¥We can, howvever,; axtend
our far field integral over our previously defined contour
and, as nov this extension of the integral is identical to
the aperture integral ylelding the reactive pover, we can as-
sign to the imaginary portion of the far-fleld integral the
significance of reective power stored in the neighborhood of

the aperture. Hence ve can write

v D
2 = Pt;Q -/,77(’«)6&(
- Y/-w?
vhere the radiated power is:
/ /e
Plu
iy f—w?
-7/,

3)e :g"_of an Aperture
We may finelly define the "Q" of an aperture &s the ratio

of reactive to dissipated power, that is:

77/2
. [row e
(:;) = A . ¢=°)
f Y=lC7 ap



4). Complementary Case
In order to bring in some interesting connectiions, We

wish to present briefly the corresponding formulas applicable
to the case where the magnetic vector 1s taken parallel to
the slot - however, the aperture plane 1s st1ll an electric
walle. The two cases are not complementary in thse electro-
magnetic sense unless we replaced the eleciric vall with &

magnetic one.

We have for the field anywhere (corresponding to (1%0)):

2 (xcos® +agnei
VA, =J%(e)e‘/ 4 m?g
—f R (xcon &+ 8/
é;(%Zﬂ) = —-2:.JICH4(23L4“169{?‘/ J”‘““t,@9
2wz eodB o
& tey) f//z(e) cogo &7 XTI g o)@
The field in the aperture plane becomes:
x>
— [ 2
/‘/z(Qy)r- //z(u) ec/ ag/”
—oo F /- u?
> 4
1 07
Loy =z [Haee' -
-

=158~
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e

We still express the angular spectrum in terms of the tangential
electric field in the aperture plane as the tangential component

vanishes on the metal plates. The angular spectrum becomes
W

Ly o
/?;(Qﬁ) — 35%_ ‘é;(ajo’eg/ 6'6§% QhﬁiaQ)

-W

The complex power flow through the aperture is

Lo 2wz f f //z(uz;/z Y1) o P Wli-i?) s _
ol du (7145¢)

We can &8 previously expand the aperture distriﬁution in &

Fourier Series. Substituting this expansion in (l43ac)

A () = //M‘?#W/” 2w)

Substituting this into (145c) and performing the evident

integration wve obtain for the complex power

&

77- 4“/ Z‘Z GG.. +Cons c., du, Amz’rru/("‘zm) Amfﬂ”ﬁ"g)
Lo 2 7/-—__- .27r;v721-._-) ;Ehrpvfbu.;d
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The real part of this pover can agaln be checked by far fleld
integration of the radiation pattern.

Investigation of this alternate case has revealed that
the sign of the reactive power has changed. As the root re-
presents the cosine of the angle @ 1t must be taken as posi-
tive. The condition where the tangential electric vector
lies across the slot is therefore capacitive whereas when it
is parallel to the slot the reactive power is inductive. This
agrees With vaveguide theory as to the sign of an inductive

or capacitive iris.

-166~ . -
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APPENDIX

On page '~ we assumed that the cardinal functlons were

ortho-normal and on page - we assumed the value of the integral
« :

/23‘6)2 Aﬁﬁ?i&?hﬂv dddV2577UVZV7ﬂ‘¢&: — igﬁzibrhﬁf'
-0

2w We 2o (usr7) 2T

As this integral form is not found in standard integral
tables, it is evaluated in this appendix. This may be most
readily accomplished by means of the convolutlion theorem. We

proceed by noting the integral is of the auto-correlation form

#A7) = ﬁ(«)ﬂ« T

slnce

X

7 = [Feoe’ gy

1/21ra'

A) = ‘/;(u)? o
then _m
] ! g(“)j(mv-ﬁag‘ = , /?(u_) ‘/‘;(") e,/‘er:v/wZ!d(.

-2 > .2
B
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There fore
")

f Feogtesrian = f[roofee’*,

-

Applying this result to the case where

f& ) = LW 37 .?zﬂf/u_
2 wWer

then f£(x) will have the functional form

£Cx)

/.0

Therefore

@©

Y
6§Ve92 AW Zor Wt Aﬁ#?iﬁrhV%&*Zj'aay — .J/ﬂ;,Juh’XTEi%
-ar ~

2m W 2w (utT)

or

o0
2 )2 A P pmg B (wrr) du = A X7 7
{'IV' 27 Wy 20 W (wrT) Zmrwz
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by a change of variable the ortho-normal relation results,

2 famdrWla-75) amZnWle-375) 4y _ L.
( f/‘y Zrw(u- 2—,%) Zrfu- ﬁ

where cg'nm- 1 form=m

J’an--llo for n ¥ m
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