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Abstract

Materials with simultaneously negative permittivity and permeability over a certain fre-
quency band were first studied by Veselago in 1968, who termed such media left-handed (LH)
due to the LH triad formed by the electric field vector, the magnetic field vector, and the
phase propagation vector. However, since no such naturally occurring materials were known,
Veselago’s work laid dormant for nearly 30 years. Recently though, a composite material,
also known as a metamaterial, consisting of the periodic arrangment of metallic rods and
split-rings has been shown to exhibit left-handed properties. Because the dimension of the
rods and rings that makeup the metamaterial are small compared to the wavelength of
interest, it is possible to approximately describe their bulk electromagnetic properties using
an effective permittivity and an effective permeability. In this thesis, the properties and
potential applications of LH media are explored. In addition, various tools are presented
for the purpose of characterizing metamaterial designs.

Before studying their metamaterial realization, the basic properties of propagation, ra-
diation, and scattering through homogeneous LH media are studied. Many of the basic
properties of LH media are in constrast to those typically encountered in right-handed me-
dia. For example, using a rigourous plane wave analysis of propagation and transmission
into a dispersive LH medium from a RH medium, it is shown that power refracts at a nega-
tive angle, without violating causality. Second, the perfect lens concept is studied through a
Green’s function analysis. It is shown that under the perfect lens requirement, that a single
source outside a LH media slab will generate two perfect images. Interestingly though, the
time-averaged power flow inside the slab forms a sink. However, it is shown that while the
introduction of loss eliminates this behavior, the lens becomes imperfect. It is seen that even
a small amount of loss can destroy the imaging properties of the LH media lens. In terms of
scattering, the Mie solution for plane wave scattering by a LH medium sphere is examined.
It is shown that where applicable, care must be taken in choosing the appropriate algebraic
signs of the wavenumbers in the evaluation of the Mie coefficients. In addition, it is then
shown that a sphere composed of a LH medium will focus incoming energy into a spot inside
the sphere. Finally, because the metamaterials studied in this thesis are anisostropic, the
effects of aniostropy on reflection and transmission are examined.

Next, various tools for understanding and characterizing left-handed metamaterials are
presented. First, the accuracy of approximate analytic models of the rods and split-rings is
investigated by using two-dimensional FD-TD simulations to compare transmission charac-
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teristics. It is shown that the rods tend to agree more favorably with their analytic model
than the split-rings do. Next, in order to better understand the behavior of the rods and
rings separately, numerical simulations of rods (or rings) embedded in homogeneous mag-
netic (or electric) plasma media were performed. Using the transmission characteristics,
it is shown that in order to obtained left-handed features, the plasma in the immediate
vicinity of the rods or rings needed to be removed, which shows that the electromagnetic
fields surrounding metamaterial are not homogeneous. To further verify left-handed fea-
tures, a phase-tracking method is used to retrieve the bulk index of refraction. In addition
to the phase-tracking retrieval method, a more precise retrieval method that utilizes the
complex S-parameter results is also investigated. Using this method, and S-parameters
results from three-dimensional FD-TD and MoM simluations, it is shown that metamate-
rials composed of rods and split-rings can be characterized by a negative permittivity and
negative permeability.

Next, two potential applications of LH media are explored. The first application is
to use left-handed media as a radar absorber. These absorbers are designed by using a
genetic algorithm, which determines a set of material parameters and layer thicknesses that
minimizes the reflected power over a given frequency bandwidth or angular swath. In the
design process, the frequency dispersive bulk media Drude and Lorentz models were used
to model the ring and rod metamaterials. It is shown that LH media can be used to reduce
the backscatter RCS, although its applicability is somewhat limited.

The second application explored is that of using metamaterials in the design of a light-
weight directive antenna substrate. By Snell’s law, if a source is embedded in a substrate
that has a small index of refraction compared to air, its source rays will be transmitted
near the normal of the substrate. Since left-handed metamaterials are frequency dispersive,
there exists a frequency where its index of refraction is zero. Unaltered, the metamaterial
will have a narrowband of operation where it is highly directive. In order to design a
wideband directive antenna, the plasma and resonant frequencies of the metamaterials are
adjusted to achieve minimum beamwidth. Additionally, it is found that certain anisotropic
metamaterials, which in practice are simpler to build, will actually perform better in terms
of beamwidth than their isotropic counterparts. In conjunction, the perfomance tradeoffs
between beamwidth, gain, and substrate thickness are dicussed.

Thesis Supervisor: Jin A. Kong
Title: Professor of Electrical Engineering
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Chapter 1

Introduction

In the last few years, there has been an increased interest in the scientific community in

the study of metamaterials. Metamaterials are a class of composite materials artificially

constructed to exhibit exceptional properties not readily found in nature. In particular,

there has been high level interest in studying materials which can be characterized by

simultaneously negative permittivity and permeability over a certain frequency band. This

type of medium was originally studied by Veselago [1] in 1968, who termed such media left-

handed (LH) due to the LH triad formed by the E, H, and k vectors. In his work, Veselago

showed that LH media have a number of unique properties such as a negative index of

refraction and the ability to support backward waves. However, since no such naturally

occurring materials were known, Veselago’s work lay dormant for nearly 30 years. Recently

though, with the advent of the first LH metamaterial [2–4], there has been a renewed interest

in this area. This thesis examines various aspects of LH media and metamaterials including

their fundamental properties, their characterization and design, and their application to

directive antenna and RCS reduction problems.

The study and application of electromagnetic wave propagation and scattering begins

of course with Maxwell’s equations, which relate the electric and magnetic fields through

a coupled set of space and time dependent differential equations, or equivalently, integral
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equations. Of primary importance in applying Maxwell’s equations is the identification of

the known sources and the properties of the surrounding media in the region of interest.

Sources generate fields and waves which propagate through media and scatter at bound-

aries between two different types of media. Media are incorporated into the field theory

through the use of the constitutive relations. Because Maxwell’s equations form a macro-

scopic theory, a medium described by a certain set of constitutive relations is considered

homogeneous. The validity of this assumption depends on the dimension, with respect to

the wavelength of interest, of the smallest particles comprising the medium. For example, to

the naked eye, water appears completely homogeneous when in fact it is composed of many

discrete H2O molecules. However, to observe and understand the refraction of visible light

through water, it is enough to use a macroscopic analysis where the water is characterized

by an effective index of refraction. However, if one were interested in understanding the

internal mechanisms at the molecular level, a microscopic analysis would be needed where

details of the molecule configuration and distribution would be modeled.

A similar situation arises in the case of LH metamaterials. As will be discussed in

detail in Section 1.1, metamaterials are a composite material composed of elements that

are small compared to the wavelength of interest and can therefore be analyzed from both

macroscopic and microscopic points of view. The macroscopic viewpoint is taken in order

to gain a better understanding of the bulk material properties, such as the negative index

of refraction. The microscopic approach is taken in order to gain a better understanding of

the internal mechanisms which will enable the design and characterization of metamaterials

for specific applications.

Also, note that throughout this thesis, for the sake of clarity, a left-handed (LH) medium

shall refer to a homogeneous body whose permittivity and permeability’s real parts are both

negative, whereas the term right-handed (RH) media shall refer to a homogeneous body

whose permittivity and permeability’s real parts are not both negative. Furthermore, the

terminology “LH metamaterial” shall refer to a composite material that exhibits LH medium

properties on average over a specific frequency band.
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1.1 Background

In order to be characterized as an LH metamaterial, a metamaterial must have an effective

permittivity and permeability that are simultaneously negative over some frequency band.

As shown in [1], electromagnetic waves will propagate in such a medium since the real parts

of the permittivity and permeability are of the same algebraic sign; however, waves will

not propagate in a medium where the permittivity and permeability are of the opposite

algebraic sign. Using this principle, the first step in the creation of LH metamaterials was

to create metamaterials that restricted propagation at certain frequency bands due to either

a negative permittivity or a negative permeability. Then under the assumption of minimal

coupling and if the stop-bands of each could be made to overlap, LH metamaterials could

be constructed by combining those types of metamaterials [5].

Historically, the first step taken in the development of LH metamaterials was the design

of a composite material that has an effective negative permittivity over some frequency

band. One approach used to achieve this property at microwave frequencies, studied by

Pendry in [2], is to use a periodic collection of metallic rods, which he showed behaves as a

plasma medium when the electric field vector is aligned with the rods. As Pendry showed,

the plasma frequency, below which the effective permittivity is negative, depends on the

spacing and radius of the rods. Of course, such a medium is inherently anisotropic, and it

is necessary to use a mesh of criss-crossing wires to achieve a more isotropic medium [6].

Next, in order to create a medium with an effective negative permeability, Pendry pro-

posed various magnetic resonant structures such as an array of cylinders, a capacitative

array of sheets wound on cylinders, and an array of “swiss roll” capacitors [3]. For each

structure, Pendry made an approximate analysis of the field distribution assuming the mag-

netic field vector was aligned along the axis of the cylinders, and he found that the effective

permeability could be described by a resonant model, which exhibits a negative permeabil-

ity over a certain frequency range. Qualitatively, this effect can be understood via Lenz’s

law wherein a magnetic field which opposes the change due to the incident magnetic field
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is generated. The opposing magnetic field will be of the opposite sign leading to a nega-

tive permeability. Currently, most work in the area of LH metamaterials has focused on

the study of the capacitative array of sheets wound on cylinders design, also known as the

split-ring resonator (SRR) design. Such designs where the magnetic field is forced to be

aligned with the axis of the cylinders are anisotropic, and as Pendry proposed, also in [3], a

more isotropic medium can be created by placing thin split-ring disks in three perpendicular

directions. Other designs for creating a more isotropic negative permeability medium have

also been suggested in [7] and [8]. Additionally, Pendry later proposed some variations on

the SRR design, and scaled the design so that it operates at IR frequencies [9, 10].

It is worth also worth mentioning that various studies on the bianisotropy of the rings

have been done by Marques [11, 12]. In his work, Marques argues that a while a magnetic

field incident upon the ring does indeed induce a magnetic moment, it can also induce

an electric moment. Thus, a magnetic field incident on the ring particle polarizes both

the electric and magnetic field, meaning that it is bianisotropic. In order to eliminate the

effects of bianisotropy, it is suggested that the inner ring be a ring equal in size to the outer

ring in an edge-coupled configuration. In this configuration, the induced electric dipole

moments on each ring would cancel while the induced magnetic dipole moments would

add, leaving the desired negative permeability features of the ring intact. Related to the

work of Marques is the recent use of omega particles as a left-handed metamaterial [13].

Omega particles, originally pioneered by the work of Engheta’s group at the University of

Pennsylvania [14] are, as their name implies, metallic inclusions shaped in the form of the

Greek symbol omega (Ω); essentially a combination of a broken rod and a split-ring. Omega

particles were one of the first material known to exhibit chiral properties. For left-handed

metamaterial applications, researchers have used the edge-coupled approach suggested by

Marques to eliminate the bianisotropy of the omega particles making them useful candidates

for many new metamaterial applications [13].

Returning back to the original concentric split-ring designs, these composite structures

were were first combined by Smith et al [5] to create a metamaterial made up of periodic rods
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and periodic SRRs that had left-handed properties. Physically, the medium was built by first

printing a thin sheet of metal in the shape of circular split rings on one side of the dielectric

substrate. The printed dielectric was then placed adjacent to a set of relatively large

metallic posts. Since the metamaterials constructed were expected to be highly anisotropic,

the initial experiments studied only the transmission properties of the metamaterial for a

specific polarization and incident angle. However, this requirement was later relaxed to

allow the incident wave to be any angle within one plane by creating a metamaterial with

a set of SRRs and a set of parallel rods in two perpendicular planes [15].

In order to test if the rod/SRR composite metamaterial is left-handed, Smith et al stud-

ied the transmission through metamaterials with only metallic rods and with only SRRs

using both numerical and experimental techniques. The basis of the study was that if one

could show that propagation does not occur in a metamaterial that theoretically has an ef-

fective negative permittivity but an effective positive permeability, and vice versa, but does

occur in a medium where both are theoretically negative, then it is possible to conclude

that the composite material is left-handed. Indeed, their results showed that a metamaterial

containing only SRRs has a stop band characteristic while a metamaterial containing only

rods has a high-pass characteristic. However, when both the rings and rods are present,

a pass band appears near where the stop band for the SRRs once was, which Smith et

al claimed meant that propagation was allowed at those frequencies due to fact that the

permittivity and permeability were both negative [5].

Because it is possible that a coupling effect between the rings and rods creates a meta-

material whose effective permittivity and permeability are both positive, transmission char-

acteristics alone cannot definitively prove that such metamaterials are left-handed. A more

definitive characterization method, used by Smith et al in [16], was to numerically calcu-

late the average electromagnetic fields inside a metamaterial structure. Then by using the

definition given by Pendry in [3], Smith et al determined the effective permittivity and per-

meability by calculating the ratio between the Davg and Eavg fields and the Bavg and Havg

fields, respectively. The results obtained not only showed that the effective permittivity and
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permeability were both negative over a certain frequency band, but they also confirmed the

permittivity and permeability models previously derived by Pendry in [2, 3].

Although the above method works well in conjunction with numerical simulations where

one can easily obtain the field quantities at every position in space, an alternate method

is needed for experimental proof. One method, which relies on the correlation between

the index of refraction, permittivity, and permeability is a Snell’s law experiment where

the index of refraction is measured directly. As discussed by Veselago [1] and rigorously

demonstrated by Smith et al [17], a medium with negative permittivity and permeability

will have a negative index of refraction. Thus, if a certain metamaterial was measured to

have a negative index of refraction, then it can be concluded that both the permittivity

and permeability are negative. The first experimental demonstration in this manner was

performed by Shelby et al wherein the authors placed a prism shaped metamaterial struc-

ture in a parallel-plate waveguide [4]. In the experiment, an X-band microwave beam was

launched into one end of the waveguide, 1 m from the backside of the prism sample, and

the resulting angular radiation pattern of the transmitted beam that was refracted by the

prism’s slanted side was recorded. Shelby et al observed a negative angle refraction near

10.5 GHz, which corresponded to a index of n = −2.7± 0.1.

The setup created by Shelby et al had many features that needed to be carefully tuned,

such as the gap between the top of the parallel plate and the rods, which made it difficult to

repeat for quite some time. For this reason among others, some researchers have questioned

the validity of the experimental results [18], as well as the fundamental theoretical properties

of LH media [19–21].

In particular, Valanju et al claimed that the presence of dispersion prevents power

transmitted at a RH medium-LH medium interface from refracting at a negative angle [19].

However, Valanju et al drew their conclusions based solely on the electric field, inferring

the direction of the power flow from the normal of the phase front based on an erroneous

definition of the group velocity. In [22], Smith et al refute the position of Valanju et al by

demonstrating that the group velocity vector must always be parallel to the phase velocity
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vector in an isotropic medium, contrary to the conclusion reported by Valanju et al. Simul-

taneously, the controversy was addressed by Pacheco et al in [23] from the point of view of

power propagation. As discussed in detail in Section 2.2, the authors demonstrate, through

explicit calculation of the time and space dependent Poynting vector, that the power of a

multi-frequency wave transmitted into a frequency dispersive LH material refracts at a neg-

ative angle [23]. Additional work using time-domain numerical techniques by other authors

has confirmed these conclusions by showing that due to the dispersion and initially large

bandwidth of the incident pulse, there is a setup time before which the transmitted beam

is inhomogeneous, but after which a homogeneous negatively refracted beam emerges [24].

Another debate in the literature concerned the concept of the perfect lens, which was

first introduced by Pendry [25]. In his paper, Pendry showed that a slab with material

parameters of ε = −εo and µ = −µo perfectly focuses a source placed in front of an

LH slab. However, Garcia et al [21] claim that a perfect lens cannot theoretically exist

because if it did, it would require infinite energy generation; however this claim was later

refuted by Gómez-Santos [26] who introduced an intrinsic time scale in the time evolution of

subwavelength (including perfect) resolution to remove the problem of divergences claimed

in [21]. Although the debate has not been concluded, others have begun to focus on more

practical issues such as the effects of dispersion and absorption on the creation of near-

perfect lens [27–30]. For instance, it has been observed that in the presence of absorption,

the image created by a LH slab is not stationary but actually oscillates along the central

axis of propagation on the time scale of the source frequency. Thus, the net effect in the

near field is the appearance of a collimated beam rather than an image of the source.

While the above work concerned the theoretical aspects of the debate, other researchers

have questioned the experimental proof of the existence of LH metamaterials. For exam-

ple, Valanju et al claimed that the observation by Shelby et al [4] of negative refraction

was really just near-field diffraction effects [19]. Additionally, Garcia et al said that they

believed the effects of losses in [4] were understated. They claimed that if they were fully

taken into account, they would make the distinction between right-handed and left-handed
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metamaterials difficult because the transmitted electromagnetic wave would be very inho-

mogeneous [18].

In order to overcome these criticisms, more experimental work was needed. As men-

tioned above, the results by Shelby et al were difficult to reproduce due to the sensitivity

of the placement of the metamaterial inside the waveguide. In order to eliminate the is-

sue of the gap between the metamaterial and the waveguide, a group at Boeing Phantom

Works measured the transmission and angle of refraction through the metamaterials using

a free-space configuration. In order to avoid diffraction effects, focused beams were used

to illuminate the metamaterial. Their work confirmed that the rod/SRR metamaterial

had transmission bands characteristic of left-handed materials [31] as well as a negative

index of refraction [32]. Simultaneously, a group at the MIT Media Laboratory managed

to reproduce the results of Shelby et al using the original parallel-plate waveguide configu-

ration [33]. The parallel-plate configuration experiment was also later repeated successfully

by a group at Zhejiang University [34]. In addition to the transmission and Snell’s law

prism experiments, other methods for experimentally demonstrating that a metamaterial

is left-handed have been proposed [35–39]. Recently, some of these proposed experimental

configurations, such as the lateral shift of a Gaussian beam and the propagation through a

loaded T-junction, have been realized and have successfully demonstrated the left-handed

properties of certain metamaterials [34].

Because the free-space experiments done by the Boeing team focused on far-field mea-

surements, they helped to refute the claims that the original measurements were just near-

field effects. However, it is true that the metamaterials created so far are very lossy, a fact

which has prompted researchers to study the origins of loss in the metamaterials [40], as

well as exploring new designs. One other approach, where the loss is low compared to the

rod/SRR design, uses a transmission line (TL) network. This method, pioneered by a group

at the University of Toronto, is based on the principle of using a two-dimensional lumped

element transmission line network to create a high-pass filter, which supports backward

waves [41–46]. With the appropriately chosen configuration, they show that the effective
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permittivity and permeability are negative. The advantage of this approach is that the TL

can possess some left-handed properties over a very wide bandwidth while not suffering from

the same losses as the rod/SRR designs. However, the main disadvantage is that while the

transmission line approach reproduces some of the same phenomena as LH metamaterials,

it is a fundamentally different approach which cannot be applied in the same way as the

rods and SRRs.

Yet another approach to generate negative refractive index materials is to use photonic

band gap structures (PBG) [47–49]. PBGs are periodic structures, typically constructed

from high dielectric materials [50], that, as their name implies, exhibit frequency band

gaps where electromagnetic waves cannot propagate. In addition, the dispersion relations

describing the propagating modes, also known as Bloch or Floquet modes, are nonlinear

and can in some cases lead to negative refraction. However, because the group velocity and

phase vectors are not parallel, the negative refraction behavior in PBGs is different from

ideal LH media, which has a permeability and permittivity that are negative and isotropic

so that the velocity and phase vectors are exactly anti-parallel.

Since one of the goals in the proposed thesis is to develop metamaterials that can be

used in a wide variety of applications such as antennas and radar absorbers, the type of

metamaterials that will be studied are the rod and SRR structures. Compared to the

TL approach, the rod/SRR structures can easily be used in a wide variety of microwave

engineering applications. In addition, compared to PBGs, at the present time it is cur-

rently easier to implement rod/SRR structures in applications, because it is easier to create

simple uniaxial or even isotropic materials, whereas PBG structures are in general highly

anisotropic with complex dispersion relations.

1.2 Thesis Work

As mentioned previously, there are two general viewpoints for modeling left-handed meta-

materials: microscopic and macroscopic. Both of these methods are employed in this thesis.
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The macroscopic approach is used to gain a fundamental understanding of the principles

of left-handed media as well as to gauge the potential of left-handed metamaterials for two

applications. In order to connect the theory to the physical realization, various tools for

the characterization of metamaterials are introduced. The input to these tools is of course

data obtained from numerical simulations of the microscopic structure. In the following,

the contributions of this thesis are briefly outlined.

The purpose of Chapter 2 is understand the fundamental electromagnetic properties

of propagation, radiation, and scattering in the presence of left-handed media. The main

contribution in this chapter is to provide a solid understanding of the effects of dispersion

on the refraction of a wave from a right-handed medium into a left-handed medium. As

discussed above, this topic has received much attention in the recent literature due to

the controversial paper by Valanju et al [19] who asserted that negative refraction is not

theoretically possible. In this chapter, this claim is disputed by performing a rigorous

analysis of the power flow. Other topics covered in this chapter include an in-depth study

of the perfect lens and the associated difficulties of achieving perfect focusing, scattering

from left-handed media spheres, and the effects of anisotropy on Gaussian beam propagation

through a slab of an indefinite medium.

The purpose of Chapter 3 is to study the microscopic structure of left-handed metama-

terials and methods of characterization. The contribution of the first half of this chapter

is to provide an understanding of the mechanisms needed for the generation of left-handed

properties. In particular, it is shown that a rod metamaterial embedded in a homogeneous

magnetic plasma medium cannot function as a left-handed metamaterial nor can a split-

ring metamaterial that is embedded in a homogeneous electric plasma medium. This result,

termed the “problem of left-handed materials” by Pokrovsky and Efros [20] means that in

combining rods and split-rings together to form a left-handed metamaterials, it is essential

that there be regions within the metamaterial that are right-handed; however, the overall

material can in general still effectively be treated as a left-handed material. The contribu-

tion in this section is to isolate the regions within the metamaterial that need a right-handed
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medium background. Additionally, a modified form of the phase-tracking method is pre-

sented, which allows the extraction of the bulk index of refraction from the field distribution

within the metamaterial. In addition to the phase-tracking retrieval method, a more precise

retrieval method that utilizes the complex S-parameter results is investigated. Using this

method, and S-parameters results from three-dimensional FD-TD and MoM simulations,

it is shown that metamaterials composed of rods and split-rings can be characterized by a

negative permittivity and negative permeability.

The final two chapters are concerned with addressing the potential applications of left-

handed materials. Although these materials are still in their infancy of development, a

number of applications have already been proposed. These include perfect and near-perfect

lens [25, 29, 30, 51], backward wave devices [52, 53], novel Cerenkov detectors [54], high

speed interconnects in integrated circuits [55], subwavelength cavity resonators [56], and

multiplexing devices [37].

The first application considered is to use left-handed metamaterials as radar absorbers.

The motivation behind this work was to investigate the potential benefits of being able

to design an absorber with a materials that have negative permittivity and/or negative

permeability. In designing the coatings, a genetic algorithm optimization method is used to

determine the parameters of the Drude and Lorentz models, which are used to characterize

the current generation of left-handed metamaterials. For single frequency applications, it is

found that there is no advantages to using right-handed versus left-handed materials. On

the other hand, for wideband applications, it seen that the sharp resonance of the Lorentz

models limits the maximum bandwidth achievable. Despite these drawbacks, metamaterials

do have the advantage of being light-weight and frequency tunable. Thus, for applications

requiring light-weight coatings, left-handed metamaterials offer a viable alternative.

The second application investigated is the use metamaterials in the design of a light-

weight directive antenna substrate. It is well known that by Snell’s law, if a source is

embedded in a substrate that has a small index of refraction compared to air, its source

rays will be transmitted near the normal of the substrate. In the past, antennas have been
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designed using this concept; however, they have been limited to narrowband operation.

It is the purpose of this chapter to use left-handed metamaterials, which have frequency

dispersive magnetic and electric properties, to design a wideband directive antenna. The

fact that metamaterials are extremely light-weight is added benefit. Furthermore, one of the

main contributions in this chapter is an understanding of the role that anisotropy plays in

controlling the beamwidth. It will be shown that certain anisotropic metamaterials, which

in practice are simpler to fabricate, will actually perform better in terms of beamwidth than

their isotropic counterparts. In conjunction, the performance trade-offs between beamwidth,

gain, and substrate thickness are discussed.



Chapter 2

Propagation, radiation, and

scattering in left-handed media

2.1 Introduction

In this chapter, the fundamental electromagnetic properties of propagation, radiation, and

scattering in the presence of left-handed media will be considered. Throughout this chapter,

all media are assumed to be homogeneous and, except for Section 2.5, isotropic. Before

considering more complex phenomena, it is useful to review the simple concept of wave

propagation in a source-free unbounded medium. For such a medium, propagating waves

obey the frequency domain Maxwell’s curl equations, which are given by,

∇× E(r) = iωµ(ω)H(r) (2.1)

∇×H(r) = −iωε(ω)E(r) (2.2)

35
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where ε(ω) and µ(ω) are the frequency dependent permittivity and permeability. For plane

wave solutions of the form eik·r, Maxwell’s equations become,

k × E(r) = ωµ(ω)H(r) (2.3)

k ×H(r) = −ωε(ω)E(r) (2.4)

where k is the wave propagation vector. As discussed in Chapter 1, media with simulta-

neously negative permittivity and permeability were first studied by the Russian scientist,

Veselago, who termed such media left-handed [1]. The origin of this terminology is due to

the fact, as evident from (2.3), that the E, H, and k vectors form a left-handed system when

both ε and µ are negative. Note that if only µ is negative, then the wave propagation vector

becomes imaginary, and it no longer possible define the handedness of the system. The other

unique property of left-handed materials is their ability to support backward waves, which

are waves whose power propagates in the opposite direction of their phase. For example,

consider an electric field that is polarized along the p̂ direction. From Maxwell’s equations

and Poynting theorem, the power flow direction may be calculated as follows,

E = p̂ eik·r (2.5)

H =
1

ωµ

(

k × p̂
)

eik·r (2.6)

⇒
〈

S
〉

= <
{

E ×H∗
}

=
1

ωµ
p̂×

(

k × p̂
)

= (p̂ · p̂)k − (p̂ · k)k

=
k

ωµ
(2.7)

where < is the real operator and p̂ · k = 0 is due to Gauss’ law. The result shows that the

time-averaged Poynting vector will be in the opposite direction of the phase propagation

vector when ε and µ are both negative. With this simple result, an entire new field in

electromagnetics has opened up. The remainder of this chapter and indeed much of this
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thesis is devoted to the study of the consequences of ε and µ being simultaneously negative.

2.2 Reflection and transmission at a RH-LH boundary

As Veselago showed in [1], non-dispersive media cannot be left-handed, or in other words, a

medium can only have a negative permittivity and permeability for a finite frequency band.

In order to understand the implications of this property, the first part of this work examines

the effects of dispersion in the transmission of a plane wave from a right-handed medium

(RHM: ε > 0, µ > 0) to a frequency dispersive left-handed medium (LHM: ε(ω) < 0,

µ(ω) < 0 for some ω), which are both homogeneous and isotropic.

In particular, Valanju et al claimed in [19] that the presence of dispersion prevents

power transmitted at a RH-LH interface from refracting at a negative angle. In their work,

Valanju et al drew their conclusions based solely on the electric field, inferring the direction

of the power flow from the normal of the phase front based on an erroneous definition of

the group velocity. The confusion arises from the presence of an interference pattern in

the transmitted LH medium region, whose apparent motion is in the direction of positive

refraction. However, it is well known that the direction of power flow for both non-dispersive

and dispersive media is determined by the Poynting vector, which is not necessarily parallel

to the normal of the phase front [57].

In this section, this confusion is explained by explicitly calculating the time and space

dependent electric and magnetic fields in order to determine the Poynting vector. In order

to account for the dispersion, two types of signal spectra are considered. The first consists

of two discrete frequencies, while the second is Gaussian. Explicit expressions for the time-

domain fields are obtained, from which the time averaged Poynting vectors and hence power

flow vectors are calculated. For each case, it will be shown that the apparent direction of

motion of the interference pattern is not the direction of power propagation, and that the

power is negatively refracted.
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2.2.1 Dirac Delta Function Spectrum

In order to study the effect of dispersion on the direction of power propagation, we consider

the transmission of an incident field, composed of many frequencies, from an isotropic non-

dispersive region into an isotropic dispersive region as shown in Fig. 2-1. The total TE

polarized incident electric field is constructed as a weighted sum of plane waves, and is

given by,

E0y(r, t) =

∫ ∞

−∞

dω A(ω)eiφ0(r,ω)−iωt, (2.8)

where A(ω) = α(ω) + α∗(−ω) is the signal spectrum, kx(ω) = k0 sin θi, k0z(ω) = k0 cos θi,

k0 = ω
√
µ0ε0, and φ`(r, ω) = kx(ω)x+ k`z(ω)z, with ` referring to region 0 or 1. With this

formulation, the transmitted electric field in region 1 is given by,

E1y(r, t) =

∫ ∞

−∞

dω A(ω)T (ω, θi)e
iφ1(r,ω)−iωt, (2.9)

where T (ω, θi) is the frequency and angle dependent transmission coefficient given by,

T (ω, θi) =
2µ1k0z

µ1k0z + µ0k1z
, (2.10)

and

k1z(ω) = σ
√

ω2µ1(ω)ε1(ω)− k2x(ω), (2.11)

where σ = +1 for RHM and σ = −1 for LHM. This choice of sign ensures power propagates

away from the surface in the +ẑ direction rather than from infinity [55]. From the electric

field, we can calculate the magnetic field which is given by,

H1z(r, t)=

∫ ∞

−∞

dω
kx(ω)

ωµ1(ω)
A(ω)T (ω, θi)e

iφ1(r,ω)−iωt, (2.12)
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Figure 2-1: Half-space problem geometry: A TE polarized incident wave is transmitted
from a non-dispersive region (0) into a dispersive region (1). Arrows shown here indicate
power flow direction.

where for brevity we list only H1z, noting that H1x can be calculated in a similar manner.

In order to study the effects of dispersion, an incident field composed of two slightly

separated frequencies with the following spectrum,

α(ω) =
E0

2
[δ(ω − ω1) + δ(ω − ω2)] (2.13)

is introduced where E0 is the real-valued amplitude, ω2−ω1 = δω, and |δω/ω1| ¿ 1. From

(2.9), we can find the expression for the time and space dependent transmitted electric field,

E1y(r, t) = E0 [cosψ1 + cosψ2] , (2.14)

where ψj = φ1(r, ωj) − ωjt, with j = 1, 2. Note that, here we consider the lossless case

and let T (ω, θi) = 1 for the simplicity of derivation. Later in this section we will consider

a more rigorous derivation that includes the transmission coefficient. To proceed with the
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Poynting vector calculation, we first determine the magnetic field, which is given by

H1z(r, t) = E0

[

kx(ω1) cosψ1
ω1µ1(ω1)

+
kx(ω2) cosψ2
ω2µ1(ω2)

]

, (2.15)

where again for brevity we list only H1z. To find the power flow direction, we calculate the

time and space dependent Poynting vector, given by, S1(r, t) = E1(r, t)×H1(r, t), yielding

S1x(r, t) = E1y(r, t)H1z(r, t)

= E2
0

kx(ω1)

ω1µ1(ω1)
cos2 ψ1 + E2

0

kx(ω2)

ω2µ1(ω2)
cos2 ψ2

+E2
0

[

kx(ω1)

ω1µ1(ω1)
+

kx(ω2)

ω2µ1(ω2)

]

cosψ1 cosψ2, (2.16)

where we note that a similar calculation for S1z can also be done. In order to determine

the power propagation direction, we calculate the time average value of the time dependent

Poynting vector by integrating (2.16) and a similar expression for S1z over a period T ,

which is chosen to be the period of the combined signal, i.e. it is the common period of the

frequencies ω1 + ω2 and ω1 − ω2. Integrating, we find that the cross terms average to zero

if ω1 6= ω2 yielding,

< S1(r, t) >=
E2
0

2

[

k1(ω1)

ω1µ1(ω1)
+

k1(ω2)

ω2µ1(ω2)

]

, (2.17)

where k1(ω) = x̂kx(ω) + ẑk1z(ω). From this expression, we see that the power flow will

be in the average direction of the two single frequencies. Thus, depending on the values of

µ1(ω1), µ1(ω2), ε1(ω1), and ε1(ω2) the wave will refract at either a positive or a negative

angle. In the case that both the permittivities and permeabilities at each frequency are

negative, the wave will refract at a negative angle.

We will now consider two specific simple examples. The first example is the transmission

of a wave with two frequency components at f1 = 10.5 GHz and f2 = 11.5 GHz (ω = 2πf)

where we take the permittivity for region 1 to be different for each frequency, yet both
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positive, while the permeability remains fixed and positive such that in this example, both

regions are RHM. The second example is the case of transmission from a RHM to a LHM

where we again take the permittivity for region 1 to be different for each frequency, yet both

negative, while the permeability remains fixed and negative. Fig. 2-2(a) for the first example

and Fig. 2-2(b) for the second example show, at a specific time, the resulting x̂-component of

the Poynting vector, overlayed with black colored arrows that indicate the overall direction

of the vector. Clearly, in the case of the RHM-RHM interface, the x̂-component of the

Poynting vector is positive, while in the RHM-LHM case the x̂-component is negative.

Hence, as can be seen from the arrows, θt > 0 for the RHM-RHM interface and θt < 0 for

the RHM-LHM interface. Note that calculation of the Poynting vector for subsequent times

shows that the time-averaged Sx component remains positive for the RHM-RHM case and

negative for the RHM-LHM case, as predicted by (2.17).

Note, however, that in both cases an interference pattern is formed whose normal vectors

are not in the direction of the respective power flows. This interference is a result of the

fact that the waves for each frequency are refracted at different angles. From the above

calculations we see that, contrary to the conclusions in [19], the normal vectors of these

interference fronts do not indicate the power flow direction.

2.2.2 Gaussian Spectrum

Next, in order to more rigorously model a physically realizable narrowband signal, we

consider an incident field with a normalized Gaussian signal spectrum,

α(ω) =
E0

√

4π(δω)2
exp

[

−(ω − ω0)2
(δω)2

]

, (2.18)

where as before E0 is the real-valued amplitude, and |δω/ω0| ¿ 1. The time-domain

expressions for the fields given in (2.9) and (2.12) involve the evaluation of integrals that

can be dealt with using a standard expansion method. Note that, by conjugate symmetry,

we need only integrate the portion of the spectrum centered at ω0. A generic form of the
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(a) RHM-RHM interface, negative slope:
ε1r(ω1) = 2, ε1r(ω2) = 1.5 and µ1r(ω1) =
µ1r(ω2) = 1

(b) RHM-LHM interface, positive slope:
ε1r(ω1) = −2, ε1r(ω2) = −1.5, and
µ1r(ω1) = µ1r(ω2) = −1

Figure 2-2: Interference pattern of the magnitude of the Poynting vector (|S|) overlayed with
arrows indicating the direction at a specific time for a wave incident at θi = 45◦ composed
of two discrete frequencies, f1 = 10.5 GHz and f2 = 11.5 GHz. The figures illustrate that
the normal to the interference front does not necessarily point in the same direction as the
Poynting vector. Nb: λ0 corresponds to the wavelength of the mean frequency.



2.2. Reflection and transmission at a RH-LH boundary 43

integral is given by,

I =

∫ ∞

−∞

dω f(ω)eiγ(ω) =

∫ ∞

−∞

dω eg(ω), (2.19)

where g(ω) = iγ(ω) + ln[f(ω)] and the principle branch of the logarithm function is taken.

To evaluate this integral, the argument to the exponential, g(ω), is expanded in a Taylor

series about ω0 to second order to yield,

I =

√

2π

g′′(ω0)
exp

[

g(ω0)−
[g′(ω0)]

2

2g′′(ω0)

]

. (2.20)

Note that, in the case of non-dispersive media, the second order Taylor series expansion

is exact. For dispersive media, this approximation holds as long as the signal spectrum

α(ω) spans only a linear portion of the dispersion curve, which is true outside the region

of resonance, under the condition |δω/ω0| ¿ 1. Note that there is no loss of generality

by limiting the spectrum in this manner since group velocity and power flow direction are

determined by considering the local slope of the dispersion curve [58].

In order to apply this method to determine the fields in region 1, we specify the following

definitions of g(ω), depending on the field component examined:

gE1y
(ω) = −(ω − ω0)2

(δω)2
+ ln[T (ω)]

+i(kx(ω)x+ k1z(ω)z − ωt), (2.21a)

gH1x
(ω) = −(ω − ω0)2

(δω)2
+ ln[T (ω)] + ln

[

k1z(ω)

ωµ1(ω)

]

+i(kx(ω)x+ k1z(ω)z − ωt), (2.21b)

gH1z
(ω) = −(ω − ω0)2

(δω)2
+ ln[T (ω)] + ln

[

kx(ω)

ωµ1(ω)

]

+i(kx(ω)x+ k1z(ω)z − ωt), (2.21c)

where the definition of gH1x
is based on a integral expression for H1x that has been derived

but not listed.
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As an example, we consider the following dispersion relations given by Shelby et al [4],

µ1(ω)

µ0
= 1−

ω2mp − ω2mo
ω2 − ω2mo + iγω

, (2.22a)

ε1(ω)

ε0
= 1−

ω2ep − ω2eo
ω2 − ω2eo + iγω

, (2.22b)

where ωmo is the magnetic resonance frequency, ωmp is the magnetic plasma frequency,

ωeo is the electric resonance frequency, ωep is the electric plasma frequency, and γ is the

damping frequency. Explicit analytical expressions for the electric and magnetic fields are

derived from the use of (2.20) and (2.21), but are not listed for the sake of brevity.

To proceed with a numerical evaluation of the electric and magnetic fields, the pa-

rameters reported in [4] are used, except with γ = 0 in order to suppress losses for the

purpose of illustration. The incident wave is chosen to have a Gaussian spectrum centered

at f0 = 10.5 GHz with δf = 10 Hz, and is incident at θi = 45◦. From the resulting time-

domain electric and magnetic fields, the Poynting vector is calculated. Fig. 2-3 shows the

S1x and S1z components as a function of time for one typical spatial point in the LHM

region. The dot-dashed curve shows that the x̂-component of the power is indeed always

negative indicating a negative angle of refraction. Specifically, this angle can be calculated

by applying,

θt = tan−1
[

< S1x(t) >

< S1z(t) >

]

. (2.23)

In the example shown in Fig. 2-3, θt is found to be approximately −11.12◦. For comparison,

note that at the center frequency, ε1r(ω0) ≈ −12.88 and µ1r(ω0) ≈ −1.04, which corresponds

to an index of refraction n(ω0) ≈ −3.67 and a refraction angle of θt ≈ −11.12◦. Hence,

comparing these two values we conclude that dispersion does not preclude refraction at a

negative angle in accordance with Snell’s law. It should be noted that the power plotted in

Fig. 2-3 is not strictly periodic since a continuum of frequencies is used; however, this fact

does not affect the conclusion that the power is refracted at a negative angle.
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Figure 2-3: S1x and S1z at one typical spatial point in the LHM region as a function of time.
Center frequency is f0 = 10.5 GHz with δf = 10 Hz. Parameters used were those reported
in [4], fmp = 10.95 GHz, fmo = 10.05 GHz, fep = 12.8 GHz, feo = 10.3 GHz, except γ = 0.
Refraction angle is found to be θt ≈ −11.12◦.

In addition to their group velocity argument, Valanju et al also claimed in [19] that

negative refraction was not possible because it violated causality. However, their argument

fails to consider two important points. First, at a RHM-RHM interface with the index of

refraction great than one, points on a single phase front in the incident region can all be

mapped to the same phase front in the transmitted region; however, this is not the case for

a RHM-LHM interface. Instead, the points along the incident phase fronts are each mapped

to different backward propagating phase fronts in the LHM. Second, in the case of a single

frequency signal, for which constant phase front arguments apply, it is always possible to

form new backward propagating phase fronts due to the negative phase property of LHM in

conjunction with the fact that the wave exists for all time and space. Considering these two

points, we see that waves can refract at negative angles while maintaining a finite velocity.

On the other hand, the interference fronts of a multi-frequency signal are indeed dis-
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torted at an RHM-LHM interface since its different frequency components are refracted at

different angles. In the case of two discrete frequencies, examples of two distorted interfer-

ence patterns are shown in Fig. 2-2. Valanju et al argue that these distorted interference

patterns move and carry power perpendicularly to the interference front, which happens to

be at a positive angle in the case considered in Fig. 2-2(b). In actuality, each point on the

interference front moves in the direction of power flow (downward and to the right in Fig. 2-

2(b)). The apparent upward movement is due to the combined effects of semi-infinite extent,

the periodicity of the interference pattern and its slanted angle. Indeed, a spatially finite

extent signal such as a Gaussian beam, which can be represented by a collection of plane

waves [35,36], will also propagate downwards in this case since each plane wave component

will refract negatively. The combined effects listed above along with the exact analytical

calculation of the power flow presented in this section demonstrate that conclusions based

solely on the apparent motion of the interference fronts are misguided.

In conclusion, we have calculated the power flow of a wave transmitted from a non-

dispersive right-handed medium into two types of dispersive media, RHM and LHM. In

particular, we have shown that negative refraction is possible for multi-frequency signals by

explicit calculation of the Poynting vector in LHM. Using two discrete frequencies, we have

shown that the direction of the time-averaged Poynting vector is in the average direction

of the time-averaged Poynting vectors for each frequency treated separately, implying that

negative refraction is possible. Using a Gaussian signal spectrum, we have confirmed this

conclusion after also determining the power refraction angle to be negative, without violating

causality. The angle of refraction was found to be in agreement with that predicted by Snell’s

law, with the LHM having a negative index of refraction.
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2.3 Radiation of a source in the presence of an LH slab

Next, the effects of loss on the perfect lens, originally proposed by Pendry [25] will be ana-

lyzed. Although the Kramers-Kronig relations require a dispersive medium to be lossy [59],

it is beneficial to first consider the ideal lossless case as Pendry originally did when he an-

alyzed the transmission of a plane or evanescent wave through a LH slab with a relative

permittivity and permeability of εr = −1 and µr = −1 at a single frequency. Using an infi-

nite series solution, where each term represents an additional reflection or transmission at

one of the two boundaries, Pendry determined that propagating as well as evanescent waves

are perfectly reconstructed in terms of phase and amplitude in the transmitted region. In

particular, evanescent waves were found to grow exponentially inside the LH medium slab.

However, in Pendry’s method, certain assumptions were made about the sign of the trans-

verse wave component inside the LH medium. To avoid the ambiguity in the choice of sign,

Zhang et al [60] and Kong [61] used a more general approach, which used the boundary

conditions to determine the amplitudes of the forward and backward propagating (or in the

case of evanescent decaying or growing) terms. As with Pendry’s solution, their solution

also showed that evanescent modes grow inside the slab.

While individually growing evanescent modes do not pose any mathematical difficulties,

issues of convergence arise in the case of computing the image of an ideal source. To compute

the image of a current source, both Zhang et al [60] and Kong [61] use the Green’s function

methodology where a separate spatial Fourier integral is used to express the fields in each

region due to the source. However, under the perfect lens condition when the source is

located from the slab at a distance less than half the slab thickness, the Fourier integrals

can become exponentially divergent rendering them unintegrable. Previous work avoided

this issue by restricting the choice of source position and slab thickness, but it is clearly an

issue of fundamental theoretical importance. As will be shown, it is possible to obtain a

closed form solution that satisfies the necessary boundary conditions by using the principle

of analytic continuation; however, due to the lossless nature of the LH medium, this solution
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may not be unique. By introducing a small amount of loss into the LH medium, the integral

expressions for the fields become well defined and convergent, and can be uniquely computed

using numerical integration techniques. In this work, the amount of loss introduced into

the slab will be varied in order to better understand the perfect lens effect. The limiting

case of the lossless solution will be examined.

2.3.1 Theoretical Formulation

In this section, the radiation of a source located below a LH medium slab is examined. As

discussed earlier, this work stems from the idea of using LH media to create a perfect lens

first proposed by Pendry in [25], where he analyzed the case of individual plane wave or

evanescent components propagating through a LH medium slab. In this work, however,

the radiation of an ideal source in the presence of an LH slab will be considered. Because

an ideal source can be decomposed into a set of plane waves and evanescent waves, some

of Pendry’s work will be repeated; however, the main difference will be the difficulties

encountered when summing all the wave components.

Consider an infinite line source located at the position z = 0 in region 0 as shown in

Fig. 2-4. The region above the source in medium 0 is denoted as 0+ while the region below

the source in medium 0 is denoted as 0−. Similarly, as will become clear later, regions 1 and

2 are also divided into plus and minus regions which correspond to the regions above and

below the images of the original source. In the following work, regions 0 and 2 will always

be taken to be RH media whereas region 1 can be either right-handed or left-handed.

For an infinite electric line source polarized in the x̂-direction, the electric and magnetic

fields take the following general form,

E`x =

∫ ∞

−∞

dky

[

A`e
ik`zz +B`e

−ik`zz
]

eikyy, (2.24a)

H`y =

∫ ∞

−∞

dky
k`z
ωµ`

[

A`e
ik`zz −B`e

−ik`zz
]

eikyy, (2.24b)

H`z =

∫ ∞

−∞

dky
−ky
ωµ`

[

A`e
ik`zz +B`e

−ik`zz
]

eikyy, (2.24c)
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Figure 2-4: Geometry for studying radiation of an ideal source through a LH slab.

where k2y + k2`z = k2` . For RH media regions, the A` coefficients correspond to upward

propagating wave components and the B` coefficients correspond to downward propagating

wave components; however, for a LH medium region, the reverse is true since the power

and phase are anti-parallel in isotropic LH media.

Because the source is located in region 0, the coefficients, A0± and B0± must take the

following form,

A0− = 0, (2.25a)

B0− = (1 +R)Elin, (2.25b)

for z ≤ 0 and

A0+ = Elin, (2.26a)

B0+ = RElin, (2.26b)

for z ≥ 0 with the source amplitude spectrum given by,

Elin = − ωµ0I
4πk0z

. (2.27)
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Note that because region 0 is unbounded from below, only downward propagating scattered

field components were included in the coefficients. Similarly, because region 2 is unbounded

from above, only upward propagating field components will be included (i.e., A2 = T ,

B2 = 0). In contrast, because region 1 is bounded from both above and below, both

upward and downward propagating wave components are included.

In order to solve for the unknown coefficients, the boundary conditions for the Ex and

Hy fields at z = d1 and z = d2 are used. Matching these fields across the boundaries yields

the following system of equations,

A0+e
ik0zd1 +B0+e

−ik0zd1 = A1e
ik1zd1 +B1e

−ik1zd1 (2.28)

A0+e
ik0zd1 −B0+e

−ik0zd1 = pTE01

[

A1e
ik1zd1 −B1e

−ik1zd1
]

(2.29)

A1e
ik1zd2 +B1e

−ik1zd2 = Teik2zd2 (2.30)

A1e
ik1zd2 −B1e

−ik1zd2 = pTE12 Te
ik2zd2 (2.31)

where

pTE01 =
µ0k1z
µ1k0z

(2.32)

pTE12 =
µ1k2z
µ2k1z

. (2.33)

The system can be rewritten as,

A0+e
ik0zd1 =

1

2
(1 + pTE01 )

[

A1e
ik1zd1 +R01B1e

−ik1zd1
]

(2.34)

B0+e
−ik0zd1 =

1

2
(1 + pTE01 )

[

R01A1e
ik1zd1 +B1e

−ik1zd1
]

(2.35)

A1e
ik1zd2 =

1

2
(1 + pTE12 )Teik2zd2 (2.36)

B1e
−ik1zd2 =

1

2
(1 + pTE12 )R12Te

ik2zd2 (2.37)
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where R01 and R12 are the TE Fresnel reflection coefficients given by,

R01 =
1− pTE01
1 + pTE01

=
µ1k0z − µ0k1z
µ1k0z + µ0k1z

(2.38)

R12 =
1− pTE12
1 + pTE12

=
µ2k1z − µ1k2z
µ2k1z + µ1k2z

(2.39)

Solving for the amplitudes of the field components in each region yields,

T =
4 Elin e

ik0zd1eik1z(d2−d1)e−ik2zd2
(

1 + pTE01
) (

1 + pTE12
) (

1 +R01R12ei2k1z(d2−d1)
) , (2.40)

A1 =
2 Elin e

−i(k1z−k0z)d1
(

1 + pTE01
) (

1 +R01R12ei2k1z(d2−d1)
) , (2.41)

B1 =
2 R12 Elin e

−i(k1z−k0z)d1ei2k1zd2
(

1 + pTE01
) (

1 +R01R12ei2k1z(d2−d1)
) , (2.42)

R =
B0+

A0+
= ei2k0zd1 R01 +R12e

i2k1z(d2−d1)

(

1 +R01R12ei2k1z(d2−d1)
) , (2.43)

As discussed before, the difficulties involved in calculating the images of the source arises

when performing the integration of all the evanescent wave components for the particular

case when ε0 = −ε1 = ε2 and µ0 = −µ1 = µ2. For this case, it follows that k0z = −k1z = k2z,

where we define k0z = k′0z+ik
′′
0z, with k

′
0z > 0 and k′′0z > 0. Upon substitution of these values

into (2.40)–(2.43) the coefficients become R = 0, T = Eline
−ik0z [2(d2−d1)], A1 = Eline

i2k0zd1 ,

and B1 = 0. It should also be noted that the formulation is independent of the choice

of sign for k1z. In other words, if one defines k1z such that k1z = k0z, then the R and T

coefficients remain the same; however, the values for the A1 and B1 coefficients are swapped,

i.e., A1 = 0, B1 = Eline
i2k0zd1 , but the resulting integral expressions for the electric field in

each region remain unchanged and are given by,
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E0−x =

∫ ∞

−∞

dkyElin

[

e−ik0zz
]

eikyy, (2.44a)

E0+x =

∫ ∞

−∞

dkyElin

[

eik0zz
]

eikyy, (2.44b)

E1x =

∫ ∞

−∞

dkyEline
−ik0z(z−2d1)eikyy, (2.44c)

E2x =

∫ ∞

−∞

dkyEline
−ik0z(z−2(d2−d1))eikyy. (2.44d)

Because R = 0, the field in region 0 is due entirely to the source and will radiate as a

cylindrical wave. Because the integral expressions for regions 1+ and 2- have the same

functional form as for region 0, the fields in regions 1+ and 2- will be perfect images of the

source albeit centered at z = 2d1 and z = 2(d2 − d1). However, note that because k′′0z > 0,

the integral in (2.44c) is divergent for z > 2d1 (region 1+) and the integral in (2.44d) is

divergent for z < 2(d2 − d1) (region 2-) leaving the fields in these regions undefined. Yet if

loss is added to the permittivity and/or permeability of the LH medium region, it can be

shown that all of the integral expressions are convergent.

2.3.2 Source-sink-source solution

Despite the difficulties in evaluating the above integrals for the case when ε0 = −ε1 = ε2

and µ0 = −µ1 = µ2, it is possible to directly find a closed form solution to Maxwell’s

equations that satisfy the boundary and radiation conditions. This solution, termed the

source-sink-source for reasons that will be explained shortly, takes the form,

E`x =
−ωµ0I

4
H

(1)
0 (k0ρ`) (2.45)

H`y = − iIkµ0
4µ`

(

z − z`
ρ`

)

H
(1)
1 (k0ρ`) (2.46)

H`z =
iIkµ0
4µ`

(

y

ρ`

)

H
(1)
1 (k0ρ`) (2.47)
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where ρ`ρ̂` = ẑ(z−z`)+ŷy and H(1)
m is the Hankel function of the first kind of themth order.

The image points are located at y = 0, z` = {0, 2d1, 2(d2 − d1)}. By direct evaluation, it

can be noted that this solution satisfies Maxwell’s equations, all boundary conditions, and

radiation conditions. For this solution the time-averaged Poynting vectors follows as,

< S` > = ρ̂`
ωµ20|I|2
16πµ`ρ`

. (2.48)

This solution is shown in Fig. 2-5 where the magnitude and direction of the time averaged

Poynting vector is plotted. As can be seen, on average power flows away from the original

source and its image in region 2, whereas the average power flows toward the image point

that is in region 1. As unusual as this solutions seems, it is mathematically correct albeit

possibly non-unique; however, because this is a steady state solution, it may not be possible

to observe it in either a physical experiment or a numerical time-domain simulation due to

the long time it may take to reach steady state. Recently, there have been a number of efforts

to more precisely understand this phenomena using time-domain simulations [24,27,28]. In

these simulations the material properties of the slab are accounted for by using the Drude

and/or Lorentz model to include the effects of dispersion. For example, in [24], the authors

report that the dispersion of the media introduces a setup time before which the wave

transmitted through the slab is inhomogeneous instead of negatively refracted. This setup

time is of course due to the fact that at early times, the bandwidth of the signal is much

larger than the bandwidth over which the material is left-handed. This fact has also been

studied in detail by using spectrogram analysis techniques [62], where the authors show that

the higher frequency components, which give rise to the inhomogeneity of the transmitted

wave, indeed are the first to arrive. Only after these components have dissipated are the

negative index effects apparent.

Compounded on this time-domain aspect are two further complications that prohibit

observation of the source-sink-source solution. First, the slab considered above is assumed

to be infinitely long along the tangential direction, which is of course an impossibility to
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realize either in practice or a numerical simulation. Secondly, the calculation relied on the

assumption of a perfectly homogeneous material, which is not experimentally realizable.

2.3.3 Numerical Study

The above source-sink-source result is only obtainable for the perfectly lossless case at a

single frequency; however, in order to understand the more practical cases the effects of

mismatch and loss will be studied. To consider more physical values of ε and µ that can

approximately form a perfect lens, it is necessary to numerically evaluate the integrals

presented above. One of the difficulties in evaluating these integrals is that the coefficients

tend to grow in magnitude and oscillate rapidly up to a critical ky at which point they begin

to decrease so that the integrand converges. The rapid oscillations and large magnitudes

in combinations with finite precision computing making it difficult to accurately compute

the integrals. For the following examples, the integrals were evaluated using an adaptive

Simpson’s method. The maximum level of refinement, (i.e., the smallest separation in ky

between two function evaluations) was chosen as 10−10. Finer refinements were also tried,

but led to numerical instabilities, due to finite computer precision. Thus, unfortunately,

with a finite level of refinement, it is not possible to evaluate the integrals for slab whose

material parameters are arbitrarily close to the perfect lens solution.

In the first set of examples, rather than introducing loss, the imperfection is due to

slight deviations from the perfect lens condition of impedance matching along with n = −1.
Fig. 2-6 shows the distribution of the electric field at the focal plane z = 2(d2−d1) in region

2. Compared to an ideal image, which has an infinitesimal resolution, the three cases shown

have a relatively wide spatial extent. As can be seen, there is slight improvement as the

index of refraction moves closer to the ideal solution of n = −1; however, the convergence

is slow. For the case when n = −1.0001, the distribution of the Poynting vector in the area

near the source is plotted in Fig. 2-7. In comparison to the perfect image solution, note the

presence of strong surfaces waves. Also, from the vectors, it can be seen that the power from

the source is essentially channeled along a straight line from the source. Finally, according
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to the plot, it seems that the power vector creates swirl-type pattern in the slab region;

however, one must be careful not to draw any conclusions based on this region where the

magnitude of the power is relatively small. In these regions, even a small inaccuracy in the

computation of the spatial Fourier integrals can lead to erroneous results.

In the next example, a small amount of loss will be introduced into a slab which would

otherwise satisfy the perfect lens requirement. Fig. 2-8 shows the resulting electric field

distribution at the focal plane. As expected, as the amount of loss is reduced the resolution

at the image point becomes better, although as in the previous example, convergence toward

the ideal solution is extremely slow. In addition, for the smallest amount of loss for which

the Fourier integrals were able to numerically converge, the Poynting vector and magnitude

distribution are shown in Fig. 2-9. As in the previous example, the imperfection introduces

a collimation effect in which the power in channeled along a straight line from the source.

However, note in this case that the amplitude of the surface waves has lessened, due in part

to the absorption inside the slab.
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Figure 2-5: Time averaged Poynting vector magnitude and direction for the source-sink-
source solution for a slab with an index of refraction of n = −1. Slab dimensions are
d1 = 0.5λ, and d2 = 1.5λ.
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Figure 2-6: Plot of electric field intensity at the focal plane z = 2(d2− d1) for three lossless
but slightly mismatched slabs. Slab dimensions are, d1 = 0.5λ, and d2 = 1.5λ.
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Figure 2-7: Time averaged Poynting vector magnitude and direction for slab with an index
of refraction n = −1.0001. Slab dimensions are d1 = 0.5λ, and d2 = 1.5λ.
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Figure 2-8: Plot of electric field intensity at the focal plane z = 2(d2−d1) for different levels
of loss. The relative permittivities and permeabilities used were εr = −1 + iδ = −1 + iδ.
For these cases, d1 = 0.5λ, and d2 = 1.5λ.
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Figure 2-9: Time averaged Poynting vector magnitude and direction for slab with a relative
permittivity of εr = −1 + i0.001 and a relative permeability of µr = −1 + i0.001. Slab
dimensions are d1 = 0.5λ, and d2 = 1.5λ.
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2.4 Scattering from isotropic LH media spheres

Next, in order to better understand the properties and potential applications of left-handed

materials, the scattering of electromagnetics waves in the presence of LH media will be

studied. Recently, some preliminary work by the author as well as other researchers has

been on the scattering from spheres and infinite cylinders composed of LH media [63–67].

While these problems have already been solved and analyzed for the case of RH media, it

is necessary to repeat the derivations for LH media, in order to understand the subtleties

that arise, such as the ambiguity of wavenumber. For example, in the case of scattering

from spheres, it has been found that the Mie scattering coefficients presented in many

textbooks can only be used with one choice of the sign of the wavenumber. A more general

formulation independent of the sign choice will be presented in this section. Using these re-

derived scattering coefficients, the field distribution within a LHM sphere will be examined.

Consider a sphere of radius a located at the origin of the coordinate system, composed

of a medium with permittivity εs and permeability µs. Let the incident wave be of the

form,

E = x̂E0e
ikz = x̂E0e

ikr cos θ (2.49)

which can be expressed via the wave transform in terms of a collection of spherical waves

as,

eikr cos θ =
∞
∑

n=0

(−i)−n(2n+ 1)jn(kr)Pn(cos θ) (2.50)

where jn is the spherical Bessel function and Pn is the Legendre function. For example, the

Er component of the incident field can be represented as,

Er = E0 sin θ cosφe
ikr cos θ

=
iE0 cosφ

(kr)2

∞
∑

n=1

(−i)−n(2n+ 1)Ĵn(kr)P
1
n(cos θ) (2.51)
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where Ĉn is the Ricatti-Bessel function, which is defined as,

Ĉn(kr) ≡ krcn(kr) (2.52)

where cn(kr) is the spherical Bessel (c = j) or Hankel (c = h) function of order n. To

proceed, the incident wave is further decomposed using Debeye potentials into its spherical

TM and TE components as follows,

πe =
E0 cosφ

ωµr

∞
∑

n=1

(−i)−n(2n+ 1)

n(n+ 1)
Ĵn(kr)P

1
n(cos θ), (2.53a)

πm = −E0 sinφ

kr

∞
∑

n=1

(−i)−n(2n+ 1)

n(n+ 1)
Ĵn(kr)P

1
n(cos θ), (2.53b)

where the fields are given in terms of the potentials as,

A = rπe (2.54)

H = ∇×A = θ̂
1

sin θ

∂

∂φ
πe − φ̂

∂

∂θ
πe, (2.55)

for the TM component, and

Z = rπm (2.56)

E = ∇× Z = θ̂
1

sin θ

∂

∂φ
πm − φ̂

∂

∂θ
πm, (2.57)

for the TE component. Using this general approach, the scattered fields in terms of the

potentials are given by,

πse =
E0 cosφ

ωµr

∞
∑

n=1

anĤ
(1)
n (kr)P 1

n(cos θ) (2.58a)

πsm = −E0 sinφ

kr

∞
∑

n=1

bnĤ
(1)
n (kr)P 1

n(cos θ). (2.58b)
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Similarly, the internal fields in terms of the potentials are given by

πie =
E0 cosφ

ωµsr

∞
∑

n=1

cnĴn(ksr)P
1
n(cos θ) (2.59a)

πim =
−E0 sinφ

ksr

∞
∑

n=1

dnĴn(ksr)P
1
n(cos θ). (2.59b)

Using the above and enforcing continuity of the Eθ fields at r = a, yields the following

two equations,

k

µε

[

gnĴ
′
n(ka) + anĤ

(1)′
n (ka)

]

=
ks
µsεs

cnĴ
′
n(ksa), (2.60)

1

k

[

gnĴn(ka) + bnĤ
(1)
n (ka)

]

=
1

ks
dnĴn(ksa). (2.61)

Similarly, enforcement of the Hθ boundary condition leads to an additional set of indepen-

dent equations,

1

µ

[

gnĴn(ka) + anĤ
(1)
n (ka)

]

=
1

µs
cnĴn(ksa), (2.62)

1

µ

[

gnĴ
′
n(ka) + bnĤ

(1)′
n (ka)

]

=
1

µs
dnĴ

′
n(ksa). (2.63)

Solving (2.60) and (2.62) for an and cn, which are the coefficients for the TM part of the

wave, yields,

an =
(−i)−n(2n+ 1)

n(n+ 1)
· kεsĴn(ksa)Ĵ

′
n(ka)− ksεĴn(ka)Ĵ ′

n(ksa)

ksεĤ
(1)
n (ka)Ĵ ′

n(ksa)− kεsĴn(ksa)Ĥ
(1)′
n (ka)

, (2.64)

cn =
(−i)−n(2n+ 1)

n(n+ 1)
·
kεsµs

(

Ĵn(ka)Ĥ
(1)′
n (ka)− Ĵ ′

n(ka)Ĥ
(1)
n (ka)

)

kεsµĴn(ksa)Ĥ
(1)′
n (ka)− ksεµĤ(1)

n (ka)Ĵ ′
n(ksa)

=
(−i)−n(2n+ 1)

n(n+ 1)
· ikεsµs

kεsµĴn(ksa)Ĥ
(1)′
n (ka)− ksεµĤ(1)

n (ka)Ĵ ′
n(ksa)

. (2.65)

where the Wronskian relation for spherical Bessel functions were used. Similarly, solving
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(2.61) and (2.63) for bn and dn, which are the coefficients for the TE part of the wave,

yields,

bn =
(−i)−n(2n+ 1)

n(n+ 1)
· kµsĴn(ksa)Ĵ

′
n(ka)− ksµĴn(ka)Ĵ ′

n(ksa)

ksµĤ
(1)
n (ka)Ĵ ′

n(ksa)− kµsĴn(ksa)Ĥ
(1)′
n (ka)

, (2.66)

dn =
(−i)−n(2n+ 1)

n(n+ 1)
·
ksµs

(

Ĵn(ka)Ĥ
(1)′
n (ka)− Ĵ ′

n(ka)Ĥ
(1)
n (ka)

)

kµsĴn(ksa)Ĥ
(1)′
n (ka)− ksµĤ(1)

n (a)Ĵ ′
n(ksa)

=
(−i)−n(2n+ 1)

n(n+ 1)
· iksµs

kµsĴn(ksa)Ĥ
(1)′
n (ka)− ksµĤ(1)

n (ka)Ĵ ′
n(ksa)

. (2.67)

Making use of the analytic properties of the Ricatti-Bessel functions, it can be shown that

the following symmetries hold,

an(−ks) = an(ks) (2.68a)

bn(−ks) = bn(ks) (2.68b)

cn(−ks) = (−1)n+1cn(ks) (2.68c)

dn(−ks) = (−1)ndn(ks) (2.68d)

so that the potentials in (2.59a) and (2.59b) are independent of the choice for the sign of

ks. Thus, the formulation presented here is independent of the sign choice of ks and avoids

the ambiguity in other formulations (e.g., eqn. 6.1.21 in [59]) that require an explicit choice

of sign depending on whether the medium is left-handed or right-handed.

To illustrate the unique effects of a sphere composed of a left-handed medium, the

electric field distribution inside the sphere as well as in the surrounding region is computed.

The first example is the scattering due to a plane wave impinging upon a sphere composed

of a n = −1 medium with a radius of a = 2λ0. The resulting pattern, shown in Fig. 2-10,

is that the fields create a focal point inside the sphere on the side of the sphere nearest

to the incident wave direction. This is due to the fact that the plane waves are negatively
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Figure 2-10: Magnitude of Ex total field (scattered + incident) of the incident plane wave
E = x̂eikz impinging upon a sphere of n = −1 with a radius of a = 2λ0

refracted at each of the tangent planes of the sphere. To illustrate this point further, the

scattering from a right-handed medium sphere and a left-handed medium sphere, whose

indices of refraction are the same in magnitude, is compared. As can be seen in Fig. 2-11,

the right-handed sphere produces a focal point in the forward scattering direction, while

the left-handed sphere produces a focal inside the sphere.

While these results are interesting, their usefulness remains to be seen especially since,

although not presented here, the far-field radiation patterns of a RH versus LH sphere are

very similar.
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(a) RHM sphere: n = 3.2 (b) LHM sphere: n = −3.2

Figure 2-11: Comparison of the magnitudes of Ex total field (scattered + incident) of
the incident plane wave E = x̂eikz impinging upon a RHM and LHM sphere both with
|n| =

√
3.2 with a radius of a = 2λ
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2.5 Anisotropic indefinite media

Up to this point, all the left-handed media in this thesis were isotropic; however, as will

become clearer in the next chapter, left-handed metamaterials are in general anisotropic.

For examples, the rods respond to an electric field that is polarized along their lengthwise

direction whereas the rings respond to a magnetic field that is polarized parallel to their

axis. Because of the importance of this effect, there has already been much work published

in the literature. For example, in [52], the guidance conditions for a dielectric waveguide

composed of a uniaxial medium which has some of the components being negative are pre-

sented. For a similar type of medium [68] studies the effect on the half-space reflection

and transmission coefficients of material components. In [69], each of the possible combi-

nations of a permittivity and permeability tensors with positive and negative components

are classified according to the type of propagation that they support [69]. In that work,

the author terms such media as “indefinite” due to the fact that the material tensors are

neither positive definite or negative definite. Expanding upon this work, it is shown in [70]

that a bilayer of indefinite media can be used to construct low-, high-, and bandpass spatial

filters, which possess the ability to select specific spatial components from a source. Finally,

in [71], the effect of anisotropy on the perfect lens is studied using the finite difference time

domain method. It is shown that the perfect lens requires an isotropic left-handed medium.

In this section, the basic properties of anisotropic indefinite media are discussed. In

particular, one of the goals of the chapter is to provide an understanding how negative

refraction may occur at the interface of an indefinite medium and a right-handed medium.

Such phenomena have been numerically and experimentally observed by studying the re-

fraction of a beam through a prism shaped anisotropic metamaterial [72]. At first, such

a conclusion may seem unusual, but as will be shown, through the use of Gaussian beam

propagation results, such phenomena is possible.
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2.5.1 Dispersion relations for anisotropic LH media

The dispersion relation of a medium with arbitrary permittivity and permeability tensors

can be represented by [59],

det
[

k × I · µ−1 · k × I + ω2ε
]

= 0 (2.69)

where k, I, µ, and ε are the wave propagation vector, unit tensor, permeability tensor, and

permittivity tensor, respectively. In order to study a few special cases, the material tensors

will be assumed diagonal, that is they will take the form,

ε =











εx 0 0

0 εy 0

0 0 εz











, (2.70)

and

µ =











µx 0 0

0 µy 0

0 0 µz











. (2.71)

Using these tensors and assuming that the electric field has only one component along the

y direction, the dispersion relation given in (2.69) can be simplified as,

k2z = εyµxω
2 − µx

µz
k2x (2.72)

where kx and kz are the two non-zero k components of a wave polarized along the y direction.

From (2.72), the cutoff frequency, kx = kc for which kz becomes exactly zero is can be

determined as,

kc = ω
√
εyµz (2.73)



2.5. Anisotropic indefinite media 69

Media conditions Propagation

Cutoff εyµx > 0 µx/µz > 0 kx < kc
Anti-cutoff εyµx < 0 µx/µz < 0 kx > kc
Never cutoff εyµx > 0 µx/µz < 0 All real kx
Always cutoff εyµx < 0 µx/µz > 0 No real kx

Table 2.1: Conditions on components of the permittivity and permeability tensor compo-
nents for propagation of a TE polarized electromagnetic wave [69].

The conditions for the various types of cutoff, as originally published in [69], are given

in Table 2.1. Fig. 2-12 illustrates one example of each of these types of dispersions. For

example, in Fig. 2-12(d), the y component of the permittivity and the x of the permeability

are negative yielding a medium with no spatial cutoff.

2.5.2 Transmission and reflection from planar layered indefinite media

So far in this thesis, the formulations presented have been for only isotropic layered media;

however, as seen discussed above metamaterials are anisotropic. Because one of the goals of

this thesis is to use LH metamaterials in microwave engineering applications, it is of interest

to have a general formulation for left-handed anisotropic layered media. For this purpose,

in this section, the formulation for determining the field distribution within an arbitrary

layered planar media will be addressed using the formulation given by Chew in [73]. In

Chew’s formulation, a matrix equation is derived for the tangential field components, which

is converted to an eigenvalue problem upon substitution of general plane wave solutions.
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Figure 2-12: Typical example of the k-surface from each of the four classes of indefinite
media.



2.5. Anisotropic indefinite media 71

Formulation

The formulation begins by writing Maxwell’s equations in the following matrix form,

∇×





Es

Ez



 = iω





µss µsz

µzs µzz









Hs

Hz



 (2.74)

∇×





Hs

Hz



 = −iω





εss εsz

εzs εzz









Es

Ez



 (2.75)

where we let

∇ = ∇s + ẑ
∂

∂z
(2.76)

Expanding out the matrix equation and separating by components yields,

∂

∂z
ẑ × Es = iωµss ·Hs + iωµsz ·Hz −∇s × Ez (2.77)

∇s × Es = iωµzs ·Hs + iωµzz ·Hz (2.78)

and by duality we can find,

∂

∂z
ẑ ×Hs = −iωεss · Es − iωεsz · Ez −∇s ×Hz (2.79)

∇s ×Hs = −iωεzs · Es − iωεzz · Ez. (2.80)

From here we can use (2.77) and (2.79) to eliminate Ez and Hz from (2.78) and (2.80) by

writing them in terms of Es and Hs as follows:

Ez = − 1

iω
κzz∇×Hs − κzzεzs · Es (2.81)

Hz =
1

iω
νzz∇× Es − νzzµzs ·Hs. (2.82)

In order to apply this method to a multi-layered geometry, it is convenient to take
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advantage of the phase-matching principle and express each field component in the form,

f(r) = f(z) eiks·rs (2.83)

where ks is the tangential wave propagation vector. Next, by making use of (2.83), elimi-

nating Ez and Hz from (2.78) and (2.80), and cross multiplying by −ẑ, we obtain:

d

dz
Es =

[

(

−iωẑ × µss·
)

+
(

iωẑ × µsz · µzs · νzz·
)

−
(

iẑ

ω
× ks × κzzks×

)]

Hs

+
[

(−iẑ × µsz · νzzks×)− iẑ × ks × κzz · εzs·
]

Es (2.84)

d

dz
Hs =

[

(

iωẑ × εss·
)

−
(

iωẑ × εsz · εzs · κzz·
)

+

(

iẑ

ω
× ks × νzzks×

)]

Es

+
[

(−iẑ × εsz · κzzks×)− iẑ × ks × νzz · µzs·
]

Hs (2.85)

These state equations can then formulated in matrix notation as:

d

dz





Es

Hs



 =





Π11 Π12

Π21 Π22









Es

Hs



 (2.86)

where Πij are 2 × 2 matrices obtained from (2.84) and (2.85). The determination of these

matrices can be facilitated by noting the following matrix form of the cross product:

a× b =











0 −az ay

az 0 −ax
−ay ax 0





















bx

by

bz











(2.87)

If we then enlarge all matrices to a size of 3×3 by appropriate zero-padding, we can use the

matrix form for cross products to find the elements of Π by applying a few matrix products.

To solve the state equation, (2.86), we assume solutions of form:

V ` = V s` e
ik`zz (2.88)
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which allows the formulation of the following eigenvalue problem

(

Π− ik`zI
)

V s` = 0 (2.89)

Note that the eigenvalues and eigenvectors lead to the development of Type I and Type II

waves, equivalent to those determined by the kDB method [59].

After solving the eigenvalue problem for each region, we have the following general

solution form for each region:

V ` = A`1 a`1 e
ik

(1)
`z

z +A`2 a`2 e
ik

(2)
`z

z +A`3 a`3 e
ik

(3)
`z

z +A`4 a`4 e
ik

(4)
`z

z (2.90)

where a`i are the eigenvectors and Ai are the unknown coefficients to be solved for by

matching boundary conditions. In matrix form, V ` can be expressed as:

V `(z) = a` · eik`zz ·A (2.91)

where a` is a 4 × 4 matrix whose columns contain each of the four eigenvectors, k`z is a

diagonal matrix containing the corresponding eigenvalues, and A is 4 × 1 column vector

containing the coefficients. Also, note that we can determine a propagator matrix, P (z, z ′)

that expresses the fields at z in terms of those at z ′, which is given by:

V (z) = a · eik`z(z−z
′) · a−1 · V (z′) (2.92)

= P (z, z′) · V (z) (2.93)

In order to facilitate the matching of boundary conditions, it is convenient to define the

order of a, kz, and A such that A1 and A2 correspond to up-going (+ẑ) waves and A3 and

A4 correspond to down-going (−ẑ) waves. Then assuming that the incident field originates

in region zero and propagates in the positive z direction, one can relate the coefficients for
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region zero by defining a reflection matrix,





A01

A02



 = R ·





A03

A04



 (2.94)

which implies that

A0 =





R

I









A03

A04



 . (2.95)

Similarly in the transmitted region the coefficients can be expressed in terms of a transmis-

sion matrix,

At =





0

T









A03

A04



 (2.96)

where the fact that At1 = At2 = 0 was used.

The boundary conditions at each of the N interfaces are given by:

V0(−z0) = V1(−z0) = P1(−z0,−z1)V1(−z1) (2.97)

V1(−z1) = V2(−z1) = P2(−z1,−z2)V2(−z2) (2.98)

...

VN (−zN ) = VN+1(−zN ) = PN+1(−zN ,−zN+1)VN+1(−zN ) (2.99)

so that a matrix equation for R and T can be found,





R

I



 = eik0zz0 · a−10 · L · aN+1 · e−ik(N+1)zzN





0

T



 (2.100)
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where

L = P1(−z0,−z1) · P2(−z1,−z2) · · ·PN (−zN+1,−zN ) (2.101)

Note that the definitions of R and T are not necessarily unique, but can be made unique

by normalizing the eigenvectors a`i [73]. Alternatively, we can formulate the solution in a

different way without the need of defining reflection and transmission matrices. In this

method, the propagator matrix is used to directly relate the field coefficients of the incident

region to those of the transmission region,

a0 · e−ik0z ·

















A01

A02

A03

A04

















= L · aN+1 · e−ikN+1zN

















A(N+1)1

A(N+1)2

A(N+1)3

A(N+1)4

















(2.102)

In this system of equations, there are four equations, but 8 unknowns. To solve, we need

to assume amplitudes for the incident plane wave components, A03 and A04; also, as usual,

in the transmitted region, there are no up-going waves, thus A(N+1)1 = A(N+1)2 = 0.

In the case where the multi-layer structure is terminated by a perfectly electric conduct-

ing ground plane the formulation is altered due to the different boundary condition at the

interface, say −zN , and can be written in the form,

VN (−zN ) =

















0

0

Hx

Hy

















(2.103)

where Hx and Hy are the magnetic fields on the surface of the metal. The overall equation
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to solve then becomes,

a0 · e−ik0z ·

















A01

A02

A03

A04

















= L ·

















0

0

Hx

Hy

















(2.104)

where the unknowns are Hx, Hy, A01, and A02.

Gaussian beam propagation results

In this section, the propagation of a Gaussian beam through a various slabs of indefinite

media will be examined. The Gaussian beam is generated by summing a weighted collection

of plane waves as illustrated by the following integral for the Ey field component [36],

Ey =

∫

dkx e
ikxx+ikzz ψ(kx) (2.105)

where ψ is the weighting function given by,

ψ(kx) =
g

2
√
π
e−

g2

4
(kx−kix)

2
(2.106)

with g being the width factor.

In Fig. 2-13, the propagation of a Gaussian beam through a isotropic LH medium slab

is shown. In this case, the phase propagation vector and time-averaged Poynting vector are

anti-parallel. This can be seen from the fact that the dispersion relation for an isotropic

LH medium is a unit circle just as free space. However, the power direction is reversed due

to the negative permittivity and permeability. Thus, inside the slab a backward exists with

a phase that propagates toward the incidence plane. The backward phase has been verified

by incorporating the e−iωt time dependence into a field animation, which clearly showed

the phase propagating opposite to that of the phase in the incident region.
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Figure 2-13: Propagation of a Gaussian beam from free space through an isotropic left-
handed slab (indicated by solid lines at z = −5 and z = 0) with εr = µr = −1 The solid
white arrows indicate the direction of the time-averaged Poynting vector while the broad
strips show the electric field pattern.

In Fig. 2-14, the propagation of a Gaussian beam through an anisotropic medium of

the always-propagating type is shown. In this case, the tangential permittivity (y) and

permeability (x) components are both negative while the perpendicular (z) permeability

component is positive, i.e.,

ε = εo











1 0 0

0 −1 0

0 0 1











µ = µo











−1 0 0

0 1 0

0 0 1











. (2.107)

The illustration in Fig. 2-14 shows that part of the incident beam is reflected due to mis-

match, and part of it is transmitted through the slab at a positive angle. It should be noted
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Figure 2-14: Propagation of a Gaussian beam from free space through an anisotropic slab
(indicated by solid lines at z = −5 and z = 0) with εry = µrx = −1 and µrz = 1 (see
k-surface plotted in Fig. 2-12(d)). The solid white arrows indicate the direction of the
time-averaged Poynting vector while the broad strips show the electric field pattern.

in this case that the Poynting vector and phase vector inside the slab are not aligned. This

can be seen from the dispersion relation. For a non-zero kx, the normal to the k-surface and

the phase vector are skew and in opposite directions. Thus, the wave inside the medium

is indeed a backward wave, but it is not a negatively refracted wave. Again, as before

the backward nature of the phase predicted by the dispersion relation has been verified by

including in the time dependence and observing a field animation.

Next, in Fig. 2-15, the propagation of a Gaussian beam through an anisotropic medium

of the always-cutoff type is shown. In this case, the roles of the permeability components
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(x and z) are reversed, i.e.,

ε = εo











1 0 0

0 −1 0

0 0 1











µ = µo











1 0 0

0 1 0

0 0 −1











. (2.108)

However, because this medium corresponds to the always cutoff type, it acts as similar to a

plasma medium, whereby the incident wave would totally be reflected were this a half-space

configuration. Due to the finite thickness of the slab, there is of course a small amount

of energy that propagates through the slab. Still, the waves inside the slab are evanescent

meaning that the time-averaged Poynting vector is zero, which makes it difficult to discuss

about such concepts as backward waves.

Still, none of the above results have explained the fact that a negatively refracted beam

has been observed in anisotropic metamaterial prism configurations. However, the key

difference between the above simulations and the prism experiment is that the wave is

incident normal to the first interface, meaning that only one component of the permittivity

and permeability needs to be negative. Once inside the prism, the wave propagates as if

it were inside a isotropic LH medium since it only “sees” the negative components of the

material tensors. However, the question is, what happens at the second interface of the

prism which is tilted with respect to the direction of propagation? To answer this question,

use of the rotated media model introduced by Smith et al in [72] will be used. In order

to solve the analytically intractable problem of propagation through a prism structure, a

solvable half-space problem (see Fig. 2-16) is created which approximates that of the true

configuration to first order by neglecting higher order reflections inside the prism.

The rotated media model begins by taking the original material tensor, generically

denoted below as Λ, and applying a rotation operation to it, as follows,

rotθ Λ = Q Λ Q−1 (2.109)
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Figure 2-15: Propagation of a Gaussian beam from free space through an anisotropic slab
(indicated by solid lines at z = −5 and z = 0) with εry = µrz = −1 and µrx = 1 (see
k-surface plotted in Fig. 2-12(b)). The solid white arrows indicate the direction of the
time-averaged Poynting vector while the broad strips show the electric field pattern.

where

Q =











cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ











. (2.110)

The degree of rotation is chosen such that the principle axis of the material tensor lies along

the direction of propagation, which corresponds to the slant angle of the prism.

In the following example, the prism will assumed to have a slant angle of 15◦ and the

original (non-rotated) material tensor will be of the always propagating type, as in (2.107).
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�

�

Figure 2-16: Diagram of setup for original prism experiment and rotated prism. The solid
lines inside the prism indicate the direction of propagation within the prism. Perpendicular
to these lines is the direction of the LH material component (x). The dashed box indicates
the region of interest.

Upon applying the rotation matrix the permittivity tensor remains unchanged,

ε = εo











1 0 0

0 −1 0

0 0 1











, (2.111)

while the permeability tensor becomes

µ = rot15



















µo











−1 0 0

0 1 0

0 0 1





























= µo











−
√
3/2 0 1/2

0 1 0

1/2 0
√
3/2











. (2.112)

The resulting dispersion relation and beam propagation pattern are shown in Fig. 2-17 and

Fig. 2-18. As can be seen, the power is negatively refracted from the “prism” medium

into freespace. For this specific angle of incidence the Poynting vector and phase vector

are anti-parallel as in isotropic case due to the fact that the normal to the k-surface and

phase vector are aligned. For any other angle this is not true, although there does exist a

small range of angles centered about the rotation angle, 15◦, for which there is negatively

refracted power. For these angles, though, the phase and Poynting vectors are not aligned.
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Figure 2-17: Dispersion relation for an anisotropic medium with εry = µrx′ = −1 and
µrz′ = 1 The primes indicate that the material tensor has been rotated about y axis by 15◦.
The solid white arrows indicate the direction of the time-averaged Poynting vector while
the broad strips show the electric field pattern.
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Figure 2-18: Propagation of a Gaussian beam from free space through an anisotropic slab
(indicated by solid lines at z = −5 and z = 0) with εry = µrx′ = −1 and µrz′ = 1 (see
k-surface in Fig. 2-17). The primes indicate that the material tensor has been rotated about
y axis by 15◦. The solid white arrows indicate the direction of the time-averaged Poynting
vector while the broad strips show the electric field pattern.
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2.6 Summary

In summary, this chapter has discussed the fundamental properties of propagation, radi-

ation, and scattering in the presence of left-handed media. It was seen by plane wave

analysis, that neither causality nor any other physical law prevents negative refraction from

occurring at the interface of a RH medium and a dispersive LH medium. Secondly, the

perfect lens concept was studied using a two-dimensional Green’s function analysis. It is

shown that under the perfect lens requirement, that two perfect images of source outside

a LH media slab are formed. Interestingly though, the time-averaged power flow inside

the slab seemingly forms a sink. However, it was shown that while the introduction of

loss eliminates this conundrum, the lens becomes imperfect. It was also shown that even

a small amount of loss can significantly destroy the imaging properties of the LH media

lens. In terms of scattering, the Mie solution for plane wave scattering by a LH medium

sphere is examined. It was shown that while applicable, care must be taken in choosing the

appropriate signs of the wavenumbers in the evaluation of the Mie coefficients. In addition,

it is then shown that a sphere composed of a LH medium will focus incoming energy into

a spot inside the sphere. Finally, because the metamaterials are in general anisotropic, the

effects of anisotropy on reflection and transmission of a Gaussian beam were examined.



Chapter 3

Characterization of left-handed

metamaterials

3.1 Introduction

While a fundamental understanding of LH media is important, of practical importance is the

development of metamaterials that behave as LH media. In development of metamaterials,

there are two aspects that must be addressed. The first is the question of being able

to characterize a given material as a right-handed or left-handed material. The second

aspect that must be addressed is how to achieve a design that meets the specifications for

some particular application in terms of operating frequency, bandwidth, and loss. Both

the design and characterization aspects go hand in hand as design approaches invariably

rely on characterization methods. In this chapter, various tools that can be used in the

characterization of metamaterials will be discussed.

With the recent interest in metamaterials, there have been a number of approaches in the

past, both experimental and theoretical (or numerical). The focus of this work will be tech-

niques which can be readily applied to numerical simulation results. Originally, transmission

characteristics alone were used to determine if a material exhibited LH properties [5], with-

85
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out specific characterization of the permittivity and permeability. Theoretically, a medium

will only support propagating waves if the real part of both the permittivity and permeabil-

ity are of the same algebraic sign. Thus, if a transmission band appears when both the rings

and rods are present, but does not occur with either independently, then it is possible the

material is behaving as a LH metamaterial at that frequency band. While the conclusion

in [5] that the SRRs exhibit a negative permeability is based on the fact that the rods are

known to have negative permittivity at certain frequencies, the amount of coupling between

the two structures is unknown. Therefore, the appearance of the transmission band alone

does not confirm this conclusion and further proof is needed. Additionally, the presence of

a transmission band does not give any indication of the exact values of the permittivity and

permeability, thus, more robust methods are needed.

3.2 Left-handed metamaterials models

As discussed in Section 1.1, currently left-handed metamaterials are constructed by cre-

ating a periodic arrangement of rods and split-rings. In this section, some of the basic

metamaterials models currently used to model the rods and split-rings will be discussed.

3.2.1 Analytic models

In the literature the most common models for the relative effective permittivity and perme-

ability for left-handed metamaterials used are the Drude [27] and Lorentz models [4]. The

forms of these models are,

Drude = 1−
ω2p

ω2 + iγω
(3.1)

Lorentz = 1−
ω2p − ω2o

ω2 − ω2o + iγω
(3.2)

where ωp, ωo, and γ are the plasma, resonant, and damping frequencies, respectively, of the

model. Examples curves of these models are shown in Fig. 3-1.
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Figure 3-1: Example of typical left-handed metamaterial dispersion models. Drude: fp = 18
GHz, Γ = 0.5 GHz. Lorentz: fo = 14 GHz, fp = 16 GHz, γ = 0.5 GHz. Note, damping
frequencies are exaggerated for the purposes of illustration.
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Figure 3-2: Example of index of refraction profile for a rod and ring metamaterial. Assuming
a rod/SRR design, the permittivity follows the Drude model, whereas the permeability
follows the Lorentz model. Parameters used are the same as in Fig. 3-1.

Typically, the rods, which contribute primarily to the effective permittivity, are char-

acterized by the Drude model, although in some cases where there are gaps in the rods

(e.g., waveguide implementations where good electrical contact is not usually achieved),

the Lorentz model is more appropriate [4]. In the case when the permittivity follows the

Drude model and the permeability follows the Lorentz model, the material has an effective

index of refraction with a negative real part between the resonant and plasma frequency of

the rings only if the plasma frequency of the rods is greater than the plasma frequency of

the rings. Fig. 3-2 shows one example of the index of refraction for such a medium.

3.2.2 Comparison with numerical results

In order to use the analytical models presented above, the plasma and resonant frequencies

need to be estimated by either theoretical, numerical, or experimental means. It is the

purpose of this section to compare the prediction of theory with numerical simulation results,

specifically, the reflection and transmission coefficients. The slab configuration under study
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Figure 3-3: Periodic arrangement of two-dimensional unit cells as simulated by the FDTD
method. The unit cell is repeated for a finite number of layers (2 shown in figure) along the
x direction. Each layer is infinitely repeated along the ŷ direction using a periodic boundary
condition.

is shown in Fig. 3-3. In this two-dimensional setup, the cells are infinitely repeated along the

ŷ direction separated by the lattice constant ay whereas there are a finite number of layers

along the x̂ direction separated by the lattice constant ax. Depending on the geometry

(rods or rings), either a TE or TM polarized incident wave will be used.

Rods

As discussed above, the rods can be characterized by using the Drude model. A very rough

understanding of this fact can be obtained by treating relating the plasma frequency of the

rods to the cutoff frequency of a waveguide. In a parallel plate waveguide, frequencies with

wavelengths that are larger than twice the separation distance are cutoff. However, in the

case of rods, some of these lower frequencies can propagate through since there is more

freespace area in rods configuration than in the waveguide configuration. Nevertheless,

the waveguide configuration gives an upper bound on the effective plasma frequency of

the system. However, a more precise model has been formulated by Pendry et al in [2]

wherein the authors show that the rod medium is the equivalent of a plasma medium

albeit with electrons of a higher effective mass. It should be noted that other models
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Figure 3-4: Three types of rod configurations that were simulated. The vertical and hor-
izontal configurations are theoretically infinitesimally thin lines, but in practice, they are
modeled as one unit cell using the FDTD method.

are available that predict similarly behavior albeit with different estimates of the effective

plasma frequency [74]. In [2], the equivalent plasma of the rod medium was given as,

ω2p =
neffe

2

ε0meff
=

2πc20
a2 ln(a/r)

(3.3)

where c0 is speed of light in the host medium, r is the effective rod radius, and a is the

lattice constant. Furthermore, by accounting for the finite conductivity of the metallic rods,

the damping frequency of the equivalent plasma medium can be estimated such that the

final effective permittivity is given by,

εeff = 1−
ω2p

ω
(

ω + iε0a2ω2p/πr
2σ
) , (3.4)

where σ is the conductivity of the metal. In the above theoretical treatment, the rods were

assumed to be cylindrical; however, because curved surfaces are difficult to model using a

Cartesian coordinate system based FD-TD method, the rods simulated here will be one the

of the three types shown in Fig. 3-4.

Fig. 3-5 shows the reflected and transmitted power through a 2-layer geometry composed

of the three different rod configurations. Also shown is the transmission and reflection for

a homogeneous slab composed of an electric plasma medium with a plasma frequency of

13.82 GHz, which was calculated using (3.4). As can be seen, the effective medium model

matches the numerical results for the vertically and horizontally rods oriented quite well.

The differences in the case of the box shaped rods can be attributed to the larger area of
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this design. In the calculation of the plasma frequency, the effective radius used for the

configuration needs to be larger than the effective radius for the vertical and horizontal rod

configurations.
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Figure 3-5: Comparison of reflected and transmitted power for three different rod configu-
rations (shown in Fig. 3-4) compared to that predicted by an effective permittivity model.
For w1 = w2 = 0.25 mm, the predicted plasma frequency is 13.82 GHz. Nb: reflection and
transmission curves for vertical and horizontal rods significantly overlap.

Split-ring resonators

On the other hand, the behavior of the the split-ring resonators (SRR), is much more

difficult to capture through an effective medium concept. The majority of the work in

characterizing the SRR was originally done by Pendry et al [3, 10], where they proposed

and studied the two ring designs investigated in this thesis.

The first ring design considered is the concentric ring structure, which was theoretically
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Figure 3-6: Unit cell geometry for concentric ring design

studied in [3] and experimentally characterized in [5, 15]. The unit cell geometry is shown

in Fig. 3-6. The key features of the design are the gaps in the inner and outer rings which

serve to set up the necessary charge distribution and the spacing between the inner and

outer ring, which contributes to the capacitance of the ring. The overall area of the two

rings contributes to the inductance of the structures. With the combined LC effects, Pendry

showed that the effective permeability (for the circular version of the split-ring design) takes

the form,

µeff = 1− πr2

a2

[

1 + i
2

ωσrµ0

]−1

(3.5)

where r is the radius of the outer ring, d is the separation between the rings, a is the lattice

constant, and σ is the conductivity of the metal. Note that when applying this formula to

the geometry shown in Fig. 3-6, an effective radius is taken such that the area of a circle

with such a radius matches the area of the square.

As with the rods, the transmission of a plane wave through a periodic 2-layer structure

is simulated using the 2D FDTD method. Fig. 3-7 shows the results of such a simulation

and compares the results to those analytically calculated using the effective permeability
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model described above. In constrast to the effective medium models of the rods, the effec-
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Figure 3-7: Comparison of the numerically simulated reflected and transmitted power
through a two layer concentric ring structure to that predicted by the effective perme-
ability model. The parameters used were ax = ay = 5 mm, L1 = 1.52 mm, L2 = 2.52 mm,
g = 0.50 mm, and w = 0.25 mm [16].

tive medium model does not accurately predict the reflection and transmission coefficients.

Rather, it seems to only capture the resonance effect of the rings that occurs around 14 GHz

for this particular design simulated. This mismatch in Fig. 3-7 between the FDTD simula-

tion and the analytic model can in part be attributed to the fact that the simulated ring was

square rather than circular as originally studied by Pendry in [3]. Still, although there is

significant disagreement, the model gives a rough estimate of the resonant frequency, which

can be useful in design.

In addition to the original split-ring resonator design analyzed above, there have been

other designs including the adjacent ring design proposed by O’Brien et al in [10], which is
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Figure 3-8: Unit cell geometry for adjacent ring design

shown in Fig. 3-8. It should be noted that the dimensions presented in [10] were designed

to have the ring resonate at infrared frequencies; however, as used in this thesis, the design

was scaled for microwave frequencies and studied in combination with periodic rods for

potential use in left-handed metamaterials [75]. It has also recently been experimentally

studied and shown to be less lossy than the concentric ring design while also having left-

handed properties [34].

As shown in Fig. 3-8, the notable difference between this design and that of the con-

centric SRR design is that the two split rings are placed adjacent to each other rather than

concentrically. Hence, the main capacitive areas are along the inner vertical section of the

rings. It should be pointed out that the both circular and rectangular version of this ring

were discussed in [10]; however, even in the circular design, the inner sections of the ring

were vertical. The circular designed allows for a simpler analytic analysis whereas as the

rectangular design is easier to model numerically. For the circular model, O’Brien et al

found that the effective permeability takes the following form,

µ = 1− f ′ω2

ω2 − ω20 + iΓω
(3.6)
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where

f ′ =
Lg

Lg + Li
f (3.7)

ω20 = (Lg + Li)
−1C−1 (3.8)

and

Γ =
Li

Lg + Li
γ. (3.9)

In the above expressions, C is the capacitance between the rings, while Lg and Li are

the inductances of the structure due to the geometry and impedance, respectively. These

parameters are given by,

C =
ε0(L1 − g)

4d
(3.10)

Lg = µoπR
2
eff (3.11)

LI =
2πReff

ε0ω2pd
(3.12)

where the effective radius, Reff , is defined such that πR2
eff = (L1 − 2w)2.

As with the concentric ring design, the transmission and reflection properties of the

rings in freespace were simulated using the FDTD method. As shown in Fig. 3-9, the

model accurately predicts the resonant frequency, and approximately matches the observed

reflection and transmission coefficients for frequencies near this resonance. In fact, the

match is much more accurate than the case of the concentric ring design, where it was

only possible to estimate the resonant frequency. This is probably due to the fact that

in this design the main capacitive effect is between the inner two parallel section of the

rings making it easier to more accurately calculate the inductance and capacitance of this

structure.
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Figure 3-9: Comparison of the numerically simulated reflected and transmitted power
through a two layer adjacent ring structure to that to that predicted by the effective per-
meability model. Parameters used were L1 = 3.25 mm, L2 = 2.25 mm, g = w = s = 0.25
mm [75].
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3.3 FDTD simulation of SRRs in homogeneous electric plasma

media

In this section, the theoretically predicted negative permittivity and negative permeability

for the rods and rings will be tested by embedding them in homogeneous electric and

magnetic plasma media, respectively. While it not possible to realize this in an experimental

setup, it is possible to do so in a numerical simulation, e.g., embedding a split-ring resonator

(SRR) in a homogeneous electric plasma. Because the permittivity is analytically known to

be negative at all frequencies less than the predetermined plasma frequency, transmission

through such a multi-layer slab below the plasma frequency would be a good indication of

left-handed properties, meaning that the rings can be characterized by an effective negative

permeability. Still, it must be noted that the SRR structures have an intrinsic effective

permittivity [76] combined with the background permittivity may yield an effective right-

handed medium. To overcome this uncertainty, the field distribution inside the slab is also

studied.

3.3.1 Modeling of dispersive materials using the FDTD

In order to simulate the metallic rods or rings embedded in a homogeneous plasma, the

two-dimensional finite difference-time domain (FDTD) method will be used. As shown

in Fig. 3-3, periodic boundary conditions will be used to model an infinite row of two-

dimensional rods or rings. The formulation for being able to embed a SRR in electric

plasma medium is described below. The formulation for the dual case of embedding a

rod in a magnetic plasma medium is analogous and is not shown for brevity. Note that

for simplicity of implementation, the Drude model will be used both for the homogeneous

background electric and magnetic plasma frequencies. Specifically, the Drude model for the
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permittivity [27] is given by,

ε = ε

(

1−
ω2pe

ω(ω + iγ)

)

(3.13)

where ωpe is the plasma frequency of the medium and γ is the damping frequency. In order

to incorporate the dispersion of the plasma medium into the time-domain FDTD method,

a current term must be added to the set of unknowns [77]. The formulation begins with

the frequency domain version of the 2D TM Maxwell’s equations, which are given by,

iωµHz = ∂xEy − ∂yEx (3.14a)

−iωεEx + Jx = ∂yHz (3.14b)

−iωεEy + Jx = −∂xHz. (3.14c)

Upon making use of (3.13), Maxwell’s equations for a source-free region become

iωµHz = ∂xEy − ∂yEx (3.15a)

−iωεEx +
iω2p

ω + iγ
εEx = ∂yHz (3.15b)

−iωεEy +
iω2p

ω + iγ
εEy. = −∂xHz (3.15c)

While the medium is source free, the introduction of the plasma medium generates an

induced current which is related to the electric field as follows,

Jx =
iω2p

ω + iγ
εxEx (3.16a)

Jy =
iω2p

ω + iγ
εyEy (3.16b)
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Substituting (3.16) into (3.15) and converting the equations into the time domain yields

the following coupled space and time dependent differential equations,

∂tµHz = ∂yEx − ∂xEy (3.17a)

∂tεEx + Jx = ∂yHz (3.17b)

∂tεEy + Jy = −∂xHz (3.17c)

∂tJx + γJx = εω2pEx (3.17d)

∂tJy + γJy = εω2pEy. (3.17e)

These equations can then be discretized using the standard central differencing scheme

[78, 79]. For example, if the magnetic field and currents are placed in the center of the cell

and the electric fields along the edges of the cell, the update difference equations for the Ex

and Jx components are given by,

Ex

(

n+
1

2
, i, j +

1

2

)

= Ex

(

n− 1

2
, i, j +

1

2

)

+
2∆t

[εx(i, j + 1) + εx(i, j)]

{

1

∆
[Hz(n, i, j + 1)−Hz(n, i, j)]

−1

2
[Jx(n, i, j + 1) + Jx(n, i, j)]

}

(3.18a)

Jx(n+ 1, i, j) =

(

1− 1
2γ∆t

1 + 1
2γ∆t

)

Jx(n, i, j)

+
εx(i, j)ω

2
exp∆t

1 + 1
2γ∆t

(

1

2

)[

Ex

(

n+
1

2
, i, j +

1

2

)

+ Ex

(

n+
1

2
, i, j − 1

2

)]

(3.18b)

where ∆ and ∆t are the spatial and temporal discretizations, respectively.

With the dispersion of the permittivity now included in the FDTD update equations,

the transmission and reflection coefficients can be obtained for SRRs embedded in a homo-

geneous electric plasma medium. The reflection and transmission coefficients are calculated

by averaging the fields over a contours in front and behind the layered structure of interest.



100 Chapter 3. Characterization of LH Metamaterials

5 10 15 20 25
−40

−35

−30

−25

−20

−15

−10

−5

0

5

Frequency (GHz)

T
ra

ns
m

itt
ed

 P
ow

er
 (

dB
)

Plasma only
Vertical rods in plasma
Horizontal rods in plasma
Box rods in plasma

Figure 3-10: Transmission through a two layer structure consisting of metallic rods embed-
ded in a homogeneous magnetic plasma medium. The plasma medium implemented is that
based on the Drude model with a plasma frequency of 18 GHz and damping frequency of
100 MHz.

As noted before, a similar FDTD formulation can be derived for modeling a set of rods

embedded in a homogeneous magnetic plasma.

3.3.2 Simulation Results

Rods embedded in a magnetic plasma

In the first example, a 2-layer periodic set of metallic rods embedded in a homogeneous

magnetic plasma medium is simulated. The plasma medium implemented is that based on

the Drude model with a plasma frequency of 18 GHz and a damping frequency of 100 MHz.

The results for the three different types of rod configurations in the plasma as well as

transmission through the plasma alone are shown in Fig. 3-10. As can be seen, there are no

transmission bands below the plasma frequency of the background medium indicating the

rods are not functioning with a negative permittivity.

At first glance, such a result does not seem to be consistent with the results shown in
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Fig. 3-11, which matched the theoretically predicted negative permittivity. An explanation

for this phenomena can be found in a recent paper by Pokrovsky et al [20] wherein the

authors show that a periodic metallic structure embedded in a negative magnetic medium

(µ(ω) < 0), such as a collection of rods in a magnetic Lorentz medium can not support left-

handed modes. By duality, as will be shown later in this section, one could imagine that the

case of a set of split-ring resonators embedded in a homogeneous electric plasma medium

also is not capable of supporting left-handed modes. In each case, the surrounding medium

changes the effective medium properties of the periodic metallic structure. For example,

it is well understood that a collection of rods embedded in dielectric substrate will have a

different plasma frequency from the same set of rods in freespace. The difference is simply

due to the fact that wavelength inside the dielectric is different than freespace. Similarly, by

placing metallic structures inside a negative permittivity or negative permeability medium,

capacitive effects are converted into inductive effects. In the case of the rods embedded in

the magnetic plasma, the inductive effects, which are normally relied upon [2], for yield an

effective electric plasma medium, are no longer present thus preventing transmission.

In order to overcome this problem, one solution is to remove sections of the corresponding

homogeneous plasma in regions near the metallic structure. This solution was motivated by

a similar concept suggested by N. Engheta [80] in order to restore the resonant behavior of a

SRR embedded in a homogeneous electric plasma medium (see next section). By removing

these sections, is will be shown that the structure on average exhibit left-handed behavior;

however, the fields near the structures can behave in a variety of other ways.

Since it is unclear from the analysis in [20] how the plasma surrounding the metallic

metamaterial in the immediate vicinity of the rods will affect their behavior, various sized

areas where the plasma is removed will be considered, as diagrammed in Fig. 3-11. Because

the behavior of the vertical, horizontal, and box shaped rods is so similar, only the case of

the vertical rods embedded in the plasma medium will be presented, although simulations

of all three cases where carried out and noted to have similar results.

Fig. 3-12 shows the transmission results for two different values of d. In each case, a
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Figure 3-11: Top view of geometry for simulating a periodic collection of metallic rods
embedded in a homogeneous magnetic plasma medium. Gray scale area corresponds to
plasma, and white area corresponds to freespace.

simulation of the plasma medium alone with gaps was performed in order to ensure that the

background plasma medium was still functioning as a high-pass filter, which is seen to be

true (note dashed curves). Next, by examining the transmission curve of the rods embedded

in the modified background, transmission bands appear near 15.2 GHz for d = 0.5 mm and

near 13.5 GHz for d = 1.0 mm. The fact that the transmission peak in (a) is above the

predicted plasma frequency of the rods alone may be partially explained by noting that

wavelength of the surrounding medium is smaller than that of freespace. Even in this case

where the background medium is known exactly, as discussed in Chapter 1, a transmission

band is not conclusive evidence for left-handed behavior, especially since in this situation

the plasma frequency of the rods embedded in the medium appears to have shifted from

that of the rods in freespace. In order to better characterize the material properties, the

fields surrounding the structures need to be analyzed. As reported by Moss et al in [81], one

method is to examine the slope of points of common phase, or phase-tracking. For example,
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(a) Local transmission peak at 15.2 GHz
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(b) Local transmission peak at 13.5 GHz

Figure 3-12: Transmission through rods embedded in a background plasma medium with
gaps near the rods. In (a), the freespace area is of size 0.5×0.5mm2, whereas in (b), the area
is 1.0× 1.0mm2. In (a) a local transmission peak where the metamaterial could potentially
be left-handed occurs at 15.2 GHz, whereas in (b) it occurs at 13.5 GHz.
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consider the following space and time dependent wave,

Ez = cos(kx− ωt) (3.19)

where k = n(ω)ko(ω) is the wavenumber of the medium which depends on the index of

refraction n(ω) at frequency ω. For this wave, points of constant phase plotted on a space-

time kox vs. ωt graph will have a slope of n. If the slope of the curve is negative, one can

conclude that the wave is traveling through a left-handed media. Based on the previously

shown reflection and transmission curves, it is of interest to obtain a space-time plot of the

electric field for the 15.2 GHz frequency component, which is shown in Fig. 3-13. In order

to observe the most uniform field, the spatial position cut is taken lengthwise along the

direction of propagation at a position near the boundary of the unit cell, i.e., between two

rows of rods along the ŷ direction.

Based on these results and the negative slope of the points of constant phase, it seems

that the material is left-handed at these particular frequencies. However, the major as-

sumption in this approach is that there is only one wave inside the medium. In general, and

in particular in the case of transmission through a slab in freespace, there are two waves

co-existing, a forward and backward propagating wave, such as,

Ez = A cos(kx− ωt) +B cos(kx+ ωt) (3.20)

where A and B are the coefficients of the forward and backward waves, respectively. In this

case, points of constant phase of Ez do not generally correspond to points of constant phase

for either the forward nor backward propagating wave component. However, as a general

rule of thumb, it can be noted that the sign of the slope of constant phase of the total field

corresponds to the sign of the slope of the term with the larger coefficient. For example,

if |A| > |B|, then observation of a positive slope indicates a positive index of refraction

(n > 0) and a negative slope indicates that of a LHM. The reverse is true when |B| > |A|.
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(a) Small gap (d = 0.5 mm): at 15.2 GHz

(b) Large gap (d = 1.0 mm): at 13.5 GHz

Figure 3-13: Space-time plots of FDTD simulated E-field magnitude of rods embedded in
modified plasma background medium. The spatial position shown is a cut taken above the
rods near the boundary of the unit cell, i.e., between two rows of rods along the ŷ direction.
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Note that in cases when |A| ∼ |B|, the resulting interference pattern does not exhibit phase

with a clear slope making a visual inspection more difficult.

Additionally, there is another ambiguity which is that a given solution A = A0, B = B0,

and n = n0 yields the same distribution of fields as the solution A = B0, B = A0, and

n = −n0. Luckily, however, for a passive media it is always possible to distinguish between

solutions by associating the wave inside the medium whose power is propagating in the

same direction of the incident wave with the larger of the two coefficients, A and B. In

particular, if the the larger coefficient is defined to be A, then if this wave component has

a positively propagating phase component, the medium is right-handed, but if this wave

component has a negatively propagating phase component, the medium is left-handed.

Using the fields generated by the FDTD simulations, it is possible to extract the co-

efficients A and B as well as the index of refraction. In order to determine the unknown

coefficients and index of refraction, a non-linear least squares curve fitting method is used.

Applying this technique to the previously generated FDTD data, the index of refraction

within the medium was found to be negative in both the cases of the small gap and the large

gap. For comparison Fig. 3-14 shows the corresponding analytically generated space-time

plots of the E-field magnitude. As can be seen, the results compare favorably, reproducing

not only the slope of the points of constant phase but the interference pattern as well.

So far, the distribution of the fields within and around the vicinity of the metallic

components has not been discussed. It must be noted that rods are only expected to

behave as an electric plasma medium on average, i.e., the Drude model represents the

effective permittivity. Indeed, as shown in Fig. 3-15, the field distribution along the center

of the unit cell are distorted with respect to the results of Fig. 3-15. This is due to the

presence of the air gap as well as the fields on the metallic rods, for which the electric field

is always zero.
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(a) Small gap: A = 0.63 − i0.14, B = −0.22 − i0.05, n = −1.05 +
i0.04

(b) Large gap: A = 0.71 + i0.01, B = −0.14 − i0.03, n = −1.22 +
i0.05

Figure 3-14: Space-time plots of analytically calculated E-field magnitude of rods embedded
in modified plasma background medium. Figure (a) approximately reproduces the Fig. 3-
13(a) and figure (b) Fig. 3-13(b). Note, fields only analytically reproduced for the region
inside the metamaterial medium.
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(a) Sgap at 15.2 GHz

(b) Lgap at 13.5 GHz

Figure 3-15: Space-time plots of FDTD simulated E-field magnitude of rods embedded in
modified plasma background medium. The spatial position shown is a cut taken through
the center of the unit cell.
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Concentric split-rings embedded in an electric plasma

In the next example, a 2-layer structure composed of the concentric SRR will be analyzed.

Fig. 3-16 shows the behavior of transmitted power as a function of frequency for the ring

embedded in a fully homogeneous electric plasma. For comparison, the first curve shows

the expected notch filter behavior of the SRR in freespace which has a resonance around

approximately 13 GHz. The second curve shows the transmitted power for a homogeneous

electric plasma alone. The plasma follows the Drude model with a plasma frequency of 18

GHz and a damping frequency of 100 MHz. In this curve, it is apparent that the plasma

acts as a high-pass filter inhibiting transmission below 18 GHz. Ignoring interaction effects,

we might expect a ring structure embedded in the plasma structure to have a transmission

band near 13 GHz; however as the third curve shows, this is not true.

As with the rods embedded in the plasma medium, the explanation for this phenomena

is do the reversal of the capacitative and inductive effects. As before, in order to observe

a transmission band, which could lead to a possible LH band, sections of the plasma are

removed as shown in Fig. 3-17. The motivation for removing these section of plasma is to

restore the capacitance between the inner and outer ring [80]. With a plasma in-between the

rings rather than a normal dielectric, the capacitative effect becomes an inductive effect.

Because in geometries A and B there is no plasma in the regions where the capacitance

would be the largest, it is expected to yield larger transmissions, whereas this is less likely

for geometry C.

In order to ensure that any transmission band observed is due to the presence of the

rings and plasma and not just a reduced area of plasma, the plasma with freespace gaps

is also simulated. Fig. 3-18 shows the transmission results for each of the three different

cases with and without the SRR structure. The transmission through SRRs in freespace are

also included for comparison. In geometry A, a transmission band near 16.3 GHz appears,

a frequency below the plasma frequency of the background medium, which without the

rings has a significantly lower transmission value. A similar type of transmission band
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Figure 3-16: Transmitted power for a 2-cell structure consisting of the rings alone (solid),
a homogeneous electric plasma (fep = 18 GHz) only (dashed), and the rings embedded in
the homogeneous electric plasma (dashed-dotted)

appears in the results for geometry B; however, in this case the transmission band is near

to 15.3 GHz, closer to the resonance of the ring predicted by theory. In case C, the results

show no transmission band, which is an indication that the rings are no longer behaving

in the typical resonant fashion. as they would in a freespace environment. In order to

verify left-handed behavior in geometries A and B, space-time plots are used. Fig. 3-19 and

Fig. 3-20 show the corresponding plots for cuts taken along the direction of propagation at

the boundary and at the center of the unit cell, respectively. In addition, for the data near

the boundary, the index of refraction retrieval method described previously is used to show

that the indices of refraction are indeed negative. The values are listed in the caption of

Fig. 3-19. Note, in the case of the cut along the center of the cell, the presence of the rings
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(a) Geometry A (b) Geometry B

(c) Geometry C

Figure 3-17: Geometries A-C show varying levels of surrounding plasma removed for the
concentric ring design. Gray scale areas represents regions of homogeneous electric plasma,
whereas black represents metal, and white indicates freespace.
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strongly distorts the field. In particular, due to the resonance, the fields are relatively large

at the center of the cells when compared to the fields near the boundary of the unit cell.
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(a) Geometry A
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(b) Geometry B
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(c) Geometry C

Figure 3-18: Transmission through a 2-layer concentric ring design embedded in a plasma
corresponding to the configurations shown above in geometries A-C. In cases A and B, there
is a transmission band near the resonance frequency of the ring, which indicates a possible
LH band.
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(a) Geometry A at 16.3 GHz

(b) Geometry B at 15.3 GHz

Figure 3-19: Space-time plots of FDTD simulated H-field magnitude of SRRs embedded
in modified plasma background medium. The spatial position shown is a cut taken at
the boundary of the unit cell, along the ŷ direction. Retrieved parameters are: (a) A =
1.11−i0.87, B = −0.04+i0.06, n = −0.77+i0.05 (b) A = 1.33−i1.01, B = −0.19+i0.22, n =
−0.76 + i0.05
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(a) Geometry A at 16.3 GHz

(b) Geometry B at 15.3 GHz

Figure 3-20: Space-time plots of FDTD simulated H-field magnitude of SRRs embedded in
modified plasma background medium. The spatial position shown is a cut taken through
the center of the unit cell along the ŷ direction.
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Adjacent split-rings embedded in an electric plasma

The final geometry to be investigated using the hybrid approach of embedding the metallic

structure in a plasma medium is the adjacent split-ring design. As was done in the previous

two cases, propagation through a 2-layer geometry is simulated using the periodic 2D FDTD

method. The background medium again is a homogeneous electric plasma implemented

using the Drude model with a plasma frequency of 18 GHz, and a damping frequency of

100 MHz. Fig. 3-21 shows the results for the rings with and without the plasma as well as

the plasma, where it can been seen that as in the case of the concentric ring design that no

transmission bands are observed below the plasma frequency of the background medium.

Again, the capacitive effects normally needed for generating the resonance response of the

rings is not present due to the plasma in the spacing between the two rings. As in the

previous two examples, in order to restore the capacitive effects and possibly observe a

left-handed transmission bands, various sections of plasma from the unit cell were removed

as shown in Fig. 3-22.

Based on the previous results, one might expect for geometry A to fail because the

displacement current is only allowed to flow through the gaps, meaning current is confined

to within one ring. Indeed, as shown in Fig. 3-23(a), no transmission band is observed

below the plasma frequency. In order for current to flow between the two rings, a positive

material needs to be inserted in the vertical spacing between the rings as in geometry B. As

shown in Fig. 3-23(b), a possible LHM transmission band appears near 14 GHz. However,

the passband is still below -5 dB, whereas the results for transmission through geometry C,

shown in Fig. 3-23(c), shows a more obvious transmission band at approximately 12.5 GHz.

In the final plot, Fig. 3-23(d), the results for geometry D are shown where it is evident that

there is significant transmission in the presence of the modified background plasma alone

without the rings present, making it impossible to draw any conclusion on the behavior of

the rings for this case.

In order to verify left-handed behavior in geometries B and C, space-time plots are again
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Figure 3-21: Transmitted power for a 2 cell structure consisting of the rings alone (solid),
a homogeneous electric plasma (fep = 18 GHz) only (dashed), and the rings embedded in
the homogeneous electric plasma (dashed-dotted)

used. Fig. 3-24 and Fig. 3-25 show the corresponding plots for cuts taken along the direction

of propagation at the boundary and at the center of the unit cell, respectively. For the data

near the boundary, the index of refraction retrieval method is used to show that the indices

of refraction are indeed negative. The values are listed in the caption of Fig. 3-24. Note, in

the case of the cut along the center of the cell, the presence of the rings strongly distorts

the field. In particular, due to the resonance, the fields are relatively large at the center

of the cells when compared to the fields near the boundary of the unit cell. In contrast

to the concentric ring design, the fields along the center of the cell are large throughout

the majority of the propagation direction. This is simply due to the large fractional area

occupied by the adjacent rings, i.e., the fields are large when inside the rings.
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(a) Geometry A (b) Geometry B

(c) Geometry C (d) Geometry D

Figure 3-22: Geometries A-D show varying levels of plasma removed for the adjacent ring
design. The color gray represents regions of homogeneous electric plasma, whereas black
represents metal, and white indicates freespace.
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(a) Geometry A
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(b) Geometry B
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(c) Geometry C
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(d) Geometry D

Figure 3-23: Transmission for adjacent split-rings embedded in homogeneous electric plasma
medium with various shaped gaps (geometries A−D from Fig. 3-22).
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(a) Geometry B at 12.7 GHz

(b) Geometry C at 11.7 GHz

Figure 3-24: Space-time plots of FDTD simulated H-field magnitude of SRRs embedded
in modified plasma background medium. The spatial position shown is a cut taken at
the boundary of the unit cell, along the ŷ direction. Retrieved parameters are: (geom b)
A = 1.23 − i0.01, B = −0.07 + i0.24, n = −1.22 + i0.06 (geom c) A = 1.71 + i0.07, B =
0.14 + i0.14, n = −1.40 + i0.06.
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(a) Geometry B at 12.7 GHz

(b) Geometry C at 11.7 GHz

Figure 3-25: Space-time plots of FDTD simulated H-field magnitude of SRRs embedded in
modified plasma background medium. The spatial position shown is a cut taken through
the center of the unit cell along the ŷ direction.
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3.4 Retrieval of effective permittivity and permeability from

S-parameters

Still, the above methods do not give the exact values of the permittivity and permeability.

They merely give an estimate of the operating frequencies. In order to better characterize

the metamaterial, one method that has been used is to calculate the average field values

inside the metamaterial [16]. A similar method based on tracking the phase has also be used

to characterize the index of refraction of a metamaterial [81]. Both of these methods rely

on knowledge of the electromagnetic field distribution inside the metamaterial, and thus are

most easily implemented using full-wave numerical simulations. The disadvantage of the

methods is that they cannot easily be implemented in an experimental setup. On the other

hand, S-parameter data, which can be used for permittivity and permeability extraction,

can be readily determined both experimentally and numerically.

Furthermore, being able to more precisely characterize a metamaterial in terms of its

bulk material properties is useful since in most cases it is computationally intensive, or com-

pletely unfeasible to model a large collection of SRR/rod unit cells, which would typically

be required in application of the metamaterials. Knowledge of the effective permittivity

and permeability would allow for devices that use LH media to be designed more easily

such as with the two applications considered in this thesis.

Various methods to retrieve the permittivity and permeability using complex valued re-

flection (S11) and transmission (S21) coefficients have been developed. One of these methods

is to parametrically fit the S-parameter measurement data to known permittivity and per-

meability models. For the case of rod/SRR metamaterials, Shelby et al used this approach

to extract effective permittivities and permeabilities using the Drude and Lorentz mod-

els, respectively, [4, 15]. However, because the parametric fitting method makes explicit

assumptions about the form of the permittivity and permeability, methods that directly

retrieve the permittivity and permeability have also been applied to the case of rod/SRR

metamaterials [76].
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In this section, the direct retrieval of the index of refraction and impedance from nu-

merically generated S-parameter data will be used to characterized two typical left-handed

metamaterials. In order to apply the retrieval method, the geometries must be of infinite

extent in the two directions perpendicular to the direction of propagation. Such geometries

can be modeled numerically by using periodic boundary conditions, as implemented in the

FDTD and MoM techniques used in this work. Experimentally, these types of geometries

can be realized by surrounding the a finite sized slab with microwave absorbing material or

by using a single-mode waveguide configuration.

3.4.1 Formulation

The retrieval method used in this work is based on the approach used by Smith et al in [76].

The formulation begins by deriving the reflection and transmission coefficients for a planar

slab geometry. Here it is assumed that the incident wave is TE polarized with a propagation

factor of the form, eikz, i.e., normal incidence. Under this form, the fields in the three regions

take the form,

E0x = eik0z +Re−ik0z (3.21)

H0y =
k0
ωµ0

[

eik0z −Re−ik0z
]

(3.22)

E1x = Aeik1z +Be−ik1z (3.23)

H1y =
k1
ωµ1

[

eik1z −Re−ik1z
]

(3.24)

E2x = Teik0z (3.25)

H2y = T
k0
ωµ0

eik0z (3.26)
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where it assumed that the material parameters of the incident and transmission region are

both given by ε0 and µ0 whereas the slab is characterized by ε1 and µ1. Letting the slab

boundaries be at z = 0 and z = d, and employing the boundary conditions yields the

following equations,

1 +R = A+B (3.27)

1−R = ηn(A−B) (3.28)

Aeink0d +Be−ink0d = Teik0d (3.29)

Aeink0d −Be−ink0d =
1

ηn
Teik0d (3.30)

where the normalized impedance is defined as,

ηn =
η1
η0

=

√

ε0µ1
ε1µ0

(3.31)

and the index of refraction of the slab is defined as,

n =

√
ε1µ1√
ε0µ0

. (3.32)

Elimination of the A and B coefficients leads to the following equations for R and T ,

2R =

[

1

2
(1− ηn)

(

1 +
1

ηn

)

eink0d +
1

2
(1 + ηn)

(

1− 1

ηn

)

e−ink0d

]

Teik0d (3.33)

2 =

[

1

2
(1 + ηn)

(

1 +
1

ηn

)

eink0d +
1

2
(1− ηn)

(

1− 1

ηn

)

e−ink0d

]

Teik0d. (3.34)

Finally, solving for R and T yields the following,

1

S21
=

[

cos(nk0d)−
i

2

(

ηn +
1

ηn

)

sin(nk0d)

]

(3.35a)

S11
S21

= − i

2

(

ηn −
1

ηn

)

sin(nk0d) (3.35b)
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where the S-parameters are defined in terms of the reflection and transmission coefficients

as,

S11 = R (3.36)

S21 = Teik0d (3.37)

In the retrieval process employed in this section, the material parameters of the medium

are obtained by inverting (3.35) in terms of S11 and S21 as follows,

ηn = ±
√

(1 + S11)2 − S221
(1− S11)2 − S221

(3.38)

Im(n) = ±Im





cos−1
(

1
2S21

[1− (S211 − S221)]
)

k0d



 (3.39a)

Re(n) = ±Re





cos−1
(

1
2S21

[1− (S211 − S221)]
)

k0d



+
2πm

k0d
, (3.39b)

where m is a unknown integer corresponding to the number of cycles a wave goes through

in the slab. Note that in the above formulation it was assumed that the S-parameters are

defined based on an incident wave that has a positively propagating wavefront. If the S-

parameters are obtained from an incident wave that has a negatively propagating wavefront,

the above formulation can be used under the transformation,

R+ = R−e
i2k0d (3.40)

T+ = T− (3.41)

where R± and T± represent the forward and backward propagating reflection and trans-

mission coefficients, respectively. Once the impedance and index of refraction have been
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retrieved, the relative permittivity and permeability of the slab can be directly calculated

by ε1r = n/ηn and µ1r = nηn.

One of the difficulties in extracting the index of refraction using (3.39) is determining

the correct value of m to use. The integer variable m roughly corresponds to the thickness

of the slab in terms of wavelengths. The problem is of course that the wavelength is not

known ahead of time, making m an additional unknown variable. An even more difficult

problem is that for frequencies near the resonance, the effective wavelength becomes much

smaller than the dimensions of the metamaterial, which is inconsistent with the effective

medium concept. For this reason, extraction results near the resonant frequency can not

be fully trusted. Luckily, left-handed behavior occurs just beyond this frequency where the

effective wavelengths retrieved are more consistent with the effective medium concept.

In order to determine the correct branch, m, to chose, many methods have been em-

ployed by various authors [76, 82, 83]. One commonality of these approaches is that one

assumes that m = 0 for the lowest frequency of interest. This assumption generally holds

true assuming the thickness of the slab is very small, typically on the order of one unit cell.

The subsequent values of m are then chosen such that difference between the real part of

the index of refraction at one frequency and the next is minimized. However, as expected

and as will be shown in detail in following subsection, in regions of high variation (e.g., near

resonances), this approach is not always successful. Yet, another method for determining

the value of m is to use S-parameter data for slabs of different thicknesses. The method

makes use of the fact that while each slab thickness will have its own corresponding value

of m, the index of refraction retrieved for each case should be the same. Combining the

data from the different slab lengths allows the ambiguity to be removed to some extent.

3.4.2 Validation and effects of noise on retrieval method

In order to validate the method outlined above, a simple analytic case is considered. Using

the Drude model for the permittivity and the Lorentz model for the permeability, the S-

parameters are analytically calculated. The method described above is then used to attempt
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to retrieve the original values of ε and µ. Fig. 3-26 shows an example of successfully retrieved

material parameters.

Despite the success with the simple this example, it is possible for the retrieval method

to fail. In particular, depending on the sampling rate of the S-parameters, it is possible

that the incorrect branch, m, is chosen. Table 3.1 shows the effect of the sampling rate on

the ability to correctly retrieve ε and µ when µ takes follows the Lorentz model as listed

in (3.2). Using the Lorentz model for the permeability, the S-parameters were analytically

calculated over the frequency band 5 GHz to 20 GHz using various sampling rates for a

slab that is 5 mm thick. As can be seen in the table, in general for successful retrieval, the

sampling rate needs to be on the order of the damping frequency. However, the sampling

rate also depends on the separation between the resonant and plasma frequencies of the

permeability.

Another difficultly in correctly retrieving the permittivity and permeability is the sen-

sitivity of the algorithm. As discussed in reference [84], it is difficult to extract the index of

refraction at frequencies where the S11 parameter is nearly zero. This is due to the fact that

the impedance, η varies rapidly at these frequencies and thus a slight distortion or presence

of noise in the S-parameters can lead to inaccurate results. To illustrate this effect, two

types of distortion are considered. The first is an additive Gaussian white noise, while the

second is a 5-element low pass filter. Fig. 3-27 shows the original and noisy S-parameters for

the first type of distortion. As can be seen, the noise distorts the retrieved material param-

eters, but does not destroy the general trends. However, it was empirically determined that

if the variance of the noise is greater than 0.02 that the retrieval method would tend to fail

because of the difficultly in accurately tracking the value ofm. The second type of distortion

illustrated in Fig. 3-28 gives an example of S-parameters that have been low-pass filtered.

Note that, although the S-parameters “appear” noise-free, the small amount of distortion

near the nulls inhibits the ability to correctly retrieve the S-parameters. In particular, the

method is most sensitive to the distortion occurring at the resonant frequency of the perme-

ability where the impedance is very large. As seen in Fig. 3-28(b), this distortion creates an
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Figure 3-26: Retrieved material parameters from analytically calculated S-parameters,
which were calculated for a slab that is 5 mm thick with a permittivity that follows the Drude
model and a permeability that follows the Lorentz model. fep = 14.5 GHz, γe = 100MHz,
fmo = 10.05 GHz, fmp = 10.95 GHz, γm = 100MHz.
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Frequency sampling rate

µ Resonant
characteristics
(f0 = 10 GHz)

500 MHz 250 MHz 100 MHz 50 MHz 10 MHz

γ = 50 MHz, fp = 10.5
GHz

× × × X X

γ = 50 MHz, fp = 11.0
GHz

× × × × X

γ = 50 MHz, fp = 12.0
GHz

× × × × X

γ = 100 MHz,
fp = 10.5 GHz

X X X X X

γ = 100 MHz,
fp = 11.0 GHz

× × X X X

γ = 100 MHz,
fp = 12.0 GHz

× × × X X

γ = 200 MHz,
fp = 10.5 GHz

X X X X X

γ = 200 MHz,
fp = 11.0 GHz

X X X X X

γ = 200 MHz,
fp = 12.0 GHz

X X X X X

Table 3.1: Effect of sampling rate on the ability to correctly retrieve ε of µ when µ takes a
resonant form. Using the Lorentz model for the permeability, S-parameters were analytically
calculated and sampled from 5 GHz to 20 GHz. Check-marks (X) indicate cases when the
retrieval method was successful in automatically recovering the correct values of ε and µ.
X-marks indicate regions where the branch cuts (m) determined were incorrect. The results
shown are similar whether the permittivity is constant or follows the Drude model with a
plasma frequency higher than the plasma frequency of the permeability.
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artificial anti-resonance in the permittivity. Although this effect is relatively small in this

example, in the examples using the S-parameters of numerically simulated metamaterials,

this type of effect has been observed to be stronger. Because there has been some question

as to whether observation of this anti-resonance effect implies anything extraordinary or

unique about the bulk-material properties of these metamaterials, it is important to keep

in mind the sensitivity of the method.
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Figure 3-27: Retrieved material parameters from analytically calculated S-parameters that
were distorted by the presence of zero-mean complex Gaussian white noise with a variance
of 0.02. S-parameters calculated for a slab that is 5 mm thick with a permittivity that
follows the Drude model and a permeability that follows the Lorentz model. fep = 14.5
GHz, γe = 100 MHz, fmo = 10.05 GHz, fmp = 10.95 GHz, γm = 100 MHz.
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Figure 3-28: Retrieved material parameters from analytically calculated S-parameters that
were distorted by applying a 5-element low pass filter. S-parameters calculated for a slab
that is 5 mm thick with a permittivity that follows the Drude model and a permeability that
follows the Lorentz model. fep = 14.5 GHz, γe = 100 MHz, fmo = 10.05 GHz, fmp = 10.95
GHz, γm = 100 MHz.
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3.4.3 Retrieval using numerically generated S-parameters of metamate-

rials

After validating and illustrating some of the potential pitfalls in the retrieval process, the

method will now be used on the S-parameter data of some numerically simulated metama-

terials. In the following, two types of metamaterials will be explored, the first based on the

concentric SRR design and the second based on the adjacent ring design. In each case, the

material parameters for both a single layer structure as well a multilayer structure will be

retrieved and compared. As will be shown, because of the sensitivity of the retrieval process,

it is difficult to retrieve from multilayer S-parameter data; however, in many cases, knowl-

edge of the single layer S-parameters is enough to characterize the behavior of a particular

metamaterial.

Double rod and concentric ring design

The first metamaterial to be investigated here is based on the design published by Parazzoli

et al of The Boeing Company [32]. The unit cell of their design, shown in Fig. 3-29, consists

of two rods for each set of concentric rings. Although a similar design using only one set

of rods was shown to have left-handed properties [4], it was placed inside a waveguide, and

according to one theory [85] the gap formed between the rods and waveguide plates made

the rods resonant increasing their effective density, which in turn allowed the permittivity

to be negative over a wider range of frequencies. In constrast, the design shown in Fig. 3-29

operates in freespace, and so it needs the extra rod to raise the electric plasma frequency

high enough for the regions of negative permittivity to overlap with regions of negative

permeability.

In order to calculate the S-parameters for an infinitely wide slab, a three-dimensional

FD-TD periodic code was used. The structure is assumed periodic along the electric and

magnetic field direction, and finite along the direction of propagation. In the direction of

propagation, the slab is a single layer. As usual, the incident electric field was aligned
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Figure 3-29: Geometry of double rod and concentric split-rings metamaterial taken from
reference [32]. Geometry was simulated using a 3D periodic FDTD code. C = 0.025 cm,
D = 0.030 cm, G = 0.046 cm, H = 0.0254 cm, L = 0.33 cm, S = 0.263 cm, W = 0.025 cm,
V = 0.255 cm.

with the rod and the magnetic field with the axis of the SRR. The results are shown in

Fig. 3-30. For this structure, it can be seen the S21 parameter reaches a minimum near

11.5 GHz, which likely corresponds to the resonant frequency of the SRR. Just beyond this

frequency, a small passband is observed, which possibly corresponds to the region where the

permittivity and permeability are simultaneously negative. Applying the retrieval method

to this complex S-parameter data, the index of refraction and impedance (from which ε and

µ can be derived) of the structure were calculated. Fig. 3-31 shows the retrieved material

parameters for this 1-layer structure. From these results, it was found that the index of

refraction is negative between 12 GHz and 13 GHz. Note the presence of the anti-resonance

effect in the permittivity just below 12 GHz. Still, the general shape and trend of the
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Figure 3-30: S-parameters for 1-layer double rod and concentric split-rings metamaterial.
S-parameters results courtesy of X. Chen.

retrieved permittivity and permeability match the analytic Drude and Lorentz methods.

The next set of results were obtained by using the transfer matrix formalism [83, 86].

In this method, the scattering matrix for a single layer metamaterial is cascaded with itself

multiple times from which the S-parameters of a multi-layer metamaterial are obtained.

The main advantage of this approach is that it speeds up the computation time since only

a single layer of the metamaterial structure needs to be numerically modeled. For example,

Fig. 3-32 shows the 3-layer S-parameter results based on the transfer matrix formalism.

Compared to the 1-layer S-parameters note the presence of a more pronounced transmission

band, which is due to the increased level of absorption occurring outside the left-handed

frequency band. Applying retrieval method on the 3-layer S-parameters, the parameters

found, shown in Fig. 3-33, are practically identical to those retrieved from the 1-layer result.



136 Chapter 3. Characterization of LH Metamaterials

8 10 12 14 16 18 20
−4

−3

−2

−1

0

1

2

3

4

5

6

Frequency (GHz)

real(n)
imag(n)

(a) Index of refraction

8 10 12 14 16 18 20
−8

−6

−4

−2

0

2

4

6

8

Frequency (GHz)

real(z)
imag(z)

(b) Impedance

8 10 12 14 16 18 20
−8

−6

−4

−2

0

2

4

Frequency (GHz)

real(ε)
imag(ε)

(c) Permittivity

8 10 12 14 16 18 20
−8

−6

−4

−2

0

2

4

6

8

10

12

Frequency (GHz)

real(µ)
imag(µ)

(d) Permeability

Figure 3-31: Retrieved material parameters for 1-layer double rod-concentric ring metama-
terial.
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Figure 3-32: S-parameters for 3-layer double rod-concentric ring metamaterial obtained via
the transfer matrix formalism. S-parameters results courtesy of X. Chen.
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Figure 3-33: Retrieved material parameters for 3-layer double rod-concentric ring metama-
terial.
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Rod and adjacent ring design

One of the disadvantage of the transfer matrix method is that it can build in certain

assumptions on the behavior of structure, which may bias the retrieval process. In the next

example, the S-parameters of numerically simulated 1-layer and 2-layer metamaterials will

used to independently compute the material parameters for comparison. For this example,

the rod and adjacent ring metamaterial design shown in Fig. 3-34(a) will be investigated.

For these examples, a periodic method of moments code was used to generated the S-

parameter results shown in Fig. 3-34 [75]. Based on the presence of the transmission band

near 14 GHz, it is possible that the metamaterial is left-handed at this frequency, which

is confirmed upon retrieval. Note the retrieval process also shows that the real part of

the index of refraction is negative near 12.5 GHz; however, in this frequency band, the

imaginary part of the index of refraction is relatively large making to reach any definitive

conclusions on the data. Nevertheless beyond 13 GHz through approximately 14.5 GHz,

the index of refraction has been found to be negative. In additional, it should be noted that

the index of refraction shown is just one possible solution. Because of the unknown branch

numbers m, this solution found is of course non-unique; however, based on comparison with

the analytic models, it is the most reasonable one.

Next, the 2-layer structure as shown in Fig. 3-35(a) was simulated using the method of

moments. For this data, the retrieved index of refraction, shown in Fig. 3-35(b), appears

to be a distorted form of the index of refraction retrieved from the 1-layer data. To check

whether this is possibly due to the distortion of the S-parameters, the 1-layer index of

refraction data was used to analytically calculate the S-parameters for the 2-layer structure.

Fig. 3-35(c) shows the comparison between the two results where it is seen that the curves

match quite well except near the nulls and local maximum just below 14 GHz.

Still, in the 2-layer as well as the 1-layer, the question of whether the correct choice of

m was made remains. One possible method to help verify this choice is to use the phase-

tracking method described in the previous section. To do this, a spatial cut along the z
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Figure 3-34: S-parameters and retrieved index of refraction for 1 layer 3D adjacent ring
design with rods. Details of the structures are: ring/rod separation 1 mm, rod thickness
of 0.48 mm, and the lattice constants are ax = 6 mm, ay = 3 mm, and az = 5.08 mm.
Incident e-field is assumed to be E = x̂eikz. Mesh and MoM S-parameters simulation results
courtesy of T. M. Grzegorczyk.
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Figure 3-35: Retrieved index of refraction for the 2 layer 3D adjacent ring design with
rods shown in (a). Figure (c) compares the MoM calculated S-parameters for this 2 layer
structure with those analytically calculated using the material parameters retrieved for
the 1 layer structure shown in Fig. 3-34. Mesh and MoM S-parameters simulation results
courtesy of T. M. Grzegorczyk.
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direction for which the fields are the most uniform is needed. For this purpose, it was found

that the cut taken at the point x = 5.95 mm and y = 5.95 mm yielded the most uniform field.

Using this spatial data, the index of refraction and coefficients of the forward/backward

waves were determined across the entire band of frequencies. Fig. 3-36 shows the retrieved

values, where is it seen that the index of refraction is indeed negative approximately between

13 GHz and 14 GHz. The method also produces an index of refraction which approximately

matches that found using the S-parameter method except near the resonant region. In this

region, the coefficients at the frequencies corresponding to the resonance are unusually

large indicating the method’s inability to accurately capture the field behavior at these

frequencies.
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Figure 3-36: Index of refraction retrieved by phase-tracking for 2-layer adjacent ring design
with rod.
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3.5 Summary

In this chapter, various tools for understanding and characterizing left-handed metamate-

rials were presented. FD-TD simulations of propagation through periodic slabs of rod and

split-ring metamaterials were used to compute the reflection and transmission coefficients.

These results were compared to analytic results, and shown to agree well in the case of the

rods and approximately in the case of the split-rings. Next, through numerical simulations

an understanding of the mechanisms needed for the generation of left-handed properties as

presented. In particular, it is shown that a rod metamaterial embedded in a homogeneous

magnetic plasma medium cannot function as a left-handed metamaterial nor can a split-

ring metamaterial that is embedded in a homogeneous electric plasma medium. This result,

termed the “problem of left-handed materials” by Pokrovsky and Efros [20] implies that

in combining the rods and split-rings together to form a left-handed metamaterials, it is

essential that there be regions of within the metamaterial that are right-handed; however,

the overall material can in general still effectively be treated as a left-handed material. The

specific regions within the metamaterial that need a right-handed medium background were

isolated, and upon removing the background plasma media from these areas, left-handed

properties were demonstrated using a modified form of the phase-tracking method. This

method allows for the extraction of the bulk index of refraction from the field distribution

within the metamaterial. In addition to the phase-tracking retrieval method, a more pre-

cise retrieval method that utilizes the complex S-parameter results has been investigated.

Using this method, and S-parameters results from three-dimensional FD-TD and MoM

simulations, it has been shown that metamaterials composed of rods and split-rings can be

characterized by a negative permittivity and a negative permeability.
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Chapter 4

Radar-absorbing left-handed

metamaterials

4.1 Introduction

With the development of radar during World War II, it became possible to readily detect

enemy aircraft; however, at the same time it increased the likelihood of ally aircraft being

detected by enemies. Hence, the field of stealth technology was born wherein engineers and

scientists have attempted to design coatings known as radar absorbing materials (RAM)

to make aircraft and other objects invisible to radar energy. Today, RAM are used in

many other applications besides stealth technology such as in anechoic chambers, shielding

from electromagnetic interference in high speed electronic circuits, and noise suppression in

cellular phones [87].

In the past, there have been a number of different types of radar absorbing materials.

Initially, RAM were designed to have RCS reduction capabilities only about a narrow fre-

quency band. Some of these RAM designs such as the Salisbury screen and Dallenbach

layers worked by using a quarter-wave transformer configuration in which a resistive layer

of a certain thickness was placed over the conducting surface [87]. In order to increase band-

145
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width of RCS reduction, multilayer approaches have been used such as Jaumann absorbers,

which use a series of Salisbury screens where the resultant bandwidth is proportional to the

number of layers [87].

In the above methods, materials were one of the limiting factors in the development of

RAM designs. The materials often suffered from bulkiness, lack of durability, and were often

anisotropic providing RCS reduction for only a limited range of angles and polarizations.

One class of materials that helped alleviate some of these problems are chiral media, which

are characterized as a bi-anisotropic medium [59]. The chirality parameter of the medium,

often denoted by the symbol, κ, is a measure of the cross coupling between the electric

and magnetic fields as well as the handedness of the medium [87]. Due to the additional

degree of freedom provided by chirality, absorbers developed using the methodology of

Salisbury screens and Dallenbach layers showed increased absorption over wider frequency

bands [88,89].

Still, the search for an ideal absorbers was not met. The need for ideal absorbers

was especially needed for various computational electromagnetic techniques such as the

Finite Difference-Time Domain method [78], where waves are propagated inside a finite

computational domain to model the scattering or radiation of various EM systems. In

1994, such an ideal absorber was developed which was termed the perfectly matched layer

(PML) [90]; however, the technique involved a non-physical splitting of the fields in order to

provide an all angle and all polarization impedance matched medium that was still able to

absorbing incoming waves. The derivation of the original PML was for Cartesian coordinate

systems; however, a more general approach based on a complex coordinate stretching [91,92]

was also developed which enabled derivation of PML for arbitrary coordinates systems

such as cylindrical or spherical [93]. Still, all of these techniques required the use of non-

Maxwellian media, which, while well-suited for numerical simulations, could not be applied

to physical problems such as RCS reduction. The problem of creating a Maxwellian (e.g.,

physical) perfectly matched layer has since then been tackled by a number of researchers

who have used specially crafted anisotropic materials to create media which are perfectly
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Figure 4-1: Multilayer planar geometry over a perfectly electrically conducting (PEC)
ground plane. Genetic algorithms are used to determine the appropriate materials and
layer thicknesses to minimize the reflected power over a given frequency band and angular
swath.

matched [94–96], although some of these have active components.

In this chapter, the use rod and split-ring metamaterials as radar absorbers will be

investigated. The advantage of using metamaterials is that frequency dispersion of their

permittivity and permeability can be controlled to some extent, which make metamaterials

candidates for the design of new radar absorbing materials. Because of the large number of

unknown parameters and nonlinear aspects of the problem, genetic algorithms (GA) will be

used to synthesize a multilayer RAM configuration (see Fig. 4-1). Genetic algorithms are a

class of the stochastic optimization techniques which attempt to find the global maximum

of some objective function by employing randomness or diversity in much the same way

natural selection is believed to occur [97]. Such approaches have been used in the past

for the development of right-handed radar absorbers [98, 99], and it is the purpose of this
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chapter to determine how left-handed metamaterials compare to conventional lossy right-

handed materials as absorbers.

4.2 Ideal absorbers

Before exploring the use of metamaterials as radar absorbers, it is useful to review the

criterion for perfect absorbers. Here, the discussion is limited those perfect absorbers con-

structed of materials that obey Maxwell’s equation, and could potentially be realized. In

other words, numerical absorbers, such as the perfectly-matched layer [90] are not discussed.

4.2.1 Criterion for a perfect EM absorber at normal incidence

At normal incidence, the half-space reflection coefficient for a TE polarized incident wave

is given by [59],

R =
η1 − η0
η1 + η0

(4.1)

where η` is the impedance in region ` defined as,

η` =

√

µ`
ε`
. (4.2)

Hence, the requirement for R = 0 can be satisfied under the condition that the impedances

are equal to each other. For a medium-freespace configuration this requirements can be

alternatively expressed as,

η1 =

√

µ1r
ε1r

= 1 (4.3)

where µ1r and ε1r are the relative permittivity and permeability of the medium.

Under this condition, the amount of absorption depends solely on the magnitude of the

imaginary parts of the permittivity and permeability and the thickness of the slab. Consider



4.2. Ideal absorbers 149

10 12 14 16 18 20
−60

−50

−40

−30

−20

−10

0

Frequency (GHz)

R
ef

le
ct

ed
 p

ow
er

 (
dB

)

γ = 1.00 GHz
γ = 0.75 GHz
γ = 0.50 GHz

Figure 4-2: Reflected power versus frequency at normal incidence for an absorber that is
4 mm thick constructed of a material whose permittivity and permittivity both follow the
Drude model with fp = 60 GHz and a damping frequency of γ.

for example, an ideal metamaterial constructed out of electrically conductive rods crossed

with magnetically conductive rods. Although, such a metamaterial has not been built (and

may not be possible to build), such a medium would have be characterized by a permittivity

and a permeability that each followed the Drude model (see eq. 3.1). If the periodicity of

the electric rods and magnetic rods were arranged to be equal in both directions, then the

two plasma frequencies would line up and the impedance of the medium would be unity for

all frequencies.

The reflected power versus frequency for normal incidence for this type of ideal metama-

terial in shown in Fig. 4-2. In the plot, the results for three different damping frequencies are

plotted. The metamaterial is assumed to have one layer (L = 1) which is 4 mm thick and is

backed by a perfectly electrically conducting (PEC) ground plane. As can be seen, depend-

ing on the damping frequency, which controls the amount of absorption in the medium,

the amount of reflected power varies from a minimum of -50 dB to -25 dB at 10 GHz. Of
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course the amount of power reflected can further be reduced by increasing the thickness of

the layer.

4.2.2 Criterion for a perfect EM absorber for all incidences

Unfortunately, matching the impedance of the medium to that of freespace will not reduce

the reflected power for non-normal incidences. In order minimize the reflection across all

angles, a special type of anisotropic medium is needed. Such a medium as been described

in [94] and [96]. For comparison with LH media absorbers, the conditions for zero reflection

are reviewed here.

The formulation begins by assuming material tensors of the form,

ε = ε0Λ (4.4)

µ = µ0Λ (4.5)

where Λ is of the form,

Λ =











λx 0 0

0 λy 0

0 0 λz











. (4.6)

The first step in determining the reflection coefficient will be to obtain the dispersion relation

for such a medium. To obtain it, a transformation to the kDB domain performed [59]. For

simplicity waves will be assumed to propagate only in the xz plane such that without loss

of generality, the azimuthal angle can be fixed as φ = 0.

Applying the kDB transformation yields the following reduced matrix form of Maxwell’s
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equations,

1

ε0





λ11 0

0 λ22









D1

D2



 =





0 u

−u 0









B1

B2



 (4.7)

1

µ0





λ11 0

0 λ22









B1

B2



 =





0 −u
u 0









D1

D2



 (4.8)

where u = ω/k and

λ11 =
1

λy
(4.9)

λ22 =
1

λx
cos2 θ +

1

λz
sin2 θ. (4.10)

Expanding out and eliminating the B fields yields,





c20λ11 − u2λ−122 0

0 c20λ22 − u2λ−111









D1

D2



 =





0

0



 (4.11)

where c0 is the speed of light in free space. From this matrix, it is seen that there exists

a double eigenvalue; hence, the characteristic waves obey the same dispersion relationship,

namely,

u2 = c20λ11λ22 (4.12)

which is equivalent to the following form,

λxk
2
x + λzk

2
z = ω2µ0ε0λxλyλz (4.13)

where k2 = k2x + k2z . Next, to solve for the reflection coefficients, phase-matching and

boundary conditions are used. Assuming a TE polarized incident field, with the electric
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field in the ŷ direction, the electromagnetic fields take the form,

E0 = ŷE0e
ikxx−ik0zz + ŷRE0e

ikxx+ik0zz (4.14)

H0 =
E0

ωµ0
[ẑkx + x̂k0z] e

ikxx−ik0zz +
RE0

ωµ0
[ẑkx − x̂k0z] eikxx+ik0zz (4.15)

for region 0, and in region 1, which is anisotropic, the fields take the form,

E1 = ŷTE0e
ikxx−ik1zz (4.16)

H1 =
TE0

ωµ0

[

ẑ
kx
λz

+ x̂
k1z
λx

]

eikxx−ik1zz. (4.17)

Matching the tangential field components at the boundary yields the following solution for

R and T ,

R =
1− p01
1 + p01

T =
2

1 + p01
(4.18)

where

p01 =
k1z
λxk0z

=
1

λx cos θi

√

λxλy −
λx
λz

sin2 θi (4.19)

Thus from (4.19), we can see that if we set λx = λy and λy = 1/λz that p01 = 1, which

means that R = 0 for all angles so that the incident wave is fully transmitted. Furthermore,

if the imaginary part of λx > 0, then the transmitted wave will decay as it propagates

through the medium. The rate of decay is related to the k1z term, and can be determined

through the dispersion relation as,

k1z = λx
√

ω2µ0ε0 − k2x = λxk0z (4.20)

(4.21)

Then, letting λx = 1 + iγ and assuming that k0z = k0 cos θi, means that fields inside
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Figure 4-3: Reflected power versus angle at 10 GHz for an ideal absorber. λx = λy = 1+iγ,
λz = 1/λx.

the medium will exponentially decay at the rate of γk0z. Hence, the larger the value

of γ, the higher absorption achieved whereas larger incident angles, θi will lead to lower

absorption. In a finite slab configuration that is backed by a PEC ground plane, the rate

of decay in conjunction with the layer’s thickness will determine the minimum possible

reflection coefficient. Fig. 4-3 illustrates this effect for the combinations of two different

slab thicknesses and two different values of γ.

4.3 Designing absorbing left-handed metamaterials

In the following sections, a genetic algorithm (GA) will be used to design a multi-layered

radar absorbing material (RAM) that uses left-handed metamaterials. For comparison,

designs based on conventional lossy right-handed materials will also be synthesized using a

GA. The designs synthesized will attempt to minimize the reflection coefficient over a given
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frequency bandwidth and/or a given angular swath. In order to be able to feasibly use a

GA to synthesize the RAM configuration, it is necessary to use the bulk media assumption

for characterizing the metamaterials. As discussed in the Chapter 3, the principle models

used are the Drude and Lorentz media models (see eqns. 3.1 and 3.2).

4.3.1 Genetic Algorithms

Genetic algorithms are a class of stochastic optimization techniques which are used for

finding the global extrema of an objective function. Before describing how GAs will be

applied to the problem of reflection coefficient reduction, it is useful to review some of the

terminology and concepts associated with genetic algorithms.

As described in detail in [97], a genetic algorithm works by employing diversity schemes

based on Darwinian natural selection to determine a set of parameters which maximize the

objective function of interest. In the vernacular of GA, each parameter of the objective

function is referred to as a gene, and the set of all parameters comprising one trial solution

is known as a chromosome. A given set of trial solutions is collectively known as the

population of the current generation. Members of the current generation, or the parents are

used to generate the children or offspring of the next generation. As illustrated in Fig. 4-

4, the genetic algorithm begins by randomly initializing a large population of individuals.

Individuals from the current population are then selected and used to generate the next

generation.

The selection schemes for which individuals are allowed to procreate vary but are all

based on the fitness level of the individuals, which is a measure of the individual’s goodness

(i.e., ability to maximize the objective function). One of these methods, known as tour-

nament selection, involves the random selection of N members of the current population

who compete with each other. The one with the highest fitness level is chosen to be a

parent of the next generation. All N members are then returned to the population. This

process is repeated until a sufficient number of parents have been selected. Since members

are allowed to compete in more than one tournament, it is possible, especially in the later
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Figure 4-4: Genetic algorithm flowchart for RCS reduction

stages of the evolution process, for one member of the current population to be a parent of

multiple children in the next generation.

Once two parents have been selected, they produce two offspring using the principles of

crossover and mutation. Crossover is the process of combining the genetic information of

the two parents into the two children, and occurs with a probability, pcross, typically between

0.5 and 0.7. In particular, a crossover site on the chromosome is chosen randomly, and the

genes proceeding the crossover site of the first parent and genes after the crossover site of

the second parent form the chromosome of the first child. The second child then receives

the remainder of the genetic information. If crossover does not occur, the children of the

next generation will be clones of the parents. Mutation, which promotes diversity thereby

preventing convergence to a local maximum, is the process of randomly changing the value

of one gene on each child’s chromosome, and occurs with probability, pmut, typically less

than 0.1.

The objective function used in this chapter will be a measure of the coating’s ability to

reduce the radar cross section (RCS) over a given angular swath and frequency band. The

choice of objective function will influence the type of solutions found. One possible choice,



156 Chapter 4. Radar-absorbing LH metamaterials

which is used in [99], is given by

F =
∑

θ

∑

f

[

RCS
(dB)
conductor(θ, f)− RCS

(dB)
coated(θ, f)

]

(4.22)

where RCS
(dB)
conductor is the normalized radar cross section (RCS) of an uncoated conducting

surface and RCS
(dB)
coated is the normalized RCS of the coated surface. Essentially, the mean

RCS over the given range of frequencies and angles is minimized. As will be discussed in

more detail later in this chapter, the parameters over which the function F is minimized

include the number of layers, the material type of each layer, and the thickness of each

layer.

While the objective function in (4.22) will yield viable solutions, it does not give prefer-

ence to any specific angles or frequencies within the swath or band of interest. In some cases,

it is advantageous to be able to place a deeper null at one frequency or angle while at the

same time making the other values as low as possible. For this purpose, the optimizations

performed will be done using the following scoring scheme,

SCORE = 100 [w1I + w2G+ w3BW + w4RCS] (4.23)

where I is the index goal score, G is the dB goal score, BW is the bandwidth score, RCS

is the RCS score, and wi are weights to emphasize the relative importance of each category.

Note that, unless otherwise stated, each category will be equally weighted, i.e., wi = 0.25.

Each of the scores are designed to range from 0 to 1, with 1 being the optimal solution. For

example, the RCS score is defined as

RCS =
0.01

0.01 + RCS
(4.24)

such that a mean RCS of zero yields a value of 1. The index and dB goal scores are defined

using the objective functions shown in Fig. 4-5. The index goal objective function reflects
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how close the minimum reflection coefficient over the band or swath of interest occurs at

the desired frequency or angle. The weights are chosen such that plus or minus deviations

are penalized equally. The dB goal reflects how close the minimum value of reflected power

over the frequency band or angular swath is to the desired value. The weights are chosen

such that solutions where the minimum value of reflected power is smaller than the desired

amount are less penalized than those where the minimum value is over the desired amount.

Finally the bandwidth score is defined as the percentage of the band or angular swath that

is below a certain threshold value.

Although the objective function described above attempts to place a lower bound on

the minimum value of the RCS over the given band, this allows solutions to be more fairly

compared. For example, consider two different solutions whose mean RCS values are similar.

In the first solution, one particular frequency has a very sharp null but the RCS at other

frequencies is relatively high. In the second solution, the minimum RCS is higher than the

null of solution one, but the solution maintains values close to this minimum throughout the

band. The question then becomes, which solution is better? The simple answer is of course

that it depends on the specific application. In this work, bandwidth will be emphasized more

than deep nulls. The scoring scheme described above reflects this desire in that solutions

with wider bands are promoted more than solutions with deep nulls.

One advantage in using a GA is that constraints such as the range of possible thicknesses,

and the types of materials are easily incorporated by appropriate choice of the trial solution

encoding scheme. In the scheme used in this work, the parameters for a trial solution are

encoded by representing each member of the population with a binary string. For multi-

layered RAM design, information about the material type and thickness for each layer can

be encoded in binary as follows,

Lj =MjTj =
[

m1
jm

2
j . . .m

Nmb

j

] [

t1j t
2
j . . . t

Ntb

j

]

(4.25)

where themj bits represent the different parameters needed to characterize the material, and
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Figure 4-5: Objective functions for the index goal and the dB goal.

tj represents a quantized version of the thickness. For example, if the range of thicknesses

varies from a to b, the binary representation, tj can be converted to a thickness value by,

t = a+
tj

2Ntb − 1
(b− a). (4.26)

In previous work [98, 99], the mj bits were used to represent the ID of a material that

was taken from a database of materials available for incorporation into the RAM. However,

in this chapter, part of the mj bits will used to determine the class of the material, and

remainder will be used to determine the parameters for that particular class. More details

are given in Section 4.3.2. Additionally, in this work, the number of layers is chosen prior

to the optimization, so that the total chromosome for one trial solution takes the form,

R = [L1L2 . . . LNl
] (4.27)

where Nl is the number of layers.

In running the genetic algorithm, there are many factors that will influence the conver-
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gence and success of the method such as the initial population size, Npop, or the probabilities

of crossover and mutation. In previous work, it has been empirically observed that the initial

population size should vary linearly with the number of bits needed to represent one chro-

mosome [98]. For this work, the population size will in general be chosen according to the

rule of thumb, Npop = max [50, 1.5Nbits]. Additionally, using the probabilities pcross = 0.7

and pmut = 0.1 have been been found to work well and have been employed in all the

examples presented in this chapter.

4.3.2 Material selection

In using the GA schemes described above, it is necessary to define a class of materials, which

can be used in the design of a multi-layered radar absorber. In this chapter, both left-handed

metamaterials and generic right-handed lossy materials will be used in the design process.

The class of left-handed metamaterials will be represented by using the Drude and

Lorentz bulk media models. In the following, the class labeled “rods” will refer to a medium

whose permittivity follows the Drude model and whose permeability is µo. Second, the class

labeled “rings” will refer to a medium whose permeability follows the Lorentz model and

whose permittivity is εo. Finally, the class “rods and rings,” is the combination of the

above two classes, i.e., Drude for permittivity and Lorentz for permeability. Table 4.1 lists

these three classes as well as the range of parameters that will be used in designing a radar

absorber. Following the binary encoding scheme described above, 2 bits will be used to

determine the class and 10 bits will be used in the quantization of each parameter. For

the choice of class, because with 2 bits there are four possibilities, the class of rods and

rings will correspond both the binary strings ’10’ and ’11’. Also, for first two classes, there

are fewer parameters than in the last class, so in the binary string some of the bits will

be unused when the “rods” only or “rings” only class is used. Depending on the choice of

parameters, the resulting Drude/Lorentz media may or may not be left-handed. In either

case, the parameters determined represent the specifications for the design of a rod/ring

metamaterial. In some cases, the parameters determined may not be able to be realized;
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however, because of the stochastic nature of genetic algorithms, it is usually possible to find

many potential solutions some of which may be realizable.

For comparison purposes, a set of right-handed materials, taken from references [98,99],

will also be used in the design of radar absorbers. The four different classes of materials

and their associated parameters are listed in Table 4.2. Although these materials are fic-

titious, they are representative of a number of materials used in practice [98]. The first

class of these right-handed materials listed are lossless dielectrics, which are materials with

a lossless permittivity that is independent of frequency. The next two classes of materials

are lossy magnetics and lossy dielectrics. Each of these materials are specified through their

permeability/permittivity at 1 GHz along with the decay coefficients α and β. In addition,

the magnetic materials have a frequency independent permittivity while the dielectric ma-

terials have a frequency independent permeability. An example of the permeability for a

magnetic material is shown in Fig. 4-6(a). Finally, the last class of right-handed materials

is lossy magnetics with a relaxation type characteristic. These are specified by their real

permeability at f = 0, and by the frequency, fm at which their imaginary part peaks. An

example of the permeability for this type of material is shown in Fig. 4-6(b).
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Figure 4-6: Example of the permeability for two classes of right-handed materials used in the
design of RAMs. Magnetic: µr = 7, µi = 12.25, α = 0.955, and β = 0.975. Relaxation-type:
µm = 14.5, fm = 9.1.

Class
Permittivity

Model
Permeability Model Parameter Ranges

Rods ε = 1− f2
ep

f2+ifγe
µ = 1

fep ∼ [1, 30],
γe ∼ [0.001, 5]

Rings ε = 1 µ = 1− f2
mp−f

2
mo

f2−f2
mo+ifγm

fmo ∼ [1, 30],
fmp ∼ fmo + [0.1, 5],
γm ∼ [0.001, 5]

Rods and
rings

ε = 1− f2
ep

f2+ifγe
µ = 1− f2

mp−f
2
mo

f2−f2
mo+ifγm

fep ∼ [1, 30],
γe ∼ [0.001, 5],
fmo ∼ [1, 30],

fmp ∼ fmo + [0.1, 5],
γm ∼ [0.001, 5]

Table 4.1: List of LH metamaterials used in designing absorbers. The three classes of ma-
terials shown are based on conventional models for LH metamaterials composed of metallic
rods and rings. Frequencies are listed in GHz.
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Class
Permittivity

Model
Permeability

Model
Parameter Ranges

Lossless dielectric ε = εr µ = 1 εr ∼ [1, 15]

Lossy magnetic ε = εr µ =
µr
fα

+ i
µi
fβ

εr ∼ [1, 15], µr ∼ [1, 15],
µi ∼ [1, 15], α ∼ [0, 1],

β ∼ [0, 1]

Lossy dielectric ε =
εr
fα

+ i
εi
fβ µ = 1

εr ∼ [1, 15], εi ∼ [1, 15],
α ∼ [0, 1], β ∼ [0, 1]

Relaxation-type
magnetic

ε = εr µ =
µm(f

2
m + ifmf)

f2 + f2m

εr ∼ [1, 15],
µm ∼ [1, 15],
fm ∼ [1, 30]

Table 4.2: List of right-handed material used in designing absorbers. The materials listed
are generic right-handed lossy materials taken from [98]. Frequencies are listed in GHz.
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4.3.3 Minimization over frequency bandwidth

After defining the set of available materials, the use of genetic algorithms to design a two

layer radar absorber will be investigated. In this section, the goal of the optimization will

be to minimize the reflection coefficient for normal incidence over the frequency band from 8

GHz to 12 GHz. The scoring scheme described in (4.23) will be used as the objective function

of the genetic algorithms. To obtain the score, the band is sampled at 21 frequencies. For

the examples presented here, the optimization parameter ranges and goals are as follows,

1. Optimization parameter ranges

a. Frequency band: 8 – 12 GHz

b. Incident angles: θ = 0.

c. Layer thicknesses: 0.01 – 0.20 cm.

2. Optimization goals

a. Index goal: 10 GHz

b. dB goal: -30 dB

c. threshold: -20 dB

Upon revisiting the ideal solution shown in Fig. 4-3, a goal of -30 dB at 10 GHz is quite

conservative; however, the challenge in the design will be to maintain that level of absorption

over the entire frequency band.

Use of LH metamaterials

The first example will be to attempt to meet the above goals using the Drude and Lorentz

metamaterial models. For this example, and the remaining in the chapter, the genetic

algorithm was run several times yielding a variety of different solution with varying levels

of success. In most cases, the final score achieved were quite similar; however, for some

runs the final score was significantly lower than the others. For this reason, and because
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GAs are a stochastic method, it is important to run the optimization several times in order

avoid outlier solutions. Fig. 4-7 shows the reflected power achieved over the band for four

different metamaterials solutions found. The corresponding material parameters are listed

in Table 4.3. In each case, the index goal and dB goal were met, but the bandwidth goal

was not met. For each case, there is a large degree of asymmetry present, which is due in

part to inherent nature of the Drude and Lorentz models. For example, the permittivity

and permeability for the two layers of the first solution are shown in Fig. 4-8. Because of

the Drude model, the loss in the permittivity will always be largest on the lower part of the

frequency band; however, the main contributor to the absorption is due to the resonance

in the Lorentz model. For the example shown, the imaginary part is largest for the lower

frequencies, which is apparent in the reflection power plot.

Use of RH lossy materials

For comparison purposes, the same optimization parameters and goals were run using the

set of right-handed lossy materials. As with the metamaterial section, the GA was run

several times to increase the chances of identifying and removing any outlier solutions.

Fig. 4-9 shows the reflected power achieved over the band for two different solutions found.

The corresponding material parameters are listed in Table 4.4. In each case, the index goal,

dB goal, and bandwidth goal were met. Additionally, in constrast to the metamaterials

solutions, the level of absorption about the center frequency is relatively symmetric. This

symmetry noting that in the solution, many of the layers found were of the magnetic

relaxation-type, with fm frequencies well outside the frequency band of interest. Because

these frequencies are well outside the band of interest, the magnitude of the imaginary part

of the permeability in the 8–12 GHz frequency is relatively constant, which leads to the

more symmetric reflection reduction solutions. Thus, for optimization over widebands, this

set of right-handed materials is better than the set of LH metamaterials used. It should be

noted that the right-handed materials also have the unfair advantage of in general being

more lossy than left-handed metamaterials.
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Metamaterial (LH) solution #1: score = 74.74

Layer
Layer

thickness (cm)
Material Class Parameter Values

1 0.175484 Rods & Rings
fep = 9.56305, fmo = 6.8651,
fmp = 11.9358, γe = 3.84264,

γm = 2.31772

2 0.144839 Rods & Rings
fep = 12.7595, fmo = 9.91496,
fmp = 14.751, γe = 2.59142,

γm = 3.72534

Metamaterial (LH) solution #2: score = 72.72

1 0.126452 Rings only
fmo = 7.68622, fmp = 10.5233,

γm = 0.621723

2 0.200000 Rings only
fmo = 9.97361, fmp = 13.7784,

γm = 4.99611

Metamaterial (LH) solution #3: score = 71.29

1 0.101935 Rings only
fmo = 8.50733, fmp = 13.5291,

γm = 1.81429

2 0.193871 Rods & Rings
fep = 30.0323, fmo = 10.0029,
fmp = 15.0541, γe = 1.20823,

γm = 3.09973

Metamaterial (LH) solution #4: score = 64.42

1 0.028387 Rings only
fmo = 11.5572, fmp = 16.3297,

γm = 1.49171

2 0.150968 Rings only
fmo = 9.44575, fmp = 13.7246,

γm = 2.85535

Table 4.3: Metamaterial parameters for four RAM designs. Goal = -30 dB, threshold =
-20 dB. Corresponding reflected power results shown in Fig. 4-7.
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Lossy RH solution #1: score = 94.68

Layer
Layer

thickness (cm)
Material Class

Parameter
Values

1 0.052903 Relaxation-type
εr = 10.3695,
µm = 12.3050,
fm = 19.8067

2 0.108065 Relaxation-type
εr = 11.9091,
µm = 10.9413,
fm = 4.32287

Lossy RH solution #2: score = 91.48

Layer
Layer

thickness (cm)
Material Class

Parameter
Values

1 0.016129 Relaxation-type
εr = 12.5103,
µm = 15.7947,
fm = 18.3111

2 0.040645 Lossy magnetic

εr = 9.84164,
µr = 2.71554,
µi = 15.6334,
α = 0.774194,
β = 0.218964

Table 4.4: Lossy RH material parameters for two GA designs. Score = 91.48. Goal = -30
dB, threshold = -20 dB. Corresponding reflected power results shown in Fig. 4-9.
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Figure 4-7: Reflected power versus frequency for 2-layer RAM designed using LH meta-
materials only. Some typical solutions shown in the plot. Goal = -30 dB, Level = 10 dB.
Material parameters are listed in Table 4.3.
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Figure 4-8: Permittivity and permeability over frequency band 8–12 GHz for metamate-
rial (LH) solution #1 as listed in Table 4.3.
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Figure 4-9: Reflected power versus frequency for 2-layer RAM designed using only lossy
RH materials. Two GA generated designs are shown. Goal = -30 dB, threshold = -20 dB.
Materials parameters are listed in Table 4.4.



170 Chapter 4. Radar-absorbing LH metamaterials

4.3.4 Minimization over angular swath

Next, the use of genetic algorithms to design a two layer radar absorber that can minimize

the reflection coefficient over a range of incident angles for a single frequency will be inves-

tigated. The scoring scheme described in (4.23) will be used as the objective function of the

genetic algorithms. To obtain the score, the range of angles is sampled every two degrees.

For the examples presented here, the optimization parameter ranges and goals and are as

follows,

1. Optimization parameter ranges

a. Frequency band: 10 GHz

b. Incident angles: θ = 0◦ – 60◦.

c. Layer thicknesses: 0.01 – 0.20 cm.

2. Optimization goals

a. Index goal: θ = 0◦

b. dB goal: -30 dB

c. threshold: -20 dB

As before a goal of -30 dB at 10 GHz is quite conservative for normal incidence; however,

the challenge in this design will be to maintain that level of absorption over the entire

angular swath. In addition, note that the ideal solution used an anisotropic medium with

gain properties whereas in the following, the materials are restricted to being isotropic as

well as passive.

Direct determination of ε and µ

The first example will be to attempt to meet the above goals by directly determining

the necessary values for the permittivity and permeability. In directly solving the binary

encoding scheme of the GA has been altered such that for each layer there are four unknown
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Figure 4-10: Reflected power versus angle at 10 GHz for 2-layer RAM designed using either
RH media only, LH media only, or RH and LH media. Goal = -30 dB, threshold = -20 dB.
Materials parameters listed in Table 4.5.

material parameters, which are the real and imaginary parts of ε and µ. In the following

examples, these parameters are restricted as follows:

1. RH only: 0.05 < <{ε, µ} < 5, 0 < ={ε, µ} < 5

2. LH only: −5 < <{ε, µ} < −0.05, 0 < ={ε, µ} < 5

3. RH and LH: −5 < <{ε, µ} < 5, 0 < ={ε, µ} < 5

Fig. 4-10 shows the minimization of the reflected power achieved over the range of angles

for the different cases listed above. The corresponding material parameters are listed in

Table 4.5. For each case, the index goal, dB goal were met, and swath goals were met.

The achievable results seem not to depend on the sign of the real part of the permittivity

and permeability so much as the magnitude of the imaginary part. Hence, for the present

example, there are no advantages to using left-handed media versus right-handed media.
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RH solution

Layer
Layer

thickness (cm)
Permittivity Permeability

1 0.0774 3.5387 + i1.5200 4.2258 + i1.2561

2 0.2529 3.5000 + i3.7488 2.3823 + i4.2278

LH solution

1 0.1816 −4.9129 + i3.5924 −3.2823 + i1.0313

2 0.2223 −0.0500 + i2.4927 −1.8113 + i1.1095

LH and RH solution

1 0.1755 −0.8574 + i4.7654 −1.2042 + i4.9658

2 0.2039 4.3307 + i3.4311 −0.4177 + i3.5044

Table 4.5: Permittivity and permeability values found for results shown in Fig. 4-10. Note
that for this example, the range of possible thicknesses used was 0.01 cm – 0.32 cm.

Choosing the material parameters

In the previous example, it was seen how appropriate choice of the permittivity and per-

meability can reduce the reflection coefficient over a wide range of angles. In the following

example, the exercise will be repeated, but instead using the GA to find the values of ε and

µ, the GA will be used to find specific types of materials that can achieve the same type of

results. For this example, three different types of solution will be presented. The first will

utilize only right-handed materials, the second only left-handed materials, and the third will

utilize a combination of a RH media and a LH media. Fig. 4-11 shows the minimization

of the reflected power achieved over the range of angles for the different cases listed above.

The corresponding material parameters are listed in Table 4.6. For each case, the index

goal, the dB goal, and the swath goals were met.
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RH solution: score = 71.98

Layer Layer
thickness (cm)

Material Class
Parameter

Values

1 0.034516 Relaxation-type
εr = 9.02053,
µm = 7.97947,
fm = 28.2525

2 0.059032 Relaxation-type
εr = 13.1994,
µm = 15.0323,
fm = 4.73343

Metamaterial (LH) solution: score = 73.84

Layer Layer
thickness (cm)

Material Class
Parameter

Values

1 0.200000 Rings only
fmo = 16.4839,
fmp = 19.8341,
γm = 2.77226

2 0.132581 Rods & rings

fep = 6.95308,
fmo = 9.65103,
fmp = 13.0159,
γe = 2.45457,
γm = 1.66767

RH and Metamaterial (LH) solution: score = 71.87

Layer Layer
thickness (cm)

Material Class
Parameter

Values

1 0.010000 Rods only
fep = 16.5425,
γe = 2.82114

2 0.071290 Lossy magnetic

εr = 3.88856,
µr = 3.09677,
µi = 14.0352,
α = 0.753666,
β = 0.312805

Table 4.6: Material parameters for select solutions. Goal = -30 dB, threshold = -20 dB.
Corresponding reflected power results shown in Fig. 4-11.
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Figure 4-11: Reflected power versus angle at 10 GHz for 2-layer RAM designed either
RH only, LH only, or RH and LH. parameters found are in terms of actual material model
parameters rather than just specific values of ε and µ. Shown are typical results after several
GA runs. Goal = -30 dB, threshold = -20 dB. Materials parameters listed in Table 4.6.
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4.3.5 Minimization over frequency and angle simultaneously

The obvious next question is can these materials be used to achieve similar types of results

over both angle and frequency band. In this section, a few examples that achieve this goal

will be presented. In generating these results, a modified scoring scheme was used in order

to minimize over frequency and angle. This modified version essentially averages the scores

achieved along frequency for each angle and along angle for each frequency. For example,

if the frequency-angle space was sampled at 5 frequencies by 20 angles, a total of 5 angular

swaths and 20 frequency scores would be averaged. In this work, when minimizing over

frequency and angle, the goal will be to place the deepest null at one specific frequency and

angle, e.g., 10 GHz and 0◦. Thus, in order to promote a solution of this form, rather than

directly averaging the scores, a weighting system is employed. For the following examples,

the weights are designed using a Hamming window that is centered at the frequency or

angle of interest. The following example will illustrate an optimal solution for this scoring

scheme. Note that in this example, the band of frequencies sampled is half as wide as

previously considered, ranging from 9 GHz to 11 GHz. Also, the angular swath has been

reduce to the range 0 to 30 degrees.

The result shown in Fig. 4-12, which was designed using right-handed materials, is the

type of solution expected under the scoring scheme described above. The corresponding

material parameters are listed in Table 4.7. Note that the smallest amount of reflection

approximately occurs at 10 GHz and 0◦. Also note that for a given frequency and for

increasingly larger angles, the amount of reflection increases, whereas at a given angle, the

amount of reflection increase as the frequency departs from the center frequency of 10 GHz.

On the other hand, the solution obtained using only left-handed metamaterials does

not follow this prescription very well. The corresponding material parameters are listed in

Table 4.8. For small angles, the solution obtained, shown in Fig. 4-13, has the smallest

reflected power around 10 GHz in agreement with the desired results; however, outside



176 Chapter 4. Radar-absorbing LH metamaterials

0 10 20 30
9

9.2

9.4

9.6

9.8

10

10.2

10.4

10.6

10.8

11

Angle (deg)

F
re

q
u

en
cy

 (
G

H
z)

dB

−35

−30

−25

−20

−15

Figure 4-12: RH only minimization over frequency and angle. The score is based on Fre-
quency band from 9 to 11 GHz, and angular swath from 0 to 30 degrees. Objective scored by
sampling at 5 frequencies for each angle which were sampled every 2 degrees. Score = 91.44.

the narrowband surrounding the center frequency, particularly in the lower frequencies, the

solution has a smaller reflected power at angles much larger than zero degrees. Hence, while

the solution obtained may be useful for some applications, it did not achieve the desired

specifications.

The final example shown uses a combination of a right-handed material and metama-

terial. The corresponding material parameters are listed in Table 4.9. The score obtained

for the results shown in Fig. 4-14 is comparable to the score obtained for the purely right-

handed medium solution.
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Layer Layer
thickness (cm)

Material Class
Parameter

Values

1 0.065161 Lossy magnetic

εr = 3.91789,
µr = 8.1261,
µi = 13.6833,
α = 0.204301,
β = 0.529814

2 0.193871 Relaxation-type
εr = 10.4868,
µm = 9.31378,
fm = 5.23196

Table 4.7: RH media only. Material parameters for best solution out of 5 GA runs.
Score = 91.44. Goal = -30 dB, threshold = -20 dB. Corresponding reflected power re-
sults shown in Fig. 4-12.

Layer Layer
thickness (cm)

Material Class
Parameter

Values

1 0.138710 Rings only
fmo = 8.5366,
fmp = 13.6122,
γm = 2.79181

2 0.083548 Rods & rings

fep = 11.5572,
fmo = 11.4106,
fmp = 15.2593,
γe = 0.0401007,
γm = 3.16816

Table 4.8: LH metamaterials only. Material parameters for best solution out of 5 GA runs.
Score = 83.52. Goal = -30 dB, threshold = -20 dB. Corresponding reflected power results
shown in Fig. 4-13.
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Figure 4-13: Metamaterial only minimization over frequency and angle. Frequency band
from 9 to 11 GHz, and angular swath from 0 to 30 degrees. Objective scored by sampling
at 5 frequencies per angle, and 16 angles per frequency. Score = 83.52.
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Figure 4-14: RH Lossy and Metamaterial minimization over frequency and angle. Frequency
band from 9 to 11 GHz, and angular swath from 0 to 30 degrees. Objective scored by
sampling at 5 frequencies per angle, and 16 angles per frequency. Score = 91.16.

Layer Layer
thickness (cm)

Material Class
Parameter

Values

1 0.114194 Relaxation-type
εr = 4.26979,
µm = 13.5367,
fm = 2.82727

2 0.108065 Rods & rings

fep = 14.1378,
fmo = 5.2522,
fmp = 9.5262,
γe = 0.0401007,
γm = 2.49367

Table 4.9: RH and MTM. Material parameters for best solution out of 5 GA runs.
Score = 91.16. Goal = -30 dB, threshold = -20 dB. Corresponding reflected power re-
sults shown in Fig. 4-14.
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4.4 Summary

In summary, this chapter has discussed the potential of using left-handed metamaterials as

radar absorbers. In order to design the multilayer (2 layers for the above examples) coating,

the use of genetic algorithms was employed. The unknown parameters were the class of

material, the parameters of the particular class, and the layer thickness. For comparison, a

set of generic right-handed absorbers were also used to generate radar absorbing coatings.

The GAs attempted to minimize the reflection coefficient over a given frequency band at

normal incidence, or a given angular swath at a fixed frequency, or both simultaneously.

For each type, it was found that while left-handed metamaterials generally could be used

as radar absorbers, the effective bandwidth over which they are viable is much smaller than

those designs achieved using conventional right-handed absorbers. However, in the case of

minimizing over a given angular swath, left-handed materials performed similarly to the

right-handed materials indicating that the sign of the real part of the permittivity and

permeability is not as crucial as the magnitude of the imaginary part. Yet despite these

drawbacks, metamaterials offer an alternative to conventional radar absorbers. In general,

in terms of applications, the main advantage provided by metamaterials today is that they

are scalable and light-weight. In other words, they can easily be redesigned to operate

at different wavelengths, and because they are mostly air filled they are light-weight, and

would be well-suited to applications that are constrained by weight such as space-based

applications.



Chapter 5

A wideband directive antenna

using left-handed metamaterials

5.1 Introduction

One potentially useful property of metamaterials that possess left-handed properties at

some frequencies is that, because they are frequency dispersive, the real part of their index

of refraction can vary from negative to zero to positive. Thus, if an antenna source, placed

inside a metamaterial substrate, radiates at a frequency where the index of refraction is

approximately zero, then by Snell’s law all the source rays emitted from inside the substrate

will be transmitted into free-space at an angle close to the normal of the slab, i.e., creating

a highly directive antenna (see Fig. 5-1).

Recently, Enoch et al [100] have constructed an antenna based on this concept by embed-

ding a monopole inside a substrate made of periodically arranged metallic rods. Enoch et

al measured one such antenna configuration to have a half-power beamwidth of about

∆θ1 = 8.9◦ in the H plane and ∆θ = 12.5◦ in the E plane at the single frequency of

14.5 GHz [100]. The narrowband characteristic of the substrate can be understood by not-

ing that the rods behave similarly to an electric plasma medium [2], which has an index of

181
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Figure 5-1: Directive antenna concept. By Snell’s law, if a source is embedded in a substrate
that has a small index of refraction compared to air, its source rays will be transmitted near
the normal of the substrate.

refraction that is approximately zero only near the plasma frequency.

Other recent directive antenna designs, based on photonic band gap structures [101–103]

have also been limited by a narrow operating bandwidth. In these approaches, a structure,

which has a band gap at the operating frequency of interest is created. A defect is then

placed in the structure by removing one or more of the periodic elements creating a Fabry-

Perot resonator, which with a source placed inside it will emit a highly narrow beam. Still,

because the cavity was only resonant for a specific frequency, this PBG design had a high

directivity over a narrow frequency band.

In the previous two examples, the high directivity of the antennas was only maintained

over a narrowband, which limited their use. In this chapter, the potential of metamaterials

to improve the bandwidth over which a narrow beamwidth can be achieved is examined.

As in [100], narrow beamwidth is achieved by embedding a source inside a low index of

refraction material; however, rather than engineer the index of refraction by only adjusting

the substrate’s electrical properties (ε), the ability to adjust its magnetic properties (µ) will
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also exploited. In particular, in the Chapter 3 it was shown how a periodic arrangement

of rods can effect the permittivity and a periodic arrangement of split-rings can control

the permeability. It was seen that the permittivity and permeability were negative for

a range of frequencies, and equal to zero at their respective plasma frequencies. Thus, an

antenna embedded in such a substrate would radiate with a narrow beamwidth at these two

frequencies. In fact though, as will be shown, it is possible to adjust these plasma frequencies

such that a narrow beamwidth can be achieved over a relatively wide bandwidth. For the

studies in this chapter, the Drude and Lorentz bulk media models for the permittivity and

permeability, respectively, will be used (see eqns. 3.1 and 3.2).

In addition, because the substrate will have a low index of refraction, the advantages of

using a perfect magnetic conductor (PMC) ground plane versus a perfect electric conductor

(PEC) ground plane will be examined. As will be shown, PMC ground planes yield larger

gains and in fact narrower beamwidths due to its imaging properties. It should be noted

that although PMC surfaces are only a mathematical construct, it is possible to create an

artificial PMC by using a composite high-impedance ground plane [104].

5.2 Formulation

The configuration under study, shown in Fig. 5-2, is an infinite linear antenna placed at

z = 0 inside of homogeneous slab of thickness d1 + d2, which is backed by either a PMC

or PEC ground plane located at z = −d2. To determine the radiation pattern, the two-

dimensional Green’s function is used. The general solution for the electric field in region `,

E` = x̂E`x, is [59],

E`x =

∫ ∞

−∞

dky

[

A`e
ik`zz +B`e

−ik`zz
]

eikyy, (5.1)

where A` and B` are the expansion coefficients. Since the source is located inside region

1, they can be written as, A0 = TElin, B0 = 0, A1+ = α1 + Elin, B1+ = β1 A1− = α1,
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Figure 5-2: Geometry for directive emission studies.

B1− = β1+Elin where 1+ refers to the region inside the slab above the source (0 < z < d1),

and 1− refers to the region below (−d2 < z < 0), and Elin is the source term given by,

Elin = − ωµ1I
4πk1z

. (5.2)

The unknown coefficients are found by enforcing the boundary conditions at z = d1

and z = −d2. Note that, of course, the boundary condition at z = −d2 depends on the

type of ground plane. In the case of a PEC, E1x(z = −d2) = 0 whereas for a PMC,

H1y(z = −d2) = 0. For example, the T coefficient is,

T =

(

2

1 + pTE10

)

eik1zd1 ± eik1z(2d2+d1)

1∓R10ei2k1z(d2+d1)
e−ik0zd1 , (5.3)
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where

pTE10 =
µ1k0z
µ0k1z

(5.4)

RTE
10 =

1− pTE10
1 + pTE10

, (5.5)

and where the upper sign refers to the PMC case and the lower to the PEC case.

The radiation pattern is determined by approximating the integral in (5.1) by using

far-field assumptions as follows,

E0x =

∫ ∞

−∞

dky [TElin] e
ik0zzeikyy

≈ f(kyo)

∫ ∞

−∞

dkye
ikr exp

[ −ir
2k cos2 θ

(ky − kyo)2
]

= f(kyo)
eikr−iπ/4√

r

√
2πk cos θ (5.6)

where kyo = k0 sin θ is the stationary phase point and f(kyo) = T (kyo)Elin(kyo).

5.3 Ideal substrates

Before exploring the use of metamaterials, it is useful to understand the radiation pattern

of a source embedded in an ideal low-index of refraction medium. In the following sections,

fixed values of ε and µ are chosen in order to study the effects of ground plane type,

anisotropy, and substrate geometry.

5.3.1 Effects of the groundplane: PEC vs. PMC

The formulation given in the previous section was developed for the case where the ground

plane is either a perfect electric conductor (PEC) or a perfect magnetic conductor (PMC).

From image theory, it is well known that a horizontally or tangentially oriented source over

a PEC ground plane is equivalent to having two sources of opposite sign (i.e., out of phase)
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placed at mirror locations. On the other hand, a horizontal source over a PMC ground

plane is equivalent to having two sources of the same sign (i.e., in phase).

For many applications, the distinction between PEC and PMC ground planes is not

important since the electrical distance between the source and image is relatively large.

However, for the current application, the source will be embedded in a low index of re-

fraction medium whose wavelength is relatively large compared to the source-ground plane

separation, meaning that the source and its image are electrically close. In the case of

a tangential source above a PEC ground plane, because the source and image are out of

phase, destructive interference occurs, and the gain of the antenna is reduced. In constrast,

with a PMC ground plane, the source and image will be in phase and the antenna will have

a larger gain.

To illustrate the effect of the ground plane with a specific example, consider the ideal

case of a material that is isotropic and non-dispersive with ε1(ω) = 0.01 and µ1(ω) = 1.

Fig. 5-3 shows the radiation pattern as a function of frequency of a source embedded in a

substrate over a PEC and PMC ground plane. As can be seen, both radiation patters are

highly directive; however, the radiated power of the PMC system is several decibels higher.

In order to more precisely quantify the performance of the overall antenna, the half-

power beamwidth (HPBW) and peak power (or gain) of the system are calculated. The

peak power or gain of the system is the measure as the strength of the main lobe with respect

to an isotropic radiator. The HPBW of the system is defined as the angular swath over

which the antenna maintains a power level greater than or equal to the peak power. Note

that for certain radiation patterns, some of which will be encountered later in Section 5.4,

the HPBW cannot be defined because the main lobe is not centered at θ = 0◦. For the

radiation patterns shown above in Fig. 5-3, Fig. 5-4 shows the corresponding HPBW and

peak power versus frequency.

The peak power of the PMC system is near 6 dB (10 log(1+ 1)2), which corresponds to

the nearly complete constructive interference of the source and image. On the other hand,

the PEC power level is quite low, although increasing as a function of frequency as the source
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Figure 5-3: Antenna radiation properties for ideal isotropic medium with a constant relative
permittivity of εr1 = 0.01 and a constant relative permeability of µr1 = 0.01. Slab is 4 cm
thick and the source is equidistant from the ground plane and air-media interface.
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Figure 5-4: Antenna radiation properties for ideal isotropic medium with a constant relative
permittivity of εr1 = 0.01 and a constant relative permeability of µr1 = 0.01. Slab is 4 cm
thick and the source is equidistant from the ground plane and air-media interface.
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and image become electrically further apart. In addition, the beamwidth for the PMC is

better than that of the PEC system. This is due to the fact that the distinction between the

PMC and PEC systems becomes less apparent for the rapidly attenuating source evanescent

waves. Specifically the transmission coefficient for large k1z can be approximated as follows,

T ∼
(

2

1 + pTE10

)

eik1zd1e−ik0zd1 , (5.7)

where there is no distinction between PEC and PMC ground planes. The better beamwidth

results from the fact that there is less destructive interference for the PMC system and thus

a higher peak; however, this higher peak must roll off faster than the the smaller peak of

the PEC system in order that they reach the same power level for the transmission angles

corresponding to the large k1z components of the source inside the substrate.

5.3.2 Effects of anisotropy

In the previous examples, the ideal substrates considered were isotropic. Although, in this

chapter, all calculations are performed under the bulk media assumption, it is important to

note that it is possible to engineer metamaterials with these properties. However, in practice

metamaterials are often anisotropic, so it is important to understand effects of anisotropy on

the radiation properties of a source embedded in such a material. In particular, the rods are

known to affect the component of the permittivity tensor corresponding to their lengthwise

orientation, whereas as the rings are known to affect the component corresponding to the

direction of their central axis [2, 3].

As in Chapter 2, the model used for representing the anisotropy of the rod and split-ring

resonator metamaterials will be frequency dispersive material tensors of the form,

ε(ω) =











εx(ω) 0 0

0 εy(ω) 0

0 0 εz(ω)











µ(ω) =











µx(ω) 0 0

0 µy(ω) 0

0 0 µz(ω)











. (5.8)
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In general, the dispersion relation of an anisotropic medium can be determined by solving

the following equation [59],

det
[

k × I · µ−1 · k × I + ω2ε
]

= 0, (5.9)

where k and I are the three-dimensional wave vector and unity matrix, respectively. As-

suming that the electric field is polarized along the ŷ direction, the dispersion relation above

can be simplified as,

k2z = εyµxω
2 − µx

µz
k2y, (5.10)

where ky and kz are the two non-zero k components of a wave polarized along the y direction

with a spatial cutoff frequency of kcy = ω
√
εyµz.

The formulation for determining the radiation pattern of a source embedded in an

anisotropic medium is very similar to the isotropic formulation. In order to use the formu-

lation given in the previous section, it is only necessary to use the appropriate dispersion

relation, i.e., eq. (5.10), to calculate k1z, and to change the form of pTE10 and RTE
10 as follows,

pTE10 =
µ1yk0z
µ0k1z

(5.11)

RTE
10 =

1− pTE10
1 + pTE10

, (5.12)

where the µ1y term in the numerator of pTE10 has replaced the previous term, µ1, given in

the isotropic case.

Before preceding to calculate radiation patterns, it is helpful to consider how the in-

dividual plane wave components of the source will be transmitted from the substrate into

freespace. By phase-matching, a particular k1z component and its corresponding transmis-
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sion angle into region 0 are related by,

k0 sin θ0 = k1 sin θ1 =
√

k21 − k21z (5.13)

where k1 is the wavenumber of the substrate. For the moment, consider the case when the

permittivity (ε1) and permeability (µ1) of the substrate are both positive and purely real,

and possibly less than those of free space. Under these assumptions, propagating waves

inside the slab, which correspond to purely real k1z, will all translate to propagating waves

in region 0. In addition, due the source, there will also be evanescent waves present in region

1. Due to a critical-angle type effect, some of these waves, for which k1z is purely imaginary,

will also translate to propagating waves in region 0. However because the quantity k21z is

negative, the term on left-hand side of (5.13) will be larger than k1 meaning the angle of

transmitted propagating waves corresponding to imaginary k1z will be larger than those

that correspond to real k1z. This fact is illustrated for four different anisotropic media in

Fig. 5-5. In each of the four cases, the components of the permittivity and permeability

tensors are ideally assumed to take on either the values 1 or 0.1. As can be seen, the angle

at which transmitted waves begin to be due to the evanescent waves of the source depends

on which components are equal to 0.1. In particular, the angle depends on the spatial cutoff

frequency of the medium, kcy, which for a TE polarized wave depends only on the ε1y and

µ1z components.

In the ideal case, if all the evanescent waves are suppressed (i.e., not transmitted), the

the value of µ1x does not matter. However, because the value of µ1x affects the slope of

k1z, as can be seen in (5.10), it is actually advantageous in terms of beamwidth to use an

anisotropic substrate with only the ε1y and µ1z components being small. This is due to the

fact that evanescent waves inside this medium are attenuated more rapidly than in any of

the other three media.

So far, only media with positive values of ε and µ have been considered; however, in the

construction of metamaterials with rods and SRR, it is possible that at some frequencies
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Figure 5-5: Relation between k1z and the transmission angle into free space for four different
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in the band of interest that either the permittivity or permeability will take on small but

negative values. This sign change will affect the dispersion relation, and potentially destroy

the directive properties of the substrate. For example, consider the case when ε′y = 0.1,

µ′z = −0.1, µ′y = 1. At first glance, this case is similar to the best case depicted in Fig. 5-5,

where the evanescent waves are attenuated the most rapidly. However, further examination

reveals that the far-field pattern is highly oscillatory and contains two spikes just beyond the

normal direction. The angle of the spikes correspond to the spatial cutoff frequency for this

medium, where it happens that transmission coefficient is largest. Fortunately, as shown in
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Figure 5-6: Radiation pattern for a source operating at 14 GHz that is embedded in the
center of a 4 cm thick anisotropic substrate over a PEC groundplane. Loss helps eliminate
spikes due to the large transmission coefficient of the evanescent waves. Real parts of the
permittivity and permeability tensor components are: ε′y = 0.1, µ′z = −0.1, µ′y = 1. For the
lossy case, the imaginary parts are, ε′′y = µ′′z = 0.05.

Fig. 5-6, introduction of a small amount of loss alleviates this problem by smoothing out

the oscillations and removing the spikes, albeit at the cost of gain and beamwidth.

Still, there are many other combinations to consider. Tables 5.1 and 5.2 list each of these

different possibilities for the cases of a PEC or PMC ground plane. For some combinations,

the half-power beamwidth is left undefined (–) because the main lobe of the radiation

pattern is not centered at θ = 0. In many of these cases, the reason it is undefined is

because there are two main lobes that are due to the spikes-type effect discussed above.

As before, introduction of a small loss component somewhat removes this problem, but the

resulting beamwidths are usually larger.
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∆ = 0.01, ε′′y = µ′′x = µ′′z = 0

ε′y µ′x µ′z HPBW Gain

∆ 1 ∆ 1.61 1.58

−∆ 1 ∆ 1.78 -1.48

1 ∆ ∆ 6.43 -11.12

−∆ −∆ −∆ 9.08 -18.62

∆ ∆ ∆ 9.08 -18.62

∆ −∆ −∆ 9.12 -18.73

−∆ ∆ ∆ 9.12 -18.73

1 −∆ −∆ 10.93 -23.11

∆ 1 1 16.11 1.58

−∆ 1 1 17.87 -1.48

1 ∆ 1 53.79 -11.12

∆ ∆ 1 65.84 -18.62

−∆ ∆ 1 65.99 -18.73

1 −∆ 1 121.91 -23.11

∆ −∆ 1 139.39 -18.50

−∆ −∆ 1 139.87 -18.37

1 1 1 – –

1 1 ∆ – –

1 1 −∆ – –

1 ∆ −∆ – –

1 −∆ ∆ – –

∆ 1 −∆ – –

∆ ∆ −∆ – –

∆ −∆ ∆ – –

−∆ 1 −∆ – –

−∆ ∆ −∆ – –

−∆ −∆ ∆ – –

∆ = 0.01, ε′′y = µ′′x = µ′′z = 0.05

ε′y µ′x µ′z HPBW Gain

∆ 1 ∆ 4.57 -2.42

−∆ 1 ∆ 5.00 -4.32

∆ 1 −∆ 5.38 -2.42

−∆ 1 −∆ 6.07 -4.32

1 1 −∆ 9.97 -5.03

∆ ∆ ∆ 10.98 -9.44

−∆ −∆ −∆ 10.98 -9.44

−∆ ∆ ∆ 10.99 -9.49

∆ −∆ −∆ 10.99 -9.49

1 1 ∆ 11.16 -5.03

∆ ∆ −∆ 11.21 -9.44

−∆ −∆ ∆ 11.21 -9.44

−∆ ∆ −∆ 11.27 -9.49

∆ −∆ ∆ 11.27 -9.49

1 ∆ −∆ 15.53 -15.03

1 −∆ −∆ 16.49 -17.06

1 ∆ ∆ 17.52 -15.03

1 −∆ ∆ 19.22 -17.06

∆ 1 1 20.19 -2.42

−∆ 1 1 20.64 -4.32

−∆ ∆ 1 64.85 -9.49

∆ ∆ 1 65.89 -9.44

−∆ −∆ 1 77.53 -9.44

∆ −∆ 1 79.22 -9.49

1 1 1 – –

1 ∆ 1 – –

1 −∆ 1 – –

Table 5.1: Ranking according to beamwidth of 27 different possible combinations of an
anisotropic substrate over a PEC groundplane for a source operating at 14 GHz that is
embedded in the center of a 4 cm thick substrate. Both lossless (left) and lossy (right)
substrates are considered.
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∆ = 0.01, ε′′y = µ′′x = µ′′z = 0

ε′y µ′x µ′z HPBW Gain

∆ 1 ∆ 0.71 12.43

−∆ 1 ∆ 1.29 2.44

∆ −∆ −∆ 3.10 5.92

−∆ ∆ ∆ 3.10 5.92

−∆ −∆ ∆ 3.24 6.01

∆ ∆ −∆ 3.24 6.01

−∆ −∆ −∆ 3.46 6.03

∆ ∆ ∆ 3.46 6.03

−∆ ∆ −∆ 3.62 6.03

∆ −∆ ∆ 3.62 6.03

∆ 1 1 7.05 12.43

1 −∆ −∆ 7.12 -15.92

−∆ 1 1 12.80 2.44

−∆ ∆ 1 30.76 5.92

1 1 −∆ 31.68 6.02

−∆ −∆ 1 32.04 6.01

∆ ∆ 1 34.42 6.03

∆ −∆ 1 35.86 6.03

1 1 1 150.52 6.02

1 1 ∆ – –

1 ∆ 1 – –

1 ∆ ∆ – –

1 ∆ −∆ – –

1 −∆ 1 – –

1 −∆ ∆ – –

∆ 1 −∆ – –

−∆ 1 −∆ – –

∆ = 0.01, ε′′y = µ′′x = µ′′z = 0.05

ε′y µ′x µ′z HPBW Gain

∆ 1 ∆ 4.42 -3.37

−∆ 1 ∆ 4.45 -4.25

∆ 1 −∆ 4.76 -3.37

−∆ 1 −∆ 5.01 -4.25

−∆ ∆ ∆ 5.71 1.25

∆ −∆ −∆ 5.71 1.25

∆ ∆ −∆ 5.71 1.28

−∆ −∆ ∆ 5.71 1.28

∆ ∆ ∆ 5.76 1.28

−∆ −∆ −∆ 5.76 1.28

−∆ ∆ −∆ 5.79 1.25

∆ −∆ ∆ 5.79 1.25

1 1 ∆ 7.08 0.58

1 1 −∆ 7.37 0.58

1 −∆ −∆ 18.12 -17.37

1 ∆ −∆ 18.32 -16.61

1 ∆ ∆ 21.72 -16.61

−∆ 1 1 21.76 -4.25

1 −∆ ∆ 22.03 -17.37

∆ 1 1 24.42 -3.37

−∆ ∆ 1 36.26 1.25

−∆ −∆ 1 37.14 1.28

∆ ∆ 1 39.39 1.28

∆ −∆ 1 40.48 1.25

1 1 1 104.96 0.58

1 ∆ 1 – –

1 −∆ 1 – –

Table 5.2: Ranking according to beamwidth of 27 different possible combinations of an
anisotropic substrate over a PMC groundplane for a source operating at 14 GHz that is
embedded in the center of a 4 cm thick substrate. Both lossless (left) and lossy (right)
substrates are considered.
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5.3.3 Effect of substrate geometry

In this section, the effect of the substrate geometry will be examined. Specifically, the effect

of the thickness and source position within the substrate will be considered. As discussed in

the previous section, the larger the percentage of evanescent waves transmitted, the larger

the beamwidth will be. Because the substrate thickness and source position directly affect

this percentage, it is important to quantify to what extent.

As discussed previously, ideally, all of the evanescent waves would be completely sup-

pressed and not transmitted from the source through the substrate into freespace. In this

case, only the propagating waves, which can be confined to a small range of transmitted

angles by appropriate choice of material parameters, would be present. On the other hand,

if they are not suppressed, the evanescent waves that are transmitted from region 1 to

region 0 become propagating waves that span the entire range of angles, which affects the

radiation pattern.

In practice, the evanescent waves can only be partially suppressed. The rate at which the

evanescent waves decay inside the substrate depends on the k1z component and locations of

the substrate surface and the ground plane, d1 and d2, with respect to the source position.

It is expected that a thicker substrate will have a higher suppression of evanescent waves

since the source waves have a longer distance over which to decay before they emerge into

freespace as a propagating wave.

To more precisely illustrate this phenomena, the half-power beamwidth and peak power

are calculated for an isotropic substrate with a relative permittivity of εr1 = 0.01 and a

constant relative permeability of µr1 = 0.01. As shown in Fig. 5-7, the substrate thickness

is varied from 2 cm to 10 cm with the source being equidistant from the ground plane and

air-media interface. Comparing the results a PEC ground plane and a PMC ground plane,

it is apparent that the thicker substrate significantly improves the beamwidth of the PEC

system, whereas it only moderately improves that of the PMC system. The explanation

for this is that as the source is pushed further away from the ground plane, the destructive
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Figure 5-7: Effect of substrate thickness for an ideal isotropic medium. Half-power
beamwidth and peak power at 14.0 GHz calculated for a substrate with a relative per-
mittivity of εr1 = 0.01 and a constant relative permeability of µr1 = 0.01. For every
substrate thickness, the source is placed equidistant from the ground plane and air-media
interface.
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interference effects of the PEC system become less drastic allowing the peak power to reach

a larger value. Then, as described above, because the peak power is higher, it will roll

off faster yielding a better beamwidth. On the other hand, the beamwidth of the PMC

system does not improve significantly because it is already near optimal performance for

the smallest substrate thickness considered. A smaller beamwidth would require confining

the propagating waves of the source to a tighter range of transmission angle, which is

affected by the substrate’s material parameters rather than its thickness.

Next, the effects of anisotropy and loss in combination with substrate thickness are

presented is Fig. 5-8. In each case, the four different types of anisotropic substrates whose

dispersion relations are shown in Fig. 5-5 are considered. When varying the substrate

thickness as in Fig. 5-8, the source is placed at the center of the substrate. The results show

that for increasing substrate thickness, the resulting beamwidth decreases, which as before

is due to the decay of the evanescent waves. One interesting result apparent in the lossless

versus lossy cases is that the beamwidth of cases B and A approach the same value when

the substrate thickness is 10 cm. Under the argument that the thicker substrate suppresses

more of the evanescent waves, this result is inconsistent. However, as in Fig. 5-6, the larger

beamwidth than expected in case B is due to the high transmission coefficient at the spatial

cutoff frequency of the medium. As before, though, introduction of loss removes the large

spikes. In Fig. 5-8(b), it can clearly be seen that the medium in case B yields a better

beamwidth than the medium in case A.

Finally, the last geometrical feature considered is the effect of the source position within

the substrate. Based on the argument presented for the previous cases, it is reasonable

to expect that for a given substrate thickness, the system will perform better in terms of

beamwidth when the source is as far away from the surface as possible. Indeed, this is

what has been found and is illustrated in Fig. 5-9. The closer the source is to the surface

of the substrate, the worse the resulting beamwidth is. As with the substrate thickness

effect, this is due to the evanescent waves that are being transmitted. When the source is

located further away from the surface, the evanescent waves decay to a larger extent before
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emerging as propagating waves.
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Figure 5-8: Effect of substrate thickness with anisotropic substrates. Half-power beamwidth
at 14.0 GHz calculated for source embedded in the center of the substrate. Real parts
of permittivity and permeability are given as follows: A: εy = 0.01, µx = µz = 1 B:
εy = µx = µz = 0.01 C: εy = µx = 0.01, µz = 1 D: εy = µz = 0.01, µx = 1. For figure (b),
the imaginary component for each component is 0.05.
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Figure 5-9: Effect of source position within an anisotropic substrate. Half-power beamwidth
at 14.0 GHz calculated for a substrate that is 4 cm thick. Real parts of permittivity and
permeability are given as follows: A: εy = 0.01, µx = µz = 1 B: εy = µx = µz = 0.01 C:
εy = µx = 0.01, µz = 1 D: εy = µz = 0.01, µx = 1. For figure (b), the imaginary component
for each component is 0.05.
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5.4 Metamaterial substrates

In the previous section, the emphasis has been on achieving a small beamwidth at a single

frequency by adjusting the ground plane, the anisotropy of the substrate, and the geo-

metrical configuration. In this section, however, the emphasis will be on obtaining a good

beamwidth over a wideband. To this end, the Drude and Lorentz bulk media models will

be used to access the performance of an antenna system built with a source embedded

in a metamaterial based substrate. Both isotropic and anisotropic metamaterial models

will be considered. In addition, the trade-offs between bandwidth, beamwidth, and gain

performance will be addressed.

Metamaterial models

As discussed in the introduction, narrow beamwidths were achieved previously at a single

frequency by controlling only the substrate electrical properties. In order to achieve a

narrow beamwidth over a wideband, the approach taken here is to use a material that

exhibits both electric and magnetic properties. In particular, left-handed metamaterials,

which can be tuned to operate at specified frequencies through geometrical scaling will be

investigated.

As discussed in Chapter 3, typically left-handed metamaterials constructed using rods

and split-rings are characterized using the Drude [27] and Lorentz bulk media models [4]. In

this chapter, these models will be used for the permittivity and permeability, respectively.

Again, these relations are given by,

εr = 1−
ω2ep

ω2 + iγeω
(5.14)

and

µr = 1−
ω2mp − ω2mo

ω2 − ω2mo + iγmω
. (5.15)
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where ωep (ω = 2πf) and γe are the electric plasma and damping frequencies, and ωmo,

ωmp, and γm are the magnetic resonance, plasma, and damping frequencies, respectively.

One example of these models is shown in Fig. 5-10. For these particular parameters, it is

seen that the index of refraction will be approximately zero at fmp and fep, and remains

relatively small between these two frequencies.

As will be shown in the following examples, the index of refraction, and hence the

radiation properties of the substrate, can be tuned to yield narrow beamwidths over a

specified bandwidth. The extent of the bandwidth will determine the beamwidth sizes that

are achievable.
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Figure 5-10: Example of typical left-handed metamaterial dispersion models. Permittivity
is characterized by the Drude model: fp = 18 GHz, Γ = 0.5 GHz. Permeability is character-
ized by the Lorentz: fo = 14 GHz, fp = 16 GHz, Γ = 0.5 GHz. Note, damping frequencies
are exaggerated for the purposes of illustration.



204 Chapter 5. A wideband directive antenna using LH metamaterials

5.4.1 Isotropic substrates

Isotropic rods-only metamaterial

To begin, Fig. 5-11 shows the radiation pattern and corresponding corresponding beamwidth

and peak power for a substrate that is characterized by the bulk media model for a rods-only

metamaterial. The plasma frequency of the medium was chosen to be 13.5 GHz, which cor-

responds to a lattice constant of 6.045 mm × 5.8 mm [105]. Similar to the results reported

by Enoch et al in [100], it is found that the beamwidth is minimum at a frequency slightly

above the plasma frequency of the medium. Above the plasma frequency, as the index of re-

fraction increases, the main lobe diverges into two separate lobes (visible as the “U” shaped

pattern in Fig. 5-11(a) and Fig. 5-11(b)), thereby destroying the directivity properties of

the antenna system. Hence, a small beamwidth is only achieved over a relatively narrow

band, in this case between 13.5 GHz and 14 GHz, depending on the type of ground plane.

Isotropic rings-only metamaterial

The other component typically used in left-handed metamaterials is the split-ring resonator.

In Fig. 5-12, the radiation pattern and corresponding corresponding beamwidth and peak

power for a substrate that is characterized by the bulk media model for a rings-only meta-

material. The resonant and plasma frequencies of the medium were chosen to match those

found in [4] for concentric split-ring resonator design. From the radiation plots shown in

figures 5-12(a) and 5-12(b), it can be seen that region of good beamwidth is near the plasma

frequency of the medium, around 11 GHz. Above 11 GHz, the “U” shaped pattern that

appeared in the case of the rods-only medium is also present in this case, albeit the “U”

shape is much wider. The change in width can be attributed to the fact that just beyond

the plasma frequency, the permeability under the Lorentz medium model increases more

rapidly than under the Drude medium model.
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Figure 5-11: Antenna radiation properties for isotropic medium with a permittivity that
follows the Drude model with fep = 13.5 GHz and γe = 0.1 GHz, and a free-space perme-
ability. Slab is 4 cm thick and the source is equidistant from the ground plane and air-media
interface.
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Figure 5-12: Antenna radiation properties for isotropic medium with a free-space permit-
tivity, and a permeability that follows the Lorentz model with fmo = 10 GHz, fmp = 10.5
GHz, and γm = 0.1 GHz. Slab is 4 cm thick and the source is equidistant from the ground
plane and air-media interface.
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Isotropic rods and rings metamaterial

In the previous two cases, narrowband performance was achieved, and in order to get a

wider band of operation, the above two metamaterials can be combined. In the following

results, the permittivity and permeability follow the same Drude and Lorentz media mod-

els used for generating the previous two results. Fig. 5-13 shows the resulting radiation

pattern, beamwidth, and peak power. From the radiation patterns, it can be seen that the

combination has yielded a band of frequencies between the resonant and plasma frequency

of the rings for which the medium is left-handed. In this band, because of the large index of

refraction, the resulting beamwidth is relatively large. On the other hand, in constrast to

the rings-only medium, the band of frequencies (roughly 2 GHz) above the plasma frequency

of the rings and below the plasma frequency rods now has one main lobe centered about

θ = 0. Although in this case the beamwidth is now definable, it is rather large except near

the plasma frequency of the rods. Furthermore, the gain of the system in this frequency

range is smaller than the gain in the region of operation for the rods-only or rings-only

design.

In order to improve upon the previous results, it is important to note that one of

the problems hindering the performance is that the permeability varies rapidly near the

resonant frequency. In the above case, because the plasma frequency of the rings was so

close to the resonant frequency, the value of µ increased at such a rate that it product of µ

and ε remained relatively large. One simple approach to alleviate this situation would be to

decrease the plasma frequency of the rods to a value closer to the plasma frequency of the

rings; however, the bandwidth of the system would suffer. A better solution is to increase

the separation between the resonant and plasma frequency of the rings. By increasing the

separation, the rate at which the permeability changes would be lower allowing for a larger

band where the product of ε and µ is small. Such a case is considered in Fig. 5-14, where

the substrate is characterized as an isotropic medium with a permittivity that follows the

Drude model with fep = 15.0 GHz and γe = 0.1 GHz, and a permeability that follows the
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Figure 5-13: Antenna radiation properties for isotropic medium with a permittivity that
follows the Drude model with fep = 13.5 GHz and γe = 0.1 GHz, and a permeability that
follows the Lorentz model with fmo = 10.0 GHz, fmp = 10.5 GHz, and γm = 0.1 GHz. Slab
is 4 cm thick and the source is equidistant from the ground plane and air-media interface.



5.4. Metamaterial substrates 209

Lorentz model with fmo = 9.0 GHz, fmp = 13.0 GHz, and γm = 0.1 GHz. As can be seen,

in addition to achieving a lower beamwidth over a 2 GHz band, the gain of the system for

the frequencies of interest is larger compared to the results of Fig. 5-13.



210 Chapter 5. A wideband directive antenna using LH metamaterials

−60 −30 0 30 60
8

9

10

11

12

13

14

15

16

Angle (deg)

F
re

qu
en

cy
 (

G
H

z)

dBi

−25

−20

−15

−10

−5

0

5

10

15

(a) Radiation Pattern for PEC

−60 −30 0 30 60
8

9

10

11

12

13

14

15

16

Angle (deg)

F
re

qu
en

cy
 (

G
H

z)

dBi

−25

−20

−15

−10

−5

0

5

10

15

(b) Radiation Pattern for PMC

8 10 12 14 16
0

5

10

15

20

25

30

Frequency (GHz)

H
al

f−
P

ow
er

 B
ea

m
w

id
th

 (
de

g)

PEC ground plane
PMC ground plane

(c) Half-power beamwidth

8 10 12 14 16
−25

−20

−15

−10

−5

0

5

10

15

Frequency (GHz)

P
ea

k 
P

ow
er

 (
dB

)

PEC ground plane
PMC ground plane

(d) Peak power

Figure 5-14: Antenna radiation properties for isotropic medium with a permittivity that
follows the Drude model with fep = 15.0 GHz and γe = 0.1 GHz, and a permeability that
follows the Lorentz model with fmo = 9.0 GHz, fmp = 13.0 GHz, and γm = 0.1 GHz. Slab
is 4 cm thick and the source is equidistant from the ground plane and air-media interface.
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5.4.2 Anisotropic substrates

Each of the designs considered in the previous section, although considered to be isotropic,

can be approximately realized using a combination of rods and split-rings. Assuming the

source approximates a line source, the rods need only be oriented along the direction parallel

to the line source. However, to achieve the isotropic results, split-rings are needed in

two perpendicular directions. Experimentally, this 3D metamaterial has been built and

successfully measured to have isotropic-like left-handed properties for a single polarization.

The drawback of these designs is that they are often difficult to fabricate and sometimes lack

mechanical stability. A 2D design, in which rings and rods could be printed on individual

layers and stacked is considerably easier to fabricate and is more stable. As an added

benefit, as discussed in Section 5.3.2, it was seen that a certain class of anisotropic medium

achieves a better beamwidth than its isotropic counterpart. Hence, in this section, the

anisotropic counterparts of the metamaterial results presented in the previous section will

be examined.

The first geometry to consider is a 2D rings-only geometry in which the ẑẑ component

of the permeability tensor is characterized by the Lorentz medium model while the other

components remain equal to that of freespace. Fig. 5-15 shows the radiation pattern as-

suming the parameters of the ring design given in [4]. Comparing these results to those of

its isotropic counterpart shown in Fig. 5-12, the same general shape appears. However, the

gap between the resonant and plasma frequency is less apparent and the beamwidth in this

region is approximately ten to fifteen degrees smaller. In addition, the gain of the system

is higher; however, note that as will be seen in the following result, this additional gain is

not maintained when the rods are introduced. Regardless, the lower beamwidth of the 2D

ring design at its plasma frequency gives hope that an overall better beamwidth over a wide

band can be achieved.

As in the previous section, in order to improve upon the previous results, it is necessary

to increase the separation between the resonant and plasma frequency of the rings. By
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Figure 5-15: Antenna radiation properties for isotropic medium with a free-space per-
mittivity, and an anisotropic (µz only) permeability that follows the Lorentz model with
fmo = 10.0 GHz, fmp = 10.5 GHz, and γm = 0.1 GHz. Slab is 4 cm thick and the source is
equidistant from the ground plane and air-media interface.
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adopting the same parameters used for the Drude and Lorentz media models in Fig. 5-14,

the radiation pattern of the 2D counterpart of that 3D design is calculated and shown in

Fig. 5-16. As with the 3D design, the band of operation is shifted to be between 13 GHz

and 15 GHz. While the resulting beamwidth has improved by approximately 5◦, it is done

so at the expense of gain.

It should be noted that the gain can be improved by effectively reducing the bandwidth

of the system. Other slight improvements could be achieved by reducing the inherent loss of

the rings and rods by lowering the damping frequency. Still, in all cases, there is a trade-off

between bandwidth and gain. In addition to the improved beamwidth of the 2D design, it

is also a much simpler design to fabricate.
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Figure 5-16: Antenna radiation properties for anisotropic medium with a permittivity (εy)
that follows the Drude model with fep = 15.0 GHz and γe = 0.1 GHz, and a permeability
(µz) that follows the Lorentz model with fmo = 9.0 GHz, fep = 13.0 GHz, and γm = 0.1
GHz. Slab is 4 cm thick and the source is equidistant from the ground plane and air-media
interface.
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5.5 Summary

In this chapter, the application of metamaterials in the design of a light-weight directive

antenna substrate has been studied. It was seen that by Snell’s law, if a source is embedded

in a substrate that has a small index of refraction compared to air, its source rays will be

transmitted near the normal of the substrate. In the past, antennas have been designed

using this concept; however, they have been limited to narrowband operation. However, it

was shown here that the use of left-handed metamaterials, which have frequency dispersive

magnetic and electric properties, can be used to design a wideband directive antenna. The

higher bandwidth results from the flexibility of achieving an index of refraction that is

exactly zero at the plasma frequency of the rods and at the plasma frequency of the rings.

The extent of the bandwidth will be approximately the frequency separation between the

two plasma frequencies. Furthermore, the role that anisotropy can play in controlling the

beamwidth was discussed. It was shown that certain anisotropic metamaterials, which

in practice are simpler to fabricate, will actually perform better in terms of beamwidth

than their isotropic counterparts. Finally, some of the performance trade-offs between

beamwidth, gain, and substrate thickness were discussed.
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Chapter 6

Conclusion

In this thesis, the theory and application of left-handed materials has been investigated.

Theoretically, two approaches have been taken to understand these materials: macroscopic

and microscopic. In the macroscopic approach, effective permittivities and permeabilities

were used to study such phenomena as propagation, radiation, and scattering from what

was termed left-handed media. While this approach yielded many valuable insights in the

fundamental phenomena and potential applications, it did not teach us how to physically

realize material with such properties. This is where the microscopic approach came into

play. In this approach, the physically realizable metamaterials that have been shown to

exhibit left-handed properties were modeled using exact numerical electromagnetic solvers.

The motivation for using both of these approaches was to try to develop a more complete

understanding of left-handed materials.

In chapter 2, the propagation, radiation, and scattering properties of homogeneous left-

handed media were examined. Propagation was studied by analyzing the transmission of a

multi-frequency signal from a right-handed medium into a frequency dispersive left-handed

medium. The radiation properties of left-handed media were studied by examining in detail

the perfect lens concept originally proposed by Pendry [25]. Next, as an example of the

scattering properties of left-handed media, the scattering by spheres composed of LH media

217
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was investigated. Finally, as was pointed out more specifically in chapter 3, most current

metamaterials designs are anisotropic, and so in the final section, some of the basic principles

of propagation and scattering from planarly layered anisotropic media were considered.

Although in each of these studies, the basic analytic tools used, such as Green’s function

analysis and Mie theory, are already known in the field, it was necessary to re-derive their

formulations for the specific case of left-handed media in order to understand the conse-

quences of simultaneous negative permittivity and permeability. As shown in this thesis,

many of the usual intuitive principles used in electromagnetics are actually reversed in the

case of left-handed media.

Because of some of these non-intuitive principles, the theoretical existence of some of the

left-handed properties, such as a negative index of refraction, were disputed. As discussed

in chapter 2, the authors of [19] claimed that dispersion and causality constraints prohibited

waves from refracting at negative angles. However, as was shown, this confusion came about

due to the generation of an interference pattern whose apparent direction of propagation was

different from the actual direction of power flow. While the theory presented in this thesis

gave an explanation for this confusion, many in the field have demanded more experimental

proof of left-handed behavior.

Because homogeneous left-handed media, such as those studied in this thesis, do not

exist, one must turn to left-handed metamaterials for an experimental demonstration. Such

a demonstration was performed at a recent DARPA workshop of metamaterials by S. Schultz

of the University of California at San Diego. In his demonstration, Schultz used a prism

shaped block of a metamaterial, previously shown to have left-handed properties for at least

one frequency, to refract a microwave beam that had been modulated by a audio signal. The

receiving antenna was placed at an angle that corresponded to a negative index of refraction.

Now if the receiving antenna is able to properly receive the audio signal, which has non-zero

bandwidth (approximately 45 MHz), then the experiment would show that dispersion does

not prohibit left-handed behavior. Fortunately, in agreement with theoretical results, the

entire bandwidth of the audio signal was refracted in a left-handed manner.
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Whereas in Chapter 2, homogeneous left-handed media were explored, Chapter 3, in-

vestigated the physical realization of LH media in terms of metamaterials. In order to

understand the physical mechanisms and to be able to characterize metamaterials, a few

different tools were implemented. With each of these tools, the metamaterials in a slab con-

figuration were numerical modeled by using periodic finite difference-time domain (FD-TD)

or the method of moments (MoM).

Before beginning with the numerical characterization tools, the analytical models for the

effective permittivity and permeability were presented. The Drude and Lorentz models were

introduced as typical examples of how to characterize the dispersion of the metamaterials.

Generally, the rods were modeled using a Drude medium while the split-ring resonators

were modeled by a Lorentz medium. Using numerical simulations, it was shown that the

rods generally behaved according to the analytic models while the rings only compared

favorably to their analytic model near the resonance, although it was found that the S-

parameter results of the adjacent ring design more closely matched those predicted by its

analytic theory.

Next, the nature of the field distribution within the vicinity of the metamaterial was

explored by separately embedding the rods and SRR in background homogeneous plasma

media and looking for left-handed properties. In the case of the rods, it was found, in

agreement with the theoretical prediction in reference [20], that the space immediately

surrounding the rods cannot not be a negative permeability medium. Transmission and

eventual confirmation of left-handed properties were only found once the magnetic plasma

immediately surrounding the rods was removed. Similarly, in the case of the SRR, it was

found that the background plasma in between the regions of strong capacitance needed

to be removed in order for the hybrid metamaterial-homogeneous material to behave in a

left-handed manner. These effects can be explained by noting that a negative permittivity

converts capacitative effects into inductive effects whereas a negative permeability converts

inductive effects into capacitative effects. By removing the homogeneous background plasma

in these key areas, the negative permittivity of the rods and the negative permeability of
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the rings was restored.

Despite the advantages of using the hybrid approach to understand the behavior of the

rods and SRRs, it is of course necessary to combine the two to show that together they

do indeed operate as a left-handed metamaterial. In addition to numerical simulations, it

is important to have experimental proof of left-handed behavior. Because it is impractical

to measure the field inside the metamaterial, the method of retrieving the permittivity

and permeability from the complex S-parameters was studied. The idea of characterizing

materials based on their S-parameters is of course not a new concept and has been studied

in the past. However, in the case of left-handed metamaterials composed of rods and SRRs,

the retrieval is complicated by the resonant behavior of the metamaterials for two reasons.

First, the resonant behavior makes it difficult to accurately calculate the S-parameters,

which in turn because of the sensitivity of the method makes it difficult to determine the

permittivity and permeability. Second, the resonant behavior made it difficult to determine

the correct branch cut for use in calculation of the real part of the index of refraction.

Still, as seen in the final example of the adjacent ring with rods design, by using a

combination of the phase-tracking and retrieval method, a better estimation of the actual

material parameters can be obtained. The phase-tracking method allows one to obtain an

estimate of the value of the real part of the index of refraction, while the retrieval from S-

parameter method allows a more precise calculation of the index refraction. The ambiguity

of the branch cut choice was reduced by utilizing the phase-tracking results.

Finally, in the last two chapters, two potential applications of left-handed metamaterials

were explored. The first application considered was how to use left-handed metamaterials

as radar absorbers. The motivation behind this work was to investigate the potential

benefits of being able to design an absorber with materials that have negative permittivity

and/or negative permeability. In designing the coatings, a genetic algorithm optimization

method was used to determine the parameters of the Drude and Lorentz models, which

were used to characterize the current generation of left-handed metamaterials. For single

frequency applications, it was found that there is no advantages to using right-handed
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versus left-handed materials. On the other hand, for wideband applications, it seen that the

sharp resonance of the Lorentz models limits the maximum bandwidth achievable. Despite

these drawbacks, metamaterials do have the advantage of being light-weight and frequency

tunable. Thus, for applications requiring light-weight coatings, left-handed metamaterials

offer a viable alternative.

The second application investigated was the use metamaterials in the design of a light-

weight directive antenna substrate. It is well known that by Snell’s law, if a source is

embedded in a substrate that has a small index of refraction compared to air, its source rays

are transmitted near the normal of the substrate. It was shown in Chapter 5 that left-handed

metamaterials, which possess frequency dispersive magnetic and electric properties, can be

used to design a wideband directive antenna. It was also seen that the role that anisotropy

plays in controlling the beamwidth is very important. It was shown that certain anisotropic

metamaterials, which in practice are simpler to fabricate, will actually perform better in

terms of beamwidth than their isotropic counterparts. In conjunction, the performance

trade-offs between beamwidth, gain, and substrate thickness were discussed. Although not

discussed in great detail, the fact that metamaterials are extremely light-weight is actually

one of the most significant advantages of using metamaterials in new antenna designs. These

types of antennas would be useful for example in space-based applications where weight is

very crucial.

Future work includes further study of the effects of different numbers of layers on the

overall effective permittivity and permeability of a given metamaterial. Future experimen-

tal work includes producing a solid-state version of left-handed metamaterials. This would

enable its applicability to a much wider range of applications. For example, realistic radar

absorber applications require the ability to make very thin layers of a specific thickness.

Unfortunately, current metamaterials are very bulky, and are therefore not directly applica-

ble to this field. Other work includes further study of the periodic nature of metamaterials.

Is the periodicity an essential feature? Can isotropic left-handed materials be designed by

using a random collection of some unit design much in the same way chiral materials were
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realized? In general, in the opinion of the author, in order for metamaterials to become more

commonplace in modern engineering applications, stable and robust designs are needed.



Bibliography

[1] V. G. Veselago. The electrodynamics of substances with simultaneously negative

values of ε and µ. Sov. Phys. Usp., 10:509, 1968.

[2] J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs. Extremely low frequency

plasmons in metallic mesostructures. Phys. Rev. Lett., 76:4773, 1996.

[3] J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart. Magnetism from

conductors and enhanced nonlinear phenomena. IEEE Trans. Microwave Theory

Tech., 47:2075, 1999.

[4] R. A. Shelby, D. R. Smith, and S. Schultz. Experimental verification of a negative

index of refraction. Science, 77:292, 2001.

[5] D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz. Composite

medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett.,

84:4184, 2000.

[6] J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart. Low frequency plasmons

in thin-wire structures. Journal of Physics: Condensed Matter, 10:4785–4809, 1998.

[7] P. Gay-Balmaz and O. J. F. Martin. Electromagnetic resonances in individual and

coupled split-ring resonators. J. Appl. Phys., 92(5):2929–2936, 2002.

[8] P. Gay-Balmaz and O. J. F. Martin. Efficient isotropic magnetic resonators. Appl.

Phys. Lett., 81(5):939–941, 2002.

223



[9] J. B. Pendry and S. O’Brien. Very-low-frequency magnetic plasma. Journal of Physics:

Condensed Matter, 14:7409–7416, 2002.

[10] S. O’Brien and J. B. Pendry. Magnetic activity at infrared frequencies in structured

metallic photonic crystals. Journal of Physics: Condensed Matter, 14:6383–6394,

2002.

[11] R. Marques, F. Medina, and R. Rafii-El-Idrissi. Role of bianisotropy in negative

permeability and left-handed metamaterials. Phys. Rev. B, 65:144440, 2002.

[12] R. Marques, F. Medina, and R. Rafii-El-Idrissi. Comparative analysis of edge- and

broadside- coupled split ring resonators for metamaterial design – theory and ex-

periements. IEEE Trans. Antennas Propagat., 51(10):2572–81, 2003.

[13] C. R. Simovski and S. L. He. Frequency range and explicit expressions for negative

permittivity and permeability for an isotropic medium formed by a lattice of perfectly

conducting omega particles. Phys. Lett. A, 311:254, 2003.

[14] M. M. I. Saadoun and N. Engheta. A reciprocal phase shifter using novel pseudochirla

or Omega medium. Microwave Opt. Technol. Lett., 5(4):184–188, 1992.

[15] R. A. Shelby, D. R. Smith, S. C. Nemat-Nasser, and S. Schultz. Microwave trans-

mission through a two-dimensional, isotropic, left-handed metamaterial. Appl. Phys.

Lett., 78(4):489, 2001.

[16] D. R. Smith, D. C. Vier, N. Kroll, and S. Schultz. Direct calculation of permeability

and permittivity for a left-handed metamaterial. Appl. Phys. Lett., 77:2246, 2000.

[17] D. R. Smith and N. Kroll. Negative refractive index in left-handed materials. Phys.

Rev. Lett., 85:2933, 2000.

[18] N. Garcia and M. Nieto-Vesperinas. Is there an experimental verification of a negative

index of refraction yet? Optics Letters, 27:885, 2002.

224



[19] P. M. Valanju, R. M. Walser, and A. P. Valanju. Wave refraction in negative-index

media: Always positive and very inhomogeneous. Phys. Rev. Lett., 88:187401, 2002.

[20] A. L. Pokrovsky and A. L. Efros. Electrodynamics of metallic photonic crystals and

the problem of left-handed materials. Phys. Rev. Lett., 89:093901, 2002.

[21] N. Garcia and M. Nieto-Vesperinas. Left-handed materials do not make a perfect

lens. Phys. Rev. Lett., 88:207403, 2002.

[22] D. R. Smith, D. Schurig, and J. B. Pendry. Negative refraction of modulated electro-

magnetic waves. Appl. Phys. Lett., 81(15):2713–2715, 2002.

[23] J. Pacheco, T. M. Grzegorczyk, B.-I. Wu, Y. Zhang, and J. A. Kong. Power propa-

gation in homogeneous isotropic frequency dispersive left-handed media. Phys. Rev.

Lett., 89:257401, 2002.

[24] S. Foteinopoulou, E. N. Economou, and C. M. Soukoulis. Refraction in media with a

negative refractive index. Phys. Rev. Lett., 90:107402, 2003.

[25] J. B. Pendry. Negative refraction makes a perfect lens. Phys. Rev. Lett., 85:3966,

2000.

[26] G. Gomez-Santos. Universal features of the time evolution of evanescent modes in a

left-handed perfect lens. Phys. Rev. Lett., 90:077401, 2003.

[27] R. Ziolkowski and E. Heyman. Wave propagation in media having negative permit-

tivity and permeability. Phys. Rev. E, 64:056625, 2001.

[28] J. Pacheco, C. D. Moss, B.-I. Wu, T. M. Grzegorczyk, Y. Zhang, and J. A. Kong.

Theoretical and numerical simulations of propagation through left-handed materials.

In PIERS, page 359, 2002.

[29] N. Fang and X. Zhang. Imaging properties of a metamaterial superlens. Appl. Phys.

Lett., 82:161, 2003.

225



[30] S. Anantha Ramakrishna, J. B. Pendry, D. Schurig, D. R. Smith, and S. Schultz. The

asymmetric lossy near-perfect lens. Journal of Modern Optics, 49(10):1747–1762,

2002.

[31] K. Li, J. McLean, R. B. Greegor, C. G Parazzoli, and M. Tanielian. Free-space focused-

beam characterization of left-handed materials. Appl. Phys. Lett., 82(15):2535–2537,

2003.

[32] C. G Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian. Exper-

imental verification and simulation of negative index of refraction using Snell’s law.

Phys. Rev. Lett., 90:107401, 2003.

[33] A. A. Houck, J. B. Brock, and I. L. Chuang. Experimental observations of a left-

handed material that obeys Snell’s law. Phys. Rev. Lett., 90:137401, 2003.

[34] L. Ran, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong. Experimental

verification of NRI properties of various Rods/SRRs configurations. In PIERS, page

252, Singapore, January 2003.

[35] J. A. Kong, B.-I. Wu, and Y. Zhang. Lateral displacement of a Gaussian beam

reflected from a grounded slab with negative permittivity and permeability. Appl.

Phys. Lett., 80:2084, 2002.

[36] J. A. Kong, B.-I. Wu, and Y. Zhang. A unique lateral displacement of a Gaussian beam

transmitted through a slab with negative permittivity and permeability. Microwave

Opt. Technol. Lett., 33(2):136–139, April 2002.

[37] C. Caloz, C.-C. Chang, and T. Itoh. Full-wave verification of the fundamental proper-

ties of left-handed materials in waveguide configurations. J. Appl. Phys., 90(11):5483–

5486, 2001.

[38] J. Gerardin and A. Lakhtakia. Negative index of refraction and distributed Bragg

reflectors. Microwave Opt. Technol. Lett., 34(6):409–411, 2002.

226



[39] R. W. Ziolkowski. Double negative metamaterial design, experiments, and applica-

tions. In IEEE Antennas Propagat. Int. Symp., volume 1, pages 396–9, June 2002.

[40] R. B. Greegor, C. G Parazzoli, K. Li, and M. Tanielian. Origin of dissipative losses

in negative index of refraction materials. Appl. Phys. Lett., 82(14):2356–2358, 2003.

[41] G. V. Eleftheriades, A. K. Iyer, A. Grbic, and O. Siddiqui. Negative refractive index

metamaterials based on L-C loaded transmission lines. In PIERS, page 354, 2002.

[42] I. S. Nefedov and S. A. Tretyakov. Theoretical study of waveguiding structures con-

taining backward-wave materials. In URSI XXVIIth General Assembly, page 1074,

August 2002.

[43] A. K. Iyer and G. V. Eleftheriades. Negative refractive index metamaterials supporting

2-D waves. In IEEE MTT-S Int. Microwave Symp. Digest, volume 2, pages 1067–1070,

June 2002.

[44] A. Grbic and G. V. Eleftheriades. Growing evanescent waves in negative-refractive-

index transmission-line media. Appl. Phys. Lett., 82(12):1815–17, 2003.

[45] A. Grbic and G. V. Eleftheriades. Experimental verification of backward-wave radia-

tion from a negative refractive index metamaterial. J. Appl. Phys., 92(10):5930–5935,

2002.

[46] G. V. Eleftheriades, A. K. Iyer, and P. C. Kremer. Planar negative refractive in-

dex media using periodically L-C loaded transmission lines. IEEE Trans. Microwave

Theory Tech., 50(12):2702–2712, 2002.

[47] M. Notomi. Theory of light propagation in strongly modulated photonic crystals:

Refraction like behavior in the vicinity of the photonic band gap. Phys. Rev. B,

62:10696, 2000.

[48] C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry. All-angle negative

refraction without negative effective index. Phys. Rev. B, 65:201104, 2002.

227



[49] G. Shvets. Photonic approach to making a material with a negative index of refraction.

Phys. Rev. B, 67:035109, 2003.

[50] J. D. Joannopoulos, R. D. Meade, and J. N. Winn. Photonic Crystals: Molding the

Flow of Light. Princeton University Press, Princeton, New Jersey, 1995.

[51] J. B. Pendry and S. Anantha Ramakrishna. Near-field lenses in two dimensions.

Journal of Physics: Condensed Matter, 14:8463–8479, 2002.

[52] I. V. Lindell, S. A. Tretyakov, K. I. Nikoskinen, and S. Ilvonen. BW media–media

with negative parameters, capable of supporting backward waves. Microwave Opt.

Technol. Lett., 31(2):129–133, 2001.

[53] B.-I. Wu, T. M. Grzegorczyk, Y. Zhang, and J. A. Kong. Guided modes with imag-

inary transverse wave number in a slab waveguide with negative permittivity and

permeability. J. Appl. Phys., 93(11):9386–9388, 2003.

[54] J. Lu, T. M. Grzegorczyk, Y. Zhang, J. Pacheco, B.-I. Wu, and J. A. Kong. Čerenkov
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