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ABSTRACT

The contents of this thesis can be separated into two dis-
tinct divisions. The first is concerned with the develop-
ment of a general theory of decomposition algorithms for
optimization problems. The second develops an application
of the methodoleogy of the decomposition theory to a decen-
tralized linear stochastic contrcl problem.

An indirect approach to the development of the theory of
decomposition of optimization problems is taken. It is
assumed that a set of necessary conditions for the opti-
mization can be expressed in the form of a system of
nonlinear equations. It is this system of equations which
is decomposed. The result is a constructive approach for
the decomposition of optimization problems which includes
most hierarchical algorithms proposed to date. Because
the approach is indirect, the convergence analysis is
local in nature. Also, the formulation admits the develop-
ment and analysis of multiple decompositions {and hence
multilevel hierarchies).

The theory of decomposition is applied to a linear sto-
chastic optimal control problem with information flow
constraints. The particular problem formulation con-
sidered is the interconnected system problem where the



controller is required to be a linear finite dimensional
system. The problem is then reformulated as a deter-
ministic minimization and necessary conditions are derived.
These conditions are decomposed to take advantage of the
interconnected system structure. The convergence pro-
perties of the algorithm are examined, and solution
algorithms for the decomposed subproblems are proposed.
Finally, the algorithm is applied to the linearized

model of an inertia wheel attitude control device.
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1. INTRODUCTION

1.1 General Discussion and Background

In recent vears there has developed a considerable literature in
what is termed large scale systems theory (see, e.g. Ho and Mitter
[(1276]; Guardabassi and Locatelli [1976]; Sandell et.al. [1978] gives
an extensive literature survey). This theory has touched upon all the
traditional areas of system theory. However, in spite of the amount of
literature available, the definition of a large scale system is very
elusive and the boundary between large scale and non-large scale systems
is ill-defined. The classification of a system as large scale is
usually determined by the inability of traditional techniques to handle
the problems which the system presents, either due to computer time and
word length limitations or to the extensive communications required to
implement the solution. Both these problems often occur simultaneously
in large scale systems.

The general control problem considered in large scale system theory
is that of optimal control of a nonlinear stochastic gystem. An approach
often used (Lefkowitz [1966]); Findeisen [1975]; Athans [1971]) is to
treat the nonlinearities in a deterministic framework and approximate the
stochastic effects as white noise driving a linear system. The resulting
control law is computed and implemented in two layers., The upper
(economic) layer is a deterministic nonlinear control problem which at-

tempts to optimize the economic objectives of the system. Meanwhile
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the lower (stabilizing) layer is a stochastic linear control problem
which attempts to maintain the system trajectories near the deterministic
economic optimal (and thus, in a sense, optimizes the stochastic sta-
bility of the system)}.

The objectiwve and difficulties associated with these two problems
are very different. Due to the equivalence of open and closed loop
controls in deterministic optimal control and the difficulty of deter-
mining the closed loop solution for nonlinear problems, the economic
layer problem is usually solved for the open loop form of the control.
The contrcl law may be determined on—-line but is implemented only after
the solution is obtained. Thus the total amount of computation time is
an important consideration; communication is not an issue due to the
open loop structure of the solution. In contrast, the stabilizing layer
solution must be closed loop. Many communication links are required for
systems with a large number of state variables. Computational problems
are still important, but are often neglected,

Hierarchical control theory {(Mesarovic, et.al. [1970]; Wismer
[1971]; Findeisen [1976]; Bailey and Laub [1978]; sSmith and Sage [1973];
Singh [1976] ; Bernhard [1976)) has been motivated by the success of
decomposition techniques in mathematical programming (Lasdon [1970];
Geoffrion [1970]). Since the natural generalization of these techniques
is to open loop control of deterministic systems, hierarchical control

‘ . . 1 .
is mainly concerned with the economic layer problem . The chief

lThere are exceptions to this and some of the other statements in this pa-
ragraph, particularly in the more recent literature (Singh et.al. [1976];
Findeisen and Malinowski [1976]; Chong and Athans [1976]).
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characteristic of hierarchical control is the iterative computation of
the glcobally optimal control by coordinated solution of certain sub-
problems. This computation, which is generally envisioned as taking
place off-line, is decentralized in the sense that the subproblems can
be solved without knowledge of the global model of the control process.
However, the computation does require extensive communication between
the subproblems and the coordinating problem. The advantage of the
hierarchical control approach is computational. Savings in computer
time and space are often apparent in a single processor implementation,
but the real advantage of the approach is evident in a multiprocessor
environment where the global problem is selved by a set of intercom-
municating processors, no one of which is alone powerful encugh to solve
the problem.

In contrast, decentralized control theory {Witsenhausen [1971];
Ho and Chu [1972]; Ho and Chu [1974]; Sandell and Athans [1978]; Wang
and Davison [1973]; Corfmat and Morse [1976]1) is exclusively concerned
with feedback. Linear problem formulations are most often considered
since the theory of nonlinear feedback control is not as well developed
as the linear theory. Therefore, the practical application of the
theory is primarily to the stabilizing layer control problem. The chief
characteristic of decentralized control is that restrictions are placed
on the real time information flow between the controllers of the progess.
However, the control laws that define the controllers mathematically

are derived in a completely centralized fashion using full knowledge of
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the global system model. Determination of these control laws is usually
computationally more difficult than determination of a centralized
control law with no restrictions on information flow. The advantage
of decentralized control is the reduction (or elimination) of require-
ments for on-line communication links between the process controllers.
From the above discussion i1t is apparent that both the hierarchical
and decentralized control theories address issues of concern in large
scale system theory. Despite this fact, the theories are virtually

unrelated at the present time.

1.2 Contents and Contributions

The contents of this thesis are logically divided into two parts
which have distinct objectives. The first part, contained in Chapter 2,
develops a general theory of decomposition for nonlinear equations.

The second part contains the remainder of the thesis. By using the
theory presented in Chapter 2, it establishes a relationship between the
hierarchical and decentralized control theories., Specifically, a
hierarchical structure for the computation of a decentralized control law
is considered,

One of the main failures of hierarchical control theory to date has
been the lack of a general theory of decomposition. As a conseguence,
many algorithms have been proposed which elther are essentially the same
as previous algorithms or are formulated only for specific problems.

A recent paper by Cohen [1978] has presented a theory which includes

most of the hierarchical algorithms proposed to date. This theory
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approaches the decomposition from an optimization viewpeocint. As a
result, global convergence results are obtained through suitable con-
vexity assumptions on the optimization problem.

Chapter 2 of this thesis presents a parallel development of a
similar theory. However, Chapter 2 approaches the decomposition of
optimization problems from an indirect viewpoint. It is assumed that
necessary conditions for the optimization problem can be stated in the
form of a system of nonlinear eguations. The hierarchical decomposition
theory is then developed through the decomposition of this system of
equations. Because the approach is indirect, the convergence results
are local in nature. However, the assumptions placed on the optimization
problem are less restrictive than those required for a global analysis.
When such assumptions are made, the local convergence results also
apprly globally.

The flavor of the approach of Chapter 2 coincides with the struc-
ture and derivation of many of the currently proposed hierarchical
algorithms. Most are developed through the use of necessary conditions.
It is only after the decomposition is derived that the results are
interpreted in the optimization framework., Hence the theory of Chapter
2 applies directly to most hierarchical algorithms.

Another advantage of the formulation of Chapter 2 is that it can
be extended to encompass multiple decompositions and the resulting
multilevel hierarchies. Because nco convexity assumptions are used,

convergence conditions can be easily deyeloped from the basic theory.
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This extension is begun in Chapter 2, and for the first time a three
level hierarchical structure is analyzed.

The second part of this thesis considers a particular linear
stochastic control problem. Specifically, the controller structure for
the problem is required to be linear with a fixed (but arbitrary) finite
dimension. This problem, formulated in Chapter 3, has been considered
by many authors in varving contexts (Levine and Athans [1970]; Kosut
[1970]; Chong and Athans [1971]; Levine et.al. [1971]; Xwakernaazk and
Sivan [1972]; Wang [1972]; Galiana et.al. [1973]; Davison et.al. [1973];
Cohen [1977]; Looze et.al. [1978]).

The approach of each of the authors cited in the preceding paragraph
is the same. The formulation of the problem allows a deterministic
eguivalent optimization to be stated. MNecessary conditions for this
problem can then be derived. Chapter 3 follows the same appreach.
However, the necessary conditions are stated in a more general form than
any others to date.

The necessary conditions for the interconnected subsystem problem
are decomposed in Chapter 4 using the theory developed in Chapter 21.
The result is a hierarchical structure for the computation of the best
linear controller which satisfies the information flow constraints. This
algorithm has several important properties. First, the algorithm is

shown to converge if the subsystem interactions are sufficlently weak.

lSee Sandell [1976]; Looze and Sandell [1977a], [1977b] and [1978]1; for
earlier but incomplete developments of this idea.
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This property is exploited in the development of a practical conver-
gence test. Second, the algorithm produces a stabilizing controller
at each iteration. This raises the possibility (discussed briefly in
Chapter 4 and more extensively in Chapter 6) of applying the structure
in an on-line mode. Finally, it is the first proposed hierarchical
algorithm for linear stochastic systems which reduces the computation
at each level.

The remainder of the thesis is concerned with the problem of ap-
plying the algorithm to a practical problem. Section 4.4 of Chapter 4
attempts to simplify the convergence condition for the iteration. A
sufficient condition involving the concept of block diagonal dominance
(see Feingold and Varga [1962]) is derived, but still requires consi-
derable computation.

Chapter 5 reviews several solution methods for the infimal and
supremal problems which result from the decomposition., Included in
the discussion is the possibility of using further decompositions as
solution algorithms. This is recommended for the supremal problem.
The proposed infimal solution methods also included Newton's algorithm,
gradient search algorithms, and an extension of an algorithm used by
Tevine [1970] and Wang [1972]. The algoxithm is applied to the

linearized model at an inertia wheel attitude control device.,
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A summary of the results of this thesis and a discussion of

possible research directions is presented in Chapter 6.

1.4 Notation
In the following, let X = Xl HewuX XN and ¥ be Banach spaces

and assume f: X + Y, Then define:

L 2

{bounded linear operators L: XX}
A .
L(X,Y) = {bounded linear operators L: XY}
A . . \ , . .
8Ff(x;Ax) = Fréchet differential of f at x in the direction Ax
A . . .
9f = Frechet derivative of £(of & L(¥X,¥Y))
A . . , . ,th
Bif = Frechet derivative of f with respect to the i— argument
f(l) é iEE Frechet derivative

°(|lh[|n) 2 any function such that lim offIh|] ) _ 4

[Inl[>0  |[n]]®
. A .
D{'} = gpectral radius operator

R gset of real numbers

>

B Borel O-algebra of R

A
K[to,T] = ZLebesgue measure on [tO,T]C:R
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Lg (R, B, ?\[to,'l'})é space of all real valued vector functions

X: Ito L,T] ~+ IRn' such that the Lebesgue integral

T
f x'(t)x{t)dt is finite.

t
o

éij = [Kronecker delta functiocn
§(t) = Dirac delta function
E{-} = Expectation operator
, A
A' = transpose of A
A
SLA. ., cenas
(5] 11 A1y
Par o NN
dlag[Bi: i=1,...,N] = i-Bl L0 R 0 A
0 B2 ..... 0
=0 O ...... B_-
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2. SOLUTION OF NONLINEAR EQUATIONS BY DECOMPOSITION

2.1 Introduction

An increasingly common approach to solving optimal control
problems utilizes the concepts of decomposition and ccoordination
to develop iterative hierarchical control algorithms (Mesarovie,
Macko, and Takahara [1970]; Bailey and TLaub [1978]; Smith and Sage
[1973]); Singh [1976]; Bernhard [1976]; Lasdon [1970]; Geoffrion
[1970]; Singh, Hassan, and Titli [1976]; Findeisen and Malinowski
[1976]; Chong and Athans [1976]; Lefkowitz [1966]; Findeisen
[19751). Many of these algorithms exhibit fundamental similarities,
but until recently a basic theory of decomposition and coordination
has not been available. Now, with the recent paper by Cohen [1978]
a general framework for decomposition algorithms is beginning to
emerge. The major importance of this type of formulation is that
it allows attention to center on classes of algorithms rather
than the individual algorithm, thus developing greater insight into
the essential similarities and differences betwen algorithms.

This chapter develops an alternate framework for the study
of the theory of decomposition and coordination. The general
decomposition algorithm is formulated and examined from a numerical
analysis viewpoint, The result is a framework which includes a
larger class of algorithms for differentiable optimization problems

than Cohen's formulation. The approach allows the development
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of local convergence results without imposing convexity assumptions
on the original optimization probklem. Such results have not been
obtained to date in the hierarchical control literature.

The precise approach used is to generalize a method used in many
hierarchical control algorithms (Singh [1976]). This method involves
using iterative algorithms to solve the two point boundary value
problem resulting from a deterministic optimal control problem., The
particular iterative algorithm used determines the structure of the
two level hierarchical controller. This approach extends directly
to any cptimization problem for which a set of necessary conditions
can be expressed as a set of possibly nonlinear equations. The class
of decomposition algorithms which results is sufficiently general to
include all the open loop hierarchical control algorithms for optimal
control problems developed to date. Other common iterative solutions
to optimization problems fit the framework also.

Many of the decomposition algorithms governed by the decomposi-
tion theory of this chapter can be given hierarchical interpretations.
The result is invariably a two level structure. However, the
decomposition framework is further developed to allow multiple
decompositions of the same problem. Thus .multilevel hierarchical
structures can be considered. Specific results are derived for
three level structures which result from the use of two arbitrary

decompositions.



—-20~

The contents of the chapter are as follows, Section 2.2
provides a brief summary of the needed variational results. Section
2.3 formulates the decomposition framewcrk for nonlinear equations,
and relates the framework both to Cohen's work and to the earlier
hierarchical formulation of Mesarovic et.al. [1970]. Multiple de-
compositions of a single problem are discussed in Section 2.4.

Section 2.5 summarizes and discusses the results of this chapter.

2.2 Derivatives in Abstract Spaces

The concepts of derivatives and differentialsin Banach spaces
will be needed to relate the nonlinear iterative methods to the
linear techniques and for the convergence analysis of the
iterations. In the following, let X and Y be normed linear spaces

and let f be a possibly nonlinear transformation.

£: X+ Y (2.2.1)

Definition: (Luenberger [1969]) If for % € X and each h € X there

exists §f(x;h)e ¥ which is linear and contimuous with respect to h

such that
Lim |lf izt -£) -8 sm [} _
[Inl]> o | In}]

then f is Frechet differentiable at x and 8f(x;h) is the Fréchet

differential of £ at x with increment h.
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The Frechet differential posesses the following properties.

Lemma 2,l: If the function £ of (2.2.1) is Preéhet differentiable
at x then it is continuous at x. The Fré;het differential is unigque
and is given by
d
8f({x;h) = — £(x + ah) (2.2.2)
do
=0
Proof: Luenberger [1969}, pp. 176-177.

By definition, if f is Frechet differentiable at a point x, the

differential is of the form

SE(x;h) = £'{x)h (2.2.3)
where

£': X~ L{X,) é {bounded linear operators L: X = Y}

The transformation £' is the Frechet derivative of f and the linear
operator f'(x) is the Frechet derivative of f at x. If the function
f is a functional on X (i.e., if ¥ = R), then £'{x) is often referred
to as the gradient of f at x. If f' is continuous on an open set
U c X then £ is said to be continucusly Frechet differentiable on U.
Since L(X,Y) is a normed linear space, the theory of Frechet
differentials can be applied to the function £'. If the Preéchet
derivative of f' exists, it is referred to as the second Frechet

derivative of £, and is dencted f":
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£r: X+ L(X, L(X, 1)) {(2.2.4)

If f" is continuocus then f is said to be twice continuously Frechet
differentiable. The theory and terminology can be extended to all
higher order derivatives in a similar manner. The following notation

.tk
will be used to dencote the 1 Frééhet derivative evaluated at x £ X:

f(i)(x) € L(i}(X,Y)

where L(l)(X,Y) is defined recursively by:

L(l)

(X,¥) L{x,¥)

Sy (i-1)

(X,Y) L(x, L (X,¥}).

rd
Much of the theory of ordinary derivatives extends to Frechet
derivatives, For example, the concept of partial derivatives has

a straightforward extension. Let f:xl X X2 XawoX Xn + ¥ where

. .th ,
Xl,...,xn, and Y are normed linear spaces. Then the i— partial

Frééhet derivative at (xl,...,xn) is defined as the unigue map

: -
aif. xl X...X xn L(Xi,Y)

such that for each h & Xi

Lim  JE(x ,eeeeX, + hyael,x YmE(K e ne X 10 £(X; ..., )hi]
HhH*’ 0 1 i n 1 n i 1 n -0
Hnl

if the limit exists.
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Other extensions of the theory of ordinary derivatives which
will prove useful are the chain rule for differentiating compositions
of functions, the Taylor series expansion of a function, and the im-
plicit function theorem. These are given by the following three

theorems.

Theorem 2.1: (Chain Rule) Let X,V,Y be normed linear spaces.
Suppose g: X * V and h: Vv ~ Y are Frechet differentiable at x and g{x)

respectively. Then the composite map £f: X = ¥ given by

£f{x) = hi{g(x)) {(2.2.5)
is Fréhhet differentiable at x and

£'(x} = h'(g(x)}g"'(x) (2.2.86)
Proof: Ortega and Rheinboldt [19701, p. 62.

Theorem 2.2: (Taylor expansion) Let f be n-times Frechet dif-
% *
ferentiable at x . Then there is an open neighborhood U C X of x

such that for each x € Uand 1 €<m < n

m . .
£ = £ + 2 1 £ G e e o] x| (2.2.7)
i=1 )

where f(l): X > L(l)(X,Y) is the iEE-FréEhet derivative and:
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: * * i A i * * *
e 6Ny xS e Y mex T e )
Nt
i times
Proof: TLusternik and Sobolev [1968]
Theorem 2.3: {Implicit Function Theorem) TLTet X and ¥ be

Banach spaces. Suppose that f: X x ¥ + X is continuous in an open

neighborhood U of a point (x ,y ) for which £(x ,y )=0. Assume
fe) o "o oo

that Blf exists in a neighborhocd of (xo,yo), is continuous at

(xo,yo) and Blf(xo,yo) is nonsingular. Then there exist open

neighborhoods U, C X of X and U2 C Y of Y, such that for each

1

X € U2 the equation

£E(x,v) =0 (2.2.8)

has a unique solution

x = £(y) (2.2.9)
and the mapping £s U2 -+ X is continuous. Also, if 82f exists at

(xo,yo) then f is Frechet differentiable at Yo and

A, _ -1
£ (yo) = [Blf(xo,yo)] Bzf(xoyyo). (2.2.10)

Proof: Ortega and Rheinboldt [1970], pp. 128-129,
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2.3 Decomposition of Nonlinear Eguations

Consider the following optimization problem:

min J(u) {2.3.1)
uell

s . . /- .
where U is a Banach space and J is twice continuously Frechet dif-

*
ferentiable. A necessary condition for x +to solve (2.3.1) is:

Iy = o (2.3.2)

Note that J':U -+ L{I}, and that L(U) is a Banach space. BAn indirect
approach to the solution of {2.3.1) is to solve (2.3.2) for u*.

To insure that u* is at least locally unigque, it will be assumed
that J"(u*)"l exists for all u* such that J'(u*) = 0. Thus, locally
(around u*)L(U) can be identified with U for the purpose of solving

(2.3.2). Equation (2.3.2) is then of the form:

f{x) = 0, f:¥X3% (2.3.3)
where X is a Banach space.

Often the nonlinearities of the function f or the dimension of
the space X prevent a closed form (or even a finite algorithmic)
solution of equation (2.3.3)}. The usual approach is to try an
iterative solution method. Common examples of iterative techniques

include Newton's method and (in 1 dimension) the Fibonacci gearch.
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The general appreach which will be discussed here is to extend
ideas used for the one-point iterative solution of linear eguations.
Iterative methods for linear equations are well known and commonly
used (Varga [1962]; Ortega and Rheinboldt [1970]; Taub {1974];

Athay [1976]). The linear equivalent to (2.3.3) is

Ax = Db (2.3.4)

where A e LX)

The iteration is determined by splitting (decomposing) the operator

A

A=h +A ; A, A E L(x) (2.3.5)
and solving the equation

AO Xk+1 =b - Alxk ; k=0,1,... {2.3.6)

The splitting is chosen such that (2.3.6) is more easily solved
than (2.3.4). Two common splittings are demonstrated by the

following examples.

Example 2,1: (Jacobi Iteration)

A=D+ L+ 7T {2.3.7)

where D is diagonal, L is strictly lower triangular and U is strictly

upper triangular. Then let:
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A =D
© (2.3.8)
A =L+ T
1 @]
Example 2.2: (Gauss-Seidel)
Assume D, L and U are defined as in (2.3.7). Then let:
A =D+ L
© (2.3.9)
Al =U O

Each of the above iterations can be combined with the concept of

under or over-relaxatiocn.

Example 2.3: (Under or over-relaxation)

Choose a splitting as in (2.3.5). Then solve

Ao xk =Db - Al xk (2.3.10}

= % - 2.3.11
X0 xk + E(xk xk) ( 11)

The parameter £€ is called the relaxation parameter. The terms under

and over—relaxation correspond to £ < 1 and € > 1 respectively. In

either case, relaxation used with the Gauss-Seidel iteration will

be referred to as an SOR iteration (successive over-relaxation}. -
The same idea can be extended to the nonlinear equation (2.3.3).

The first step is to choose a continuocusly Frechet differentiable

function fo: X x X > X to create the decomposition:



-28-

£(x) = fo(x,y) + fl(x,y) (2.3.12)

Then, the equation
fo(xk+l' xk) + fl(xk,xk) =0 {2.3.13})

is solved for xk+1 at the k+lSt iteration. To have the iteration
*
(2.3.13) well defined in a neighborhood of the solution x , it will

- *
be assumed that Blfol(x ;X ) exists.

There are several notable aspects of this formulation. In the
past, it was assumed that the cost function J, and hence the necessary
conditions for the optimization (represented by £}, had to be
separable to achieve a decomposition. This conception has persisted even
in some of the recent literature (Forestier and Varaiva [1978]).
However, the formulation of egquations (2.3.12}~-{2.3.13) make no such
assumption. In fact, the linear decentralized stochastic control pro-
blem formulation of Chapter 3 is distinctly nonseparable.

A second observation is that the choice of the function fo

determines the iteration. For this reason, fo is called the core

of the decomposition. The terminclogy used and the form of this
framework is similar to the formulation developed by Cohen [1978].

The formulation of {2.3.12)-(2.3.13} is more general however. Cohen's

formulation views the decomposition from an optimization viewpoint,
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However,
32 a2
BY_B;{"" KO(XrYrWrZ) =1#-1= m KO(XIY:Wrz)

which shows the function K is not analytic.

Finally, it should be noted that regarding the decomposition
framework from a numerical analysis viewpoint allows the introduction
of a large number of local convergence and existence results which are
not available from an optimization point ¢of view. On the other hand,
global convergence results for certain decompositions applied to
unconstrained optimization problems are obtained more naturally from
an optimization viewpoint. Both are important, but the local
analysis has been mostly neglected to date.

Equation {2.3.13) defines an equation of the form

g(xkﬂ, xk) =0 {(2.3.14)

This is the general form for a one-point iteration with the

requirement

* % *
g(x,x)zf(x)=0

(i.e., g and f should solve the same problem). The formulation of

{(2.3.12)-(2.3.13) is more restrictive. By letting

X = X = X, x e X
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and hence requires a core K{u,y) to be chosen to split the cost

J of (2.3.1) in the same manner that fo splits £ in (2.3.12). For
a differentiable problem, this is equivalent to cheoosing the
derivative 9K({u,y} as a core to decompose the nonlinear equation
(2.3.2). However, this restricts the class of cores available for

the decomposition to those which are derivatives of a function K.
2 2 . .
Example 2.4: Let J{(x,y) =x + y . Then f is given by:

2%

fix,y) 2y

Suppose the core fo is chosen to be:

X +
£ (x,y; w,2) = Y
o

b

Y.—
It ig easy to show there is no core K0 which satisfies

J(x,y) = KO(X.Y,W,Z) + Kl(X.y,wfz )

and achieves the decomposition corresponding to fo' If there

were, then

°
EE-KO{X'Y'W'Z) =x + vy
o

=y - X

— K
v O(XrYrWrz)
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in {2.3.14) and using (2.3.12), one finds
g(x,x) = fo(x.x) + fl(x.x} = fl{x) ¥xegZk (2.3.15)

Although (2.3.12)-{2.3.14) do not allow arbitrary one-point
iterations, the formulation is general enough to admit most of the

common nonlinear algorithms.

Example 2.5: (Newton's method)

Choose the core as:

fo{x,y} = f'{y)x {2.3.16)

Then

fl(x,y) = f(x}) - £'(yIx (2.3.17)

Combining (2.3.16)-{(2.3.17}) with (2.3.12)-(2.3.13) gives

the equation:

. -1
X1 = xk £ (xk) f(xk) {2.3.18)

Example 2.6: {nonlinear Jacobi and Gauss-Seidel)}

Tet X = X X...X XN and define fi: X

1 X...X Xn - Xi' {i=1,...,N}

1

by £(x) = (fl(xl,...,xN},...,fN{xl,...,xN)). Then the nonlinear
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Jacobi iteration is formed by choosing

fo(er)i = fi(yll-'-ryi_li Xi,Yi_l;---rYN); i=1,...,N
This results is the iteration

k+1 k k .
X ’ xi+l""’xN) = 0O; i=l,...,N (2.3.19)

k k
fi(xl,...,xi_l, i

If the core is chosen as:

fo(x,y)i = fi(x,""’xi' yi+1,...,yN); i=]1,...,N

The nonlinear Gauss-Seidel iteration results:

k+1 k+1 k k .
fi(x1 ,....,xi . xi+l""'XN) = 0 ; i=l,...,N (2.3.20)
@]
Example 2.7: {Successive under or over-relaxation)

The SOR concept can be extended to nonlinear equations.

Equation (2.3.13) is solved for a value gk' Then (2.3.11) is used to

compute xk+1' To see that this fits the formulation (2.3.12)-(2.3.13),

substitute for §k in (2.3.13):

l —
fo(E [xk+l —(l-s)xkl 'Xk) + fl(xk,xk) =0 {2.3.21)

This corresponds to choosing the core.

A 1
fo(x,y) = fo(E [x - (1-e)yl,v)
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Then:

Il

~ 1
fl(x,y) fx) - £ (g [x - (1-€)yl,y]

Since.

equation {(2.3.21) describes the iteration resulting from the core

£ . O

e}

Example 2.8;: (Quasi-linearization) Let the space X be

decompoged as in example 2.6. Define the core fo by:

fo(x,y) = diag[Bifi(y): i=1,...,Nlx
A,
= fD(y)x
Then
fl(x,y) = f{x) - fD(y)x

which when combined with {2.3.12)-(2.3.13) defines the iteration:

-1
= - t
e - % T ) TR
Singh and Titli [1975] have applied the method of Example 2.8 to

the two point boundary value problem resulting from a deterministic

optimal control problem.
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The structure of the computation and information flow in the
Gauss—-Seidel and Jacobli iterations leads to a two level hierarchical
interpretation. In the usual straightforward interpretation, the
upper (supremal) level simply transfers the information (most recent
solution) as it is needed. This occurs once at the end of each
Jacobi iteration but must be done sequentially for the Gauss-Seidel
algorithm. The lower {infimal} level problems solve the nonlinear
equations fi' either in parallel {Jacobi) or sequentially (Gauss-
Seidel}.

Certain problems possess a structure which admits a different
two level hierarchical interpretation and allows some of the computa-
tion to be shifted to the supremal level. Suppose that the Banach

space X can be decomposed into two Banach sub-spaces:

X = XS b4 XI (2.3.22)

This leads to the definition of fS and fI as in Example 2.6. If the

I
space X can be further decomposed:

I I I
= e 2.3.2
X Xl XoooX XN ( 3)

and if the resulting subsystems of equations fIi(i=1,...,N) are

such that:

fIi(xS, xl,...,xN) = fIi(xS,xi) (2.3.24)
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then the application of either the Jacobi or Gauss-Seidel algorithm
results in a subsystem of equations £ which decouples into N subproblems

fIi . These subproblems can be solved in parallel. At the upper level
{see Figure 2.1}, the system of equatiors fS is solved. The N sub-
problems are solved at the infimal level.

This hierarchical interpretation fits nicely into the framework
developed by Mesarovic et.al. [1970]. The coordination principle
determined by this decomposition is the interaction prediction prin-
ciple. The infimal problems solve their subsystem of eguations at
the current iteration based on the interactions predicted (by the
solution of the supremal equations) from the solutions at the last
iteration. This principle is almost trivially appl:i.cablejL to the
solution of the set of nonlinear equations (2.3.3}. When viewed in
the context of solving the coptimization problem (2.3.1) the principle
will not, in general, ke applicable since the decomposition is used
to solve the necessary (but not sufficient) conditions (2.3.2). The
problem is that applicability requires the coordination predicate

to be true globally. A natural extension of the existing terminology

is the following,

Definition: A coordination principle is locally applicable at x if

there exists an open neighborhood U containing X such that the

1 In the sense of Mesarovic et.al. [1970]. The definition of ap-

plicability of a coordination principle states that whenever the co-
ordination predicate is true, the original problem is solved. TFor the
interaction prediction principle, the coordination predicate states
that the predicted values of the interaction variables are the solution
values.
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83517AW001

SUPREMAL
fs(’%"l) =0

INFIMAL N
fIN(xs,xN) =0

INFIMAL 1
fiOgixg) =0 ¢ @ o

Figure 2.1l: Hierarchical Computation Structure
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coordination predicate is true for all x £ U.
The concept of local coordinability is defined in an analogous

manner.

Definition: A problem is locally coordinable at x by a given co-
ordination principle if the principle is locally applicable at x
and there exists a coordination input such that the resulting x

solves the overall problem restricted to U.

It is easily seen that the optimization problem {2.3.1) is locally
coordinable by the coordination principle defined implicitly by the
Jacobi or Gauss-Seidel iterations at any local minimum of the
original problem.

The type of structure needed for this decomposition is present
in the linear stochastic control problem formulation of Chapter 3,
and will be exploited by the decomposition presented in Chapter 4.

For now, a simple three dimensional problem is developed in Example

2.9 to illustrate the ideas.

Example 2.9: Let £: R; +'R? be defined by:

fix,v,2) = X - y2 - 22

xz3 - b
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Define XS = R (% is the supremal variable), X_ = Rz {v and z are the

I
infimal variables) and fs and fI by

2
f (x,v,2) =x-v -2z
S
3
fI(x,y,Z) =lxy - a
X23 - b

The Gauss-Seidel iteration will be used. Choose the core

to be:
fo(x,y,z;u,v,w) = X - v2 - w2
3
XYy - a
xz3 - b
The iteration is:
2
e N (2.3.25)
k
X +l(yk+l)3 - a =0
{2.3.26)
k+ k+1 3
X 1(‘2 l) -b =0

Equation (2.3.25) is solved at the supremal level while equations

(2.3.26) decouple and are solved at the infimal level,. O
There are two important considerations which affect the choice

of the core. PFirst, eguation (2.3.13} should be more easily solved

than {2.3.3). This will generally be true for the nonlinear Jacobi
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and Gauss-Seidel iterations since the problems are smaller than the
original. Newtorns method reduces the original problem to the pro-
blem of solving a linear set of equations.
The second censideration, of course, is that the sequence

ki ® . * .
{x,}k_o converges to the solution x of (2.3.3). The following
theorem gives a sufficient condition for the iteration defined by
{2.3.14) to converge locally and gives an estimate of the asymptotic

rate of convergence.

P4

Theorem 2.4; Let g: X ¥ X=X be continuously Frechet dif-
* *

ferentiable in an open neighborhood UO of a3 point (x ,x )e X x X

* % *
for which g(x , x) = f(x ) = 0. 1If:
(1) Blg(x*, x") is nonsingular
. -1 2.3.27
(i1) vy = p[—alg(x*, x*) Bzg(x*. x*)1< 1 ( )

then there exists an open neighborhood U C UO such that for any

o
x° £ U there is a unique sequence {xk}k_o which satisfies the
k *
iteration (2.3.14). Moreover, lim X =X and for each € > 0
k>0

there exists an integer kO such that for all k > kO
[ - x*[] < eer® (2.3.28)

Proof: Ortega and Rheinboldt [197C], pp. 325-326.
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The linear operator —Blg(x*,x*) Bzg(x*,x*) is called the (linearized)
iteration operator and the scalar Y is the asymptotic
convergence rate.

Theorem 2.4 is not in general useful for determining a priori
whether the iteration will converge for a given preoblem since con-
ditions (i) and (ii) make use of the presumably unknown solution.
However, this result is used in Chapter 4 to prove a weak coupling
condition for the convergence of the decomposition applied to the
linear stochastic problem formulation of Chapter 3. One case when
condition {2.3.27) can be used directly is if it can be shown to
hold for each possible solution x £ X. Then local convergence is

assured. This is illustrated by the following example.

Example 2.10: Let f: B; *‘R; be defined as in example 2.9 with

the same Gauss-Seidel iteration. Then g is defined by:

2 2
. - _ w2 - 2.3.29
Gy 1 Yip1r By ¥ Yo B el T Y T % ( )
X 3 -
k+1 Tk+l
3
¥4l a1~ P
Then, at x:
1 0 0 o 2y 2z
X 3xy
Z 1
_Z2 g 0 0 0
3% 2 .
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[O 2y 2z 1
= p
2 _
0 ¥ __y= {2.3.30)
3x 3x
v 2 z2
-O - 3x - 3x

The characteristic equation of the bracketted matrix is:

vz’ 2 _
X

{2.3.31}

0]
+
wn
"
@

. 2 . .
Since x = y 4+ z° for any possible solution (x,v,z), the spectral
radius of the operator evaluated at any point on the submanifold

of possgible solutions is:
y = g_ (2.3.32)

Condition (2.3.27) can also be used to give insight into the
structure which g must posess to generate a convergent iteration.
This can be seen more clearly by examining the first order Taylor

expansion of g about the solution x" :
k k-1 k
glx , x ) =3 g0 x")Ax

+ azg(x*,x*)Axk_l + o(llxk - x*| (2.3.33)

where Kk Ak .
=X -~ X

A

If the contribution from the higher order terms were negligible

k-1 * ,
{as would be the case for xkasx ~x ), equations (2.3.33) and
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(2.3.14) could be combined to give an equation which is linear

. k -1
in X and xk s
k k-1 * *
Blg(x*,x*) X+ azg(x*,x*) X = [Blg(x ,x*) + Bzg(x*,x*)]x
{2.3.34)
The condition for convergence of the iteration ({2.3.34) is identical
to (2.3.27).

This analysis also provides additional insight into the relation-
ship between the linear iterative procedure described by equations
{(2.3.4)-(2.3.6) and the nonlinear decomposition prcocedure formulated
earlier in this section. Equation (2.3.3) can be expanded in a

. *
first order Taylor series about x

0= £'(x) (x—x") + o(]|x=x*]) (2.3.35)

Again ignoring the higher order terms, (2.3.35) can be rewritten:

Frx®) x = £' (xD)x (2.3.36)

s
The imposed condition (2.3.15) and the properties of partial Frechet

derivatives give
* * * . * *
f'(x') = Slg(x X )+ Bzg(x LX) (2.3.37)

Note the correspondence between (2.3.34), (2.3.36}-(2.3.37) and

{2.3.4)-(2.3.6). Thus the decomposition procedure (2.3.12)-(2,3.14)
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can be viewed as choosing a splitting (as in the linear iteration)
of the Frdchet derivative. However, the method is slightly more
general since by choosing fo one determines splittingsof the higher

order derivatives also.

2.4 Composition of Decompositions

Section 2.3 presented a general formulation for the solution
of nonlinear egquations by decomposition. One of the objectives
which is to be satisfied in the choice of the core of the decomposition
is to have equation (2.3.13) be more easily solved than the original
equation (2.3.3). However, the equation to be solved (2.3.13) may
still be nonlinear {(as in the Jacobi and Gauss-Seidel algorithms)
or too large to be solved directly. One possible solution is to
decompose the iteration equation (2.3.14) to obtain a secondary iteration.
An overall iteration defined by the use of a secondary decomposition
to solve a set of equations which have resulted from another decom-
position will be called a compound iteration. The guestion of
convergence of such a compound iteration will be answered by
Theorem 2.5.

Consider the primary one-point iteration defined by:

gp(x

ki1’ xk) =0 (2.4.1)
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/
As iIn Section 2.3, a continuously Frechet differentiable core go

is chosen to decompose {2.4.1).
gp(xlz) = go('X;Y:Z) + gl(X;Y,Z) Vx,y;z, e X (2.4.2)

Again it is assumed that at the soclution x*, Blgo(x*,x*,x*)_l exists.

The decomposition defines the secondary iteration:

2+1 % 241 % £ L

¢ P %) T 9 R B T 91 Fe1 %k

gs xk-i-l

It will be assumed that the secondary iteration is repeated M times
for each value of k. The resulting solution x§+l ig used to

start the secondary iteration at primary iteration k+l. The issue

*
is whether the sequence {xi}t_o converges to a value x for which
(* *) O
g X ;X = .
P
By the implicit function theorem, equation (2.4.3} defines a

function g in a neighborhood UlCZ X of x":

A R 2
Kegr = 900 B VX

k+1’ *

x € Ulcx {2.4.4)

Using X, for x, as the starting point of {(2.4.4), %, 1s given by:

M

_ =T -, M M M M
X = 9@lgla, %), x)e.), x) (2.4.5)

M times



wdHe

[ea]
M
Thus {xk} converges if and only if (2.4.5) is a convergent
k=0

. . s C .
iteration. Sufficient conditions for the convergence of {xk}k_o

are given by the following theorem.

Theorem 2.5: Assume gp, 9 and E- as defined in (2.4.1)-

(2.4.5) are continuously Fréﬁhet differentiable in an open neighbor-

hoed Uoti X of a point x* € X for which gp(x*,x*) = 0, and that

* % % k% .
3lgp(x ;X ) and Blgs(x ;X ,X ) are nonsingular.

. A * % k. —1 ® k% _*
Define TS = Blgs(x fX XD Bzgs(x P X %)

[l=g

* % =1 * %
- Blgp(x /X)) Bzgp(x /X )
If:

_ M -
Y—p{Ts + (I rs)rp} <1 (2.4.6)

then there exists an open neighborhood UCX of x* such that for each

oQ
xo £ U the sequence {xﬁ} defined by (2.4.1)-(2.4.5) converges to
k=1

0
x*. In addition, for each £ > 0 there is a positive integer ko

such that

|1 - =¥ | < e Vk > k (2.4.7)

rs
Proof: To simplify notation the arguments of the Frechet derivatives

will not be explicitly specified. All derivatives will be evaluated



-46—

*
at the sclution x .

By Theorem 2.4 and equation (2.4.5), the iteration will

converge and satisfy (2.4.7) if

v = o{d 3@(...g&*,x*, x) .., xO <1

n times

By direct calculation, condition (2.4.8) becomes:
M-1 .
__M - p—
y=p{0.3 + ] (3@ 3 g} <1
1 i=0 1 2

From the implicit function theorem, Blgland 825 are

Q
Le]
I
1
a»
O

- algs 33gs

Q7
1s]
|

(2.4.8)

(2.4.9)

(2.4.10)

(2.4.11)

Using equation (2.4.3) and the definition of Ps' it is seen that:

algs = algo

9395 = 939, T 339;

I =-23gt (g +3.q +9.9.)
S lgo Zgo 2gl lgl

By eguation (2.4.2)

algl - a1gp - algo

(2.4.12)

(2.4.13)

(2.4.14)

(2.4.15})



3390

Combining (2.

3
lgs

Substituting (2.4.17}-(2.4.18) into (2.4.11):

329 =

- -

+ 33gl = Bzgp

4,12)-(2.4.16) gives

-1

-1
- (I - TS)BlgP Szgp

(T - T T
s p

Then condition (2.4.9) becomes:

M
Y = p{TS +

M-1

i=0

This can be rewritten as:

M M
v = p{rs + (I - FS)FP}< 1

JOT. (I-T)T <1
S s p

{2.4.16)

{(2.4.17)

(2.4.18)

(2.4.19)

(2.4.20}

(2.4.21)

The following example illustrates the concepts involved by

analyzing the use of a compound iteration to solve a system of

linear egquations.
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Example 2.11: For the linear problem {Equations (2.3.4}-(2.3.6})},

a secondary iteration corresponds to choosing a second splitting to

solve (2.3.6):

A =A <+ A (2.4.22)

The total iteration {the linear analog of (2.4.4)) becomes:

+1 -1 L -1 -1
el T Poo Bor Fki1l T Poo o1 Mk Y Poo b (2.4.23)
Using x;+l = xk = xﬁ and the discrete variation of constants formula,
the linear analog of {(2.4.5) is obtained:
M-1
M -1 M M -1 i, -1 -1 M
= - + - -
xk+l ( Aoo Aol) *x iéo ( Aoo AOl) (Aoo b Aoo Alxk)
mo Meboio1 w Mg a1 2820
=Ir -}y ra _aflx + ) T
s . s oo 1 k . 5 00
i=0 i=0
A -1 . . . .
Note that Ps = - Aoo Aol is the iteration operator corresponding to
the splitting (2.4.22). Now:
-1 -1 -1
Aoo Al N Aoo(AogAbl)(Aoo+Aol) Al
- -1
—@+ataata (2.4.25)

oo ol o 1

- (I - I‘S)I‘p

A .
where Tp = - AO Al is the iteration operator corresponding to the
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splitting (2.3.5}. Using (2.4.25) in (2.4.24):

—

M M M-1 i M M-1 -1
X =1 T + Z I (T -T)H)T |Ix" + Z r'a b
K+1 s . s s" p k . 5 00
R i=0 i=0
(2.4.26)
[ M M MGl oAl
=710 + - r + b
s (1 Fs) P xk iEO s Aoo k=0,1,...,

A necessary (and sufficient) condition for (2.4.26) to converge to the

solution of (2.3.4) is

o™ s - Mr <1 (2.4.27)
s s’ 'p

@]
which is equivalent to (2.4.6).

As with Theorem 2.4, condition (2.4.6) of Theorem 2.5 would not
often be used to determine convergence in a practical application.
However, the theorem does give some insight into the interaction of the
primary and secondary iterations. If Newtons method is used as the
secondary iteration, the convergence condition simplifies (since

TS=O for Newton's method; see Ortega and Rheinboldt [1970) p. 311)
fr <1
© P

This is just the condition for local convergence of the primary

iteration, and is independent of the number of steps in the secondary
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. . 1
iteration. Alsc, Theorem 2.5 can be used to show that any

convergent decomposition can be used as a secondary
iteration with an arbitrarily small increase in the overall conver-

gence rate if the number of steps M is sufficiently large.

Theorem 2.6: Agsume the conditions of theorem 2.5 hold, and:

T <
pi S} 1
Then for each £ > 0 there is an Mo such that

oM M
pil, + (T - TS)I‘P} <ellJ+e  wm>m (2.4.28)

Proof: Since the spectral radius p{-} is a continuous function of

the linear operator, given FP and € there exists a § such that
l[A - FP|[< § implies IO{A} - D{TP}[ < e.
Then:
M M oM
e, + - rs)rp - rp[l = ||I’S(I rp)il
M
SLTRIEEEN]

Since b{FS}< 1, choose M_ such that

1 .

Of course, the region of convergence and the average (as opposed to
asymptotic) rate of convergence may be affected by the number of steps
in the segondary iteration.
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¢ VM >M

M
T < T 7| > M
p

Thus:
M M
||rS + (1 - TOT - rp]l <8
which gives:

M M
lo{rg + (1 - TOT } - ol }| < e

a
The concept of a secondary iteration and the implications of

Theorems 2.5 and 2.6 are demonstrated by the following example.

Example 2.12: Consider the primary iteration defined in

Example 2.9 (equations (2.3.25)-(2.3.26)). Eguation (2.3.26) involwves
the solution of two decoupled cubic equations. These will be solved

by the following iteration:

2 ( 2—1—1)2 Ca=o
X1 Yra1 ka1 a=

g M1 2 (2.4.29)
X1 Z41Pay) ~P =0

Each equation of (2.4.22}) can be written in the form:

Feth? oa=o0 (2.4.30)
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The iteration operator for (2.4.30) is:

-
1

o 1 (Ot!l+1)2
s L 2+1
20 o 0L2=&2+l=u*
(2.4.31)

-1
2

Thus the iteration operator for the whole secondary iteration

(noting that equatiocn {(2.3.25) is solved exactly) is:

0 0 0
1
PS -1 -7 © (2.4.32)
1
0 ¢ -3

Since Fs does not depend on the solution, local convergence is
assured.
Convergence condition (2.4.6) for the composite iteration

with M secondary steps is:

Y=p{I'h:+ (I—I'D:)I'P}
[ 0 0 o TTFo Q Q 'l'o 2y 2z
=pl|o —%M 0 +| Q l—(—%)}, Q Ov—gi —%
o o -%M_ o o 1—(«—%){_L - —%2{—_
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2
X
3%
1M 1M
=py (- 5) I+ [1-(- -2—)_]
¥z _ 2z
3x

Now, if A is an eigenvalue of

2
- ¥_ . ¥z
3% 3x
2
_¥z _ z
3% 3x

then (- %JM + [1-(- %JM]k is an eigenvalue of

N

M
) I+ [1-(- %)MI 3x

(-

In Example 2.8, it was seen that the eigenvalues of (2.4.34)

at any possible solution value were:

3x (2.4.33)
2
2
3% .
(2.4,34)
_ ¥z
3x {2.4.35)
2
- 2
3x
(2.4.36)

} <1 (2.4.37)
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There are twe properties worth noting. First, as M becomes
2 . .
large ¥ approaches 3 {the asymptotic rate of the primary iteration}

as predicted by Theorem 2.6. Second, the smallest wvalue of ¥ (%q

occurs for M=2, and this rate is significantly less than the
primary rate of convergence. Thus it may be advantageocus to use a
secondary iteration without carrying the sclution to the limit.

The composite iteration with a = -b = 2 was simulated for
several different initial guesses, and several values of M. The
iteration was continued until |]§_— §%||< 10“6 {where x = (x,vy,2)).
The results are contained in Table 2.1. The obhserved asymptotic
rate of convergence agrees in each case with the value predicted
by equation (2.4.6). Note that the number of iterations for M=2
is significantly less than for any cther wvalue.

The hierarchical interpretation which was given the primars
decomposition in Section 2.3 can be extended to the compound
iteration described by (2.4.1)-(2.4.5}. In this case the lower
level of the original two level hierarchy also becomes a two-level
hierarchy. The result (Figure 2.2) is a three level hierarchical

structure. This same procedure can be repeated for any problem

at any level.

2.5 Summary
This chapter has presented a general framework for the solution

of nonlinear equations using decomposition algorithms. The class
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Table 2.1: Convergence rates for Example 2.10

Secondary Intial Guess Observed Predicted
Iterations {v = —x ) .terations (k) Rate Rate
o o «111L/k
1 1.0005 * * 3
2
1 1
= 1 . =
2 2 1 259 i
3
5 10 . 246
50 12 . 298
7
3 1 119 .890 —
7 8
3
5 103 .873
50 120 .891
4 = 25 .571 9
16
3 24 .559
2
50 28 .607
« -EL— 36 .674 E
2 3
3
= . 664
5 34
50 40 . 703

* Did not converge
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of algorithms covered by this formulation include many of the
classical iterative algorithms (such as Newton's method, and the
Jacobi and Gauss—-Seidel iterations) as well as many of those al-
gorithms currently used in the hierarchical control literature.

The general framework allows the essential similarities and 4if-
ferences of individual algorithms to be clarified. In addition,

the formulation provides a constructive approach to designing de-
composition algorithms through the ability to specify the decomposi-~
tion by the choice of the core.

The formulation differs from other decompesition theories in
that it approaches the decomposition from a numerical analysis (as
opposed to an optimization) point of view. This viewpoint introduces
a theory of local convergence to the theory of hierarchical control.
The local convergence results provide an important new compliment to
the global convergence theory most often found in the hierarchical
literature.

Another new development of the formulation of this chapter is
the ability to construct and analyze multilevel hierarchies. The
formulation of Section 2.4 allows the hierarchical structure of the
computation to be tailored to the problem at hand. A local con-
vergence criterion, given in terms of the indiwvidual decomposition

iteration matrices, was developed for a three~level structure.
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The criterion can be used inductively to analyze the local con-
vergence behavior of any multilevel algorithm developed under
the framework of Sections 2.3-2.4.

There is a final, important consideration in the development
of a particular decomposition algorithm which has been largely
neglected. To be successful, the core of a decomposition must be
chosen to take advantage of the structure of the problem which is
to be solved. There is no widely applicable rule which will result
in the choice of a core that simplifies the problem and results in
a convergent iteration. Certain classes of problems posess a
structure which can be exploited through a corresponding core struc-
ture. An example of such a class is developed in the remainder of
this thesis. However, ingsight into a problem remains essential to

any practical decomposition.
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3. THE LINEAR DECENTRALIZED STOCHASTIC CONTROL PROBLEM

3.1 Introduction

As discussed in Chapter 1, the linear stochastic control problem
formulation is often used as the lower level of a two level control
structure in the solution of nonlinear stochastic optimal control
problems. If no restrictions on information flow are imposed
(i.e., each input can use the entire output history of the system},
the (centralized) solution to the linear stochastic control problem
is known to be linear and the separation principle applies (Wonham
[1968]1). Due to the on-line computational and communication regui-
rements of the centralized solution it is often necessary to restrict
the amount of information which is available to each input. In
general, the optimal control for such problems is no longer linear
and the separation principle does not apply. Alsc, the solution is
usually difficult or impossible to compute.

In an attempt to reduce the complexity of the non~classical
stochastic control problem, many authors have restricted the class
of permissible controls (Sage and Eisenberg [1966]; Levine and
Athans [1970)]; Kogsut [1970]; Chong and Athans [1971]; Levine et.al.
[1971]; Wang [1972]; Cohen [1977]; Looze et.al. [1978]). By far
the most popular class has been the class of linear controllers

with specified dimension which satisfy the information flow
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constraints. The reasons are obvious; the class is characterized
by a finite number of wvariables and the seclution is easily imple-
mented. A direct result of this approach is that the stochastic
optimization problem can be reformulated as a constrained determi-
nistic optimization over the variables which characterize the
linear control system. This approach to the linear stochastic
control problem is developed in Sections 3.2 and 3.3.

Several authors have derived necessary conditions for special
cases of the resulting deterministic optimization. Galiana, et.al.
f1973] used a Lagrange multiplier approach, Cohen [1977] used the
Pontruyagin minimum pringciple, and Chong and Athans [1971] used the
matrix minimum principle. A variational approach is uged in Section
3.4, This appreoach has two advantages over previous approaches.
First, the derivation of the necessary conditions demonstrates
explicitly the role of the adjoint eguation. The second advantage
is that arbitrary parameterizations of the control system fit
naturally into the variational framework. The result is a more
general set of necessary conditions of which each of the above re-
ferencesig a special case.

The remainder of Section 3.4 demonstrates how the general
necessary conditions can be used to derive a set of conditions for
a specific problem (namely, for a system consisting of intercon-
nected subsystems). Finally, Section 3.5 summarizes the results

of this chapter.
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3.2 Problem Formulation

Consider the linear stochastic system:

x (t)

I

a{t)x(t) + B(t)ult) + £(t); x(to)zxo (3.2.1)

)

y(t) clit)x(t) + 6(t) (3.2.2)

x(t), £{t)e R"; y(t), O(t)e BE; ult)e K"

with:

E{E(t)}

il
Q

E{8(t)}

It
o

E{lx } =0
o

E{E)8' ()} = 0 (3.2.3)

E{x_ &' ()} =0

1
Q

E{x0 8' ()}

E{x x'} =P
o ‘o o

E{E(£)5 (D)} = S(t) 8 (t-T)

E{0(£)8' (1)}

G({t) 8 (t-T)

The objective is to choose u(t) to minimize the quadratic cost

functional:
T

J = % E{x! (TR, % (T) +[ [x' (£)Q(t)x(t) + u'(t)R{t)u(t)1dt}

t
]

K, = Ki > 0; Q&) = 9" (6)> 0; R(t) = R'(e)> 0 (24
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For the time invariant infinite horizon case, the time averaged

guadratic cost

T
J_ = % lim E{%'— f fx' (£)ox(t) + u'(t)Ru(t)ldt} (3.2.5)
>0
(o]

with the same restrictions on Q and R will be used. All time
varying matrices are assumed to have elements which are square
integrable over the interwval [to'T] with respect to Lebesgue
measure. Egualities (3.2.1)-(3.2.2) are assumed to hold almost
everywhere in t with respect to Lebesgue measure.

The notation used in (3.2.1)-(3.2.2) is a formal representation
of a stochastic Ito integral. With the assumptions above, the Ito
stochastic process x(t) satisfyving (3.2.1) exists and is almost
surely continuous (Liptser and Shiryayev [1977], Theorem 4.10}.

A major objective of this thesis is to derive control laws for
systems in which information flow is restricted in various ways.
Since the optimal unconstrained control law for such problems is
generally nonlinear (Witsenhausen [1968]) and difficult, if not
impogsible, to compute and implement, a linear finite dimensional

structure is imposed:

ult) = - G(&)x () (3.2.6)

() = A()k(t) + B(Ohu(®) + H(t) [y(t) - CBX(E)]; x(£ )=0
{3.2.7)
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where §(t)€ R (n < @)
Again, the elements of all time varying matrices are assumed to be
square integrable with respect to Lebesgue measure on the interval
[to’T]' The matrices K(t), G{t) and H(t) are assumed to be para-
meterized by u(t)ale {s < =), with oa(t) also sguare integrable on
the interval [to' T]. When the infinite horizon, time invariant
problem is considered, the parameterization will depend on the time
invariant vector o. £ R>. The problem is to choose
alt)e =° x[to, T} {or o € Rs) to minimize the quadratic cost index
(3.2.4) {or (3.2.5)).

Several examples will illustrate the generality of the for-

mulation.
Example 3.1: Kalman Filter Based Compensation

n=n; (A(t), B(t), &()) = (alt), B(t), C(t))

a{t) = (G(t), H(E))

Example 3.2: N Interconnected Subsystems

N
x; (£) = A, ()%, () + jzl A (E)x (6) + By (B)u, (8) + ()7 x (&) = x;
i#i
{(3.2.8)



yi(t) = Ci(t)xi(t) + ei

n

-

()

m p

i i i
xi(t), Ei(t)e R ; ui(t)e R : yi(t)e R

E{Ei(t)} =03 E{Bi(t)}

E{Bi(t)ij(T)}

E{Ei(t)gé(T}}

{6 . (0)8) (1)} = 0, (£)8 (+-1) 8,
i J i ij

E{x,  x' } =p, .
io jo ie "1ij

T

i
o}

If the time invariant,

the cost functional is:

The system matrices

by defining:

o ={e,
1

N
= ) E f ix! (£)g, (thx, (tg + ul (B)R, (Blu, (£)ddt + x! (DIK_ x, (T)
-1 £ i i i i i i i T, i

=0:E{x. } =0
10

:i{t}6(t-r)5ij

(t)x' } =0 E{f (t)x' } =0 {3.2.9)
Jo i jo
i=1,. N
i=1,...,N
)

1

}
(3.2.10)

infinite horizon problem is being considered

[x. (£)Q.x, {£) + u' (£)R,u, (£)]dt (3.2.11)
1 1 1 1 1 1

can be put in the form of (3.2.1)-(3.2.5)



Aa(L)

B{t})

Q(r)

E(t)

Il

-6H5=-

[a,  (t)]
ij

diag[Bi(t); i=1,...,N] C(t} diag[Ci(t): i=1,...,N]

i

diaglg, (t): i=1,...,N] R(t) = @iaglR, (£): i=1,...,N]

Il

diag[Ei(t): i=1,...,N] O(t) diagE@i(t): i=1,..., NI

diag[KTi : 1=1,...,N]

To achieve the form of eguaticns (3.2.6)-(3.2.7), define the

controller matrices:

A (t)
B (t)

C(t)

G(t)

H{t)

oo
Il

It~z

. R Ei x n.
A, . (£)] A, (e R ]
ij ij
R R A, X m,
diag[B, (t): i=1,...,8] B, e R ' +
i 1
~ ~ p' % ﬁi
diaglC,(t): i=1,...,N] C, e R .
m, x n.
[G..{t)] G,.(t)e R ]
ij ij
ﬁi X p.
(H, . (t)] H,.(t)e R .
ij ij
n,
1
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Example 3.3: Completely Decentralized Dynamic Feedhack

(Figure 3.1)

A(t), B(t), cl{t), o{t), R(Y), KT, E(t) and @{t) as in Example 3.2,

~ 3
n, =n, i=1,...,N
i i

A(t) diag[Aii(t): i=1,...,N]

B(t) = B(t)

C(t) = clt)

G(t) = diagle, (£): i=1,...,N]
H(t) = diag[Hi(t): i=1,...,N]
alt) = (G(t), H(E))

Q

These examples will be discussed further in the sequel. Henceforth,
it will be assumed that the system (3.2.1)-(3.2.5) has the structure
of Example 3,2. Examples 3.1 and 3.3 will then be handled by

specialization.

3.3 Reformulation as a Functiocnal Minimization

Equations (3.2.1}-(3.2.7) can be rewritten in closed locop form
for the time varying problem as:

srnin Jlo(-})
g{-)e Lz(fR,B,)\[to, b B (3.3.1}
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1 2 N
“11 IYI "i Iyz UNl IYN
SUBSYSTEM SUBSYSTEM e o . SUBSYSTEM
1 2 N

INTERCONNECTION SYSTEM

Figure 3.1: Decentralized Control of an Interconnected System




subject to

%(t) = AMR)YR(M) + E(B); R(t )

58~

It

%
o]

For the time invariant problem, the equivalent problem is:

min J (o)

)

=]
GER

subject to:

%(t) = A%(t)

+E); () =%

The quantities in the above equations are defined as:

J{o())

J_ (o)

x, (t)
1

Aij(t)

|

T

> B MK FD +j’ % ()0 ()R (E)at)

. 1
Lim E{E
o0

x.(t)}
1
xi(t)

|

Aij(t)

H,.C.(t)
i3]

t
[s]
T —
-]P %' (£) 0% (t)at}
o
x(t) = [X
-B.G, . (t)

i7ij

A, (£)-B, (£)G,
17 1 1

; ()1

(£)-H,  {t)C, (£) ]
J 1] ]

(3.3.2)

(3.3.3)

(3.3.4)

(3.3.5)

(3.3.6)
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At) = [A, . (0)]
ij
Qij(t) = Qi(t}csij 0
0 ]
G! (IR _(B)G, . (1)
r=1 ki Rk kj
Q(t) = [Qij {t}]
Eitt) = Ei(t) E(t) = Eii(t)]
)
H, {£)6 ()
o1 ik k
E{E (t)é'(r)} é g (£)8(t-1) = [E.(¥) & o}
i j ~ij ~i ij
N
0 H 8 't
k£1 £ (B0 (B, (E)
E(t) = [Eij(t)l
%, =[x, R = I%,
10 10 (o] 10
| 0
Kos = | ¥pg o} K, = diagIKTi; i=1,...,N]
| © )

{(t=T)
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Since x(t) has a finite second moment, the Fubini Theorem for
stochastic integrals (Liptser and Shiryayev [1977)], Theorem 1.9)
allows the expectation and integration operators to be interchanged.
The following two series of equalities, for (3.3.5) and (3.3.6)
respectively, follow from trace identities and the linearity of the

trace, expectation and integration operators:

T

J{a{-))

é E{fi’(T)NKTSE(T)} +% f E{%" (£)Q(t) % (t) tat

t
Q
T
= %-E{tr[i (M (T)1} + 1—_/r E{tr [Q(t)R ()% (£)1}at
T 2 A
(o]
T
=%tr{KTE{S':(T)§'(T)] +f 5(t)E[§:(t)S‘c'(t)]dt} (3.3.7)
tO
T
1. 1 — T
Joo(a) = “2- lim E‘. [E{X (t)}o x{t) }dt
300
o]
T
1., 1 ~
=511m T fE{tr[Q x(t)x'{t)]}dt
T A
T
=—letr{§ lim % /E[i(t)i'{t)]dﬂ} (3.3.8)
T

Now define:

Bey & el (o} (3.3.9)
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Then:

P(t) = A(L)D(t) + P(E)A' (£) + E(t); E(to) = EO (3.3.10)

where
P = E{x X'
o oo
If the closed loop system is time invariant with an infinite horizon

cost, P(t) approaches a constant matrix P as t increases. For all o

gsuch that A is stable, the matrix P satisfies:

[112

AP + Eﬁ' + =0 {3.3.11)

Also:

T

lim 1 ~ ~
T ‘l: P(t)dt = P (3.3.12)

Equations (3.3.1) and {(3.3.2) or (3.3.1) and (3.3.3) can now be
expressed as equivalent functional or static minimization problems

respectively:

Time Varying Functional Minimization
T
min } J{a{-}) =%tr[KTP(T) + f 5(t)§(t)dt]

1:o (3.3.13)

a(t)e Li( R,B,\)
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subiject to

B(E) = A(E)B(L) + P(O)A (L) + 5(t); E(to) = Eo (3.3.14)

Time Invariant, Infinite Horizon Static Minimization

min {J_ (o) = %— tr[Qp]} (3.3.15)
ocA

subject to
0 = AP + PA' + E (3.3.16)

where A a {a: 2 is asymptotically stablel} .

Note that in the two above formulations the explicit dependence of

R(t), é(t) and é(t) on ¢{t) has been suppressed to simplify the
notation. This dependence will be noted only when it is necessary

to clarify the discussion.

The solutions of the minimization problems presented by equations
(3.3.13)-(3.3.14) and (3.3.15)-(3.3.16) depend critically on the
parameterization of the matrices g(t; a(=)), 6(t; a(-)) and H{t; af{-}).
The parameterization for eguations (3.3.15)-(3.3.16) must be general
enough that the set A is non-empty. In either problem, any para-
meterization will generally result in several local minimal.
Overparameterization of the control system matrices can compound this

problem, resulting in an infinity of solutions. A solution

1In fact the set A in the static minimization problem may be disconnected,
having at least one minimum in each disjoint region.
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*
o (t) of (3.3.13)-(3.3.14) or (3.3.15)-(3.3.16)) is locally unique

3 L] = *
if and only if there is an open neighborhood U of ¢ (t) such that

J{a)) >T@ (")) Voltle U (3.3.17)

J (o) > Jm(u*) Vo £ U (3.3.18)

respectively. Conditions {3.3.17) and (3.3.18) will hold if the
problem is not overparameterized.

An obviocus necessary condition for (3.3.16) or (3.3.17) to hold
is that the controller impulse response matrix

Hit, ¢ a(:)) = G(t; a('))QA (t, T; al-NH(T; o))} (3.3.19)
£

where

d —_— A . - ._A - - — - - ‘A -
Ez-éAf(t, T; o)) = [A(tf&( N -BlR)G(t;a(-))-H{t;al )C(t)]¢Af(t,T.&( ))

be uniquely determined in a neighborhood of a*. For the time invariant
infinite horizon problem (3.3.15)-(3.3.16), egquation (3.3.1%8) can be

transformed to the frequency domain transfer function:

F(s,0) = G [AI-A (@) -BG (o) -H (0) C1H (&) (3.3.20)

Glover and Willems [1974] give several tests which can be performed

to determine if (3.3.20) is unigue in some neighborhood of a*.
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Essentially, the implicit function theorem is used to determine a matrix
which has full rank if and only if the problem is not overparameterized.
The decaomposition algorithm of Chapter 4 will require that the
golutions to (3.3.13)=(3.3.14) or (3.3.15)-(3.3.16) be locally unigue
if convergence is to be guaranteed. The necessary condition that the
transfer function (3.3.19) be unique gives a weaker but more easily
determined necessary condition. The frequency domain transfer
function (3.3.20) implies an even easier test. Since F{4,0) is deter-

. A \ CL s
mined by at most 2mmp independent parameters, it is necessary that:

s < 2nmp (3.3.21)

For the remainder of this thesis only parameterizations of G(t) and

H(t) will be considered. It will be assumed that a(t) is chosen from
other considerations. This assures that condition (3.3.21) is satisfied
for the time invariant infinite horizon problem (3.3.15)-(3.3.186)

since the maximum number of free parameters in G and H is:

= n 3.3.22
Snax n{m+p) ( 22)

Inequality (3.3.21) is satisfied zince

2nmp = n m(p+p) (3.3.23)
z_ﬁ m{p+1l)
~ N
= nmp + nm
zbﬁ(p+m)
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The two inequalities in (3.3.23) are tight if and only if p=m=1,

i.e., in the single input-single output case.

3.3 Optimality Conditions

There are numerous authors who have treated special cases or
closely related versions of the problem formulated in the previous
section (Sage and Eisenberg [1966]1; Levine and Athans [1970];

Kosut [1970]; Levine, Johnson and Athans [192711; Chong and Athans
[1971]; Wang [1972]; Kwakernaak and Sivan [1972]; Davison, Rau and
Palmay [1973]; Galiana, et.al. [1973]; Cohen [1977]; Looze, Houpt,
Sandell and Athans [1978]); note that the basic problem formulation
even predates the state space era {Newton, Gould and Kaisen [1975]).
The necessary conditions stated in this section are more general than
any to date, and the derivation involving explicit use of variational
ideas has some claims to novelty, but the results obtained should not
be surprising to those familiar with the cited literature.

Define the following Hilbert spaces:

T

% D 1IX0 et LT <B,B > D oer f A(t)B(L)dt (3.4.1)
2 : [e} X t
Q

¢ & gnxn <a,B%, & tr A'B (3.4.2)

* *
Since both X and Y are Hilbert spaces, the dual spaces X and Y can
be identified with X and Y respectively. Given a linear

operator F: U+~ V with U and V Hilbert spaces, the adjoint operator



[Py J oy

*
F : V> U (more precisely F*: v* > U*) is defined by:
<v, Fu>v = (F*v, u>U VVeEV, ueg g

The following linear operators will be needed:1

t ~

F.o: X > X: B(+) + & (t,0)E(0)d_ (t,0)do
A A -y

t

o

T

Frf: X > ¥: E(-) > f o (T,0)E{0) 8" (T,0)do
A A A

t

(o]

H: Y~>X: P =~ 0_(t, t )P @L(t,to)
A °© A ° a

: Y > Y¥: P> & (T,£ )P 3 (T,t)
O a O [s] a (&

L : ¥Y~>Y: P+ AP + PA’

The matrix &_{(t,0) is the transition matrix of

A

system, and satisfies

%E b (t,0) = Alt;al )0, (£,0); &_(c,0) = I
A A A

the closed

(3.4.3)

{(3.4.4)

(3.4.5}

{3.4.6)

{3.4.7)

(3.4.8)

loop

(3.4.9)

lA.gain, the explicit dependence of matrices on t and a{*) is noted

only where It is needed for clarity.



-7

The adjoints of the operators defined in (3.4.4)-{3.4.8) are

given by (Appendix A, Lemma A.1}:

T
F*(Q) = f 8’ (0,)0(0) ¢ (0, t) do (3.4.10)
-y A iy

£
T~ ' ~
F., (KT) = @,,,(T,t)KTC?N(T,t) (3.4.11)
A A A

T
¥ (Q) = f d' (t,t 10(E)®_ (£,t )dt (3.4.12)
A £t A ¢ A ©

(e
T > ' ~
Ho (K.) = & (T,t )X 3_(T,t ) (3.4.13)
A T A o T A s
LK) = A'K + KA (3.4.14)
iy

The Frechet differential of J{(a) at & in the directionAa will

be denoted by {(see Section 2.2):

83 (o M) = 'gg I (ateha) (3.4.15)
£=0

Similarly, let

Gi(t:a;[xa) = — ﬁ(t;o&e&a) {3.4.186)
ae ~
e=0
Gé(t;u;Aoa) = :—E §(t;oc+era) (3.4.17)
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IQ

~
[

Gg(t;a;f_\a) =

o))

- (t;a+eho) l (3.4.18)
€=

0

d.ln(u;Au) = gE-Jm(a+€Aa)[ {3.4.19)
£=0

The fcollowing theorem characterizes the Frechet differential

of (3.3.13)-(3.3.14}.

Theorem 3.1: TLet J{a) be defined by (3.3.13)}-{(3.3.14).
Then the Frechet differential of J at & in the direction Aa is

given by:

i,
83 (0 Ay = tr{_/~ [P (t)K(t)SA(t; 0z h0) + %—5<t>65(t;a;Au)
% (3.4.20)

% K{t) 82 (t;o;Aa) 1dt}
where:
K(£) = A" (D)K(E) - K(DA®) - 0(8); R(T) = iT (3.4.21)
Blt) = A(D)B(E) + B(OA () + 3(8); Bt ) = P (3.4.22)

Proof: From equation (3.3.14)

H(P) + F. )
iy iy

B (t)

i

(3.4.23)

B(T) = KL(P) + F.(2)

A A
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Using (3.4.23) and the definitions of the inner

products on X and ¥ in (3.4.1)-(3.4.2):

15~ -~ ~ =
JW)=5{@,E@8§-+@,QGPX

A
(3.4.24)
+ K, HD(B >y + <K, FL(E)>,
a © A
The Frechet differential (3.4.15) is:
1l a4 ~ =
8T (0;Aq) = e {<Q(o+eba) , H_ (P )>y
A(at+eha) ©
+ <Q(o+eda), F. (E {a+eda) )>X
Aflat+eAa)
+ <K, H. (® )>y
A (a+eAa) e
+ <K, F (%(mgm)py}l (3.4.25)
A {o+eha) £=0
The computation will proceed term by term. The first term is:
a .~ ~
d_€ <0 {ot+cha) , H_ (PO) >X
A{g+eAo) g=0 (3.4.26)
= <80(asha), H_(P )>y + <Q, gg H_ (P )>,
a ° a(o+ehoy  © £=0
The second term of (3.4.25) is:
& <Qlaveda), F, (E (orvede) ) > (3.4.27)
A {o+eAo) =0
= <80(a;hn), F_(B)>, + <0, & F (E))| >
= Q r r ~ A X Qr dE e 2 X

A A {ot+eho) £=0
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Continuation
+<Q, F_(8E(az0m))> {3.4.27)
A
= <65(a;Aa), F~(§)>X+<Ff(§}; éé(a;Aapx
A A
+ <0, SoF ) >
A (at+eAa) £=0
The third term of {3.4.25) is:
d - T ~ e [+1 T ~
S <k , H (P P>yl =<K, o H. (P ) Zy
de A{o+eha) © £=0 T de A{o+eAd) © le=0
(3.4.28)
The last term of {(3.4.25} is:
g'g <K _, F. (E (areha) ) >y
A(otehn ) £=0
= <K, FL(SE(0iha))>y + <K, S FL E@)] >y
A A{o+eAa) £=0
¥ ~ ~ 4 _T ~
=<F_ (K,), OZ (i ho) >y + Ko g Fa (E)l >y (3.4.29)
A A{a+cAo) £=0
Combining (3.4.26)-(3.4.29) in (3.4.25) gives:
83 {c;Aa) = 1 {<6§(G;AG), H (5 } + F (§)> {(3.4.30)
2 ~0 ~ X
p:\ A
*
T = * T
+ <F_ (KT) + F_{Q), S8E(u;Am)>
X
A A
+ <, & () + F. BNl >y
A{oteha) A{o+shg)
~ d T ~ T ~
+ <K 32 ", () + F_ (~(o¢))1€=0 >Y}

A(oteda) © A (o+eAa)



-81-

Using equations (3.4.4)}-(3.4.7) and defining:

8@ (t,0) = g—s 3. {(t,0) (3.4.31)
A A{o+eEA) g=0
gives:
L () +F (E (o))
de i(aﬂ-:ﬂo&) °© zl(oweéoa) (3.4.32)
= §&_(t,t£ )P & (t,£) + &_(t,t )P 80" (t,t)
2 < (=3 A (e} a O (o] A [o]
T T
+ 6®~(t,0}§(0)®:(t,6)do + / @N(t,o)é(c)&ﬁl(t,o)do
A A A A
t t
[s] o
= S({t)} + S"{t}
where
T
s(e) & 6<I>~(t,to)]3 o (t,t ) + f 83_(£,0)E(0) 8" (t,0)d0
A °a ° [ a A
Q

Since ¢ (t,0) is defined by (3.4.9), it is given by
A

S 60_(£,0) = A(6)8D_ (£,0) + SA(t:0;809_ (£,0);80 _(0,0) = O
A A A 2% {3.4.33)

Using the variation of constants formula, 6®ﬁit,0) is

t ~
8¢.(t,0) = o (t,T)SA(T;0;00) @ (T,0)dr (3.4.34)
A L A A
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Now combine (3.4.34) with the definition of s({t):

t -
s(t) = f O (t,T)8A(T;aA0)®, (T, )P ' (t,t )dr
~ O [o B (o]
A A A
t
o]
(3.4.35)
t t . - .
+ f f ¢ (t,T)0A(T;a;00) 0 _(T,0)2(0)®_ (t,0)dTdo
rl o iy A Y
o

Using the composition rule and interchanging the integrations in

the second term gives:

t
s(t) = f &_(t,7) [6A(T;0;0000_(T,t )P @' (T,£ )10 (t,T)dr
~ o o] o] -~
A A A A
t
0
t
‘ f f q: (£,7)8A (T;0:00) @_(T,0)E(0) 2] (1,008 (t,T) dodr
A A A
t t
C o
= FN((SI:(OL;QOL)HN (EO))
A A
t
+f @, (t,T) [SA(T 0540 i(T,U)E(o)@l(T.G)dcwl(t,'r)d“c
T A ~t A A
O o]
= F_(8R(0;00) (5. (B ) + F, 1) (3.4.36)
A A A

Thus (3.4.32) is:
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= (P) +F_ ())
A(oteda) A (a+eha)
(3.4.37)
= FN(E(t)BA'(t;a;Aa) + SA(t;0;A0) P ()
A
Similarly
d T ~ T ~
e (B (P ) + F. (£))
de A{a+elo) © Ala+eAn) (3.4.39)

5(T) + s*(T)

FL (D ()8R (£;0:00) + OA(t;a:Aa)P (€))
A

Substituting (3.4.37)-(3.4.38) in (3.4.30) gives:

8T (0 hq) = %—{<6§(a;AG), §>X
+ <i, 6§(u:Aa)>X

+ <§, Fw(ﬁﬁﬁ'(u;Aa) + Gi(a;ﬂu)§)>x
A

+ <K ’ FT(EGK'(&;A&) + Gi(a;Au)§)> }
T % ¥

= %{<8§(a;m) ,f»x + <ii,c5§(oa,-m)>x

* . - o~ - ~
+ <Ff () + FE (KT), péa'la; Ad) + Sa{a;lq)p> }
A a X

- 3 (<SP @ibnp> + <K, SE(a;bo)>

+ <£, EGR'(Q;AQ) + Si(u;ﬂa)§>x} {3.4.39)
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where K(t) is defined by:

*
K(t) = F.(Q) + F» () (3.4.40)
A A

Thus K(t) satisfies (3.4.21) and P(t) satisfies (3.4.22). Using

the definition of <°,'>X in (3.4.39) gives:

T -~ ~ ~ ~

8T (o; Aoy = —;— tr f [80' (t;u;AQ)P () + K({t)8E(t;0;Au) {(3.4.41)
£
Q

+ K(£)P (L) 6A" (£;a;A0) + K(t)SA(t;a;Aa)P () 1t

T ~ ~ ~ -~ o~
= trf [P(EIR{t)SA(t;q;Aq) +%P(t)5Q(t;0¢.;AO&)

t 1~ =
o) + 5.K(t)SE(t;G;AOt)]dt

o
The above proof is rather complex due te the time varying structure

of the problem. A simpler approach can be used to prove the correspon-

ding theorem for the time invariant problem.

Theorem 3.2: Let Jm(u) be defined by (3.3.15)-(3.3.16).

Then the Fréchet differential of J, at o in the direction Ax is given by:

i

3 P8O (o Aa)

87_(a;ha) = tr{PKSA (a; An) + (3.4.42)

+ % ¥6E (o Aa) }

where:

A'K + KA + Q0 = 0 (3.4.43)
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AP + PA' + E = 0 (3.4.44)

Proof: From the definition of LT_, P is found by:
A

[

g
Il
I

(£) (3.4.45)

D’?L_‘l

Since Q is symmetric, J,(@) (3.3.15) is given by:

1 - -1
Joo({x) = =- E <Qr L

A

(2)>
s

The Freéhet differential of qm(u) is:

1

53_(aiha) = - —é— <8 (a;ha), L. (§)>Y (3.4.46)
A
- % <9, %E-L:l (Floreba)) | >
A (o+eho) e=0 ¥
- % <80 (a;ha), P>
- = <D, gg Lt HONEE
a{gt+eAoy) £=0

- 1<, 1THsE (she) >
a Y

N

The derivative in the second term above can be computed using the

definition of 1. and L:l in the following manner:
A A
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0= 5t =T ot (E(u))]
A{o+eha) a(otedy) =0
Thus
0=1 _ o1t (Eta) 1 oL 1 E (@) )] o (3.4.47)
SA (o A ao) Ao A{o+eha)

Using (3.4.45}) and solving equation {3.4.47) for the bracketted term

gives:

Tt (Z(a)) . E &) (3.4.48)
a{o+elo) £=0 A Sa{a; A

Using (3.4.48) and the definition of the adjoint operator, (3.4.46)

becomes:

ST (a; ) =

M

<8g (o Aa) P>y

-1 (3.4.49)

——i‘— <Lj (5), L (;) + 8E(asha )>y
A 8A (o Ao)

Then, by defining

~ #=1 ~
K=-1L, ()
A

and using the definition of the Lyapunov operator and the inner product

on Y equation (3.4.46) is equivalent to
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o I R A o L BRT .
8J{o;Aq) = tr {2 SQ(0; A0) P + 3 KGSE (a7 An) (3. 4.50)

+ —;— [KSA (0; AW) P + KPSA® (0;A0) 1}
+ tr { 6A(a; AQ) PR + %ﬁSé(a;Au) + —;‘— KSE (o Aa) } (3.4.50)

By (3.4.14), K solves (3.4.43).

G
Theorems 3.1 and 3.2 can be used directly in a gradient search
(see Section 2.2)to solve either of the two minimization problems of
Section 3.3 for arbitrary parameterizations.
With the interconnected system structure assumed in Section 3.2

{(Example 3.2), these conditions can be developed further.

* *
Theorem 3.3: a) Assume that Gij(t) and Hij(t) (i=1,...,N;3=1,...,N)

are optimal for the functional minimization problem (3.3.13)-(3.3.14).

* *
Then G, , (t) and H, , (t) satisfy:
1] 1}

T
v Y - ™~ e Sk ~k
tr ‘/” {AGij(t){—Bi(t) (RERIB*(L)) ;4 oy7BIB) (KI(BIPT(R)),, o,
t

o

N
* ~ &
+ ;ElRi(t)GiQ(t)Pzgrzj(t)}}dt =0 (3.4.51)
T
£r f {{&* (0 (1) crie) —(X* ()BT . . S (n)
A 2i,25-1 ) 2i,23 ]
© . (3.4.52)
~ R £ ~ oy
+ ) Kzi'zltt)ﬂgj(t)ej(t)}AHij(t)}dt =0

=1
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ok ~*' ~ ~k ~k ~k
K (t) =—A (t) K (t) - K (£)A (t) - Q (t);

~

R ~ g -~ K w*, ~
P (t) =4 ()P (t) + P (£)Aa (t) + E

* %
b} Assume Gi and Hij(i=l,...,N; j=1,...,N) are optimal for the

(t); P (to)

(T =

KT (3.4.53)

PO (3.4.54)

* &
static minimization problem (3.3.15)-(3.3.16)}. Then Gi' and Hi' satisfy:

~ Rk ~ Rk
tr{Ac! ,{- B! (KP)
ij i

1 3
2i-1,23 ~ BiE B )i, 0

N
+ Y ra 3"

gy 1 12P2£,2j}}= 0

~ -k ' N*~* ~1
tr{{(X' P Joi,25-1 5 7 KPR 50 50 Cy
N
~ & 1
+ —
) K120 @j}AHij} 0
=1
AB'EK+KA+ Q) =0
~ ~ o~ *
(aP + PA' + B) =0

Here the subscripts dencte the block of the indicated matrix, parti-

(3.3.1)-(3.3.2).

(3.4.55)

(3.4.56)

(3.4.57)

{3.4.58)

tioned conformally with the closed loop system matrices defined in
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Proof:
The proof involves a simple algebraic manipulation of the
equations from Theorems 3.1 and 3.2, and is identical for parts a and

b. The steps will be shown for part b.

P

Assume P and K are given by (3.4.57)-(3.4.58)

Define

1=

i (PR 251,251 (PR 5i-1,23

PK PK
( )21,23—1 ¢ )Zi,2j

using the notation as in Theorem 3.2. Then,

8a(a;ha) | = 0 B, G
i3

1>

AH, . C, -B, AG,, - AH,. C,
ij 3] i i3 ij J

The first term of the right hand side of (3.4.42) is:

N N _
tr{8A(a;AQ)PK} = tr ) ) SA(a;/_\.oz)i. PK, .
i=l j=1 b

since the trace of a block matrix is the sum of the traces of the

diagonal blocks. Then:

~ ~ - R —
; 4= - -B, AG, . o
tr{SA(a,Au)ij PKjl} tr{-B, N ] AGlj(PK)2J'21

e

[a)
+ AH, . C.{PK - AH, ., C,{PK
15 G4 B (PK)

235-1,2i iy 5 2j,21}
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Thus :

N
tr{8a(o; AX)PK} = Z
i=l 3

Il 12

er{-[ (FK) (PK) B.1AG
e 25,2i-1P1 T 25,21 2315645

-+ -
N O T Cj(PK)zj'Zi]}

where the linearity of the trace and the following property have been

used:
tr{aB} = tr{Ba}, 2epr" ™, B eg *"
Next, using tr{a} = tr{al};:
~ o~ N N ~ ~ o
tr{8a(a;d0) ek} = ] .2 er{-0e ' B (KP) ), ) o0 + BY(KP),, o]
i=l j=1
+LER) 5y oyoq Cf = OBy, HyCyIAE, S
. i (3.4.59)
Similarly, SE(a;Aa)ij = 0 0
N 1
0 2{ {AHiﬁeﬁHjR + HiﬁegAsz}
L =1
5Q€G;Aa)ij = 0 0
N
Lo {Aeﬁi RQGQj ey, RQAGRj}

=1
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Then:
1 o r5ss 1 Ly y ~ o
3 tr{PSQ(a; A} } = 5 ) Y te{P. . 60 (o;om),. 3
. . 1] Ji
i= j=1
1 3‘ %’ ~ ZN
=5 tre{p_, . [AG, .+ G).R MG, 1}
R U5 N & RoSo1 ¥ CosRefCps
Winy : |
=g ) [P AG R,G G'.R,AG, ]
2 121 §=1 g=1 2442 2575 ¢ 2123232%
el ] )
=5 tr [AG!.R.G,.P + AGY.R,G ]z
2 i=1 =1 8=1 2370121, 25" "™ ﬁj 21 23
43 3
=5 8G, sReC 3 AG.R,G, P ;
2 lg21]i=1 5= 2501721, 25" j=1 i= 21707837 23,24

(3.4.60)

The first equality follows from the property of the trace of a block matrix;
the second by multiplying the bracketted term from the previous egquation;
the third by rearranging terms; the fourth from the trace identities

used previously; and the fifth by rearranging terms and the fact

~ ~

P, . =P, .
21,27 23,21
Switching 1 and j in the indexing of the second term of (3.4.60) shows

the two terms are equal. Hence:



-02-

N N N
Pl 1 exlag sR8 P }

% tr{P8Q (a; Ao }

el if1 =1 2R1i7 241,25
i\i N N
= tr{AG R G, 1
i=1 Eél jél 270,23
N N ~
= tr{AG' R.G, P 1 (3.4.61)
iz=1 32-1 i3 £Z=1 1ig2k,23

The second equality follows by interchanging the i and £ indexing.

In a completely analogous manner:

tr [
1

Combining {(3.4.59), (3.4.6l1) and (3.4.62), and using

l ~ e N

= tr{k6E(osha)} = )

2 .
i=1 j

Kzi,zﬁﬂﬁ.jej] bR L( (3.4.62)

I 1

o
[ s~

1

N N —

37 (a;ha) = ile jél tr{AGij{-Bi (KP) 2i-1,25 B (KP)Zi’zj (3.4.63)

+ =1 R G12 28,23 }

N N N
oy . o ~ ~ ,
+ 1 ) trl ®®y_., .. .Ci-(KP)_., _.Cl+ § K. _.H .8.}AH..}
i=1 4=1 { 2i,24-173] 2i,2973 1 2i,28705737 714
* *
A necessary condition for o = (Gij . Hij*z i,j=1,...,N) to be optimal

is:

S3(a sAx) = 0 (3.4.64)
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If (3.4.55)-(3.4.56) are satisfied, then so is (3,4,64). Conversely,

if (3.4.64) is true then

AH =0 Ve, g=1,...,N
rq P.q reere
Aqu =0 vp.d = 1,...,N; p#i, g#3

results in {3.4.55), Similarly

AHpq = 0 Ve,d = 1,...,N; p#i, g#i
AG = 0 Vplq = l,---,N
Pa

results in (3.4.56). Thus, {3.4.55)-(3.4.56) with K and ; given by
(3.4.57}-(3.4.58} are equivalent to (3.4.64).
a
Theorems 3.1 and 3.2, and the approach of Theorem 3.3 can be
used to derive necessary conditions for many closely related problems.
A special case is the classical situation of Example 3.1, Then the
above theorem applies with N=1 and AG and AH arbitrary. Equations

{3.4.51)-{3.4.52) are egquivalent to:
- BU(e) [R(R)IP(E)),, + (K(£)P(E)), ] + R(B)G(E)P,,(t) = O (3.4.65)

[(K(t)P(t))zl'(K(t)P(t))22]C‘(t) + K22(t)H(t)8(t) =0 (3.4.66)
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With a bit of manipulation, equations (3.4.53)-{(3.4.54) and (3.4.65)~
(3.4.66) can be used to show that the eguations for the filter and
control gains decouple (a version of the separation principle) and
to obtain the control and filter Riccati equations. This calculation
is performed in Appendix B. The insight provided by these manip-
ulations will be useful in the solution of the subproblems formed by
the decomposition algorithm, and will be discussed further in Chapter
5.

The similarity between equations (3.4.65)-(3.4.66), {3.4.51)-
{(3.4.52) and {3.4.55)-(3.4.536) will be exploited through the following

notation in the remainder of this thesis.

DC(G;P,K,B,B,R) = -B (KP)lz - B(KP)22 + RGP22 {3.3.67)

Df(H;P,K,C,C,@h (KP)21 c'-(KP)22 c' + K H 8 {3.3.68)

In the general case when some of the elements of G and H have
been fixed a priori (e.g., BExample 3.3} the corresponding elements
of AG and AH are Q. Then equations {3.4.51)-(3.4.54) or {3.4.55)-
{3.4.58) will result in a system of 2n2 + s coupled nonlinear equations
in 2n2 + s unknowns. Of course, as was noted earliex, the egquations
may be dependent if the parameterization is too general.

There are two particular examples when G and H are constrained
which will be used extensively in Chapters4 and 5. The first requires

that G and H be identically 0. The minimization problem is of course
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trivial, but the decomposition approach of Chapter 4 will result in
an iterative solution method for the solution of the Lyapunov egua-
tions (3.4.353)-{3.4.54) or {3.4.57)-{3.4.58). The result for the
time invariant equations is similar to a technique studied by Athay
[1976] and T.ehtomaki [1978].

The second example corresponds to Example 3.3. In this case it

is required that G,. and H,. for i#j be identically 0 with G,, and H,,
ij ij ii ii

unconstrained. Egquaticns {(3.4.51)}-(3.4.52) become:

~ *
—Bi(t) (K*(t)P*(t})z. - Bi(t)(K*(t)P(t))2i,

i-1,21 2i
* *
+ R ARG, . (E)P,. ,.(t) =0 {3.4.69)
i ii 2i,2i
* * y * * At 4.7
(K ()P (0)),; 50 ) € = K ADP (8)),, ,. C () (3.4.70)

+ K*. .(t)Hf.(t)@.(t)= 0
2i,21i ii i

The time invariant equations (3.4.55)-{3.4.56) are also equivalent

in this case to (3.4.69)-(3.4.70) without the time dependence.

3.5 Summary and Discussion

This chapter has considered a suboptimal approach to solving
nonclassical linear stochastic optimal control problems. The class
of admissible controls was restricted to those controls which can be
generated as the output of a finite specified dimensional linear

system which uses as input the output of the system to be controlled.
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Information flow restrictions are handled through censtraints on the
variables which characterize the controller.

Several practical advantages of this formulation were discussed
earlier (see Chapter 1 and Section 3.1). One of the most important
advantages is that the nonclassical stochastic optimization can be
reformulated as a deterministic nonlinear coptimization. Then a set
of necessary conditions for the solution of the stochastic optimi-
zation problem can be deriwved.

Two points about the results of Section 3.4 should be noted.
First, Theorems 3.1 and 3.2 apply to any problem which can be put
in the form of the optimizations in Section 3.3. In addition to the
linear stochastic problem, other examples which produce optimizations
of this form are the output feedback problem, the model reduction
problem and the reduced order chserver problem (see, for example,
Galiana et.al, [1973]). The applicability of Thecrems 3.1 and 3.2
are a direct result of the generality of their derivation.

The other point is that the conditions presented in Section 3.4
may have many solutions. This problem arises because the condtions
are satisfied for any stationary points cof the optimization. Since
the nonclassical stochastic optimization may have several local minima
there will not, in general, be a unique solution to the necessary

conditions.
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4. DECOMPOSITION OF THE LINEAR STOCHASTIC CONTROL PROBLEM

4.1 Introduction

There are several approaches to solving the linear stochastic
control problem formulated in Chapter 3. The derivatives presented
in Theorems 3.1 and 3.2 can be used to solve the minimization problems
of Section 3.3 ((3.3.13)-(3.3.14) or {3.3.15)-(3.3.16)}) directly
(Kwakernaak and Sivan [1972]; Davison, Rau and Palmay [1973]; Looze,
Houpt, Sandell and Athans [1978]). Newton's method or any gquasi-
Newton method (see Dennis and More [1977]) can be used to solve the
nonlinear equations which result from the necessary conditions pre-
sented in Theorem 3.3. Levine et.al. [1971] and Wang [1972] used
iterative methods to solve similar sets of equations resulting from
output feedback problems and deterministic decentralized control pro-
blems respectively. Both methods fit the decomposition framework
developed in Chapter 2. However, none of the above methods utilizes
the structure of the interconnected system problem.

In many problems the interconnected system problem possesses a
physical weak coupling; i.e. the interactions between subsystems are
much less important than the self-dynamics of the subsystems. In the
linear stochastic control problem formulation of Chapter 3, the weak
coupling is manifested in the off diagonal blocks of the system matrix.
If each of the off diagonal blocks are zerc, the optimization problems

and their necessary conditions decouple into N independent optimization
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problems whose solutions are simply the centralized linear-quadratic-
Gaussian subproblem solutions. Since the subsystem interactions were
asgumed to be relatively insignificant, it seems reasonable that the
solution to the overall problem should be near the solution of the
decoupled problem.

The above structure is similar to the structure exploited in
Example 2.7, The decomposition developed in the discussion preceding
Example 2.7 will be used in Section 4.2 to exploit the weak coupling
structure. The remainder of this chapter will discuss the convergence
of the resulting iteration. Although the convergence condition of
Theorem 2.4 cannct be practically evaluated in most cases, it will
be used in Section 4.3 to derive a weak coupling convergence result.
Section 4.4 develops related conditions which can be used as guidelines
to determine whether the iteration will converge. Section 4.5

discusses the results of Chapter 4.

4.2 The Gauss-Seidel Decomposition

The necesarry conditlons given by Theorem 3.3 result in a system

of nonlinear eqguations of the general form:

fB)=0 B eB (4.2.1)
where B is a Banach space. The exact form of £ in (4.2.1) will
depend on the particular parameterization used. For the purposes of
this chapter, it will be assumed that the individual elements of each

parameterized block of G and H are parameters. The parameterized
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blocks of G and H will be specified by the index sets IG and IH.

TG

Il

{(i,9): Gij is parameterized} (4.2.2)

Iy

1

{(i,3): Hij is parameterized} (4.2.3)

A one-point stationary iterative method will be used to solve
equation (4.2.1). Such methods were discussed in Chapter 2. The
particular iteration to be used will be chosen to take advantage of
the weakly coupled interconnected system structure assumed in Chapter
3. The key observation which affects the choice of the iteration is
that if the systemsare not coupled (Aij=0 for i#j) then eguations
(3.4.51)~-{3.4.54) and (3.4.55)-(3.4.58) decouple into N independent
systems of nonlinear equations which correspond to the centralized
necessary conditions of the subsystems. The resulting solution G, H,

P, and K are block diagonal. If the systems are coupled, but the off
diagonal blocks are fixed and the off diagonal equations (i.e. the
equations resulting from the off diagonal blocks of the Lyapunov equations
and the Fréchet derivatives {BJ . g; : i#j} are not

aG. . -
i3 1]

enforced, then the problem again decouples into independent systems
of nonlinear equations.

The structure of the necessary conditions described above is
exactly that specified by (2.3.22)-(2.3.24). To exploit this structure,
the core will be chosen to implement the Gauss—-Seidel algorithm (note

that the Jacobi algorithm could also be used). The remaining step
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is to specify the decomposition of the space B as in (2.3.22}.

This

decomposition involves choosing a partial basis for the space, and

corresponds to assigning the parameters and variables to either the

upper or lower level of the hierarchical structure which results.

Using the structure of the necessary conditions as a guideline,

the decomposition that will be used is:

B=8"x 8!

BSé {x..,?.., G
ij

i3 kL' qu:

gLG L3
={K.., P.., G.., H
{Kll' i’ G450

(i#3; i=1,...,N; §=1,...,N),
\ k#2: (c,R0e 1), (afrs (q,x)e T}

i=1,...,N; {i,3j)= IG; (k,k)e I‘H}

Xk’
£ é {é = -(i‘i + KA + é) ; é = (iﬁ + PA' + E) ;
S ij ij" ij ij
89 o, X oor (s s=l,...N; 31,0,
3G oH
k& qr
(k#%; (k, e IG}' {g#r;: (g,rie TH)}
fé{f( =—(i‘i+ﬁ+§) -1:; = (AP + DA + 3) H
I ii ii * Tii ii
9J aJ . .
e < 0; o 0: i=1,...,8; (j.j)e IG ;
13 kk
(k,k)e IH}

(4.2.4)

(4.2.5)

(4.2.6)

{(4.2.7)

(4.2.8)

Above K, . and E'j are the blocks of K and P partitioned conformally
ij i
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with Aij' and the subscripts of the Lyapunov equations indicate the

blocks of the equations corresponding to Ai In the time invariant

3°
case, the assignment of wariables is analogpus, with the time derivatives

replaced by the zero matrix.

The resulting iteration is:

K+l ok, _ K+l oS ok oI
£ (3577 g=0 gt e 8% g5 e g - (4.2.9)
k+1 k+1 k+1
£ (85 85 =0 Bi e gt (4.2.10)

With the decomposition given by {4.2.4)-{4.2.8) the solution of

fI (equation (4.2.10)) for B§+1 decouples into N independent smaller

problems. Define

~k . g
K, . i#j
=) 8 (4.2.11)
ij
~k-1 .
K4 =
o= [E] {(4.2.12)
1]
. o . . X
i.e., K is the matrix with diagonal blocks egual to the most

recently obtained subsystem matrices Kii and the off diagonal supremal
matrices iij which are to be camputed. In a similar manner define

—%k =%
Ek, Ek, ﬁk, Kk, Qg , and = ,

The decomposed problem {4.2.9}-(4.2.10) can then be written as
a two level hierarchy in terms of the original system matrices and

parameters. To simplify notation, the time dependence notations will
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same idea can be applied to the time invariant problem,
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The

The resulting

equations are identical to the time varying case with the time deri-

vatives replace by zero matrices.

Supremal Problem

t —k—k AY dege
-B,. (K P . .= B (KP . R,

1( )21—1,23 1( )21,23 i

—k—k —k—k N B
(K'P )2. 24 1c. (X P Y C.

; 1,23=1 ] 1,43 1 =1
% —k—k =k, ~k. ' =k %
P,.=[AP +P (Ek) =1, L BoL(E))

ij i, ij o
“k —*. % =%k %k %
K,..=-[2)'K +K&a Q1. . K,.(T)

ij i, ij

Infimal Problems (i=1,...,N)

~ ~k ~ k

D (Gk.; P,., K ,,,B,,B,,R]) +8, =0;
C 11 11 11 1 1 1 1
~ ~k k

D (Hk; P}.{r K.-l c r C. s e) + T, = OF

£ ii il il i i 1 i
2 ~ ~ ~ ~ ' ~
AT ST AU G Gl S D

11 11 11 11 11 13
L ~k ~k ~k -~k ~k k
T R LI AT S R =

11 11 11 11 11 11 1

-+ =k
€ig Fap,29 =

i=j, (i,3e IG

-k

Kai,28

ifg, W,de I

e

H, . 0, =
2,3 73

=P .,
o1 ]
K ..
Tij
(i,i)e IG
(i,i)e IH
-..k ~
P,.(t ) P .,
ii o oii
~k sl
T R
Kii( ) KTll

{(4.2.13)

(4.2.14)}

(4.2.15)

i#j: i=1,...,N; j=1,...,N

(4.2.16)

(4.2.17)

(4.2.18)

{(4.2.19)

(4.2.20)
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where:
kA X x  ~k  ~k ~
s; = ) DA(c, . P.., K.., B., B,, R.) (4.2.21)
i 521 e ij ji ij i i i
AL
£ EI’D(Hk-;k K., C.,C., 8, (4.2.22
N AP ULt L K -2.22)
j#i
ok & § e, B o+ 35 aF 0 (4.2.23
i 5= i3 “3i i3 i3 -2.23)
j#i
N
x A . ~ ~k o~
ESS Y @y BN+ KRR (4.2.24)
i . ji ji i T§i
=1
j#1

There are several properties of the above decomposition ((4.2.13)-
{4.2.24)) which should be noted. In general hoth the supremal and
infimal problems are nonlinear. However, in the completely decen-
tralized problem eguations (4.2.13)-(4.2.14) are not present. In
this particular case the supremal problem solves the linear matrix
equations {(4.2.15)-(4.2.16). Equations {4.2.15)-(4.2.16) are defined
by the restriction of the linear Lyapunov operator L _ to the subspace

A

of symmetric matrices with O along the block diagonal. Let the space

X be defined as in (3.4.1) and define:
T

( ®RMBALE T <x,¥>g 2 trf x'{(t)y(t)dt
ij t

A (ni+ni)x(n.+n.}
X,, =1
i1j 2

°© (2.4.25)
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A . . .
P={{p s i=1,...,N; 3=l,...,N; i#j}: P,. e X .} (4.2.26)
ij ij ij
<P,Q>, = <P, ., Q..>.
Progm gm 330 TRI Xy
J#L
T: P+ X: {Pij: i=l,...,N; i=1,...,N; i#3j} - P (4.2.27)
* A
T = adjoint of T {4.2.28)
e P . P__7
2
A L i (4.2.29)
P = Py G ... Py
-PNl PN2 . 0 .

Then the restricted Lyapunov operators in (4.2.15) and (4.2.16) are

* £
T oL o7and T oL_,0 T respectively. Similar definitions of

A A
* 3
T and 7 can be made for the time invariant case to result in the
same form for the operators. Since T is a projection, the operators
in (4.2.15)-(4.2.16) are nonsingular if A is stable.

The infimal problems are nonlinear for any non-trivial parame-
terization. However, the structure of the nonlinear equations (4.2.17)-
(4.2.20) is similar to the centralized necessary conditions (3.4.65)-~
(3.4.66) and (3.4.53)}-(3.4.54). 1In fact, the centralized necessary
conditions are a special case of (4.2.17)-(4.2.20) with N=1 and
k k k

5, , T, b, and E% being Zero matrices.
i i i i
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The hierarchical structure of equations (4.2.13)~(4.2,24)
involves a segquential information flow and computation. This pattern
is a direct result of the Gauss-Seidel algorithm used to decompose the
necessary conditions. As an alternative, the Jacobi algorithm can be

used to introduce a parallel computation structure. The only modi-

¥k k _k

fication to equations (4.2.13)-(4.2.24) is to replace Si' Ti' Di and
k. . - - - -
Ei in eguations (4.2.17}-{4.2.20) with si 1, TE l, DE 1 and Ek 1 .

The Gauss-Seidel algorithm generally has better convergence charac-
teristics than the Jacobi algorithm. The region of convergence is
usually larger, and the rate of convergence is usually faster for the
Gauss-Seidel iteration. However, if processing capability is available
to solve the supremal and infimal problems in parallel, the total

amount of computation time required may be less for the Jacobi iteration.
The choice of algorithms must depend on the particular problem being

solved.

4.3 Convergence for Weakly Coupled Systems

The iteration described by the decomposition of Section 4.2 can

be written in the form of equation (2,3.14}:

g 8%, g% = o @, 85 Bx B (4.3.1)

r

by defining (see (4.2.9)-(4.2.10))

k+1 k k+1 k
g7 BN = | £4(Bg s B)) (4.3.2)

k+1 ] Bk+l

£BS Bg )
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The iteration resulting from (4.3.1) will exhibit local convergence
if the conditions of Theorem 2.4 are gatisfied. The function g

defined by (4.3.1)-(4.3.2) is Frechet differentiable, and the calculation

of the linear operators alg(Bs,BI) and 3,9(BgMB ) from (4.2.9)-(4.2.10)

and (4.2.13)-(4.2.24) is straightforward. The operators consist of
terms involving the closed loop matrices E;j and the matrices E'and .
However, the evaluation of conditions (i) and (ii) of Theorem 2.4 is
not practical for two reasons. First, as discussed in Section 2.3,
the derivatives are evaluated at the presumably unknown solution.
Secondly, the operator Blg(Bs,BI) must be inverted and the spectral
radius of the linear operator Blg_l 829 must be evaluated. For the
time varying problem the linear operateors are infinite dimensional.
Even in the time invariant case the operator Blgwl Bzg can be repre-
sented as a (2n2 + s)x(2n2 + 8) matrix. The amount of computation
required to check these conditions is often prohibitive.

However, Theorem 2.4 can be used to identify a class of problems

for which the decomposition of the preceding section will converge.
n,xn,

. . . - . iTy
Given an arbitrary matrix A [Aij] with Aijg L2 { R,B,k[to,T])
n.xn.
i .
{or A, .ER ) define:
1)
A, = diaglA,, ; i=l,...,N] (4.3.3)
g\ é A - A (4.3.4)
o o
A é {A : A as defined in (4.3.3)-(4.3.4)} {(4.3.5)
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Note that Ao is a sub-space of linear operators over the space

n

L

( RJB,K[tO,T]) or R’. Given any norm on either of the latter

spaces, A0 will assume the corresponding induced norm. Also define:

A
B ,B_)=(0,B_ ) = The optimal centralized solutions for (4.3.6)
So Io Io
the subsystems when Ao = 0.
k sk, A
(BS'SI)k=o = The seguence generated by (4.3.1) . (4.3.7)

Using definitions (4.3.3)-(4.3.7) the following thecrem can be

stated. .

Theorem 4.1: Assume there exist open neighborhoods UO of 0 ¢ Ao and
S I

VO of (BSO,BIO)E B x B such that Ao £ Uo and (BS,BI)E Vo

implies dg is nonsingular. Then there exist open neighborhoods U of

0 e AO and V CIBS x BI such that
. 0 A0
(i) (BS.BI)S v
{i1) A £ U
Q
implies

k .k & %
TLim (B rB ) = (B l‘.B ) (4.3.8)
k s I s I

* *
where (BS,BI) is a local minimum of (3.2.13)-(3.2.14) (or(3.2.15)-

(3.2.16)).
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Proof: By direct calculation , the linear operators%lg and Bzg are
jointly continuocus in (BS,BI) and Ao . Since 09 is nonsingular for
Ao £ UO and (BS,BI) SVE, the implicit function theorem {Theorem 2.3)

implies the variables (BS,BI) are continuous functions of Ao. Hence
Blg and 32g also depend continuously on Ao.

For any norm on B the induced norm on the space of linear

operators L(B) satisfies
P19 azg]f-llalg 329|[S.l!319 ¥ llazg[l (4.3.9)

* *
Again by direct calculation and use of the fact that (BS,BI) =
= = 0=
(BSO,BIO) (0,8.)) for A
* *
9,968 B =0 (4.3.10)

* *
Since dg (B ,B )} is nonsingular, {4.3.10) implies:

-1 * *
13,977 @ B[] =M <= (4.3.11)

Because Blg and 82g depend continuocusly on Ao, there exists an open

neighborhood U of 0 ¢ AO such that for all Ao e U:

|l31g"1(8*,8*)|| <M +1 (4.3.12)

1
|15, 80| < ¥ +1 (4.3.13)
2 [o}
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*
where B satisfies
* *
g B ) =20

for the given Ao. Combining (4.3.9) and (4.3.12)-(4.3.13) gives:

oialq'l(s*,s*)829(8*,5*)J< 1 (4.3.14)

— * %
for all AO £ U. Since (4.3.12) implies Blg 1(3 £ ) exists, by
. . 3
Theorem 2.4 there exists a neighborhood Vv C B x gt {depending on AO)
o0
k
)

* *®
t)y—g converges to (SS, BI). Since

such that the sequence (Bg, g

the function generated by the implicit function theorem for the

dependence of g on Ao is unique and continuous in an open neighborhood
U; of O € Ao' the Frechet derivative 99 is nonsingular and (BSO, BIO)
is a minimum for AO = 0, the limit of the sequence (4.3.8) is a local

minimum of the corresponding optimization (3.3.13)-(3.3.14) or (3.3.15)-

{3.3.16).
0

Theorem 4.1 serves to reinforce the intuition and insight which
led to the decomposition of Section 4.2. For an arbitrary set of
subsystems, the theorem says that sufficiently weak coupling (in terms
of the magnitude of the coupling) will result in a convergent algorithm.
Since it was the ultimate weak coupling situation (no interactions
between subsystems) which inspired the decomposition, the result is

reassuring.
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Theorem 4.1 also gives insight into the importance of the
parameterization of the original problem. The requirement that dg
be nonsingular in the appropriate regions is equivalent to requiring
that the problem not be overparameterized. If the problem is over—
parameterized, then conditions (i) and (ii) of Theorem 2.4 can not be
satisfied simultaneously, as is demonstrated by the following argument.

By the property of Fréchet derivatives,
= +
g Blg 829

If d9 is singular, there is an element x such that

(e x = (Blg)x + (Bzg)x =0 (4.3.15)

Assuming Blg is nonsingular, a brief manipulation of (4.3.15) results in

the equation:
-1
(I - Blg azg)x = 0 (4.3.16)

Hence [Blg-lazg] has an eigenvalue with modulus unity and does not
satisfy condition (ii) of Theorem 2.4. Thus the choice of a para-
meterization which results in a locally unique solution to the mini-
mization is crucial.

Finally, Theorem 2.4 can be used to demonstrate another property
of the iteration defined by (4.2.13)-(4.2.24}. It should be noted

that if the convergence criterion of Theorem 2,4 is satisfied there will
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be an integer k0 such that the sequence {GS;, B?)}i;k converges
monctonely to (8;, B;). In the time invariant case, there exists
another integer M such that each of the iterates (B:, B?) for k > M
stabilize the system. Thus if the initial value (Bg, B;) is suf-
ficiently close to (B;, B;) and the iteration converges, each of the
iterates (B:, B?) will be stabilizing. ¥Tor both the time varying and
time invariant cases, a sufficiently close initial value will lead to
a monotonely decreasing cost.

This suggests that the iteration prescribed by (4.2.13)-(4.2.24)}
can be applied in an on-line mode. The solutions Gk and Hk obtained
at the end of the kth iteration can be applied until the (k+1)5t
tteration is completed. For an initial guess sufficiently close to
the optimum and a convergent iteration, the system will be stable at
all times and the value of the cost functional will decrease at each

iteration.

4.4 Practical Convergence TestS

As mentioned in the previous section and in Section 2.3, the
local convergence condition is not often useful for predicting the
success or failure of a particular algorithm. One obvious problem is
that the condition must be evaluated at the presumably unknown solution.
The amount of computation involved in Inverting Blg and computing the
spectral radius of Blg_lazg can alsc be prohibitive. This section

attempts to deal with these problems by finding simpler, more practical
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tests which can be used to determine whether the iteration will
converge.

As will be seen, the problem is a difficult one, and no complete
solution is found. By restricting attention to the time invariant
situation several partial results and guidelines are developed
which may prove useful for certain problems. These results depend
on properties of the individual problems for success. Hence, a major
factor in the choice of which set of tests to use should be insight
into the structure of the problem being considered.

The first step is to simplify the convergence condition. The
iteration of concern is described by the function ¢ given by

(4.3.2) and repeated here:

k+1l k. _ k+l Lk _
, BT) = fS(BS P B |0 (4.4.1)

k+1 k+1

Here fs, fI’ BS and BI are as defined in (4.2.5)-(4.2.24) and

B = (BS,BI). The local convergence condition for (4.4.1) is

(Theorem 2.4)

0{319_1(6*.8*) Bzgts*, s*)} <1 {4.4.2)

From {(4.4.1), Blg and Bzg are given by:
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**A._ af * K
Blg(B B IAR = 1 S(BS,BI)ABS (4.4.3)
**A . .* *A
0,5 (B B008 + 3,7, (B 8008
3.g(8” g*yag = Fa £ (8,8 )AB (4.4.4)
298 B LB = 2"g Pgr Pl ek -
i 0

Equations (4.4.3)}-(4.4.4) and the subsequent development can be
simplified by using the following matrix like notation for the par-

titioned linear operators of (4.4.3)-(4.4.4):

3 * % Ag = |5 e * &k A
lg(B B YAB = 1 S(BS,BI) 0 BS (4.4.5)
* * *' * A

32f1(81'85) BlfI(BI BS) BI
9 * 8" 3 e (4.4.6)
29(8 ,BYAB =0 2fS(BS,BI) ABS .4.

0 0 ' Asz

Note that the blocks of the operators are themselves linear operators,
and not matrices. However, the composition of partitioned operators
follows the same notational rules as does multiplication of matrices.

Using this notation and equation  (4.4.5}, Blg_l can be computed:

=1, % Lk -]
qu (B ,B) = alfs 0

*

-1
-BlfI (B..P

A L

* *
s I
* * * * -1 * -1 * *
L BOLE (BLBB EB BT 3 £1 T (BB

(4.4.7)
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Composing {(4.4.7) with (4.4.6) in condition (4.4.2) gives:

pl3,97 (8,80 3,9(68",87) (4,4.8)
3 -1 & * a £ * *
=5 © 155 (BS'BI) 2 S(BS'BI)
5 f-l * % 5 * _k -1 % % * &k
o -3,£7M(8L,8)5,5 (51,8003, £ 1 (8], 800, (BB
Thus:
{a —1**3 **}_{a _l**a **3—‘1**8 **}
ol 1 (87,818,9(8" 810} = o(d, 271 (BT, 80)0,8_(B],80)3. £27 (8L, 8208 2, (B],80)
{4.4.9)

Condition {4.4.9) is certainly less cosgtly (in terms of computation
involved} to evaluate than (4.4.2). However, the linear operators
alﬁI and Blfs must still be inverted. The computation involved in per-
forming these inversions or in computing the indicated spectral radius
may still be too great. In addition, the linear operators still must be
evaluated at the solution.

The latter problem will be considered first. In general, the only
way to avoid this problem is to show that condition (4.4.9) holds for
each possible solution. Usually this approach will not be possible.
However, the continuity of the Freghet derivatives and the assumed weak
coupling between subsystems can be used for many problems to develop a
good approximation to (4.4.9).

The basic idea is as follows. Since the linear operators in

(4.4.9) are continuous functions of B and the spectral radius is also
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continuous, if condition (4.4.9) holds for some é sufficiently close
to 5*, then it will also hold at B*. By using certain properties of
the structure of the problem it is often possible to determine a good
approximation to g* relatively easily.

There are two possible choices of E which will be discussed here.
Since the problem is assumed to be weakly coupled, one would expect
the centralized solutions of the subsystem problems would be close to
the overall solution. Indeed, the proof of Theorem 4.1 demonstrated
this fact. The second possibility is to use the open loop system as
choice for é (i.e., use G=0, H=0). This should work well whenever the
controls are heavily penalized and the observation noise covariance is
large, Either of the above two choices for’@ will be satisfactory for
some systems and unsatisfactory for others. The important idea is the
concept of choosing a good approximation to ff based on insight into
the structure of the systems.

Even when a good approximation to B* is found, condition (4.4.9)
may be too difficult to evaluate practically. The condition can be
simplified further at the expense of weakening its sufficiency. For
any norm on the space of linear operators L(B,B} which is subordinate

to a norm on B, the spectral radius satisfies:
o(a) < |fal! A e L(B,B) (4.4.10)

Using {4.4.10) with condition (4.4.9) gives the following sufficient

condition for local convergence:
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[ e 8L 8 1] 118, 8% 80 11 {18,8 a 80 1] 119,5g(8 g0 1] <2
1'1 ‘PrrPg 271 P g 1's "s""1 2°s BB,
(4.4.11)
Weakening the condition still further, the iteration defined by {(4.4.1)
will converge locally if:
~1 % * *  *
o e BBl f3,f8 801 <2
(4.4.12)
lla £ =1 % # *  *x
<
15 BB | 10,5,6 .80 1] <1
If relations (4.4.12) are satisfied, then the total derivative
dg is an example of the class of strict block diagonally dominant linear

operators (see Feingold and Varga [1962]}):

Definition: TLet A = [Aij] where A e L{X), X = Xl x...xXN is a

product of N Banach spaces and Aij € L(Xj,Xi) for i,3j=1,...,N. Then

A is strictly block diagonally dominant if

-1 N
Hatoll 1 laL il <2 (4.4.13)
i1 . i]
j=1
j#i
where the norms on the indicated operators are induced by the Banach
Space norms.

The concept of a strictly diagonally dominant matrix {i.e. each

Xi = R in the above definition} has been shown to be a sufficient

condition for convergence of the Jacobli and Gauss-Seidel iterations
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(see varga [1962]). Similarly, the strict block diagonal dominance
condition for linear operators can be shown to be sufficient for the
convergence of the corresponding block Jacobi and block Gauss—Seidel

iterations.

Theorem 4.2: Let A £ L(X) be a strictly block diagonally dominant
linear operator. Then both the corresponding block Jacobi and block

Gauss-Seidel iterations converge.

Proof: Let the linear operators D, E and F be given by (using the

partitioned operator notation}:

D = diag[Aii: i=1,...,N] (4.4.14)
E = [-Aij: j=i,...,N-1; i=j+1,...,N] (4.4.15)
F = [-Aij; i=1,...,N-1; J=i+l,...,N] (4.4.16)

i.e., D is block diagonal, E is strictly block lower triangular and

P is strictly block upper triangular. Then:

A=D-F-F (4.4.17)

The block Jacobi iteration is defined by the splitting ({see

Example 2.1):

A =D (4.4.18)

AL =~-E-F {4.4.19)
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The corresponding convergence condition is:

-1
ofp T(E+F) }< 1 (4.4.20)
Let:
A -1
B =D ~(E+F}; Be LX) (4.4.21)
Then
. —Ail Aij i#3 ) Bi £ L(x.,xi)
ij (4.4.22)
0] i=j

Similarly, the block Gauss-Seidel iteration is defined by the

splitting {Example 2.2}:
A =D-E {(4.4.23)
A, =~-F {4.4.24)
The corresponding convergence condition is:

p{(D-E)'lP} <1 (4.4.25)

Let:

o-B Y r (4.4.26)

@]
il

(I-D-lE)-l(D—lF); ce LX)

Also define:

L=D" E (4.4.27)
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-1
U=D " F {4.4.28)
Then
L,. = a7l oa j=1 Nel; i=j+1 N (4.4.29)
ij ii ij J Fes=7r r j F AL LR - -
0 j=1,...,N; i=1,..., ]
= {-a"ta i=1 N-1; =i+l N (4.4.30)
ij ii i SR A e A - =
0 i=l,...,N; 3=l,...,i

In terms of L and U, C is given by:

¢ = (-1) T u (4.4.31)

For the remainder of this proof, the norm on X will be taken
as

A
l]xl[ = mix llxi||= X = [xl,-.-,xNJE X, x, € xi (4.4.32)

where the norm on the right hand side of (4.4.32) is taken as the

norm on Xi. The corresponding norm induced on L(X) is

N

max ) ||A.L]] s
N j=1 ij (4.4.33)

all

It

o
i

[a,.Je LX), A,. & L{X., X,)
1] 1] j 1

where again the norm on the right hand side of {4.4.33) is the norm

on L(Xj, Xi) induced by the norms on Xj and Xi.
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By {4.4.10) and using (4.4.33) and (4.4.22):

o{s} < ||Bl| (4.4.34)
I
= max B, .
i og=1 M
N
= max La,,
- nax 1 lllagl
j#L
< max (BT llagl
ke i=1
j#L

If the strict block diagonal dominance condition (4.4.13) holds then

N
-1
oiB} < max ]lAiill .Z IIAij[] <1 (4.4.35)
i j=1
J#i

Thus the block Jacobli iteration converges.

similarly, by {(4.4.10)

olc} < licl] = max ? ]lcijll (4.4.36)
i §=1

Since L is strictly block lower triangular,

1 N-1 m
(I-1) "= ]} U (4.4.37)
m=0
Thus, C is given by:
N-1 o
c= ) LU (4.4.38)
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Define CM by:

C L U
m=0
. M M+1 . .
Given C°, C can be found by the recursion relation:
M+1 M
C =LC +U (4.4.39)

. . . . +
Using the fact that L is strictly block lower triangular, CMi;

can be written:

M+1
. .+ U, -4.
c ) Big %k * Uiy (4.4.40)

Now, (4.4.36) is eguivalent to

N
ofct < ||c™|=max ] ||} (4.4.41)
< 13
i j=1

The proof proceeds by induction on the exponent M: i.e., it will be

proven (assuming strict block diagonal dominance) that

] <1 (4.4.42)

for all M > 0. For M=0,

¢

C?. =10,, i=},...,N; j=1,...,N (4.4.43)
1] 1)
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Then, assuming (4.4.13) holds

N
|1c®]] = max ] ]lUi,II (4.4.44)
i g=isl J _
M1 T Al
= max A, . A, .
i S Her S R
<1
For the induction step, assume
M N M
[|c7]] =max  } |lc..]] <1 (4.4.45)
R
By (4.4.40)
M+1 X M+1
e ] =max { } [lei7]] (4.4.46)
i j=1 I
H T L, ||1
= max L, C . + U, .
i =1 k=1 ik kj ij
N i-1 M
<max {31 Ilngll e el
i 9=1 k=1

L]
2
&

i-1 N " N ]
\ Z1 egil {jzlllckjll} ) jzlllUijll

By {4.4.45), the bracketted term above is less than unity. Also,

Uij=0 for j < i. Relation (4.4.47) becomes
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MRl i-l N L0 ]
e : kzl { ik” j=§+1 H ij” (4.4.47)
_ i-1 -1 . N .
- 21 Hags 2l j=§+1ll 11 Pagll
< max A_} A .
ax 115311 T gl
3#1

Again assuming strict block diagonal dominance, relation (4.4.47)

becomes

1] <1 (4.4.48)

This concludes the induction step.
By the above induction, IIC I] < 1 for each M > 0. In particular,

it holds for M=N-1 in {(4.4.41). Thus

p{ck <1 (4.4.49)

and hence the Gauss-Seidel iteration is convergent.

Theorem 4.2 alsc applies to the nonlinear Jacobi and Gauss-Seidel
iterationg. The proof of Theorem 4.2 involved bounding the spectral
radius of the corresponding linear iteration operators. As shown at the
end of Section 2.3 ((2.3.34)-(2.3.37)) the decompositions which result
in the nonlinear Jacobi and Gauss-Seidel iterations correspond to
splittings of the derivative of the original equation. The splittings

are identical to the gplittings of the linear Jacobi and Gauss-Seidel
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algorithms. The convergence condition is given in terms of the
splittings of the derivative, and again is identical to the linear
case. Thus, using the notation from Examples 2.6 and 2.7, Theorem

4.2 can be applied by defining:

A = 3£(x) (4.4.50)

Aij = aifj (Xl,...;XN) (4.4.51)

When applied to the decomposition of Section 4.2 {(using the
notation of equation (4.4.1)), the strict block diagonal dominance

condition (4.4.13} becomes

o2 @ 8n ] [1o,e @ sl <1 (4.4.52)
lg "s'"I 2g7g "I
* * * *

12;§N llalfIi(BIi’Bs)l| Ilazfxi(szi'85)|| <1
By Theorem 4.2, relations (4.4.52) are sufficient conditions for the
local convergence of the decomposition of Section 4.2. Note that the
form of (4.4.52) is similar to that of (4.4.12). 1In fact, (4.4.52)
could have been derived from (4.4.12) by using the norm on X (see
(4.4.32)) that was used in the proof of Theorem 4.2. Also, relations
(4.4.52) and the strict block diagonal dominance condition from which
they are derived can be interpreted in the context of the problem
formulation of Chapter 3 as a weak coupling condition for the intercon-

nected system structure.
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Although the strict block diagonal dominance condition for the
decomposition of Section 4.2 (condition (4.4.52)) is easier to evaluate
than the spectral condition (4.4.2) or its simplification (4.4.9}),
there is still a need to compute the norms of the inverses of several
linear operators. The difficulty involwved in explicitly performing
the inversion of these linear operators can be demonstrated by con-
sidering the time invariant, completely decentralized problem. The
partial derivatives involved in (4.4.52) have a less complicated

structure for this problem, but are still extremely complex:

[~ T
Qél (&, L 2 + AP A 2) + A AP i3 APl]AlJ
(3,55 B BIABL = 0,5 (4.4.53)
N —— — [ — J— — _
Ezl (AiiAKQj + AKigAgj) + AiiAKij + AKijAjj
L#1i,3

i%3i (4.4.54)
[azfs(ﬁs B )AB ]

L i,3=1,...,N; i#]
I.-- ——
L] — - — — — —
— —B' !
B, (K AP, + AR, .P. ), ~BI (K AP, + 0K P00
+ Ri(AGiP2i,2i + G AP 21)
5. F_( A =1{ (K..AP AK. P (KAP + MK, .P..) é'
[ 1T BI BS) B ii (Kii Pii * K11P11)21 ii ii 1122

+ . + K. ..AB )0,

(AK2i 2iH1 i,2i 1) i

— — [EU— _— - —_— — —
P, + P, ..+ AE, .

(AiiAPii + APiiAii) + An, P..AA A ii

(A AK,, +AK,.A..) + OA..K,. + K,.0A,, + AQ..
11 11 11 1 11

L -

(4.4.55)
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-y o o -
- X LP.. + K, .AP., B! (AK, .P., AP, .
j£1 B3 ( i3 Jji KLJAP31)12+B1(AK13P31 * Ki3A931)22
#1
N - = - = e - - Ar
+ C: + K, .AP. .
) (AR Pog + Ky gBPyi) oy CUAK P, + KiGAR o0 &
j=1
j#i

(3,6 (B BB, .=

N - — - =
Z [AijAPji + APiinj]
#

(& .AX.. + AK, .A..
ji~ o3i 13754

[~T12

1
5=1
| 7

—

(4.4.56)
It is obvicus that (4.4.53) and (4.4.55) are difficult to invert in

the present form. Kronecker products {(see Bellman [1970]} for a
detailed discussion) can be used to place (4.4.53) and (4.4.55) in

matrix form. The dimensions of the matrices which result from (4.4.53)

N N n
~ ~ A 2 ~
and (4.4.55) are .Z .Z (ni+ni)(nj+nj) and .z [2(ni+ni) + ni(mi+pi)]
i=1l j=1 i=1
i#i

respectively. Thus the dimensions of these matrices can be large even
for relatively small problems and the problem of calculating the norm
of the inverse is still difficult.

Another approach which can be used to circumvent this difficulty is
to bound or estimate the norms of the inverse of the operators in
(4.4.53) and (4.4.55) in terms of the operators without explicitly

inverting them. This approach essentially requires the determinaticn
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of the condition numbers of the operators (see, for example,

Wilkinson [1965]) without inverting the operators. This is alsc a
difficult problem. There exist methods to calculate (such as singular
value decomposition; see Golub and Reinsch [1971]) or estimate (Cline
et.al. [1977]) these norms when the operatecr is in matrix form. Again,
the dimensions of the matrices could prohibit the use of such methods.

The problem with the approaches described abowve is that the ope-
rators to be inverted do not have a simple form, and can be expressed
as matrices only at the expense of increasing the dimension of the
problem considerably. Hence an exact solution may not be possible in
many problems. If such is the case, a desirable approach would be to
develop a guideline which, while not sufficient to ensure convergence,
would give insight to the nature of the problem and would also be prac-
tical to compute.

One such guideline is to check the strict block diagonal dominance
conditions (4.4.52) for the Lyapunov operator corresponding to the
closed loopr system matrix A. There are several reasons why one might
expect the test using the Lyapunov operator to provide a good indication
of convergence of the overall problem. First, the operators in
(4.4.53)-(4.4.54) are exactly those which occur in the decomposition of
the Lyapunov coperator. Also, the subsystem Lyapunov operators occur in the
operator in {4.4.55). Second, when no perturbaticons are allowed in the
control and filter gain matrices (i.e. AG and AH are required to be zero

matrices), the decomposition developed in Section 4.2 becomes an iterative
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methed for the solution of the Lyapunov equations (3.3.57)-(3.3.58).
Finally, from the usual system theoretic interpretations of the
Lyapunov operator in the context of covariance and cost-to-go equations,
one would expect that the weak coupling in the system should also be
manifested in the Lyapunov operator. Conversely, if the Lyapunov operator
is weakly coupled, the overall system is most likely weakly coupled also.
These considerations are definitely ad hoc in nature; however, the
similarity between the Lyapunov operator and (4.4.53)-(4.4.56), and the
usual interpretations of the Lyapunov operator in system theory lend
support to this approach.

It is still necessary to invert several linear operators to test
the Lyapunov cperator for block diagonal dominance. Define the operator

j11%.4¢]

SAB: 2] +-mwxn for A e R and B £ R;xn by

Syg (X) = AX + x8' R (4.4.57)

Also, let LA = SAA . Then the operators which must be inverted are
*

LK' and the projected Lyapunov operator T o Lg,o m {where T is as
ii
defined in (4.2.25)-(4.2.29)). Inverting these operators is not much
easier than inverting the operators in (4.4.53) and (4.4.55).
There are several bounds on the norm of the inverse of the Lyapunov
operator LA, but these are either very conservative or applicable only

to particular forms of the matrix A (see Athay [1976]). The following

theorem provides a tight bound which is useful for a large class of
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matrices for the matrix norm induced by the Euclidean vector norm.

.3: ] = > - =
Theorem 4.3 Let cmax(A) o, (ay> g, (a)> > Un(A) omin(A)z 0

for A &€ R dencte the singular values (see Golub and Reinsh [1971]) of

the matrix A. Also let {li(A): i=1,...,n} denote the eigenvalues of

the matrix A.

. 1
For an arbitrary square matrix A, let let As = 5—(A+A')
dencte the symmetyric part of A and let Aa = %-(A—A') denote
the antisymmetric part of A. Then the singular values of

SAB are bounded by:

Umax(SAB)i Oax B+ Omax(B) (4.4.58)
2 2 2 .
min(sAB)z-Umin(A) * O‘min(B) * .Tin {ki(As)kj(Bs)}
i= PR (4.4.59)
3=l;...,n
- max A, arx )}
. i“a’ 3 a
i=l,...,m
j=1l,...,n

The proof of theorem 4.3 will require the following lemma.

Lemma 4.1: Let A, B £ R pe symmetric matrices, and let
A (a) = A_(R)> ... > A (BA) = X ., (A) denote the eigenvalues of A.
max 1 - — n min

Similarly, let Amax(B) = Al(BLZ ... E_Kn(B} = Rmin(B) denote the eigenvalues

of B. Then
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Anax (BTBIS Amax(A) + Amax(a) (4.4.60)

AL (AHR)> A . (AY + A, (B) {(4.4.61)
min - min mirn

Proof (of Lemma 4.1): Let ]l-][ denote the Euclidean norm on Rn.

Since A+B is symmetric,

A {(A+B) = max x'(A+B)x

max |1 ]=1
< max X AxX + max x' Bx

xil= |1 i=
= A {n) + A (B)
max
Similarly,

A . {a+B) = min  x (A+B)x

e |1x]|=1
> min x' Ax + min xi BX

[1=] =2 | =} =1

AL {n)Y + A, (B)
min min

Also needed for the proof of Theorem 4.3 is the notation and
properties of the Kronecker product. Bellman [1970] {(Chapter 2)

provides a detailed discussion of this subject.

Proof {(of Theorem 4.3): Without loss of generality, it is assumed that

SAB is represented in matrix form:

S,z = A ® 1+1 @ B (4.4.62)
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The square of the singular values of SAB are the eigenvalues of:

S;BSAB=(A®I+I®B)'(A®I+I®B) (4.4.63)

Using properties of the Kronecker product,

to:

The first term on the right of (4.4.64) is

eigenvalues

equation (4.4.63) simplifies

S.p Sap = (a'a ®1+1 0 B'B)+(A'® B+2a (® B") (4.4.64)

a symmetric matrix with

oi(A) + o?(B); {i=1,...,m}; {3=1,...,n} .

The second term on the right is twice
A'C) B. The largest singular value (also

(a’ @ B+A® B') is bound (using Lemma
[§ )
o AP B+rarEBIL20 (A ®

The final equality follows from the series

[1970]1):

il

0‘i(A‘® B) ol[(A'@) B)' (A (X) B)]

o, la A'@ B'B]

(B)

2( 2
01 A) Gl

the symmetric part of
the largest eigenvalue) of

4.1) by:

B) = 2[c___(a)o___(B)]
max max
{4.4.65)

of equalities (Bellman
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Since both terms on the right of (4.4.64) are symmetric,

2 ] 1 L] E 1 '
0, (S,5) = 0, (5,8, )< 0, (A'A @i+ @ BB+ o, @ B+2a (® B

A

2 2
Ul(A) + ol(B) + 201(A)01(B)

2
[GI(A) + Gl(B)] (4.4.66)

which is identical to {4.4.58).

Returning to (4.4.64), the minimum singular value of

(2a'"® B+A @ B) is:

Gmin[{A'@) B+a (BB min @ x @@® B+a @a9x

] [=1

1

2 min  x' (A" (X Blx (4.4.67)
=] =2

where ll-;l denotes the Euclidean norm on R . Let A, and B denote

the symmetric and anti symmetric parts of A. Similarly define Bs

and Ba' Then for any x,

x' (A’ ® B)X

X I(AS + Aa) @(BS + Ba)]x (4.4.68)
=x1{(a -A) x (B +B)Ix
s 2 s a
= x {AS® BS-Aa® Bs—Aa® Ba-!-As@ Balx
Since
(Aa @ BS)' =-2 @ B, (4.4.69)

(a ®Ba)' =~ A ® B, (4.4.70)
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i.e. trices A B i i i
(i.e. the ma a @ g and A ®Ba are antisymmetric) equation

(4.4.68) becomes

L} r ]
x [a"(® Blx = x [AS® BS—Aa® B lx
Substituting (4.4.71) in (4.4.67) gives

Tinl 2@ 2 2@ B =2 e XA, @ B - RO P
x||=1

> 2 { min x (A B )x - max x (A B )x}
| [x]|=1 © 2 | [xf]=1 20 %
(4.4.72)

Since (AS® BS) and (Aa® Ba) are symmetric, the minimum and maximum
in (4.4.72) are the smallest and largest eigenvalues, respectively, of
the corresponding matrices. Thus, the quantities on the right of

(4.4.72) are:

=
P
s
W
&
n
[ve}
mv
b
I

e min {Ai(AS) ?\j (BS)} (4.4.73)
x| |=1 i=1l,...,m
i=1,...,n

=}
i
%
»
w
%
N
=
&

U\i(Aa)?\j () } (4.4.74)

Now, the minimum singular value of SAB is bounded by:

bl

2 1
°nGan’ = %0 Can Sap

on(A'A @ r+r ©) B'B) + Un(A'® B+a @ BY)

Combining (4.4.72)-(4.4.74) and substituting the result in (4.4.75) gives
0

) (4.4.75)

| v

(4.4.59).



-134-

The importance of Theorem 4.3 lies in the fact that the Euclidean

. =1 .
induced norms on SAB and SAB are given by

|ISABII =0, (s, ) (4.4.76)
-1 1
s 2|l = —=— (4.4.77)
Un(SAB)

Thus the norms in (4.4.76) and (4.4.77) are bounded by:

15,501 <o ) + 0, (8) (4.4.78)
-1 2 2 .
{ISAB]l < [ém(A) + o (B) + min Ai(As>xj(Bs) (4.4.79)
i=l,...,m
J=l,...,n
-max A (), (B )]'1/2
i=1,...,m * a J @
j=1,...,n

These bounds can be evaluated through operations on the original A and
B matrices rather than the Kronecker expansion SAB'

At this point it should be noted that the bound {(4.4.5%) may not
give any useful information (i.e., the right hand side of (4.4.59) may

be negative). It is easily seen that the last term

- max A (A YAL(B)
. i7a 9 a
i=1l,...,m
j=l,...,n
is always non-positive since the eigenvalues of an antisymmetric matrix

are purely imaginary and occur in complex conjugate pairs. Thus if the

antisymmetric part of A and B are non-zerc, the bound could be negative
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ag the following example shows.

Example 4,1: Congider LA = SAA with

The singular values of A are

2
2 o o 1’ 2
= —_ = =
Ol 1+ 5 5 4 + o
2
2 o o \’ 2
02 = 1 4+ 5 5 4 + 0

The symmetric and antisymmetric part of A are

The eigenvalues of the above two matrices are:

a .
A B = -1+ T (a)

It
I
-]
I
e

. O
Al(Aa) - ]'5

I
.
R

?\2 (Aa)

where j denotes f—l in the above. 'Using the above values, the bounds

in (4.4.58)-(4.4.59) are:
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2 1/2
2 o o 2
< = = \14
07 (L,) <2 {1 + 3 + 0 ] (4.4.80)
1/2
@) < 3+ % \J4+a2 / (4.4.81)
0, (L) < 5 a 4.

The right hand side of (4.4.8l) is negative whenever

1/2
o > [4% —2} = 2.93 {4.4.82)

However, taking 0=3 the singular values of LA are found to be:

1/2
16 4252 X 5,65

al(LA) =
62 (LA) = 4
03 (LA) =2

1/2
04 (LA) = ELG —\}252:1 ~ .354

o

The above example demonstrated a case in which the bound (4.4.59)

was not useful. Howevexr, there are many cases in which the bound will
be accurate. For example, the bound is exact for stable symmetric matrices

since

and
min MMAADYAL(BLY =0, (Ao . (B)
i=1,...,m i"s" 3 s min min
j=1l,...,n
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Thus one would expect the bound to be good for matrices which are almost
symmetric. There are other cases in which Aa and Ba are not small but

the bound in {(4.4.59) is still tight.

Example 4.2: Again consider LA = S __ with

L
v
o QO

£
'
Q
| v

The singular values of A are

Ol(A) = 0, (A) = chz + wz

2

The symmetric and antisymmetric parts of A are

The eigenvalues of the above two matrices are:

?\l(AS) }\Z(AS) = -

)\l (Aa) jw )\2(Aa) = ~ jw

Using the above values, the bounds in {4.4.58)-(4.4.59) becomes
o, (L) 22 Vo® +

g, (L) > 20
min &’ —

The singular values of LA are:
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2 Vuz + w2
2V‘a2 + wz

63(LA) = 20

Gl(LA)

02(LA)

20

04(LA)

Thus the bounds are tight. o
To conclude this section, it is useful to summarize the results

of this section and outline the procedure one would use to test for

convergence of the iteration defined in Section 4.2. Equations

{4.4.9), (4.4.11), (4.4.12) and (4.4.52) are a series of sufficient

conditions which become successively weaker but also successively

easier to evaluate. To evaluate these conditions exactly the solution

is required. However, the continuity of the derivatives implies that

approximations to the sclution can be used to evaluate the conditions.
There is obviously a tradeoff between computational complexity

and the strength of the test for (4.4.9), (4.4.11)-(4.4.12) and (4.4.52).

Also, there may be problems for which even the simplest test (4.4.52) is

too complex to evaluate. For such problems the same decomposition

applied to the corresponding Lyapunov equation may provide a good indi-

cation of the convergence properties of the original decomposition. The

tests (4.4.9), (4.4.11), (4.4.12) and (4.4.52) applied to the Lyapunov

equation decomposition are more easily evaluated. Also, the bounds given

in Theorem 4.3 can be used to simplify the tests further.
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4,5 Summary

Using the decomposition framework of Chapter 2, Section 4.2
developed a two level hierarchical computation structure corresponding
to the nonlinear Gauss—-Seidel iteration for the solution of the linear
stochastic control problem formulated in Chapter 3. Several properties
of the iteration were discussed in Section 4.3. The local convergence
of the iteration for sufficiently weakly coupled systems was demons-
trated. Section 4.3 also showed that the value of the cost decreased
at each iteration if the starting point of the iteration is sufficiently
close to the solution and if the iteration converges.

Section 4.4 discussed practical a priori tests for convergence of
the decomposition procedure of Section 4.2, Several simplifications
of the convergence condition of Theorem 2.4 were developed. For situa-
tion when the simplified tests can not be used, a guideline based on the
analysis of an iterative solution of a Lyapunov egquation was presented.
In the process of developing the simplified tests and guidelines, two
new results were developed. The first showed that if the Fréchet de-
rivative of the decomposed function were strictly block diagonally do-
minant then the corresponding Gauss-Seidel and Jacobi iterations are
locally convergent., The second result provided upper and lower bounds
for the singular values of the Sylvester operator (4.4.57). 1In addition
to providing bounds for the convergence conditions of this chapter, the
latter result can also be used to bound the condition number of the

Sylwvester operator.
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Finally, it should be noted that the concluding remarks of
Section 2.5 apply to this chapter alseo, Insight into the structure
of the system which is being decomposed is the most important ingrediant
in the choice of the decomposition and the design of a convergence

test.
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5. SOLUTION METHODS FOR THE DECOMPOSED PROBLEM

5.1 Introduction

The purpose of decomposing the linear stochastic optimal control
problem {formulated in Chapter 3) was to reduce the computational
burden associated with computing the best linear controller that sa-
tisfies the information flow constraints of the problem. The reduction
is accomplished by replacing the original problem by a group of smaller
subproblems which are repeatedly solved. To achieve the purpose of the
decomposition, efficient solution methods to the subproblems must be
available.

The supremal and infimal subproblems developed in Chapter 4 are
still nonlinear, and the supremal can be relatively large. However,
as will be seen in this chapter, there is additional structure present
in both types of subproblems. This structure will be exploited to
develop secondary decompositions which will lead to efficient solution
methods.

The supremal problem of Chapter 4 will be studied in Section 5.2.
A decomposition algorithm which further exploits the weakly coupled
subsystem structure is developed. A second methed which is only ap-
plicable to the completely decentralized problem is also developed.
Section 5.3 extends several previously developed algorithms to the in-
fimal problem of Chapter 4. Both Sections 5.2 and 5.3 consider the
convergence characteristics of the proposed algorithms., Section 5.4

presents an application of the algorithms of Chapter 4 and Sections
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5.2 - 5.3. Finally, Section 5.5 discusses the algorithms in the context

of the overall problem solution.

5.2 The Supremal Problem

The decomposition algorithm presented in Chapter 4 was developed
to take advantage of the assumed weak interactions between subsystems.
The same line of thinking leads to a similar decomposition algorithm
for the solution of the supremal problem. To motivate the decomposition
of Chapter 4, the completely decoupled interconnected system was ex-
amined as the limiting case of the general weakly coupled system. For
this case, the solution to the problem was simply to take the centralized
optimal control problem solutions of the gsubsystems as the diagonal blocks
of G, H, 5 and R and the zero matrix as the off diagonal blocks. The
equations for the off diagonal blocks were still present. However, the
solutions were the null solutions because they driving terms were linear
functions of the subsystem coupling matrices and hence were zero. These
off diagonal equation blocks constitute the supremal problem of Chapter
4. Hence the gsame logic which led to the decomposition of the original
problem can be used to motivate a similar decomposition of the supremal
problem.

As in Chapter 4, a Gauss-Seidel iteration (see Example 2.6) will
be used. BAgain, the corresponding Jacobi algorithm requires only minor
modifications to the following discussion. At each iteration (i.e., for

fixed Bl), the supremal problem (4.2.13}-(4.2.16) is of the form:
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h(BS) = 0 B, € B (5.2.1)

where h: B° +'BS. To exploit the weakly coupled structure of the
problem as outlined in the preceding paragraph, define the decom-

position of B.

B™ = 312 X 323 X...X BN,l X Bl3 X...X BN—Z,N 'S 314 KesoX BlN {(5.2.2)
B, . 4 {K.., P..r G..y G.op H,., H .} i=l,...,N-1; j=2,...,N; i#]
ij ij 1] ij ji ij Jji (5.2.3)
h.. 2 {é = -[A'K + KA + 01,. ;K,.(t) = (K) ; - (5.2.4)
i3 15 19 715 Kplis sl
B, = [AP + PA' + 5]., ; DP..{t) = {(P).. :
ij i3 ij o o' ij
0d 0J  _ 3T 9J _
3G, . O; 3e.. % 3m.. 0; PH.. 0}
i3 3i ij ji

i=1,...,N-1; §=2,...,N; i#]

In the time invariant case, the assignment of variables and equations
is analogous with time derivatives replaced by the zero matrix.

When the Gausg-Seidel algorithm is used with more than two sub-
problems, the order in which the subproblems are solved can affect the
rate of convergence (see Fox [1964]). The ordering implied by the
decomposition (5.2.2) can be expected to produce good results when the
forward and backward coupling between subproblems are of the same order

of magnitude (see Lehtomaki [1978]). The resulting iteration is:
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k+1l k+1 k+
. B

hij CEPE ”'B:L—l,j-l i,

k

o
5P i41,5417 7 B

k
) =0 {5.2.5)
2=1,...,N-1; i=1,...,8-%; j=i+%

Note that the above ordering amounts to solving for the first super
dilagonal blocks first, the second super diagonal blocks second, etc.
This ordering is illustrated in Figure 5.1.

Given an (i,3) pair, for fixed.BI (i.e. fixed
{Eii,lﬁ,,, Gyyr Hyyt i=1,...,N}) define the following notation {(similar

1l 11

to that in {(4.2.11)-(4.2.12)).

( i; 1R—m| < li-3] and n#%
m
—x (5.2.6)
Klm = ~k
) Ky {2-m| = |i-3|, m#L, and k < i
Kog L=m
Ek—l otherwisge
Lm
= = E; (5.2.7)
m

. N A o =k . , .

i.e., for the (i,]) problem K= is the matrix with blocks egqual

to the most recent solutions of a 1 the other problems. In a similar
. . . - %Xk % X X =k

manner, define for the (1,3)th problem P, G, H , A, ¢ and = . It

should be noted that the above definition of the bar notation depends on

the indices i and j, but this dependence is not explicit in the notation.
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83517AW003

Figure 5.1: Order of Solution of Subproblems for the
Gauss-Seidel Algorithm
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Using the bar notation of (5.2.6)-(5.2.7), equation (5.2.5) can be

rewritten in terms of the system matrices as follows.

Supremal Subproblem {i,3j)

B B;.[(Eli{j -I;];j)lz + E};j)lz] - ﬁi“?jc.j El;;3)22 + qlsii{j)zzl
+ R akj(Ei;j)22 + 1—;1 E;::j)22 ij 0 o
LK, EI;.Fj)zl + _]1{1 _}:'ij)?.l] €y - “Ri;j E Yoo T ¢ }i{i _]i{j’zzle_:] (5-2.9)
(m}i{i)zz _}1(3 5 * (E}‘;j)zz E];j Oy * Tikj =0
—Bj[(ii}j‘i ey, (_];J '15];)121 - 15;[(?3.1 By, + (E’j‘j ?jf‘i)?_z] (5.2.10)
* Ry E];i ii)22 T Ry Gyy an;i)zz 853 =0
[(E]j{i Eli(i)ZI * (E};j E?i)zl] ¢ - [(E];i f’jifi)zz * (E];j Ei;i)zzlai (5.2.11)
+ (E]j(jjzz E]j‘i 0, + (E];i)z2 'ﬁ*j‘j ej + T};i =0
A B P AN R P 4PN (A 4+ DN, =0 (5.2.12)
i3 743 i3 3 i3 T35 7 Ciid iy i3
(K]Ii)' E};j * _];3 —i;g (K];‘Ti)' —];3 * E]j{.i K]i{j * 51i{j * E]i{j =0 (5.2.13)

where
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N
ko x =k A
Si5 = ,Q,El DC(GLQ, PR’j, Kige Bir Byy R) (5.2.14)
241, 5
N
X %k -k ~
= i P .o ¢ CLs Co . 2.
Ty 21 Df(sz 237 Kig v+ Gy Cy ej) {5.2.15)
8#i,5
N
k % -k =k —k .
D, = Qzl [ &, Poy t PiQ(AjQ) )| (5.2.16)
R#1,3
N
ko_ % v =k =k =k
Eij = Zl (Agi) ng + Kiﬁ Agj {5.2.17)
L#1i,3

Although the above problem appears to be extremely complex upon
first examination, it is linear in the variables of the problem (Gij'

G,., H,., H.,, P,, and K,.). Also, in the completely decentralized
ji i3 ji ij hily

problem (Gij= 0, Hij =0 for i,j=1,...,N and i#j} the problem reduces
to the solution of two Sylvester equations. Such equations can be
solved efficiently {see Bartels and Stewart [1972]).

A second property of (5.2.8)-(5.2.17) in the completely decentralized
problem should also be noted. 1If the original system dynamics matrix
is block tri-diagonal the N-M problems for which ]i—j| = M are not
coupled. Thus these problems can be solyed in parallel, This property

also suggest the possibility of interleaving the Jacobi algorithm with
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the Gauss-Seidel algorithm. +The original supremal problem is
decomposed using the Gauss-Seidel algorithm into N-1 problems consisting
of all the egquations and variables on the same super block diagonal;
i.e. all (i,3j) blocks of equations and matrices for which

{|i-5| = M; M=1,...,N-1} would be solved at the same time. Then each
of the resulting N-1 problems is once more decomposed using the Jacobi
algorithm along the same lines as the decomposition in (5.2.2)-(5.2.4).
The only change to eguations {5.2.8}-{5.2.17) is the iteration indexing
for several of the matrices. By redefining the bar notation for the
(i,j)th problen as

/;(k

o |2-m| < [i-3] 2#m

&

(5.2.18)

2
i

fm ~k o -
< Kom =1, mn=j

KQQ f=m

~k=-1
Kim

otherwise

equations ({5.2.8)=(5.2.17) apply directly to the new decomposition.
The latter decomposition algorithm for the solution of the su-
premal problem would be expected to work well when the interactions
between subsystems decrease as the difference between their indexing
increases. Also, this algorithm possesses a multilevel hierarchical
interpretation (see Figure 5.2). Each group of problems on the same
h

Cas , . . £
super block diagonal is viewed as a level in the hierarchy. The M

level consists of N-M decision units which have two functions. The
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first is to solve the corresponding {(i,j) problem (equations (5.2.8)-
{(5.2.18)). The second task is to relay information concerning other
problem solutions to the levels above and below.
The convergence properties of the above two decompositions can
be analyzed independently from the original primary decomposition of
Chapter 4. This analysigs can then be combined with the results of
Section 2.4 to analyze the total iteration. As pointed out in Section
4.3 and 4.4, the exact analysis of convergence for the type of problems
being considered is difficult. However, the supremal decompositions
of this section can be shown to converge for sufficiently weakly coupled
systems in a manner directly analogous to the development of Section 4.3.
Recall the following definition for an arbitrary matrix A = [A,.]

i
n,xn, n.xn, ]
. i3 i3
with A,. e L ( R,B,A[t ,T]1) (or A, € R ):
1] 2 o] i3

AL .
AD = dlag[Aii. i=l,...,N? {5.2.19)
A
A =A-A (5.2.20)
o b
Ao 4 {AO: Ao as defined in (5.2.19}-(5.2.20)} (5.2.21)

Again, Ao is a sub-space of linear operators over the space

LE(R,B,K[tO,T]) or RF. Given any norm on either of the latter spaces,
Ao will assume the corresponding induced norm. WNote that (5.2.8)-
(5.2.18) define an iteration of the form:

g B .85 = 0 (5.2.22)
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*
For Ao = 0, it is easily wverified that BS = 0 and 329(0,0) = Q.

oQ
Let {Bz}k—o denote the sequence geneprated by (5.2.22).

Using the above definitions, the following theorem demonstrates
the importance of a weakly coupled subsystem structure to the supremal

decomposition algorithms of this section.

Theorem 5.1: Assume there exist open neighborhoods U0 of 0 ¢ Ao

and V_of 0 ¢ g° such that &2 € U_ and B, £ V_ implies 3g is non-
) o] o} S o
singular. Then there exist open neighborhoods U of 0 £ Ao and

vV c BS such that
(i) B eV
(ii) A £ 0
implies

k *
Lim (B = B (5.2.23)
ko S S

*
where BS is a sclution of (5.2.1).

Proof: By direct calculation, the linear operators Blg and 329 are
jointly continuocus in BS and Ao. Since 9g is nonsingular for Ao c UO

and BS € Vo, the implicit function theorem (Theorem 2.3} implies that

88 is a continuous function of A Hence Blg and 82g alsc depend

continuously on AO.
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For any norm on BS, the induced norm on the space of linear

operators L(BS) satisfies

1

-— —l
3,9~ 3,91 IIBlg 829[I (5.2.24)

[ A

< 1lag ] a0l

As noted previously for Ao = 0 the solution to equation (5.2.1) is

*
Bs = 0. Also,

* *
Bzg(BS,BS) =0 (5.2.25)

* *
Since Bg{BS,BS) is nonsingular, {5.2.25) implies:

-1 * %
[13,9 (B B ] =M <o (5.2.26)

Because Blg and B2g vary continuously with AD, there exists an open

neighborhood U of O £ A0 such that for all Ao e U

-1 % %
[16,97 (B, B[| <1 +12 (5.2.27)

1

M +1
o

* *
13,398,801 < (5.2.28)

*
where B satisfies

* * _
g(BS,SS) =0
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for the given Ao. Combining (5.2.24) and (5.2.27)~(5.2.28) gives

_1 * * * *
p[Blg "(BS,BS)BZQ(BS,BS)] <1 (5.2.29)

- * *
for each A & U. Since (5.2.27) implies Blg 1(88,88) exists, by

Theorem 2.4 there exists a neighborhood V ¢ B {(depending on Ao) such
k,® * .
that the sequence {Bs}k—o converges to BS. The function generated by

the implicit function theorem Ffor the dependence of g on AO is unique

and continuous in an open neighborhcood U, of 0 ¢ AO. Also, the

1
Frechet derivative dg i1s nonsingular and BS = 0 solves (5.2.1) for
Ao = 0. Hence the Ilimit of the sequence (5.2.23) solves (5.2.1} for
the corresponding Ao.

When any of the supremal decompositions of this section are
composed with the original decomposition of Chapter 4, the same proof
that was used in Theorems 4.1 and 5.1 can be used to prove an analogous

theorem for the overall iteration. However, Theorem 2.5 can be used

along with Theorems 4.1 and 5.1 to simplify the proof.

'k

Theorem 5.2: Consider the sequence'{ﬁz ’ BE} resulting from using

M > 1 steps of {5.2.8}=(5.2.17) to solve the supremal subproblem of
(4.2.13)-(4.2.24). Assuming the conditions of Theorems 4.1 and 5.1,

S I
there exist open neighborhoods U of 0 g€ Ao and V ¢ B” x B
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such that
, 0.0
fi) (BS . BI) eV
(ii) Ao £EU
implies

. M,k k * *
Lim (B¢’ .BI) = (BS,BI) (5.2.30)
koo
*
where (BS,B;) is a local minimum of the functional minimization

{(3.2.13)~(3.2.14) (or the static minimization (3.2.15)-(3.2.16}}.

Proof: Denote by Fs the iteration cperator resulting from (5.2.8)~

(5.2.17}) and the exact solution of the infimal problems, and by Fp
the iteration matrix corresponding to (4.2.13)-(4.2.24). In the
proofs of Theorems 4.1 and 5.1, the guantities ]|PS|] and ||FP]|

are bounded can be bounded by:

Wl

el <
(5.2.31)

Wl

[T 1 <

simply by choosing G such that the right hand sides of (4.3.13) and

1

1 Theor . - s
3(Mo+l) Then, by orem 2.5, a sufficient condition

(5.2.28) is

for local convergence to the solution of the necessary conditions

resulting from the functional or static minimizations is
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M M

'+ (1- <
oll [ + (1 I"S}l“p} 1 (5.2.32)
Using the properties of induced norms, the left hand side of {5.2.33)
is bounded. by:
{M

olT? + (I-r§>rp} <l v as [[I‘S[IM)HPP][ (5.2.33

Combining (5.2.31) and (5.2.33) shows that (5.2.32) is satisfied.

Finally, the uniqueness of the functions generated in the proofs of

Theorems 4.1 and 5.1 implies that the limit (5.2.30) locally sclves

the minimization. O

Theorems 4.1 and 5.1-5.2 are all of the same genre; a decomposition
based on logic induced by a weak coupling assumption was postulated
and the corresponding theorem demonstrated that the logic was not
flawed. Although the conclusions of the theorems are assuring, they
do not give any practical tests for verifying convergence for particular
problems.

If bounds on the norms of the iteration operators for the supremal
decomposition of this section and the primary decomposition of Chapter 4
can be computed, or if the operators can be computed exactly then
Theorem 2,5 can be applied to provide a convergence test. However,
when only one step of the supremal iteration is used during each step
of the primary iteration a more efficient analysis is possible. 1In

this scheme the resulting overall iteration is simply a Gauss—Seidel
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algorithm corresponding to the following decomposition (see Example
2.6):

B=B,xBx.xBy xB xB x..xB (5.2.34)

using the order implied. Thus the convergence analysis for the over-
all system can be simplified to the convergence analysis of the
common Gauss—Seidel iteration.

By Theorem 4.2, a sufficient condition for the convergence of a
Gauss-Seidel iteration is the strict block diagonal dominance condition
{(4.4.13}. For the iteration defined by the decomposition (5.2.34) with
Bij defined as in {5.2.3) and (4.2.7) and hij defined as in (5.2.4)

A LT A . .
and (4.2.8) (B,, =B, and h,, = £ the block diagonal dominance
ii i ii I

condition is:

ST I I
) P} h. . < 1 (5.2.35)
=1 m=1 fm ij
{&,m¥£(i,])
im1,eee,N; =i, ... N

A . / . : .
where 3£m hij = partial Frechet derivative of hij with respect to

Blm , evaluated at the solution. If the Lyapunov test guideline

which was discussed in Section 4.4 is used, then condition (5.2.35)

becomes
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Ns. 2 1] T lall« 3 el
S A, + A, < 1 {(5.2.36)
Ay sByg gm1 1A 9=1 3%

L#1i,5 #]

Note that this test assumes even more significance in the time invariant
completely decentralized problem since each of the conditions which
are to be tested in (5.2.36) are exactly those which are to be tested
in (5.2.35) except for the case i=j. Thus one might expect that the
test (5.3.36) would give a reasonable indication of the convergence
properties of the overall iteration.

For the time invariant completely decentralized problem another
solution method is possible. In this case, the supremal problem

reduces to the solution of the two linear equations

*

[

T oL_ om (P =Eg Por Eg € P (5.2.37)
A

* X 0 K., Q €P 5.2.38
TT0L~'O'IT(KS) QS KSrQSE {5.2.38)

where, recalling the notation of (4.2.25)-{4.2.29), m and P are

defined by:

A (ni+ﬁi)x(n.+ﬁ.)

P = {P..: i=1,...,N; j=1,...,N; i#j}: P.. € R i3 {5.2.39)
ij 13

M P > gATRIX(040) :{Pij: i=1,...,N; j=1,...,N; i#3} > P {(5.2.40)



-158-

A
p = - L2,
o [0 P12 Pm (5.2.41)
le 0 PzN
~Py1 Pn2 O
* A
m = adjoint of T {(5.2.42)

To find an explicit representation for T, it is necessary to represent
A 2 ~

the Lyapunov operator as an (n+n) x (n+n)2 matrix through the use

of Kronecker product notation. Thus, it will temporarily be assumed

. 2
that L. 1is represented as an N x N2 block matrix K :
A A

B2 ek, G-Dmee T By @ TI0p + IT@ Aplsyy (5.2.43)
iijkr 9”=1I"‘IN
2

2
~o= K~ : i=1,... ; d=1,..., .2.4
KA [( A)ij i=1 N g=1 N] (5 4)

To represent the eguation

11] ¢

LR(P) = {5.2.45)

using the Kﬁ,notation, the matrices P and E

must be represented as

[11

vectorst and . The wvector representation which corresponds to the

representation (5.2.43)-(5.2.44) is:
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P = (Pl)v 7 (P} = (Pil)v
® ) =
N'v (PiN)V
_ - . - (5.2.46)
oy _ | 33 Loy Rid
(Pij v Pl ! Pk Pkl
513 LPlJ )
~ k (n+n) -
{n+n)"~

In words, the vector representation EV of the matrix P consists

of a particular ordering of the elements of the matrix 5. This
ordering is determined by first ordering the blocks row-wise and
then ordering the elements of the blocks row-wise. The same
ordering applies for the vector év' and is demonstrated by the fol-

lowing example.,

Example 5.1: TLet N=2, and let

A= [Aij] € REX4 where Aij £ szz for each i and j. The matrix
KA is given bhy:
K, = -All®l + I@All I@Alz A12 @ 1 0 ]
I ® 2y A, O+ I@3, 0 2,@® T
A21® I o A22®1 + I®All I®A12
] 0 2, @1 I ® By A, @I+ 1@1;22—

{(5.2.47)
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Also, PV is given by:

1 ! 1 '
LI, 1 = 'p 1
Py = P1P1oP01P021 P12 148 23 241 P31 P30 1% 421 P33P 34T 437 44! (5.2.48)

The vector Ev is represented similarly. ‘Then the equation

LA(P)

]
[1i

is represented by

K P ==&
v v
Q
Finally, it is assumed that elements of P are represented
similarly. That is, if ﬁs £ P then Ps is represented ag the
vector:
~g r ~ -
P P,
1 . il
5 = - PS=
s I ! i : (5.2.49)
P, .
ES i,i-1
N P
i,i+1
L-\..
P,
i,N

with Pij defined as in (5.2.46)}.

With the representations (5.2.43)-(5.2.46) and (5.2.49), the

restricted Lyapunov equations (5.2.37)-(5.2.38) are:
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[132

s o (5.2.50)
. ~
T Kg. m KS = Qs (5.2.51)
N
~ ~ 2 ~ 2
+ - .+, . .
where T € m(n nf%[(n+n) iél(n1+n1) 1 is given by:
0 (n,+n,) (n+n)x (n,+0,) (n+n-n,-n,)
1 1 1 1 1 1
ﬂi = ER
I
- 5.2.
T = diag[ﬂi: i=1,...,N-1] ( 52)

T

8]

Thus, the supremal problem is equivalent to solving two systems

of (N-1) (n+n) linear eguations. The coefficient matrices T K T
A
and 7' K., T can be found without matrix multiplications. The
iy

projection T simply serves to eliminate the rows and columns of K
A

which lie in the blocks (Ki) for which i=1 mod N and j=l1 mod N
ij
respectively. Hence T Kﬁ T and T Kﬁu T can be formed from A
using {(5.2.43)-(5.2.44) and the preceding comment.
A problem which plagues thig approach is the same problem which

always occurs when Kronecker products are used to solve Lyapunov

equations., The number of multiplications required to solve the
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problem using this method is on the order of (n+ﬁ)6. Other methods
which exploit the structure of the Lyapunov operatcocr to reduce the
amount of computation could be used if a representation of T could

be found which corresponds to the usual Lyapunov operator represen-—
tation. Unfortunately, such a representation has not been discovered.

Thus, the above method will be impractical for most applications.

5.3 Infimal Problem Sclution

This section discusses and compares four possible solution
methods for the infimal problem which results from the decomposition
of Chapter 4. Three of the methods - Newton's algorithm, the gradient
search algorithm, and the gain approximation algorithm - are applicable
to the general infimal problem. These are examined in Subsections
(5.3.1)=(5.3.3) respectively. The fourth method requires the filter
dimension n to be the same as the system dimension n. This method,
discussed in Subsection (5.3.4), is a decomposition algorithm which
requires only the solution of Ricecati and Lyapunov equations which are
of the order of system dimensicn n.

Te simplify the notation, the subscript notation which differentiates
the infimal problems will be dropped. In addition, only the time
invariant infinite horizon problem will be considered although each of
the four methods generalizes to the more general time varying finite

horizon problem. The general form of the infimal problem is:
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- B (k) , - B'(RP) , + RGP, + S = 0 (5.3.1)
(KP) 5p c' - (KP) ., c' + Ky, HO+ T =0 (5.3.2)
AP +PA' + E+ D=0 (5.3.3)
A'K+ KA+ QO+ E =0 (5.3.4)

where
a=[a - BG
HC A-BG-HC
=== 0
0 HOH'
o= [o 0
0 G'RG

The matrices to be solved for are G, H, K and P, and the Hilbert space

of these variableg will be denoted by BI as in Chapter 4.

5.3.). Newton's Algorithm

Newton's algorithm is a well known and popular iterative method
for seolving systems of nonlinear equations (see, for example, Dennis
and More’ [ 1977} and Example 2.5). The popularity stems from two

desirable properties:
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i) The equations to be solved at each iteration
are linear.
ii} The algorithm exhibits local superlinear

convergence.,

Newton's iteration is defined by the decomposition given in

equations (2.3.16)-(2.3.17). For the system of equations

£{(B) =0 £: B+ B {5.3.5)

the decomposition (2,3.16)}-(2.3.17) results in the iteration eguation

f {Bk)[8k+l - Bk] = - f(Bk) {5.3.6)

).

Equation {5.3.6) is a system of linear equations in (Bk+l - Bk

To apply Newton's method to the infimal problem it is necessary
to compute the Frechet derivative of equations (5.3.1)-(5.3.4) with

regpect to G, H, P and K. The Frechet differential is:

-

- B (AKP+KAP) . - ﬁ‘(AKP+KAP)22

RAGE + RGAP2

22 2

KZZAHG + AK22HG +(AKP+KAP)12 C - (AKP+KAP)C

£ (BYAB = (5.3.7)

AAP + APA' + AARP + PAR"+ AZ

A'AR + AKA + AR'K + KAR + AD
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where
M= | o _BAG
AHC -BAG - AHC
E o= o 0
0 AHOH' + HOAH'
i i
rmo= o 0
| 0 Ac'rRG + ¢'RAG
B = (G,H,P,K) £ BI
By defining
BB =By By

and evaluating (5.3.7) and (5.3.1)-(5.3.4) at Bk, these equations

can be used with (5.3.6) to solve the infimal problem. The resulting
system of linear equations is complex. However, the system can be
put in standard matrix-vector form through the use of Kronecker
products. The result is a system of 2(n+ﬁ)2 + ﬁ(m+p) equations in

the same number of unknowns. It is easy to see that even for small
subproblems the equations which result from Newton's method can have

a large dimension.
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5.3.2 Gradient Search

The original motivation for studying decomposition algorithms
for systems of nonlinear equations developed from an attempt to solve
optimization problems indirectly by solving the resulting necessary
conditions. Given a set of nonlinear equations such as (5.3.1)-(5.3.4),
a natural question to ask is whether such equations could have
originated from an optimization problem. The answer to this gquestion
involves anti-differentiating eguations (5.3.1)-(5.3.4); i.e., a
function must be found whose derivative is the left hand side of
(5.3.1)-(5.3.4).

The strong similarity between (5.3.1)-(5.3.4) and the centralized
necessary conditions (3.4.55)-(3.4.56) and (3.4.65)-(3.4.66) leads
to a natural choice for a function in the anti-differentiation process.
Let J: BI +~ R be given by:

Jp) = % tr {{Q+E)P} + tr G'S + tr TH' (5.3.8}

where P is given by:
AP + PA + E+D=0 (5.3.9)
*
The following theorem shows that a solution B to equations (5.3.1)-

(5.3.4) is a stationary point for 3(3).

Theorem 5.3: The gradient J'(B) is given by the left hand side of

(5.3.1)-(5.3.2) with P and K given by (5.3.3)-(5.3.4).
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Proof: Since J(B) separates into three additive terms, the gradient
J'(B) can be computed by adding the gradients of the three terms.

The differential of the second and third terms are

3{tr ¢'s + tr TH'} = tr{Ac's + TAH'} (5.3.10)

Using Theorems 3.1 and 3.3 and the fact that D and E are constant

matrices, the differential of the first term is:

1 ~ _ ' on' _ Qs
5—3tr{(Q+E)P} = tr{AG [RGP,, - B (KP),, - B' (KP), ]

(5.3.11)

+ [K22H@ + (KP)21 c - (KP)22 c 1AH'}

where K is given by (5.3.4). Combining {(5.3.10) and (5.3.11) and the

fact that AG and AH are arbitrary proves the theorem.

Since the gradient 3(8) vanishes at the seolution to (5.3.1)- °
{5.3.4), it would be nice to be able to formulate the following
optimization problem.

nin 3(@ (5.3.12)
subject to
AP + PA' + 2+ D=0 (5.3.13)

This optimization problem may not be well posed. The difficulty

occurs because either (Q+E) or P may not be positive definite (note
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that since the terms tr G'S and tr TH' are linear inB they do not affect

the well posedness of the problem). However, the problem will be

well posed for sufficiently small D and E.

Then let E‘rOt be defined by

where

Note that for o = (||D|l' |IE||);

Theor

by o

Define the following quantities:

o =

A
o] 2o, + o

2

+ +
€
(aD,aE) R xR

QII—‘

v

EF'H

Ja(B)

~ [
AP + P A+
o (o4

Iy (B

em 5.4:

w)

el

E

1 o~ ~ ' \
= tr(Q+o _E)P_ + +
5 tri{Qro E)P_ tric's + ™ }

IR

[r1z2

D

{5.3.14)

{5.3.15)

(5.3.16)

(5.3.17)

(5.3.18)

(5.3.19)

Consider the family of minimization problems parameterized

min Sa(m

geB

I

(5.3.20)
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%
If for a=(0, 0) the above problem possesses a solution B then there

exists on EO > 0 and an open neighborhood UCIBI such that for each

O ||a||< €, the following minimization problem is well posed:
min J_(8) (5.3.21)
Rell

» * ¥ ] 0 ~ . /
Proof: Since B minimizes JO(B), the gradient and second Frechet

derivative of 30 satisfy

'@ =0 {5.3.22)
(o]

30 8" > o (5.3.23)

o . . . . I
Because J;' is continuous, there exist an open neighborhcod U & B~ of

*®
Bo such that

3;%8) > 0 VB el (5.3.24)

Also, it is easily seen that both J& and J&' are continuocus in o.

Thus, by the implicit function theorem and equation (5.3.22) there
. s + + .

exists an open neighborhood N TR x R of 0 and a continuous

* I
function B4 : N > B~ such that

Al *
Ju(Ba) =0 {5.3.25)
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* * *
Since 8, is continuous, BO =f and thus there exists €y >0

such that if o, € R x R with ||u1||< £

1 1

Ba el {5.3.286)
1

L]
Similarly, because Ju is continuous in o there exists 82 > 0 such

that if a, € R x &

3 'R’y 0 VB euU (5.3.27)
)

Let

eo = mln(el, 82) (5.3.28)

*
Then for all o such that ||a|]| < £,s there exists a B € U which
satisfies (5.3.25) and (5.3.27), and hence solves (5.3.2Z21}.

@]
The above theorem implies that the infimal problems will be well

posed minimization problems for sufficiently small D and E if th;
minimization problem (5.3.20) with 0=(0,0) has a sclution. For
0=(0,0), the problem (5.3.20) is simply the deterministic equivalent
of a centralized stochastic optimal control problem with the linear
modification terms trlG'S] and tr[TH'] added to the cost. However,

these terms do not affect the convexity properties (local or glcbal)

of the optimization problem. Hence, the problem (5.3,20) will be well
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posed if the centralized stochastic optimization problem correspon-
ding to the decoupled subsystem is well posed. Necessary and suf-
ficient conditions for the latter are that the pairs (A,B) and

(A,ﬂ/g}l be stabilizable and that the pairs (A,1/§) and (A,C) be
detectable {(Wonham [1978b]). Since the matrices D and E for the ith
subsystem will be small if the system is weakly coupled and the detec-
tability and stabilizability assumptions are standard, the minimization
(5.3.12)=(5.3.13) will ke well posed for sufficiently weakly coupled
systems.

When the minimization problem (5.3,.12}-(5.3.13) is well posed, any
gradient search algorithm (see, for example, Rosenbloom [1956];
Hestenes [1956]; Kelley [1962]; Fletcher and Powell [1963]; Fletcher
and Reeves [1964]; or Wolfe [1976]) can be used. The gradient of
(5.3.12)~(5.3.13) with respect to G and H is given by the left hand
gside of (5.3.1)-(5.3.2) with P and K given by (5.3.3}-(5.3.4). Then
the solution to (5.3.12)-(5.3.13) is also the desired solution to

(5.3.1)-(5.3.4).

5.3.1 Gain Approximation Algorithm

This algorithm involves a straightforward decomposition of the
problem defined by (5.3.1}-(5.3.4). The decomposition corresponds to

the successive over-relaxation (SOR) algorithm for the Gauss-Seidel

lGiven a symmetric positive semidefinite matrix E, the matrix 4% is
defined as the unique symmetric positive semidefinite matrix W such that
2

W= E.
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iteration (see Examples 2.6-2.7} with the relaxation parameter ¢
varying with both the iteration index and with the subproblem being
solved. However, the resulting iteration alsc corresponds to a downhill
search algorithm for the minimization problem (5.3.12)-(5.3.13}. This
algorithm (with € Z 1), has been used by Levine and Athans [1970] to
find the optimal constant feedback gains for the output feedback problem,
and by Wang [1972] to solve for the best deterministic decentralized
linear constant feedback law. The algorithm is generalized in this
subsection to solve equations (5.3.1)-{(5.3.4}.

Define the following decomposition of {5.3.1)-(5.3.4) (as in

Example 2.6}:

BT £B7 x B xB} xB. (5.3.29)
Bé’ 8 rg ¢ @My (5.3.30)
B'I:EI bty e B7P} (5.2.31)
B;Aé X ¢ Bjn+Q)X(n+ﬁ)} {5.3.32)
BE A pe R(nJ'/‘r\‘)"‘(n*%)} (5.3.33)

The subsets of eguations £ fK_and fP are taken as (5.3.1}),

e Eye
(5.3,2), (5.3.4) and (5.3.3) respectively, The resulting iteration

{(including the relaxation parameter sk) is:

~ -1 ¥ ; a3 -1
Gy=R {B (RpP, + B (KyPp)y, ~ S}(Pk?gz (5.3.34)
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A

1

Ly

= (Kk);i {xer),, & - (KkPk)zch-T}e' (5.3.35)
Gepp = G + ek[ék - 6. (5.3.36)
H ., o= H + ek[ﬁk - 8] (5.3.37)
;£+l Kk+l M Kk+1 £k+1 + 5k+1 *E=0 (5.3.38)
21k+1 Prer * P R£+1 * Ek+1 *D=0 (5.3.39)

The following theorem shows that Ek can be chosgen at each iteration

such that 0 < Ek < 1 and the cost function (5.3.8) is reduced at each

iteration.

o]

A
Theorem: Let J{f) be given by (5.3.8) and let the sequence &gk}k—o

be generated by (5.3.34)-(5.3.39}. Then at iteration k+1 the relaxa-
tion parameter Ek can be chosen such that 0 < ¢ < 1 and
3 <3 .3.
J(B ) < TEBY) (5.3.40)

if Bk+l 7 Bk'

Tl
Proof: For any matrix F, define AFk and AFk by

= - 5.3.41
AFk Fk+1 Fk { )

~ A
= - 5.3.42
AFk Fk Fk ( )

The difference in cost from iteration k to k+1 is given by:
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/_\.Scsk) = 3(Bk+l) - 3y (5.3.43)
= % tr[(ék+l+E)P},+l]— % tr[(ak +E)P ] + tr [AG;{S + TAHI;]
1 pu G s L 5 ' X
=5 tridg P .1 + 5 tx{Q + BYAR ] + trlAG s + TAH ]

The first term of (5.3.43) is given by:

tr[AQkPk+l] = tr 3[ 0 0 ]pki + trAQkAPk
k

~ ¥ -~ L]
0 (G +e_ AG. } R{(G, +c_ AG. ) - G RG
k kT Tk k "k 'k k (5.3.44)

2€ktr{AGk RG (P, + (APk)zzl} + o)

Now, APk can be found by rewriting (5.3.38):

111

0= APy ¥ Py ¥ 0Py F P M T B (5.3.45)

The following eguation results from replacing k+1 by k in {5.3.38)

and subtracting the result from (5.3.45}):

~ ~y ~ ~ -~
0= AkAPk + APkAk + AAkPk-i-l + Pk+lAAk + A_k {5.3.46)
Thus, using the definition of Li (equation(3.4.8 1)), APk is given by:
k

- -1 P ) =

Apk = Lik [M‘kpjkari + P.k+lAAk + Auk] {5.3.47)
-1
= - Ek L_"1[s]
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where
- & 0 — AA T
. - 0 BAGk . Y B Gk
- ~ PN A A k+l kt+l ~ ~ A A A
AHkC - BAGk - Ach Ach - BAGk - AHkp
O 0 (5.3.48)
+ J\. t Pal ~ ~ .
o AHkQHk + erAHk + ekAerAHk
Substituting (5.3.47}) in (5.3.44) gives
tr[AQkPk+lI = 2€ktr{AGk R Gk(Pk)zz} + o(ek) (5.3.49)

Now consider the second term of (5.3.43). Using equation (5.3.47)

and the definition of the adioint gives:

- g, trlQEILH(8)] (5.3.50)
By
t’[L*_%é +E)S)
- £ T
g S 9
2
Ek tr[Kk S]

trc§k+E)Apk

1]

From {5.3.47) it is obvious that

Pk+l = Pk + o(ek) {(5.3.51)

Now, using (5.3.48) and (5.3.51) in (5.3.50} and the properties of the

trace operator gives
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tr (G, +E) AP, = 2¢ tr{AG -B' (P )., - B’ (K, P ) ] (5.3.52)

k12

+ LREP),, C - (K)o CF + (K, HO1AR,

+ O(Ek)

Combining {5.3.49), (5.3.52) and (5.3.43) gives the following

equation for AS(Bk):

AT ) =€ tr{Ac; [-B' (KB )y, ~ BYUR P o + RG(P), , + 8] (5.3.53)
+*HEE) 5 © - (P, C + (K, HO + TIA ]
+ o(ek)

Using the definition of Gk and ﬁk r (5.3.53) can be rewritten as:

AS(sk) = - tr{/_\.G R Gk(Pk) o ¥ (KD, B O AH (5.3.54)

AG R Gk(Pk)22 (Kk)zz k@ AHk} +olg)

Hence, equation {5.3.54) becomes

M@ = - g tr{AG RAG (2),, + (K), MK 0 AR} + ofley) (5.3.55)

Since the bracketted term is a positive definite quadratic form, it is

possible to choose Ek such that 0 < Ek <1 and

Jt&kﬂ) - J(Bk) <0 | (5.3.56)
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~ Ll ~ ~
if AGk or AHk are non-zero. But, if AGk or AHk are non-zerc then

B and Bk are not equal. IfR

A/\
K41 and Bk are not equal then Gk

k+1

Il
or AHk are non-zero. \ o

The above theorem impliés tﬁat the direction [ak-GkI determined
by the gain approximation algorithm at the kth iteration is a downhill
direction for the minimization problem (5.2.12)-(5.2.13). Thus this
algorithm is in fact a descent methed. However, it will in general be
more effective computationally to use a gradient or accelerated gradient
method. The computation for the gradient algorithms and the iteration
{5.3.34)-(5.3.39) will be approximately the same at each step, but the
gradient direction will generally be superior. Also, acceleration
algorithms are available for the gradient method. Hence the gradient
would be expecied to converge more rapidly.

An exception tc the preceding remarks is the following situation.
If it could be determined a priori that the cost would decrease at each
iteration for some fixed €, then the relaxation parameter could be fixed
at this wvalue. In general, both the gain approximation algorithm and
gradient algorithms require several function evaluationsat each
iteration to determine a relaxation (stepsize) parameter value which
decreases the cost. The cost evaluation regquires the solution of
equation {5.3.9) and the evaluation of (5.3.8). Hence a significant
reduction in the amount of computation per iteration would occur if

the cost were only evaluated once.
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In general, it is not possible to determine such a value for
the relaxation parameter. However, for the output feedback problem
Levine [1969] was able to show that the cost decreased at each ite-
ration for gk=l. Thus, it may be advantageous to
use the gain approximation algorithm with Ek=l rather than a gradient

algorithm for the output feedback problem.

5.3.4 Decomposition to Riccati and Linear Matrix Egquations

This subsection develops an algorithm which requires the subsystem
filters have the same dynamics as the subsystem., It is motivated in
part by the derivation of the centralized gains in Appendix B and in
part by a previous decomposition developed by Sandell [1976]. A major
advantage of this decomposition is that only Riccati and linear matrix
equations of the subsystem dimension need be solved at each iteration.
However, unlike the previous decompositions considered in this thesis,
local convergence cannct be demconstrated with only the weak coupling
assumption.

For the remainder of this section it will be assumed that in
equations (5.3.1)-(5.3.4):

~
In = 1n

(5.3.57)

=

~ A
=A; B=B; C=¢

With these assumptions, the original equations can be transformed as

follows. Define



Then W_l

By premultiplying equations (5.3.3)-(5.3.4) by W and (W_l)’

respectively and postmultiplying by W and W'l
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equations can be written as:

where

3|
|
+
o)
>
+
1
.+.
o
I
o

2% wwltc |a-uc 0
HC A-BG
TAEw' = | =+ now'
- HOH'
g whowl=]o
Q
52 wow'
gl wh' ewt

- HOH'

HOH

(5.3.58)

{5.3.59)

respectively, these

{5.3.60)

{5.3.61)
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PEWRW = | P 4Py, - P, - Py Fia 7 Pa
Fa1 ~ T Fa2 i
E=wh = |k K.. + K |
11 11 7 %o
Kip * %y Kip + Kgp + Kyt Koy |

Using the definitions of X and P, equations (5.3.1)-(5.3.2) becomes:

— | JR——
RG P22 - B (K P)22 + 5 =20 {5.3.62)

- . rd
(Kll + K22 - K21 - K12)H9 + [ (K P)21 - (K P)1110+T =0 {5.3.63)

Egquations {5.3.60)-(5.3.61) can be partitioned as:

(A—Hc)Fll + "Ell(A-Hc)' +E4+ HOH + 511 = 0 (5.3.64)
(a-HC)P , + Elz(A-BG)' + Ellc'ﬂ' - HOH' + b, =0 (5.3.65)
(A—BG)Ezz + Fzz(A—BG)' + HCP., + lec'H' + HOH' + 522 =0 (5.3.66)
(A-HC) 'Ell + _11 (A-HC) + C'H'E21 + K HC + Q + Ell =0 (5.3.67)
(a-HC) 'K, + K, (A-BG) + cfH‘Eéz +0+ B, =0 (5.3.68)

g — [ —
{A-BG) K, + 22(A—BG) +Q+GRG+E,, = 0 {(5.3.69)
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Note that egqguations (5.3.62)-(5.3.69) are identical to the time
invariant equivalent of equations (B.9}-{B.10) and (B.16)-(B.21) of
Appendix B, when D, E, S and T are zero. In this case, Appendix B

showed that

P12 =0 (5.3.70)
22~ K12 = 0 _ (5.3.71)
When D, E, S and T are sufficiently small, P12 and (K22 - 12) will

be small also. Thus a decomposition guided by the centralized
solution derivation may be practical for some problems.
First consider equations (5.3.62)-(5.3.63). Expanding ({(5.3.62)

and solving for G gives:

-1 1= -1 - =1 3

G=R BK.+R BK - RSP, (5.3.72)

22 21%12F 22
Performing the same operations on (5.3.63) results in the equation:

H=5 COY+ (K. +K,. -XK,.-K.) K

- - ' -1
11 22 21 12 V(B +Pyy)C IO

127 K90 B11%P 5
(5.3.73)

When (5.3.70)-(5.3.71) hold {(and S and T are zero), the above two
equations for G and H are just those for the centralized feedback
and filter gains. Tt will be assumed that at the %EE iteration the

terms

S=R [B'X.P.. - s]P. (5.3.74)
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- T e N = -1
T = (K11+K22 K21 Klz) [(K12 K. ) (P__+P_)C + mi6G (5.3.75)

22 11 12

R . h .
will be evaluated using the values computed at the (Q-I)t iteration.

2 % .
Thus, ¢ and H are given by the equations

2 -1_+2 gZ—l

-+
G R BK22

il

{5.3.76)

4 . -1 A=
#o=F c o 1, -1 (5.3.77)

g, —£
The equations for K22 and Pll can be found by substituting

(5.3.76}-(5.3.77) into (5.3.64)})-(5.3.69):

(A—%g_lc)gil + Eil(A—gﬁ_lC)‘ - 5?1 ¢ ol Eil + 5 o+ ﬁi;l =0

{5.3.78)
AL=1 =2 —£ Ab-1 S N 5 AL-1
(A-BS ) Ky, + 22(A—BS )y - K22BR BXK,,+Q+E, = 0 (5.3.79)
where

~0-1 A1 ~-1 1

Dll = Dl1 + (T 10{TT )

=1 = A=L1 v _ ~R-1

E,, —E22 + {3 } R(S )

Equations (5.3.78)-{5.3.79) are Riccati egquations of dimension n, and
— £
can be solved for Pil and K22 using only values computed at the

. . 2 . .
previocus iteration. Then G and Hl can be computed using equations

(5.3.76)-(5.3.77). Finally, these values can be used to solve, in
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(5.3.66),

{5.3.68) and {(5.3.67).

Using the scheme described in the preceding paragraph, the

iteration becomes:

~-1 = =L A=l v =R -1 A =, -1
(a-T c)pll + Pll(A—T cy - PllC S} cpll + 5+ Dll =0 (5.3.80)
~AfR=-1 1—=f - AR=1 -4 -1 =2 ~f=1
{A-BS ) Ky, + K22{A-BS )} - K22BR B Ky, + o+ 322 0 (5.3.81)
&= ls'wr 4+ 81 (5.3.82)
22
=5 ¢ ot oot (5.3.83)
11
[ ! .1 =2 x, Lo L. 2. —
(a-H C)P12 + 912 (A-BG™) + pllc (H ) - HeE)Yy + Dlz = Q (5.3.84)
L.— L4 =2 g . =8 . L N % L1 —
{A-BG )P22 + P22(A—BG } +H CPlz + leC (B +HH)Y + D22 = 0
(5.3.85)
£ =R -4, 2 ) =
{(a-H C) K12 + Klz{A-BG } + C (H) K22 + Q0 + E12 =0 (5.3.86)
I —£, L voogon—p =2 2 S
{A-H C) 1<22 + K22(A HCY + ¢ (H) K21 + K12H C+04+ Ell =0 (5.3.87)

The iteration defined by (5.3.80)-(5.3.87) requires the solution

of two Ricecati equations, two Lyapunov eguations and two Sylvester

equations.

Unlike previous decompositions which have been considered, the

iteration defined by (5.3.80)-{5.3.87} cannot be guaranteed to



~184-

converge for sufficiently weakly coupledsystems, The problem is
that the FreCThet differentials of (5.3.80)-(5.3.87) with respect to
variables evaluated at the (i—l)EE-iteration do not wanish even in
the centralized problem {i.e. when S, T, D and E are zero). To see
this, consider the Frédchet differential (denoted by A) of (5.3.81)
with respect +to 5?;1 evaluated at the solution to the centralized
prcoblem:

A=-7P

29 {5.3.88)

This term is generally nongzero.

5.4 Example

This section applies the decomposition of Chapter 4 to an example
used by Wang [1972]. The example consists of the linearized dynamics
of an inertia wheel spacecraft attitude control device. This device
can be regarded as an interconnected system consisting of three sub-
systems, one corresponding to each of the three axes.

The state variables for each subsystem are the xroll, pitch and
yaw angles and their time ratesof change. The centreol inputs are the
torques produced by the motors oriented along the three body axes, and
the outputs are the observed angles. Thus each of the subsystems can be

represented by a single input, single output double integrator plant:

3
. = + X
X, = A, X, + Bu+ jzl Aijxj + Ei (5.4.1)

J#L
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vy, = C,x, + 8, (5.4.2)
1 1 1 ER
where
A, = |0 1 i=1,2,3
ii
0 0
S Sl I i=1,2,3; 3=1,2,3;
0 I#is kAL kS
0 _ e
I.
L
B, = 0 i=1,2,3
i
1
c, = [L 01
i

E{Ei(t)ﬁg(r)} Eié(t-":)ﬁij

E{8,(r)0 (1)} = 0, §(t-T)8,,

i 3 i ij
The constant parameters Ii and Qi are the moments of inertia of the
spacecraft about the iEE- body axis and the angular velocity of the
iEE-inertia wheel respectively. The parameter I is the moment of
inertia of the inertia wheels about their axes of rotation. The values

of these parameters are taken as:



-l86-

I, = 37.5
r = 40.0 (5.4.3)
2
I, = 42.5
I = 0.00084

A
Ql = 92 = 93 =0

The value of ! will be varied to control the strength of the coupling
between the subsystems.
The spectral densities of the white noise sources Ei and Oi will

be taken as;:

H o= 0 0 (5.4.4)
i

0 1
Oi = [.01] {(5.4.5)

Finally, the cost functional which is to be minimized is the
infinite horizon time averaged cost:
f 3
1 . 1 ' 2
J== L E (= +
2 t f Lo bxg0x, +ouilat

00 g .
tf £ 5 i=1l

where:
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= 1.5 0
Q2
o 3.0
= 2.0 0
Q3
o 2.5

Using the technique of Example 3.2, egquations (5.4.1)-(5.4.6} can be
expressed as the formulation of Chapter 3 requires. It was assumed that
a completely decentralized control system was desired (see Example 3.3).
The problem was then solved using the necessary conditions of Chapter 3
and the decomposition of Chapter 4. The supremal problem of Chapter 4
was solved using the decomposition of Section 5.2 and the infimal problems
were solved using a gradient search technigue as described in Subsection
(5.3.2},

The strength of the subsystem interactions were controled by varying
the parameter {i. Five cases were investigated, with {I given by the

following values:

Case 1: = 1.137
Case 2: 1 = 11,37
Case 3: = 113.7
Case 4: £ = 300.0

Case 5; £ 1137.0
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The initial guess for each case was the decoupled centralized solution.

The results were disappointing. Convergence occurred for the first
three cases. Cases 1 and 2 required only one complete iteration to
converge to the desired tolerance (a relative change in the element of
the gain matrices of less than 10—6). Case 3 required seven iterations.
However, the difference in the cost between the centralized decoupled
controller and the optimal decentralized gain was zero to machine
accuracy.

Two problems occurred as the subsystem interactions increased.
First, case 4 diverged even though the subproblems could bhe soplved ac-
curately. This problem can probably be overcome even for considerably
stronger interactions by using a relaxation (SQR) algorithm (see
Lehtomaki [1978] for several encouraging applications of SOR decompositions
to Lyapunov equations). The second problem occurred in case 5. The
subproblems become ill posed as minimization preoblems. To correct this
difficulty another solution method for the infimal problems must be

found.

5.5 '‘Summary and Discussion

This chapter has presented several solution methods for the supremal
and infimal problems. Section 5.2 developed a class of decompositions
which can be used to solve the supremal problem. This class allows the

computations to be structured to take advantage of the particular problem
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being solved. &All the algorithms contained in the class possess two

important features:

i} The subproblems are linear
i1i} The resulting iteration converges for
sufficiently weakly coupled systems.

All of the four methods discussed in Section 5.3 suffer some
drawback. Newton's method requires the solution of a system of linear
equations which can have prohibitively large dimensions even for rela-
tively small gsubproblems. Descent methods require the subprcoblems to be
well posed. This may not cccur even for relatively weakly coupled
systems as was demonstrated by the example of Section 5.4. Subsection
(5.3.4) developed a decomposition which resulted in Riccati and linear
matrix equations at each iteration. However, a specific system structure
is required and convergence cannot generally be guaranteed ewven for
weakly coupled systems.

The example of Section 5.4 showed the importance of further de-
veloping a good infimal solution algorithm. Is also demonstrated the

need to develop and use a successive over-relaxation algorithm.
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6. CONCLUSION

6.1 Summary

The contents of this thesis can be separated into two distinct
divisions. The first, contained in Chapter 2, is concerned with the
development of a general theory of decomposition algorithms for opti-
mization problems. The remainder of the thesis develops an application
of the methodology of Chapter 2 to a decentralized linear stochastic
optimal control problem.

In spite of the large amount of literature which has bhecome avail-
able in recent years, there is a lack of a unifying theory of hierarchical
control and coordination. The intent of the development of Chapter 2 is
directed at this need. The decomposition formulation provides a means
of classifying and analyzing groups of decomposition algorithms which
are fundamentally the same bhut differ only in the partition of the
variabie space. Thus the need for a separate analysis for each application
is avoided and the basic features of the individual algorithms are
exposed.

Chapter 2 approaches the theory of decomposition of coptimizaticn
problems indirectly. It is assumed that a set of necessary conditions
for the optimization can be expressed in the form of a system of nonlinear
equations. This system of equations is then decomposed using an extension

of the splitting methods for solving linear equations,
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There are several important and desirable features of the theory
which results from the approach described in the preceding paragraph.
First, the theory is sufficiently general that it includes all of the
hierarchical algorithms proposed to date and many of the classical one
point iterative algorithms. 1In fact, it can be demonstrated that se-
veral of the hierarchical algorithms are simply special cases of the
classical algorithms.

The second major feature is the ability to specify individual
decompositions through the choice of the core function. This is
important for two reasons. First, it admits a constructive approach to
designing decompeogition algorithms. The consistency conditions which
are required to ensure that the decomposition solves the original
problem are imbedded in the formulation. At the same time, all the pro-
perties of the decomposition can be related directly to the core. Hence,
the technical considerations can be suppressed and the more important
properties can be examined easily through the use of this decomposition
approach.

A third feature of the theory of Chapter 2 isg the convergence an-
alysis. Because few assumptions are placed on the original optimiza-
tion problem, the convergence results are local in nature and have
not been considered to date in the hierarchical literature.

Finally, the decomposition formulation allows multiple decomposi-
tions of the same problem to be analyzed in terms of the original

decompositions. When such decompositions are viewed in the context of
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hierarchical theory, the result is a multilevel structure. For the
first time, such hierarchies with more than two levels have been
developed and explicitly analyzed.

The second part of this thesis applies the theory of Chapter 2
to a linear stochastic optimal control problem. The particular control
problem considered requires the controller to be a linear finite
dimensional system. This problem is then reformulated as a determi-
nistic minimization and necessary conditions are derived. These equa-
tions are then decomposed for the interconnected system problem
formulation using the Gauss-Seidel decomposition algorithm.

The decomposition results in a two level structure for the com-
putation of the best linear controller which satisfies the problem
constraints. The computational burden is reduced at both the supremal
and infimal level problems. The supremal problem can be further decom-
posed and results in a multilevel hierarchy. When this multiple
decomposition is used, all the subproblems are linear except for the
original infimal problems. The latter problems are similar in structure
to the necessary conditions which result from centralized optimal
control problems.

The convergence of the resulting algorithm was analyzed using the
local convergence results of Chapter 2. Although no definitive results
or testswere derived, several guidelines and ceonservative sufficient

tests were proposed., In addition, the algorithm was shown to
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converge if the subsystem interactions were sufficiently weak.

The algorithm was applied to the linearized model of an inertia
wheel attitude control device. The results were disappointing for
this problem, but demonstrated that the algorithm suffers several
problems which need more attention. First, in any application the
algorithm will probably have to use a relaxation technique. Second,
the infimal preoblems in the example were solved as minimization problems.
However, these became ill posed even when the subsystem interactions

were weak. Thus another solution method must be used.

6.2 Further Research

The theory begun in Chapter 2 provides just the basic fundamentals
needed to unify the area of decomposition and coordinaticon, There are
many directions future research in this area could take. First, the
theory needs further development and study. Included under this direc-
tion would be the development of the relationships between the local
and global convergence theories, and the relationships between properties
of the decompositions and their respective cores. A second direction
would be the study of individual classes of algorithms. Also, the
theory of multiple decompositions has just begun in this thesis.

The application of the Gauss-Seidel decomposition to linear
stochastic optimal control problems demonstrated several difficulties.
Most of the research directions are technical in nature. Based on the

results of the example, a relaxation algorithm must be used. &also,
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new solution methods for the infimal problems need to be developed.
Although the results of the example were disappeointing, this

approach should still be examined further.
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APPENDIX A: ADJOINTS OF SEVERAL LINEAR OPERATORS

Given a linear operator L: X * Y where X and Y are Hilbert spaces
with inner products <-,-§x and <-,-2Y , the adjeint of L, if it

*®
exists, is denoted by L : Y > X and defined by

*
<y, L = <Ly, Xy vVxeX, yevy (A.1)

Let X and Y be defined as the following Hilbert spaces.

T
A
X = Lgxn (SR,B,?\ItO.T]); <x,y>X = tr fx'(t)y(t) Vx,y € X (A.2)
t
O
A nxn _ '
Y =R ; <x,y>Y = tr x'y Vx,y € Y (A.3)
Consider the following linear operators:
t
1
: : E{- = .4
For XX (-y - [ @A(t,d) (0)<I>A(t,cr)dcr (A.4)
e
T
Fl: X » ¥: E(-) - & _(T,0)E(0) 8 (T,0)do (3.5)
A A A A
O
o o (3.6
. >+ X3 - .
HA. Y X: P A(t,to)P A(t,to) A.6)
T 1
: -+ Y -+ A7
HA Y > Y: P @A(T,tO}P @A(T,to) ( )
L.: Y=>Y¥: P - AP + PA' (A.8)
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where @A{t,c) is the transition matrix defined by:

d
s @A(t,c) = a{t)®(t,0); ®(0,0) =1

The adjoints of (A.4)-(A.8) are given by the following lemma.

{A.9)

Lemma A.l: Let X and Y be Hilbert spaces defined as in (A.2)-(A.3).

Then the adjoints of the linear operators in (A.4)-(A.8) are given by:

*

T
FioX X Q(‘)—"“[ 5 (0,£)9(0)8, (0, )
t

F.o: Y > X3 K—*@A(T,t)l( @A(T,t)

T
* L
H,: X > Y: Q(-)—i/- @A(o,to)Q(O)@A(c,to)dc
t

e}

*
T 1

H > Y

a ? ¥ Y: Km0 (T,£)K & (T,t)

*
LA: Y+Y: K-> AaA'K +Ka

(n.10)

(A.11)

(A.12)

(n.13)

(a.14)

Proof: The proof involves standard manipulations using the definitions

of inner products on X and Y and the definition of the adjoint {(A.1).

a) First, consider L = FA' For arbitrary Z{-} and Q{(-) in X, the

inner product is (using {(A.4}).

<Q(-), FA(E(‘)Px

T t .
= trf f Q'(t)@A(t,d)E(c)@A(t,d)dcrdt
t t
o] 8]

(n.15)



-197-

Interchanging the integrals in (A.15) gives

T T
<Q(-),I:‘A(E(-))>,X = trf f ok (t)@A(t,G)E(0‘)®A(t,0)dtdo‘ (A.16)
t, Jg
Since
tr AB = tr BA vAe R g™ (A.17)

equation (A.16}) becomes

T T .
QL) Fy(E()) >y = trf [f @A(t,G)Q'(t)@A(t,U)dt]E(G)dG (A.18)

t o)
&)

Now, switching the roles of £ and G in (A.18) gives

S L

* —
<Fy(0(-)), E()>y

T

Q=) F, (B())>y @A(G,t)Q(O)@A(U,t)d1 E(t)dt

{n.19)

where F; has been defined as (A.10).

h) Let L = Fi in (A.1). Then, using (A.5) the inner product on
Y is:
T
<K,FT(E(-))> = tr X' / & (T,t)E(t)d. (T,t)dt (a.20)
A Y © A A
o)

Using (A.17), (A.20) becomes

T
T, _ ' '
<K,FA(_(-))>Y = tr .[ [@A(T,t)K @A(T,t)J E(t)dt

o) (n.21)
*

—= T -
= <F, K, EC)>
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where Fz has been defined as (A.11).

c} Let L = HA in (A.l1). Then, using (A.6) the inner product on

X is:
T
(), B (P)>y = tr f Q' (£)&, (t,t )P @A(t.to)dt (A.22)

t
o]

Again using (A.17), (A.22) becomes

T ] '
Q) HA(P)>x=tr[f @A(t.to)Q(t)CI)A(t,to)dt] P -
t

o *
= <H (Q()), P>,

*
where HA has been defined as (A.12).

d) Let L = Hi in (A.1). Then, using (A.7) the inner product on Y
is:

T _ . !
<1<,HA(1>)>Y = tr K @A(T,to)P @A(T,to) (a.24)

Using (A.17}), (A.24) becomes

!

T ' ,
<K, H (P)>y = tr [@A(T,to)x @A(T,to)] P

{a.25)
T

*
<HA (K), P>

*
where H: has been defined as (A.13).
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e} Finally, let L = L

N in (A.1). Then, using (A.S) the inner

product on Y is:
<K, LA(P)>Y = tr K'(AP + PA') (A.26)

Using (A.17), (A.26) becomes

<K, LA(P)>Y tr (A'K + KA)P

{A.27)

Il

*
<L_(K), P>
5 (K1, P

*
where LA has been defined as (A.14).
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APPENDIX B: A SOLUTION TO THE CENTRALIZED NECESSARY CONDITIONS

Consider the problem formulation in (3.2.1)-(3.2.7) with N=1,
A(t) = A(t), B(t) = B(t) and C(t) = C(t). Let the state of the closed

loop system be denoted by Eﬁ(t) where:

o A |xtey - x| _ [ew
*glt) = N = ] (8.1)
x(t) x(t)
Then §B(t) is given by the differential equation
xB(t) = A (t)xB(t) + E(t); xB(to) =X g {B.2)
where
A{t) = |a(t) - HE)C(D) 0 (B.3)
H{t)C(t) A(f) - B{t)G(t)
E{E(R)E (t)} és(t) = |5 + EHOH' -~ HOH' (B.4)
- HOH® HEH'
~ ~ A _ P 0
EIX gXpd =P = | ©

In terms of X%(t), the cost (3.2.4) is given by:
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J = tr E{ f B egmEmar + ¥ @K, X } (B.5)
tO
where
oty = [o 0 ]
| © Q + G'RG

Kep = Kk % J

The optimization problem corresponding to {(B.1)-(B.53) can be

placed in the form of (3.3.13)-(3.3.14):

min J(G(-),H(+))

N (B.6)
G()e L‘;X (R,B,})
H(')e Lgxp ([RIBf}\)
subject to
g—P(t) = A(D)P(t) + P(E)A(E) + E(t); P(t ) = P (B.7)
t fe) oB
where

T

J(G{-).H(-)}=trf Q(t)P(£)dt (B.8)
t
o
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Theorem 3.1 can be used to derive necessary conditions for (B.&)-
{B.8). Suppressing the time dependence of the matrices involved, the

necessary conditions are:

- t 1 t '
[-(K Pyy + KppPyp) + (K Py + K0Py 50]C (8.9)

1
+ (Kll + K22 - K12 - Klz)HG = 0

- 1 ¥ + + = -
B (K12P12 K22P22} RGP22 0 (B.10)
P=AP + PA' + 5; P{t) =P (B.11)
[o] oB
K=-AK - KA - Q; K{(I) = KTB {B.12)

Note that conditions (B.9)-(B.1l2) are equivalent to {3.4.65)-(3.4.66) and
(3.4.53)-(3.4.54) since the state ﬁB{t) in this appendix is related to
x({t) of Chapter 3 by the transformation

~

xB(t) = Wx{t) (B.13)
where
W= |1 -I
0 I

Thus K(t) and P(t) in this appendix are related to K(t) and E(t) in

Chapter 3 by:

K(£) = W'K(E)W (B.14)

Il

P(t) =W POW . (B.15)
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Equations (B.1l) and (B.1l2} can be written in partitioned

form as:

.ll - (A-HC)Pll + PH(A—HC) '+ Z + HOH'; Pll(to) = Po {B.16)

1:312 = (A-HC)P,, + P ,(A-BG)' + P .C'H' - HOH'; P, (t ) = O (B.17)

'22 = (A-BG)P,, + P, (A-BG)' + HCP , + P],C'H' + HOH'; P, (t ) = O
(B.18)

.11 = -(A~HC)' K, = X ; (B-HC) = C'H'K}, ~ K JHC = 07 X, () = K,
{B.19)

.12 = - (A-HC)' Klz - Klz(A—BG) - C'H'K22 - 0; K12('I‘) = KT (B.20)

'22 = -(a-BG)' K , - K,,(A-BG) - Q - G'RG; K,,(T) = K, (B.21)

To demonstrate that the classical linear gquadratic Gaussian (1QG)
solution satisfies the necessary conditions (B.9)-(B.10) and (B.16)-

(B.21}), it will be assumed that H(t) is given by:

-1

I

H= jc'@ (B.22)

where z

e

E(x-%) (x~%)' = P
H X)) RBX = 11
Assuming (B.22}, the remainder of the classical LG solution will
be derived and (B.22} will be shown teo be a consistent assumption.

Note that the choice of the form of H could be motivated by (B.1l7) and

physical considerations. One might suspect that the covariance of the
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estimate error and the estimate (Plz) should be zere for all

t e[tO,T]. From (B.17), this could occur only if:

[Pllc' - HOIH' =0 Vi €[to,T] {B.23)

The assumption (B.22) of the foxrm of H ensures that (B.23) will hold.

Assuming (B.22), equation (B.l17) becomes:

P = (A—HC)P1

- 1 - =
12 + Plz(A BG)' ; Pl2(to) 0 (B.24)

2

Thus
Plzft) =0 vVt €[tO;T] {B.25)

Using (B.22) and (B.25) in (B.16) gives the Riccati equation for

the Kalman filter:

= 1 = - t . =
11 APll + PllA + = Pllc GCPll, Pll(to) PG {B.26)
Also, (B.1l8) becomes
- = - - 1 | S = 0 .
P22 (A BG)P22 + P22(A BG)' + HOH' ; Pzztto) {B.27)

Note that P the covariance of the estimate, is determined by the

227
closed loop deterministic system dynamics driven by the white noise

process H@.

Now, using (B.22) and (B.25} in {B.1l0) gives:

+ RGP, = 0 {B.28)

Rt
B K22P22 22
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Or, eguivalently

Then equation (B.21) becomes the control Riccati equation:

-

T ' - - 1
K22 A K22 K22A Q + K22 BRB K22

Now, subtracting equation {B.20) from

a PR ~ _
at Kpp ~ Kyp) = ~(RHO) 'Ky, - K, )

Hence

; K22(T) = K

T

{(B.21) gives:

{K22 - Klz)(A—BG};

K22(T) - Klz(T) =0

K.. =K vtelt T]
o

Finally, using (B.25} in (B.9) gives

_ - 1 P _ 1
(Kjp = RyIPy 0 + LMKy, = Kpo)

Substituting (B.32) in (B.33) gives

~{K_ , - Klz) {Pllc! - H3) =20

11

(K22 - K12)1H8 =0

(B.2%)

(B.30)

{B.31)

{B.32)

{B.33)

{B.34)

Thus (B.22) satisfies (B.34)} and hence, as expected, the classical

LOG solution given by (B.22), (B.26),

the necessary conditions (B.9)-(B.12).

(B.29) and (B.30) satisfies
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