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HIERARCHICAL CONTROL AND DECOMPOSITION OF DECENTRALIZED 

LINEAR STOCHASTIC SYSTEMS 

by 

Douglas P. Looze 

Submitted to the Department of Electrical Engineering and 
Computer Science on August 31, 1978 in partial fulfillment 
of the requirements for the degree of Doctor of Philosophy 

ABSTRACT 

The contents of this thesis can be separated into two dis­
tinct divisions. The first is concerned with the develop­
ment of a general theory of decomposition algorithms for 
optimization problems. The second develops an application 
of the methodology of the decomposition theory to a decen­
tralized linear stochastic control problem. 

An indirect approach to the development of the theory of 
decomposition of optimization problems is taken. It is 
assumed that a set of necessary conditions for the opti­
mization can be expressed in the form of a system of 
nonlinear equations. It is this system of equations which 
is decomposed. The result is a constructive approach for 
the decomposition of optimization problems which includes 
most hierarchical algorithms proposed to date. Because 
the approach is indirect, the convergence analysis is 
local in nature. Also, the formulation admits the develop­
ment and analysis of multiple decompositions (and hence 
multilevel hierarchies). 

The theory of decomposition is applied to a linear sto­
chastic optimal control problem with information flow 
constraints. The particular problem formulation con­
sidered is the interconnected system problem where the 
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controller is required to be a linear finite dimensional 
system. The problem is then reformulated as a deter­
ministic minimization and necessary conditions are derived. 
These conditions are· decomposed to take advantage of the 
interconnected system structure. The convergence pro­
perties of the algorithm are examined, and solution 
algorithms for the decomposed subproblems are proposed. 
Finally, the algorithm is applied to the linearized 
model of an inertia wheel attitude control device. 

Thesis Supervisor: Nils R. Sandell, Jr. 
Associate Professor of Electrical 
Engineering and Computer Science 
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1. INTRODUCTION 

1.1 General Discussion and Background 

In recent years there has developed a considerable literature in 

what is termed large scale systems theory (see, e.g. Ho and Mitter 

[1976]; Guardabassi and Locatelli [1976]; Sandell et.al. [1978] gives 

an extensive literature survey). This theory has touched upon all the 

traditional areas of system theory. However, in spite of the amount of 

literature available, the definition of a large scale system is very 

elusive and the boundary between large scale and non-large scale systems 

is ill-defined. The classification of a system as large scale is 

usually determined by the inability of traditional techniques to handle 

the problems which the system presents, either due to computer time and 

word length limitations or to the extensive communications required to 

implement the solution. Both these problems often occur simultaneously 

in large scale systems. 

The general control problem considered in large scale system theory 

is that of optimal control of a nonlinear stochastic system. An approach 

often used (Lefkowitz [1966]; Findeisen [1975]; Athans [1971]) is to 

treat the nonlinearities in a deterministic framework and approximate the 

stochastic effects as white noise driving a linear system. The resulting 

control law is computed and implemented in two layers. The upper 

(economic) layer is a deterministic nonlinear control problem which at-

tempts to optimize the economic objectives of the system. Meanwhile 
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the lower (stabilizing) J,aye;r is a stochastic linear control problem 

which attempts to maintain th~ system trajectories near the deterministic 

economic optimal (and thus, in a sense, optimizes the stochastic sta-

bility of the system). 

The objective and difficulties associated with these two problems 

are very different. Due to the equivalence of open and closed loop 

controls in deterministic optimal control and the difficulty of deter-

mining the closed loop solution for nonlinear problems, the economic 

layer problem is usually solved for the open loop form of the control. 

The control law may be determined on-line but is implemented only after 

the solution is obtained. Thus the total amount of computation time is 

an important consideration; communication is not an issue due to the 

open loop structure of the solution. ln contrast, the. stabilizing layer 

solution must be closed loop. Many communication links are required for 

systems with a lar9e nmnber of state variables. Computational problems 

are still important, but are often neglected. 

aierarchical control theory {Mesarovic, et.al .. [1970]; Wismer 

[1971]; Findeisen [1976]; Bailey anq La'U,b [1978]; Smith and Sage [1973]; 

Singh [19761 ; Be.:rnhard 11,976]) has been -rn.otivated by the success of 

decomposition techniques in mathematical programming {Lasdon [1970]; 

Geoffrion [1970]). Since the natural generalization of these techniques 

is to open loop control of deterministic systems, hierarchical control 

1 
is mainly concerned with the economic layer problem The chief 

1There are exceptions to this and some of the other statements in this pa­
ragraph, particularly in the more recent literature {Singh et.al. [1976]; 
Findeisen and Malinowski [1976]; Chong and Athans [1976]). 
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characteristic of hierarchical control is the. iterative computation of 

the globally optimal control by coordinated solution of certain sub­

problems. This computation, which is generally envisioned as taking 

place off-line, is decentralized in the sense that the subproblems can 

be solved without knowledge of the global model of the control process. 

However, the computation does require e~tensive communication between 

the subproblems and the coordinating proble;m. ';rhe advantage of the 

hierarchical control approach is computational. Savings in computer 

time and space are often apparent in a single. processor implementation, 

but. the real advantage of the approach is evident in a multiprocessor 

environment where the. global problem is solved by a set of intercom­

municating processors, no one of which is alone powerful enough to solve 

the problem. 

In contrast, decentralized control theory (Witsenhausen [1971]; 

Ho and Chu {1972]; Ho and Chu {1974]; Sandell and Athans [1978]; Wang 

and Davison [19731 ; Cor;flt\at and t1or$.e {1976]) is e.xclu,sively concerned 

with feedback.. Linear proble;m forIQulations are most often considered 

since the theory of nonlinear feedback control is not as well developed 

as the li.near theory. 'l;'herefore, the. practical application of the 

theory is priilla;dly to the stabilizing layer control problem. The chief 

characteristic of deJ:entralize.d control is thpt restrictions are placed 

on the real t:±:me in.:eo:mnation flow. between the controllers of the process. 

aoweye:tJ, the. control laws that define the controllers mathematically 

are derived in a completely centralized fashion using full knowledge of 
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the global system model. Determination of these control laws is usually 

computationally more difficult than determination of a centralized 

control law with no restrictions on information flow. The advantage 

of decentralized control is the reduction (or elimination) of require­

ments for on-line communication links between the process controllers. 

From the above discussion it is apparent that both the hierarchical 

and decentralized control theories address issues of concern in large 

scale system theory. Despite this fact, the theories are virtually 

unrelated at the present time. 

1.2 Contents and Contributions 

The contents of this thesis are logically divided into two parts 

which have distinct objectives. The first part, contained in Chapter 2, 

develops a general theory of decomposition for nonlinear equations. 

The second part contains the remainder of the thesis. By using the 

theory presented in Chapter 2, it establishes a relationship between the 

hierarchical and decentralized control theories. Specifically, a 

hierarchical structure for the computation of a decentralized control law 

is considered~ 

One of the ma.in ;f a,ilu,re~ of hierarchical control theory to date has 

been the lack. of a general theory of decomposition.. As a consequence, 

many algorithms h~ve been proposed which either are essentially the same 

as previ:o~s algorithms or are formulated only for specific problems. 

A recent paper by Cohen [1978] has presented a theory which includes 

most of the hierarchical algorithms proposed to date.. This theory 
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approaches the decomposition from an optiro,izati.on viewpoint. As a 

result, global convergence results are obtained through suitable con­

vexity assumptions on the optimization problem. 

Chapter 2 of this thesis presents a parallel development of a 

similar theory. However, Chapter 2 approaches the decomposition of 

optimization problems from an indirect viewpoint. It is assumed that 

necessary conditions for the optimization problem can be stated in the 

form of a system of nonlinear equations. The hierarchical decomposition 

theory is then developed through the decomposition of this system of 

equations. Because the approach is indirect, the convergence results 

are local in nature. However, the assumptions placed on the optimization 

problem are less restrictive than those required for a global analysis. 

When such assumptions are made, the local convergence results also 

apply globally. 

The flavor of the approach of Chapter 2 coincides with the struc­

ture and derivation of ,m.any of the currently proposed hierarchical 

algorithms. M;ost are developed through the use of necessary conditions. 

It is only after the decomposition is derived that the results are 

interpreted in the optimiza,tion ;Er~ework. Hence. the theory of Chapter 

2 applies directly to ·most hierarchical algorithrqs. 

Another advantage of the. forrqulation of Chapter 2 is that it can 

:Pe extended to encompass 'IQUl tip le decom.posi tions and the res·ul ting 

multilevel hierarchies~ Because no conve:x;ity assumptions are used, 

convergence conditions can be easily deyeJopeq f~om. the basic theory. 
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This extension is begun in Chapter 2, and for the first time a three 

level hierarchical structure is analyzed. 

The second part of this thesis considers a particular linear 

stochastic control problem. Specifically, the controller structure for 

the problem is required to be linear with a fixed (but arbitrary) finite 

dimension. This problem, formulated in Chapter 3, has been considered 

by many authors in varying contexts (Levine and Athans [1970]; Kosut 

[1970]; Chong and Athans [1971]; Levine et.al. {1971]; Kwakernaakand 

Sivan {1972]; Wang [1972]; Galiana et.al. [1973); Davison et.al. [1973]; 

Cohen [1977]; Looze et.al. [1978]). 

The approach of each of the authors cited in the preceding paragraph 

is the same. The formulation of the problem allows a deterministic 

equivalent optimization to be stated. Necessary conditions for this 

problem can then be derived. Chapter 3 follows the same approach. 

However, the necessary conditions are stated in a more general form than 

any others to date. 

The necessary conditions for the. interconnected subsystem problem 

are decomposed in Chapter 4 ,using the theory developed in Chapter 2
1

. 

The result is a hierarchical structµre fol;' the computation of the. best 

linear controller which satisfies the information flow constraints. This 

algorithm has several important properties. First, the algorithm is 

shown to converge if the subsystem interactions are sufficiently weak. 

1see Sandell [1976]; Looze anq Sandell [1977a], [1977b] and [1978]; for 
earlier but incomplete developments of this idea. 
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This property is e:xploited in the development of a practical conver­

gence test. Second, the algorithm produces a stabilizing controller 

at each iteration. This raises the possibility (discussed briefly in 

Chapter 4 and more extensively in Chapter 6) of applying the structure 

in an on-line mode. Finally, it is the first proposed hierarchical 

algorithm for linear stochastic systems which reduces the computation 

at each level. 

The remainder of the thesis is concerned with the problem of ap­

plying the algorithm to a practical problem. Section 4.4 of Chapter 4 

attempts to simplify the convergence condition for the iteration. A 

sufficient condition involving the concept of block diagonal dominance 

(see Feingold and Varga [1962]) is derived, but still requires consi­

derable computation. 

Chapter 5 reviews several solution methods for the inf imal and 

su.J>remal problems which result from the decomposition. Included in 

the discussion is the possibility of using further decompositions as 

solution algorithms,. This is recoJQITtende.d for the suprem&l problem. 

The proposed infi:mal solution methods also included Newton~s algorithm, 

gradient search algorithms, and an extension of an algorith;m. used by 

Levine {1970] and Wa,ng {1972]. ';(;'he algo;rithm is applied to the 

linearized, model at an inertia wheel attitude control device. 
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A summary of the results of this thesis and a discussion of 

possible research directions is presented in Chapter 6. 

1.4 Notation 

In the following, let X = x x x x 1 • • • N and Y be Banach spaces 

and assume f: X + Y. Then define: 

L(X) ~ {bounded linear operators L: X-t<X} 

6 
L(X,Y) = {bounded linear operators L: x+y} 

6 of (x;6x) = Frechet differential of f at x in the direction 6x 

3f ~ Frechet derivative of f(3f s L(X,Y)) 

8.f ~ Fre~het derivative of f with respect to the ith argument 
1. 

f
(i) 6 .th 

1- Frechet derivative 

any function such that 

-p {·} 6 spectral radius operator 

6 R set of real numbers 

B ~ Borel a-algebra of ~ 
6 A. [t ,T] Lebesgue measure on [t ,T] c IR 

0 0 

o c 11h11 n> 

I lhl In 
= 0 
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space of all real valued vector functions 

x: [t ,T] .-T IRn such that the Lebesgue integral 
0 

T 

f x• (t)x(t)dt is finite. 

t 
0 

11 
o .. = Kronecker delta function 

l.J 

o(t) ~ Dirac delta function 

11 E{·} = Expectation operator 

11 
A' = transpose of A 

1\s1 A 
NN 

diag [B. : i=l, ... ,N] 
l. 

0 • • • • • • 0 

0 

0 0 •••••• BN 
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2. SOLUTION OF NONLINEAR EQUA'I'IONS BY DECOMPOSlTION 

2.1 Introduction 

An increasingly co;m;mon approach to solyi_ng optimal control 

problems utilizes the concepts of decomposition and coordination 

to develop iterative hierarchical control algorithms (Mesarovic, 

Macko, and Takahara [1970]; Bailey and Laub Il978]; Smith and Sage 

[1973]; Singh Il976J; Bernhard [1976]; Lasdon 11970]; Geoffrion 

[1970]; Singh, Hassan, and Titli {1976]; Findeisen and Malinowski 

[1976]; Chong and Athans [1976]; Le.fkowitz [l966]; Findeisen 

[1975]). Many of these al9orithms exhibit fundamental similarities, 

but until recently a basic theory of decomposition and coordination 

has not been available.. Now, with the recent paper by Cohen [1978] 

a general framework for decomposition algorithms is beginning to 

emerge. The major llt\portanc~ of this type of forJQulation is that 

it allows attention to center on classe.s of algorith,ms rather 

than the individual algorithm, thus d,eve.lo;ping greater insight into 

the essential sd:milarities and, (iif;fe;re.nces betwen algorithms. 

This chapter develops an alternate framework for the study 

of the theory of decompos~tion and coordination. The general 

decomposition algorithm is formulated and examined from a numerical 

analysis ·viewpoint,, The result is a framework which includes a 

larger class of algorithms for differentiable optimization problems 

than Cohen's formulation. The approach allows the development 
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of local convergence re.sults withO"µt imposing convexity a,ssumptions 

on the original optimization problem. Such results have not been 

obtained to date in the hierarchical control literature. 

The precise approach used is to generalize a method used in many 

hierarchical control algorithms (Singh {1976]). This method involves 

using iterative algorithms to solve the two point boundary value 

problem resulting from a deterministic optimal control problem. The 

particular iterative algorithm used determines the structure of the 

two level hierarchical controller. This approach extends directly 

to any optimization problem for which a set of necessary conditions 

can be expressed as a set of possibly nonlinear equations. The class 

of decomposition algorithms which results is sufficiently general to 

include all the open loop hierarchical control algorithms for optimal 

control problems developed to date. Other common iterative solutions 

to optimization problems fit the framework also. 

Many of the decomposition algorithms governed by the decomposi-

tion theory of th;is, cha_J?te.:r ca,n l:>~ given hie;r-archical interpretations. 

The result is invariably a two level structure. However, the 

decomposition framework is further developed to allow multiple 

decompositions of the same problem. Thus .Jn,u.lti:leveJ hierarchical 

structures can be considered. Specific results are derived for 

three level structures which result from the use of two arbitrary 

decompositions. 
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The contents of the chaptep are as. fol, lows.. Section 2. 2 

provides a brief summary of the needed variational results. Secti.on 

2.3 formulates the decomposition framework for nonlinear equations, 

and relates the framework both to Cohen's work and to the earlier 

hierarchical formulation of Mesarovic et.al. [1970]. Multiple de-

compositions of a single problem are discussed in Section 2.4. 

Section 2.5 summarizes and discusses the results of this chapter. 

2.2 Derivatives in Abstract Spaces 

The concepts of derivatives and differential.sin Banach spaces 

will be needed to relate the nonlinear iterative methods to the 

linear techniques and for the convergence analysis of the 

iterations. In the following, let X and Y be normed linear spaces 

and let f be a possibly nonlinear transformation. 

f: x + y (2.2.1) 

Def i.ni tiop: 

exi:sts· o;e Cx; h} e:· Y' wh,ich :t.s line.ap and continuous with respect to h 

such. th.at, 

11 f (x+h)-f (x)-Of (x;h) 11 ;::: ,Q 

I !hi I 

then f i:s Fre"'chet d:t~ffe.rential:>le at x and of (x;h) is the ~rechet 

differential of f at x with increment h. 
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The Frechet differential vosesses the. !ollowing properties. 

, 
Lennna 2.1: If the function f of (2.2.1) is Frechet differentiable 

, 
at x then it is continuous at x. The Frechet differential is unique 

and is given by 

of (x;h) = ~a f(x + ah) j 
a=O 

Proof: Luenberger [1969], pp. 176-177. 

(2.2.2) 

By definition, if f is Frechet differentiable at a point x, the 

differential is of the form 

of (x; h) f I (X) h (2.2.3) 

where 

f': X + L(X,Y) ~{bounded linear operators L: X + Y} 

The transformation f' is the Frechet derivative of f and the linear 

~ 

operator f' (x) is the Frechet derivative of f at x. If the function 

f is a functional on X (i.e., if Y = R), then f' (x) is often referred 

to as the gradient of f at x. If f' is continuous on an open set 

U c X then f is said to be continuously Frechet differentiable on u. 

Since L(X,Y) is a normed linear space, the theory of Frechet 

differentials can be applied to the function f'. 
,, 

If the Frechet 

derivative of f' exists, it is referred to as the second Fre'°'chet 

derivative of f, and is denoted f": 
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f": x + L(x, LCX,¥)) (2 .. 2.4) 

, 
If f" is continuous then f is said to be twice continuously Frechet 

differentiable. The theory and terminology can be extended to all 

higher order derivatives in a similar manner. The following notation 

. d .th ~ . . will be use to denote the i Frechet derivative evaluated at x E X: 

f (i) (x) E L (i) (X, Y) 

where L(i) (X,Y) is defined recursively by: 

L(l)(X,Y) L(X,Y) 

L (i) (X,Y) = L(X, L (i-l) (X,Y)). 

,, 
Much of the theory of ordinary derivatives extendsto Frechet 

derivatives. For example, the concept of partial derivatives has 

a straightforwa.r.dextension. Let f :X
1 

x X
2 

x .•• x Xn + Y where 

d d 1 . h h . th . 1 x
1

, ... ,xn' an Y are norme inear spaces. Tent e i~ partia 

;' 

Frechet derivative at {x , •.• ,x) is defined as the unique map 
1 n 

x ... x x + L(X. ,Y) 

such that for each h E X. 
i 

if the limit exists. 

n i 
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Other extensions of the theory of ordinary derivatives which 

will prove useful are the chain rule for differentiating compositions 

of functions, the Taylor series expansion of a function, and the im-

plicit function theorem. These are given by the following three 

theorems. 

Theorem 2.1: (Chain Rule) Let X,V,Y be normed linear spaces. 

Suppose g: X + V and h: V + Y are Fre'chet differentiable at x and g(x) 

respectively. Then the composite map f: X + Y given by 

f(x) = h(g(x)) (2.2.5) 

is Fre~het differentiable at x and 

f' (x) = h' (g (x) ) g' (x) (2.2.6) 

Proof: Ortega and Rheinholdt [1970], p. 62. 

Theorem 2.2: (Taylor expansion) Let f be n-times Fre~het dif-

* * f erentiable at x • Then there is an open neighborhood U C X of x 

such that for each x £ U and 1 < m < n 

* f (x) f (x ) + 
m 

L: 
i=l 

1 
'I 1.. 

( i) ( . ) . h . th " h d . t . d where f : X + L 1 
(X,Y) is t e 1~ Free et eriva ive an : 

(2.2.7) 
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f (i) ex*) (x-x*) i !::. (i) * * * [ .•• [ [ f (x ) J (x-x ) ] ••• ] (x-x ) 

Proof: Lusternik and Sobolev [1968] 

......._.._ _ _....,v...,_..__,,,,,,/ 
i times 

Theorem 2.3: (Implicit Function Theorem) Let X and Y be 

Banach spaces. Suppose that f: X x Y + X is continuous in an open 

neighborhood U of a point (x ,y ) for which f (x ,y )=O. Assume 
0 0 0 0 0 

that a1f exists in a neighborhood of (x ,y ), is continuous at 
0 0 

(x ,y ) and alf (x ,y ) is nonsingular. Then there exist open 
0 0 . 0 0 

neighborhoods u
1 

C X of x
0 

and u
2 

c Y of y
0 

such that for each 

X E u
2 

the equation 

f (x,y) = 0 

has a unique solution 

x = f (y) 

(2.2.8) 

(2.2.9) 

and the mapping f: u
2 

+ X is continuous. Also, if a
2

f exists at 

A /' 

(x ,y ) then f is Frechet differentiable at y and 
0 0 0 

f' (y) = -[dlf(;x ,y )]-l a2f{x ,y) 
0 0 0 0 0 

(2. 2 .10) 

Proof: Ortega and Rheinholdt [1970), pp. 128-129-
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2.3 Decomposition of Nonlinear Eqµations 

Consider the following optimization problem: 

min J(u) 
ucU 

(2.3.1) 

. / 
where U is a Banach space and J is twice continuouslyFrechet dif-

* ferentiable. A necessary condition for x to solve (2.3.1) is: 

* J' (u ) = O (2.3.2) 

Note that J':U + L(U), and that L(U) is a Banach space. An indirect 

* approach to the solution of (2.3.1) is to solve (2.3.2) for u • 

* To insure that u is at least locally unique, it will be assumed 

* -1 * * that J" (u ) exists for all u such that J' (u ) 0. Thus, locally 

* (around u )L(U) can be identified with U for the purpose of solving 

(2.3.2). Equation (2.3.2) is then of the form: 

f (x) = O, f:X+X (2.3.3) 

where X is a Banach space. 

Often the nonlinearities of the function f or the dimension of 

the space X prevent a closed form {or even a finite algorithmic) 

solution of equation (2.3.3). The usual approach is to try an 

iterative solution method. Common examples of iterative techniques 

include Newton's method and (in 1 dimension) the Fibonacci search. 
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The general approach which will be discussed here is to e;x;tend 

ideas used for the one-point iterative solution of linear equations. 

Iterative methods for linear equations are well known and commonly 

used (Varga [1962]; Ortega and Rheinholdt [1970]; Laub [1974]; 

Athay [1976]). The linear equivalent to (2.3.3) is 

Ax = b (2.3.4) 

where A E L (X) 

The iteration is determined by splitting (decomposing) the operator 

A: 

A= A
0 

+Al ; A
0

, Al £ L(X) 

and solving the equation 

k=O, 1, •.• 

(2.3.5) 

(2.3.6) 

The splitting is chosen such that (2.3.6) is more easily solved 

than (2.3.4). Two common splittings are demonstrated by the 

following examples. 

Example 2,1: {Jacobi Iteration) 

A=D+L+U {2.3.7) 

where D is diagonal, L is strictly lower triangular and U is strictly 

upper triangular. Then let: 



A = D 
0 

Example 2.2: (Gauss-Seidel) 
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Assume D, Land U are defined as in (2.3.7). Then let: 

A 
0 

D + L 

u 

(2.3.8) 

0 

(2.3.9) 

0 

Each of the above iterations can be combined with the concept of 

under or over-relaxation. 

Example 2.3: (Under or over-relaxation) 

Choose a splitting as in (2.3.5). Then solve 

(2.3.10) 

A 

xk+l = xk + E(xk-xk) (2.3.ll) 

The parameter E is called the relaxation parameter. The terms under 

and over-relaxation correspond to E < l and E > l respectively. In 

either case, relaxation used with the Gauss-Seidel iteration will 

be referred to as an SOR iteration (successive over-relaxation). 
0 

The same idea can be extended to the nonlinear equation (2.3.3). 

The first step is to choose a continuously Frechet differentiable 

function f : X x X + X to create the decomposition: 
0 
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f(x) = f
0

(x,y) + f
1 

(x,y) (2.3.12) 

Then, the equation 

(2.3.13) 

is solved for ~+l at the k+l
8

t iteration. To have the iteration 

* (2.3.13) well defined in a neighborhood of the solution x , it will 

-1 * * be assumed that a
1

f
0 

(x ,x ) exists. 

There are several notable aspects of this formulation. In the 

past, it was assumed that the cost function J, and hence the necessary 

conditions for the optimization (represented by f), had to be 

separable to achieve a decomposition. This conception has persisted even 

in some of the recent literature (Forestier and Varaiya [1978]). 

However, the formulation of equations (2.3.12)-(2.3.13) make no such 

assumption. In fact, the linear decentralized stochastic control pro-

blem formulation of Chapter 3 is distinctly nonseparable. 

A second observation is that the choice of the function f 
0 

determines the iteration. For this reason, f is called the core 
0 

of the decomposition. The terminology used and the form of this 

framework is similar to the formulation developed by Cohen [1978]. 

The formulation of (2.3.12)-(2.3.13) is more general however. Cohen's 

formulation views the decomposition from an optimization viewpoint, 



However, 

K (x,y,w,z) = 1 ~ -1 
0 
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a2 
~. K (x,y,w,z) 
OXQY 0 

which shows the function K is not analytic. 
0 

Finally, it should be noted that regarding the decomposition 

framework from a numerical analysis viewpoint allows the introduction 

of a large number of local convergence and existence results which are 

not available from an optimization point of view. On the other hand, 

global convergence results for certain decompositions applied to 

unconstrained optimization problems are obtained more naturally from 

an optimization viewpoint. Both are important, but the local 

analysis has been mostly neglected to date. 

Equation (2.3.13) defines an equation of the form 

0 (2.3.14) 

This is the general form for a one-point iteration with the 

requirement 

* * * g {x ,x ) = f {x ) 0 

(i.e., g and f should solve the same problem). The formulation of 

{2.3.12)-(2.3.13) is more restrictive. By letting 

x s x 
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and hence requires a co;t;e K Cu, y) to be chos.e.n to s;plit the cost 

J of (2.3.1) in the same manner that f splits fin (2.3.12). For 
0 

a differentiable problem, this is equivalent to choosing the 

derivative dK(u,y) as a core to decompose the nonlinear equation 

(2.3.2). However, this restricts the class of cores available for 

the decomposition to those which are derivatives of a function K. 

Example 2. 4: Let J(x,y) 2 2 x + y . Then f is given by: 

f {XI y) l22yxJ 

Suppose the core f is chosen to be: 
0 

= [xy + YXJ f {x,y; w,z) 
0 

It is easy to show there is no core K which satisfies 
0 

J{x,y) = K
0

(x,y,w,z) + K
1 

{x,y,w,z ) 

and achieves the decomposition corresponding to f . If there 
0 

were, then 

() 
~ K {x,y,w,z) x + y ox 0 

a 
~ K {x,y,w,z) = y - x 
oy o 
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in (2.3.14) and using (2.3.12), one find,s 

g (x, x) = f 
0 

(x,x) + f
1 

(x,x) ::::; f (x) V x e: X (2.3.15) 

Although (2.3.12)-(2.3.14) do not allow arbitrary one-point 

iterations, the formulation is general enough to admit most of the 

common nonlinear algoritJ:uns. 

Example 2.5: (Newton's method) 

Then 

Choose the core as: 

f (XI y) 
0 

f I (y) X 

f
1 

(x,y) = f(x) - f' (y)x 

Combining (2.3.16)-(2.3.17) with (2.3.12)-(2.3.13) gives 

the equation: 

Example 2.6: (nonlinear Jacobi and Gauss-Seidel) 

Let x = xl x .•. x XN and define 

(2.3.16) 

(2.3.17) 

(2.3.18) 

0 
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Jacobi iteration is formed by choosing 

This results is the iteration 

k k k+l 
f. Cx

1
, ... , x. 

1
, x. 

l. 1- l. 
i=l, ••• ,N (2.3.19) 

If the core is chosen as: 

f (x 'y) . = f. (xl ' ••. Ix. I y. 1 I ••• I y ) ; 
o 1 1 . 1 1+ N 

i=l, ••• ,N 

The nonlinear Gauss-Seidel iteration results: 

k+l k+l k k 
f, (X I • • • • IX, I X, l' • • • IX ) 

i 1 1 i.+ N 
0 i=l, •.• ,N (2. 3. 20) 

0 

:Exa,mp].e 2. 7: (Successive under or over-relaxation) 

The SOR concept can be extended to nonlinear equations. 

A 

Equation (2.3.13) is solved for a value xk. Then (2.3.11) is used to 

compute xk+l· To see that this fits the formulation (2.3.12)-(2.3.13), 

substitute for xk in (2.3.13): 

(2.3.21) 

This corresponds to choosing the core. 
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Then: 

~1 Cx,y} = f Cxl - f
0

Ci [x - (1-s)y] ,y] 

Since: 

equation (2.3.21) describes the iteration resulting from the core 
A 

f . 
0 

Example 2.8: (Quasi-linearization) Let the space X be 

decomposed as in example 2.6. Define the core f by: 
0 

f (x,y) = diag[d.f. (y): i=l, ... ,N]x 
0 1. 1. 

/j, 
f~(y)x 

Then 

f
1 

(x,y) = f(x) - f~(y)x 

which when combined with (2.3.12)-(2.3.13) defines the iteration: 

Singh and Titli [1975] have applied the method of Example 2. 8 to 

0 

the two point boundary value problem resulting from a deterministic 

optimal control problem. 
0 
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The structure of the comp-qtation and in;fo;r::mation flow in the 

Gauss-Seidel and Jacobi iterations leads to a two level hierarchical 

interpretation. In the usual straightforward interpretation, the 

upper (supremal) level simply transfers the information (most recent 

solution) as it is needed. This occurs once at the end of each 

Jacobi iteration but must be done sequentially for the Gauss-Seidel 

algorithm. The lower (infimal) level problems solve the nonlinear 

equations f., either in parallel (Jacobi) or sequentially (Gauss­
i 

Seidel). 

Certain problems possess a structure which admits a different 

two level hierarchical interpretation and allows some of the computa-

tion to be shifted to the supremal level. Suppose that the Banach 

space X can be decomposed into two Banach sub-spaces: 

X = x5 x x1 
(2.3.22) 

This leads to the definition of fs and f
1 

as in Example 2.6. If the 

space XI can be furthe.r decomposed: 

(2.3.23) 

and if the resulting subsystems of equations f . (i=l, ••• ,N) are 
Ii 

such that: 

f . (xs, x
1

, ... ,x) = f. (xs,x.) 
Ii N Ii i 

(2.3.24) 
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then the application of either the Jacobi or Gauss-Seidel algorithm 

results in a subsystem of equations f which decouples into N subproblems 
I 

f . • These subproblems can be solved in parallel. At the upper level 
Ii 

(see Figure 2.1), the system of equations f 8 is solved. The N sub-

problems are solved at the infimal level. 

This hierarchical interpretation fits nicely into the framework 

developed by Mesarovic et.al. [1970]. The coordination principle 

determined by this decomposition is the interaction prediction prin-

ciple. The infimal problems solve their subsystem of equations at 

the current iteration based on the interactions predicted (by the 

solution of the supremal equations) from the solutions at the last 

iteration. This principle is almost trivially applicable1 to the 

solution of the set of nonlinear equations (2.3.3). When viewed in 

the conteX,t of solving the optimization p:ro:Qlem (2.3.1) the principle 

will not, in gene;ral, be applicable sipce the decomposition is used 

to so1ve the necessary (but not sufficient) conditions (2 .. 3.2). The 

problem is that applica:P;ility requires the coordination predicate 

to be true globally. A natural e.xtensi,on of the existing terminology 

is the following. 

Definition: A coordinati.on vrinci,ple, is locally applica:Ple at x if 

there e~ists an open neighborhood U containing x such that the 

1 In the sense of Mesaroyic et.al. [1970]. 'I:'he definition of ap­
pli:cab:j.::l±ty of a coordination principle states that whenever the co­
ozidination pred.;tcate, is true, the original problem is solved. For the 
.;tnteraction p;rediction :principle, the coordination predicate states 
that the predicted values of the interaction variables are the solution 
values. 



INFIMAL 1 

fll (>'s,xl) = 0 
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SUPREMAL 

fs( ~,x:r> = o 

• • • 

83517AW001 

INFIMAL N 

fIN( ><s' XN) = 0 

Figure 2.1: Hierarchical Computation Structure 
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coordination predicate is true for all x E U. 

The concept of local coordinability is defined in an analogous 

manner. 

Definition: A problem is locally coordinable at x by a given co-

ordination principle if the principle is locally applicable at x 

and there exists a coordination input such that the resulting x 

solves the overall problem restricted to U. 

It is easily seen that the optimization problem {2.3.1) is locally 

coordinable by the coordination principle defined implicitly by the 

Jacobi or Gauss-Seidel iterations at any local minimum of the 

original problem. 

The type of structure needed for this decomposition is present 

in the linear stochastic control problem formulation of Chapter 3, 

and will be exploited by the decomposition presented in Chapter 4. 

For now, a simple three dimensional problem is developed in Example 

2.9 to illustrate the ideas. 

Example 2.9: Let f: R
3 

+ R3 be defined by: 

f (x,y,z) = 
2 2 

x - y - z 

3 
xy - a 

3 
XZ - b 
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2 
Define x 5 ;:::; R C:x is the supreiqal variable), XI ;:: IR {y and z are the, 

infimal variables) and f
8 

and f
1 

by 

f (x, y, z) 
s 

f
1

(x,y,z) 

2 = x - y 

[ 

3 
:::: xy3 

XZ 

2 
z 

The Gauss-Seidel iteration will be used. Choose the core 

to be: 

f (x,y,z;u,v,w) 2 

w2] r~ 
v 

0 

xy - a 

3 
- b xz 

The iteration is: 

k+l 
x (2.3.25) 

{ 

xk+l (yk+l} 3 _ a 

xk+l(zk+l)3 _ b 
(2.3.26) 

Equation (2.3.25) is solved at the supremal level while equations 

(2.3.26) decouple and are solved at the infimal level. 0 

There are two important considerations which affect the choice 

of the core. First, equation (2.3.13) should be more easily solved 

than (2.3.3). This will generally be true for the nonlinear Jacobi 
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and Gauss-Seidel iterations since the probl~ms are smaller than the 

original. Newtons method reduces the original problem to the pro-

blem of solving a linear set of equations. 

The second consideration, of course, is that the sequence 

k 00 * 
{x. }k=O converges to the solution x of (2.3.3). The following 

theorem gives a sufficient condition for the iteration defined by 

(2.3.14) to converge locally and gives an estimate of the asymptotic 

rate of convergence. 

,. 
Theorem 2.4: Let g: X x X--+X be continuously Frechet dif-

* * ferentiable in an open neighborhood U of a point (x ,x )€ X x X 
0 

* * * for which g(x , x ) = f (x ) = 0. If: 

(1.') "I ( * *> . . 1 o
1

g x , x is nonsingu ar 

(ii) y 
(2.3.27) 

then there exists an open neighborhood U c U such that for any 
0 

0 k 00 

x s U there is a unique sequence {x }k:=;O which satisfies the 

k * iteration (2.3.14). More.over, lim x = x and for each s > 0 
k~ 

there exists an integer k such that for all k > k 
0 0 

llxk-x*ll < (y+s)k (2.3.28) 

Proof: Ortega and Rheinholdt [1970], pp. 325-326. 
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. -"'.\ * * ~ * * , . d) The linear ope:r:;ator -9
1

9 (~ ,x ) v
2

g (x ,x ) i.~ ca],le.d the \.linearize 

iteration operator and the scalar y is the asymptotic 

convergence rate. 

Theorem 2.4 is not in general useful for determining a priori 

whether the iteration will converge for a given problem since con-

ditions (i) and (ii) make use of the presumably unknown solution. 

However, this result is used in Chapter 4 to prove a weak coupling 

condition for the convergence of the decomposition applied to the 

linear stochastic problem formulation of Chapter 3. One case when 

condition (2.3.27) can be used directly is if it can be shown to 

hold for each possible solution x 8 X. Then local convergence is 

assured. This is illustrated by the followin9 example. 

Example 2.10: Let f: m.3 
+ tR.

3 
be defined as in example 2.9 with 

the same Gauss-Seidel iteration. Then g is defined by: 

2 2 
yk - zk (2.3.29) 

3 
xk+l Yk+l - a 

3 
xk+l 2 k+l - b 

Then, at x: 

1 0 0 0 2y 2z 

- y_ 1 
0 Q 0 0 y 

3x 2 
3xy 

z 
0 

1 
0 0 0 

3x 3xz 
2 
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0 2y 2z 
::; ~ 

0 
2 (2.3.30) - y__ yz 

3x 3x 

2 
0 

yz z 
3x 3x 

The characteristic equation of the bracketted matrix is: 

3 
0 (2.3.31) 

3 
s + 

2 

2 2 
Since x = y + z for any possible solution (x,y,z), the spectral 

radius of the operator evaluated at any point on the submanifold 

of possible solutions is: 

y 2 
3 

(2.3.32) 

0 

Condition (2.3.27) can also be used to give insight into the 

structure which g must posess to generate a convergent iteration. 

This can be seen more clearly by examining the first order Taylor 

expansion of g about the solution x*: 

k k-1 * * k g(x , x ) = 8
1
g(x ,x )/J.x 

where k /J. k 
/J.x x * - x 

* * k-l 11 k * 11 + a2g(x ,x )/J.x + o( x - x ) (2.3.33) 

If the contribution from the higher order terms were negligible 

(as would be the case for 
k k-1 * x ~ x ~ x ) , equations (2. 3. 33) and 
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( 2. 3. 14) could be combined to giye an equation which is line.ar 

l·n k d k-1 x an x 

* * k * * k-1 alg(x ,x ) x + a2g(x ,x } x * * * * * [dlg(x ,x ) + a2g(x ,x )]x 

(2.3.34) 

The condition for convergence of the iteration (2.3.34) is identical 

to ( 2 • 3 • 2 7 ) • 

This analysis also provides additional insight into the relation-

ship between the linear iterative procedure described by equations 

(2.3.4)-(2.3.6) and the nonlinear decomposition procedure formulated 

earlier in this section. Equation (2.3.3) can be expanded in a 

* first order Taylor series about x : 

0 = f' (x *) (x-x *) + 0 ( 11 x-x * 11 ) (2.3.35) 

Again ignoring the higher order terms, (2.3.35) can be rewritten: 

* * * f • (x ) x = f ' ( x ) x (2.3.36) 

~ 

The imposed condition (2.3.15) and the properties of partial Frechet 

derivatives give 

(2.3.37) 

Note the correspondence between (2.3.34), (2.3.36)-(2.3.37) and 

(2.3.4)-(2.3.6). Thusthe decomposition procedure (2.3.12)-(2.3.14) 
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can be viewed as choosing a splitting (as in the line.ar iteration) 

of the FrEfchet derivative. However, the me.thod is slightly more 

general since by choosing f one determines splittingsof the higher 
0 

order derivatives also. 

2.4 Composition of Decompositions 

Section 2.3 presented a general formulation for the solution 

of nonlinear equations by decomposition. One of the objectives 

which is to be satisfied in the choice of the core of the decomposition 

is to have equation (2.3.13) be more easily solved than the original 

equation (2.3.3). However, the equation to be solved (2.3.13) may 

still be nonlinear (as in the Jacobi and Gauss-Seidel algoritluns) 

or too large to be solved directly. One possible solution is to 

decompose the iteration equation (2.3.14) to obtain a secondary iteration. 

An overall iteration defined by the use of a secondary decomposition 

to solve a set of equations which have resulted from another decom-

;Position will be called a com,pound iteration. The question of 

convergence of such a compound iteration will be answered by 

Theorem 2 .. 5. 

Consider the pr±T:qary one-point iteration defined by: 

(2.4.1) 
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/ 
As in Secti.on 2 •. 3, a continuously Frechet d.i.;ffe.rential:>le core g 

0 

is chosen to decompose (2.4.1). 

Vx,y,z, s X (2.4.2) 

* * * * -1 Again it is assumed that at the solution x, a
1

g
0

(x ,x ,x) exists. 

The decomposition defines the secondary iteration: 

(2. 4. 3) 

It will be assumed that the secondary iteration is repeated M times 

for each value of k. The resulting solution {+l is used to 

start the secondary iteration at primary iteration k+l. The issue 

. {xM}oo * is whether the sequence k k=O converges to a value x for which 

* * g (x ; x ) = 0. 
p 

By the implicit function theorem, equation (2.4.3) defines a 

function g in a neighborhood U 
1 

C X of x * : 

(2.4.4) 

Using x: for xk as the starting point of; (2.4't4), x~+1 is given by: 

(2.4.5) 

M times 



M oo 
Thus {xk} 

k=O 
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converges i..f and only if (2. 4. 5) is a convergent 

iteration. 
M oo 

Sufficient conditions for the convergence of {xk}k=O. 

are given by the following theorem. 

Theorem 2.5: Assume g , g and g as defined in (2.4.1)­
p s 

(2.4.5) are continuously Fr:chet differentiable in an open neighbor-

hood U C X of a point x* £ X for which g (x* ,x*) = 0, and that 
0 p 

* * ~ <* * * algp(x ,x) and vlgs x ,x ,x) are nonsingular. 

Define ~ ~ * * * -1 ~ * * * rs - olgs(x ,x ,x) o2gs(x ,x ,x) 

~ * * -1 * * 
rp - algp(x ,x ) a2gp(x ,x ) 

If: 

(2.4.6) 

then there exists an open neighborhood Uc X of x* such that for each 

0 M 00 

x
0 

£ Uthe sequence {xk} defined by (2.4.1)-(2.4.5) converges to 
k=l 

x*. In addition, for each£> 0 there is a positive integer k 
0 

such that 

Vk > k 
- 0 

(2.4.7) 

/ 

Proof: To simplify notation the arguments of the Frechet derivatives 

will not be explicitly specified. All derivatives will be evaluated 
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By Theorem 2.4 and equation (2.4.5), the iteration will 

converge and satisfy (2.4.7) if 

{ -- - * * * *} y = p d g ( g ( • e • g (x IX ) I X ) • • • ) I X ) < 1 

n times 

By direct calculation, condition (2.4.8) becomes: 

y 

From the implicit function theorem, 8
1
g and o

2
g are 

(2.4.8) 

(2.4.9) 

(2.4.10) 

(2.4.11) 

Using equation (2.4.3) and the definition of r , it is seen that: 
s 

81gs = alga (2.4.12) 

a3gs 0390 + a3gl (2.4.13) 

r -1 
<029 0 + 829 1 + algl) - d g 

s 1 0 
(2.4.14) 

By equation (2.4.2) 

31g1 algp - alga (2.4.15) 
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Combining (2.4.12)-(2.4.16) gives 

1 -1 a g- = er - r >3
1

g 
1 s s p 

Substituting (2.4.17)-(2.4.18) into (2.4.11): 

(I - f )f 
s p 

Then condition (2.4.9) becomes: 

M-1 
y l 

i=O 

This can be rewritten as: 

i r 
s 

(I - f )f }< 1 
s p 

(2.4.16) 

(2.4.17) 

(2. 4.18) 

(2.4.19) 

(2.4.20) 

(2.4.21) 

0 

The following example illustrates the concepts involved by 

analyzing the use of a compound iteration to solve a system of 

linear equations. 
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Example 2.11: 'For the linear problem (Equations ( 2. 3. 4) - ( 2. 3 • 6) ) , 

a secondary iteration corresponds to choosing a second splitting to 

solve (2.3.6): 

A 
0 

The total iteration (the linear analog of (2.4.4)) becomes: 

(2.4.22) 

(2.4.23) 

o M 
Using xk+l = xk = xk and the discrete variation of constants formula, 

the linear analog of (2.4.5) is obtained: 

M (-A-1 M M 
M-1 

-1 i -1 -1 M 
xk+l = Aol) xk + l (-A A

01
) (A b - A Alxk) 

00 i=O 00 00 00 

= [r: -M-1 M-1 
(2.4.24) 

l ri -1 ] M l ri -1 
Aoo Al xk + A b 

i=O 
s 

i=O 
s 00 

Note that f 
s 

-1 
A A is the iteration operator corresponding to 

oo ol 

the splitting (2.4.22). Now: 

= A-l(A +A 
1

) (A +A 
1
)-l Al 

00 00 0 00 0 

-1 -1 = (I + A A l) A Al 
00 0 0 

(2.4.25) 

where r 
p 

11 -1 
- A

0 
A

1 
is the iteration operator corresponding to the 
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splitting (2.3.5). Using (2.4.25) in (2.4.24): 

M 
= [ r: M-1 

ri 
M-1 

A-lb x + l (I - f Jr ]xM + l ri 
K+l 

i=O 
s s p k 

i=O 
s 00 

{2.4.26) 

= [r: + 
] M-1 f -1 

(I - fM)f XM + l A b 
k=O, 1, .•. , s p k i=O s 00 

A necessary (and sufficient) condition for (2.4.26) to converge to the 

solution of (2.3.4) is 

(2.4.27) 

0 
which is equivalent to (2.4.6). 

As with Theorem 2.4, condition (2.4.6) of Theorem 2.5 would not 

often be used to determine convergence in a practical application. 

However, the theorem does give some insight into the interaction of the 

primary and secondary iterations. If Newtons method is used as the 

secondary iteration, the convergence condition simplifies (since 

f =O for Newton's method; see Ortega and Rheinholdt [1970], p. 311) 
s 

p{r } < 1 
p 

This is just the condition for local convergence of the primary 

iteration, and is independent of the number of steps in the secondary 
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. . 1 iteration. ~lsp, Theorem 2.5 can be used to show that any 

convergent decomposition· can be used as a secondary 

iteration with an arbitl7ari~y, sJqall, incl:iease. ;in th.e oye,;rall conyer'!"" 

gence rate if the number of steps M is sufficiently large. 

Theorem 2.6: Assume the conditions of theorem 2.5 hold, and: 

p{r } < 1 
s 

Then for each E > 0 thel!e is an M such that 
0 

p{fM + (I - fM)r } < p{r } + E 
s s p p 

VM > M 
- 0 

(2.4.28) 

l?roof: Since the spectral radius p{·} is a continuous function of 

the linear operator, given f and E there exists a 0 such that 
p 

I IA - r 11 < o p 

Then: 

implies IP{A} - p{r }I < E. 
p 

- r 11 p 
:::; 11 rM c r - r > 11 

s p 

< 11 rM 11 11 r - r 11 s p 

Since p{f' }< 1, choose M such that 
s 0 

1 Of course, the region of conver9ence and th.e ave:rage (as opposed to 
asymptotic) rate of convergence may be affected by the. nurqber of steps 
in the secondary iteration. 
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II r-r 11 p 

Thus: 

which gives: 

jp{rM + er - rM>r } - p{r ll < s 
s s p p 

\f J-1 > t4 
- 0 

0 

The concept of a secondary iteration and the implications of 

Theorems 2.5 and 2.6 are demonstrated by the following example. 

Example 2.12: Consider the primary iteration defined in 

Example 2.9 (equations (2.3.25)-(2.3.26)). Equation (2.3.26) involves 

the solution of two decoupled cubic equations. These will be solved 

by the following iteration: 

(2.4.29) 
0 

Each equation of (2.4.29} can be written in the. form; 

(2.4.30) 



-52-

The iteration operator for (2 .. 4'!30) is; 

1 
2 

1 

2 
5l Sl+l 

et a 5l Sl+l * a. =a =a. 
(2.4.31) 

Thus the iteration operator for the whole secondary iteration 

(noting that equation (2.3.25) is solved exactly) is: 

0 0 0 

0 
1 

0 r = 2 (2.4.32) 
s 

0 
1 

0 2 

Since f does not depend on the solution, local convergence is 
s 

assured. 

Convergence condition (2.4.6) for the composite iteration 

with M secondary steps is: 

0 a Q Q Q 0 2y 2z 

M 1-t i) 2 

0 
1 a + Q Q 0 

y - yz 
= p ,..._ 

2 ,. 2 3'c 3x 

1 M i-(- ~ 2 
a 0. a .,.. yz z 

0 0 -· --
2 3x 3x 
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p { (- [~ 
2 

1 
L -~] !_)M [l-{- i),M] 
3x 3x 

= I + 2 2 . 2. 
yz - z 
3x 3x 

* 

Now, if A is an eigenvalue of 

[: 

2 
L -

yz ] 3x 3x 

2 yz z -
3x 3x 

then (- ~)M + [1-(- ~)M]A is an eigenvalue of 

l 1 )M 1 M \ 2 I + [1- (- 2> ] 

In Example 2.8, it was seen that the eigenvalues of (2.4.34) 

at any possible solution value were: 

2 
3 

0 

Thus, the convergence condition is: 

{
lM 

y=max 2, 

(2.4.33) 

(2.4.34) 

(2.4.35) 

(2.4.36) 

(2 •. 4.37) 
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There are two properties worth noting., First, as M be.comes 

large y 2 
approaches 3 (the asymptotic rate of the primary iteration) 

as predicted by Theorem 2.6. Second, the smallest value of y (..!_) 
4 

occurs for M=2, and this rate is significantly less than the 

primary rate of convergence. Thus it may be advantageous to use a 

secondary iteration without carrying the solution to the limit. 

The composite iteration with a -b = 2 was simulated for 

several different initial guesses, and several values of M. The 

iteration was continued until I I~ - ~*I I< 10-
6 (where~= (x,y,z)). 

The results are contained in Table 2.1. The observed asymptotic 

rate of convergence agrees in each case with the value predicted 

by equation (2.4.6). Note that the number of iterations for M=2 

is significantly less than for any other value. 
0 

The hierarchical interpretation which was given the primary 

decomposition in Section 2.3 can be extended to the compound 

iteration described by (2.4.1)-(2.4.5). In this case the lower 

level of the original two level hierarchy also becomes a two-level 

hierarchy. The result (Figure 2.2) is a three level hierarchical 

structure. This same procedure can be repeated for any problem 

at any level. 

2.5 Summary 

This chapter has presented a general framework for the solution 

of nonlinear equations using decomposition algorithms., The class 
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Table 2.1: Convergence rates for E~arnple 2.10 

Secondary 
Iterations 

M 

1 

2 

3 

4 

00 

* Did not 

Intial Guess 
(y = -x ) 

0 0 

1.. 0005 

1 
2 

3 
2 

50 

1 
2 

3 
2 

50 

1 
2 

3 
2 

50 

1 
2 

3 
2 

50 

converge 

. terations (k) 

* 

11 

10 

12 

119 

103 

120 

25 

24 

28 

36 

34 

40 

Observed 
Rate 
11 x-x* 11 l/k 

* 

.259 

.246 

.298 

.890 

.873 

.891 

. 571 

.559 

.607 

.674 

.664 

.703 

Predicted 
Rate 

3 
2 

1 
4 

7 -
8 

9 
16 

2 -
3 
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of algorithms covered by this formulation include many of th.e 

classical iterative algorithms (such as Newton~s method, and the 

Jacobi and Gauss-Seidel iterations) as well as many of those al­

gorithms currently used in the hierarchical control literature. 

The general framework allows the essential similarities and dif­

ferences of individual algorithms to be clarified. In addition, 

the formulation provides a constructive approach to designing de­

composition algorithms through the ability to specify the decomposi­

tion by the choice of the core. 

The formulation differs from other decomposition theories in 

that it approaches the decomposition from a numerical analysis (as 

opposed to an optimization) point of view. This viewpoint introduces 

a theory of local convergence to the theory of hierarchical control. 

The local convergence results provide an important new compliment to 

the global convergence theory most often found in the hierarchical 

literature. 

Another new development of the formulation of this chapter is 

the ability to construct and analyze multilevel hierarchies. The 

formulation of Section 2.4 allows the hierarchical structure of the 

computation to be tailored to the problem at hand. A local con­

vergence criterion, given in terms of the individual decomposition 

iteration matrices, was developed for a three-level structure. 
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The criterion can be used inductively to analyze the local con­

vergence behavior of any multilevel algorithm developed under 

the framework of Sections 2.3-2.4. 

There is a final, important consideration in the development 

of a particular decomposition algorithm which has been largely 

neglected. To be successful, the core of a decomposition must be 

chosen to take advanta9e of the structure of the problem which is 

to be solved. There is no widely applicable rule which will result 

in the choice of a core that simplifies the problem and results in 

a convergent iteration. Certain classes of problems posess a 

structure which can be exploited through a corresponding core struc­

ture. An example of such a class is developed in the remainder of 

this thesis. However, insight into a problem remains essential to 

any practical decomposition. 
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3. THE LINEAR DECENTRALIZED STOCHASTIC CONTROL PROBLEM 

3.1 Introduction 

As discussed in Chapter 1, the linear stochastic control problem 

formulation is of ten used as the lower level of a two level control 

structure in the solution of nonlinear stochastic optimal control 

problems. If no restrictions on information flow are imposed 

(i.e., each input can use the entire output history of the system), 

the (centralized) solution to the linear stochastic control problem 

is known to be linear and the separation principle applies (Wonham 

[1968]). Due to the on-line computational and communication requi­

rements of the centralized solution it is often necessary to restrict 

the amount of information which is available to each input. In 

general, the optimal control for such problems is no longer linear 

and the separation principle does not apply. Also, the solution is 

usually difficult or impossible to compute. 

In an attempt to reduce the complexity of the non-classical 

stochastic control problem, many authors have restricted the class 

of permissible controls (Sage and Eisenberg [1966]; Levine and 

Athans [1970]; Kosut [1970]; Chong and Athans [1971]; Levine et.al. 

[1971]; Wang [1972]; Cohen [1977]; Looze et.al. [1978]). By far 

the most popular class has been the class of linear controllers 

with specified dimension which satisfy the information flow 
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constraints. '];'he reasons. are o:Pvious; the class is cha.racte;r.iized 

by a finite numbe.r of variables and the soluti.on is easily imple­

mented. A direct result of this approach is that the stochastic 

optimization problem can be reformulated as a constrained determi­

nistic optimization over the variables which characterize the 

linear control system. This approach to the linear stochastic 

control problem is developed in Sections 3.2 and 3.3. 

Several authors have derived necessary conditions for special 

cases of the resulting deterministic optimization. Galiana, et.al. 

[1973] used a Lagrange multiplier approach, Cohen [1977] used the 

Pontruyagin minirn1lnl principle, and Chong and Athans [1971] used the 

matrix minimum principle. A variational approach is used in Section 

3.4. This approach has two advantages over previous approaches. 

First, the derivation of the necessary condi.tions demonstrates 

explicitly the role of the adjoint equation. The second advantage 

is that arbitrary parameterizations of the control system fit 

naturally into the variational framework. The result is a more 

general set of necessary conditions of which each of the above re­

ferencesis a special case. 

The remainder of Section 3.4 demonstrates how the general 

necessary conditions can :Pe used to derive a set of conditions for 

a specific problem (namely, for a system consisting of intercon­

nected subsystems). Finally, Section 3.5 summa;t'.'izes the results 

of this chapter. 
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3.2 Problem Formulation 

with: 

Consider the linear stochastic system: 

x(t) = A(t)x(t) + B(t)u(t) + ~(t); 

y(t) = C(t)x(t) + 8(t) 

x(t )=x 
0 0 

x(t), ~{t)s /Rn; y(t), 8(t)s RP; u(t)s IFf 

E{F;(t)} = 0 

E{8(t)} = 0 

E{x } = 0 
0 

E{t;(t)8' (T)} = 0 

E{x t;• (t)} 0 
0 

E{x 8'(t)} = 0 
0 

E{x x'} = P 
0 0 0 

E{t;(t)~' (T)} = 3(t)o(t-T) 

E{8(t)8' (T)} = 8(t)o(t-T) 

(3.2.1) 

(3.2.2) 

(3.2.3) 

The objective is to choose u(t) to minimize the quadratic cost 

functional: 

1 + (tT J = 2 E{x' (T)KTx(T) J~ [x' (t)Q(t)x(t) + u~ (t)R(t)u(t)]dt} 

0 

~ = K~ ~ O; Q(t) = Q' (t)~ O; R(t) 
(3.2.4) 
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For the time invariant infinite horizon case, the ti.me averaged 

quadratic cost 

1 
J = 

00 2 

T 

lim E{! l [x' (t)Qx(t) + u' (t)Ru(t)]dt} 
~T 

0 

with the ·same restrictions on Q and R will be used. All time 

(3.2.5) 

varying matrices are assumed to have elements which are square 

integrable over the interval [t ,T] with respect to Lebesgue 
0 

measure. Equalities (3.2.1)-(3.2.2) are assumed to hold almost 

everywhere in t with respect to Lebesgue measure. 

The notation used in (3.2.1)-(3.2.2) is a formal representation 

of a stochastic Ito integral. With the assumptions above, the Ito 

stochastic process x(t) satisfying (3.2.1) exists and is almost 

surely continuous {Liptser and Shiryayev [1977], Theorem 4.10). 

A major objective of this thesis is to derive control laws for 

systems in which information flow is restricted in various ways. 

Since the optimal unconstrained control law for such problems is 

generally nonlinear (Witsenhausen [1968]) and difficult, if not 

impossible, to compute and implement, a linear finite dimensional 

structure is imposed: 

u(t) = - G(t)~{t) (3.2.6) 

• A 

x(t) = ict>;Ct> + ~Ct>u<t> + e(t) IyCt> - ~Ct>~<t>l; ict >=o 
0 

(3.2.7) 
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A 

where 
t' n A 
x(t}E ~ (n < ~} 

Again, the elements of all time varying matrices are assumed to be 

square integrable with respect to Lebesgue measure on the interval 

A 

[t ,T]. The matrices A(t), G(t) and H(t) are assumed to be pa~a­
o 

meterized by a(t)E IRs (s < 00}, with a(t} also square integrable on 

the interval [t, T]. When the infinite horizon, time invariant 
0 

problem is considered, the parameterization will depend on the time 

invariant vector a E Rs. The problem is to choose 

a(t)s IRs x[t , T] (or a E ~s) to minimize the quadratic cost index 
0 

( 3. 2. 4) (or ( 3. 2. 5) ) • 

Several examples will illustrate the generality of the for-

mulation. 

Example 3.1: Kalman Filter Based Compensation 

n = n 
A A A 

(A(t), B(t), C(t)) (A(t), B(t), C(t)) 

a,(t) = C_G(t), H(t)) 

Example 3.2: N Interconnected Subsystems 

N 

0 

~. (t) = A .. (t)x. (t) + l A .. (t)x. (t) + B. (t)u. (t) + s. (t); x. (t ) = x. 
l.J J 1 l. l. l. 0 1.0 l. l.l. l. j=l 

jri 

(3.2.8) 



y. {t) = C. (t)x. (t) + 6.. (t) 
1 1 1 1 

n. m. 
x. (t), t;. (t)s IR 

1 
; u. (t)s R 

1 

1 1 1 
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P. 
1 y. (t) s (R 

1 

E{s.(t)} =Qi E{8.(t)} =Qi E{x.} Q 
1 1 10 

I 

E{8.(t)f;.(T)} Q E{6.(t)x~} = Q E{t;.(t)x~} = Q 
1 J 1 JO 1 JO 

EH;. ct>s.'<-r>} = :e:. <t>o<t-T)o .. 
1 J 1 1] 

E{8. (t)8.'(-r)} 0. (t)o(t-T)O .. 
1 J 1 1] 

E{x. x~ } = P. o .. 
10 JO 10 1J 

(3.2.9) 

j=l, .•• ,N 

i=l, ••• ,N 

J = I E { 1T [x! (t)Q. (t)x. (t\ + u! (t)R. (t)u. (t))cft + x! (T)K x. (T)) 
i=l t 1 1 1 1 1 1 1 T. 1 

0 1 J 
(3 .. 2.10) 

If the time invariant, infinite horizon problem is being considered 

the cost functional is: 

J = r Lim ! Ef !T [x'. (t)Q.x. (t) + u'. (t)R. u. (t) ]dJ 
00 

i=l ~ T l t 1 1 1 1 1 1 j (3.2.11) 

0 

The system matrices can be put in the form of (3.2.1)-(3.2.5) 

by defining: 
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A(t) = IA .. (t}] 
1.J 

B (t} = diag IB. {t) ; i=l, ..• ,N] c {t) 
1. 

Q {t) diag [Q. {t) : 
1. 

i=l, ... ,N] R(t) 

3 {t) = diag [2. (t) : i=l, .•• ,N] 0 (t) 
1. 

KT= diag[KTi : i=l, ... ,N] 

N N N 

;:::: 

= 

n = I n. 
i=l 1. 

p I p. 
i=l J_ 

m = Im. 
i=l 1. 

diag IC. (t) : 
1. 

i=l, ••• ,N] 

diag IR. (t) : 
1. 

i=l, •.• ,N] 

diag [8. (t) : i=l, .•• ,N] 
1. 

To achieve the form of equations (3.2.6)-(3.2.7), define the 

controller matrices: 

A 

A A 
n. x n. 

A 1. J A (t) = [A .. (t)] A .. (t) S /R 
1.J 1.J 

A 

A A A 
n. x m. 

B (t) diag [B. (t) : i=l, .•• ,N] B. S IR 
1 1. 

1. 1. 

A A A 
p, x n. 

c (t) diag [C. (t) : i=l, ..• ,N] c. s IR 
1 1. 

1. 1. 
A 

m. x n. 
G (t) [G .. (t)] G .. (t)s IR 

1. J 
1.J l.J 

A 

n. x p. 
H (t) [H .. (t)] 

1. J H .. (t)E JR 
1.J 1.J 

N 
A 

I A 

n = n. 
j=l 

1. 

0 
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Example 3.3: Completely Decentralized Pynarnic :Feed.}:)ack 

(Figure 3 .1) 

A(t), B(t), C(t), Q(t), R(t), KT, 8(t) and 8(t) as in Example 3.2. 

A 

n. = n. i=l, ••• ,N 
l. l. 

A 

A(t) = diag [A .. (t) : i=l, .•• ,N] 
l.l. 

A 

B (t) = B (t) 

A 

c (t) = c (t) 

G (t) = diag [G. {t) : i=l, •.• ,N] 
l. 

H (t) = diag [H. {t) : 
l. 

i=l, .•• ,N] 

a (t) (G (t) I H(t)) 

These examples will be discussed further in the sequel. Henceforth, 

it will be assumed that the system (3.2.1)-(3.2.5) has the structure 

of Example 3. 2. Examples 3.1 and 3. 3 will then be handled by 

specialization. 

3.3 Reformulation as a Functional Minimization 

Equations (3.2.1)-(3.2.7) can be rewritten in closed loop form 

for the time varying problem as: 

min J(a.(.)) 
s 

a ( • ) s L 
2 

( IR ,ts , ti. It 
0 

, T ]) (3.3.l) 
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Figure 3.1: Decentralized Control of an Interconnected System 
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subject to 

ict> = ACt>x<t> + ~<t>; x<t > = x 
0 0 

For the time invariant problem, the equivalent problem is: 

min 
s 

a.SR 

subject to: 

. 

J (a.) 
00 

x<t> = Ax<t> + ~<t>; x<t > = x 
0 0 

The quantities in the above equations are defined as: 

J(~(·)) = ~ E{X• (T)i<.rXCT) +~TX• (t)Q(t)i(t)dt} 

t 

x. (t) 
l. 

A .. (t) 
l.J 

= [ :i (t)] 

x. (t) 
l. 

=[A .. (t) l.J 

H .. C.-(t) 
l.J J 

0 

x (t) = ri. <t> 1 
l. 

-B.G .. (t) ] l. l.J 
A A A 

A .. (t)-B. (t)G .. (t)-H .. (t)C. (t) 
l.J l. l.J l.J J 

(3.3.2) 

(3.3.3) 

(3.3.4) 

(3.3.5) 

(3.3.6) 



A(t} = 
...., 

[A .. (t)] 
l.J 

Q .. Ct> = [Q. Ct>o .. 
l.J l. l.J 

0 

...., 

Q(t) = 

l;. (t) 
1 

[Q .. (t)] 
l.J 
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...., 

l; (t) = [l;. (t)] 
1 

...., ...., ~...., 

E{l;.(t)l;~(T)} = 3 .. (t)o(t-T) 
1 J l.J 

0 .. 
l.J 

0 l 
...., 

3 (t) 
...., 

= [~ .. (t)] 
l.J 

x = [x. J 
0 l.O 

...., ...., 

~ o(t-T) 

l 4 H •: ( t) 8k ( t) H ~ k ( t) 
k=l 1k J 

K = diag[KT.; i=l, ... ,N] 
T 1 
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Since x(t) has a finite second moment, the Fubini ~heorem for 

stochastic integrals (Liptser and Shiryayev [1977], Theorem 1.9) 

allows the expectation and integration operators to be interchanged. 

The following two series of equalities, for (3.3.5) and (3.3.6) 

respectively, follow from trace identities and the linearity of the 

trace, expectation and integration operators: 

T 

1 {"' ,.,, "" } J(a(·)) = 2 Ex' (T)~X(T) 
1 +-
2 
f EGi' (t)Q(t)i(t) }dt 

t 

Joo (a) 

0 

T 

=; E{tr[KTx(T)x' (T)]} + % f E{tr[Q(t)i(t)i' (t)]}dt 
t 

0 

T 

t tr{KTE [i (T )i' (T)] + J Q (t) E [i (t) X• (t)] dtl 
t 

1 l" = - im 
2 T7<X> 

1 l" = - im 
2 T7<X> 

1 "" = - tr{Q 
2 

1 
T 

0 

T 
1 f E{x' (t)Q x<t>}at 
T 

0 

T 

f E{tr[Q ;(t)~' (t)] }dt 

0 

1 
lim 
~ T 

T f E [i(t)i' (t) ]dt]} 

0 

Now define: 

ti {"' ,.,, l P(t) = E x(t)x' (t)f 

(3.3.7) 

(3.3.8) 

(3.3.9) 
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Then: 

.t 
""' ""' "' ,...,, "-I 

p (t) A ( t) p ( t) + p ( t) A I ( t) + 3 ( t) i 

where 

p = E{x x'l 
0 0 0 

p (t ) 
0 

p 
0 

(3.3.10) 

If the closed loop system is time invariant with an infinite horizon 

cost, p·(t) approaches a constant matrix P as t increases. For all a 

- -such that A is stable, the matrix P satisfies: 

-
AP + PA' + 3 0 (3.3.11) 

Also: 

T 
lim 1 1 l?Ct)dt = p 
'!'"+00 T 

(3. 3 .12) 

Equations (3.3.1) and (3.3.2) or (3.3.1) and (3.3.3) can now be 

expressed as equivalent functional or static minimization problems 

respectively: 

Time Varying Functional Minimization 

min J(a(·)) = 2 tr[KTP{T) l 1 - -

a(t)E: Ls( lR '\) 2 ,IS' A 

+ JT 
t 

0 

Q ( t) p ( t) dt] ! 
(3.3.13) 
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subject to 

p (t) = A (t) p (t) + p (t) A. (t) + E (t) i P(t ) = P 
0 0 

Time Invariant, Infinite Horizon Static Minimization 

min 
as A 

subject to 

0 = AP + PA' + M 

where /). -A = {a: A is asymptotically stable} • 

(3.3.14) 

(3.3.15) 

(3.3.16) 

Note that in the two above fo:r:mulations the explicit dependence of 

"' "' 
A(t), Q(t) and E{t) on a,(t) has been suppressed to simplify the 

notation. This dependence will be noted only when it is necessary 

to clarify the discussion. 

The solutions of the minimization problems presented by equations 

{3.3.13)-(3.3.14) and (3.3.15)-(3.3.16) depend critically on the 

parameterization of the matrices A(t; a,(•)), G(t; a(·)) and H(t; a(·)). 

The parameterization for equations {3.3.15)-(3.3.16) must be general 

enough that the set A is non-empty. In either problem, any para­

meterization will generally result in several local minima
1

• 

Overparameterization of the control system matrices can compound this 

problem, resulting in an infinity of solutions. A solution 

1rn fact the set A in the static minimization problem may be disconnected, 
having at least one minimum in each disjoint region. 
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* a (t) of (3.3.13)-(3.3.14) or (3.3.15)-(3.3.16)) is locally unique 

* if and only if there is an open neighborhood U of a {t) such that 

J (a ( ·) ) > J (a* ( ·) ) Va(t)s u (3.3.17) 

va s u (3. 3.18) 

respectively. Conditions {3.3.17) and (3.J.18) will hold if the 

problem is not overparameterized. 

An obvious necessary condition for (3.3.16) or (3.3.17) to hold 

is that the controller impulse response matrix 

HCt, T; a(·)) 

where 

G(t; a(·))q>A (t, T; a{·))H(T; a{·)) 
f 

A A A 

{3.3.19) 

d 
dt ~A {t, T; a(•)) [A(t;a(·))-B{t)G(t;a(·))-H(t;a(·fC(t)]~ (t,T,a(·)) . A 

f ' f 

* be uniquely determined in a neighborhood of a . For the time invariant 

infinite horizon problem (3.3.15)-(3.3.16), equation (3.3.19) can be 

transformed to the frequency domain transfer function: 

A A A 

F (.&,a) = G (a) [-61-A {a) -BG (a.) -H (a) C] H (a) (3.3.20) 

Glover and Willems [1974] give several tests which can be performed 

* to determine if (3.3.20) is unique in some neighborhood of a • 
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Essentially, the implicit function theorem is used to determine a matrix 

which has full rank if and only if the problem is not overparameterized. 

The decomposition algorithm of Chapter 4 will require that the 

solutions to (3.3.13)-(3.3.14) or (3.3.15)-(3.3.16) be locally unique 

if convergence is to be guaranteed. The necessary condition that the 

transfer function (3.3.19) be unique gives a weaker but more easily 

determined necessary condition. The frequency domain transfer 

function (3.3.20) implies an even easier test. Since F(~,a) is deter­

/\ 
mined by at most 2nmp independent parameters, it is necessary that: 

"' s < 2nmp (3.3.21) 

For the remainder of this thesis only parameterizations of G(t) and 

"' H(t) will be considered. It will be assumed that A(t) is chosen from 

other considerations. This assures that condition (3.3.21) is satisfied 

for the time invariant infinite horizon problem (3.3.15)-(3.3.16) 

since the maximum number of free parameters in G and H is: 

"' s ::::; n(m+p) 
max 

(3.3.22) 

Inequality (3.3.21) is satisfied since 

"' "' 2nmp = n m(p+p) (3.3.23) 

.:_ ;;_ m (p+ 1) 

"' !\ 
= n mp + nm 

"' > n(p+m) 
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The two inequalities in (3.3.23) are tight if and only if p=m=l, 

i.e., in the single input-single output case. 

3.3 Optimality Conditions 

There are numerous authors who have treated special cases or 

closely related versions of the problem formulated in the previous 

section (Sage and Eisenberg [1966]; Levine and Athans [1970]; 

Kosut [1970]; Levine, Johnson and Athans [1971]; Chong and Athans 

[1971]; Wang [1972]; Kwakernaak and Sivan [1972]; Davison, Rau and 

Palmay [1973]; Galiana, et.al. [1973]; Cohen [19771; Looze, Houpt, 

Sandell and Athans [1978]); note that the basic problem formulation 

even predates the state space era (Newton, Gould and Kaisen [1975]). 

The necessary conditions stated in this section are more general than 

any to date, and the derivation involving explicit use of variational 

ideas has some claims to novelty, but the results obtained should not 

be surprising to those familiar with the cited literature. 

Define the following Hilbert spaces: 

b. nxn 
y ;:::::; IR 

<A,B > x 

<A,B> b. tr A'B 
y 

T 

~ tr J A'(t) B (t) dt 
t 

0 

(3.4.1) 

(3.4.2) 

* * Since both X and Y are Hilbert spaces, the dual spaces X and Y can 

be identified with X and Y respectively. Given a linear 

operator F: u + V with U and v Hilbert spaces, the adjoint operator 
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* F : V + U (more precisely F*: v* + u*) is defined by: 

The 

<v, Fu> v * = <F v, u> 
u VVEV,uEU 

following linear operators will be needed:
1 

F"' X + X: 3 (. ) + ft ~~<t,0)3(0}~"'Ct,0}do 
A A A 

t 
0 

T 

T 
X + Y: 3 {. ) f ~~(T,0}S(cr}~~(T,O)dO F • + "' . 

A 
t A A 

0 

,...._, ~ 

~~(t,t) H : y + X: p + ~ "'(t, t )P 
"' 0 0 0 A o A A 

T 
y + Y: ~"' (T,t )P ~~ (T, t ) H"': p + 

A 
0 

A 
0 0 A o 

L : y + Y: p + AP + PA' 
A 

(3.4.3} 

(3.4.4} 

(3.4.5) 

(3.4.6) 

(3.4.7) 

(3.4.8) 

The matrix ~"'(t,O) is the transition matrix of the closed loop 
A 

system, and satisfies 

d 
dt ~"'(t,O) = 

A 

A(t;a(·))~"'(t,0}; ~"'(0,0) =I (3. 4. 9) 
A A 

1
Again, th.e explicit dep~ndence of mat;rices on t and a(•) is noted 

only where it is needed ;for clarity. 
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The adjoints of the operators defined in (3.4.4)-(3.4.8) are 

given by {Appendix A, Lemma A.l): 

..., 

F~{Q} = 
A 

T 

f 
t 

I ..., 

~ .... (a,t)Q{a)~~(a,t)da 
A A 

I ..., 

~ .... {T,t)K ~ .... {T,t) 
A TA 

T 

H~(Q) 
A 

= ~ 
I ..., 

~ .... {t,t )Q(t)~ .... (t,t )dt 
A o A o 

0 

I """ 

~ .... {T,t )K ~ (T,t) 
o T"" o 

A A 

* ..., 
L...,(K) = A'K +KA 

A 

(3.4.10) 

(3. 4.11) 

(3.4.12) 

(3.4.13) 

(3.4.14) 

The Frechet differential of J(a) at a in the direction~a will 

be denoted by {see Section 2.2): 

oJ{a;~a) = ~s J(a+s~a) j 
s=O 

Similarly, let 

d "' 
oA(t;a;~a) = ds A(t;a+s~a) j 

s=O 

oQ(t;a;~a) = ~ Q(t;a+s~a) j 
ds E=O 

(3.4.15) 

(3.4.16) 

(3.4.17) 
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..., d ..., 
82(t;a;~a) = ds 2(t;a+£~a) I 

s=O 

o J (a;~a) = dd J (a+£~a) j 
00 € 00 

E:=O 

(3. 4.18) 

(3.4.19) 

The following theorem characterizes the Fre"chet differential 

of (3.3.13)-(3.3.14). 

Theorem 3.1: Let J(a) be defined by (3.3.13)-(3.3.14). 

Then the Fre'chet differential of J at a in the direction ~a is 

given by: 

oJ(a;~a) 

where: 

"" K(t) 

~ 

p (t) 

T 

- td j 1P Ct> Kctl oA <t;a; llal + i P Ct> oQ Ctia;llal 
t 

0 1 ..., ..., 
+ ~ K(t)6E(t;a;~a)]dt} 

-i • ct> i<ct> 
..., ..., 

= - K(t)A(t) - Q(t); K(T) = K 
T 

..., ,.., ,.., ..., 
"V 

= A(t)P(t) + P (t) A' (t) + 2(t); P(t 
0 

) = p 
0 

Proof: From equation (3. 3 .14} 

"V 
..., 

p (t) = H..., (P ) + F..., (3) 
A o A 

..., 

= H'.:(P } F=(~) P(T) + 
A o A 

(3.4.20) 

(3.4.21) 

(3.4.22) 

(3.4.23) 



-79-

Using (3.4.23) and the definitions of the inner 

products on X and Yin (3.4.1)-(3.4.2): 

(3.4.24) 
"" T "" T 

+<KI H....,(P )>y + <K I F ..... (3)>y 
T A o T A 

/ 
The Frechet differential (3.4.15) is: 

..... ..... 
+ <Q(a+E6a), F..... (3(a+£6a))>x 

A(a+E6a) 

T ..... 
+ <K , H..... (P

0
)>y 

T A(a+E:6a) 

...... T "' }I +<KT, F,..., (3(a+E:6a))>y 
A(a+E:6a) e=O 

(3.4.25) 

The computation will proceed term by term. The first term is: 

~E: <Q (a+E:6a) , H (P ) >xj 
A(a+E:6a) 0 E:=O (3.4.26) 

The second term of (3.4.25) is: 

d "' ..... 
dE <Q (a+E:6a) I F..... rn (a+t:6a.) )>xi 

A(a+E:6a) E=O 
(3.4.27) 

..... "' d "" 
=<cSQ(a;6a),F,..,C3)>x+<Q, dE:F..... rnca»j >x 

A A (a+E:6a.) E =O 
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Continuation 

+ <Q, F_CoECa;~a))>x 
A 

= <oQ(a;~a), F,,, (3)>X + <F~ (Q), o3(a;~a)>X 
A A 

--- a ,:> I > + <Q, as F___ :::. x 
A(a+s~a) s=O 

The third term of (3.4.25) is: 

d "' T "' "' d T "' 
8 <KT, H_ (P »yl =<K ' ds H_ (Po) I >y 
d A(a+s~a) 0 S=O T A(a+s~a) S=O 

The last term of (3.4.25) is: 

"' T :::: d T ::::. 
<K , F.., ( o:::. (a; ~a) )> y + <K , as F _ C:::. Ca) ) j > y 

T A T A (a+s~a) s=O 

T * ( ) ~ ~ ( /\ ) < ~ FT ( ~) I > = < F...., KT , u:::. a; u.a > x + K , d "' ~ y 
A T s A(a+s~a) s=O 

Combining (3.4.26)-(3.4.29) in (3.4.25) gives: 

* T "' * ,..., "' + < F _ ( K.r) + F.., ( Q} , o 3 (a; ~a)> x 
A A 

+ <Q, ~s [H,..., (Po) + F,_, (S(a))]s=O >x 
A(a+s~a) A(a+s~a) 

+ <K.r, ~ [H: (P ) + F: CE (a)) l _
0 

>y} 
s A(a+s~a) 0 A(a+s~a) S-

(3.4.27) 

(3.4.28) 

(3.4.29} 

(3.4.30) 
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Using equations (3.4.4)-(3.4.7) and defining: 

o~ .... (t,o> = ~ w___ ct,O) I 
A s A(a+s~a) s=O 

gives: 

d ,.., ,.., 
ds (H_ (P 0) + F"' (2 (a)) 

where 

A(a+s~a) A(a+s~a) 

= o<P Ct,t >P' w' Ct,t > + <P Ct,t >:P o<P' ct,t > 
,.., . 0 0 "' 0 ,.., 0 0 ,.., 0 
A A A A 

T T 

+ f c5<P_Ct,o)~(o)<P~(t,a)do + f <P,..,(t,o)~(o)c5<P~(t,o)do 
A A A A 

t 
0 

t 
0 

= S(t) + S' (t) 

T 

~ "' I J ,.., S(t) = c5<P (t,t )P <P (t,t) + c5<P...Ct,o)2{o)<P~(t,o)do 
,.., 0 0 ,.., 0 ·-
A A t A A 

0 

Since <P,.,(t,o) is defined by (3.4.9), it is given by 
A 

~t c5<P,..,Ct,o) = A(t)c5<P,..,Ct,o) + c5A(t;o;~a><P {t,o);c5<P ,..,(o,o) = 

Using 

A A A A 

the variation of constants formula, c5<P,....(t,O) is 
A 

o<P,..,(t,o) =ft <P,.,(t,T)oA(L;a;~a)<P,..,(T,O)dT 
A A A o 

(3.4.31) 

(3.4.32) 

0 
(3.4.33) 

(3.4.34) 
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Now combine (3.4.34) with the definition of S(t): 

=/ 
t 

0 

....., 

<P (t,T)oA(T;a;~a)~.....,(~,t )P w' (t,t )dT 
"" 0 0 ""'\ 0 
A A A 

f
t t - ....., I 

+ 1 <P,...,(t,T)OA(T;a;~a)W,...,(T,cr)3(cr)W.....,{t,cr)dTd0 
t <J A A A 

0 

(3.4.35) 

Using the composition rule and interchanging the integrations in 

the second tenn gives: 

s (t) 
t 

=f 
t 

0 

w (t,T) [OA(T;a;~a)W (T,t )P <ti' (T,t )]W
1 

(t,T)dT 
"" ....., 0 0"" 0 "' 
A A A A 

+ j { 
t t 

0 0 

"" ....., I I w (t,T)oA(T;a;6a)W (T,cr)E(cr)W (T,O)W (t,T)dcrdT 
_, """ "' ,...,, 
A A A A 

= F (oA(a;6a)H (P >> ....., "" 0 
A A 

t T 

+ f W..,(t,T) [OA(T;a;~a) [wA(T,cr)3(a)@~(T,cr)d<J]W~(t,T)dT 
t A -t A A 

0 0 

"' 
= F (oA(a;6a) [H.., (P ) + F,_, {E) 1) ....., 0 

A A A 

Thus (3.4.32) is: 

(3.4.36) 
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= F_(P(t)oA 1 (t;a;~a) + oA(t;a;~a)P{t)) 
A 

d T - T 
(H_ (P ) + F_ (3)) 

ds o 
A(a+s~a) A(a+s~a) 

= s (T) + s I (T) 

T - -, - -
F_(P(t)oA (t;a;~a) + OA(t;a;6a)P(t)) 

A 

Substituting (3.4.37)-(3.4.38) in (3.4.30) gives: 

oJ(a;6a) = !.{<oQ(a;6a), P> 
2 x 

+ <i, o3ca;6a>>x 

,,..., 'V I .,..., "' 

+ <Q, F_(POA (a;6a) + OA(a;6a)P)>x 
A 

+ <K , F:(PoA' (a;6a) + oA(a;~a)P)> } 
T A y 

1 { - - - -= 2 <oQ(a;6a) ,P>x + <K,o3(a;6a)>x 

+ <F*(Q) + F:* (K ), PcA'(a;6a) + oA(a;6a)P>x} 
A A T 

1 'V "' "' ~ 
= -

2 
{<oQ(a;6a),P> + <K, oB(a;6a)> 

x x 
+ <K, PoA' (a;6a) + oA(a;~a}P> } x 

(3. 4. 37) 

(3.4.38) 

(3.4.39) 
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where K(t) is defined b.y; 

* 
K(t) = F:(Q) + F~ (KT) (3.4.40) 

A A 

Thus K(t) satisfies (3.4.21) and P(t) satisfies (3.4.22). Using 

the definition of <·,·>x in (3.4.39) gives: 

1 IT "' ,.., oJ(a;6a) = 2 tr [oQ' (t;a;6a)P(t) + K(t)o3Ct;a;6a) 

t 

(3.4.41) 

0 
~ ~ ~ ~ ~ ~ 

+ K(t)P(t)oA' (t;a;6a) + K(t)oA(t;a;6a)P(t)]dt 

T 
tr r 

Jt 
0 

"' ,.., "' 1 ,.., ,.., 
[P(t)K(t)oA(t;a;6a) + 2 P(t)oQ(t;a;6a) 

1 "' "' 
+ 2 K(t)o3(t;a;6a)]dt 

0 

The above proof is rather complex due to the time varying structure 

of the problem. A simpler approach can be used to prove the correspon-

ding theorem for the time invariant problem. 

Theorem 3.2: Let J (a) be defined by (3.3.15)-(3.3.16). 
00 

Then the Frechet differential of J at a in the direction 6a is given by: 
00 

oJ (a;6a) 
00. 

t.r{PKoA(a;6a) + ~ PoQ(a;6a) (3.4.42) 
1 ,.., ,.., 

+ 2 Ko3(a;6a)} 

where: 
,.., 

A'K + KA + Q = 0 (3.4.43) 
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,,..., 

AP + PA' + ";'.;' ;:::; 0 

Proof: From the definition of L....,, P is found by: 
A 

-1 (:;:;'.) p = - L...., -
A 

Since Q is symmetric, J
00

(a) (3.3.15) is given by: 

J (a) = 
00 

/ 

1 
2 

The Frechet differential of J (a) is: 
CX1 

0J00 (a;~a) = - ~ <oQ(a;lla), L: 1 c~)>Y 
A 

1 
2 <Q, ~E L:

1 
(S(a+dla)) j >_ 

A ( a+Ella) c:=O y 

1 ,,..., ,,..., 
= 2 <oQ(a;lla), P>Y 

1 ,,..., d -1 ,,..., 
-2<Q,<lL csca)>l > 

E A. ( a+c:~a) E=O Y 

1 ,,..., -1 "> 

- - <Q L (o~(a;lla))> 
2 , i y 

(3.4.44) 

(3.4.45) 

(3.4.46) 

The derivative in the second term above can be computed using the 

-1 
definition of L...., and L...., in the following manner: 

A A 
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L (~ (o,)) -1 ::::. I 
A(~+s.11~> s~o 

Thus 

-1 ..., [d -1 :::: ] 0 = L 0 L,., (2(a)) + L_ 0 ~ L_ (~(a)) -o 
oA (a.; /ia) A (a) A(a.) ds A (a+s./ia.) s-

(3.4.47) 

Using (3.4.45) and solving equation (3.4.47) for the bracketted term 

gives: 

d -1 ~ I dE: L,., (~(a)) 
A(a+s/ia.) s=O 

= L-l [L (P~ 
A oA (a; /ia) J (3.4.48) 

Using (3.4.48) and the definition of the adjoint operator, (3.4.46) 

becomes: 

oJ (a.; /ia.) 
1 

= -
2 

1 *-1 "' "' 

2 
< L.,., ( Q) , L ,., ( P) + o 2 (a; /ia. )> y 

A oA(a.;/ia) 

(3.4.49) 

Then, by defining 

"' *-1 ..., 
K = - L..., (Q) 

A 

and using the definition of the Lyapunov operator and the inner product 

on Y equation (3.4.46) is equivalent to 
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(3~4.50) 

+ ~ cioica.;6a.>P + K:Poi~ ca.;6a>J} 

+ tr { o.A (a.; 6a.) :PK: + %roQ (a.; 6a.) + ~ ioB (a; 6a.)} (3.4.50) 

By (3.4.14), K solves (3.4.43). 

0 

Theorems 3.1 and 3.2 can be used directly in a gradient search 

(see Section 2.2)to solve either of the two minimization problems of 

Section 3.3 for arbitrary parameterizations. 

With the interconnected system structure assumed in Section 3.2 

(Example 3.2), these conditions can be developed further. 

* * a) Assume that G .. (t} and H. ,(t) (i=l, ..• ,N;j=l, ... ,N) 
lJ lJ 

Theorem 3.3: 

are optimal for the functional minimization problem (3.3.13)-(3.3.14). 

* * Then G .. (t) and H .. ( t) satisfy: 
lJ lJ 

T 
tr f {LlG~. (t){-B~ (t) (K*(t)P*(t))2. 1 2.-B~(t) cK.*ct>P*(t)) . . 

lJ J. J.- I J J. 2J. 1 2J 

t 
0 

T 

tr f 
t 

0 

N 
\ * ""* + l R. (t)G.Sl(t)P 0 2

. (t)}}dt = 0 
si~1 l l 2~, J 

(3.4.51) 

{{ c K. * ct> p * ct» c ~ ct> - < K* ct> P * ct» 
2 

. 
2 

. 2 ~ ct> 
2i,2j-l J 1

' J J 

(3.4.52) 
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~*ct> =-i/ct> K* Ct> - K* (t>A* ct> - l:l* ct>; i<* c-r> = K-r (3.4.53) 

""* "'* ""* ""'* ~* P (t) = A (t)P (t) + P (t)A (t) ""·* ~.* + 3 (t); p (t) = p 
0 0 

(3.4.54) 

* * b) Assume G .. and H .. (i=l, •.. ,N; j=l, ••. ,N) are optimal for the 
l.J l.J 

* * static minimization problem (3.3.15)-(3.3.16). Then G .. and H .. satisfy: 
l.J l.J 

""*""* Al ""*""* tr{/:::.G' .. {- B'. (K P ) B (K P ) 
l.J l. 2i-l,2j - i 2i,2j (3.4.55) 

N * ....... * 
+ l R.G. nP2n 2·}} = 0 

i= 1 l. l. x, X, I J 

(3.4.56) 

N \' ..., * * • + l K
2 

. 
2 

n H n • 8 . } !:::.H • • } = 0 
i=l l.1 x, X,) J l.~ 

....... ,....... ..., * 
(A K + KA + Q) = 0 (3.4.57) 

....... * 
(AP + PA' + 3) 0 (3.4.58) 

Here the subscripts denote the block of the indicated matrix, parti-

tioned confonnally with the closed loop system matrices defined in 

(3.3.1)-(3.3.2). 
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Proof: 

The proof involves a simple algebraic m,anipulation of the 

equations from Theorems 3.1 and 3.2, and is identical for parts a and 

b. The steps will be shown for part b. 

Define 

Assume P and Kare given by (3.4.57)-(3.4.58) 

/). 
:PK .. 

l.J 

[ 

''.~) 2i-l, 2j-l 

(PK) 2i I 2j-l 

<Pi<> 2i-1, 2j ] 

(PK) 2. 2. 
l., J 

using the notation as in Theorem 3.2. Then, 

oA (a; f).a) .. = 0 -B. G .. 

cJ 
l.J l. l.J 

A 

[ 00 .. c. -B. /).G,. - /).H,. 
l.J J l. l.J l.J 

The first term of the right hand side of (3.4.42) is: 

N 
tr{oA(a;f).a)PK} = tr l 

i=l 

N 
l oA(a;/).a) .. :PK .. 

j=l l.J Jl. 

since the trace of a block matrix is the sum of the traces of the 

diagonal blocks. Then: 

tr{oA(a;f).a) .. Pk .. }= td-B. f).G • • (PK)
2

. 
2

. 
1 

-:8. f).G • • (PK) . 
2

. 
J.) )J. J. l.J JI J.- J. l.J 2J I J. 

A ~'"" 

+ Lili. . C . (PK) 2 . l 2 . - /).H. . C . (PK) 2 . 2 . } 
l.J J J- , l. l.J J ], l. 
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N 

tr{oA(a;ba)PK} ~ l 
i=l 
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N 

l tr { - [ (PK) 
2 

. 
2 

. _ 1l3 . + (PK) 
2 

. 
2 

. S . J tiG . . 
j~l J, l. l. J1 l. l. IJ 

I'\ ".""" 

+ bH .. [C. (PK) 
2

. l 
2

. -C. (PK) 
2

. 
2

.]} 
l.J J J- ' l. J J, l. 

where the linearity of the trace and the following property have been 

used: 

tr{AB} = tr{BA}, nxm B C"fRmxn A E JR , ~ 

Next, using tr{A} = tr{A~: 

N 
tr{oA(a;ba)PK} = l 

Similarly, 
....., 

oE (a; ba) .. 
l.J 

....., 

oQ(a;ba) .. 
l.J 

i=l 

N 

I . tr{-bG.'. [B '. (KP) 2. 1 2 . + B ! (KP) 2. 2 . ] 
l.J l. J.- ' J l. i, J j=l 

(3.4.59) 
0 0 

0 0 

N 
0 i~l{bGii RiGij + G~i RibGij} 



Then: 

; tr{PoQ Ca.; Lm>} 

-91-

l 
N N 

l l tr{?' .. ~ } 
;:::; - QQ <~ ; A.<l- > j i 2 

i~l j;:::;l I,J 

1 I N N 
= - I tdi? 2. 2. l [L\Gi ,R,Q,G,Q,. + G_ijR£L\G£i]} 2 

i=l j=l 1, J Sl=l J 1 

= !
2 
trl I I I [P

2
. 2 .1\G~.R,.,G,.,. + P. 

2
.G,.,'.R,.,L1G,.,.]l 

i=l j=l £=1 1, J NJ N N1 21 1 J NJ N N1 ~ 

irl~GiiR~G~jp2j,2i]l 
(3. 4. 60) 

The first equality follows from the property of the trace of a block matrix; 

the second by multiplying the bracketted term from the previous equation; 

the third by rearranging terms; the fourth from the trace identities 

used previously; and the fifth by rearranging terms and the fact 

"'• 
p2i,2j = P2. 2' J, 1 

Switching i and j in the indexing of the second term of (3.4.60) shows 

the two terms are equal. Hence: 
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1 ..... "' 
N N N 

2 tr{PoQ (~;A~)} = l l l tr{6GijR1G1ip2i,2j} 
,Q,;:::;l i=l j=l 

N N N 

l l I { I N } = tr 6G~,R~G~ 1P21 2 . 
i=l 1;:::;1 j=l l.J 1 1 . , J 

N N N 

l l tr{6G'., l R.G.£P21 2·} (3.4.61) 
i=l j=l l.J 1=1 l. l. , J 

The second equality follows by interchanging the i and 1 indexing. 

In a completely analogous manner: 

N 1 .......... 

2 tr{Ko2(a;6a)} = l 
i=l 

Combining (3.4.59), (3.4.61) and (3.4.62), and using 

N 
oJ (a;6a) = l 

i=l 
I tr {6G'. . { -B'. (KP) 

2 
. 

1 
-
2 

:- B ~ (KP) 
2 

. 
2 

. 
l.J l. J.- ' J l. J., J j=l 

+ f R.G.nP20 2 .} 
1=1 l. J.X, x,, J 

(3 .. 4.63) 

"' N ..., } 
(KP)

2
. 

2
. 

1
c: -(KP)

2
. 2 .c~ + l K

2
. 20H0 ,8.MH;, 

J. I J - J J. r J J 1= 1 J. I Xt Xt J J J. J 

* A necessary condition for a = 

is: 

* oJ(a ;6a) 0 

* * (G. . , H .. 
l.J l.J 

i,j=l, ••• ,N) to be optimal 

(3.4.64} 
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If (3.4.55)-(3.4.56) are satistied, the.n so j_s C3~4'164). Conversely, 

if (3.4.64) is true the.n 

!J.H = 0 
pq 

!J.G = 0 pq 

V p ,q = 1, ••• ,N 

VP , q = 1, •• ., N; p~i , qr!j 

results in (3.4.55). Similarly 

!J.H = 0 
pq 

!J.G = 0 
pq 

v P, q = 1, ••• , N; p~i, wj 

VP ,q = 1, ••• ,N 

results in (3.4.56). Thus, (3.4.55)-(3.4.56) with Kand P given by 

(3.4.57)-(3.4.58) are equivalent to (3.4.64). 

0 

Theorems 3.1 and 3.2, and the approach of Theorem 3.3 can be 

used to derive necessary conditions for many closely related problems. 

A special case is the classical situation of Example 3.1. Then the 

above theorem applies with N=l and !J.G and /J.H arbitrary. Equations 

{3.4.51)-(3.4.52) are equivalent to: 

- B' {t) [(K{t)P(t))
12 

+ (K(t)P(t))
22

l + R(t)G(t)P22 (t) = 0 (3.4.65) 

[(K(t)P(t)) 21 -(K(t)P(t)) 22 lc~ (t) + K22 Ct)H(t)9{t) = 0 (3.4.66) 
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With a bit o~ manipulation, equations (3.4.53)-(3.,4 .. 54) and (3,4~65}-

(3.4.66) can be tJSed to show that t.he. equations for the ;filter and 

control gains decouple (a version of the separation principle) anCl 

to obtain the control and filter Riccati equations. This calculation 

is performed in Appendix B. The insight provided by these manip-

ulations will be useful in the solution of the subproblems formed by 

the decomposition algorithm, and will be discussed further in Chapter 

5. 

The similarity between equations(3.4.65)-(3.4.66), (3.4.51)-

(3.4.52) and (3.4.55)-(3.4.56) will be exploited through the following 

notation in the remainder of this thesis. 

Vc(G;P,K,B,B,R) = -B' (KP)
12 

- B'(KP)
22 

+ RGP
22 

(3.3.67) 

(3.3.68) 

In the general case when some of the elements of G and H have 

been fixed a priori (e.g., Example 3.3) the corresponding elements 

of 6G and 6H are O. Then equations (3.4.51)-(3.4.54) or (3.4.55)­

(3.4.58) will result in a system of 2n
2 

+ s coupled nonlinear equations 

. 2 2 nk in n + s u nowns. Of course, as was noted earlier, the equations 

may be dependent if the parameterization is too general. 

There are two particular examples when G and H are constrained 

which will be used extensively in Chapters4 and 5. The first requires 

that G and H be identically O. The minimization problem is of course 
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trivial, but th~ decomposition approach of Chapter 4 will res"ult in 

an iterative soluti.on m,e.thod for the ~olution of the Lyapunov eq:u,a-

tions (3.4.53)-(3.4.54) or (3.4.57}-(3.4.58). The result for the 

time invariant equations is similar to a technique studied by Athay 

[1976] and Lehtomaki [1978]. 

The second example corresponds to Example 3.3. In this case it 

is required that G .. and H .. for itj be identically O with G .. and H .. 
l.J l.J l.l. l.l. 

unconstrained. Equations (3.4.51)-(3.4.52) become: 

A * -B ~ ( t) (K* ( t) P* ( t) ) 
2

. l 
2 

. - B ~ ( t) (K* ( t) P ( t)) 
2

. 
2 

. 
l. l.- , l. l. l., l. 

* * + R. (t)G .. (t)P
2

. 
2

. (t) 
l. l.l. l., l. 

0 (3.4.69) 

* * • * * r..• 
(K (t)P (t)) 

2
. 2 . l C. - (K (t)P (t)) 

2
. 

2
. C. (t) 

l., l.- l. l., l. l. 
(3.4.70) 

* * + K
2 

. 
2 

. ( t) H . . ( t) 8 . ( t) = 0 
l., l. l.l. l. 

The time invariant equations (3.4.55)-(3.4.56) are also equivalent 

in this case to (3.4.69)-(3.4.70) without the time dependence. 

3.5 Summary and Discussion 

This chapter has considered a suboptimal approach to solving 

nonclassical linear stochastic optimal control problems. The class 

of admissible controls was restricted to those controls which can be 

generated as the output of a finite specified dimensional linear 

system which uses as input the output of the system to be controlled. 
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Information flow restrictions. are hand,led. thr~u9h constraints on the 

variables which characte.:rize th~ cont;roller. 

Several practical advantages of this formulation were discussed 

earlier (see Chapter 1 and Section 3.1). One of the most important 

advantages is that the nonclassical stochastic optimization can be 

reformulated as a deterministic nonlinear optimization. Then a set 

of necessary conditions for the solution of the stochastic optimi­

zation problem can be derived. 

Two points about the results of $ection 3.4 should be noted. 

First, Theorems 3.1 and 3.2 apply to any problem which can be put 

in the form of the optimizations in Section 3.3. In addition to the 

linear stochastic problem, other examples which produce optimizations 

of this form are the output feedback problem, the model reduction 

problem and the reduced order observer problem (see, for example, 

Galiana et.al. [1973)). The applicability of Theorems 3.1 and 3.2 

are a direct result of the generality of their derivation. 

The other point is that the conditi_ons p;r;ese,nted in Sect.ion 3. 4 

may have ma.ny solutions. This problem arises because the condtions 

are satisfied for any stationary points of the optimization. Since 

the nonclassical stochastic optimization may have several local minima 

there will not, in general, be a unique solution to the necessary 

conditions. 
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4. DECOMPOSITION OF THE LINEAR STOCHASTIC CONTROL PROBLEM 

4.1 Introduction 

There are several approaches to solving the linear stochastic 

control problem formulated in Chapter 3. The derivatives presented 

in Theorems 3.1 and 3.2 can be used to solve the minimization problems 

of Section 3.3 ((3.3.13)-(3.3.14) or (3.3.15)-(3.3.16)) directly 

(Kwakernaak and Sivan [1972]; Davison, Rau and Palmay [1973]; Looze, 

Houpt, Sandell and Athans [1978]). Newton's method or any quasi-

Newton method (see Dennis and More~ [1977]) can be used to solve the 

nonlinear equations which result from the necessary conditions pre-

sented in Theorem 3.3. Levine et.al. [1971] and Wang [1972] used 

iterative methods to solve similar sets of equations resulting from 

output feedback problems and deterministic decentralized control pro­

blems respectively. Both methods fit the decomposition framework 

developed in Chapter 2. However, none of the above methods utilizes 

the structure of the interconnected system problem. 

In many problems the interconnected system problem possesses a 

physical weak coupling; i.e. the interactions between subsystems are 

much less important than the self-dynamics of the subsystems. In the 

linear stochastic control problem formulation of Chapter 3, the weak 

coupling is manifested in the off diagonal blocks of the system matrix. 

If each of the off diagonal blocks are zero, the optimization problems 

and their necessary conditions decouple into N independent optimization 
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problems whose solutions are simply the centralized linear-quadratic­

Gaussian subproblem solutions. Since the subsystem interactions were 

assumed to be relatively insignificant, it seems reasonable that the 

solution to the overall problem should be near the solution of the 

decoupled problem. 

The above structure is similar to the structure exploited in 

Example 2.7. The decomposition developed in the discussion preceding 

Example 2.7 will be used in Section 4.2 to exploit the weak coupling 

structure. The remainder of this chapter will discuss the convergence 

of the resulting iteration. Although the convergence condition of 

Theorem 2.4 cannot be practically evaluated in most cases, it will 

be used in Section 4.3 to derive a weak coupling convergence result. 

Section 4.4 develops related conditions which can be used as guidelines 

to determine whether the iteration will converge. Section 4.5 

discusses the results of Chapter 4. 

4.2 The Gauss-Seidel Decomposition 

The necesarry conditions given by Theorem 3.3 result in a system 

of nonlinear equations of the general form: 

f <8) ::::; 0 B E B (4. 2" l) 

where B is a Banach space. The exact form of f in (4.2.1) will 

depend on the partiCl~lar parameterization used. For the purposes of 

this chapter, it will .be assumed that the individual elements of each 

parameterized block of G and H are parameters. The parameterized 
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blocks of G and H will be specified by the index sets 1G and lH. 

1' ~ { (i,j): G .. is parameterized} 
G 1] 

{4.2.2) 

1 ~ { (i,j): H .. is parameterized} 
H 1] 

(4.2.3) 

A one-point stationary iterative method will be used to solve 

equation (4.2.1). Such methods were discussed in Chapter 2. The 

particular iteration to be used will be chosen to take advantage of 

the weakly coupled interconnected system structure assumed in Chapter 

3. The key observation which affects the choice of the iteration is 

that if the systansare not coupled (A .. =O for i~j) then equations 
1] 

{3.4.51)-(3.4.54) and (3.4.55)-(3.4.58) decouple into N independent 

systems of nonlinear equations which correspond to the centralized 

necessary conditions of the subsystems. The resulting solution G, H, 

P, and Kare block diagonal. If the systems are coupled, but the off 

diagonal blocks are fixed and the off diagonal equations {i.e. the 

equations resulting from the off diagonal blocks of the Lyapunov equations 

and the Fr~chet derivatives {~ 
dG .. 

1] 

dJ 
dH .. 

1] 

are not 

enforced, then the problem again decouples into independent systems 

of nonlinear equations. 

The structure of the necessary conditions described above is 

exactly that specified by (2.3.22)-(2.3.24). To exploit this structure, 

the core will be chosen to implement the Gauss-Seidel algorithm (note 

that the Jacobi algorithm could also be used). The remaining step 
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is to specify the decomposition of the space Bas in (2.3.22}. This 

decomposition involves choosing a partial basis for the space, and 

corresponds to assigning the parameters and variables to either the 

upper or lower level of the hierarchical structure which results. 

Using the structure of the necessary conditions as a guideline, 

the decomposition that will be used is: 

BS~ {K .. , 
l.J 

rJ- !J. {K .. I = 
11 

f ~ {,.., 
S 

K .. 
l.J 

p .. , Gk£' H : (ir!j; i=l, ••• ,N; j=l, ••• ,N} I 
qr l.J 

(k~.R.; (k,.R.)E: IG) I 

p .. , 
11. 

G,., 
JJ Hkk: i=l, ••• ,N; 

- (A I K + KA + Q) .. ; p .. 
1] l.J 

(~r; (q,r)E: IH'.} 

(j,j)E: IG; (k, k} E: 

,.., 
(AP + PA I + 2) .. 

l.J 

r } 
H 

dJ 
3Gk£ = O; 

dJ 
~= 0: (ir!j; i=l, ••• ,N; j=l, ••• ,N), 

. 
!J. 

f
1 

{K .. 
11 

,.., 

qr 

,.., ,.., "' 

- (A I K + KA + Q) .. 
11 

P .. 
11 

~ 

(AP+ PA'+ 2) .. 
l.1 

dJ 
-- - O; dG,. -

dJ 
-~-- = 0: i=l, ••• ,N; (j ,j)E: IG 
9Hkk JJ 

(k,k)E I } 
H 

(4.2.4} 

(4.2.5) 

(4.2.6} 

(4.2.7) 

(4.2.8) 

Above K .. and P .. are the blocks of K and P partitioned confo:rmally 
l.J l.J 
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with J.\ij, and the subscr±vts o:( th~ Lya;punoy equat±Qns i,ndicate the 

blocks of the equations corresponding to Aij. In the time invariant 

case, the assigmnent of variables is analogous, with the time derivatives 

replaced by the zero matrix. 

The resulting iteration is: 

f cak+l. ak+l)=O 
r I-Jr ' µs 

ak+l rf 
µI s 

(4.2.9) 

(4.2.10) 

With the decomposition given by (4.2.4)-(4.2.8) the solution of 

fI (equation (4.2.10)) for (3k+l decouples into N independent smaller 
I 

problems. Define 

-k r· i7'5j 
K .. = l.J 

1.J 
-k-1 i=j K .. 

J.J. 

(4.2.11) 

-k -k 
K [K .. ] 

l.J 
(4.2.12) 

i.e., ~is the matrix with diagonal blocks equal to the most 

"" 
recently obtained subsystem matrices K. . and the off diagonal supremal 

J.J. 

matrices K. . which are to be canputed. In a similar manner define 
l.J 

---kp , -::k =k -:-k -:-k d G , H , A , Q , and ~ • 

The decomposed problem (4.2.9)-(4.2.10) can then be written as 

a two level hierarchy in terms of the original system matrices and 

parameters. To simplify notation, the time dependence notations will 
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be dropped, and only the time ya;t;ying case wi.11 be considered. ':('he 

same idea can be applied to the time invariant problem. The resulting 

equations are identical to the time varying case with the time deri-

vatives replace by zero matrices. 

Supremal Problem 

' -k---k /\ I -k-k N -:k ::k 
-B,(K p )2~ 1 2' - B. (K p )2. 2· + R. I G.n P2n 2· = O; 

l. J.- ' J l. 1, J l. 9,,=l l.~ ~, J 
(4.2.13) 

i=j , ( i , j) s IG 

-k-k ' 
(K p )2. 2· le. 

~ i, J- J 
-k-k "'' (K p )2. 2· C. + 

l., J J 
0 (4.2.14) 

~ [~pk -k -k I -;::;k =-k 
) (4.2.15) P .. = + p (A ) + :. ] . . ; P .. (t = p 

l.J l., J l.J 0 oij 
i;ij; i=l, ••• ,N; j=l, ••. ,N 

-=-k. -k -k -k-k -k --k (4.2.16) K .. - [A ) 'K +KA + Q ] . . ; K .. (T) = KT .. 
l.J l., J l.J l.J 

Inf imal Problems (i=l, .•. ,N) 

v k "-'k "'k A 

R,) sk (i,i)s 1G (4.2.17) (G .. ; P .. ' K .. ' B., B.' + O; 
c l.l. l.l. l.l. l. l. l. l. 

k '""k '""k A k (i,i)s 1H (4.2.18) V f (H .. ; P .. ' K .. ' c., c., e.) + T. = O; 
l.l. l.l. l.l. l. l. l. l. 

~k '""k "'k '""k '""k I ;k k ---k 
) (4.2.19) P .. A .. P .. + P .. (A .. ) + + D. p .. (t = p 

l.l. l.l. l.l. l.l. l.l. -ii l. l.l. 0 oii 

~k ""k '""k "'k "'k "'k k "'k {4.2.20) K .. =-{A .. ) I K .. - K .. A .. Q .. + E. K .. {T) = KT .. 
l.l. l.l. l.l. l.l. l.l. l.l. l. l.l. l.l. 
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where: 

s~ b. N k ""k "'k 
l 

I\ v (G, . ; p .. ' K .. ' B., B.' R.) 
i 

j=l c l.J Jl. l.J l. 1 1 
(4.2.21) 

j~i 

k ~ 
N k "'k "'k A 

T. l V f (H .. ; P .. I K .. ' C. I c.' e .. > 
1 

j=l 1] J1 1] 1 1 1 
(4.2.22) 

j#i 

k ~ N "'k "'k "'k "'k 
D. l [A .. P .. + P .. (A .. ) '] 

1 
j=l 1J Jl. 1] l.J 

(4.2.23) 

j#i 

k b. N 
"'k "'k "'k "'k E. l [(A .. ) I K .. + K .. A .. ] 

1 
j=l J1 J l. l.J J l. 

(4.2.24) 

j#i 

There are several properties of the above decomposition ((4.2.13)-

(4.2.24)) which should be noted. In general both the supremal and 

infimal problems are nonlinear. However, in the completely decen-

tralized problem equations (4.2.13)-(4.2.14) are not present. In 

this particular case the supremal problem solves the linear matrix 

equations (4.2.15)-(4.2.16). Equations (4.2.15)-(4.2.16) are defined 

by the restriction of the linear Lyapunov operator L_ to the subspace 
A 

of symmetric matrices with O along the block diagonal. Let the space 

X be defined as in (3.4.1) and define: 

A (n. +i;. ) x (n. +~.) 
g L i i J J , X . . 

2 
( IR ,IB , I\ [ t 

0 
, T] ) ; <x , y > x 

l.J ij 

T 

~tr 1 
t 

0 

x' (t)y(t)dt 

(2.4.25) 
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f1 '{ P = {P .. : i=l, .•• ,N; j:::;l, .•• ,N; i;ij}: P .. E: X .. } 
l.J l.J l.J 

& 
N N 

<P~Q>p l I <P .. ' Q .. >. 
i=l j=l l.J l.J x .. 

l.J 

j;ii 

'IT: p + X: {P .. : i=l, .•• ,N; j=l,. •• ,N; i;ij} -+ P 
l.J 0 

* f1 'IT = adjoint of 'IT 

p 
0 

0 pl2 .. 

0 

0 

(4.2.26) 

(4.2.27) 

(4.2.28) 

(4.2.29) 

Then the restricted Lyapunov operators in (4.2.15) and (4.2.16) are 

* * 'IT o L o 'IT and 'IT o L ,o 'IT respectively. Similar definitions of 
A A 

* 'IT and 'IT can be made for the time invariant case to result in the 

same form for the operators. Since 'IT is a projection, the operators 

in (4.2.15)-(4.2.16) are nonsingular if A is stable. 

The infimal problems are nonlinear for any non-trivial parame-

terization. However, the structure of the nonlinear equations (4.2.17)-

(4.2.20) is similar to the centralized necessary conditions (3.4.65)-

(3.4.66) and (3.4.53)-(3.4.54). In fact, the centralized necessary 

conditions are a special case of (4.2.17)-(4.2.20) with N=l and 

k k Dk. k S . , T . , and E . 
l. l. l. l. 

being zero matrices. 
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The hierarchical st:i:ucture of equations (4.2.13)-(4.2.24) 

involves a sequential infm::niation flow and computation. This pattern 

is a direct result of the Gauss-Seidel algorithm used to decompose the 

necessary conditions. As an alternative, the Jacobi algorithm can be 

used to introduce a parallel computation structure. The only modi-

f ication to equations (4.2.13)-(4.2.24) is to replace 
k k k and s. ' T.' D. 
J_ J_ J_ 

k 
in equations (4.2.17)-(4.2.20) k-1 k-1 k-1 k-1 E. with s. , T. , D. and E. 

I. J_ J_ J_ J_ 

The Gauss-Seidel algorithm generally has better convergence charac-

teristics than the Jacobi algorithm. The region of convergence is 

usually larger, and the rate of convergence is usually faster for the 

Gauss-Seidel iteration. However, if processing capability is available 

to solve the supremal and infimal problems in parallel, the total 

amount of computation time required may be less for the Jacobi iteration. 

The choice of algorithms must depend on the particular problem being 

solved. 

4.3 Convergence for Weakly Coupled Systems 

The iteration described, by the. decomposition of Section 4.2 can 

be written in the form of equation (2,3.14): 

by defining (see (4 .. 2. 9)- (4. 2.10)) 

[

fs cs~+l; 

f ($k+l. 
I I I 

(4.3.1) 

(4. 3. 2) 
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The iteration resulting from (4.3.1) will exhibit local convergence 

if the conditions of Theorem 2.4 are satisfied. The function g 

Jf 

defined by (4.3.1)-(4.3.2) is Frechet differentiable, and the calculation 

and (4.2.13)-(4.2.24) is straightforward. The operators consist of 

,_ - ....... 
terms involving the closed loop matrices A .. and the matrices K and P. 

l.J 

However, the evaluation of conditions {i) and (ii) of Theorem 2.4 is 

not practical for two reasons. First, as discussed in Section 2.3, 

the derivatives are evaluated at the presumably unknown solution. 

Secondly, the operator a 1g(~S'S1 ) must be inverted and the spectral 

-1 
radius of the linear operator a

1
g o

2
g must be evaluated. For the 

time varying problem the linear operators are infinite dimensional. 

-1 Even in the time invariant case the operator a
1

g o
2
g can be repre-

2 2 
sented as a (2n + s)x(2n + s) matrix. The amount of computation 

required to check these conditions is often prohibitive. 

However, Theorem 2.4 can be used to identify a class of problems 

for which the decomposition of the preceding section will converge. 
n.xn. 

Given an arbitrary matrix A IAij] with Aijs L2
1 Jc R,B,A[to,T]) 

n.xn. 
{or A .. s R 

1 
J) define: 

l.J 

AD ~ diag [A .. 
]_]_ 

/:::,. 
A A - A 

0 0 

i=l, ••• ,N] 

A 
/:::,. 

{A as defined in : A 
0 0 0 

(4.3.3) 

(4.3.4) 

(4.3.3)-(4.3.4)} (4.3.5) 
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Note that A is a sub.-space of linear operators over the space 
0 

L~ ( IR,JB,1'.It
0

,T]) or fRn. Given any norm on either of the latter 

spaces, A will assume the corresponding induced nonn. Also define: 
0 

b. 
= co,a > = 

Io 
The optimal centralized solutions for 

the subsystems when A = O. 
0 

k k 00 b. 
(138 ,SI)k=o The sequence generated by (4.3.1) . 

Using definitions (4.3.3)-(4.3.7) the following theorem can be 

stated. 

Theorem 4.1: Assume there exist open neighborhoods U of 0 s 
0 

v of <Sso ,f3ro ) t: BS x BI such that A t: u and <Ss ,SI> t: v o 
0 0 0 

A 
0 

implies ()g is nonsingular. Then there exist open neighborhoods 

0 t: A and V C B
8 x BI such that 

0 

Ci) <f3~ ,S~> s v 

(ii) A t: U 

implies 

Lim 
k-+oo 

* * 

0 

(4.3.6) 

(4.3.7) 

and 

U of 

(4.3.8) 

where (f3
8

,f3I) is a local minimum of (3.2.13)-(3.2.14) (or(3.2.15)-

(3.2.16)). 
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Proof: By direct calculation , the linear operators o
1

g and o
2

g are 

jointly continuous in CS ,f3 } and A . Since d9' is nonsingular for s· I o 

A s U and ($ , f3 ) s V , the implicit function theorem (Theorem 2. 3} 
o o S I o 

implies the variables cs
8

,f3
1

} are continuous functions of A
0

. Hence 

For any norm on B the induced norm on the space of linear 

operators L(B) satisfies 

* * Again by direct calculation and use of the fact that (f3
8

,f3
1

} 

for A = 0: 
0 

(4.3.9} 

0 (4.3.10} 

* * Since ag (f3 ,f3 } is nonsingular, (4.3.10} implies: 

(4.3.11} 

depend continuously on A , there exists an open 
0 

A 

neighborhood U of 0 € A 
0 

A 

such that for all A s U: 
0 

< M + 1 
0 

(4.3.12} 

(4.3.13} 
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* where S satisfies 

* * g <13 Is ) = Q 

for the given A . Combining (4.3.9) and (4.3.12)-(4.3.13) gives: 
0 

(4.3.14) 

for all A s u. 
0 

-1 * * Since (4.3.12) implies a
1

g ($ ,s ) exists, by 

Theorem 2.4 there exists a neighborhood V CB
5 

x BI (depending on A) 
0 

00 

k k 
such that the sequence (~s' SI>k=O converges to Since 

the function generated by the implicit function theorem for the 

dependence of g on A is unique and continuous in an open neighborhood 
0 

U1 of 0 E: Ao' the Frechet derivative ag is nonsingular and ~so' Sio) 

is a minimum for A = 0, the limit of the sequence (4.3.8) is a local 
0 

minimum of the corresponding optimization (3.3.13)-(3.3.14) or (3.3.15)-

(3.3.16). 

0 

Theorem 4.1 serves to reinforce the intuition and insight which 

led to the decomposition of Section 4.2. For an arbitrary set of 

subsystems, the theorem says that sufficiently weak coupling (in terms 

of the magnitude of the coupling) will result in a convergent algoritlun. 

Since it was the ultimate weak coupling situation (no interactions 

between subsystems) which inspired the decomposition, the result is 

reassuring. 
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Theorem 4.1 also gives insight into the importance of the 

parameterization of the original problem. The requirement that 3g 

be nonsingular in the appropriate regions is equivalent to requiring 

that the problem not be overparameterized. If the problem is over-

parameterized, then conditions (i) and (ii) of Theorem 2.4 can not be 

satisfied simultaneously, as is demonstrated by the following argument. 

By the property of Fre'chet derivatives, 

If dg is singular, there is an element x such that 

(4. 3 .15) 

Assuming a
1

g is nonsingular, a brief manipulation of (4.3.15) results in 

the equation: 

0 (4.3.16) 

-1 
Hence [a

1
g a

2
g] has an eigenvalue with modulus unity and does not 

satisfy condition (ii) of Theorem 2.4. Thus the choice of a para-

meterization which results in a locally unique solution to the mini-

mization is crucial. 

Finally, Theorem 2.4 can be used to demonstrate another property 

of the iteration defined by (4.2.13)-(4.2.24). It should be noted 

that if the convergence criterion of Theorem 2.4 is satisfied there will 
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be an integer k such that the sequence { (S
8
k, f3k) }

00 

o I k=k 
converges 

0 
* * monotonely to ($
8

, f3
1
). In the time invariant case, there exists 

another integer M such that each of the iterates (f3~, f3~) for k > M 

, f , . (aO f30) stabilize the system. Thus i the initial value ~s' I is suf-

* * ficiently close to (f38 , f3 1 ) and the iteration converges, each of the 

iterates (f3:, f3~) will be stabilizing. For both the time varying and 

time invariant cases, a sufficiently close initial value will lead to 

a monotonely decreasing cost. 

This suggests that the iteration prescribed py (4.2.13)-(4.2.24) 

can be applied in an on-line mode. The solutions Gk and Hk obtained 

at the end of the kth iteration can be applied until the (k+l)st 

iteration is completed. For an initial guess sufficiently close to 

the optimum and a convergent iteration, the system will be stable at 

all times, and the 'Value of the cost functional will decrease at each 

iteration. 

4. 4 Practical Convergence, Te,sts 

As mentioned ±n the previous se,ction a,nd in Se,ct;i:.on 2. 3, the 

local convergence condition is not often "Q.setu.l for predictin9 the 

success or failure of a particular al9orit!mi. One obvious problem is 

that the condition ~st be evaluated at the presqn)ably unknown soluti,on. 

The amount of COil\putation involyed in inverting 11
1

g and computing the 

-1 spectral radius of ~lg a
2
g can also be prohibitive. This section 

attempts to deal with these problems by finding simpler, more practical 
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tests which can be used to determine whether the iteration will 

converge. 

As will be seen, the problem is a difficult one, and no complete 

solution is found. By restricting attention to the time invariant 

situation several partial results and guidelines are developed 

which may prove useful for certain problems. These results depend 

on properties of the individual problems for success. Hence, a major 

factor in the choice of which set of tests to use should be insight 

into the structure of the problem being considered. 

The first step is to simplify the convergence condition. The 

iteration of concern is described by the function g given by 

(4.3.2) and repeated here: 

Here f , f , 13 and S are as defined in (4.2.5)-(4.2.24) and 
S I S I 

13 = (13
8

,13
1

). The local convergence condition for (4.4.1) is 

(Theorem 2.4) 

From (4.4.1), a
1

g and a
2
g are given by: 

(4. 4.1) 

(4.4.2) 
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(4.4.3) 

(4.4.4) 

Equations (4.4.3)-(4.4.4) and the subsequent development can be 

simplified by using the following matrix like notation for the par-

titioned linear operators of (4.4.3)-(4.4.4): 

(4. 4. 5) 

(4.4.6) 

Note that the blocks of the operators are themselves linear operators, 

and not matrices. However, the composition of partitioned operators 

follows the same notational rules as does multiplication of matrices. 

be computed: 

_: * * ] 
c\f

1 
<131 ,!35 > 

(4.4.7) 
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Composing (4.4.7) with (4.4.6) in condition (4.4.2) gives; 

(4.4.8) 

Thus: 

(4.4.9) 

Condition (4.4.9) is certainly less costly (in terms of computation 

involved) to evaluate than (4.4.2). However, the linear operators 

<\f
1 

and a
1 

f
5 

must still be inverted. The computation involved in per-

forming these inversions or in computing the indicated spectral radius 

may still be too great. In addition, the linear operators still must be 

evaluated at the solution. 

The latter problem will be considered first. In general, the only 

way to avoid this problem is to show that condition (4.4.9) holds for 

each possible solution. Usually this approach will not be possible. 

/ 
However, the continuity of the Frechet derivatives and the assumed weak 

coupling between subsystems can be used for many problems to develop a 

good approximation to (4.4.9). 

The basic idea is as follows. Since the linear operators in 

(4.4.9) are continuous functions of S and the spectral radius is also 
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A, 

continuous, if condition (4.4.9) holds for some S sufficiently close 

* * to S , then it will also hold at S . By using certain properties of 

the structure of the problem it is often possible to determine a good 

* approximation to S relatively easily. 

There are two possible choices of S which will be discussed here. 

Since the problem is assumed to be weakly coupled, one would expect 

the centralized solutions of the subsystem problems would be close to 

the overall solution. Indeed, the proof of Theorem 4.1 demonstrated 

this fact. The second possibility is to use the open loop system as 

choice for§ (i.e., use G=O, H=O). This should work well whenever the 

controls are heavily penalized and the observation noise covariance is 

large. Either of the above two choices for S will be satisfactory for 

some systems and unsatisfactory for others. The important idea is the 

* concept of choosing a good approximation to S based on insight into 

the structure of the systems. 

* Even when a good approximation to S is found, condition (4.4.9) 

may be too difficult to evaluate practically. The condition can be 

simplified further at the expense of weakening its sufficiency. For 

any norm on the space of linear operators L(B,B> which is subordinate 

to a norm on B, the spectral radius satisfies: 

p (A) < I IAI I A E: LCB,B) (4.4.10) 

Using {4.4.10) with condition (4.4.9) gives the following sufficient 

condition for local convergence: 
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lla/~1 <e:.e:>ll lla2fr<S:.s:>ll lld 1f~
1 <s:.s:>ll ll02f5 <s:.s:>ll < i 

(4.4.11) 

Weakening the condition still further, the iteration defined by (4.4.1) 

will converge locally if: 

11a 1f~
1 cs;,s;> II llo 2f 1 (f3:,s:> 11 < 1 

(4.4.12) 

I I d 1 f s - l CB; 's ; ) 11 11 d 2 f s (f3; 's ; ) I I < 1 

If relations (4.4.12) are satisfied, then the total derivative 

()g is an example of the class of strict block diagonally dominant linear 

operators (see Feingold and Varga [1962]): 

Definition: Let A [Aij] where As L(X), X = x
1 

x •.• xxN is a 

product of N Banach spaces and A .. s L(X.,X.) for i,j=l, •.• ,N. Then 
l.J J ]. 

A is strictly block diagonally dominant if 

N 

l 
j=l 

I IA .. 11 < 1 
l.J 

(4.4.13) 

j~i 

where the norms on the indicated operators are induced by the Banach 

space norms. 

The concept of a strictly diagonally dominant matrix (i.e. each 

X. = fR in the above definition) has been shown to be a sufficient 
]. 

condition for convergence of the Jacobi and Gauss-Seidel iterations 
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(see Varga [1962]). Similarly, the strict block qiagonal dominance 

condition for linear operators can be shown to be sufficient for the 

convergence of the corresponding block Jacobi and block Gauss-Seidel 

iterations. 

Theorem 4.2: Let As L(X) be a strictly block diagonally dominant 

linear operator. Then both the corresponding block Jacobi and block 

Gauss-Seidel iterations converge. 

l?roof: Let the linear operators D, E and F be given by (using the 

partitioned operator notation) : 

D diag [A .. : i:::;l, .•• , NJ 
1l. 

E =[-A .. : j=l, .•• ,N-1; i=j+l, ••. ,N] 
1] 

F;::::; f..-,A. ; h=.l,! • .,,N-l; J.':::;i+l, .... ,NJ 
J.:j 

(4.4.14) 

(4.4.15) 

(4.4.16) 

± ~ e., D is block d±a~on_a,l, E: is ?tPictl,y blook. lowe;r t;riangular and 

'F ±s. strictly l:>lock uppep trian~"µla;r~ 'rhen: 

A= D - E - F (4.4.17) 

The block Jacobi iteration is defined by the splitting (see 

Example 2.1): 

A = D 
0 

Al = - E - F 

(4.4.18) 

(4.4.19) 
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The corresponding convergence condition is; 

Let: 

Then 

-1 
p{D (E+F)}< 1 

!:::. -1 
B D (E+F); B E L (X) 

B .. 
l.J {-A~~ A .. i.tj.1; l.l. l.J 

0 l.=J 

B. . E: L (X. 'x. ) 
l.J J l. 

Similarly, the block Gauss-Seidel iteration is defined by the 

splitting (Example 2.2): 

A = D - E 
0 

The corresponding convergence condition is: 

Let: 

C /:::. (D-E) -l F 

Also define: 

-1 
L = D E 

(4.4.20) 

(4.4.21) 

(4.4.22) 

(4. 4. 23) 

(4.4.24) 

(4.4.25) 

(4. 4. 26) 

(4.4.27) 



Then 

L .. 
l.J 

{ 

-1 
-A .. 

]_]_ 

0 

A .. 
l.J 

U .. ;:::: {-A~~ A .. l.J ]_]_ l.J 

0 
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j=l, .•• ,N-1; i=j+l, •.• ,N 

j=l, •.• ,N; i=l, .•. , j 

i=l, ••. ,N-1; j=i+l, ••. ,N 

i=l, ... ,N; j=l, ••. ,i 

In terms of L and U, C is given by: 

C = (I-L)-l U 

(4'!4.28) 

(4.4.29) 

(4.4.30) 

(4.4.31) 

For the remainder of this proof, the no.rm on X will be taken 

as 

11x11 t. max 
i 

I Ix. I I; 
]_ 

(4.4.32) 

where the norm on the right hand side of (4.4.32) is taken as the 

norm on X. • The corresponding norm induced on L (X) is 
1 

b. N 

I !Al I :max l I IA .. 11 
i j=l 

l.J 

A = [A .. ] E: L (X) , A. . E: L (X' , x. ) 
l.J l.J J ]_ 

(4.4.33) 

where again the no.rm on the right hand side of (4.4.33) is the norm 

on L(X., X.) induced by the norms on X, and X .• 
J ]_ J ]_ 
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By (4.4.10) and using (4.4.33) and (4.4.22}: 

p{B} ~ I IBI I (4.4.34) 

N 

= max l I IB .. 11 
i j=l l.J 

N 

I IA~~ A .. 11 = max l 
i j=l 11. l.J 

j~i 

I IA~~l I 
N 

< max l I IA .. 11 - l.l. l.J i j=l 
j~i 

If the strict block diagonal dominance condition (4.4.13) holds then 

p{B} ~ max 
i 

N 

l 
j=l 
j#i 

I IA .. 11 < 1 
l.J 

Thus the block Jacobi iteration converges. 

Similarly, by (4.4.10) 

N 

l p { c} ~ 11c11 = max 
i j=l 

I le .. I I 
1] 

Since L is strictly block lower triangular, 

-1 
(I-L) = 

Thus, C is given by: 

N-1 
c = l 

m=O 

N-1 

l 
m=O 

m 
L U 

(4.4.35) 

(4.4.36) 

(4.4.37) 

(4.4.38} 
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M 

l 
m=O 

m 
L U 
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Given M+l c can be found by the recursion relation: 

M+l c = L CM + U 

M+l Using the fact that L is strictly block lower triangular, C .. 
l.J 

can be written: 

M+l c .. 
l.J 

i-1 

l 
k=l 

Now, (4.4.36) is equivalent to 

p{c} < I lcN-111= max 
i 

N 

l 
j=l 

(4.4.39) 

(4.4.40) 

(4. 4. 41) 

The proof proceeds by induction on the exponent M ; i.e. , it will be 

proven (assuming strict block diagonal dominance) that 

I lcMI I < 1 

for all M > O. For M=O, 

0 c .. 
l.J 

u .. 
l.J 

i=l, ... ,N; j=l, ••• ,N 

(4.4.42) 

(4.4.43) 
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Then, assuming (4.4.13) holds 

N 

I lc0 1 I =max 
i 

I 
j=i+l 

I lu .. 11 
1.J 

= max 
i 

< 1 

N 

I I IA .. 11 
. . 1 1.J ]=1.+ 

For the induction step, assume 

= max 
i 

N M 
l I le .. I I 

j=l 1.J 

< 1 

By (4.4.40) 

=max l ~ 
i j=l 

i-1 ~ 
11 I L. k c~. + u .. 11 

k=l 1. J 1.J 

-2_ max { ~ 
i j=l 

= max l i I 1 
11 L. k 11 [ I 11 CMk · 11] + I 11 U .. I ~ 

i k=l i j=l J j=l i] ~ 

(4. 4. 44) 

(4.4.45) 

(4.4.46) 

By (4.4.45), the bracketted term above is less than unity. Also, 

U .. =O for j < i. Relation (4.4.47) becomes 
1.] -
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N 
< max 

i 
l I lu .. 11} l.J 

(4.4.47) 

< max 
i 

N 

I 
j=l 
j#i 

j=i+l 

I IA .. 11 
l.J 

Again assuming strict block diagonal dominance, relation (4.4.47) 

becomes 

(4.4.48) 

This concludes the induction step. 

By the above induction, I lcMI I < 1 for each M > 0. In particular, 

it holds for M=N-1 in (4.4.41). Thus 

p{c} .::_ 1 (4.4.49) 

0 
and hence the Gauss-Seidel iteration is convergent. 

Theorem 4.2 also applies to the nonlinear Jacobi and Gauss-Seidel 

iterations. The proof of Theorem 4. 2 involved bounding the spectral 

radius of the corresponding linear iteration operators. As shown at the 

end of Section 2.3 ((2.3.34)-(2.3.37)) the decompositions which result 

in the nonlinear Jacobi and Gauss-Seidel iterations correspond to 

splittings of the derivative of the original equation. The splittings 

are identical to the splittings of the linear Jacobi and Gauss-Seidel 
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algorithms. The convergence condition is given in terms of the 

splittings of the derivative, and again is identical to the linear 

case. Thus, using the notation from Examples 2.6 and 2.7, Theorem 

4.2 can be applied by defining: 

A= df (x) (4.4.50) 

A. . = d . f . (x
1

, ... , x ) 
1J i J N 

(4. 4. 51) 

When applied to the decomposition of Section 4.2 (using the 

notation of equation (4.4.1)), the strict block diagonal dominance 

condition (4.4.13) becomes 

11 '\ f; 1 ca; ,s; > 11 11 a/ s cs: s; > 11 < 1 (4.4.52) 

max 11 '\ fii cs ;i ,S;) 11 11 a lri cs ;i ,s:) 11 < 1 
l<i<N 

By Theorem 4.2, relations (4.4.52) are sufficient conditions for the 

local convergence of the decomposition of Section 4.2. Note that the 

form of (4.4.52) is similar to that of (4.4.12). In fact, (4.4.52) 

could have been derived from (4.4.12) by using the norm on X (see 

(4.4.32)) that was used in the proof of Theorem 4.2. Also, relations 

(4.4.52) and the strict block diagonal dominance condition from which 

they are derived can be interpreted in the context of the problem 

formulation of Chapter 3 as a weak coupling condition for the intercon-

nected system structure. 
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Although the strict block diagonal dominance condition for the 

decomposition of Section 4.2 (condition (4.4.52)) is easier to evaluate 

than the spectral condition (4.4.2) or its simplification (4.4.9), 

there is still a need to compute the norms of the inverses of several 

linear operators. The difficulty involved in explicitly performing 

the inversion of these linear operators can be demonstrated by con-

sidering the time invariant, completely decentralized problem. The 

partial derivatives involved in (4.4.52) have a less complicated 

structure for this problem, but are still extremely complex: 

N 

i~i (Aii!::.P£j + t::.'Pi£iji> + Aiit::.'Pij + t::.'Piji~j 
£~i, j ( 4. 4. 53) 

N 

l ci~i· t::.K.iJ· + ~1. 0 iiJ· > + i~ . t::.K. . . + t::.K. . . i .. 
£=l N N 11 1J 1J JJ 

£~i,j 

i . . !::.P .. + t::."P . . A":. 
1] J J 11 ]1 (4.4.54) 

A": .t::.K. .. + t::.K. . . i .. 
]1 ]] 11 1.J 

i,j=l, .•• ,N; i~j 

-s: cK. .. /J.P .. + t::.K. . . 'P .. >12-B! cK. . . t::.'P .. + t::.K. . . 'P .. >22 1 11 11 11 11 1 11 11 11 11 

+ R. (!::.G.P
2

. 
2

. + G,!::.P 2 . 2 .) 1 1 1, 1 1 1, 1 

- - - - I - /\1 
{K .. f::.p. . + !::.K . . p .. ) le . - {K .. f::.p . . + !::.K . . p .. ) 2 2 Ci. 11 11. 11 11 2 1 11 11 11 11 

+ {!::.K
2

. 
2

.H. + K2 . 2 .1::.H.)8. 1, 1 1 1, 1 1 1 
- _, 

{A .. !::.P .. + f::.p . . A .. ) + !::.A .. P .. + P .. /::.A .. + !::.'2 •. 
11. 1.1. 1.1. 1.1. 1.1 11 11 11 11 

c:A: . t::.K.. . + t::. K. .. A" .. > + !::.A~ . K.. . + K. .. ~. . + 1::.Q. . . 11 11. 11 11 11 11 11 11 11. 

(4.4.55) 
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N 

l B~ (LlK .. P .. + K .. !:::.P .. ) 12+B~ (!:::.K .. P .. + K .. /J.P .. ) 22 
j=l 1 1J J1 1J J1 1 1J J1 1] J1 

j#i 

N 

l 
j=l 
j#i 

r 
j=l 
j#i 

(!:::.K. ,P .. + K .. ilP .. ) 21 C~(!:::.K .. P .. + K .. 6.P .. ) 22 &: 
1J J1 1J J1 1 1J J1 1J J1 1 

cA" . . t::.P' .. + 1:::.P' . . i~. 1 
1J J1 1] 1J 

ci: .!:::.i< .. + t::.K. . . i .. 1 
J1 J1 1J J1 

(4.4.56) 

It is obvious that (4.4.53) and (4.4.55) are difficult to invert in 

the present form. Kronecker products (see Bellman [1970] for a 

detailed discussion) can be used to place (4.4.53) and (4.4.55) in 

matrix form. The dimensions of the matrices which result from (4.4.53) 

and (4.4.55) are 
N N n 
~ ~ A A ~ A 2 A 
!.. !.. (n.+n.) (n.+n.) and !.. [2(n.+n.) + n. (m.+p.)] 

i=l j=l 1 1 J J i=l 1 1 1 1 1 

j#i 

respectively. Thus the dimensions of these matrices can be large even 

for relatively small problems and the problem of calculating the norm 

of the inverse is still difficult. 

Another approach which can be used to circumvent this difficulty is 

to bound or estimate the norms of the inverse of the operators in 

(4.4.53) and (4.4.55) in terms of the operators without explicitly 

inverting them. This approach essentially requires the determination 
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of the condition numbers of the operators (see, for example, 

Wilkinson [1965]) without inverting the operators. This is also a 

difficult problem. There exist methods to calculate (such as singular 

value decomposition; see Golub and Reinsch (1971]) or estimate (Cline 

et.al. (1977]) these norms when the operator is in matrix form. Again, 

the dimensions of the matrices could prohibit the use of such methods. 

The problem with the approaches described above is that the ope­

rators to be inverted do not have a simple form, and can be expressed 

as matrices only at the expense of increasing the dimension of the 

problem considerably. Hence an exact solution may not be possible in 

many problems. If such is the case, a desirable approach would be to 

develop a guideline which, while not sufficient to ensure convergence, 

would give insight to the nature of the problem and would also be prac­

tical to compute. 

One such guideline is to check the strict block diagonal dominance 

conditions (4.4.52) for the Lyapunov operator corresponding to the 

closed loop system matrix A. There are several reasons why one might 

expect the test using the Lyapunov operator to provide a good indication 

of convergence of the overall problem. First, the operators in 

(4.4.53)-(4.4.54) are exactly those which occur in the decomposition of 

the Lyapunov operator. Also, the subsystem Lyapunov operators occur inthe 

operator in (4.4.55). Second, when no perturbations are allowed in the 

control and filter gain matrices (i.e. ~G and ~H are required to be zero 

matrices), the decomposition developed in Section 4.2 becomes an iterative 
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method for the solution of the Lyapunov equations (3.3.57)-(3.3.58). 

Finally, from the usual system theoretic interpretations of the 

Lyapunov operator in the context of covariance and cost-to-go equations, 

one would expect that the weak coupling in the system should also be 

manifested in the Lyapunov operator. Conversely, if the Lyapunov operator 

is weakly coupled, the overall system is most likely weakly coupled also. 

These considerations are definitely ad hoc in nature; however, the 

similarity between the Lyapunov operator and (4.4.53)-(4.4.56), and the 

usual interpretations of the Lyapunov operator in system theory lend 

support to this approach. 

It is still necessary to invert several linear operators to test 

the Lyapunov operator for block diagonal dominance. Define the operator 

CR
mxn mxn mxm nxn 

SAB: ~JR for AS JR and B s IR by 

S (X) 
AB 

= AX + XB 
I X s Rmxn (4.4.57) 

Also, let LA = SAA Then the operators which must be inverted are 

* 
L....... and the projected Lyapunov operator 7T o .L-A o 7T (where 7T is as 

A .. 
11 

defined in (4.2.25)-(4.2.29)). Inverting these operators is not much 

easier than inverting the operators in (4.4.53) and (4.4.55). 

There are several bounds on the norm of the inverse of the Lyapunov 

operator L , but these are either very conservative or applicable only 
A 

to particular forms of the matrix A (see Athay [1976]). The following 

theorem provides a tight bound which is useful for a large class of 
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matrices for the matrix norm induced by the Euclidean vector nonn. 

Theorem 4.3: Let a (A} = (Jl (A)> 02 (A)> . . • > a (A) = a . (A)> 0 
max - - -n min-

nxn 
for As R denote the singular values (see Golub and Reinsh [1971]) of 

the matrix A. Also let {A. (A): i=l, .•• ,n} denote the eigenvalues of 
i 

the matrix A. 

1 I 
For an arbitrary square matrix A, let let As = 2 (A+A ) 

1 I 
denote the symmetric part of A and let A = - (A-A ) denote 

a 2 

the antisynunetric part of A. Then the singular values of 

SAB are bounded by: 

a (SAB)< a (A) + a (B) 
max - max max 

2 2 2 a . cs ) > a . (A) + a . (B) + 
min AB - min min 

min {A . (A ) A . (B ) } 
i s J s 

- max 
i=l, •.• ,m 
j=l, •.• ,n 

i=l, ... ,m 
j=l, ••• ,n 

{A . (A ) A . (B ) } 
i a J a 

The proof of theorem 4.3 will require the following lemma. 

Lemma 4.1: L t A B c IRnxn . e , c;.. be symmetric matrices, and let 

(4.4.58) 

(4.4.59) 

A (A) = A
1

(A)> ••• >A (A) =A . (A) denote the eigenvalues of A. 
max - - n min 

Similarly, let A (B) = A (B)> >A (B) = A . (B) denote the eigenvalues 
max 1 - · · · - n min 

of B. Then 
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A (A+B) < A (A) + A (B) 
max - max max 

(4.4.60) 

A . (A+B) > A . (A) + A . (B) 
min - min min (4.4.61) 

Proof (of Lemma 4.1): Let I I· I I denote the Euclidean norm on ~n. 

Since A+B is symmetric, 

J. (A+B} 
I 

max x (A+B)x 
max 

I lxl l=l 

I I 

< max x Ax + max x Bx 
I lxl l=l I Ix! l=l 

J. (A) + J. (B) 
max max 

Similarly, 

J. (A+B) 
I 

min x (A+B)x 
min I !xi l=l 

> min I 
Ax + min BX x x 

I lxl l=l I !xi l=l 

= A . (A) + J. . (B) 
min min 

Also needed for the proof of Theorem 4.3 is the notation and 

properties of the Kronecker product. Bellman [1970] (Chapter 2) 

provides a detailed discussion of this subject. 

Proof (of Theorem 4.3): Without loss of generality, it is assumed that 

SAB is represented in matrix form: 

SAB = A @ I + I ® B (4.4.62} 
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The square of the singular values of S are the eigenvalues of: 
AB 

SAB SAB = (A ® I + I ® B) ' (A ® I + I ® B) (4. 4. 63) 

Using properties of the Kronecker product, equation (4.4.63) simplifies 

to: 

(A
1

A ® I+ I@ B'B)+(A
1 @ B +A® B

1
) (4.4.64) 

The first term on the right of (4.4.64) is a symmetric matrix with 

eigenvalues 

a~(A) + cr~(B); {i=l, .•• ,m}; {j=l, ... ,n}. 
1 J 

The second term on the right is twice the symmetric part of 

A' @ B. The largest singular value (also the largest eigenvalue) of 

(A
1 @ B +A @ B

1
) is bound (using Lemma 4.1) by: 

a (A' IX\ B + A IX\ B' ) .::_ 2 a (A' IX' B) 
max \:.:J \;:,/ max \::;J 

2(0 (A)O (B)] 
max max 

(4.4.65) 

The final equality follows from the series of equalities (Bellman 

(1970]) : 

2 'A a
1 

(A ~ B) = cr
1 

[ (A
1 ® B)' (A @ B)] 

= a
1

[A A
1 @ B

1

B] 

2 2 
al (A) al (B) 
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Since both terms on the right of (4.4.64) are symmetric, 

.::. cr~(A) + cr~(B) + 201 (A)crl (B) 

2 
= [cr

1 
(A) + cr

1 
(B)] 

which is identical to (4.4.58). 

Returning to (4.4.64), the minimum singular value of 

(A' @ B + A @ B~ is: 

0 . [ (A' ti' B + A IX\ B 1) ] 
min \:::J 0 

min x' (A' @ B + A 0 B •) x 
I lxl l=l 

= 2 min x' (A' @ B) x 
I !xi l=l 

(4.4.66) 

(4.4.67) 

where I I· I I denotes the Euclidean norm on LRmxn Let A and A denote 

the synunetric and anti symmetric parts of A. 

and B . Then for any x, 
a 

x' (A'@ B)x x' [(A 
I 

= s 

x I [(A 
s 

+ A
1

) ® (B + B ) ]x 
a s a 

- A ) x (B + B ) ]x 
a s a 

= x' [As ® B - Aa 0 B - A 
s s 

Since 

a 

s a 

Similarly define B 
s 

(4.4.68) 

® B +A 0 B ]x 
a s a 

(4.4.69) 

(4.4.70) 



-133-

{i.e. the matrices Aa ® Bs and As @Ba are antisynunetric) equation 

(4.4.68) becomes 

Substituting {4.4.71) in (4.4.67) gives 

(J • [ {A I IX' B + A I IX' B') ] = 2 
min \.::;/ \;;I 

I 

> 2 { min x (A © B ) x max x' {A IX\ B )x} 
I lxl l=l a\:./ a 11x11 =1 s s 

(4. 4. 72) 

Since {A ® B ) and {A IX\ B ) are symmetric, the minimum and maximum 
s s a\:J a 

in {4.4.72) are the smallest and largest eigenvalues, respectively, of 

the corresponding matrices. Thus, the quantities on the right of 

( 4. 4 . 72) are : 

max x' {A @ B ) x = 
I lxl j:=l a a 

min 
i=l, ... ,m 
j=l, ... ,n 

max 
i=l, ••• ,m 
j=l, ... ,n 

{J •. {A ) A. • {B ) } 
1 s J s 

{A..{A)A..{B)} 
1 a J a 

Now, the minimum singular value of SAB is bounded by: 

C5'n2{SAB) ~ C5 (S~ S ) 
n AB AB 

{4.4.73) 

{4.4.74) 

{4.4.75) 

Combining (4.4.72)-(4.4.74) and substituting the result in {4.4.75) gives 

(4.4.59). 
0 
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The importance of 'l'heorem 4.3 lies in the fact that the Euclidean 

-1 
induced norms on SAB and SAB are given by 

1 
cr (S ) 

n AB 

Thus the norms in (4.4.76) and (4.4.77) are bounded by: 

min A. • (A ) A. . ( B ) 
1. s J s i=l, ••• ,m 

- max j:~~~.; ~~ (B >]-112 
. 1 a J a 
l=l, ... ,m 
j=l, ••• ,n 

(4. 4. 76) 

(4.4.77) 

(4.4. 78) 

(4.4.79) 

These bounds can be evaluated through operations on the original A and 

B matrices rather than the Kronecker expansion SAB 

At this point it should be noted that the bound (4.4.59) may not 

give any useful information (i.e., the right hand side of (4.4.59) may 

be negative). It is easily seen that the last term 

- max 
i=l, ... ,m 
j=l, •.. ,n 

A. (A ) A. (B ) 
1 a J a 

is always non-positive since the eigenvalues of an antisymmetric matrix 

are purely imaginary and occur in complex conjugate pairs. Thus if the 

antisymmetric part o:e A and B are non-zero, the bound could be negati,ve 



as the following example shows. 

Example 4.1: 

A 

The singular 

2 
(Jl 

2 
02 

Consider LA = 

[

-1 a] 
0 -1 

values of A are 

2 a a 

s 
AA 

= 1 + - + - ..J4 
2 2 

2 v4 1 + a a 
= 

2 2 

The symmetric and antisymmetric 

[-; _:] A s 
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with 

2 
+ a 

2 
+ a 

part of A are 

L 
0 

Aa 

a -
2 

The eigenvalues of the above two matrices are: 

= -1 + ~; A. (A ) 
2 2 s 

a 
= j 2 

= - 1 - a 
2 

a 
= - j 2 

a 

] -
2 

0 

where j denotes f-j_ in the above. 'Using the above values, the bounds 

in (4.4.58)-(4.4.59) are: 



2 a 
+ - + 

2 

a 
2 
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~4 2 ]1/2 
+a 

The right hand side of (4.4.81) is negative whenever 

a > [ 4-{; -2 J 112 
~ 2 • 9 3 

However, taking a=3 the singular values of LA are found to be: 

5.65 

cr3 (LA) = 2 

o
4 

(LA) = ~6 -&]112 
~ .354 

(4.4.80) 

(4. 4. 81) 

(4.4.82) 

0 

The above example demonstrated a case in which the bound (4.4.59) 

was not useful. However, there are many cases in which the bound will 

be accurate. For example, the bound is exact for stable symmetric matrices 

since 

and 

A = 0 
a 

min 
i=l, ••• ,m 
j=l, ••• ,n 

B = 0 
a 

A.. (A ) A.. (B ) 
1 s J s 

a . (A) cr . (B) 
min nun 
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Thus one would expect the bound to be good for matrices which are almost 

symmetric. There are other cases in which A and B are not small but a a 

the bound in (4.4.59) is still tight. 

Example 4.2: Again consider LA= SAA with 

A = [-a w] 
-w -a 

The singular values of A are 

Cl > 0 

w > 0 

2 
+ w 

The symmetric and antisymmetric parts of A are 

[
-oa A = 

s 
0 ] 

-a 

The eigenvalues of the above two matrices are: 

- Cl 

Using the above values, the bounds in (4.4.58)-(4.4.59) becomes 

cr
1

(L ) < 2 
A -

a . (L ) > 2a 
min A -

The singular values of LA are: 
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CT'l (LA) 2 ~a.2 2 
+ w 

cr2 (LA) 2 ~ Cl.2 
2 

= + w 

cr 3 (LA) = 2CJ. 

cr 4 (LA) 2a. 

Thus the bounds are tight. 

To conclude this section, it is useful to summarize the results 

of this section and outline the procedure one would use to test for 

convergence of the iteration defined in Section 4.2. Equations 

(4.4.9), (4.4.11), (4.4.12) and (4.4.52) are a series of sufficient 

0 

conditions which become successively weaker but also successively 

easier to evaluate. To evaluate these conditions exactly the solution 

is required. However, the continuity of the derivatives implies that 

approximations to the solution can be used to evaluate the conditions. 

There is obviously a tradeoff between computational complexity 

and the strength o:e the te$t for (4 .. 4.9), (4.4.11)-(4.4 .. 12) and (4.4.52). 

Also, there may be problems for which even the simplest test (4.4.52) is 

too complex to evaluate. For such problems the same decomposition 

applied to the corresponding Lyapunov equation may provide a good indi­

cation of the convergence properties of the original decomposition. The 

tests (4.4.9), (4.4.11), (4.4.12) and (4.4.52) applied to the Lyapunov 

equation decomposition are more easily evaluated. Also, the bounds given 

in Theorem 4.3 can be used to simplify the tests further. 
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4.5 Summary 

Using the decomposition framework of Chapter 2, Section 4.2 

developed a two level hierarchical computation structure corresponding 

to the nonlinear Gauss-Seidel iteration for the solution of the linear 

stochastic control problem formulated in Chapter 3. Several properties 

of the iteration were discussed in Section 4.3. The local convergence 

of the iteration for sufficiently weakly coupled systems was demons­

trated. Section 4.3 also showed that the value of the cost decreased 

at each iteration if the starting point of the iteration is sufficiently 

close to the solution and if the iteration converges. 

Section 4.4 discussed practical a priori tests for convergence of 

the decomposition procedure of Section 4.2. Several simplifications 

of the convergence condition of Theorem 2.4 were developed. For situa­

tion when the simplified tests can not be used, a guideline based on the 

analysis of an iterative solution of a Lyapunov equation was presented. 

In the process of developing the simplified tests and guidelines, two 

new results were developed. The first showed that if the Fr/chet de­

rivative of the decomposed function were strictly block diagonally do­

minant then the corresponding Gauss-Seidel and Jacobi iterations are 

locally convergent~ The second result provided upper and lower bounds 

for the singular values of the Sy 1ve.ster opera tor ( 4. 4. 5 7) • I·n addition 

to providing bounds fo;r;r the convergence conditions of this chapter, the 

latter result can also be used to bound the condition number of the 

Sylvester operator. 
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Finally, it should be. noted that the. concluding remarks of 

Section 2.5 apply to this chapter also. Insight into the structure 

of the system which is being decomposed is the most important ingrediant 

in the choice of the decomposition and the design of a convergence 

test. 
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5. SOLUTION METHODS FOR THE DECOMPOSED PROBLEM 

5.1 Introduction 

The purpose of decomposing the linear stochastic optimal control 

problem (formulated in Chapter 3) was to reduce the computational 

burden associated with computing the best linear controller that sa­

tisfies the information flow constraints of the problem. The reduction 

is accomplished by replacing the original problem by a group of smaller 

subproblems which are repeatedly solved. To achieve the purpose of the 

decomposition, efficient solution methods to the subproblems must be 

available. 

The supremal and inf imal subproblems developed in Chapter 4 are 

still nonlinear, and the supremal can be relatively large. However, 

as will be seen in this chapter, there is additional structure present 

in both types of subproblems~ This structure will be exploited to 

develop secondary decompositions which will lead to efficient solution 

methods. 

The supremal problem of Chapter 4 will be studied in Section 5.2. 

A decomposition algorithm which further exploits the weakly coupled 

subsystem structure is developed. A second method which is only ap­

plicable to the completely decentralized problem is also developed. 

Section 5.3 extends several previously developed algorithms to the in­

fimal problem of Chapter 4. Both Sections 5.2 and 5.3 consider the 

convergence characteristics of the proposed algorithms. Section 5.4 

presents an application of the algorithms of Chapter 4 and Sections 
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5. 2 - 5. 3. Finally, Section 5. 5 d,iscu$se,s th~ algopi thJ:qs in the context 

of the overall problem so1uti,0n .. 

5.2 The Supremal Problem 

The decomposition algorithm presented in Chapter 4 was developed 

to take advantage of the assumed weak interactions between subsystems. 

The same line of thinking leads to a similar decomposition algorithm 

for the solution of the supremal problem. To motivate the decomposition 

of Chapter 4, the completely decoupled interconnected system was ex­

arciined as the limiting case of the general weakly coupled system. For 

this case, the solution to the problem was simply to take the centralized 

optimal control problem solutions of the subsystems as the diagonal blocks 

of G, H, P and K and the zero matrix as the off diagonal blocks. The 

equations for the off diagonal blocks were still present. However, the 

solutions were the null solutions because they driving terms were linear 

functions of the subsystem coupling matrices and hence were zero. These 

off diagonal equation blocks constitute the supremal problem of Chapter 

4. Hence the same logic which led to the decomposition of the original 

problem can be used to motivate a similar decomposition of the supremal 

problem. 

As in Chapter 4, a Gauss-Seidel iteration (see Example 2.6) will 

be used. Again, the corresponding Jacobi algorithm requires only minor 

modifications to the following discussion. At each iteration (i.e., for 

fixed $
1
), the supremal problem (4.2.13)-(4.2.16) is of the form: 
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(5. 2 ~ 1) 

where h: BS+ B
8

. To exploit the weakly coupled structure of the 

problem as outlined in the preceding paragraph, define the decom-

position of B. 

(5.2.2) 

B .. !J. {K .. , P. ,, G. ,, G .. , H .. , H .. } 
1) 1) 1) 1) )1 1] )1 

i=l, ..• ,N-1; j=2, ..• ,N; iij 
(5.2.3) 

!J. :, 
h .. = {K .. = 
1] 1) 

- [A I K + KA + Q] . . i K, . (t) 
1] 1) 

= (KT) .. 
1] 

P .. 
1) 

"' 
= [AP + PA' + 3] .. 

1] 

dJ 
~= O; 

dJ 
~= O; 

1) )1 

"' "' 
P .. (t ) = (P ) .. 
1) 0 0 1) 

dJ 
--= O· dH. . I 

1] 

~ = o} 
dH .. 

)1 

(5.2.4) 

i=l, ... ,N-1; j=2, ••• ,N; iij 

In the time invariant case, the assignment of variables and equations 

is analogous with time derivatives replaced by the zero matrix. 

When the Gauss-Seidel algorithm is used with more than two sub-

problems, the order in which the subproblems are solved can affect the 

rate of convergence (see Fox [1964]). The ordering implied by the 

decomposition (5.2.2) can be expected to produce good results when the 

forward and backward coupling between subproblems are of the same order 

of magnitude (see Lehtomaki [1978]). The resulting iteration is: 
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k+l k+l ktl k k 
h .. ((3 12 ' ••• ,s . 1 . l' s . . ' s . +l . +l' .• ., s. ) = 0 iJ i- ,J- i,J 1 1 J ~N 

(5.2.5) 

1=1, •.• ,N-1; i=l, ••. ,N-1; j=i+t 

Note that the above ordering amounts to solving for the first super 

diagonal blocks first, the second super diagonal blocks second, etc. 

This ordering is illustrated in Figure 5.1. 

Given an (i,j) pair, for fixed SI (i.e. fixed 

{........ ,..,, } 
K .. , P .. , G .. , H .. ; i=l, ... ,N ) define the following notation (similar ii ii ii ii 

to that in ( 4 . 2 • 11) - ( 4 . 2 • 12) ) . 

"'k 
It-ml li-jl and n~.Q. Kim < 

~ 
(5.2.6) 

1m "'k 
It-ml I i-j I , m~t, and k < i K2m 

,..,, 
1=m Kit 

-k-1 
Kim otherwise 

-k [--k J K = K 
1m 

(5.2.7) 

i.e., for the (i,j)th problem~ is the matrix with blocks equal 

to the most recent solutions of a 1 the other problems. In a similar 

· the (;,J·) th -k -k -k -k -k ~ manner, define for ~ problem P , G , H , A , Q and ~ . It 

should be noted that the above definition of the bar notation depends on 

the indices i and j, but this dependence is not explicit in the notation. 
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83517AW003 

1 N 2N-2 • • • N(N-1) 
2 

• • 
2 N + 1 • • • • 

• 
3 • N-6 • 

• N-3 • 

N -1 

Figure 5.1: Order of Solution of Subproblems for the 
Gauss-Seidel Algorithm 
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Using the bar notation of (5.2.6)-(5.2.7), equation (5.2.5) can be 

rewritten in terms of the system matrices as follows. 

Supremal Subproblem (i,j) 

-k-k --k k 
+ R. G .. (P .. )

22 
+ R.G .. (P .. )

22 
+ S .. = 0 

1 1] JJ 1 11 1] 1] 

(5.2.8) 

(5.2.9) 

--k --k -k -k k 
+ (K .. )

22 
H .. 8. + (K .. )

22 
H .. 8. + T .. = 0 

11 1] J 1] JJ J 1] 

' -k -k --k --k "• --k -k -k -k 
-B. [ (K.. p .. ) 12 + (K .. PJ.;) 12] - B. [ (K.. p .. ) 22 + (K .. PJ.) 22] 

J ]1 11 JJ ~ J ]1 11 JJ ~ 
(5.2.10) 

-k -k --k --k k 
+ R. G .. (P .. ) 

22 
+ R. G .. (P .. ) 

22 
+ S.. 0 

J ]1 11 J JJ ]1 ]1 

=k -k =k --k t -k --k -k ---k A 

[ (K. . p .. ) 21 + (K. . PJ.) 21] C. - [ (K. . p .. ) 22 + (K. . p .. ) 22] C. 
]1 11 JJ ~ 1 ]1 11 JJ ]1 1 

(5.2.11) 

-k --k -k -k k 
+ (K .. ) 

22 
H .. 8 + (K .. ) 

22 
H .. 8. + T .. = 0 

JJ ]1 i ]1 JJ J ]1 

::-k --k -k -k I -k -k -k -k ~k k 
A .. P .. + p .. (A .. ) +A .. P .. + p .. (A .. ) + ... .. + D .. 0 
1] 1] 1] JJ 1J JJ 11 ]1 1J 1] 

(5.2.12) 

-k I -k -k -k -k, I -k -k ---k -k k 
0 (A .. ) K .. + K .. A .. + (A .. ) K .. + K .. A .. + Q .. + E .. = 

11 1] 1] ]] ]1 JJ 11 1] 1] 1J 
(5.2.13) 

where 
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k 
N 

-=k -k ::k 
,..... 

s .. = l V c (GH/ p .Q,j, Ki.Q,' B., B., R.) (5.2.14) 
J..) 

.Q.=l 
J.. J.. J.. 

.Q,~i,j 

k 
N 

-k -k -k 
T .. l V f (H.Q,j; p .Q,j, KiJl c., c., e. > (5.2.15) 

l..J Jl=l J J J 

Jl~i,j 

k 
N 

-k -k -k -k I 

D .. l [ Ai.Q, PJlj + p iJl (Aj5l) ] (5.2.16) 
J..] 

Jl=l 
Jl~i,j 

k 
N 

-k -k =k -k l 
I 

E .. = (A.Q,i) K.Q,j + KiJl AJlj (5.2.17) 
l..J 

Jl=l 
Jl~i,j 

Although the above problem appears to be extremely complex upon 

first examination, it is linear in the variables of the problem (G .. , 
l..J 

G .. , H .. , H .. , P .. and K .. ) . Also, in the completely decentralized 
Jl.. J..] ]J.. J..] J..] 

problem (G .. = O, H .. = 0 for i,j=l, ••• ,N and iij} the problem reduces 
l..J l.J 

to the solution of two Sylvester equations. Such equations can be 

solved efficiently (see Bartels and Stewart Il972]). 

A second property of (5.2.8)-(5.2.17) in the completely decentralized 

problem should also be noted. If the original system dynamics matrix 

is block tri-diagonal the N-M problems for which li-jl =Mare not 

coupled. Thus these problems can be solved in parallel.. This property 

also suggest the possibility of interleavinq the Jacobi algorithm with 
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the Gauss-Seidel algorithm. 'rhe original supremal problem is 

decomposed using the Gauss-Seidel algorithm into N-1 problems consisting 

of all the equations and variables on the same super block diagonal; 

i.e. all {i,j) blocks of equations and matrices for which 

{li-jl = M; M=l, .•• ,N-1} would be solved at the same time. Then each 

of the resulting N-1 problems is once more decomposed using the Jacobi 

algorithm along the same lines as the decomposition in {5.2.2)-(5.2.4). 

The only change to equations (5.2.8)-(5.2.17) is the iteration indexing 

;for several of the matrices. By redefining the bar notation for the 

(i, j) th problem as 

"'k 
Kim Ii-ml < li-jl i~ 

~ ;::: (5.2.18) tm "'k 
Kim i=:d, m=j 

K.Q,.Q, i=m 

"'k-1 
Kim otherwise 

equations {5.2.8)-(5.2.17) apply directly to the new decomposition. 

The latter decomposition algorithm for the solution of the su-

premal problem would be expected to work well when the interactions 

between subsystems decrease as the difference between their indexing 

increases. Also, this algorithm possesses a multilevel hierarchical 

interpretation (see Figure 5.2). Each group of problems on the same 

super block diagonal is viewed as a level in the hierarchy. The Mth 

level consists of N-M decision units which have two functions. The 



r 
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j= N-1 ~ 
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Figure 5.2: Multilevel Hierarchical Interpretation of the Interleaved Gauss-Seidel­
Jacobi Supremal Decomposition 
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first is to solve the corresponding (i,j) problem (equations (5.2.8)-

(5.2.18)). The second task is to relay information concerning other 

problem solutions to the levels above and below. 

The convergence properties of the above two decompositions can 

be analyzed independently from the original primary decomposition of 

Chapter 4. This analysis can then be combined with the results of 

Section 2. 4 to analyze the total iteration. As pointed out in Section 

4.3 and 4.4, the exact analysis of convergence for the type of problems 

being considered is difficult. aowever, the supremal decompositions 

of this section can be shown to converge for sufficiently weakly coupled 

systems in a manner directly analogous to the development of Section 4.3. 

Recall the following definition for an arbitrary matrix A = [A .. ] 
J.] 

n.xn. n.xn. 
with Aij E L

2
1 

J ( FR,13,A [t
0

,T]) (or Aij E lR 
1 

J): 

/j, 
diag [A .. : i=l, ... ,N] AD J.J. 

/j, 
A A - AD 0 

A 
/j, 

(5.2.19)-(5.2.20)} = {A : A as defined in 
0 0 0 

Again, A is a sub-space of linear operators over the space 
0 

(5.2.19) 

(5.2.20) 

(5.2.21) 

n n 
L 2 C~,S,A[t0 ,T]) or IR. Given any norm on either of the latter spaces, 

A will assume the corresponding induced norm. Note that (5.2.8)-
o 

(5.2.18) define an iteration of the tonn: 

(Qk+l Qk) 0 
g j.Js 'µs ,......, (5.2.22) 
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* For Ao = o, it is easi,ly ve~i,:Ued. th,at s~ = 0 and a29 (O,O) = o. 

k OQ 

Let {S
8

}k=O de.note the ~equ,ence ge_ne~ated by (5.2~22). 

Using the above definitions, the following theorem deiqonstrates 

the importance of a weakly coupled subsystem structure to the supremal 

decomposition algorithms of this section. 

Theorem 5.1: Assume there exist open neighborhoods U of 
0 

o s A 
0 

and V of 0 E: BS such that A E: U and S E: V implies 3g is non-
e o o s o 

singular. Then there exist open neighl:>orhoods U of 0 E: A and 
0 

V c BS such that 

(i) ~o 
s E: v 

(ii) A E: u 
0 

implies 

<Sk> * Lim """' SS 
k-700 ·s 

* where SS is a solution of (5.2.1). 

(5.2.23) 

Proof: By direct calculation, the linear operators 3
1

g and o
2

g are 

jointly continuous in S
8 

and A
0 

•. Since og is nonsingular for A E: U 
0 0 

and S 8 V , the implicit function theorem (Theorem 2.3) implies that s 0 

SS is a continuous function of Ao. Hence '\9 and o2g also depend 

continuously on 1\ ~ 
0 
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For any no;rrq on 8S , the i,ndµceq noi:rq on the. space of linear 

operators L (7~S) sa,tis;f;i,es 

pra
1
g-1 a

2
gJ < I la1g~ 1 a2

gl I (5.2.24) 

< I la1g-
1 1 I l1a 2gll 

As noted previously for A == 0 the solution to equation (5.2.1) is 
0 

* SS = 0. Also, 

(5.2.25) 

* * Since og{Ss,Ss) is nonsingular, (5.2.25) implies: 

(5.2.26) 

Because o
1

g and o
2

g vary continuously with A
0

, there exists an open 

A A 

neighborhood U of 0 € A such that for all A s U 
0 0 

* where S satisfies 

1 
M +l 

0 

{5.2.28) 
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for the given A • Corqbining (5'!2.24) a,nd (5.2.27)...,.(5,2 .. 28) giyes 
0 

(5,.2.29) 

for each A s U. 
0 

-1 * * Since (5.2.27) implies alg <Bs,Ss> exists, by 

Theorem 2.4 there exists a neighborhood V c B (depending on A ) such 
0 

k 00 

that the sequence {B5 }k=O * converges to SS. The function generated by 

the implicit function theorem for the dependence of g on A is unique 
0 

and continuous in an open neighborhood u
1 

of O s A
0

• Also, the 

Frechet derivative og is nonsingular and SS = 0 solves (5.2.1) for 

A = O. Hence the limit of the sequence (5.2.23) solves (5.2.1) for 
0 

the corresponding A . 
0 

When any of the supremal decompositions of th~s section are 

composed with the original decomposition of Chapter 4, the same proof 

0 

that was used in Theorems 4.1 and 5.1 can be used to prove an analogous 

theorem for the overall iteration. However, Theorem 2.5 can be used 

along with Theorems 4.1 and 5 .. 1 to simplify the proof .. 

Theorem 5.2: Consider the sequence {~'k, ~~} resulting from using 

M > 1 steps of (5 .. 2.8)-(5.2.17) to solve the supremal subproblem of 

(4.2.13)-(4.2.24). Assuming the conditions of Theorems 4.1 and 5.1, 

there exist open neighborhoods u of 0 s A and V c BS x BI 
0 



such that 

(i} 

(ii) 

implies 

A SU 
0 
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where ca;,$~) is a local minimum of the functional minimization 

(3.2.13)-(3.2.14) (or the static minimization {3.2.15)-(3.2.16)). 

(5.2.30) 

Proof: Denote by I' the iteration operator resulting from {5.2.8)­
s 

(5.2.17) and the exact solution of the infimal problems, and by 

the iteration matrix corresponding to (4.2.13)-(4.2.24). In the 

proofs of Theorems 4 .1 and 5 .1, the quantities 11 r 11 and 11 r 11 
s p 

are bounded can be bounded by: 

A 

r 
p 

(5.2.31) 

simply by choosing U such that the right hand sides of (4.3.13) and 

( 5. 2. 28) is 1 
3 (M +l) • 

0 

Then, by Theorem 2.5, a sufficient condition 

for local convergence to the solution of the necessary conditions 

resulting from the functional or static minimizations is 
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(5.2.32) 

Using the properties of induced norms, the left hand side of (5.2.33) 

is bounded.by: 

P { rMs + (I-rM> r } < 11 r 11 M + c i + 11 r 11 M> 11 r 11 
s p p s p 

(5.2.331 

Combining (5.2.31) and (5.2.33) shows that (5.2.32) is satisfied. 

Finally, the uniqueness of the functions generated in the proofs of 

Theorems 4.1 and 5.1 implies that the limit (5.2.30) locally solves 

the minimization. 0 

Theorems 4.1 and 5.1-5.2 are all of the same genre; a decomposition 

based on logic induced by a weak coupling assumption was postulated 

and the corresponding theorem demonstrated that the logic was not 

flawed. Although the conclusions of the theorems are assuring, they 

do not give any practical tests for verifying convergence for particular 

problems. 

If bounds on the norms of the iteration operators for the supremal 

decomposition of this section and the primary decomposition of Chapter 4 

can be computed, or if the operators can be computed exactly then 

Theorem 2.5 can be applied to provide a convergence test. However, 

when only one step of the supremal iteration is used during each step 

of the primary iteration a more efficient analysis is possible. In 

this scheme the resulting overall iteration is simply a Gauss-Seidel 
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algorithm corresponding to the following decomposition (see Example 

2. 6) : 

(5.2.34) 

using the order implied. Thus the convergence analysis for the over-

all system can be simplified to the convergence analysis of the 

common Gauss-Seidel iteration. 

By Theorem 4.2, a sufficient condition for the convergence of a 

Gauss-Seidel iteration is the strict block diagonal dominance condition 

(4.4.13). For the iteration defined by the decomposition (5.2.34) with 

B defined as in (5.2.3) and (4.2.7) and h .. defined as in (5.2.4) 
ij 1] 

fj_ I fj_ 
and ( 4. 2 • 8) (B . . = B . and h. . = f .) , the block diagonal dominance 

11 1 11. -ii 

condition is: 

ll<o .. h .. >-1 11 
1] 1] 

N 

l 
£=1 

N 

l 
m=l 

llao h .. 11<1 .x,m 1J 
(5.2.35) 

( ,Q, ,m ) r! ( i I j ) 
i=l, .•• ,N; j=i, ••• ,N 

where 
fj_ 

d 0 . h., = .x,m 1J 
/ 

partial Frechet derivative of h .. with respect to 
1] 

s£m , evaluated at the solution. If the Lyapunov test guideline 

which was discussed in Section 4.4 is used, then condition (5.2.35) 

becomes 
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N 

I (5. 2. 36) 
2=1 
.Q,~j 

Note that this test assumes even more significance in the time invariant 

completely decentralized problem since each of the conditions which 

are to be tested in (5.2.36) are exactly those which are to be tested 

in (5.2.35) except for the case i=j. Thus one might expect that the 

test {5.3.36) would give a reasonable indication of the convergence 

properties of the overall iteration. 

For the time invariant completely decentralized problem another 

solution method is possible. In this case, the supremal problem 

reduces to the solution of the two linear equations 

* CP s> 
,.., 

'IT o L_, 0 'IT .... 
PS I 

.... s p 
A 

~s s 
{5.2.37) 

* "' "' 
'IT o L 0 'IT (KS) = Qs KS, Qs s p 

A'' 
(5.2.38) 

where, recalling the notation of (4.2.25)-(4.2.29), 'IT and Pare 

defined by: 

(5.2.39) 

'IT: P+/R(n+~)x(n+;) dP .. : i=l, •.. ,N; j=l, •.. ,N; i~j}+p 
1J 0 

(5. 2. 40) 



p 
0 

0 

* 6 TI = adjoint of TI 
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(5.2.41) 

0 

(5. 2. 42) 

To find an explicit representation for TI, it is necessary to represent 

A 2 A 2 
the Lyapunov operator as an (n+n) x (n+n) matrix through the use 

of Kronecker product notation. Thus, it will temporarily be assumed 

that L_ 
A 

. 2 2 
1s represented as an N x N block matrix K_: 

(KA) (i-1) N+k., (j-1) N+i = [A .. 
1] 

K­
A 

[(K.-) .. : i=l, .•• ,N
2

; j=l, ... ,N
2

] 
A 1J 

To represent the equation 

A 

i , j,k I i= 1, • • • , N 

(5.2.43) 

(5.2.44) 

LA_{P) = H (5.2.45) 

using the Kltnotation, the matrices P and H must be represented as 

vectorsP and 3 • The vector representation which corresponds to the 
v v 

representation {5.2.43)-(5.2.44) is: 
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...,, ...., ...., 

p = (_p 1) v (P.) = (P. l) 
v J_ -v J_ v 

.,., 

(PN) v ~ 

(P 'N) 
J_ v 

(P .. ) 
-ij -ij ~ij = pl pk = 

1] v kl 

-ij ;ij 
p 

A k (n+~) (n+n) 

In words, the vector :revresentation 1? of the matrix P consists 
v 

of a particular orde.ring of the elements of the matrix P. This 

(5.2.46) 

ordering is determined by first ordering the blocks row-wise and 

then ordering th_e elements of the blocks row-wise. The same 

ordering applies for the_ vector ... ,_,v, and is demonstrated by the fol-

lowing example_., 

Example 5.1: Let N=2, and let 

4x4 2x2 
A = [A

1
., J'] E R where A .. E lR for each i and j. 

l.J 
The matrix 

KA is given by: 

K = All@ I. + r @All I@Al2 2\12 © I 0 
A 

I ® A21 A
11 

@I + I@A22 0 A12© I 

A21@ I 0 A22@ 1· + I@All I@Al2 

0 A21 @ I I® A21 A22@I + 

(5.2 .. 47) 

I@A22 



Also, P is given by: 
v 

p' 
v 
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The vector H is represented similarly. Then the equation 
v 

is represented by 

K p = H 

A v v 

Finally, it is assumed that elements of P are represented 

similarly. That is, if P s P then P is represented as the 
s s 

vector: 

"'S 
pl pil 

"'S p P. = s l. 

.: 
P .. 1 "'S 1.,1.-

PN 
P .. 1 

1.,1.+ 

P. 
l. ,N 

with P .. defined as in (S.2.46). 
l.J 

With the representations (5.2.43)-(5.2.46) and (S.2.49), the 

restricted Lyapunov equations (5.2.37)-(5.2.38) are: 

(5.2.48) 

0 

(S.2.49) 
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-161-

I. K,_, 7T p H 1T = A s s 

1T' K,_,, 1T K = Qs A s 

A2 A 2 ~ A 2 
1T € lR(n+n)x{(n+n) - l (n.+n.) ] 

i=l J. J. is given by: 

[:] 
(n.+~.) (n+~)x(n.+~.) (n+~-n.-~.) 

1T. 8 ~ J. J. J. J. J. 1 

J. 

1T = diag[1T.: i=l, ... ,N-1] 
1 

[:] 

(5.2.50) 

(5.2.51) 

(5.2.52) 

Thus, the supremal problem is equivalent to solving two systems 

A 

of (N-1) (n+n) linear equations. The coefficient matrices 1T
1 

K TI ...., 

A 
' and TI K,..,

1 
TI can be found without matrix multiplications. The 

A 

projection TI simply serves to eliminate the rows and columns of K 
A 

which lie in the blocks (K"') 
A .. 

l.J 
for which i=l mod N and j=l mod N 

respectively. Hence TI
1 

K,.., TI and TI
1 

K,..,, TI can be formed from A 
A A 

using ( 5. 2. 43) - ( 5. 2. 44) and the preceding conunent. 

A problem which plagues this approach is the same problem which 

always occurs when Kronecker products are used to solve Lyapunov 

equations. The number of multiplications required to solve the 
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bl ' h' h • A 6 pro em using t is met od is on the order of (n+n) • Other methods 

which exploit the structure of the Lyapunov operator to reduce the 

amount of computation could be used if a representation of TI could 

be found which corresponds to the usual Lyapunov operator represen-

tation. Unfortunately, such a representation has not been discovered. 

Thus, the above method will be impractical for most applications. 

5.3 Infimal Problem Solution 

This section discusses and compares four possible solution 

methods for the infimal problem which results from the decomposition 

of Chapter 4. Three of the methods - Newton's algorithm, the gradient 

search algorithm, and the gain approximation algorithm - are applicable 

to the general inf imal problem. These are examined in Subsections 

(5.3.1)-(5.3.3) respectively. The fourth method requires the filter 

A 

dimension n to be the same as the system dimension n. This method, 

discussed in Subsection (5.3.4), is a decomposition algorithm which 

requires only the solution of Riccati and Lyapunov equations which are 

of the order of system dimension n. 

To simplify the notation, the subscript notation which differentiates 

the infimal problems will be dropped. In addition, only the time 

invariant infinite horizon problem will be considered although each of 

the four methods generalizes to the more general time varying finite 

horizon problem. The general form of the infi~al problem is: 



-163-

I A I 
- B (KP)

12 
- B (KP)

22 
+ RGP

22 
+ S 0 ( 5. 3. 1) 

(KP) 21 
I 

(KP) 22 
"'• + K22 H 0 + T 0 c - c (5.3.2) 

..... I 

AP + PA + ~ + D 0 (5. 3. 3) 

A1 K + KA + Q + E 0 (5.3.4) 

where 

- [ A - A 
- BG ] 

A A A 

· HC A-BG-HC 

.... 

[: 
0 ] 

H8H
1 

The matrices to be solved for are G, H, K and P, and the Hilbert space 

of these variables will be denoted by B1 as in Chapter 4. 

5.3.1. Newton's Algoritiun 

Newton's algorithm is a well known and popular iterative method 

for solving systems of nonlinear equations (see, for example, Dennis 

and More" [ 1977] and Example 2. 5) . The popularity stems from two 

desirable properties: 
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i) The equations to be solved at each iteration 

are linear. 

ii) The algorithm exhibits local superlinear 

convergence. 

Newton's iteration is defined by the decomposition given in 

equations (2.3.16)-(2.3.17). For the system of equations 

f ($) = 0 f: B -+ B (5.3.5) 

the decomposition (2.3.16)-(2.3.17) results in the iteration equation 

(5.3.6) 

Equation (5.3.6) is a system of linear equations in CSk+l - Sk). 

To apply Newton's method to the infimal problem it is necessary 

to compute the Frechet derivative of equations (5.3.1)-(5.3.4) with 

respect to G, H, P and K. The Fre"'chet differential is: 

(5.3. 7) 
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where 

"' 

[~c - tmC] 
!J.A = -MG 

/\ 

-BllG 

6.'5. = 

[: 
0 

H0ill!'] llH8H 1 + 

"' 

[: + G'&J 
llQ = 0 

llG
1

RG 

$ (G,H,P,K) s B I 

By defining 

and evaluating (5.3.7) and (5.3.1)-(5.3.4) at sk' these equations 

can be used with (5.3.6) to solve the infimal problem. The resulting 

system of linear equations is complex. However, the system can be 

put in standard matrix-vector form through the use of Kronecker 

products. 
A 2 A 

The result is a system of 2(n+n) + n(m+p) equationsin 

the same number of unknowns. It is easy to see that even for small 

subproblems the equations which result from Newton's method can have 

a large dimension. 
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5.3.2 Gradient Search 

The original motivation for studying decomposition algorithins 

for systems of nonlinear equations developed frorn an attempt to solve 

optimization problems indirectly by solving the resulting necessary 

conditions. Given a set of nonlinear equations such as (5.3.1)-(5.3.4), 

a natural question to ask is whether such equations could have 

originated from an optimization problem. The answer to this question 

involves anti-differentiating equations (5.3.1)-(5.3.4); i.e., a 

function must be found whose derivative is the left hand side of 

(5.3.1)-(5.3.4). 

The strong similarity between (5.3.1)-(5.3.4) and the centralized 

necessary conditions (3.4.55)-(3.4.56) and (3.4.65)-(3.4.66) leads 

to a natural choice for a function in the anti-differentiation process. 

Let 
A I 
J: B + R be given by: 

J ( {3) 
1 

{(Q+E)P} 
I 

= - tr + tr G'S + tr ';['H.' 
2 

(5.3.8) 

where p is given by: 

...,, 
AP + PA + .... + D = 0 (5.3.9) 

* The following theorem shows that a solution ~ to equations (5.3.1)-

(5.3.4) is a stationary point for J(l3). 

Theorem 5.3: The gradient J 1 
({3) is given by the left hand side of 

(5.3.1)-(5.3.2) with P and K given by (5.3.3)-(5.3.4). 
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Proof: Since J(S) separates into three additive terrns, the gradient 
A . 

J
1 ($) can be computed by adding the gradients of the three tenns. 

The differential of the second and third tenns are 

Using Theorems 3.1 and 3.3 and the fact that D and E are constant 

matrices, the differential of the first tenn is: 

l otr{(Q+E)P} 
2 

tr{6G 1 [RGP
22 

- B
1 

(KP)
12 

- B1 (KP)
22

J 

+ [K22H0 + (KP)
21 

c' - (KP)
22 

C1
]6H

1
} 

(5.3.10) 

{5.3.11) 

where K is given by (5.3.4). Combining (5.3.10) and (5.3.11) and the 

fact that 6G and 6H are arbitrary proves the theorem. 

0 

Since the gradient J(S) vanishes at the solution to (5.3.1)-

{5.3.4), it would be nice to be able to formulate the following 

optimization problem. 

A 

min J ( S) (5.3.12) 

subject to 

""I 

AP + PA + M + D = 0 (5.3.13) 

This optimization problem may not be well posed. The difficulty 

occurs because either (Q+E) or P may not be positive definite (note 
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that since the terms tr G~S and tr TH 1 are linear in$ they do not affect 

the well posedness of the problem). However, the problem will be 

well posed for sufficiently small D and E. 

Define the following quantities: 

D 

A 

.!__ D 
a 

D 

Then let J be defined by 
a 

J ($) = -
2
1 tr(Q+a E)P + tr{G's + TH

1
} a E a 

where 

AP a 
~. 

+ p A + ... 
a = 0 

Note that for a = ( 11D11, I IE 11) , 

J ($) J ( $) 
a 

(5.3.14) 

(5.3.15) 

(5.3.16) 

(5.3.17) 

(5.3.18) 

(5.3.19) 

Theorem 5. 4: Consider the family of minimizati.on problems parameterized. 

by a: 

min 
I 

~el~ 

A 

J ( $) a (5.3.20) 
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* If for a.= ( 0, 0) the above problem possesses a solution f3 then there 

t exists on E: > 0 and an open neighborhood UCB such that for each 
0 

a: Ila.II< s 
0 

the following minimization problem is well posed: 

Proof: 

min J ($) 
SsU a 

* A / 
Since f3 minimizes JCS), the gradient and second Frechet 

0 
A 

derivative of J satisfy 
0 

Al * 
J cs ) = 0 

0 

A * 
JI I cs ) > Q 

0 

(5.3.21) 

(5.3.22) 

(5.3.23) 

Al I • I 
Because J is continuous, there exist an open neighborhood UCB of 

0 

a* 
1-> such that 

0 

A 

J "CS) > o 
0 

\I 13 E: LJ (5.3.24) 

Also, it is easily seen that both J1 
and J 1 ~ are continuous in a.. a a. 

Thus, by the implicit function theorem and equation (5.3.22) there 

+ + 
exists an open neighborhood NC~ x /R of O and a continuous 

Q * N --"-BI function ...,. : -r such that 

0 (5.3.25) 



* Since a 
j.J. 

is continuous, 

* 
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* * (3 = (3 
0 

and thus there exists s
1 

> 0 

$ E LJ (5.3.26) 
al 

I I 

Similarly, because Ja is continuous in a there exists s
2 

> 0 such 

that if a.
2 

E IR+ x R+ 

Let 

E 
0 

VS E U 

* Then for all a such that 11a11 < s , there exists a S s U which o a 

satisfies (5.3.25) and (5.3.27), and hence solves (5.3.21). 

(5.3.27) 

(5.3.28) 

0 

The above theorem implies that the inf imal problems will be well 

posed minimization problems for sufficiently small D and E if the 

minimization problem (5.3.20) with a=(O,O) has a solution. For 

a=(O,O), the problem (5.3.20) is simply the deterministic equivalent 

of a centralized stochastic optimal control problem with the linear 

modification terms tr[G
1
S] and tr[TH 1

] added to the cost. However, 

these terms do not affect the convexity properties (local or global) 

of the optimization problem. Hence, the problem (5.3.20) will be well 
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posed if the centralized stochastic optimization problem correspon-

ding to the decoupled subsystem is well posed. Necessary and suf-

ficient conditions for the latter are that the pairs (A,B) and 

(A,~) 1 be stabilizable and that the pairs (A,'V'Q) and (A,C) be 

detectable (Wonham [1978b]). Since the matrices D and E for the ith 

subsystem will be small if the system is weakly coupled and the detec-

tability and stabilizability assumptions are standard, the minimization 

(5.3.12)-(5.3.13) will be well posed for sufficiently weakly coupled 

systems. 

When the minimization problem (5.3.12)-(5.3.13) is well posed, any 

gradient search algorithm (see, for example, Rosenbloom [1956]; 

Hestenes [1956]; Kelley [1962]; Fletcher and Powell [1963]; Fletcher 

and Reeves [1964]; or Wolfe [1976]) can be used. The gradient of 

(5.3.12)-(5.3.13) with respect to G and H is given by the left hand 

side of (5.3.1)-(5.3.2) with P and K given by (5.3.3)-(5.3.4). Then 

the solution to (5.3.12)-(5.3.13) is also the desired solution to 

(5.3.1)-(5.3.4). 

5.3.1 Gain Approximation Algorithm 

This algorithm involves a straightforward decomposition of the 

problem defined by (5.3.1)-(5.3.4). The decomposition corresponds to 

the successive over-relaxation (SOR} algorithm for the Gauss-Seidel 

1Given a symmetric positive semidefinite matrix 3, the matrix~ is 
defined as the unique symmetric positive semidefinite matrix W such that 

2 - ~ w - ~· 
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iteration (see E.xam,ples 2~6-2.7) with the relaxation pa;rameter E: 

varying with both the iteration inde;x and with the subproblem being 

solved. However, the resulting iteration also corresponds to a downhill 

search algorithm for the minimization problem (5.3.12)-(5.3.13). This 

algorithm (with E::: 1), has been used by Levine and Athans [1970] to 

find the optimal constant feedback gains for the output feedback problem, 

and by Wang [1972] to solve for the best deterministic decentralized 

linear constant feedback law. The algorithm is generalized in this 

subsection to solve equations (5.3.1)-(5 .. 3~4) .. 

Define the following decomposition of (5.3.1)-(5.3.4) (as in 

Example 2. 6) : 

BI ~BI BI 
G X. H 

BI 
x K x B~ (5.3.29) 

BI ti E: fRmxn} 
G 

= {G (5.3.30) 

B.I ti {H E: lRnxp} (5.2.31) 
H 

"[ ti {K E fR (n+fi) x (n+fi)} B = (5.3.32) 
K 

BJ:'~.· 
·p .--: 

{ P ~ IR. Cn+~lx Cn+~) } (5.3.33) 

'l'he l:H!J.hse.t$· ~f equat±pns fG, fH, ;t;K and fl? a,;re take.n as (5. 3.1), 

CS •. 3,_2), C5~3,4I amd C5.3~3l ,respect±vel,y, The ;resultin9 iteration 

(5.3.34) 
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(5.3.35) 

(5.3.36) 

(5.3.37) 

I ~ 

1\:+1 ~+l + Kk.+1 Ak+l + Qk+l + E = O (5.3.38) 

"'I 

Ak+l pk+l + pk+l ~+l + ~k+l + D = Q (5.3.39) 

The following theorem shows that sk can be chosen at each iteration 

such that 0 < sk ~ 1 and the cost function (5.3.8) is reduced at each 

iteration. 

Theorem: 
00 

Let ~(Q) be given by (5.3.8) and let the sequence In } 
µ 1p k k=O 

be generated by (5.3.34)-(5.3.39). Then at iteration k+l the relaxa-

tion parameter sk can be chosen such that 0 < s < 1 and 

Proof: For any matrix F, define ~Fk and ~k by 

(5.3.41) 

(5.3.42) 

The difference in cost from iteration k to k+l is given by: 
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~JCSk> = JCSk+l> - J(Sk> (5.3.43} 

1 ..., 1 ..., 
= 2 tr [ (Qk+l +E) Pk+l ]- 2 tr [ (Qk +E) Pk] + tr [~G~S + T~H~] 

1 ..., . 1 ..., 
= 2 tr[~QkPk+l] + 2 tr[(Qk + E)~Pk] + tr[~G~S + T~~] 

The first term of (5.3.43) is given by: 

tr[~QkPk+l] 
tr l[: . rk~ + 

..., "' 
= 0 tr~Qk~Pk 

A I 

R(Gk+sk~Gk) (Gk+e:k~Gk) - GkRGk 
(5. 3. 44} 

= 2e:ktd~a~ R Gk [(Pk} 22 + (~Pk}22]} + o· (tk) 

Now, ~Pk can be found by rewriting (5.3.38}: 

(5. 3. 45) 

The following equation results from replacing k+l by k in (5.3.38) 

and subtracting the result from (5.3.45): 

Thus, using the definition of L- (equation(3.4.8 }), ~k is given by: 
Ak 

-1 
= - e:k L..., [S] 

~ 
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where 

(5.3.48) 

Substituting (5.3.47) in (5.3.44) gives 

(5.3.49) 

Now consider the second term of (5.3.43). Using equation (5.3.47) 

and the definition of the adjoint gives: 

(5.3.50) 

= 

From (5.3.47) it is obvious that 

Now, using (5.3.48) and (S.3.51) in (5.3.50) and the properties of the 

trace operator gives 
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+ r (1<1lk> 21 c' - (K1lk> 22 2' + <Kk> 22 HkeJ Lm~} 

+ o Csk) 

Combining (5.3.49), (5.3.52) and (5.3.43) gives the following 

equation for ~J(Sk): 

+ [(KkPk)21 c' - (KkPk)22 e' + (Kk)22 Hke + T]~H~} 
+ o (sk) 

A A 

(5.3.52) 

(5.3.53) 

Using the definition of Gk and Hk , (5.3.53) can be rewritten as: 

sktr{~G~ R Gk(Pk) 22 + (~) 22 Hk0 ~Hk (5.3.54) 

- ~~~ R Gk(Pk)22 - (~)22 Hke ~~} + o(sk) 

Hence, equation (5.3.54) becomes 

(5.3.55) 

Since the bracketted term is a positive definite quadratic form, it is 

possible to choose sk such that 0 < sk ~ 1 and 

(5.3.56) 
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if LlGk or LlHk are non-zero. But, if 6Gk or ~Hk are non-zero then 

A 

f3 k+ l and S k are not equal. If S k+ l and S k are not equal then 6Gk 
A 

or 6Hk are non-zero. 0 

The above theorem implies that the direction [Gk-Gk] determined 

by the gain approximation algoritlun at the kth iteration is a downhill 

direction for the minimization problem (5.2.12)-(5.2.13). Thus this 

algorithm is in fact a descent method. However, it will in general be 

more effective computationally to use a gradient or accelerated gradient 

method. The computation for the gradient algorithms and the iteration 

(5.3.34)-(5.3.39) will be approximately the same at each step, but the 

gradient direction will generally be superior. Also, acceleration 

algoritluns are available for the gradient method. Hence the gradient 

would be expected to converge more rapidly. 

An exception to the preceding remarks is the following situation. 

If it could be determined a priori that the cost would decrease at each 

iteration for some fixed s, then the relaxation parameter could be fixed 

at this value. In general, both the gain approximation algoritlun and 

gradient algoritluns require several function evaluationsat each 

iteration to determine a relaxation (stepsize) parameter value which 

decreases the cost. The cost evaluation requires the solution of 

equation (5.3.9) and the evaluation of (5.3.8). Hence a significant 

reduction in the amount of computation per iteration would occur if 

the cost were only evaluated once. 
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In general, it is not possible to determine such a value for 

the relaxation parameter. However, for the output feedback problem 

Levine [1969] was able to show that the cost decreased at each ite-

ration for s =l· Thus, it may be advantageous to 
k 

use the gain approximation algorithm with sk=l rather than a gradient 

algorithm for the output feedback problem. 

5.3.4 Decomposition to Riccati and Linear Matrix Equations 

This subsection develops an algorithm which requires the subsystem 

filters have the same dynamics as the subsystem. It is motivated in 

part by the derivation of the centralized gains in Appendix B and in 

part by a previous decomposition developed by Sandell [1976]. A major 

advantage of this decomposition is that only Riccati and linear matrix 

equations of the subsystem dimension need be solved at each iteration. 

However, unlike the previous decompositions considered in this thesis, 

local convergence cannot be demonstrated with only the weak coupling 

assumption. 

For the remainder of this section it will be assumed that in 

equations (5.3.1)-(5.3.4): 

n = n 
(5.3.57) 

A A A 

A = A; B = B; C = C 

With these assumptions, the original equations can be transformed as 

follows. Define 
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w ~ [: -I ] (5.3.58) 
I 

Then W 
-1 

is given by 

-1 

[: :] (5.3.59) w = 

By premultiplying equations (5.3.3)-(5.3.4) by W and (W-l)' 

I -1 
respectively and postrnultiplying by W and W respectively, these 

equations can be written as: 

where 

--1 

AP+ PA 
- -+ ~ + D = 0 

A1 K + K A + Q + E = 0 

- 6 "'-1 
A = WAW 

[A 
- HC 

HC 

[B + H0H: 
- H0H 

- 6 I 

D = WDW 

- 6 -1 I -1 
E = (W ) E W 

[: 

(5.3.60) 

(5.3.61) 

A:BG ] 

- H0H:] 
H0H 

Q 

Q + 
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P ~ WPW
1 

Using the definitions of Kand P, equations (5.3.1)-(5.3.2) becomes: 

I --

R G P
22 

- B (K P)
22 

+ S = 0 (5.3.62) 

0 (5.3.63) 

Equations (5.3.60)-(5.3.61) can be partitioned as: 

(A-HC)Pll + P11 (A-HC) 
I 

+ 2 + H8H + Dll = 0 ( 5. 3. 64) 

0 (5.3.65) 

0 (5. 3. 66} 

·- + Kll (A-HC) 
I 1-

0 (A-HC) Kll + C H .1<21 + K12HC + Q + Ell (5.3.67} 

,-
+ K

12 
(A-BG) 

I ~-
0 (A-HC) ·K

12 
+ C H K22 + Q + El2 

;::::; (5.3 .. 68) 

·- I 
(A-BG) K

22 
+ K

22
(A-BG) + Q + G RG + E

22 
= 0 (5.3.69) 
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Note that equations (5.3.62)-(5~3.69) are identical to the time 

invariant equivalent of equations (B.9)-(B.10) and (B.16)-(B.21) of 

Appendix B, when D, E, S and T are zero. In this case, Appendix B 

showed that 

= 0 (5.3. 70) 

= 0 (5.3.71) 

When D, E, S and T are sufficiently small, P
12 

and (K
22 

- K
12

> will 

be small also. Thus a decomposition guided by the centralized 

solution derivation may be practical for some problems. 

First consider equations (5.3.62)-(5.3.63). Expanding (5.3.62) 

and solving for G gives: 

G (5.3.72) 

Performing the same operations on (5.3.63) results in the equation: 

- I -1 -1 - - - I -1 
H = pllC G + (Kll + K22 - K21 - Kl2) [Kl2-K22) (Pll+P2l)C +T]G 

(5.3.73) 

When (5.3.70)-(5.3.71) hold (and Sand Tare zero), the above two 

equations for G and H are just those for the centralized feedback 

and filter gains. It will be assumed that at the ~ iteration the 

terms 

--1 
S]P22 (5.3.74) 



-182-

(5.3.75) 

will be evaluated using the values computed at the (2-l}th iteration. 

Thus, c2 
and HQ, are given by the equations 

GQ, = -1 1-£ A£-l 
R B K

22 
+ S 

H 
-£ , 0-1 + ATt-1 

= pll c 

-£ -£ 
The equations for K

22 
and P

11 
can be found by substituting 

(5.3.76)-(5.3.77} into (5.3.64)-(5.3.69}: 

"'2-1 -£ -£ AQ,-1 I -£ I -1 -£ 
(A-T C)Pll + Pll (A-T C) - Pll C 8 C Pll + 3 0 

where 

(5.3.76) 

(5.3.77) 

(5.3. 78) 

(5.3.79) 

Equations (5.3.78)-(5.3.79) are Riccati equations of dimension n, and 

-Q, -Q, 
can be solved for P

11 
and K

22 
using only values computed at the 

Q, Q, 
previous iteration. Then G and H can be computed using equations 

{5.3.76)-(5.3.77). Finally, these values can be used to solve, in 
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order, the linear equations (5.3.65), (5.3.66), (5.3.68) and (5.3.67). 

Using the scheme described in the preceding paragraph, the 

iteration becomes: 

A9.,-l -£ -9., -"'£-1 I -9., I -1 -9., A9.,-l 
(A-T C) P + P (A-T C) - P C 8 CP + E + D 0 

11 11 11 11 11 
(5.3.80) 

(5. 3. 81) 

-1 1 -9., A9.,-l 
R B K

22 
+ S (5.3.82) 

H
9., -9., I -1 "9.,-1 

= Pll C 8 + T (5.3.83) 

9., -9., -9., 9., I -9., I .Q, I 9., .Q, I 
(A-H C)P

12 
+ P

12
(A-BG) + P

11
C (H) - H 8{H ) + 0

12 
0 (5.3.84) 

9., - 9., 
(A-BG )P

22 

"'-9., .Q, I 
+ P

22
(A-BG ) 

jl. -.Q, 
+ H CP

12 

-9., I .Q, I 
+ p21C (H ) 

9., .Q, I 
+ H 0(H ) + 0 22 = 0 

(5. 3. 85) 

9., •-9., -.Q, 9., 
(A-H C) K

12 
+ K

12
(A-BG) + 

I 9., '-9., 
C (H ) K

22 
+ Q + El2 0 (5.3.86) 

9., -9., -9., 9., I 9., 1-.Q, -9., 9., 
0 (5.3.87) (A-H C) 1K

22 
+ K

22
(A-H C) + C (H ) K

21 
+ K

12
H C + Q + Ell = 

The iteration defined by (5.3.80)-(5.3.87) requires the solution 

of two Riccati equations, two Lyapunov equations and two Sylvester 

equations. 

Unlike previous decompositions which have been considered, the 

iteration defined by (5.3.80)-(5.3.87) cannot be guaranteed to 
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converge for sufficiently weakly coupledsystems. The problem is 

that the Freehet differentials of (5.3.80)-(5.3.87) with respect to 

variables evaluated at the (i-l)th iteration do not vanish even in 

the centralized problem (i.e. when S, T, D and E are zero). To see 

this, consider the Fr~chet differential (denoted by 6) of (5.3.81) 

with respect to -i-1 p evaluated at the solution to the centralized 
12 

problem: 

(5. 3. 88) 

This term is generally nonzero. 

5.4 Example 

This section applies the decomposition of Chapter 4 to an example 

used by Wang [1972]. The example consists of the linearized dynamics 

of an inertia wheel spacecraft attitude control device. This device 

can be regarded as an interconnected system consisting of three sub-

systems, one corresponding to each of the three axes. 

The state variables for each subsystem are the roll, pitch and 

yaw angles and their time ratesof change. The control inputs are the 

torques produced by the motors oriented along the three body axes, and 

the outputs are the observed angles. Thus each of the subsystems can be 

represented by a single input, single output double integrator plant: 

3 
x. =A .. x. +B.u+ 

1 11 1 1 l 
j=l 
j;'i 

A .. ~. + l;. 
1J J 1 

(5.4.1) 
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y. = c.x. + e. (5.4.2) 
i i i i 

where 

A •. = 
ii 

[: :] i=l,2,3 

A .. = [: ;~] i=l,2' 3; j=l,2,3; 
i] 

j7'i; k~i; k7'j 

I. i 

B. = 

[:] 
i=l,2,3 

i 

c. = [l 0] 
i 

E{~. (t)~'. (T)} 
~i 

0 (t-T) 0 .. 
i ] i] 

E{8. (t)8~ (T)} = 8. o<t-T)o .. 
i ] i i] 

The constant parameters I. and n. are the moments of inertia of the 
i i 

spacecraft about the ith body axis and the angular velocity of the 

.th. . h 1 . 1 i~ inertia w ee respective y. The parameter I is the moment of 

inertia of the inertia wheels about their axes of rotation. The values 

of these parameters are taken as: 
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Il = 37.5 

I2 40.0 
{5.4.3) 

= 

I3 = 42.5 

I = 0.00084 

S\ b. 
= n = n = n 

2 3 

The value of n will be varied to control the strength of the coupling 

between the subsystems. 

The spectral densities of the white noise sources ~. and 8 will 
]. i 

be taken as: 

8. = 
]. 

[: .: l 
[ .01] 

Finally, the cost functional which is to be minimized is the 

infinite horizon time averaged cost: 

1 
E {!f lf 3 

I 

+ u~]dt} J = Lim I [x.Q.x. 
2 
t~ i=l 

]. ]. ]. 

f 

where: 

Ql = 
[ l~O s~J 

{5.4.4) 

{5.4.5) 
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fi.s o ] 
l 0 3.0 

[

2.0 0 ] 

0 2.5 

Using the technique of Example 3.2, equations (5.4.1)-(5.4.6) can be 

expressed as the formulation of Chapter 3 requires. It was assumed that 

a completely decentralized control system was desired (see Example 3. 3) . 

The problem was then solved using the necessary conditions of Chapter 3 

and the decomposition of Chapter 4. The supremal problem of Chapter 4 

was solved using the decomposition of Section 5.2 and the infimal problems 

were solved using a gradient search technique as described in Subsection 

(5.3.2). 

The strength of the subsystem interactions were controled by varying 

the parameter S1. Five cases were investigated, with S1 given by the 

following values: 

Case 1: n 1.137 

Case 2: n = 11. 37 

Case 3: n = 113. 7 

Case 4: n = 300.0 

Case 5: n = 1137 .o 
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The initial guess for each case was the decoupled centralized solution. 

The results were disappointing. Convergence occurred for the first 

three cases. Cases 1 and 2 required only one complete iteration to 

converge to the desired tolerance (a relative change in the element of 

the gain matrices of less than 10-6). Case 3 required seven iterations. 

However, the difference in the cost between the centralized decoupled 

controller and the optimal decentralized gain was zero to machine 

accuracy. 

Two problems occurred as the subsystem interactions increased. 

First, case 4 diverged even though the suoprol:>lems could be solved ac­

curately. This problem can probably be overcome even for considerably 

stronger interactions by using a relaxation (SOR) algorithm (see 

Lehtomaki [1978] for several encouraging applications of SOR decompositions 

to Lyapunov equations}" 'rbe second p:rol:>lem occurred in case 5. The 

subproblems become :i:ll posed as min.imi.zation prol:>lems. To correct this 

difficulty anothe_r soluti.on ·)lle.thod fo;r- the i.nf.i.mal problems must :Pe 

found. 

s. s summary·· anc:t · · o.ts.cu$'S$:..on 

'l'h:ts chapter has presented seyepal soluti,0n methods fq;r the supremc:\l 

a11d infin\al pro:Plems·. Section 5. 2 developed, a class of decomposi ti.ans 

which can be used to solve th.e supremal p;roblem. This class allows the 

computations to be structuired to take. advantage. 9f, the pa;r:t$:.9ular problem. 
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being solved. All the algorithms contained in the class possess two 

important features: 

i) The subproblems are linear 

ii) The resulting iteration converges for 

sufficiently weakly coupled systems. 

All of the four methods discussed in Section 5.3 suffer some 

drawback. Newton's method requires the solution of a system of linear 

equations which can have prohibitively large dimensions even for rela­

tively small subproblems. Descent methods require the subproblems to be 

well posed. This may not occur even for relatively weakly coupled 

systems as was demonstrated by the example of Section 5.4. Subsection 

(5.3.4) developed a decomposition which resulted in Riccati and linear 

matrix equations at each iteration. However, a specific system structure 

is required and convergence cannot generally be guaranteed even for 

weakly coupled systems. 

The example of Section 5.4 showed the importance of further de­

veloping a good infimal solution algorithm. Is also demonstrated the 

need to develop and use a successive over-relaxation algorithm. 
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6. CONCLUSION 

6.1 Sununary 

The contents of this thesis can be separated into two distinct 

divisions. The first, contained in Chapter 2, is concerned with the 

development of a general theory of decomposition algorithms for opti­

mization problems. The remainder of the thesis develops an application 

of the methodology of Chapter 2 to a decentralized linear stochastic 

optimal control problem. 

In spite of the large amount of literature which has become avail­

able in recent years, there is a lack of a unifying theory of hierarchical 

control and coordination. The intent of the development of Chapter 2 is 

directed at this need. The decomposition formulation provides a means 

of classifying and analyzing groups of decomposition algorithms which 

are fundamentally the same but differ only in the partition of the 

variable space. Thus the need for a separate analysis for each application 

is avoided and the basic features of the individual algorithms are 

exposed. 

Chapter 2 approaches the theory of decomposition of optimization 

problems indirectly. It is assumed that a set of necessary conditions 

for the optimization can be expressed in the form of a system of nonlinear 

equations. This system of equations is then decomposed using an extension 

of the splitting methods for solving linear equations. 
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There are several important and desirable features of the theory 

which results from the approach described in the preceding paragraph. 

First, the theory is sufficiently general that it includes all of the 

hierarchical algorithms proposed to date and many of the classical one 

point iterative algorithms. In fact, it can be demonstrated that se­

veral of the hierarchical algorithms are simply special cases of the 

classical algorithms. 

The second major feature is the ability to specify individual 

decompositions through the choice of the core function. This is 

important for two reasons. First, it admits a constructive approach to 

designing decomposition algorithms. The consistency conditions which 

are required to ensure that the decomposition solves the original 

problem are imbedded in the formulation. At the same time, all the pro­

perties of the decomposition can be related directly to the core. Hence, 

the technical considerations can be suppressed and the more important 

properties can be examined easily through the use of this decomposition 

approach. 

A third feature of the theory of Chapter 2 is the convergence an­

alysis. Because few assumptions are placed on the original optimiza­

tion problem, the convergence results are local in nature and have 

not been considered to date in the hierarchical literature. 

Finally, the decomposition formulation allows multiple decomposi­

tions of the same problem to be analyzed in terms of the original 

decompositions. When such decompositions are viewed in the context of 
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hierarchical theory, the result is a multilevel structure. For the 

first time, such hierarchies with more than two levels have been 

developed and explicitly analyzed. 

The second part of this thesis applies the theory of Chapter 2 

to a linear stochastic optimal control problem. The particular control 

problem considered requires the controller to be a linear finite 

dimensional system. This problem is then reformulated as a determi­

nistic minimization and necessary conditions are derived. These equa­

tions are then decomposed for the interconnected system problem 

formulation using the Gauss-Seidel decomposition algorithm. 

The decomposition results in a two level structure for the com­

putation of the best linear controller which satisfies the problem 

constraints. The computational burden is reduced at both the supremal 

and infimal level problems. The supremal problem can be further decom­

posed and results in a multilevel hierarchy. When this multiple 

decomposition is used, all the subproblems are linear except for the 

original infimal problems. The latter problems are similar in structure 

to the necessary conditions which result from centralized optimal 

control problems. 

The convergence of the resulting algoritlun was analyzed using the 

local convergence results of Chapter 2.. Although no definitive results 

or tests were derive.a, several guide.lines ana conservative sufficient 

tests were proposed. In addition, the algorithm was shown to 



-193-

converge if the subsystem interactions were sufficiently weak. 

The algorithm was applied to the linearized model of an inertia 

wheel attitude control device. The results were disappointing for 

this problem, but demonstrated that the algorithm suffers several 

problems which need more attention. First, in any application the 

algorithm will probably have to use a relaxation technique. Second, 

the infimal problems in the example were solved as minimization problems. 

However, these became ill posed even when the subsystem interactions 

were weak. Thus another solution method must be used. 

6.2 Further Research 

The theory begun in Chapter 2 provides just the basic fundamentals 

needed to unify the area of decomposition and coordination. There are 

many directions future research in this area could take. First, the 

theory needs further development and study. Included under this direc­

tion would be the development of the relationships between the local 

and global convergence theories, and the relationships between properties 

of the decompositions and their respective cores. A second direction 

would be the study of individual classes of algorithm,s. Also, the 

theory of multiple decompositions has just begun in this thesis. 

The application of the Gauss-Seidel decomposition to linear 

stochastic optimal control problems demonstrated several difficulties. 

Most of the research directions are technical in nature. Based on the 

results of the example, a relaxation algorithm must be used. Also, 
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new solution methods fo;r the. infimal problems need to be developed. 

Although the results of the example were disappointing, this 

approach should still be examined further. 
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APPENDIX A: ADJOINTS OF SEVERAL LINEAR OPERATORS 

Given a linear operator L: X + Y where X and Y are Hilbert spaces 

with inner products <·,·>x and <·,·>y , the adjoint of L, if it 

* exists, is denoted by L : Y + X and defined by 

Let X and 

x /:J. Lnxn 
2 

/:J. nxn 
y = IR 

Vx E: X, y t: Y 

Y be defined as the 

(IR,18,A.It ,T]); <x,y> 
0 x 

<x,y> = tr x'y 
y 

following Hilbert 

tr 

T /x• (t)y(t) 

t 
0 

V x,y E Y 

Consider the following linear operators: 

F: X+X: 3(.) 
A 

T 
F: X+Y: 3(·) 

A 

H : Y + X: P + 
A 

I 

~ (t,cr)3(cr)@ (t,cr)dcr 
A A 

T 

+ 1 <!>A (T ,cr) E! (cr l <!>~ (T, cr) acr 

0 

I 

@ (t,t )P @ (t,t ) 
A o A o 

I 

y + Y: P + @ (T,t )P @ (T,t ) 
A o A o 

y + Y: p I 
+ AP + PA 

spaces. 

Vx,y t: x 

(A. l) 

(A. 2) 

(A. 3) 

(A. 4) 

(A. 5) 

(A. 6) 

(A. 7) 

(A. 8) 
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where ~ (t,cr) is the transition matrix defined by: 
A 

d 
dt 

~A(t,cr) = A(t)~(t,cr); ~(cr,cr) I 

The adjoints of (A.4)-(A.8) are given by the following lenuna. 

(A. 9) 

Lemma A.l: Let X and Y be Hilbert spaces defined as in (A.2)-(A.3). 

Then the adjoints of the linear operators in (A.4)-(A.8) are given by: 

T 

X + X: Q( ·)--~ i!>~ (O ,t}Q(O) i!>A (0 ,t}dO (A.10) 

T* 
y -+ X: K~ ~~ (T,t)K ~ A (T, t) F 

A 
(A.11) 

T 
* 

Q(·} 1 ~' (a, t ) Q {a) ~ (a , t ) dcr H : X--+Y: 
A A o A o 

(A.12) 

0 

T* I 

~A(T,to) H y -+ Y: K--...~ (T,t )K 
A A o 

(A.13) 

* 
LA: y -+ Y: K -+ A'K + KA (A.14) 

Proof: The proof involves standard manipulations using the definitions 

of inner products on X and Y and the definition of the adjoint {A.l). 

a) First, consider L =FA. For arbitrary!:!(·) and Q(·) in X, the 

inner product is (using (A.4)). 

< Q ( • ) ' FA ( 2(. ) ) > X (A.15) 

= tr ~T 
0 
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Interchanging the integrals in (A.15) gives 

f 
cr 

Since 

tr AB = tr BA 
mxn :nxm 

\IAE:IR BEIR 

equation {A.16) becomes 

<Q ( ·),FA (3 (-) )> x = tr LT r LT <P~ (t,cr) Q' (t)<PA (t,cr) dt]::: (cr) dcr 

0 

Now, switching the roles of t and a in (A.18) gives 

* = <FA ( Q ( • ) ) I 2 ( . ) > x 

* where FA has been defined as (A.10). 

b) Let L in (A.l). Then, using (A.5) the inner product on 

Y is: 
T 

<K,FT(2(·))>y =tr K' f ~ (T,t)3(t)~ 1 
{T,t)dt 

A t A A 
0 

Using (A.17), (A.20) becomes 

<K,F!(3(·))>y tr ~T [ <P~(T,t)K <PA(T,t) ]' 3(t)dt 

0 

* =<FT (K) I 2{.)> 
A X 

(A.16) 

{A.17) 

(A.18) 

(A.19) 

(A. 20) 

(A. 21) 
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T* 
where F has been defined as (A.11). 

A 

c) Let L HA in (A.1). Then, using (A.6) the inner product on 

X is: 

<Q(•), H (P)> =tr 
A X / Q' (t)<l> (t,t )P <I>' (t,t )dt 

A o A o 
t 

0 

Again using (A.17), (A.22) becomes 

<Q (.) ' 

* 

HA (p)> X =tr [ [T iP~ (t, t
0

) Q (t) iPA (t, t
0

) dt] 'P 

t 
0 

= 

where H has been defined as (A.12). 
A 

(A. 22} 

(A. 23) 

d) Let L in (A.l). Then, using (A.7) the inner product on Y 

is: 

(A. 24) 

Using (A.17), (A.24) becomes 

<K, H~(P)>y =tr [ iP~(T,t0)K iPA(T,t
0

) ]'P 
(A. 25) 

* <H~ (K) , P>y 

T* 
where HA has been defined as (A.13). 
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e) Finally, let L =LA in (A.l). Then, using(A.8)the inner 

product on Y is: 

<K, LA (P)>y = tr K' (AP + PA') 

Using (A.17), (A.26) becomes 

<K, L (P)> A y 

* 

tr (A'K + KA)P 

where LA has been defined as (A.14). 

(A. 26) 

(A. 27) 

0 
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APPENDIX B: A SOLUTION TO THE CENTRALIZED NECESSARY CONDITIONS 

Consider the problem formulation in (3.2.1)-(3.2.7) with N=l, 

/\ A A, 

A(t) = A(t), B(t) = B(t) and C(t) = C{t). Let the state of the closed 

loop system be denoted by xB{t) where: 

[x(~) - ~(t)l 
x (t) J [: {t)] 

x (t) 

Then xB(t) is given by the differential equation 

where 

A{t) 

[

A{t) - H(t)C(t) 

H(t)C(t) 

E{~ (t) ~I (t)} ~ ~ (t) 

[: 

= x 
oB 

A(t) - B(t):(t)] 

H8H' 

H8H'] 

H8H' 

+ H8H' 

E xoBxoB { ...., ...., • } fJ. PoB = [ Pao oo ] 

In terms of x(t), the cost (3.2.4) is given by: 

(B. l) 

(B. 2) 

{B. 3) 

(B. 4) 
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J = tr E {I x· (t)Q(t)i(t)dt + X• (T)KTB i(T) 1 
t 

0 

where 

"" 
Q(t) = r: 
l<.rB = 

The optimization problem corresponding to (B.1)-(B.5} can be 

placed in the form of (3.3.13)-(3.3.14): 

min 

G ( ·} E: L~n (IR,IB, A} 

H( ·) e: L~p (IR,IB,A) 

subject to 

J(G(·},H(·)) 

~t P(t) = A ( t} p ( t) + p ( t) A"( t) + ~ ( t} ; p ( t ) = 
0 

where T 

J(G(-) ,H(·l) =tr L Q(t)P(t)dt 

0 

(B. 5} 

(B. 6} 

(B. 7} 

(B. 8) 
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Theorem 3.1 can be µ.sed to aerive necessary conditions for (B.6)-

(B.8). Suppressing the time dependence of the matrices involved, the 

necessary conditions are: 

(B. 9) 

(B. 10) 

,..., . 
p AP + PA' + ~-~1 P(t ) = P 

o oB 
(B.11) 

K = -AK - KA - Q; K(T) (B.12) 

Note that conditions (B.9)-(B.12) are equivalent to (3.4.65)-(3.4.66) and 

(3.4.53)-(3.4.54) since the state xB(t) in this appendix is related to 

x(t) of Chapter 3 by the transfo:anation 

(B.13) 

where 

w 

:"" ...., 
Thus K(t) and P(t) in this appendix are related to K(t) and P{t) in 

Chapter 3 by: 

K(t) •"" = W K(t)W (B.14) 

P(t) = W P(t)W (B.15) 
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Equations (B.11) and (B.12) can be written in partitioned 

form as: 

(B.16) 

0 (B.17) 

. 
P22 (A-BG)P22 + P22 (A-BG)' + HCP

12 
+ P~2C 1 H' + H0H'; P22 Ct

0
) = 0 

(B.18) 

Kll -(A-HC)' Kll - Kll (A-HC) - C'H'Ki2 - K12HC - Q; K11 (T) =KT 

(B.19) 

. 
K

12 
= -(A-HC)' K

12 
- K

12
(A-BG) (B.20) 

-(A-BG) I K - K (A-BG) - Q - G'RG· K (T) 
22 22 ' 22 

(B. 21) 

To demonstrate that the classical linear quadratic Gaussian (LQG) 

solution satisfies the necessary conditions (B.9)-(B.10) and (B.16)-

(B.21), it will be assu:rqed that H(t) is given by: 

H ;:= l c• e-1 (B.22) 

where 

Assuming (J3" 22), th~. ;reJQaind,er of th~. classical LQG solution will 

be der±ved and CB. 22) will be shown to be. a consistent ass'Qnlption" 

Note that the choice of. the ;form of H coula pe,1l)otivated by (B.17) and 

physical considerations. One might suspect that the covariance of the 
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estimate error and the estimate (P
12

) should be zero for all 

t E[t ,T]. From (B.17), this could occur only if: 
0 

VtE[t ,T] 
0 

(B.23) 

The assumption (B.22) of the form of H ensures that (B.23) will hold. 

Thus 

Assuming (B.22), equation (B.17) becomes: 

(A-HC)Pl2 + pl2(A-BG) I 

pl2(t) = 0 Vt E[t ,T] 
0 

0 

using (B.22) and (B.25) in (B.16) gives the Riccati equation for 

the Kalman filter: 

Also, (B.18) becomes 

p22 = (A-BG)P22 + p22(A-BG) I + H0H' 

p 
0 

= 0 

(B. 24) 

(B. 25) 

(B. 26) 

(B.27) 

Note that P
22

, the covariance of the estimate, is determined by the 

closed loop deterministic system dynamics driven by the white noise 

process H0. 

Now, using (B.22) and (B.25) in (B.10) gives: 

0 (B. 28) 
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Or, equivalently 

-1 
G = R B'K

22 

Then equation (B.21) becomes the control Riccati equation: 

Now, subtracting equation (B.20) from (B.21) gives: 

-(A-HC) I (K22 - Kl2)-(K22 - K12> (A-BG); 

K22(T) - Kl2(T) 

Hence 

Vt S [t ,T] 
0 

Finally, using (B.25) in (B.9) gives 

-(Kll - K~2}PllC' + I (Kll - K~2) + (K22 - Kl2)] H0 

Substituting (B. 32) in (B. 33) gives 

_, (Kll - K~2) (P11c~ - HE)) 0 

= 0 

(B.29) 

(B.30) 

0 (B. 31) 

(B. 32) 

(B. 33) 

(B. 34) 

Thus (B.22) sat±s:eies (B .. 34) and hence, as e~pected, the classical 

LQG solution given by (B. 22), (B. 26), CB. 29) and (B. 30) satisfies 

the necessary conditions (B.9)..-(B.12)., 
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