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Abstracts 

 
 

Chapter 1:  Complexes obtained by electrophilic attack on a dinitrogen-derived terminal 
molybdenum nitride:  Electronic structure analysis by solid state CP/MAS 15N NMR in 
combination with DFT calculations 
 

15N Solid state CP/MAS NMR spectroscopy has been used to study a dinitrogen-
derived terminal nitride of molybdenum, 15NMo(N[tBu]Ar)3 (Ar = 3,5-C6H3(CH3)2).  A 
number of Lewis acid adducts, including X3E–NMo(N[tBu]Ar)3 (X = F, E = B; X = Cl, E 
= B, Al, Ga, In; X= Br, E = Al; X = I, E = Al) and Cl2E–NMo(N[tBu]Ar)3 (E = Ge, Sn), 
were prepared by the combination of 15NMo(N[tBu]Ar)3 with 1 equiv. of Lewis acid.  A 
series of cationic imido complexes, [RNMo(N[tBu]Ar)3]X was prepared by the reaction 
of electrophiles, RX [R = CH3, X = I; R = PhC(O) or Me3Si, X = OTf (OTf = SO3CF3)], 
with NMo(N[tBu]Ar)3.  Deprotonation of [CH3NMo(N[tBu]Ar)3]I by LiN(SiMe3)2 
afforded the ketimide complex H2CNMo(N[tBu]Ar)3, which has been shown to undergo a 
reaction with neat CH3I to form [CH3CH2NMo(N[tBu]Ar)3]I.  15N solid state CP/MAS 
NMR spectroscopy was employed in the characterization of each complex.  
Complementary density functional theory (DFT) studies of 15NMo(N[tBu]Ar)3 and 
derivatives enabled a detailed examination of the experimental solid state NMR 
parameters in terms of electronic structure at the labeled N-atom.  Computational analysis 
demonstrated that significant paramagnetic contributions to the perpendicular 
components of the chemical shielding tensor (δ11 and δ22) were responsible for the huge 
span of the tensor measured for 15NMo(N[tBu]Ar)3 (Ω = 1186 ppm).  Perturbation of the 
electronic structure in 15NMo(N[tBu]Ar)3 upon coordination of a Lewis acid or formation 
of a cationic imido complex was attributed to stabilization of a σ-symmetric orbital.  An 
upfield shift in the perpendicular components of the chemical shift tensor results from the 
reduced paramagnetic contribution to these tensor components upon increasing the 
energy gap between the magnetically-coupled occupied and virtual orbitals (eocc−evir). 
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Chapter 2.  Carbene chemistry in the activation of a dinitrogen-derived terminal nitride 
of molybdenum 
 

The potential for metal-nitride bond activation by the addition of an electrophilic 
carbene to a dinitrogen-derived terminal nitride of molybdenum NMo(N[tBu]Ar)3 has 
been investigated.  Two methods for the generation of dihalocarbenes (CCl2 and CFCl) 
have been studied.  The reaction of NMo(N[tBu]Ar)3 with TiCl4·THF2, LiAlH4 and 
haloform (CCl4 or CFCl3) resulted in the 74-76% conversion of NMo(N[tBu]Ar)3 to 
products (measured by 1H NMR spectroscopy versus an internal standard).  Two new 
molybdenum-containing products (one paramagnetic and one diamagnetic) were present 
in solution.  The paramagnetic product, formed in 24-26% yield, was identified as 
Cl−Mo(N[tBu]Ar)3.  The identity of the diamagnetic product (A) has not been 
established.  The titanium-mediated reduction of halocarbons CRX3 (X = Cl, R = CH3, 
Ph) in the generation of alkyl (or aryl) substituted halocarbenes CRX was also 
investigated.  The reaction of NMo(N[tBu]Ar)3 with TiCl4·THF2, LiAlH4 and CRCl3 (R = 
Ph, CH3) resulted in the formation and isolation of Cl−Mo(N[tBu]Ar)3 in 23-24% yield.  
The organic nitrogen-containing products could not be isolated.  The in situ reduction of 
PhCN to PhCH2NH2 (or CH3CN to CH3CH2NH2) is expected to be at least one of the 
decomposition routes of the N2-derived organic product.  The second method of 
dichlorocarbene generation involves the thermal extrusion of CCl2 from the Seyferth 
reagent PhHgCCl2Br.  The thermolysis of PhHgCCl2Br in the presence of 
NMo(N[tBu]Ar)3 was monitored by 1H NMR spectroscopy.  This reaction is also thought 
to generate Cl−Mo(N[tBu]Ar)3, which in the presence of PhHgCCl2Br undergoes a rapid 
reaction to form a number of unidentified diamagnetic products.  The fate of the N2-
derived organic product was not determined. Finally, conditions for the one-electron 
reduction of Cl−Mo(N[tBu]Ar)3 have been optimized in order to enable the regeneration 
of Mo(N[tBu]Ar)3. 

 
 
Chapter 3.  Nitrogen atom transfer from dinitrogen into an organic nitrile via the anionic 
ketimide complex (THF)2Mg[O(Ph)C15NMo(N[tBu]Ar)3]2 
 

Nitrogen atom transfer from a dinitrogen-derived terminal nitride of molybdenum 
15NMo(N[tBu]Ar)3 (1) into an organic nitrile has been demonstrated.  Synthesis of the 
benzoylimido complex [PhC(O)15NMo(N[tBu]Ar)3]OTf [2]OTf is achieved via reaction 
of complex 1 with benzoyl triflate.  Subsequent two-electron reduction of [2]OTf, 
provides the anionic ketimide complex (THF)2Mg[O(Ph)C15NMo(N[tBu]Ar)3]2 
[3]2Mg(THF)2 in high yield.  Reactions of [3]2Mg(THF)2 with RMe2Si−OTf enabled 
isolation of the molybdenum(IV) ketimide complexes RMe2SiO(Ph)CNMo(N[tBu]Ar)3 
(4a R = Me; 4b R = tBu).  Reactions of [3]2Mg(THF)2 with benzoyl triflate or 
trifluoroacetic anhydride resulted in the syntheses of molybdenum(IV) complexes 
RO−Mo(N[tBu]Ar)3 (6a R = PhCO; 6b R = CF3CO) together with the concomitant 
formation of one equivalent PhCN15.  Selective 15N-labeling of benzonitrile was 
demonstrated unequivocally by the combined use of 15N solution NMR studies and GC-
MS measurements. 
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Complexes obtained by electrophilic attack on a dinitrogen-derived 

terminal molybdenum nitride:  Electronic structure analysis by solid 

state CP/MAS 15N NMR in combination with DFT calculations 
 
 
1.1  Introduction 
 

The use of isotopic labeling of compounds with 15N to probe their structure and 

bonding by means of solid state NMR spectroscopy is most commonly seen in biological 

systems and organic molecules.
1−9  In contrast, solid state NMR spectroscopy of spin-active nuclei in transition 

metal complexes has been underutilized.10−16  The isotropic chemical shift value 

determined in solution NMR measurements is the most reported spectroscopic parameter, 

but a wealth of additional information may be gained through the acquisition of solid 

state NMR spectra.17,18  The use of 31P solid state NMR spectroscopy to probe the 

structure and bonding in a terminal molybdenum phosphide, PMo(N[tBu]Ar)3 (Ar = 3,5-

C6H3(CH3)2) was reported previously.19  The significant anisotropy of the 31P chemical 

shift tensor and the enormous paramagnetic deshielding of the 31P nucleus when the 

applied field is oriented perpendicular to the Mo−P triple bond were explained in terms of 

the magnetic coupling of filled and vacant molecular orbitals. 

 

Herein we extend our study of structure and bonding through the use of solid state 

NMR spectroscopy to the analogous terminal nitride of molybdenum, NMo(N[tBu]Ar)3 

(1).20  The splitting of dinitrogen by a three-coordinate molybdenum(III) complex 

Mo(N[tBu]Ar)3 (Ar = 3,5-C6H3(CH3)2) was first reported in 1995.21  The 15N-labeled 

form of 1, 15NMo(N[tBu]Ar)3 is readily prepared through the use of 15N-isotopically-

enriched dinitrogen gas, thereby making this complex amenable to study by 15N NMR 

spectroscopy.22  The potential of 1 to serve as a platform in N-atom transfer chemistry is 

currently under investigation in our laboratories.  It is of interest to determine what 

insight solid state NMR spectroscopy can provide into the electronic structure for a 

molybdenum complex which is activated toward productive removal of the dinitrogen-
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derived N-atom into an organic product.  The synthesis of several derivatives of 1 and 

subsequent measurement of their 15N solid state CP/MAS NMR spectra are described. 

Complementary density functional theory analyses of 1 and its derivatives were 

completed utilizing a simplified ligand framework (NH2 ligands replacing N[tBu]Ar).  

DFT permits a detailed analysis of experimental solid state NMR parameters (δ11, δ22 and 

δ33) via calculation of the absolute shielding tensors23−27 together with correlation to 

calculated molecular orbitals.  The validity of our analyses of electronic structure may be 

assessed by comparison of the experimental tensor values with those determined 

computationally. 

 

1.2  Results and Discussion 
  

1.2.1  Synthesis and Characterization 

 

The first reported synthesis of NMo(N[tBu]Ar)3 (1) from Mo(N[tBu]Ar)3 required 

a 3 d incubation period at −35 °C during which time N2 uptake takes place.20  Subsequent 

work focusing on the redox-catalyzed binding and splitting of dinitrogen by 

Mo(N[tBu]Ar)3 has led to the development of a more efficient route to the terminal 

nitride 1.28  Most recently, Lewis bases were found to accelerate the uptake of N2 by 

Mo(N[tBu]Ar)3 enabling its quantitative conversion to 1 within 24 h.  Potassium hydride 

(10 equiv. in THF) was found to be the most efficient base for effecting this conversion 

(Figure 1).29  

 

MoArtBuN
NtBuAr

NtBuAr
Mo

ArtBuN
NtBuAr
NtBuAr

NN2 (1 atm)

10 eq KH
THF / 24 h

1   
 

Figure 1.  Formation of complex 1 via the base-catalyzed cleavage of dinitrogen. 
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Furthermore, the ease of separation of KH from the pentane soluble product (1) by 

filtration makes this route particularly attractive.  Complete characterization for complex 

1 was reported previously.  We will however make note of the 15N solution NMR shift of 

1 (840 ppm) for comparison with values reported in the following discussions.  While 

complex 1 has eluded characterization by single crystal X-ray diffraction, the structure of 

a related compound, NMo(N[tBu]Ph)3,20 is pseudo tetrahedral with the Mo≡N bond 

aligned with a crystallographic C3 axis. 

 

A number of neutral Lewis acid adducts of formula X3E–NMo(N[tBu]Ar)3 (X = F, 

E = B: X = Cl, E = B, Al, Ga, In; X= Br, E = Al; X = I, E = Al) and Cl2E–

NMo(N[tBu]Ar)3 (E = Ge, Sn), were prepared by simple combination of 1 with 1 equiv. 

of Lewis acid (Figure 2).  Yields were generally quite high and in the range of 59 to 91%.  

These adducts were typically bright yellow, or sometimes pale orange, exhibiting limited 

solubility in pentane, benzene and Et2O.  The decomposition of these adducts to starting 

materials was observed in 0.5-3 h in THF solution at 25 °C. 

 

X
Mo

ArtBuN
NtBuAr

NtBuAr

N

R
RX

Mo
ArtBuN

NtBuAr
NtBuAr

N

LA

1
[2a]I:     R = CH3       X = I         92%
[2b]OTf: R = Me3Si    X = OTf    89%
[2c]OTf: R = PhC(O)  X = OTf   72%

LA

Et2O/pentane
Yield = 59-91%

21-LA
 

Figure 2.  Syntheses of 1-LA and the cationic imido complexes [2a]I, [2b]OTf and 

[2c]OTf. 

 

Infrared spectroscopy yielded little information with regard to the strength of the 

Mo–N or N–LA (LA = Lewis acid) interactions as a result of strong absorptions 

(attributed to the amide ligands) in the relevant regions of the spectrum. 

 

A feature observed in the 1H NMR spectrum of all complexes 1-LA was 

significant broadening of the ~5.6 ppm resonance assigned to the six ortho protons of the 
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N[tBu]Ar ligands.  This broadening is attributed to hindered rotation about the Mo–Namide 

bond due to increased steric congestion at the metal center. 

 

As expected, the 11B isotropic chemical shift for 1-BF3 (−2.8 ppm) and 1-BCl3 

(3.9 ppm) showed an upfield shift of each resonance with respect to the uncoordinated 

Lewis acid (BF3 = 10.0 ppm, BCl3 = 46.5 ppm).30  A similar upfield shift of the 27Al 

resonance, with respect to the uncoordinated Lewis acid, was observed for the complexes 

1-AlCl3, 1-AlBr3 and 1-AlI3.31 

 

The 119Sn NMR spectrum of 1-SnCl2 displayed a broad singlet at 333 ppm, which 

is shifted downfield of the resonance for SnCl2 in THF solution (236 ppm).32  This 

phenomenon might be explained based on molecular orbital considerations.  Magnetic 

coupling of the tin molecular orbital, which contains the non-bonding lone pair of 

electrons and the unoccupied σ*(N−Sn) molecular orbital supplements the paramagnetic 

contribution to the chemical shift tensor of tin.  The paramagnetic contribution to the 

chemical shift of tin is increased in 1-SnCl2 compared to the solvated Lewis acid (1-

SnCl2·THF) due to a reduced energy gap between the magnetically-coupled virtual and 

occupied orbitals.  The 119Sn resonance for 1-SnCl2 compares with other SnCl2·N-donor 

complexes such as SnCl2·pyridine in which the 119Sn resonance occurs at 295 ppm.33 

 

In the 27Al, 11B and 119Sn NMR spectra of 15N-1-BX3, 15N-1-AlX3 and 15N-1-

SnCl2, coupling of the two spin active nuclei (e.g. 15N−27Al) could not be resolved.  In 

each case the resonance for the spin-active Lewis acid center was broadened upon 

coordination to 15N-1 (e.g. 11B NMR: 14N-1-BCl3 ν½ = 16.5 Hz; 15N-1-BCl3 ν½ = 36.6 

Hz).  Likewise, the 15N solution NMR spectrum measured for 15N-1-BF3 displayed only a 

broad singlet at 592 ppm.  This value is shifted upfield quite considerably (248 ppm) with 

respect to 15N-1. 

 

Crystallographic characterization of 1-BF3 confirmed the formation of a σ-bond 

through donation of the terminal nitride N-lone pair into the vacant p-orbital on the Lewis 

acidic boron center (Figure 3).34  The N−B bond distance of 1.609(7) Å is similar to those 
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reported in the literature for other Lewis acid adducts of nitridometal complexes.35−37  

Complex 1-BF3 crystallized in the space group P−1 with the B−F bonds of the Lewis 

acid staggered with respect to the Mo−Namide bonds. The Mo≡N bond length (1.678(4) Å) 

in 1-BF3 was identical (to within 3σ) to the Mo≡N bond in NMo(N[tBu]Ph)3 and, as 

expected, the Mo−N−B bond angle was nearly linear (177.6(4)°). 

 

 
 

Figure 3.  ORTEP representation of 1-BF3 with thermal ellipsoids at the 35% probability 

level.  A single CH2Cl2 solvent molecule of crystallization has been omitted for clarity. 

 

Complexes 1-GeCl2 and 1-SnCl2 were found (by X-ray crystallography) to be 

isomorphic (Figure 4).  To the best of our knowledge, complexes 1-GeCl2 and 1-SnCl2 

represent the first examples of coordination at the terminally bound nitrogen in a 

nitridometal complex by a divalent germanium or tin halide38,39.  Upon addition of 

GeCl2·dioxane or SnCl2 to 1, simple Lewis acid adducts analogous to those of the Group 

13 1-LA complexes were formed.  Complexes 1-GeCl2 and 1-SnCl2 were characterized 
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by Mo≡N bond lengths of ca. 1.70 Å and N−Ge (or N−Sn) bond lengths typical of single 

bonds. 

 
 

Figure 4.  35% thermal ellipsoid (ORTEP) representations of 1-GeCl2 (left) and 1-SnCl2 

(right). 

 

Transition-metal imido complexes containing an Mo≡NR bonding motif are well 

documented in the literature.40,41  Reaction of 1 with electrophiles, RX (R = CH3, X = I 

and R = Me3Si, X = SO3CF3 = OTf), afforded the imido salts [2a]I42 and [2b]OTf as 

bright yellow, pentane insoluble powders in high yield (92% and 89% respectively, 

Figure 2).  In the 1H NMR spectrum of 15N-[2a]I a two-bond coupling (2JN-H) of 3.3 Hz 

was resolved for the methyl protons (15N−CH3).  Solution 15N{−1H} NMR spectra for 

[2a]I and [2b]OTf displayed resonances at 463 and 537 ppm respectively. 

 

The imido complex [2b]OTf crystallized in the cubic space group P213 (Figure 

5).  The Mo−N−Si bond angle is linear as mandated by its alignment with the 

crystallographic C3 axis.  The Mo≡N bond distance of 1.715(6) Å was lengthened 0.057 

Å with respect to the Mo≡N bond distance in 1 while the N−Si bond distance of 1.795(6) 

Å was slightly longer (~0.08 Å) than might be expected for a single N−Si bond.43  While 

complex [2a]I has not been structurally characterized, the cation [CH3NMo(N[tBu]Ar)3]+ 
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[2a] is presumably a 4-coordinate monomer related to the trimethylsilylimido cation 

[(CH3)3Si−NMo(N[tBu]Ar)3]+ [2b]. 

 

 
 

Figure 5.  50% thermal ellipsoid (ORTEP) representations of cation [2b]. 

 

Reaction of benzoyl triflate, PhC(O)OTf with 1 in CH2Cl2 enabled isolation of the 

red-orange benzoylimido complex [PhC(O)NMo(N[tBu]Ar)3]OTf [2c]OTf in 72% yield.  

There have been very few reports of the use of benzoyl triflate in synthetic inorganic 

chemistry despite this reagent’s obvious utility as a potent electrophile.44,45,46  There are 

similarly few reports of transition metal complexes containing a benzoylimido moiety i.e. 

PhC(O)N≡M.47−50  X-ray crystallographic characterization of [2c]OTf showed that the 

Mo≡N bond is lengthened slightly with respect to the Mo≡N bond in complex 1 (Figure 

6).  The N4–C41 bond of 1.422(5) Å is in the range typical for an N–C single bond 

suggesting that resonance forms involving N−C multiple bond character do not provide 

added stabilization in this complex. 
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Figure 6.  50% thermal ellipsoid (ORTEP) representations of cation [2c].  A single THF 

solvent molecule of crystallization has been omitted for clarity. 

 

Dehydrohalogenation of [2a]I was achieved using lithium hexamethyldisilazide in 

pentane (Figure 7) and resulted in isolation of the purple ketimide complex 

H2CNMo(N[tBu]Ar)3 (3).  Complex 3 provides a rare example of terminal −NCH2 

complexation,51−54 and represents the first example of such ligation to be structurally 

characterized (Figure 8).  The ketimide N−C bond distance of 1.300(7) Å is consistent 

with the presence of an N−C double bond.  The Mo−N bond distance of 1.777(4) Å is in 

the range between that of a Mo−N double bond and that of a Mo−N single bond.  This 

multiple bond character is the result of π-donation from a filled Mo d-orbital into the 

ketimide π*(N−C) molecular orbital and in the perpendicular plane, π-donation from the 

nitrogen lone pair of electrons into a vacant Mo d-orbital.  Complex 3 has a distorted 

tetrahedral geometry (average N−Mo−Namide bond angle 101.7°) with pseudo-C3 point 
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symmetry courtesy of the nearly linear (178.0(4)°) Mo−N−C bond axis of the ketimide 

moiety (which lies along the pseudo-C3 axis). 

 

I

Mo
ArtBuN

NtBuAr
NtBuAr

N

CH3

N
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Figure 7.  Dehydrohalogenation of [2a]I in the formation of 3 and subsequent reaction 

with CH3I to form [2d]I.  

 

 
 

Figure 8.  50% thermal ellipsoid (ORTEP) representation of 3.  Ketimide hydrogens, 

H41a and H41b, were located and refined anisotropically. 
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The overall sequence leading to complex 3 can be viewed as formal carbene 

(CH2) addition to 1.  Addition of the Group 14 halides GeCl2 and SnCl2 to 1 did not give 

products analogous to 3 (i.e. oxidation Ge/SnII Ge/SnIV with concomitant formation of a 

molybdenum(IV) complex Cl2Ge=NMo(N[tBu]Ar)3).  This observation is consistent with 

the increased stability of divalent Group 14 species as the group is descended.55 

 

 
 

Figure 9.  50% thermal ellipsoid (ORTEP) representation of cation [2d].  A single 

CH2Cl2 solvent molecule of crystallization has been omitted for clarity. 

 

Synthesis of the ethylimido complex [CH3CH2NMo(N[tBu]Ar)3]I [2d]I, was 

achieved by reaction of 3 with CH3I (Figure 7).  This reaction demonstrates the 

nucleophilicity of the ketimide carbon in 3 and is in direct contrast with organic 

ketimines (RN=CH2) which are electrophilic at carbon.56  Interestingly, we were unable 

to generate [2d] via the reaction of 1 with a suitable source of [CH3CH2]+ (e.g. EtI, 

EtOTf, [Et3O]BF4).  The inability to generate [2d] in this way is consistent with the 
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dramatic decrease in rate observed for other nucleophilic substitution reactions (SN2) 

upon increasing the steric bulk at the α-carbon of the alkyl electrophile 

(methyl>>ethyl>propyl).57  Crystallographic characterization of [2d]I showed that an 

N−C single bond (1.457(11) Å) and an Mo−N triple bond (1.708(9) Å) are formed upon 

the reaction of complex 3 with CH3I (Figure 9).  

 

1.2.2  15N Solid state CP/MAS NMR Spectroscopy of 15NMo(N[tBu]Ar)3 (1) 

 

Measurement of the 15N solid state CP/MAS NMR spectrum of 
15NMo(N[tBu]Ar)3 (1) was carried out, in order to probe experimentally the electronic 

structure at nitrogen.  The principal components of the chemical shift tensor can be 

extracted from the experimental data by simulation of the experimental spectrum or by 

the analysis of the relative intensities of the spinning sidebands.58,59  The experimentally 

measured values of the shift tensor components for 1 and each of its derivatives are 

presented in Table 1. 

 

The experimental, simulated and DFT calculated 15N solid state CP/MAS NMR 

spectra of 1 (calculated spectrum of complex 1m) are presented in Figure 10.  In the 

absence of unusual averaging effects, the shift parameter measured in solution for a given 

complex is equal to the isotropic chemical shift, which is calculated as the average of the 

principal components of the chemical shift tensor [δiso =⅓(δ11+δ22+δ33)].60  Indeed, the 

isotropic shift (δiso) of 833 ppm determined for complex 1 from the solid state NMR 

spectrum is in close agreement with the 15N solution NMR shift of 840 ppm.  The axial 

symmetry of complex 1 constrains the orientation of the principal components of the 15N 

chemical shift tensor such that the unique axis is aligned along the Mo≡N bond.  Our 

experimental results confirm the axial nature of the chemical shift tensor (δ11 = δ22 = 

1229 ppm). 
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Table 1. Experimental and calculated 15N chemical shielding tensors for 1 and derivatives 
thereof.  δiso is the isotropic shift, Ω is the span defined as δ11 − δ33; κ is the skew of the 
shielding tensor defined as [3(δ22 − δiso)/(δ11 − δ33)];  χ2 = Σ ((obs-calc)2)/calc. 

  Principal Components of 
Shielding Tensor (ppm) 

  Principal Components of Shielding 
Tensor (ppm) 

   

Experimental   Calculated    Cplx Model 
δiso δ11 δ22 δ33 Ω κ δiso δ11 δ22 δ33 Ω κ χ2 

1 1m 833 1229 1229 42 1186 1 795 1137 1136 113 1024 1 61 
1-BF3 1m-BF3 593 836 836 107 729 1 630 878 875 137 741 0.99 12 
1-BCl3 1m-BCl3 558 765 755 152 613 0.97 562 792 791 102 690 1 27 

  555 765 747 154 611 0.94        
1-AlCl3 1m-AlCl3 602 849 839 119 730 0.97 624 873 872 128 745 1 3 
1-AlBr3  599 835 835 126 709 1        
1-AlI3  598 828 828 139 689 1        

  595 810 810 165 646 1        
  591 809 809 156 653 1        

1-GaCl3 1m-GaCl3 590 834 826 110 725 0.98 635 886 885 133 753 1 14 
1-InCl3 1m-InCl3 608 877 876 72 805 1 645 902 902 131 771 1 30 

  603 846 846 117 728 1        
1-GeCl2 1mGeCl2 643 918 918 93 826 1 660 930 928 123 807 1 8 
1-SnCl2 1m-SnCl2 666 955 955 89 866 1 669 944 938 125 819 0.99 11 

[2a]I 2a-m 457 614 614 143 471 1 465 610 610 174 436 1 6 
  453 611 611 136 475 1        
  441 594 594 137 457 1        
  436 576 576 156 420 1        

[2b]OTf 2b-m 541 736 724 163 573 0.93 556 758 758 153 605 1 3 
[2c]OTf 2c-m 467 598 597 207 391 1 507 695 642 183 513 0.79 23 

[2d]I 2d-m 460 614 612 154 460 0.99 486 653 637 168 485 0.93 6 
3 3m-C3 446 591 591 154 437 1 458 600 563 212 388 0.81 18 
 3m-Cs       448 570 457 318 252 0.11 125 
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Figure 10.  Experimental (—) and simulated (—) 15N solid state CP/MAS NMR spectra 

for complex 1 and DFT calculated (—) NMR spectrum for complex 1m.  The simulated 

and calculated spectra are offset with respect to the experimental spectrum for clarity.  

The isotropic peak (δiso) is indicated by an asterisk.  

 

A feature of the spectrum that is immediately obvious is the enormous span (Ω  = 

δ11 − δ33) of the chemical shift anisotropy (CSA) tensor (Ω  = 1186 ppm).  This effect is 

largely due to a significant paramagnetic shift at nitrogen when the external magnetic 

field is oriented perpendicular to the Mo≡N bond.  An understanding of the origin of this 

paramagnetic contribution was ascertained by analysis of density functional calculations 

(see section 3.1) performed on the model complex NMo(NH2)3 (1m). 

 

1.2.3  15N Solid state CP/MAS NMR Spectroscopy of the Lewis acid adducts of 1 (1-

LA)61
 

 

 The isotropic shift of 1-BF3 (δiso = 593 ppm) determined from the experimental 
15N solid state NMR spectrum is in excellent agreement with δiso (591 ppm) measured in 

solution.  The axial symmetry of 1-BF3 was confirmed by solid state NMR measurements 
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(δ11 = δ22 = 836 ppm).  All other Lewis acid adducts of 1 (1-LA) exhibited similarly 

axially symmetric chemical shift tensors.  The isotropic shift for the Lewis acid adducts 

(1-LA) studied was shifted upfield by 174 ppm (1-SnCl2) to 285 ppm (1-BCl3) with 

respect to the terminal nitride (1).  This upfield shift in the magnitude of δiso can be 

explained by a reduction in the energy gap between occupied frontier molecular orbitals 

and low-lying virtual molecular orbitals upon coordination of a Lewis acid to the 

terminally bound N-atom.  This information can be extracted from density functional 

calculations performed on model complexes (1m-LA) and is discussed in section 3.2. 

 

The span (Ω) of the 15N chemical shift tensor was reduced upon coordination of a 

Lewis acid, from 1186 ppm in 1 to between 866 ppm (1-SnCl2) and 611 ppm (1-BCl3).  

While the magnitude of the most shielded component δ33 varied over ca. 90 ppm for 1-

LA, the perpendicular components of the shift tensor, δ11 and δ22 (referred to as δ⊥), 
varied over ca. 200 ppm.  Thus, the variation in the span may be attributed primarily to 

changes in the perpendicular component of the 15N chemical shielding tensor (δ⊥).  

Again, this observation can be explained by analysis of the density functional 

calculations (section 3.2). 

 
 

Figure 11.  Experimental 15N solid state CP/MAS NMR spectrum of 1-BCl3.  The 

expanded portion of the spectrum shows the multiplicity of one of the spinning 

sidebands.  The isotropic peak is marked with an asterisk. 
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The 15N solid state NMR spectrum of 1-BCl3 displayed multiplicity in the 

isotropic peak and each of the associated spinning sidebands (Figure 11).  Two unique 

sets of data, which differed in the magnitude of the isotropic shift (558 and 555 ppm) and 

the span of the chemical shift tensor (613 and 611 ppm), were obtained on simulation of 

the experimental spectrum.  Similar multiplicity was observed in the spectra acquired for 

1-AlI3 and 1-InCl3.  This feature could be attributed either to coupling of 15N with the 

adjacent spin-active nucleus or structural polymorphism.62−64 

 

1.2.4  15N Solid state CP/MAS NMR Spectroscopy of the imido complexes [2a]I, 

[2b]OTf, [2c]OTf and [2d]I.65 

 

The cations [2a] and [2b] are three-fold symmetric and bear close resemblance to 

the Lewis acid adducts 1-EX3.  The axial symmetry of [2a] was apparent from the tensor 

components determined by simulation of the 15N solid state NMR spectrum (δ11 = δ22).  

The spectrum acquired for the ethylimido complex [2d]I was very similar to that of the 

methylimido complex [2a]I in terms of the isotropic shift, span and skew of the chemical 

shift tensor.   

 

Complex [2b]OTf showed unexpected asymmetry in the values of the chemical 

shift tensor (i.e. δ11 ≠ δ22).  Interestingly, the spectrum of [2b]OTf was more reminiscent 

of those acquired for the Lewis acid adducts (1-LA) in terms of the chemical shift tensors 

(δnn) and the span of the spectrum than either of the imido complexes [2a]I or [2d]I. 

 

The acylimido complex [2c]OTf is unique in the series of imido complexes that 

are presented in this study for two reasons: (i) significant asymmetry is present in 

[2c]OTf due to the coordination of the [PhC(O)]+ electrophile to the terminal nitrogen; 

(ii) the presence of a carbonyl functional group on the fragment coordinated to N 

provides an opportunity for resonance stabilization of this imido complex.  The lack of an 

axis of symmetry in [2c]OTf would be expected to give a rhombic chemical shift tensor 

(δ11 ≠ δ22 ≠ δ33).  Rather unexpectedly, this asymmetry was not reflected in the 

experimental values of the chemical shift tensor for which δ11 = 598 ppm, δ22 = 597 ppm 
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and δ33 = 207 ppm.  These chemical shift tensors indicate that the Mo≡N moiety is not 

significantly perturbed by the coordination of a [PhC(O)]+ electrophile. 

 

The span (Ω) of the 15N chemical shift tensors for the four imido complexes was 

in the range of 391 to 573 ppm, which is smaller than for both 1 (Ω = 1186 ppm) and the 

LA adducts (1-LA Ω = 866–611 ppm).  This reduction in the span could be attributed (in 

all four complexes) to the reduced magnitude of the most deshielded component of the 

chemical shift tensor, δ11.  Again, analysis of density functional calculations performed 

on model complexes enabled a rationalization of this effect in terms of perturbation of the 

electronic structure of 1 upon coordination of an electrophile (section 3.3). 

 

 
 

Figure 12.  Experimental 15N solid state CP/MAS NMR spectrum of [2a]I.  The 

expanded portion of the spectrum shows the multiplicity of one of the spinning 

sidebands.  The isotropic peak is marked with an asterisk. 

 

Multiplicity in the isotropic peak and the associated spinning sidebands was 

observed in the 15N solid state NMR spectrum of [2a]I (Figure 12).  Four isotropic peaks 
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were identified and the span of the chemical shift tensor varied between 420 and 475 

ppm.  Unlike the Lewis acid adducts (1-LA) for which this multiplicity might be 

attributed to the adjacent spin-active nucleus, complex  [2a]I is thought to display this 

multiplicity due to structural polymorphism.62−64 

 

1.2.5  15N NMR Spectroscopy of H2CNMo(N[tBu]Ar)3  (3) 

 

The experimental 15N solid state NMR spectrum of 3 displays a number of 

noteworthy features.  First, the principal components of the chemical shift tensor suggest 

that complex 3 is axially symmetric (δ11 = δ22 = 591 ppm).  This symmetry is expected 

due to the Mo−N multiple bonding in 3 which is attributed to the π-donor/acceptor 

character of the ketimide (NCH2) ligand.  The isotropic peak in the 15N solid state NMR 

spectrum was in close agreement with that obtained in solution.  Complex 3 has the most 

shielded value of δ11 with respect to all other complexes measured in this study and a 

narrow span of the shift tensor (Ω = 437 ppm). 

 

1.3  Chemical shielding: Experimental measurement and computational 

analysis60 
 

The measurement of solid state NMR spectra allows for the experimental 

determination of the principal components (δ11, δ22 and δ33) of the chemical shift tensors.  

To complement our experimental measurements and enable a more complete analysis of 

these compounds at the electronic level, DFT calculations were performed on model 

complexes in which the bulky amido ligands N[tBu]Ar were replaced by three NH2 

ligands (for computational expediency).  In most cases, the calculated tensors compared 

favorably with the experimental data66 thus discussion of the electronic structure based on 

DFT calculations can be assumed to be valid.  A summary of the analysis of the chemical 

shielding tensors, together with equations relevant to this analysis, are presented here in 

brief. 

The absolute shielding tensor σ (calculated using DFT), is related to the chemical 

shift tensor δ (Equation 2): 
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δ = σref − σ     (2) 

 

where σref is the calculated absolute shielding tensor of the reference compound.  NMR 

calculations based on the density functional method have been used to identify the 

individual contributions to the total shielding tensor made by the diamagnetic (σdia), 

paramagnetic (σpara) and spin orbit (σso) components (Equation 3): 

 

σtotal = σdia + σpara + σso  (3) 

 

For complexes presented in this study, spin orbit contributions to the total shielding 

tensor were included67,68 but in most cases this contribution was found to be negligible.69  

The diamagnetic contribution is dependent upon the core electron density and acts to 

reduce the applied magnetic field at the nucleus under observation.  In the presence of an 

applied field σdia will generally show insignificant variation in its contribution to the total 

shielding tensor.  The paramagnetic contribution reinforces the applied field and is 

determined primarily by magnetic perturbation of the frontier molecular orbitals.  

Overall, σpara shows the most significant variation in its contribution to the total shielding 

tensor due to the sensitivity of this term to changes in the electronic environment.70,71  

The paramagnetic contribution to the shielding tensor (σpara) is proportional to the 

magnetic coupling of high-lying occupied molecular orbitals with low-lying virtual 

molecular orbitals (Mk) and inversely proportional to the energy difference between these 

orbitals (eocc−evir).  The Gauge Including Atomic Orbitals (GIAO) formalism makes it 

possible to analyze the contributions to the shielding in terms of orbital contributions.72−77  

A molecular orbital analysis of these contributions is contained within the NMR output 

file of a density functional calculation.78  This analysis provides a list of the leading 

contributions to the kth component (k = 1, 2, 3) of the magnetic field and includes 

information about the individual pairs of molecular orbitals (which mix in the applied 

field), the energy difference between these orbitals (eocc−evir) and the magnitude of the 

coupling (Mk).  Occasionally, one pair of magnetically-coupled molecular orbitals is 
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found to provide the major contribution to the paramagnetic deshielding for each 

component of the magnetic field (k1, k2 and k3). 

 

1.3.1  Theoretical studies on 15NMo(N[tBu]Ar)3 (1) 

 

The NMR shift calculation for 1m predicted an axially symmetric chemical shift 

tensor in which δ11(calc) = δ22(calc) = 1137 ppm.  The primary contributions to δ11(calc) and 

δ22(calc) resulted from rotational mixing in the presence of an applied field of HOMO−3, 

σ(N pz –Mo dz
2) with LUMO, π*(N py –Mo dyz) and LUMO+1, π*(N py –Mo dyz).  There 

is a relatively small energy gap (eocc−evir) between the filled N pz orbital (of A symmetry 

in the point group C3), which contains the nitrogen lone pair, and the empty π*(Mo−N) 

orbitals (a degenerate E set in C3).  Since the paramagnetic contribution to the chemical 

shielding tensor is proportional to the coupling between these virtual and occupied 

orbitals and inversely proportional to the energy gap between them, it follows that the 

components of the shift tensor (δ11 and δ22) that are aligned perpendicular to the Mo≡N 

bond will exhibit extreme paramagnetic shifts. 

 

The large paramagnetic contribution to the perpendicular components of the 

chemical shift tensor (δ⊥) is reminiscent of that observed for related terminal phosphide 

and carbide complexes.19,79  In all three examples, the principal contributions to δ⊥ are the 

result of mixing in the applied field of a high-lying orbital of σ-symmetry with a 

relatively low-lying doubly degenerate E set of π-symmetry. 

 

For 1 and the derivatives presented in this article, there is a much less significant 

variation in the magnitude of the most shielded component (δ33) compared to either δ11 or 

δ22.  Where as δ11(expt) varies over 653 ppm (1229 ppm to 576 ppm), δ33(expt) varies over a 

much smaller range of 165 ppm (from 207 to 42 ppm).  This can be understood if one 

considers the chemical shift for a linear molecule.  The shift in C∞ symmetric molecules 

is dominated by the diamagnetic contribution; the paramagnetic contribution disappears 

completely along the molecular axis.  In 1, a paramagnetic component to the shift tensor 

is introduced when the C∞ symmetry of the Mo≡N axis is broken by the addition of 
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ligands to the metal.  This paramagnetic component of δ33 is fairly constant for all of the 

complexes presented herein. 

 

1.3.2  Theoretical studies on the Lewis acids adducts of 1 (1-LA) 

 

DFT calculations performed on the model complexes 1m-LA predicted the Lewis 

acid adducts to be axially symmetric, as evidenced by the calculated skew of the tensor (κ 

= 1 or 0.99 in all cases).  The optimized geometry of 1m-BF3 predicted similar Mo−N 

and N−B bond lengths to those measured for 1-BF3, however, in the model complex the 

B−F bonds of the Lewis acid were eclipsed with respect to the Mo−Namide bonds.   

Calculations were performed on model complexes in which either the eclipsed or 

staggered geometries were enforced in order to gauge the effect of rotation about the 

N−LA bond on the 15N chemical shift.  In general, calculations for the eclipsed and 

staggered geometries predicted very similar values of the principal components of the 15N 

chemical shift tensor. 

 

In each of the model Lewis acid adducts (1m-LA) the principal contributions to 

δ⊥ resulted from rotational mixing in the applied field of an occupied σ-orbital with a 

vacant π*(Mo−N) orbital.  The occupied orbital is characterized by significant N pz 

character, involved in donation of the N-lone pair into the vacant orbital on the Lewis 

acid’s central atom.  For example, analysis of the DFT calculation performed on 1m-

GaCl3 shows that the principal contributions to δ11 and δ22 are provided by mixing in the 

applied field of HOMO−6, σ(N pz –LA sp) with LUMO, π*(N py –Mo dyz) and 

LUMO+1, π*(N px –Mo dxz) respectively. 

 

The energy gap (eocc−evir) between the occupied σ(N−LA) bonding orbital and the 

vacant π*(Mo−N) orbitals was found to depend principally on the extent to which Lewis 

acid coordination to the terminal N-atom lowers the energy of the σ(N pz –LA sp) orbital.  

In 1, the occupied (N pz) orbital contains a non-bonding lone pair of electrons and is at a 

relatively high energy.  Formation of a σ-bond to the Lewis acid lowers the energy of this 

orbital thereby increasing the energy gap between the magnetically-coupled virtual and 
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occupied orbitals (eocc−evir).  This in turn reduces the paramagnetic contribution to the 

perpendicular component of the chemical shift tensor resulting in more upfield shifted 

values of δ11 and δ22. 

 

Complex 1m-BCl3 has a smaller energy gap (eocc−evir = 3.65 eV) compared to 

1m-BF3 (eocc−evir = 5.06 eV) but also a reduced paramagnetic contribution to the 

chemical shift, as evidenced by the more upfield shift of δ11(calc).  This apparently 

anomalous result can be explained if one accounts for the proportional relationship 

between the paramagnetic contribution to the chemical shift and the magnitude of the 

coupling (Mk) of occupied and virtual molecular orbitals in the presence of an applied 

magnetic field.  Analysis of the DFT calculations for these two complexes shows that Mk 

in 1m-BF3 (0.438) is more than twice that calculated for 1m-BCl3 (0.206).  This suggests 

that a much larger contribution to the paramagnetic term is made by N-based orbitals in 

1m-BF3 compared to 1m-BCl3. 

 

1.3.3  Theoretical studies on the imido cations [2a-m], [2b-m], [2c-m] and [2d-m] 

 

Calculations performed on the model cations [2a-m] and [2b-m] predicted axially 

symmetric spectra (δ11(calc) = δ22(calc)), which were in close agreement with the data 

obtained experimentally for complexes [2a]I and [2b]OTf.  Upon formation of an N–E (E 

= C or Si) single bond in these imido complexes there is a more significant lowering in 

energy of the σ(N–E) molecular orbital compared to that observed for the Lewis acid 

adducts (1-LA) discussed previously.  This can be attributed to the build up of positive 

charge on the complex and the increased bond strength of the σ(N–E) bond compared to 

the σ(N–LA) bond.  All four of the imido complexes exhibit a significant energy gap 

(eocc−evir) between the filled σ(N–E) orbital to the lowest lying unoccupied orbitals of π-

symmetry.  The stabilization of this σ(N–E) bonding orbital prohibits its participation in 

mixing interactions that supplement the paramagnetic contribution to the chemical shift 

tensor.  For the model cations [2a-m], [2b-m] and [2d-m] the principal contributions to 

δ⊥ result from rotational mixing in the applied field of two occupied orbitals of π-

symmetry (a doubly degenerate E set) with a vacant orbital of σ symmetry (A symmetry 
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in C3).  Analysis of the DFT calculation performed on [2b-m] shows that the principal 

contributions to δ11 and δ22 (δ11(calc) = δ22(calc) = 758 ppm) are provided by mixing in the 

applied field of HOMO−1, π(Mo dxz –N px) and HOMO–2, π(Mo dyz –N py) with 

LUMO+2, σ*(N pz –Si sp). 

 

The lack of an axis of symmetry in the optimized geometry for model cation [2c-

m] is immediately apparent from the calculated values of the chemical shift tensor for 

[2c-m] (δ11(calc) = 695, δ22(calc) = 642 and δ33(calc) = 183 ppm).  Our experimental results for 

complex [2c]OTf displayed smaller asymmetry (κ = 1) compared to the calculated 

spectrum (κ = 0.79).  The experimental values of δ11 and δ22 are more deshielded in 

[2c]OTf compared to both complexes [2a]I and [2d]I.  Analysis of the NMR calculation 

carried out on [2c-m] provides the explanation for this phenomenon.  The principal 

contribution to δ11(calc) is provided by mixing in the applied field of HOMO–3, σ(N pz –C 

sp) with LUMO+1, π*(Mo dxz –N px).  The principal contribution to δ22(calc) is provided 

by mixing in the applied field of HOMO–9, π(Mo dxz –N px) with LUMO+2, σ*(N pz –C 

sp).  For [2c-m] the σ(N pz –C sp) orbital is much higher in energy than the σ-orbital 

comprising the N–C bond in [2a-m] and [2d-m].  Indeed, the energy ordering of the 

frontier orbitals in [2c-m] is more reminiscent of that seen in the Lewis acid adducts (1-

LA) than the other imido complexes.  This implies that a weaker bonding interaction 

exists between the terminal N-atom and the electrophilic C-atom of the benzoyl fragment 

(compared to the interaction in other imido complexes) suggesting that resonance forms 

do not provide significant stabilization in complex [2c]OTf.  These facts are consistent 

with the crystal structure of [2c]OTf in which the N–C single bond does not appear to be 

shortened through additional π-interactions. 

 

1.3.4  Theoretical studies on H2CNMo(N[tBu]Ar)3  (3) 

 

The overall sequence leading to ketimide 3 embodies formal carbene (CH2) 

addition to complex 1, a process that encompasses C=N bond formation along with the 

reduction of molybdenum from the +6 to the +4 oxidation state.80  Carbene addition to 1 

is recognized as a potentially valuable means for the activation of complex 1 in the 
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context of nitrogen atom transfer from N2 into organic molecules.81  It was therefore of 

interest to determine what insight solid state NMR spectroscopy could provide, in 

conjunction with DFT analysis of the experimental shift tensors into the electronic 

structure at this N-atom which is activated toward productive removal from the 

molybdenum complex into an organic product. 

 

Interestingly, attempts to use DFT to reproduce the observed 15N solid state 

CP/MAS NMR spectrum of 3 using H2CNMo(NH2)3, (the structure of which converged 

to near Cs symmetry) as the computational model were not entirely satisfactory.  We 

probed further and found that the larger model H2CNMo(N[CH3]Ph)3 (3m) converged 

either to a pseudo-Cs (3m-Cs) or to a pseudo-C3 (3m-C3) conformation depending upon 

the initial geometry employed.  The 15N spectrum calculated for 3m-C3 was a good match 

to the observed spectrum of 3 (χ2 = 18), while that calculated for 3m-Cs deviated 

noticeably (χ2 = 125) (Figure 13).  The two local minima for 3m differ with respect to 

rotation about the Mo−Namide bonds, leading to differing Mo−Namide dπ −pπ overlap, to 

which the ketimide nitrogen electronic environment is clearly sensitive.  Analyses of the 

NMR calculation performed on 3m-C3 reveals that the principal contributions to the most 

deshielded components of the tensor, δ11 and δ22 (600 and 563 ppm respectively), result 

from mixing in the applied field of HOMO, π(N–C) with LUMO, π*(Mo dyz –N py) and 

LUMO+1, π*(Mo dxz –N px).  The same orbitals are responsible for the paramagnetic 

contributions to δ11 and δ22 in 3m-Cs (δ11 = 570 ppm, δ22 = 457 ppm) however, the energy 

gap (eocc−evir) between the HOMO and LUMO orbitals in 3m-C3 is appreciably smaller 

than in 3m-Cs (1.498 eV versus 1.696 eV).  This increased energetic separation of the 

orbitals in 3m-Cs reduces the degree of magnetic coupling and results in a more shielded 

value of δ11. 
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Figure 13.  Optimized geometries for the model complexes 3m-C3 (top) and 3m-Cs 

(bottom) and solid state 15N spectra for complex 3: experimental (top), calculated 3m-C3 

(middle) and calculated 3m-Cs (bottom).  The isotropic peak is indicated by an asterisk. 

 

In addition, the calculated molecular orbitals for 3m-C3 show significant p orbital 

contribution from the ketimide carbon to the HOMO (Figure 14).  This indicates that the 

ketimide carbon has been rendered nucleophilic upon dehydrohalogenation of the 
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methylimido complex [2a]I.  Experimental evidence for this is demonstrated by the 

reaction of 3 with CH3I to generate the ethylimido complex [2d]I. 

 

 
Figure 14.  Calculated HOMO (left) and LUMO (right) of 3m-C3. 
 

 

1.4. Concluding Remarks 
 

The electronic structure of a dinitrogen-derived terminal molybdenum nitride 

complex NMo(N[tBu]Ar)3 (1) has been studied by the combined use of 15N solid state 

CP/MAS NMR spectroscopy and DFT calculations.  Parallels may be drawn between the 

bonding observed in this terminal nitride complex and the analogous terminal phosphide 

and carbide complexes.  Perturbation of the electronic structure in the terminal 

molybdenum nitride complex (1) upon coordination of a Lewis acid can be attributed to 

stabilization of a σ-symmetric orbital as a result of N–LA bond formation.  Upon 

formation of a Lewis acid adduct of 1, the increased energy gap (eocc−evir) between 

magnetically-coupled occupied and virtual orbitals, is seen to correlate with a reduction 

in the magnitude of the perpendicular components of the chemical shift tensor (δ11 and 

δ22). 
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The reaction of 1 with electrophiles RX, results in further stabilization of the σ-

symmetric orbital containing the N-lone pair of electrons.  The paramagnetic contribution 

to the chemical shift tensor in this series of cationic imido complexes results from 

rotational mixing in the applied field of high-lying π(Mo–N) orbitals with a low-lying 

σ*(N–E) (E = C, Si) orbital. 

 

Finally, the strength of this combined approach to studying the electronic 

structure of spin-active nuclei in transition metal complexes is highlighted by our 

investigations into a ketimide complex, H2CNMo(N[tBu]Ar)3 (3).  Computational studies 

performed on the model complex H2CNMo(N[CH3]Ph)3 (3m) identified two geometries 

to which this complex could converge.  The variation in Mo–N dπ –pπ overlap in the two 

structures is reflected in the calculated chemical shift tensors.  A quantitative comparison 

of the experimental spectrum with the calculated spectra indicates that a closer match is 

provided by the pseudo-C3 symmetric model, the optimized geometry of which is in good 

agreement with X-ray crystallographic data for complex 3. 

 

 

1.5. Experimental Section 
 

1.5.1  General Information 

 

Unless stated otherwise, all operations were performed in a Vacuum Atmospheres 

drybox under an atmosphere of purified nitrogen.  Diethyl ether, pentane and 

dichloromethane were dried and deoxygenated using the method of Grubbs.82  THF was 

distilled from purple Na/benzophenone ketyl and collected under nitrogen.  C6D6 and 

CDCl3 were degassed and dried over 4 Å molecular sieves.  15N2 was purchased from 

Cambridge Isotope Laboratories (CIL) in 0.1 mL break-seal glass vessels.  CH3I was, 

freeze-pump-thaw degassed and stored over 4 Å sieves prior to use.  Mo(N[tBu]Ar)3
20 

and benzoyl triflate44
 were prepared according to literature procedures.  Other chemicals 

were purified and dried by standard procedures83 or were used as received.  Celite, 
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alumina and 4 Å molecular sieves were dried in vacuo for 36 h at ~250 °C.  Infrared 

spectra were recorded on a Bio-Rad 135 Series FT-IR spectrometer. 

 

1.5.2  X-ray Crystal Structure Determinations34 

 

            The X-ray data collections were carried out on a Siemens Platform three-circle 

diffractometer mounted with a CCD or APEX CCD detector and outfitted with a low-

temperature, nitrogen-stream aperture.  The structures were solved by direct methods, 

with the exception of 1-BF3, which was solved using the Patterson Method, in 

conjunction with standard difference Fourier techniques and refined by full-matrix least-

squares procedures.  A summary of crystallographic data is given in Table 2.  The 

systematic absences in the diffraction data were uniquely consistent with the assigned 

space groups of P21 for 3 and P213 for both [2b]OTf and [2d]I (Flack parameters are 

0.01(4), -0.01(4)and 0.00(3), respectively).  No symmetry higher than triclinic was 

indicated in the diffraction data for 1-BF3.  These choices led to chemically sensible and 

computationally stable refinements. All hydrogen atoms were placed in calculated 

positions, with the exception of the ketimide protons of 3, which were located in the 

electron density map and refined isotropically.  The Mo1-N2-C21 unit of [2d]I was found 

to be coincident with a three-fold axis of the P213 space group, thus imposing three-site 

positional disorder in the corresponding methyl group (C22).  This disorder was modeled 

and no hydrogen atoms were generated for methylene carbon C21.  Complex [2c]OTf 

crystallized in the centrosymmetric space group P21/n with two-site positional disorder 

found for the triflate counter ion.  This disorder was modeled to 70:30 occupancy over 

the two sites as indicated by the refinement statistics and resulted in chemically sensible 

geometries. 

  

 Isomorphous 1-GeCl2 and 1-SnCl2 were found to crystallize in the 

centrosymmetric space group P21/c and both contained two-site positional disorder of the 

aryl-ring and ECl2 residues.  Both possible chiral, three-blade propeller orientations of the 

aryl rings were present and were modeled each with 50 % occupancy as indicated by the 

refinement statistics.  Additionally, each aryl-ring orientation corresponded to distinct 
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ECl2 orientation and was similarly modeled.  Only one orientation of 1-GeCl2 and 1-

SnCl2 is presented in the text.  No hydrogen atoms were generated for the aryl rings of 1-

GeCl2 and 1-SnCl2 due to the disorder.  All software for diffraction data processing and 

crystal-structure solution and refinement are contained in the SHELXTL (v6.14) program 

suite (G. Sheldrick, Bruker XRD, Madison, WI). 

 

1.5.3  NMR Measurements 

 

Solution state 1H, 13C and 19F NMR spectra were recorded on a Varian Mercury-

300 spectrometer operating at 300 MHz for 1H.  Solution state 27Al, 11B and 119Sn NMR 

spectra were recorded on a Varian INOVA-500 spectrometer operating at 500 MHz for 
1H.  15N Solution state NMR spectra were acquired on a Bruker DRX600 spectrometer 

operating at 600 MHz for 1H (60 MHz for 15N) and equipped with a triple resonance 

(1H/13C/15N) probe.  All solution NMR chemical shifts are reported in parts per million 

(ppm) and coupling constants (J) in Hertz (Hz).  1H and 13C chemical shifts are reported 

with respect to the internal solvent (C6D6, 7.16 and 128.39; THF-d8, 3.58 and 1.73, 67.57 

and 25.37; CDCl3, 7.27 and 77.0).  15N chemical shifts are referenced to external neat 

CH3NO2 (δ = 380.2 ppm with respect to neat liquid NH3 (0.0 ppm)).22  Other nuclei were 

referenced using an external standard, as follows: 19F spectra were referenced with 

respect to CFCl3 (0.0 ppm); 27Al spectra were referenced to Al(D2O)6
3+ (1.0 M AlCl3 in 

D2O; 0.0 ppm); 11B spectra were referenced to neat BF3·OEt2 (0.0 ppm); 119Sn spectra 

were referenced to 0.5 M Sn(CH3)4 in CH2Cl2 (0.0 ppm).  Solid state 15N NMR spectra 

were acquired using a custom-designed spectrometer operating at 501 MHz for 1H (50.8 

MHz for 15N).  All spectra were acquired using a triple-resonance (1H/13C/15N) magic-

angle spinning (MAS) probe from Chemagnetics (Fort Collins, CO) configured for 4.0 

mm zirconium rotors.  Spinning frequencies of 3-6.5 kHz were used.  The identity of the 

isotropic peak (δiso) was confirmed by measurement of the spectra at several different 

spinning speeds.  Proton-nitrogen cross-polarization (CP) under the Hartmann-Hahn 

match was used to enhance the sensitivity of all 15N NMR spectra.84  Samples were 

referenced indirectly to the 13C CP/MAS spectrum of adamantane or directly to the 15N 

CP/MAS spectrum of NH4Cl (acquired prior to each sample acquisition).  
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1.5.4  Simulation and Calculation of Solid State NMR Spectra 

 

The principal components of the chemical shift tensors were determined 

experimentally by fitting simulated spectra to the experimental data58,59 using Simpson85 

(a general simulation program for NMR spectroscopy).  The residuals between the 

simulated spectrum and the experimental spectrum could, in most cases, be reduced to 

<5%.  The Simpson program was also used to calculate spectra based on values of the 

chemical shift tensor (in ppm) that were calculated using ADF. 

 

1.5.5  Computational Details 

 

Theoretical calculations were carried out using the Amsterdam Density 

Functional package (version ADF2002.02).86−89  The Slater-type orbital (STO) basis sets 

were of triple-ζ quality augmented with two polarization functions (ADF basis TZ2P).  

Full electronic configuration was used for all atoms.  Relativistic effects were included by 

virtue of the zero order regular approximation (ZORA).90−92  The local density 

approximation (LDA) by Vosko, Wilk and Nusair (VWN)93 was used together with the 

exchange correlation corrections of Becke94 and Perdew95 (BP-86). 

The 15N NMR chemical shielding calculations were performed using a multi-step 

procedure.  First, the geometry of the compound of interest was optimized using X-ray 

parameters as a starting point.  The optimized geometry was then subjected to a single-

point calculation incorporating spin-orbit effects.  The output of this calculation was used 

as the input for the ADF NMR utility.96  

Values of the absolute shielding tensor, calculated using density functional 

methods, were converted to referenced chemical shifts (δ ppm) using Equation 1:97 

 

δ(S, calc) = σ(N2, calc) −σ(S, calc) + δ(N2, ref) (1) 

 

where δ(S, calc) is the calculated chemical shift (ppm) of the compound of interest (S), 

σ(N2, calc) is the calculated absolute shielding tensor for the reference compound (N2 gas; 

σ(N2, calc) = −80.012 ppm), σ(S, calc) is the calculated absolute shielding tensor of S and 
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δ(N2, ref) is the experimental chemical shift (ppm) of the reference compound (N2 gas).  

The NMR shielding (σ) of N2 (with reference to neat nitromethane) = +74.2 ppm, 

therefore δ(N2, ref) = 380.2 − 74.2 = 306 ppm (referenced to liquid NH3 at 0 ppm).98,99  

 

1.5.6.1  Synthesis of 15NMo(N[tBu]Ar)3 (1) 

 

A 300 mL 3-neck flask fitted with a 0.1 L break-seal flask containing 15N2 was 

charged with KH (3.52 g, 88 mmol).  THF (50 mL) was added and the slurry was stirred 

while sparging with argon for 15 minutes.  Stirring was paused and the headspace of the 

flask was evacuated.  Under a static vacuum the break-seal was opened and the slurry 

was stirred vigorously as the headspace filled with 15N2.  In a second flask, 

Mo(N[tBu]Ar)3 (5.5 g, 8.8 mmol) was dissolved in THF (35 mL) and the solution was 

stirred while sparging with argon for 10 minutes.  Addition of the Mo(N[tBu]Ar)3 

solution via syringe to the KH/THF slurry afforded a dark orange mixture.  Stirring was 

continued for 24 h after which time the solution was filtered through Celite.  Solvent 

removal in vacuo gave an orange powder, which upon dissolution in pentane and storage 

at –35 °C gave amber crystals of the desired terminal nitride complex, 15NMo(N[tBu]Ar)3 

(4.72g, 7.40 mmol, 84%).  This procedure is a modification of previously reported 

syntheses for complex 1.20,29 

 

1.5.6.2  Synthesis of Lewis Acid Adducts (1-LA) 

 

A solution of NMo(N[tBu]Ar)3 in pentane (5 mL) was prepared in a 20 mL 

scintillation vial and chilled to –35 °C.  In a second vial a solution of the Lewis acid (1 

equiv. in 2 mL pentane) was prepared and chilled to –35 °C.  The Lewis acid solution 

was added to the NMo(N[tBu]Ar)3 solution and stirred at room temperature for 1 h.  

Upon addition of the Lewis acid a yellow solid precipitated from solution.  Filtration of 

the suspension, washing with pentane and subsequent drying under a dynamic vacuum 

afforded the desired product.  Recrystallization from a concentrated CH2Cl2 solution 

layered with pentane at −35 °C afforded yellow crystals of X3E–NMo(N[tBu]Ar)3. 
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Isolated yield of yellow 1-BF3·CH2Cl2 (from 0.115 g of 1): 0.092 g, 0.130 mmol, 

72%.  Anal. Calcd. for C36H54N4MoBF3: C 61.19, H 7.70, N 7.93. Anal. Found: C 60.94, 

H 7.76, N 7.86.  1H NMR (300 MHz, CD2Cl2, 20 oC) δ: 6.92 (s, 3 H, para), 5.71 (br s, 6 

H, ortho), 2.15 (s, 18 H, ArCH3), 1.31 (s, 27 H, NC(CH3)3).  13C NMR (75.0 MHz, 

CD2Cl2, 20 oC) δ: 147.8 (ipso), 138.4 (meta), 129.9 (ortho), 129.1 (para), 65.95 

(NC(CH3)3), 32.14 (NC(CH3)3), 21.60 (ArCH3).  19F NMR (282 MHz, CD2Cl2, 20 oC) δ: 

143.7 (m, BF3).  11B NMR (160 MHz, CD2Cl2, 20 oC) δ: −2.83 (m, BF3).  15N-1-BF3: 11B 

NMR (160 MHz, CDCl3, 20 oC) δ: −1.72 (br s, ν½ = 49 Hz).  15N NMR (60 MHz, CDCl3, 

20 oC) δ:  591.9 (s). 

 

Isolated yield of yellow 1-BCl3 (from 0.110 g of 1): 0.104 g, 0.138 mmol, 80%.  

Anal. Calcd. for C36H54N4MoBCl3: C 57.20, H 7.20, N 7.41. Anal. Found: C 57.11, H 

7.14, N 7.45.  1H NMR (300 MHz, CD2Cl2, 20 °C) δ: 6.98 (s, 3 H, para), 5.7 (br s, 6 H, 

ortho), 2.19 (s, 18 H, ArCH3), 1.35 (s, 27 H, NC(CH3)3).  13C NMR (75.0 MHz, CD2Cl2, 

20 oC) δ: 148.0 (ipso), 138.2 (meta), 130.8 (ortho), 128.6 (para), 67.56 (NC(CH3)3), 31.74 

(NC(CH3)3), 21.65 (ArCH3).  11B NMR (160 MHz, CD2Cl2, 20 °C) δ: 3.91 (s, ν½ = 16.5 

Hz).  15N-1-BCl3: 11B NMR (160 MHz, CD2Cl2, 20 °C) δ: 4.02 (br s, ν½ = 36.6 Hz). 

 

Isolated yield of yellow 1-AlCl3 (from 0.075 g 1): 0.081 g, 0.104 mmol, 89%.  

Anal. Calcd. for C36H54N4MoAlCl3: C 55.69, H 7.01, N 7.73. Anal. Found: C 55.84, H 

7.11, N 7.22.  1H NMR (300 MHz, CD2Cl2, 20 °C) δ: 6.95 (s, 3 H, para), ~5.6 (br s, 6 H, 

ortho), 2.16 (s, 18 H, ArCH3), 1.34 (s, 27 H, NC(CH3)3).  13C NMR (75.0 MHz, CD2Cl2, 

20 °C) δ: 148.2 (ipso), 138.4 (meta), 130.1 (ortho), 128.9 (para), 66.38 (NC(CH3)3), 

32.40 (NC(CH3)3), 21.61 (ArCH3).  27Al NMR (130.1 MHz, CD2Cl2, 20 °C) δ: 89.30 (s, 

ν½ = 10 Hz).  15N-1-AlCl3: 27Al NMR (130.1 MHz, CD2Cl2, 20 °C) δ: 87.76 (m). 

 

Isolated yield of bright yellow 1-AlBr3 (from 0.070 g 1): 0.083 g, 0.092 mmol, 

84%.  Anal. Calcd. for C36H54N4MoAlBr3: C 47.75, H 6.01, N 6.19. Anal. Found: C 

47.63, H 5.88, N 6.12.  1H NMR (300 MHz, CD2Cl2, 20 °C) δ: 6.95 (s, 3 H, para), 5.70 

(br s, 6 H, ortho), 2.16 (s, 18 H, ArCH3), 1.35 (s, 27 H, NC(CH3)3).  13C NMR (75.0 

MHz, CD2Cl2, 20 °C) δ: 148.2 (ipso), 138.3 (meta), 130.1 (ortho), 129.0 (para), 66.66 



 43

(NC(CH3)3), 32.50 (NC(CH3)3), 21.62 (ArCH3).  27Al NMR (130.1 MHz, CH2Cl2, 20 °C) 

δ: 80.17 (br s, ν½ = 85 Hz).  15N-1-AlBr3: 27Al NMR (130.1 MHz, CH2Cl2, 20 °C) δ: 

80.18 (br s, ν½ = 88 Hz). 

 

Isolated yield of yellow 1-AlI3 (from 0.100 g 1): 0.111 g, 0.106 mmol, 68%.  

Anal. Calcd. for C36H54N4MoAlI3: C 41.16, H 5.18, N 5.71. Anal. Found: C 41.16, H 

5.23, N 5.26.  1H NMR (300 MHz, CDCl3, 20 °C) δ: 6.46 (s, 3 H, para), 5.47 (br s, 6 H, 

ortho), 1.83 (s, 18 H, ArCH3), 1.14 (s, 27 H, NC(CH3)3).  13C NMR (75.0 MHz, CDCl3, 

20 °C) δ: 136.4 (meta), 128.1 (para), 32.36 (NC(CH3)3), 20.70 (ArCH3).  27Al NMR 

(130.1 MHz, CDCl3, 20 °C) δ: 26.03 (s, ν½ = 226 Hz).  15N-1-AlI3: 27Al NMR (130.1 

MHz, THF, 20 °C) δ: 24.34 (br s, ν½ = 357 Hz). 

 

Isolated yield of bright yellow 1-GaCl3 (from 0.150 g 1): 0.174 g, 0.214 mmol, 

91%.  Anal. Calcd. for C36H54N4MoGaCl3: C 53.06, H 6.68, N 6.88. Anal. Found: C 

53.20, H 6.62, N 6.95.  1H NMR (300 MHz, CD2Cl2, 20 °C) δ: 6.95 (s, 3 H, para), 5.62 

(br s, 6 H, ortho), 2.16 (br s, 18 H, ArCH3), 1.33 (s, 27 H, NC(CH3)3).  13C NMR (75.0 

MHz, CD2Cl2, 20 °C) δ: 148.0 (ipso), 138.4 (meta), 130.1 (ortho), 128.9 (para), 66.26 

(NC(CH3)3), 32.42 (NC(CH3)3), 21.61 (ArCH3). 

 

Isolated yield of yellow 1-InCl3 (from 0.175 g 1): 0.198 g, 0.230 mmol, 84%.  

Anal. Calcd. for C36H54N4MoInCl3: C 50.28, H 6.33, N 6.52. Anal. Found: C 50.41, H 

6.38, N 6.67.  1H NMR (300 MHz, CDCl3/THF, 20 °C) δ: 6.59 (s, 3 H, para), ~5.6 (br s, 

6 H, ortho), 1.95 (s, 18 H, ArCH3), 1.26 (s, 27 H, NC(CH3)3).  13C NMR (75.0 MHz, 

CDCl3/THF, 20 °C) δ: 136.7 (meta), 128.4 (ortho), 32.62 (NC(CH3)3), 21.05 (ArCH3). 

 

Isolated yield of yellow 1-GeCl2 (from 0.075 g 1 and 0.027 g GeCl2.dioxane): 

0.069 g, 0.079 mmol, 68%.  Anal. Calcd. for C36H54N4MoGeCl2: C 54.99, H 6.92, N 

7.63. Anal. Found: C 55.21, H 6.91, N 7.12.  1H NMR (300 MHz, CDCl3, 20 °C) δ: 6.88 

(s, 3 H, para), 5.66 (br s, 6 H, ortho), 2.15 (s, 18 H, ArCH3), 1.37 (s, 27 H, NC(CH3)3).  
13C NMR (75.0 MHz, CDCl3, 20 °C) δ: 148.4 (ipso), 137.7 (meta), 129.2 (ortho), 128.8 

(para), 65.11 (NC(CH3)3), 32.66 (NC(CH3)3), 21.56 (ArCH3) 
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Isolated yield of yellow 1-SnCl2 (from 0.165 g 1): 0.160 g, 0.193 mmol, 75%.  

Anal. Calcd. for C36H54N4MoSnCl2: C 51.95, H 6.54, N 7.21. Anal. Found: C 52.28, H 

6.53, N 6.69.  1H NMR (300 MHz, CD2Cl2, 20 °C) δ: 6.89 (s, 3 H, para), 5.68 (br s, 6 H, 

ortho), 2.14 (s, 18 H, ArCH3), 1.35 (s, 27 H, NC(CH3)3).  13C NMR (75.0 MHz, CD2Cl2, 

20 °C) δ: 144.6 (ipso), 138.1 (meta), 129.4 (ortho), 129.1 (para), 64.60 (NC(CH3)3), 

32.93 (NC(CH3)3), 21.59 (ArCH3).  119Sn NMR (186 MHz, THF, 20 °C) δ:  333 (s, ν½ = 

31 Hz).  15N-1-SnCl2:  119Sn NMR (186 MHz, THF, 20 °C) δ:  333 (s, ν½ = 57 Hz). 

 

1.5.6.3  Synthesis of [CH3NMo(N[tBu]Ar)3]I [2a]I 

 

Crystalline 1 (0.120 g, 0.188 mmol) was dissolved in neat CH3I (0.8 mL, 12.8 

mmol) in a 20 mL vial.  The solution was stirred at 25 °C for 20 h after which time 

removal of excess CH3I in vacuo and a pentane wash afforded a bright yellow powder in 

92% yield (0.137 g, 0.173 mmol).  1H NMR (300 MHz, CDCl3, 20 °C) δ: 6.99 (s, 3 H, 

para), 5.67 (br s, 6 H, ortho), 5.16 (s, 3 H, NCH3), 2.19 (s, 18 H, ArCH3), 1.29 (s, 27 H, 

NC(CH3)3).  13C NMR (75.0 MHz, CDCl3, 20 °C) δ: 145.3 (ipso), 138.6 (meta), 130.8 

(para), 128.4 (ortho), 68.50 (NC(CH3)3), 65.60 (NCH3), 32.30 (NC(CH3)3), 21.70 

(ArCH3).  NMR data for 15N-[2a]I:  1H NMR (300 MHz, CDCl3, 20 °C) δ: 5.11 (d, 2JN-H 

3.3 Hz, 3 H, 15N-CH3).  15N NMR (60 MHz, CH3I/CDCl3, 20 °C) δ: 462.6.  Anal. Calcd. 

for C37H39D18N4MoI:42 C 55.63, H 7.19, N 7.01. Anal. Found: C 56.13, H 7.64, N 6.53. 

 

1.5.6.4  Synthesis of [(CH3)3Si−NMo(N[tBu]Ar)3][SO3CF3] [2b]OTf 

 

A 20 mL scintillation vial was charged with 1 (0.10 g, 0.157 mmol) and Et2O (2 

mL).  In a second vial a solution of trimethylsilyl trifluoromethanesulfonate 

[CF3SO3Si(CH3)3] (0.174 g, 5 equiv, 0.783 mmol) in Et2O (1 mL) was prepared.  The 

contents of the two vials were combined and the solution stirred at 25 °C for 10 h.  

Solvent removal resulted in the isolation of a bright yellow-orange powder; yield 89% 

(0.120 g, 0.139 mmol).  Anal. Calcd: C 55.75 H 7.32 N 6.50; Anal. Found: C 55.54 H 

7.75 N 6.60.  1H (300 MHz, CDCl3, 20 °C) δ: 6.91 (s, 3 H, para), 5.62 (br s, 6 H, ortho), 

2.17 (s, 18 H, ArCH3), 1.34 (s, 27 H, N(CH3)3), 0.69 (s, 9 H, Si(CH3)3).  13C NMR (75.0 
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MHz, CDCl3, 20 °C) δ: 147.7 (ipso), 137.5 (meta), 129.5 (ortho), 128.0 (para), 66.04 

(NC(CH3)3), 32.44 (NC(CH3)3), 21.65 (ArCH3), 1.94 (Si(CH3)3.  19F NMR (282 MHz, 

CDCl3, 20 °C) δ: -78.44 (s, SO3CF3).  15N NMR (60 MHz, CDCl3, 20 °C) δ: 537. 

 

1.5.6.5  Synthesis of [PhC(O)NMo(N[tBu]Ar)3]SO3CF3 [2c]OTf 

 

Crystalline 1 (0.200 g, 0.31 mmol) was dissolved in CH2Cl2 (2 mL) in a 20 mL 

scintillation vial and chilled to −35 °C.  A solution of PhC(O)OTf (0.89 g, 0.37 mmol, 

1.2 equiv) in CH2Cl2 was prepared and similarly chilled to −35 °C.  The PhC(O)OTf 

solution was added to the stirred solution of NMo(N[tBu]Ar)3 and an immediate 

darkening of the solution to a brown-orange color was noted.  The solution was stirred at 

25 °C for 1 h before concentration of the solution (to ~0.5 mL) and addition of cold Et2O 

caused precipitation of a red powder. The solution was filtered and the precipitate washed 

with pentane to afford a red-orange powder in 72 % yield (0.198 g, 0.225 mmol).  

Material suitable for elemental analysis and crystallographic characterization was 

prepared by recrystallization from a concentrated THF solution layered with pentane. 

Anal. Calcd: C 58.63, H 6.75, N 6.36; Anal. Found: C 59.04, H 6.73, N 6.20.  IR (KBr 

plates, THF); ν(CO) 1668 cm-1.  1H NMR (500 MHz, CDCl3, 20 °C) δ: 8.32 (m, 2 H, meta 

Ph), 7.83 (m, 1 H, para Ph), 7.77 (m, 2 H, ortho Ph), 7.10 (s, 3 H, para), 5.74 (br s, 6 H, 

ortho), 2.26 (s, 18 H, ArCH3), 1.34 (s, 27 H, NC(CH3)3).   13C NMR (125 MHz, CDCl3, 

20 °C) δ: 147.7 (ipso), 139.1 (meta), 136.3 (Ph), 131.5 (Ph), 131.42 (Ph), 130.0 (para), 

126.8 (ortho), 72.0 (NC(CH3)3), 31.8 (NC(CH3)3), 21.7 (ArCH3).  19F NMR (282.23 

MHz, CDCl3, 20 °C) δ: −78.3. 
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Table 2. Crystallographic data. 

Compound 1-BF3 1-GeCl2 1-SnCl2 [2b]OTf [2c]OTf [2d]I 3 
Crystal data        
Empirical formula C37H56N4MoBCl2

F3 
C36H54N4MoGeC
l2 

C36H54N4MoSnCl
2 

C40H63N4MoF3SO3S
i 

C48H67F3N4MoO5

S 
C39H57N4MoCl2I C37H56N4Mo 

Formula weight 791.51 781.54 828.36 861.03 965.06 875.63 652.80 
T(K) 193(2)  193(2) 193(2) 193(2)  193(2) 193(2) 193(2)  
Crystal system Triclinic Monoclinic Monoclinic Cubic Monoclinic Cubic Monoclinic 
Space group P−1 P21/c P21/c P213 P21/n P213 P21 
a (Å) 10.5757(6) 14.803(3) 14.803(3) 16.5578(5) 12.3168(8) 16.3118(6) 11.2145(10) 
b (Å) 12.1291(7) 13.711(3) 13.711(3) 16.5578(5) 26.7028(17) 16.3118(6) 11.0462(10) 
c (Å) 16.6647(10) 19.132(4) 19.132(4) 16.5578(5) 14.7598(10) 16.3118(6) 14.7723(13) 
α (°) 93.3220(10) 90 90 90 90 90 90 
β (°) 107.3170(10) 90.12(3) 90.12(3) 90 90.4400(10) 90 94.367(2) 
γ (°) 94.7260(10) 90 90 90 90 90 90 
Unit cell volume (Å3) 2026.2(2) 3883.0(13) 3883.0(13) 4539.5(2) 4854.3(6) 4340.2(3) 1824.6(3) 
Z 2 4 4 4 4 4 2 
        
Data Collection        
λ (Mo Kα) (Å) 0.71073 0.71073 0.71073 0.71073 0.71073 0.71073 0.71073 
ρcalcd (g cm-3) 1.297 1.292 1.370 1.260 1.321 1.340 1.188 
µ (mm-1) 0.499 1.261 1.131 0.412 0.373 1.166 0.388 
Reflections collected 8791 16135 9171 19536 20454 18731 6978 
Independent collections 5282 (Rint = 

0.0355) 
5070 (Rint = 
0.0387) 

6358 (Rint = 
0.0308) 

1988 (Rint = 
0.0601) 

6353 (Rint = 
0.0489) 

1907 (Rint = 
0.0620) 

4511 (Rint = 
0.0592) 

Absorption correction Empirical None None Empirical None None Empirical 
Maximum and minimum 
transmission 

0.3804 and 
0.3026 

na na 0.2741 and 
0.2191 

na na 0.3092 and 
0.2137 

        
Structure refinement        
Refinement method Full-matrix least squares on F2 was used for all complexes 
Observed reflections [I > 2σ(I)] 5282 5070 6358 1988 6353 1907 4511 
Number of parameters 433 552 552 160 572 151 387 
Number of restraints 0 0 0 0 0 0 1 
Goodness-of-fit on F2 0.947 1.237 1.217 1.074 1.044 1.068 1.053 
R[I > 2σ(I)] 0.0487 0.0461 0.0620 0.0269 0.0464 0.0314 0.0406 
wR2 0.1249 0.1176 0.1602 0.0658 0.1153 0.0744 0.1063 
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1.5.6.6  Synthesis of H2CNMo(N[tBu]Ar)3 (3) 

 

To a chilled suspension of [CH3NMo(N[tBu]Ar)3]I (0.098 g, 0.126 mmol) in 

pentane (5 mL) was added a chilled solution of 1.1 equiv. LiN[(Si(CH3)3]2 (0.023 g, 

0.138 mmol) in pentane (4 mL).  Within a few minutes of adding base the yellow 

suspension turned bright red.  The suspension was stirred for 12 h at 25 °C after which 

time the solution had turned dark purple and no suspended solids were observed.  The 

solution was filtered through Celite and solvent removed in vacuo to yield a dark red-

purple solid.  Recrystallization from Et2O yielded dark red crystals 0.051 g (0.077 mmol, 

62%).  Anal. Calcd: C 68.017, H 8.579, N 8.583; Anal. Found: C 68.22, H 8.51, N 8.68. 

m.p: 124 -135 °C (dec).  IR (Et2O solution, cm-1):  1600 (m, υNC), 1587 (s, υAr-CH3).  1H 

NMR (300 MHz, C6D6, 20 °C) δ: 6.69 (s, 3 H, para), 6.289 (s, 3 H, ortho), 6.287 (s, 3 H, 

ortho), 5.91 (s, 2 H, NCH2), 2.16 (s, 18 H, ArCH3), 1.41 (s, 27 H, NC(CH3)3).  13C NMR 

(75.0 MHz, C6D6, 20 °C); δ: 150.2 (ipso), 138.9 (NCH2), 137.4 (meta), 129.9 (ortho), 

127.7 (para), 63.1 (NC(CH3)3), 32.8 (NC(CH3)3), 22.1 (ArCH3).  3-15N:  1H NMR (300 

MHz, C6D6, 20 °C) δ: 5.90 (d 2JN-H 1.37 Hz, 2 H, 15NCH2).  13C NMR (75.0 MHz, C6D6, 

20 °C) δ: 138.9 (d 1JN-C 5.78 Hz, 15NCH2).  15N NMR (60 MHz, C6D6, 20 °C) δ: 454.6. 

 

1.5.6.7  Synthesis of [CH3CH2NMo(N[tBu]Ar)3]I [2d]I 

 

Crystalline H2CNMo(N[tBu]Ar)3 (3, 0.074 g, 0.113 mmol) was dissolved in neat 

CH3I (0.8 mL) in a 20 mL scintillation vial.  The solution was stirred at 25 °C for 14 h 

after which time removal of excess CH3I in vacuo and a pentane wash afforded a bright 

yellow powder in 96% yield (0.086 g, 0.109 mmol).  Recrystallization from a 

concentrated CH2Cl2 solution layered with Et2O afforded yellow crystals of 

[2d]I·CH2Cl2.  1H NMR (300 MHz, CDCl3, 20 °C) δ: 6.98 (s, 3 H, para), 5.60 (br s, 6 H, 

ortho), 5.38 (q, 2 H, 3JHH 7.2 Hz, NCH2CH3), 2.17 (s, 18 H, ArCH3), 1.95 (t 3JHH 7.2 Hz, 

3 H, NCH2CH3), 1.27 (s, 27 H, NC(CH3)3).  13C NMR (75.0 MHz, CDCl3, 20 °C) δ: 

145.9 (ipso), 138.6 (meta), 130.7 (para), 128.3 (ortho), 77.6 (NCH2CH3), 68.1 

(NC(CH3)3), 32.4 (NC(CH3)3), 21.7 (ArCH3), 17.5 (NCH2CH3).  Anal. Calcd: C 57.43, H 

7.48, N 7.55; Anal. Found: C 57.52, H 7.44, N 7.89. 
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Carbene chemistry in the activation of a dinitrogen-derived 

terminal nitride of molybdenum 
 

 

2.1  Introduction 
 

The splitting of dinitrogen by a three-coordinate molybdenum(III) complex 

Mo(N[tBu]Ar)3 (1, Ar = 3,5-C6H3Me2) was first reported in 1995,1,2 representing one of 

few existing examples of the homogeneous six-electron reduction of dinitrogen by a well-

defined organometallic complex.3−8  The uptake and cleavage of dinitrogen by 1 have 

been studied synthetically and theoretically,2 permitting a detailed description of the 

intermediates on the N2-scission pathway, which include the purple bimetallic µ-N2 

species (µ-N2){Mo(N[tBu]Ar)3}2 [12-N2].  A lengthy incubation period (76 h) is required 

to form 12-N2 prior to its facile, first-order decomposition to 2 equiv of the terminal 

nitride complex NMo(N[tBu]Ar)3 (2).  Recent studies have shown that in the presence of 

certain Lewis bases (e.g. N-heterocyclic bases, potassium hydride) the binding of N2 by 1 

is accelerated, thus enabling a more expedient route to 2.9,10  The mild conditions under 

which 1 has been shown to facilitate N2-cleavage could in principle be made catalytic if a 

convenient means for the regeneration of 1 from complex 2 were found. 

 

The development of nitrogen atom transfer routes from NMo(N[tBu]Ar)3 (2) has 

remained a paradigm in the chemistry of this complex since the first report of its 

isolation.1  The favorability of N2-cleavage by complex 1 results from the exothermic 

formation of two Mo−N triple bonds (BDE ca. 165 kcal mol−1), which compensates 

thermodynamically for the endothermic cleavage of one N−N single bond.11,12  

Overcoming the inherent stability of the metal-nitride functionality represents a 

significant challenge that must be addressed before the successful inclusion of N2-

cleavage into N-atom transfer reactions can be realized.13 

 

Both complete and incomplete N-atom transfer reactions14−16 from 

molybdenum(VI) nitride species, mediated by low-coordinate, early transition metal 
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reductants, have been explored.17−19  In contrast, only one example of the activation of 2 

in the context of N-atom transfer into organic molecules has been reported.20  Henderickx 

and coworkers demonstrated that CF3C(O)15NH2 is formed in the reaction of 15N-2 with 

trifluoroacetic anhydride [(CF3CO)2O].  An unfortunate aspect of this chemistry, with 

respect to the catalytic application of complex 2 in N-atom transfer from N2 into organic 

nitriles, is the degradation of one amide ligand to afford the octahedral complex 

[N(R)Ar](NAr)Mo(η2-CF3CO2)(O2CF3)2 (R = C(CD3)2CH3, Ar =3,5-C6H3Me2).  With 

this in mind, we set out to discover N-atom transfer reactions that simultaneously 

produced nitrogen-containing organic products and a molybdenum complex bearing 

intact tris-amide ligands, amenable to further transformations. 

 

The reactivity of early metal nitrides towards electrophilic or Lewis acidic 

substrates is well documented.21−25  Indeed, the terminal nitride (2) has been shown to 

form stable Lewis acid adducts with Group 13 and 14 halides.26  A preliminary 

investigation of the reactivity of 2 towards electrophiles resulted in the synthesis of the 

methylimido salt [CH3NMo(N[tBu]Ar)3]I via the reaction of 2 with neat CH3I.27  More 

recently, the treatment of [CH3NMo(N[tBu]Ar)3]I with lithium hexamethyldisilazide 

enabled the isolation of a ketimide complex, H2C=NMo(N[tBu]Ar)3 (3a).28 

 

The synthesis of ketimide 3a represents formal carbene (CH2) addition to nitride 

2, a process that involves C−N double bond formation together with the reduction of 

molybdenum from the +6 to the +4 oxidation state (Scheme 1, reaction (ii)).  DFT 

calculations carried out on the model complex NMo(NH2)3 (2m) predicted the enthalpy 

of reaction (∆Hrxn) of methylene (CH2) addition to the terminally-bound N-atom of 2m to 

be −93 kcal mol−1.  Hence, the addition of an electrophilic carbene to 2 and subsequent 

formation of a ketimide complex (3) was considered a potentially important means of 

activating 2 towards N-atom transfer into organic molecules.  Significantly, the isolobal 

activation of the terminal nitride complex, [OsIV(tpy)(Cl)2N]BF4 (tpy = 2,2':6',2''-

terpyridine) was demonstrated by Meyer and coworkers via the transfer of an oxygen-

atom to the terminally-bound N-atom in the formation of a terminal nitrosyl complex 

[OsII(tpy)(Cl)2(NO)]BF4.29 



 

 

56 

1-X

MoArtBuN

ArtBuN
NtBuAr

X

Mo
ArtBuN

ArtBuN
NtBuAr

:CRX
ArtBuN

ArtBuN
N

N

Mo
- RCN

1 e- reduction1 atm N2
KH / THF/ 24 h

2 3

1

(ii) (iii)

(iv)(i)

ArtBuN

ArtBuN
NtBuAr

N

Mo

R X

 
 

Scheme 1.  Proposed catalytic pathway for N-atom incorporation from 2 into organic 

nitriles (RCN). (i) Base-catalyzed cleavage of N2 forming complex 2. (ii) Trapping of a 

carbene (CRX) by 2 resulting in the formation of ketimide 3. (iii) β-X Elimination from 3 

to yield 1-X. (iv) One-electron reduction of 1-X to yield 1. 

 

Transition-metal ketimide complexes with the general formula (RR'C=N)x−MLn 

are well documented in the literature.30−34  A particularly interesting group of metal 

ketimides are the chalcogenobenzimidato complexes (Ph[PhE]C=N)−Mo(N[tBu]Ar)3 (E 

= S, Se, Te) reported recently by Mendiratta et al.35  Formation of these complexes was 

achieved via a radical pathway involving the previously characterized η2-benzonitrile 

adduct of 1, (η2-PhCN)−Mo(N[tBu]Ar)3 [1-η2PhCN].36  The sequential treatment of 1 

with 1.0 equiv of PhCN and 0.5 equiv of PhEEPh (E = S, Se, or ~60 equiv PhCN and 0.5 

equiv PhTeTePh) enabled the isolation of the corresponding molybdenum 

chalcogenobenzimidato complex.  Upon heating, these complexes (E = Se, Te) extruded 

PhCN with concomitant formation of a molybdenum phenylchalcogenoate 

PhE−Mo(N[tBu]Ar)3 (1-EPh).  Thermodynamic and kinetic studies confirmed that PhCN 

extrusion occurred via a unimolecular β-EPh elimination process. 

 

Generation of an organic nitrile from ketimide complex 3 would be an important 

achievement if the ketimide nitrogen was derived from N2.  An extensive search of the 

literature reveals that, with the exception of complex 3a, there are no examples of metal 

ketimide complexes wherein the nitrogen atom of the ketimide moiety derives from N2.  
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Because of the known β-EPh elimination chemistry of chalcogenobenzimidato 

complexes, the addition of chalcogenoaryl-subtituted carbenes [C(EPh)R] to 2 is an 

attractive synthetic target.  While there are no reported means for the generation of 

chalcogenoaryl-subtituted carbenes [C(EPh)Ph], a similar pathway for the regeneration of 

1 from 2 could be envisaged upon the addition of any electrophilic carbene (Figure 1, 

reaction (i)) to form a ketimide complex in which the substituent on the ketimide carbon 

is unstable with respect to β-elimination.  Dihalocarbenes37 represent one of the most 

studied forms of divalent carbon38 and their generation has been the subject of numerous 

investigations.39−42  Addition of dichlorocarbene to 2 was predicted to yield 

Cl−Mo(N[tBu]Ar)3 (1-Cl) and gaseous cyanogen chloride (Cl−CN) via β-Cl elimination 

from the intermediate ketimide complex (Cl2C=N)−Mo(N[tBu]Ar)3 (3b).  Complex 3b 

was a particularly attractive target molecule for a number of reasons:  

 

• Ease of separation of cyanogen chloride from the resulting molybdenum complex 

by vacuum transfer; 

• Well documented reactivity of cyanogen chloride with nucleophilic alkyl and aryl 

reagents (e.g. RMgX),43 amines, phenolates and thiolates44 in the synthesis of 

organic nitriles, cyanamides, cyanates and thiocyanates; 

• Precedent for the one-electron reduction of 1-Cl to 1.45 

 

The focus of this chapter is a preliminary investigation of metal-nitride bond 

activation by carbenes.  Two methods for the generation of dichlorocarbene (or 

dihalocarbene) in the presence of complex 2 have been studied.  Since the regeneration of 

1 from 1-X (X = Cl, EPh) (Figure 1, reaction (iv)) is important in recycling the metal 

center, conditions for the one-electron reduction of 1-Cl have been optimized during the 

course of this investigation.  
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2.2  Results and Discussion 
 

2.2.1  A brief introduction to the chemistries of dichlorocarbene (CCl2) and 

fluorochlorocarbene (CFCl) 

 

 Dichlorocarbene (CCl2) and fluorochlorocarbene (CFCl) have been the subject of 

numerous experimental and theoretical investigations.37, 39−42, 46−50  A carbene’s reactivity 

and structure is known to depend strongly upon its spin state39, 51−53 and the selectivity 

demonstrated by a carbene correlates closely with the energy difference between the 

singlet and triplet states (∆EST).49, 54−58 

 

The chemistries of dichlorocarbene and fluorochlorocarbene have received more 

attention compared to other mono and dihalocarbenes for two main reasons: (i) their 

enhanced reactivity towards a broad range of unsaturated substrates;59−67 (ii) the 

development of relatively straightforward and safe procedures for their generation.38,68,69  

Both dichlorocarbene and fluorochlorocarbene exhibit singlet ground states that are 

stabilized (thermodynamically) relative to the triplet state by π-donation from the halogen 

substituents (Figure 1).70 

 

X
C

F

Singlet state

X
C

F

Triplet state

X = H,  ∆EST  15.83 kcal mol-1

X = Cl, ∆EST  37.09 kcal mol-1

X = F,  ∆EST  56.43 kcal mol-1

 
 

Figure 1.  Singlet versus triplet states in fluoromethylene (CHF), fluorochlorocarbene 

(CFCl) and difluorocarbene (CF2).  All three carbenes exhibit singlet ground states (∆EST 

is the energy difference between singlet and triplet states of each carbene).71,72   

 

The enhanced reactivity of dichlorocarbene and flurochlorocarbene compared for 

example with difluorocarbene reflects the relative stability of the singlet ground state.73  
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Difluorocarbene is more highly stabilized and less reactive than other halo and 

dihalocarbenes due to the strong π-donor capability of the two substituent fluorine 

atoms.70  For this reason, difluorocarbene is often generated via high temperature routes.  

The use of dichlorocarbene and fluorochlorocarbene in this study reflects the mild 

conditions under which both carbenes can be generated and their singlet ground state 

multiplicities.† 

 

2.2.2  Generation of dihalocarbenes (CX2) via the titanium-mediated reduction of 

haloforms and the reactions of CX2 with NMo(N[tBu]Ar)3 (2) 

 

The convenient preparation of gem-dichlorocyclopropanes by the reaction of 

carbon tetrachloride with reduced titanium (1:1 ratio of TiCl4 and LiAlH4) at 0 °C in the 

presence of various alkenes was first reported by Onaka et al. in 1975.74  This method 

was subsequently extended to the generation of other mono and dihalocarbenes in the 

work of Dolbier and Burkholder.75,76  Good yields of the desired gem-

dihalocyclopropanes were achieved when the reactions were carried out using a 3:3:3:1 

ratio of haloform, TiCl4, LiAlH4 and alkene.  In their most recent study, measurement of 

syn/anti product ratios enabled the authors to conclude that the reaction involved a free 

carbene rather than a carbenoid species.  The use of nitride complex 2 as the carbene trap 

in these reactions has been the subject of investigation in our laboratories. 

 

Initially, control reactions were carried out (under conditions identical to those 

used in the generation of dihalocarbenes) to ensure that complex 2 did not undergo a 

reaction with TiCl4·THF2
‡ or LiAlH4 (individually or when mixed).  The robust nature of 

the terminal nitride complex 2 was emphasized by its lack of reactivity toward the highly 

reducing TiCl4·THF2/LiAlH4 mixture. 

 

                                                 
† Complex 2 is expected to undergo reactions with singlet carbenes via nucleophilic attack of the N-atom 
lone pair on the vacant p-orbital of the carbene. 
‡ Replacement of TiCl4 (a volatile liquid) by its bis-THF adduct, TiCl4·THF2 (a yellow powder), was 
chosen for reasons of improved ease of handling. 
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Reactions of complex 2 (in THF at 0 °C) with 3 equiv CFCl3 or CCl4 in the 

presence of TiCl4·THF2 (3 equiv) and LiAlH4 (3 equiv) were carried out on both 

preparative and NMR scales.  On a preparative scale, isolation of Cl−Mo(N[tBu]Ar)3 (1-

Cl) was achieved in yields of 24% (CFCl3) and 26% (CCl4) by removal of THF solvent in 

vacuo from the product mixture followed by extraction with copious amounts of pentane 

and filtration through Celite to remove the insoluble titanium- and lithium-containing 

solids.  Precipitation of 1-Cl from a minimum amount of cold pentane enabled its 

separation from the unreacted pentane-soluble complex 2.  Some minor (<10%) 

diamagnetic impurities were observed in the 1H NMR spectrum of 1-Cl isolated from this 

reaction. 

 

The consumption of complex 2 in this reaction was quantified by 1H NMR (THF-

d8) versus an internal standard (Cp2Fe).  Analysis of the crude product mixture revealed 

partial consumption of 2 (76% consumption in the reaction with CFCl3 and 77% 

consumption in the reaction with CCl4) and the generation of two new molybdenum-

containing products - one paramagnetic and one diamagnetic.  The paramagnetic product, 

generated in 30% (CFCl3) and 32% (CCl4) yield, respectively, was identified as 

Cl−Mo(N[tBu]Ar)3 (1-Cl) by comparison of the 1H NMR spectrum with that obtained for 

an independently prepared sample (section 2.2.6).  The identity of the diamagnetic 

product (A) is unknown due to the inability to obtain a pure sample of this material. 

 

Analysis of the volatile products, when CFCl3 was employed as the haloform, was 

carried out using both the 14N and 15N-labeled (2-15N) isotopomers of complex 2 in 

conjunction with 19F NMR spectroscopy.  The 19F NMR spectrum was identical for both 

isotopomers, revealing three peaks at δ 0.0 ppm (singlet, CFCl3), −80.4 ppm (doublet, J 

55 Hz) and −169.4 ppm (triplet, J 49 Hz).  The −80.4 ppm resonance was also observed 

in control reactions carried out in the absence of complex 2.  The presence of the triplet 

resonance at −169.4 ppm in the 19F spectra acquired for both isotopomers indicates that 

the splitting is not the result of 15N−19F coupling.  Assignments of the −80.4 ppm and 

−169.4 ppm resonances could not be determined. 
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The originally proposed route to the molybdenum(IV) complex 

Cl−Mo(N[tBu]Ar)3 involved dihalocarbene addition to NMo(N[tBu]Ar)3 to form a 

ketimide complex (X2C=N)−Mo(N[tBu]Ar)3.  These ketimide complexes are presumed to 

undergo rapid β-X elimination to form X−Mo(N[tBu]Ar)3 (1-X) and one equivalent of 

cyanogen halide (X−CN).  While complex 1-Cl is formed in the reaction of complex 2 

with haloforms (CFCl3 and CCl4) in the presence of reduced titanium, the failure of this 

study to determine (i) the fate of the dinitrogen-derived N-atom and (ii) the identity of the 

diamagnetic product (A) makes it impossible to provide definitive proof for this 

mechanism.   

 

 The conversion of complex 2 to 1-Cl was not optimized and further studies 

involving this reaction were not pursued.  There exist numerous limitations to the general 

application of this method, specifically, the use of the highly reducing mixture of 

TiCl4·THF2 and LiAlH4 in the generation of the dihalocarbene.  The stability of the 

dinitrogen-derived product of these reactions under such reducing conditions is not 

known but we suggest that its isolation is prohibited by reactions of this product with 

reagents used in the generation of the reactive carbene fragments.77,78 

 

2.2.3  Generation of alkyl (or aryl) halocarbenes (CRX) via the titanium-mediated 

reduction of halocarbons (CRX3) and reactions of CRX with NMo(N[tBu]Ar)3 (2) 

 

The scope of the reaction developed by Dolbier and Burkholder for the 

cyclopropanation of olefins (described in the preceding section) was investigated in their 

second article.76  The authors determined that the same synthetic protocol could be 

applied in the generation of alkyl (or aryl) substituted halocarbenes (CRX, R = alkyl or 

aryl, X = Cl).  Subsequently, the addition of phenylchlorocarbene (C(Ph)Cl) and 

methylchlorocarbene (C(Me)Cl) to tetra(methyl)ethylene (Me2C=CMe2) was 

demonstrated in yields of 58% and 15% respectively.   

 

In the present study, the generation of phenylchlorocarbene and 

methylchlorocarbene in the presence of the terminal nitride complex (2) have been 
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investigated.  These reactions were performed using a 3:3:3:1 ratio of haloform (either 

α,α,α-trichlorotoluene (PhCCl3) or 1,1,1-trichloromethane (MeCCl3)), TiCl4·THF, LiAlH4 

and 2.  Following the removal of solvent (in vacuo) from the crude product mixture, the 

consumption of complex 2 was quantified by 1H NMR spectroscopy (THF-d8) versus an 

internal standard (Cp2Fe).  Analysis of the crude product mixture revealed a 30% 

(PhCCl3) and 25% (MeCCl3) yield of complex 1-Cl, 60% (PhCCl3) and 65% (MeCCl3) 

unreacted complex 2, and several unidentified diamagnetic resonances.  Resonances 

attributed to benzonitrile (when PhCCl3 was employed as the halocarbon) could not be 

assigned unambiguously in the 1H NMR spectrum.  An infrared absorption consistent 

with νCN of benzonitrile was not observed.  The in situ reduction of benzonitrile (PhCN) 

to benzylamine (PhCH2NH2) is expected to be at least one of the decomposition routes of 

this N2-derived organic product.79 

 

 1H NMR spectroscopy was used to probe the volatile products of the reaction 

between complex 2 and 1,1,1-trichloromethane (MeCCl3) in the presence of reduced 

titanium at 0 °C.  THF and unreacted MeCCl3 were observed in the 1H NMR spectrum 

together with multiplet resonances at ca. δ 6.1 ppm and 5.6 ppm (integrating in a 1:2 

ratio), consistent with the reported values for 1-chloroethylene (H2C=CHCl).80  Hence, 

the low yield of 1-Cl (25%) when MeCCl3 is employed as the halocarbon can be 

explained in part by the instability of methylchlorocarbene (C(Me)Cl) toward 1,2-

rearrangements.81 

 

Four other resonances (δ 2.16 (s), 1.98 (m), 1.96 (m) and 0.8 (s) ppm) were 

observed in the 1H NMR spectrum of the volatile products of the reaction between 

complex 2 and 1,1,1-trichloromethane (in the presence of reduced titanium at 0 °C).  In 

order to determine whether one of these resonances might be assigned to acetonitrile, (the 

anticipated organic nitrogen-containing product) this reaction was repeated using the 15N-

labeled isotopomer of complex 2 (2-15N).  This was expected to result in the observation 

of a doublet resonance in the 1H NMR spectrum attributable to 15N−1H coupling in 15N-

labeled acetonitrile (CH3CN15).82  The splitting of one of the four unassigned resonances 

in the 1H NMR spectrum was not observed. 
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In summary, reactions of NMo(N[tBu]Ar)3 (2) with two halocarbons; α,α,α-

trichlorotoluene (PhCCl3) and 1,1,1-trichloromethane (MeCCl3) in the presence of 

reduced titanium at 0 °C have been shown to generate Cl−Mo(N[tBu]Ar)3 (1-Cl) in 30% 

and 25% yield respectively.  The low conversion of complex 2 to 1-Cl when MeCCl3 is 

employed was attributed in part to the instability of methylchlorocarbene (C(Me)Cl) 

toward 1,2-rearrangements.  Additionally, the low conversions achieved (2  1-Cl) using 

phenylchlorocarbene and methylchlorocarbene are most likely a consequence of the 

reduced reactivity of these carbenes when compared with dihalocarbenes such as 

dichlorocarbene.  The high reactivity of dichlorocarbene has been attributed to the low 

LUMO in this reactive fragment, as predicted by frontier molecular orbital theory.47,54 

 

2.2.4  Generation of dichlorocarbene (CCl2) via thermal extrusion from a Seyferth 

reagent (PhHgCCl2Br) and reactions of CCl2 with NMo(N[tBu]Ar)3 (2) 

 

The transfer of dihalocarbenes from phenyl(trihalomethyl)mercury compounds 

(PhHgCX3, X = halogen) was pioneered by Seyferth and coworkers in the 1960’s.69  

Research spanning more than two decades led to the development of a variety of 

mercuric compounds that act as efficient reagents for the transfer of alkyl (or aryl) 

substituted halocarbenes C(Cl)R (R = Ph,83 CH3,84 CF3,85 CO2Me86) 

 

Seyferth reported that certain mercurial compounds were sufficiently thermally 

unstable (decomposition of solid and solution samples occurred on standing at 25 °C) that 

purification of the desired product was challenging.  In other cases the thermal stability of 

the mercurial reagent limited its use as a divalent carbon source due to the high 

temperatures required to effect the thermal extrusion of a carbene from the metal 

compound.87  Phenyl(bromodichlorormethyl)mercury (PhHgCCl2Br) is the most 

convenient mercuric reagent for the generation of dichlorocarbene.88  

Phenyl(bromodichlorormethyl)mercury can be prepared in multi-gram quantities and 

isolated as an analytically pure material with relative ease.88  Heating of PhHgCCl2Br at 

65 °C in the presence of an olefin such as α-methylstyrene (1:1 ratio of reagents) results 

in complete consumption of the olefin and formation (>95%) of the corresponding gem-
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dicyclopropane Ph(CH3)C(CCl2)CH2.89,90  The mercurial product PhHgBr is insoluble in 

hydrocarbon solvents and may be separated from the organic product by filtration.  

Furthermore, PhHgBr is used as a starting material in the synthesis of PhHgCCl2Br so the 

mercurial product can be recycled. 

 

 Reaction of PhHgCCl2Br with 2 was carried out in C6D6 in a sealed NMR tube 

and monitored by 1H NMR spectroscopy.  A number of reaction conditions were 

surveyed in an attempt to optimize the conversion of 2 to products. 

• Stoichiometric PhHgCCl2Br resulted in partial conversion of 2 to products after 

24 h at 65 °C while complete consumption of 2 was effected by 5 equiv of 

PhHgCCl2Br within 24 h at 65 °C. 

• The rate of conversion of 2 to products was slowed considerably when reactions 

were performed at temperatures below 60 °C (e.g. at 50 °C complete consumption 

of 2 occurred in ~50 h).  The temperature of reaction was not increased beyond 70 

°C in an effort to prevent unwanted side reactions or the thermal decomposition of 

products. 

 

Monitoring the reaction of 2 with 5 equiv of PhHgCCl2Br over 24 h at 65 °C (1H 

NMR) (reaction I), the complete consumption of 2 and the appearance of eleven new 

peaks in the diamagnetic region of the spectrum (0-8 ppm) were observed.  No 

resonances attributable to 1-Cl were seen at any time.  PhHgBr was seen to precipitate 

from solution and, following isolation, its characterization was confirmed by a melting 

point analysis.88 

 

A number of control reactions were carried out (at a temperature of 65 °C in C6D6 

solvent, unless noted otherwise) and monitored by 1H NMR spectroscopy: 

 

Reaction of 2 with PhHgBr      (II) 

Reaction of 1-Cl with PhHgBr    (III) 

Reaction of 1-Cl with PhHgCCl2Br (25 °C and 65 °C) (IVa and IVb) 

Thermal stability of 1-Cl in solution    (V) 
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Reaction of 1 with 5 equiv PhHgCCl2Br (25 °C)  (VI) 

Reaction of 1-Br with PhHgCCl2Br    (VII) 

 

It was hoped that these control reactions might aid in the assignment of the eleven new 

resonances observed in the 1H NMR spectrum for reaction (I).   

 

PhHgBr showed no reaction with either 2 or 1-Cl after 24 h (reactions II and III).  

This is presumed to be due to the very low solubility of PhHgBr in benzene solvent.   

 

Addition of a benzene solution of PhHgCCl2Br to 1-Cl at 25 °C (IVa) resulted in 

the complete consumption of 1-Cl within 48 h and the appearance of eleven new peaks in 

the diamagnetic region of the 1H NMR spectrum.  When repeated at 65 °C (IVb) the 

same eleven resonances were seen in the 1H NMR spectrum (in approximately the same 

ratio of peak integrals) with complete consumption of 1-Cl observed within 24 h.  

Reaction IV is not thought to occur via attack of free dichlorocarbene on 1-Cl due to the 

efficiency of this reaction at 25 °C (at this temperature the rate of dichlorocarbene 

extrusion is reduced, as evidenced by the slow (>5 d) conversion of olefins to the 

corresponding gem-dichloropropanes).91 

 

The thermal stability of 1-Cl in solution (V) was tested under a number of 

conditions.  Decomposition of 1-Cl to a single diamagnetic product was observed upon 

standing in benzene solution at 25 °C.  The half-life (t½) of 1-Cl varied from 15 h to 4 d 

depending upon the sample.  The reason for this variation is possibly due to the different 

concentrations at which these thermal stability experiments were performed.  This would 

indicate that decomposition of 1-Cl occurs via a bimolecular (or higher) pathway.  The 

rate of decomposition of 1-Cl was reduced when the sample was monitored in THF or 

diethyl ether solvent (t½ = 2-4 d).  Decomposition was also inhibited upon storage at low 

temperatures (e.g. 1-Cl in C6D6 at 0-5 °C, t½ ~2 d).  At 35 °C the decomposition of 1-Cl 

to a new paramagnetic product, free amine (HN[tBu]Ar) and several other unidentified 

diamagnetic products was observed.  The resonances attributed to the decomposition 
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products of 1-Cl are not consistent with any of the eleven diamagnetic peaks seen in 

reaction I. 

 

Complex 1 was observed to undergo reaction with 5 equiv PhHgCCl2Br (VI) 

upon mixing at 25 °C.  A 1H NMR spectrum obtained 10 min after combining 1 with 

PhHgCCl2Br displayed resonances attributed to the formation of 1-Cl and 1-Br. 

 

Reaction of 1-Br with 1 equiv PhHgCCl2Br (VII) in C6D6 at 25 °C was monitored 

by 1H NMR spectroscopy.  After 10 min, 60% 1-Br remained and complex 1-Cl was 

observed in 20% yield.  Eleven new peaks in the diamagnetic region of the spectrum 

were consistent with those observed in the reaction of 1-Cl with PhHgCCl2Br (IV). 

 

In summary, the chemical shift and ratio of peak integrals observed in the 1H 

NMR spectra for reactions I and IV indicate that 1-Cl is most probably formed in the 

reaction of PhHgCCl2Br with 2.  The thermal decomposition products of 1-Cl are not 

observed in the 1H NMR spectrum of reaction I because the consumption of complex 1-

Cl by PhHgCCl2Br occurs more rapidly.  The intermediacy of complexes 1 and 1-Br 

cannot be ruled out since the reaction of 1 with PhHgCCl2Br (V) yields 1-Cl and 1-Br 

and the reaction of 1-Br with PhHgCCl2Br (V) yields 1-Cl and several unidentified 

diamagnetic products whose 1H NMR resonances are consistent with those observed in 

the reaction of 1-Cl with PhHgCCl2Br (IV). 

 

2.2.5  Independent synthesis of Cl−Mo(N[tBu]Ar)3 (1-Cl) and Br−Mo(N[tBu]Ar)3 (1-

Br) 

 

The independent synthesis of complexes 1-X (Figure 2, X = Cl, Br) was achieved 

by the reaction of complex 1 with 1,2-dichloroethane (1-Cl, 66% yield) or 1,2-

dibromoethane (1-Br, 69% yield).  While 1-Cl has been reported previously,45,92 our 

attempts to synthesize 1-Cl by reaction of 1 in CH2Cl2 gave only low yields of 1-Cl 

together with the formation of other, unidentified products.93   
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X
X

Mo
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NtBuAr

X
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Et2O / 2 h

1  
 

Figure 2.  Synthesis of complexes 1-X (X = Cl, Br) 

 

 Complexes 1-Cl and 1-Br are orange-brown paramagnetic compounds with 

distinctive broad resonances in their 1H NMR spectra at ca. 24 ppm and 17 ppm, 

respectively.  Both complexes were thermally stable in solution and in the solid state 

when stored at −35 °C.  Decomposition of 1-Cl to an unidentified diamagnetic product 

was observed when the sample was stored at 25 °C in C6D6 (vide supra). 

 

2.2.6  One-electron reduction reactions of Cl−Mo(N[tBu]Ar)3 (1-Cl) 

 

The one-electron reduction of Cl−Mo(N[tBu]Ar)3 (1-Cl) was achieved using 10 

equivalents of magnesium metal in THF (Figure 3).  The ease of separation of MgCl2 and 

excess magnesium metal from the solution of 1 made this an attractive means for the 

generation of 1 from 1-Cl. 

 

ArtBuN
ArtBuN

N

Cl

Mo
Mgo / THF

1-Cl

ArtBuN

ArtBuN
NtBuArMo

1  (72%)

2 h / 25 oC

 
 

Figure 3.  The one-electron reduction of 1-Cl by magnesium. 

 

The three-coordinate titanium(III) complex Ti(N[tBu]Ar)3 is an excellent one-

electron reductant94 and readily forms titanium(IV) complexes X−Ti(N[tBu]Ar)3 (X = Cl, 

Br, OTf).  Addition of Ti(N[tBu]Ar)3 to 1-Cl resulted in the clean formation of 1 and 



 

 

68 

Cl−Ti(N[tBu]Ar)3 after 30 min.  The more difficult separation of the two products and the 

time-consuming synthesis of Ti(N[tBu]Ar)3 make this route considerably less favorable 

than the magnesium reduction of 1-Cl. 

 

Attempts to reduce 1-Cl using sodium amalgam (Na/Hg) under an atmosphere of 

argon resulted in low conversion to 1 and substantial amounts of free amine HN[tBu]Ar.  

The one-pot conversion of 1-Cl to 2 using Na/Hg9 under an atmosphere of nitrogen 

effected the complete consumption of 1-Cl within 6 h.  1H NMR spectroscopy indicated 

that only low conversion to 2 (<15%) had been achieved together with the formation of 

free amine HN[tBu]Ar. 

 

2.2.7  Concluding remarks and future directions 
 

 Reactions of the terminal molybdenum nitride complex NMo(N[tBu]Ar)3 (2) with 

haloforms (and halocarbons) in the presence of reduced titanium represent unique 

examples of metal-nitride bond activation toward removal of the dinitrogen-derived N-

atom by a non-metallic species in homogeneous solution.  Importantly, the molybdenum 

tris-amide framework is not compromised by the conditions under which the reaction is 

performed, thereby rendering the molybdenum(IV) product Cl−Mo(N[tBu]Ar)3 (1-Cl) 

available for further transformations.  The one-electron reduction chemistry of 1-Cl has 

been investigated and the conditions for the generation of Mo(N[tBu]Ar)3 (1) have been 

optimized. 

 

 There exist significant limitations to this method of activating the metal-nitride 

functionality.  Primarily, isolation of the nitrogen-containing organic products of these 

reactions (wherein the N-atom derives from molecular N2) is prohibited by their reaction 

with reagents used in the generation of reactive carbene fragments. 

 

Activation of complex 2 toward removal of the terminal N-atom, via reaction with 

the Seyferth reagent PhHgCCl2Br resulted in the conversion of 2 to a number of 

unidentified diamagnetic products.  These products are suggested to result from the 
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reaction of complex 1-Cl with PhHgCCl2Br.  We propose that this reaction proceeds via 

dichlorocarbene addition to complex 2 followed by β-Cl elimination to yield complex 1-

Cl. 

 

 The search for electrophilic carbenes (CXY) is ongoing, with the goal of 

exploiting the ability of molybdenum(IV) ketimide complexes (3) to undergo β-X 

elimination as a means of extruding organic nitriles (Y−CN) derived from molecular N2.   

 

2.3  Experimental Section 
 

2.3.1  General Information 

 

Information pertaining to the acquisition of solution NMR spectra and other 

general details are identical to those included in chapter 1.  Additional information 

relevant to this research is as follows:  synthesis of 15NMo(N[tBu]Ar)3 was described in 

chapter 1.  TiCl4·THF2 was prepared following the method of Manzer.95  PhHgCCl2Br 

was prepared following the method of Seyferth.88  α-Methylstyrene was distilled under 

vacuum from CaH2, freeze-thaw degassed and stored over 4 Å molecular sieves prior to 

use.  Fluorotrichloromethane (CFCl3), carbon tetrachloride (CCl4), 1,1,1-

trichloromethane (MeCCl3) and α,α,α-trichlorotoluene (PhCCl3) were distilled (or 

vacuum distilled in the case of PhCCl3), freeze-thaw degassed and stored over 4 Å 

molecular sieves prior to use.  

 

2.3.2  Synthesis of Cl−Mo(N[tBu]Ar)3 (1−Cl) from NMo(N[tBu]Ar)3 (2) 

 

A 50 mL schlenk flask containing TiCl4·THF2 (3 equiv, 0.224 g, 0.704 mmol) and 

THF (8 mL) was chilled to −35 °C.  In a 20 mL scintillation vial, a suspension of LiAlH4 

(3 equiv, 0.027 g, 0.704 mmol) in THF (8 mL) was chilled to −35 °C.  The dropwise 

addition of the LiAlH4/THF suspension to the yellow suspension of TiCl4·THF2/THF 

resulted in a color change through pale green to dark brown with rapid effervescence.  

The flask was capped with a rubber septum and stirred at 0 °C in a salt-ice bath under a 
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flow of N2 for 20 minutes.  The ice bath was removed and the mixture was allowed to 

warm to 20 °C over 10 minutes.  The flask was cooled again in a salt-ice bath.  A solution 

of NMo(N[tBu]Ar)3 (0.150 g, 0.235 mmol) in THF (8 mL) was added via a syringe to the 

flask.  This was followed immediately by the addition of haloform (3 equiv, 0.704 mmol) 

in THF (2 mL).  The mixture was stirred for 30 minutes at 0 °C after which time solvent 

removal in vacuo yielded dark brown/black solids.  The solids were triturated with 

hexanes (2 x 5 mL) and then extracted with copious amounts of pentane (3 x 25 mL).  

The brown-orange solution was filtered through Celite in scintered glass frit and the 

pentane solvent was removed in vacuo.  The dark orange powder was dissolved in a 

minimum of cold pentane and filtered to collect a brown-orange powder identified by 1H 

NMR spectroscopy to be Cl−Mo(N[tBu]Ar)3 (1-Cl).  Removal of pentane from the filtrate 

yielded a pale brown powder identified by 1H NMR spectroscopy to be NMo(N[tBu]Ar)3 

(2). 

 

An identical procedure was employed for each of the haloforms (isolated yield of 1−Cl is 

indicated in parentheses); fluorotrichloromethane (CFCl3) (0.037 g, 0.056 mmol, 24%), 

carbon tetrachloride (CCl4) (0.040 g, 0.061 mmol, 26%), 1,1,1-trichloromethane 

(CH3CCl3) (0.036 g, 0.054 mmol, 23%) and α,α,α-trichlorotoluene (PhCCl3) (0.037 g, 

0.056 mmol, 24%). 

 

2.3.3  Control reaction of NMo(N[tBu]Ar)3 (2) in the presence of LiAlH4 and 

TiCl4·THF2 

 

This reaction was carried out as described above using TiCl4·THF2 (3 equiv, 

0.037 g, 0.12 mmol), LiAlH4 (3 equiv, 0.005 g, 0.12 mmol) and NMo(N[tBu]Ar)3 (0.025 

g, 0.235 mmol) in a total of 10 mL THF.  1H NMR of the crude reaction mixture (THF-

d8) indicated that no deterioration of the NMo(N[tBu]Ar)3 had occurred.  Increasing the 

temperature (25 °C ) and the reaction time (up to 2 h) resulted in no deterioration in the 

NMo(N[tBu]Ar)3 (as observed by 1H NMR). 
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2.3.4  NMR quantification of NMo(N[tBu]Ar)3 (2) conversion to Cl−Mo(N[tBu]Ar)3 

(1-Cl) 

 

These reactions were carried out as described above using TiCl4·THF2 (3 equiv, 

0.090 g, 0.28 mmol), LiAlH4 (3 equiv, 0.011 g, 0.028 mmol), NMo(N[tBu]Ar)3 (0.060 g, 

0.094 mmol) and haloform (3 equiv, 0.704 mmol) in a total of 15 mL THF.  Solvent was 

removed from the crude product mixture in vacuo and consumption of NMo(N[tBu]Ar)3 

(2) was quantified by 1H NMR (THF-d8) versus an internal standard (Cp2Fe; δ 4.00 ppm, 

s, 10 H).  For all four haloforms analysis of the crude product mixture revealed partial 

consumption of NMo(N[tBu]Ar)3 and the generation of Cl−Mo(N[tBu]Ar)3 (1-Cl).  When 

CCl4 and CFCl3 were employed as the haloform a new diamagnetic product (A) was also 

obtained.  1H NMR of product A (THF-d8) δ: 6.57 (s, 3 H), 5.63 (s, 6 H), 1.99 (s, 18 H), 

1.25 (s, 27 H). 

 

Results 

Haloform 2 (% remaining) 1-Cl (% yield) Other products 

CCl4 23 32 A  

CFCl3 24 30 A 

CH3CCl3 65 25 Yes 

PhCCl3 60 30 Yes 

 

 

2.3.5  Analysis of volatile components produced in the reaction of 15NMo(N[tBu]Ar)3 

(2-15N) with TiCl4·THF2, LiAlH4 and CFCl3 

 

A 25 mL glass reaction vessel (fitted with a ground glass joint) was modified 

using glass-blowing techniques to enable the vacuum transfer of volatile materials from 

the main vessel into an NMR tube fitted with a ground glass joint.  To the 25 mL vessel 

was added TiCl4·THF2 (3 equiv, 0.224 g, 0.704 mmol) and LiAlH4 (3 equiv, 0.027 g, 

0.704 mmol).  Chilled (−35 °C) THF (~2 mL) was added to the mixture of solids.  The 25 

mL vessel was capped with a rubber septum and the NMR tube was fitted with a gas 
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adaptor.  The THF suspension was stirred at 0 °C in a salt-ice bath under a flow of N2 for 

20 minutes.  A solution of 15NMo(N[tBu]Ar)3 (0.150 g, 0.235 mmol) in THF (~1 mL) 

was added via a syringe to the THF suspension.  This was followed immediately by the 

addition of CFCl3 (3 equiv, 0.07 mL, 0.704 mmol).  The mixture was stirred for 30 

minutes at 0 °C after which time the THF suspension was frozen by immersion of the 25 

mL vessel in liquid N2 and the head space of the reactor was evacuated.  Vacuum transfer 

of the volatiles into the NMR tube was achieved under a static vacuum.  Once the transfer 

was complete the contents of the NMR tube were frozen (immersion in liquid N2) and the 

tube was flame sealed.  19F NMR (282 MHz, THF-d8, 20 °C) of the volatiles δ: 0.0 

(CFCl3), −80.4 (d, J 55 Hz), −169.4 (t, J 49 Hz). 

 

2.3.6  Analysis of volatile components produced in the reaction of NMo(N[tBu]Ar)3 

(2) with TiCl4·THF2, LiAlH4 and CH3CCl3 

 

The reaction was carried out as described above in THF-d8 solvent using CH3CCl3 

(0.07 mL).  1H NMR spectroscopy (300 MHz, THF-d8, 20 °C) identified CH3CCl3 (δ 2.7 

ppm), CH2CHCl δ: 6.1 (m, CH2CHCl), 5.5 (m, CH2CHCl) and four other peaks that 

could not be assigned at δ 2.16 (s), 1.98 (m), 1.96(m) and 0.8 ppm (s). 

 

2.3.7  Reaction of PhHgCCl2Br with NMo(N[tBu]Ar)3 (2) 

 

To a solution of NMo(N[tBu]Ar)3 (0.030 g, 0.047 mmol) in C6D6 (~0.8 mL) was 

added solid PhHgCCl2Br (5 equiv, 0.103 g, 0.23 mmol).  This solution was transferred to 

a J. Young tube and subsequently heated at 65 °C for 24 h.  Analysis by 1H NMR 

spectroscopy revealed complete consumption of NMo(N[tBu]Ar)3 and 11 new peaks in 

the diamagnetic region of the spectrum (relative ratios are indicated in parentheses) δ: 

7.86 (0.9), 7.59 (1.8), 7.42 (4.4), 2.03 (18.5), 1.93-1.92 (15.3), 1.80 (5.2), 1.60 (10.1), 

1.48 (15.1), 1.45 (27.0), 1.34 (6.3), 1.25 (8.8). 
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2.3.8  Reaction of PhHgBr with Cl−Mo(N[tBu]Ar)3 (1-Cl) 

 

A mixture of Cl−Mo(N[tBu]Ar)3 (0.040 g, 0.06 mmol) and PhHgBr (0.022 g, 0.06 

mmol) in C6D6 (~1 mL) was prepared in a vial and stirred at 25 °C for 19 h.  The 

suspension was filtered to remove the insoluble PhHgBr and analyzed by 1H NMR 

spectroscopy.  No deterioration of Cl−Mo(N[tBu]Ar)3 (1-Cl) was observed.  The same 

result was obtained when this reaction was repeated at 65 °C. 

 

2.3.9  Reaction of PhHgBr with NMo(N[tBu]Ar)3 (2) 

 

The reaction was carried out as described above using NMo(N[tBu]Ar)3 (0.040 g, 

0.062 mmol) and PhHgBr (0.028 g, 0.062 mmol) in C6D6 (~1 mL).  Analysis by 1H NMR 

spectroscopy showed that no deterioration of NMo(N[tBu]Ar)3 (2) had occurred.  The 

same result was obtained when this reaction was repeated at 65 °C. 

 

2.3.10  Reaction of PhHgCCl2Br with Cl−Mo(N[tBu]Ar)3 (1-Cl) 

 

To a solution of Cl−Mo(N[tBu]Ar)3 (0.050 g, 0.076 mmol) in C6D6 (~0.8 mL) 

was added solid PhHgCCl2Br (0.033 g, 0.076 mmol).  This solution was transferred to a 

J. Young tube and allowed to stand at 25 °C for 40 h.  Analysis by 1H NMR spectroscopy 

revealed >85% consumption of Cl−Mo(N[tBu]Ar)3 together with 11 new peaks in the 

diamagnetic region of the spectrum (relative ratios are indicated in parentheses) δ: 7.86 

(1.0), 7.59 (2.1), 7.42 (4.8), 2.03 (18.0), 1.93-1.92 (12.7), 1.80 (4.6), 1.60 (10.3), 1.48 

(7.41), 1.45 (23.3), 1.34 (11.8), 1.25 (7.5). 

 

2.3.11  Reaction of PhHgCCl2Br with Mo(N[tBu]Ar)3 (1) 

 

A mixture of Mo(N[tBu]Ar)3 (0.030 g, 0.048 mmol) and PhHgCCl2Br (0.021 g, 

0.048 mmol) in C6D6 (~0.8 mL) was prepared in a vial and stirred at 25 °C for 10 min 

before transferring to an NMR tube for analysis by 1H NMR spectroscopy.  Two 
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paramagnetic products were observed; ClMo(N[tBu]Ar)3 (1-Cl) and BrMo(N[tBu]Ar)3 

(1-Br). 

 

2.3.12  Reaction of PhHgCCl2Br with Br−Mo(N[tBu]Ar)3 (1-Br) 

 

 A mixture of Br−Mo(N[tBu]Ar)3 (0.030 g, 0.043 mmol) and PhHgCCl2Br (0.019 

g, 0.043 mmol) in C6D6 (~0.8 mL) was prepared in a vial and stirred at 25 °C for 10 min 

before transferring to an NMR tube for analysis by 1H NMR spectroscopy.  

Approximately 60% of the Br−Mo(N[tBu]Ar)3 remained and the generation of one other 

paramagnetic product – identified as complex 1-Cl (20%) was observed.  Eleven peaks in 

the diamagnetic region of the spectrum (accounting for ca. 20% of the products) were 

consistent with those observed in the reaction of 1-Cl with PhHgCCl2Br. 

 

2.3.13  Syntheses of X−Mo(N[tBu]Ar)3 (1-Cl, 1-Br) from Mo(N[tBu]Ar)3 (1) 

 

A solution of Mo(N[tBu]Ar)3 (0.20g, 0.32 mmol) in Et2O (6 mL) was chilled to 

−35 °C in a 20 mL scintillation vial.  In a second vial, a solution of 10 equiv 1,2-

dihaloethane (0.158 g, 3.20 mmol, 1,2 dichloroethane for 1-Cl; 0.300 g, 3.2 mmol, 1,2 

dibromoethane for 1-Br) in Et2O (2 mL) was chilled to −35 °C.  Once cold, the 1,2-

dihaloethane was added to the solution of Mo(N[tBu]Ar)3 and the mixture was stirred at 

25 °C for 2 h.  The orange-brown solution turned a darker brown color as it warmed to 25 

°C.  Solvent removal in vacuo gave an orange-brown powder that was dissolved in 

minimum Et2O.  Orange-brown solids were precipitated from solution upon addition of 

cold (−35 °C) pentane.  These solids were isolated by filtration, washed with 2 mL cold 

pentane and dried in vacuo to yield 0.140 g (0.21 mmol, 66%) 1-Cl and 0.155 g (0.22 

mmol, 69%) 1-Br.  Both 1-Cl and 1-Br could be recrystallized from a concentrated 

solution of Et2O stored at −35 °C for 2 days. 

 

1-Cl: 1H NMR (300 MHz, C6D6, 20 °C) δ:  24.17 (br s, ν½ 76 Hz), −1.45 (s, ν½ 8 Hz), 

−5.06 (s, ν½ 14 Hz).  Impurities included minor quantities (< 2% by NMR) of 
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NMo(N[tBu]Ar)3 and HN[tBu]Ar, both present from the synthesis of the starting material, 

Mo(N[tBu]Ar)3. 

 

1-Br: 1H NMR (300 MHz, C6D6, 20 °C) δ: 17.30 (br s, ν½ 165 Hz), −0.435 (s, ν½ 12 Hz), 

−1.57 (br s, ν½ 87 Hz). 

  

2.3.14  Thermal stability of 1-Cl 

 

A C6D6 (~0.8 mL) solution of Cl−Mo(N[tBu]Ar)3 (0.03 g) was stored at 25 °C in 

a sealed NMR tube.  Analysis of this solution was carried out at frequent intervals over 

30 h.  After 30 h >85% of 1-Cl had been consumed and a new diamagnetic product was 

observed.  1H NMR (300 MHz, C6D6, 20 °C) δ: 6.46 (s, 3 H), 6.41 (s, 6 H), 2.19 (s, 18 

H), 1.18 (s, 27 H). 

When this study was repeated in THF the rate of decomposition of 1-Cl was reduced 

(>90% 1-Cl remains after 20 h). 

A C6D6 (~0.8 mL) solution of Cl−Mo(N[tBu]Ar)3 (0.03 g) was heated at 35 °C in 

an oil bath in a sealed NMR tube.  Analysis of this solution was carried out at frequent 

intervals over 7 d.  After 7 d >85% of 1-Cl had been consumed.  A new paramagnetic 

product is observed with resonances at δ: 28.2, −7.6, −18.5 and −27 ppm.  Peaks in the 

diamagnetic region of the spectrum are attributed to free amine HN[tBu]Ar, 

NMo(N[tBu]Ar)3 (<2%) and several other unidentified products. 

 

2.3.15  One-electron reduction of Cl−Mo(N[tBu]Ar)3 (1-Cl) with magnesium 

 

A solution of Cl−Mo(N[tBu]Ar)3 (0.150 g, 0.227 mmol) in THF (5 mL) was 

chilled to −35 °C and added to a stirred slurry of Mg powder (0.017 g, 10 equiv, 2.7 

mmol) in THF (2 mL).  The mixture was stirred at 25 °C for 2 h.  A subtle darkening of 

the orange-brown solution was noted.  THF was removed under a dynamic vacuum and 

the powder was then extracted with pentane.  Filtration through Celite and removal of 

pentane in vacuo afforded an orange-brown powder, weight: 0.102 g (72%), identified by 
1H NMR as Mo(N[tBu]Ar)3 (1). 
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2.3.16  Alternate method for the one-electron reduction of Cl−Mo(N[tBu]Ar)3 (1-Cl) 

 

A solution of Cl−Mo(N[tBu]Ar)3 (0.050 g, 0.076 mmol) in Et2O (2 mL) was 

chilled to −35 °C.  In a second vial a solution of Ti(N[tBu]Ar)3 (0.044 g, 0.076 mmol) in 

Et2O (2 mL) was prepared and chilled to −35 °C.  The Ti(N[tBu]Ar)3 solution was added 

to the Cl−Mo(N[tBu]Ar)3 solution and the mixture was stirred at 25 °C for 30 min.  

Removal of the solvent in vacuo yielded a dark orange powder.  1H NMR showed that 2 

new products were present in solution - Mo(N[tBu]Ar)3 (1) and Cl−Ti(N[tBu]Ar)3.  1H 

NMR Cl−Ti(N[tBu]Ar)3: (300 MHz, C6D6, 20 °C) δ: 6.72 (s, 3 H, para), 6.32 (br s, 6 H, 

ortho), 2.21 (s, 18 H, ArMe), 1.40 (s, 27 H, NC(CH3)3). 

Reactions performed using 0.150 g 4-Cl enabled isolation of pure Cl−Ti(N[tBu]Ar)3 by 

extraction of the orange powder with cold pentane and filtration to collect 

Cl−Ti(N[tBu]Ar)3.  The filtrate contained 4-Cl as the major product and a small amount 

of Cl−Ti(N[tBu]Ar)3. 

 

2.3.17  Attempted one-electron reduction of 1-Cl employing Na/Hg under argon 

 

A solution of Cl−Mo(N[tBu]Ar)3 (0.070 g, 0.106 mmol) in THF (6 mL) was 

chilled to −35 °C.  In a second vial a 0.04% sodium amalgam was prepared and 2 mL of 

chilled (−35 °C) THF was added.  The solution of Cl−Mo(N[tBu]Ar)3 was added to the 

sodium amalgam and the mixture stirred for 7 h under an atmosphere of argon.  The 

solution turned a darker brown color over the period of the reaction.  The THF solution 

was decanted from the sodium amalgam and solvent was removed in vacuo.  The greasy 

brown solids were extracted with pentane and filtered through Celite.  Following removal 

of pentane under a dynamic vacuum the solids were analyzed by 1H NMR spectroscopy.  

Complete consumption of 1-Cl was observed and the major product was free amine 

HN[tBu]Ar.  Resonances attributed to NMo(N[tBu]Ar)3 (2) were seen together with other 

unidentified products. 
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2.3.18  Attempted synthesis of NMo(N[tBu]Ar)3 (2) from Cl−Mo(N[tBu]Ar)3 (1-Cl) 

 

A solution of Cl−Mo(N[tBu]Ar)3 (0.070 g, 0.106 mmol) in THF (6 mL) was 

chilled to −35 °C.  In a second vial a 0.04% sodium amalgam was prepared and 2 mL of 

chilled (−35 °C) THF was added.  The solution of Cl−Mo(N[tBu]Ar)3 was added to the 

sodium amalgam and the mixture stirred vigorously for 20 h under an atmosphere of N2.  

After ca. 45 min the solution had turned a purple color.  The THF solution was decanted 

from the sodium amalgam and solvent was removed in vacuo.  The greasy orange-brown 

solids were extracted with pentane and filtered through Celite.  Following removal of 

pentane under a dynamic vacuum the solids were analyzed by 1H NMR spectroscopy.  

Complete consumption of 1-Cl was observed with peaks attributed to NMo(N[tBu]Ar)3 

(2), free amine HN[tBu]Ar and several other unidentified products. 
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Nitrogen atom transfer from dinitrogen into an organic nitrile via the 

anionic ketimide complex (THF)2Mg[O(Ph)C15NMo(N[tBu]Ar)3]2 
 

3.1  Introduction 
 

 The potential for N-atom transfer from a dinitrogen-derived terminal nitride of 

molybdenum NMo(N[tBu]Ar)3 (Ar = 3,5-C6H3(CH3)2) (1)1,2 has been investigated by two 

distinct routes.  In the second chapter of this thesis, the generation of dihalocarbenes in 

the presence of complex 1 was described.  The focus of this chapter is an alternate 

method for the activation of complex 1. 

 

Generation of molybdenum(IV) ketimide compounds with the general formula 

(RR'CN)Mo(N[tBu]Ar)3 is an attractive synthetic target due to the known β-elimination 

chemistry of these complexes.3  While the addition of divalent carbon (CX2) to 1 could 

provide a ketimide complex (X2CN)Mo(N[tBu]Ar)3 in a single step, there exist 

significant limitations to this method of activating the metal-nitride functionality. 

 

Synthesis of the benzoylimido complex [PhC(O)NMo(N[tBu]Ar)3]OTf [2]OTf 

(described in chapter 1) represents the addition of a two-coordinate carbocation 

[C(O)Ph]+ to the terminally-bound N-atom in 1.  We proposed that upon two-electron 

reduction of [2]OTf, an anionic ketimide complex of formula 

[O(Ph)C15NMo(N[tBu]Ar)3]− might be synthesized.  Subsequent functionalization of the 

negatively charged oxygen atom could be used to furnish a substituent on the ketimide 

carbon that would be unstable with respect to β-elimination.  β-Elimination from a 

complex of formula RO(Ph)C15NMo(N[tBu]Ar)3 would afford one equivalent of 

benzonitrile (wherein the nitrogen atom is derived from molecular N2) and generate the 

molybdenum(IV) species, RO−Mo(N[tBu]Ar)3.  The regeneration of Mo(N[tBu]Ar)3 

from RO−Mo(N[tBu]Ar)3 could be achieved by a one-electron reduction, in a similar 

manner to the reductive chemistry of Cl−Mo(N[tBu]Ar)3, described in chapter 2. 
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The one- and two-electron reduction chemistry of [2]OTf has been investigated 

and the results are presented herein.  Analysis of electronic structure for the anionic 

ketmide complex (THF)2Mg[O(Ph)C15NMo(N[tBu]Ar)3]2 [3]2Mg(THF)2 has been carried 

out using 15N solid state CP/MAS NMR spectroscopy.  Syntheses of ketimide complexes 

RO(Ph)C15NMo(N[tBu]Ar)3 (4 and 5) and investigation of the potential for N-atom 

transfer from these complexes will be described. 

 

3.2  Results and Discussion 

 
3.2.1 One and two-electron reduction chemistry of 

[PhC(O)15NMo(N[tBu]Ar)3]SO3CF3 [2]OTf 

 

 The synthesis of an anionic ketimide complex of formula 

[O(Ph)C15NMo(N[tBu]Ar)3]− [3] from [2]OTf was investigated via two different 

strategies.  The first of these routes required an initial one-electron reduction to form the 

neutral molybdenum(V) complex PhC(O)15NMo(N[tBu]Ar)3 (2).  Subsequent one-

electron reduction of complex 2 would result in generation of the desired anionic 

ketimide complex [O(Ph)C15NMo(N[tBu]Ar)3]− [3] (Scheme 1, route 1).   
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ArtBuN
NtBuAr

N

Mo

O

ArtBuN

ArtBuN
NtBuAr

N

Mo

O
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ArtBuN
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N

Mo

O

+ 1e- + 1e-
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Route 2        + 2e-

Route 1

2 [3]

 
 

Scheme 1.  One and two-electron reduction routes to the anionic ketimide complex 

[O(Ph)C15NMo(N[tBu]Ar)3]− [3]. 
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Reaction of [2]OTf with one-electron reductants such as Na/Hg amalgam and 

lithium metal resulted in the formation of significant amounts of free amine HN[tBu]Ar3.  

In the reaction of [2]OTf with Ti(N[tBu]Ar)3 (1.0 equiv), TfO−Ti(N[tBu]Ar)3 was 

isolated in high yield.  In the reaction of [2]OTf with one equivalent of cobaltocene 

(Cp2Co), cobaltocenium triflate [Cp2Co]OTf was isolated via pentane extraction of the 

product mixture followed by filtration.  Analysis of the filtrate by 1H NMR spectroscopy 

showed that a small amount of ligand was generated together with a new diamagnetic 

product (A).  Product A contained no resonances that could be assigned to the phenyl 

substituent of the –C(O)Ph fragment.  Subsequent experiments that were carried out to 

probe the thermal stability of complex 2 showed the formation of product A together with 

multiplet resonances assigned to iso-butylene.4  From these data, we conclude that the 

neutral imido complex 2 is unstable with respect to radical decomposition pathways, 

thereby prohibiting its isolation en route to the anionic ketimide complex [3]. 

 

 The two-electron reduction of [2]OTf was attempted with magnesium sand (Mg0), 

calcium (Ca0) and mercury amalgams of these two metals.  Reactions of [2]OTf with Mg0 

or Ca0 (in THF solvent) resulted in no obvious color change after 1 h at 25 °C.  Since 

complex [2]OTf is thermally unstable in THF solution, decomposing to a single 

(unidentified) diamagnetic product (A) upon standing at 25 °C, it is preferable to effect 

the reduction rapidly and at low temperature in order to limit this decomposition.  The 

inhomogeneous nature of the Mg0 and Ca0 reductions of [2]OTf require long reaction 

times which result in unfavorable decomposition of the benzoylimido complex [2]OTf.   

 

Reduction of [2]OTf with Mg/Hg and Ca/Hg amalgams in cold (−35 °C) THF 

resulted in a color change from red-orange to black after ca. 5 min at 25 °C and upon 

work up, a dark solid was isolated.  Characterization by 1H NMR spectroscopy showed 

that together with a number of diamagnetic products, a significant amount of free amine 

(HN[tBu]Ar) was present.  Other resonances in the 1H NMR spectra indicated that a new 

diamagnetic molybdenum-containing product had been generated.  Distinctive 

resonances included two broad singlets at ca. 3.7 and 1.8 ppm, attributed to a coordinated 
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THF molecule, and peaks at ca. 2.2 and 1.4 ppm attributed to the aryl-methyl (18 H) and 

t-butyl (27 H) protons of the amide ligands. 

 

The two-electron reduction of [2]OTf (Scheme 1, route 2) is smoothly accomplished 

using 1.25 equiv magnesium anthracene (Mg(THF)3(anth)).5  Upon addition of a THF 

suspension of magnesium anthracene to a thawing THF solution of [2]OTf a color change 

from red-orange to black was observed.6  Removal of THF in vacuo and extraction with 

thawing pentane (to remove anthracene and magnesium salts) enabled the isolation of 

(THF)2Mg[O(Ph)C15NMo(N[tBu]Ar)3]2 [3]2Mg(THF)2 as a black microcrystalline 

powder.  The following information was obtained via inspection of the 1H, 13C, and 19F 

solution NMR spectra and 15N solid state spectrum of [3]2Mg(THF)2: 

• Integration of the 1H NMR spectrum indicates a single THF molecule of solvation per 

molybdenum center. 

• The ketimide carbon (N=C) was located in the 13C NMR spectrum as a doublet (1JNC 

2.3 Hz) at 137.4 ppm. 

• The 19F NMR spectrum of [3]2Mg(THF)2 revealed no resonances after 128 scans. 

• The 15N isotropic chemical shift (δiso) tensor determined from solid state CP/MAS 

spectra (obtained at spinning rates of 2 kHz and 2.7 kHz) is 419 ppm. 

While complex [3]2Mg(THF)2 has not been characterized by X-ray 

crystallography, the NMR data indicates that the product is a magnesium-bridged dimer 

of the desired anionic ketimide complex.  Two molecules of THF solvate the magnesium; 

one THF per molybdenum (Scheme 2, reaction (ii)).  The absence of a resonance in the 
19F NMR spectrum suggests the reaction proceeds with loss of 0.5 equivalents Mg(OTf)2 

per molybdenum. 

 

The resonance of the ketimide carbon in [3]2Mg(THF)2 was readily assigned due 

to the 15N-13C one-bond coupling, which split this resonance into a well defined doublet.  

The magnitude of the coupling (1JN-C 2.3 Hz) is in the range reported for organic 

ketimines.7,8  The 13C chemical shift of the ketimide resonance (137.4 ppm) is similar to 
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Scheme 2.  Synthesis of the anionic ketimide complex [3]2Mg(THF)2 (R' = C6H5) and 

functionalization to form neutral ketimide complexes 4 and 5. 
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that measured for the ketimide complex H2C15NMo(N[tBu]Ar)3 (described in chapter 1) 

at 138.9 ppm (d, 1JN-C 5.78 Hz). 

 

The 15N isotropic chemical shift (δiso) tensor for complex [3]2Mg(THF)2 (419 

ppm) is shifted upfield by 48 ppm with respect to δiso measured for the benzoylimido 

complex [2]OTf (467 ppm) and is similar to that measured for the ketimide complex 

H2C15NMo(N[tBu]Ar)3 (455 ppm).  A complete description of the 15N solid state NMR 

spectrum obtained for complex [3]2Mg(THF)2 is described in section 3.2.2. 

 

Attempts to recrystallize complex [3]2Mg(THF)2 via encryption of the magnesium 

counter ion with either 12-crown-4 or 18-crown-6 resulted in decomposition to a number 

of products including NMo(N[tBu]Ar)3 and free amine HN[tBu]Ar.  This observation 

indicates that coordination of the magnesium counter ion, between two equivalents of the 

anionic ketimide, provides a stabilizing interaction. 

 

3.2.2  15N Solid state CP/MAS NMR spectroscopy of 

(THF)2Mg[O(Ph)C15NMo(N[tBu]Ar)3]2 [3]2Mg(THF)2 

 

 Analysis of electronic structure and bonding in the terminal molybdenum nitride 

complex 15NMo(N[tBu]Ar)3]2 (1) and various 15N-labeled derivatives was described in 

chapter 1.  The combined use of 15N solid state NMR spectroscopy and density functional 

calculations offered insight into the ways in which functionalization of the terminal N-

atom modified the electronic structure.  The anionic ketimide complex [3]2Mg(THF)2 and 

derivatives that may be generated upon functionalization of the negatively charged O-

atom, provide a unique opportunity to examine electronic structure in a range of 

complexes that are activated, to a greater or lesser extent, toward removal of the 

dinitrogen-derived N-atom. 

 

 Measurement of the 15N solid state CP/MAS NMR spectrum of complex 

[3]2Mg(THF)2 was carried out in order to probe experimentally the electronic structure at 

nitrogen.  The principal components of the chemical shift tensor were extracted from the 
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experimental data using the SIMPSON general simulation program.9  The experimental 

and simulated 15N solid state CP/MAS NMR spectra of [3]2Mg(THF)2 are presented in 

Figure 1.  The principal components of the chemical shift tensor are listed in Table 1.   

 

 
 

Figure 1.  Experimental (—) and simulated (—) 15N solid state CP/MAS NMR spectra 

for complex [3]2Mg(THF)2.  The experimental spectrum was acquired at a spinning rate 

of 2 kHz.  The simulated spectrum is offset with respect to the experimental spectrum for 

clarity.  The isotropic peak (δiso) is indicated by an asterisk. 

 

 δiso (ppm) δ11 (ppm) δ22 (ppm) δ33 (ppm) Ω (ppm) κ 

Experiment 419 539 407 312 227 0.166 

 

Table 1.  Experimental principal components of the 15N chemical shift tensor for 

complex [3]2Mg(THF)2.  The span of the chemical shift anisotropy is defined as Ω = δ11 

− δ33 and the skew (κ) is defined as [3(δ22 − δiso)/(δ11 − δ33)]. 

 

 The 15N solid state CP/MAS NMR spectrum of complex [3]2Mg(THF)2 displays a 

number of interesting features.  First, the very narrow span (Ω = 227 ppm) of the 
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spectrum is in direct contrast with many of the 15N-labeled Lewis acid and imido 

derivatives of complex 1 (chapter 1) whose spans were in the range of 391 ppm to 1186 

ppm.  Comparison of the δnn values obtained for [3]2Mg(THF)2, with those reported in 

chapter 1, reveals that the small span is the result of both a (relatively) upfield value of 

δ11 and downfield value of δ33.10   

 

 The rhombic nature of the chemical shift anisotropy (δ11 ≠ δ22 ≠ δ33) is indicative 

of the non-axially symmetric geometry at the N-atom of complex [3]2Mg(THF)2.  The 

axial symmetry of complex 1 (and most of its Lewis acid and imido derivatives) is 

reflected in the value of the skew (κ = 1).  The deviation of complex [3]2Mg(THF)2 from 

axial symmetry is highlighted by its skew value of 0.166. 

 

The unique features of the spectrum obtained for [3]2Mg(THF)2 should enable an 

accurate prediction of the geometry of this complex by quantitative comparison of the 

calculated values of the chemical shielding tensor (for model complexes displaying 

differing optimized geometries) with the tensor values measured experimentally.  An 

understanding of the orbital interactions that influence the magnitude of the principal 

components of the chemical shift tensor can be obtained from analysis of the NMR 

output file of a density functional calculation.  Computational analysis of complex 

[3]2Mg(THF)2 is currently under investigation. 

 

3.2.3  Reactions of (THF)2Mg[O(Ph)C15NMo(N[tBu]Ar)3]2 [3]2Mg(THF)2 with 

electrophiles  

 

 Functionalization of the negatively charged O-atom in the anionic ketimide 

complex [3]2Mg(THF)2 may be used in the synthesis of ketimide complexes 

RO(Ph)C15NMo(N[tBu]Ar)3.  The choice of electrophile employed in these reactions is 

important since the substituent on the ketimide carbon (RO-) may be stable toward β-

elimination or undergo β-elimination to generate molybdenum(IV) species 

RO−Mo(N[tBu]Ar)3 with the concomitant formation of one equivalent of PhCN15.  The 

syntheses of neutral ketimide complexes (4), which are stable with respect to β-
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elimination, are described in section 3.2.3.1.  Reactions of complex [3]2Mg(THF)2 that 

form ketimide complexes (5), which are unstable with respect to β-elimination, are 

described in section 3.2.3.2. 

 
3.2.3.1  Syntheses of ketimide complexes RO(Ph)C15NMo(N[tBu]Ar)3 (4) 

 

 Initial attempts to functionalize the anionic ketimide complex [3]2Mg(THF)2 

focused on the use of mild, halogen-containing electrophiles such as trimethylsilyl 

chloride (Me3Si−Cl), methyl iodide (CH3I), tosyl chloride ((CH3)C6H4SO2Cl) and 

Cl−Ti(N[tBu]Ar)3.  The addition of 2.0 equivalents of electrophile (one equiv per 

molybdenum, in cold pentane) to a thawing pentane solution of complex [3]2Mg(THF)2 

(Scheme 2, reaction (iii)) resulted in a color change from black to forest green after 

approximately 2 min.  Work up after 10 min and analysis of the product mixture by 1H 

NMR spectroscopy showed the complete consumption of complex [3]2Mg(THF)2 and the 

formation of a number of diamagnetic products.  For the electrophiles listed above, these 

diamagnetic materials included 15NMo(N[tBu]Ar)3, free amine (HN[tBu]Ar) and at least 

one other diamagnetic molybdenum-containing product. 

 

In the reaction of complex [3]2Mg(THF)2 with 2.0 equiv Me3Si−Cl, resonances at 

2.22, 1.30 and 0.28 ppm were assigned to the aryl-methyl (18 H), t-butyl (27 H) and 

trimethylsilyl (9 H) groups of the desired ketimide complex 

Me3SiO(Ph)CNMo(N[tBu]Ar)3 (4a).  Similarly, in the reaction of complex [3]2Mg(THF)2 

with 2.0 equiv CH3I, resonances at 3.77, 2.19 and 1.30 ppm were assigned to the 

methoxy (3 H), aryl-methyl (18 H) and t-butyl (27 H) groups of the desired ketimide 

complex MeO(Ph)CNMo(N[tBu]Ar)3 (4b).  Steps were taken to find other electrophiles 

that would more cleanly deliver R3Si- and Me- groups to the O-atom of the ketimide 

ligand. 

 

 Syntheses of siloxy-ketimide complexes RMe2SiO(Ph)CNMo(N[tBu]Ar)3 (4a R = 

Me; 4b R = tBu) were achieved via reaction of complex [3]2Mg(THF)2 with 2.0 equiv 

RMe2Si−OTf in thawing pentane.  Upon stirring at 25 °C for 2 min a color change from 
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black to forest green was observed.  After10 min, work up of the reaction mixture 

enabled isolation of the siloxy-ketimide product (4a or 4b) as a greasy dark green solid.  

Two distinct absorptions are observed in the UV-visible spectrum of complex 4a at 432 

nm and 624 nm (Figure 2).  An almost identical UV-visible spectrum is observed for 

complex 4b, in which absorption maxima are located at 429 nm and 625 nm. 

 

Figure 2.  UV-Visible spectrum of Me3SiO(Ph)C15NMo(N[tBu]Ar)3 (4a) (toluene, 25 

°C). 

 
 For complex 4a the 13C resonance of the ketimide carbon was located at 137.5 

ppm.  The 15N-13C one-bond coupling could not be determined from 13C spectra of the 
15N-labeled isotopomer of complex 4a due to overlap of this resonance with a broad peak 

at 137.4 ppm (assigned to the meta-carbon atoms of the amide aryl groups).  Similarly, 

for complex 4b, the ketimide 13C resonance overlapped with a broad singlet assigned to 

the meta-cabon atoms of the ligand preventing accurate measurement of the 15N-13C one-

bond coupling constant for the 15N labeled isotopomer. 

 

 Synthesis of the methoxy-ketimide complex MeO(Ph)CNMo(N[tBu]Ar)3 (4c) was 

attempted using methyl tosylate and methyl triflate (MeOTf).  While a diamagnetic 

molybdenum-containing compound, attributed to complex 4c, was present in the product 

mixture, a number of other species including complex 1 and free amine (HN[tBu]Ar) 

were identified.  A clean, high-yielding route to complex 4c remains a synthetic target. 
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3.2.3.2  Syntheses of ketimide complexes RC(O)O(Ph)C15NMo(N[tBu]Ar)3 (5a and 

5b) 

 

 Reactions of complex [3]2Mg(THF)2 with electrophiles such as benzoyl chloride, 

benzoyl triflate (BzOTf) and trifluoroacetic anhydride ((CF3CO)2O) have been 

investigated in an effort to generate ketimide complexes 

RC(O)O(Ph)C15NMo(N[tBu]Ar)3 (5a R = Ph, 5b R = CF3, Scheme 2, reaction (iv)) 

wherein the substituent on the ketimide carbon is unstable with respect to β-elimination 

(Scheme 2, reaction (v)). 

 

Precedent for the β-elimination chemistry of ketimide complex 5a comes from the 

work of Mendiratta.11  Recent research has shown that upon reaction of (η2-

PhCN)−Mo(N[tBu]Ar)3 with benzoyl peroxide (PhCO2)2, a molybdenum(IV) benzoate 

complex PhC(O)OMo(N[tBu]Ar)3 (6a) and one equivalent of benzonitrile (PhCN) can be 

isolated.  It is proposed that the generation of complex 6a proceeds via ketimide complex 

5a, which is formed upon radical addition of [PhC(O)O]• to the carbon atom of the η2-

coordinated nitrile (PhCN).  Complex 5a rapidly undergoes β-elimination to form a 

molybdenum(IV) benzoate complex (6a) and one equivalent of PhCN.  Kinetic studies 

designed to probe the rate of β-OC(O)Ph elimination by complex 5a are in progress. 

 

 Reaction of complex [3]2Mg(THF)2 with benzoyl chloride resulted in formation 

of complex 1 and free amine (HN[tBu]Ar).  This observation was consistent with 

experiments described in section 3.2.3.1 in which attempts to deliver alkyl or silyl groups 

by means of halogen-containing electrophiles resulted in the generation of 1 and 

significant amounts of free amine. 

 

 Reaction of complex [3]2Mg(THF)2 with benzoyl triflate (2.0 equiv) resulted in a 

color change from black to dark green.  Upon work up, analysis of the brown-pink solid 

(1H NMR spectroscopy) showed that the product mixture comprised complexes 1 and 6a 

together with a small amount of free amine.  Complex 6a is readily identified by 1H 
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NMR spectroscopy as a result of a distinctive, broad resonance located at 4.27 ppm, 

assigned to the t-butyl protons of the amide ligands. 

 
15N Solution NMR spectroscopy12 was used to determine the fate of the 

dinitrogen-derived N-atom upon formation of complex 6a.  Three resonances were 

located in the 15N NMR spectrum at 838.9, 449.8 and 261.5 ppm (Figure 3). 

 

 
 

Figure 3.  15N Solution NMR spectrum of the reaction between complex [3]Mg(THF)2 

and benzoyl triflate. 

 

 The major peak in the 15N solution NMR spectrum (261.5 ppm) is assigned to 

PhCN15.13  The most downfield resonance (838.9 ppm) can be assigned to complex 1.14  

The identity of the 15N-containing species responsible for the signal at 449.8 ppm has not 

been determined.  This signal might be attributed to the trimer of benzonitrile [PhCN]3, 

whose formation is known to be catalyzed by Lewis acids.15  Density functional 

calculations are being used to determine the 15N isotropic chemical shift of [PhCN15]3 

since this parameter could not be found in an extensive search of the literature.  

Alternatively, the resonance at 449.8 ppm could be attributed to a molybdenum(IV) 

ketimide complex (R2CNMo(N[tBu]Ar)3).  Density functional calculations are also in 

progress on a number of plausible molybdenum(IV) ketimide complexes. 

 

 Gas chromatography (GC-MS) was used to confirm our assignment of the 15N 

solution NMR spectrum.  GC-MS data, obtained from analysis of the reaction between 

complex [3]2Mg(THF)2 and benzoyl triflate (2.0 equiv), displayed an intense signal 

assigned to [PhCN15]+ for which the parent ion formula weight was 104.16 
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 Reaction of [3]2Mg(THF)2 with trifluoroacetic anhydride ((CF3CO)2O, 2.0 equiv) 

in thawing pentane resulted in a color change from black to brown-orange and the 

isolation of a brown-orange product.  The major product of this reaction was 

CF3C(O)OMo(N[tBu]Ar)3 (6b), whose 1H NMR spectrum contains a distinctive, broad 

singlet at 10.26 ppm (assigned to the t-butyl (27 H) protons of the amide ligands).  

Complex 6b was identified by comparison with an independently prepared sample†.  

Complex 1 and free amine were amongst the compounds identified in the crude product 

mixture. 

 
15N Solution NMR spectroscopy was used to determine the fate of the dinitrogen-

derived N-atom.  Three signals at 839 ppm (complex 1), 450 ppm and 261 ppm (PhCN15) 

were located in the 15N spectrum of the crude product mixture.  The yield of PhCN15 was 

determined to be 43% by GC-MS. 

 

3.3  Concluding remarks 
 

Activation of the terminal molybdenum nitride complex 15NMo(N[tBu]Ar)3 (1) 

has been used to mediate N-atom transfer from dinitrogen into an organic nitrile.  

Synthesis of the benzoylimido complex [PhC(O)15NMo(N[tBu]Ar)3]OTf [2]OTf and its 

subsequent two-electron reduction, provided the anionic ketimide complex 

(THF)2Mg[O(Ph)C15NMo(N[tBu]Ar)3]2 [3]2Mg(THF)2 in high yield.  Reactions of 

complex [3]2Mg(THF)2 with electrophiles (R−OTf) enabled the formation of ketimide 

complexes RO(Ph)C15NMo(N[tBu]Ar)3, wherein the potential for β-elimination of the 

ketimide substituent (RO-) may be controlled by judicious choice of the electrophile.  

Reactions of [3]2Mg(THF)2 with benzoyl triflate or trifluoroacetic anhydride resulted in 

the syntheses of molybdenum(IV) complexes RO−Mo(N[tBu]Ar)3 (6a R = PhCO; 6b R = 

CF3CO) together with the concomitant formation of one equivalent PhCN15.  Selective 
15N-labeling of benzonitrile was demonstrated unequivocally by the combined use of 15N 

solution NMR studies and GC-MS measurements. 

                                                 
† Reaction of Mo(N[tBu]Ar)3 with ⅓ equivalents thallium(III) trifluoroacetate (Tl(O2CCF3)3) resulted in the 
clean formation of complex 6b.  See experimental section for further details. 
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The nitrogen atom transfer route described herein represents only the second 

example of the activation of complex 1 toward N-atom transfer into an organic 

molecule17 and one of few existing examples of N-atom transfer† (into an organic 

molecule) from a terminal transition-metal nitride complex.18−22  Furthermore, examples 

of the synthesis of nitrogen-containing organic molecules from N2 are limited.23−26  The 

advantage of the work described herein, over that previously reported, is two-fold.  First, 

there exists the potential for catalytic application of complex 1 in N-atom transfer, since 

the molybdenum(IV) species formed upon β-elimination from ketimide complexes 5a 

and 5b contains three intact tris-amide ligands.  The regeneration of Mo(N[tBu]Ar)3 from 

the molybdenum(IV) complexes 6a and 6b is currently under investigation in our 

laboratories. 

Secondly, the selective 15N-labeling of organic nitriles can be achieved by the use 

of the 15N-labeled isotopomer of complex [3]2Mg(THF)2.  Syntheses of complexes 

[2]OTf and [3]2Mg(THF)2 in their 15N-labeled forms, may be achieved via the use of 
15NMo(N[tBu]Ar)3 (1).  Complex 1 is readily prepared as its 15N-labeled isotopomer 

through the use of 15N-isotopically-enriched dinitrogen.‡  The scope of this reaction, with 

respect to the generation of other organic nitriles is currently under investigation. 

 

 

3.4  Experimental Section 
 

General details, solution state 1H, 13C and 19F NMR parameters and 15N solid-state 

NMR parameters are identical to those included in chapter 1 (sections 1.5.1 and 1.5.3).  

For information pertaining to the simulation of solid state spectra using the SIMPSON 

program refer to chapter 1, section 1.5.4.  The benzoylimido complex 

[PhC(O)NMo(N[tBu]Ar)3]SO3CF3 [2]OTf was prepared by the method outlined in 

chapter 1.  Magnesium anthracene [Mg(THF)3(anth)] was prepared by the method of 

Freeman and Hutchinson.5  GC-MS experiments were carried out on an Agilent 6890N 

GC system fitted with a Restek Rtx-1 column (crossbond, 100% dimethyl polysiloxane, 

                                                 
† In the references cited the N-atom of the terminal transition-metal nitride complex is not derived from N2. 
‡ 15N2 is currently the most inexpensive source of this isotope. 
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capillary: 30.0 m x 250 µm x 1.00 µm) in combination with an Agilent 5973 mass 

selective detector.  15N solution NMR spectra were acquired on a Bruker DRX600 

spectrometer operating at 600 MHz for 1H (60 MHz for 15N) and equipped with a triple 

resonance (1H/13C/15N) probe.  Proton decoupling was not applied during the acquisition 

of 15N solution spectra. 
 

3.4.1  One-electron reduction of [PhC(O)NMo(N[tBu]Ar)3]SO3CF3 [2]OTf with 

cobaltocene 

 

 To a thawing solution of [PhC(O)NMo(N[tBu]Ar)3]SO3CF3 [2]OTf (0.075 g, 

0.084 mmol) in THF (4 mL) was added a cold (−35 °C) THF (2 mL) solution of 

cobaltocene (Cp2Co, 1.1 eq, 0.017 g, 0.092 mmol).  Upon addition, a color change from 

red-orange to dark brown was noted.  The solution was stirred and allowed to warm to 

room temperature over 30 min before solvent was removed under a dynamic vacuum.  

The greasy brown solids were triturated with hexanes and then extracted with cold 

pentane.  Filtration through a glass frit enabled isolation of pale brown solids identified as 

[Cp2Co]OTf (1H, 19F NMR).  Solvent removal from the filtrate yielded a greasy brown 

solid.  Analysis of this solid by 1H NMR spectroscopy showed the formation of one 

major diamagnetic product (A) together with a small amount (ca. 5%) of free amine 

(HN[tBu]Ar).  Product A 1H NMR spectrum: (300 MHz, C6D6, 20 °C) δ: 6.43 (3 H), 6.40 

(6 H), 2.25 (18 H), 1.34 (27 H). 

 

3.4.2  Thermal Stability of [PhC(O)NMo(N[tBu]Ar)3]SO3CF3 [2]OTf 

 

A solution of [PhC(O)NMo(N[tBu]Ar)3]SO3CF3 ([2]OTf, 0.030g, 0.034 mmol) in 

CDCl3 (0.6 mL) was prepared in a vial and transferred to a J. Young tube.  The sample 

was stored at 25 °C for 18 h after which time the solution had turned a dark brown-

orange color.  1H NMR spectroscopy indicated the complete consumption of [2]OTf and 

the formation of a new diamagnetic product with the following resonances in the 1H 

NMR spectrum: (300 MHz, CDCl3, 20 °C) δ: 6.65 (3 H), 6.62 (6 H), 2.27 (18 H), 1.35 

(27 H).  Multiplet resonances at δ 4.67 and 1.74 ppm were assigned to iso-butylene.  19F 
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NMR (283 MHz, CDCl3, 20 °C) δ: −78.18, −78.45 ppm (ratio 1:9).  Repetition of this 

experiment in THF, resulted in decomposition of [2]OTf to the products listed for 

reaction in CDCl3. 

 

3.4.3  Synthesis of (THF)2Mg[O(Ph)C15NMo(N[tBu]Ar)3]2 [3]2Mg(THF)2 

 

A solution of [PhC(O)15NMo(N[tBu]Ar)3]SO3CF3 [2]OTf (0.670 g, 0.750 mmol) 

in THF (20 mL) was chilled to −35 °C in a 50 mL flask.  In a vial, a solution of 

magnesium anthracene [Mg(THF)3(anthracene)] (1.25 equiv, 0.395 g, 0.938 mmol) in 

THF (15 mL) was chilled to −35 °C.  The magnesium anthracene solution was added to 

the 50 mL flask with vigorous stirring and after ca. 1 min a color change from red-orange 

to black was observed.  The solution was stirred at 25 °C for 10 min after which time the 

solution was filtered through Celite and THF solvent was removed in vacuo to yield a 

sticky black solid.  The solid was triturated with hexanes (10 mL) and solvent was 

removed in vacuo to yield a black powder.  The powder was extracted with pentane, 

filtered through Celite and following solvent removal under a dynamic vacuum, a black 

microcrystalline powder was isolated:  [3]2Mg(THF)2 0.518 g (0.615 mmol, 82%).  1H 

NMR (500 MHz, C6D6, 20 °C) δ: 7.24 (m, 2 H, Ph), 6.98 (br s, 6 H, ortho), 6.78 (t, 2 H, 

Ph-para), 6.68 (s, 3 H, para), 3.71 (m, 4 H, THF), 2.24 (s, 18 H, ArCH3), 1.78 (m, 4 H, 

THF), 1.45 (br s, 27 H, NC(CH3)3).  13C NMR (125 MHz, C6D6, 20 °C) δ: 154.8 (ipso), 

137.4 (d, 1JNC 2.3 Hz, N=C), 137.0 (meta), 128.7 (ortho), 127.5 (Ph), 126.0 (Ph), 125.98 

(para), 125.3 (Ph), 70.44 (THF), 63.06 (NC(CH3)3), 32.27 (NC(CH3)3), 25.43 (THF), 

22.02 (ArCH3).  UV-visible spectrum (toluene, 20 °C) λmax: 477 nm, 726 nm. 

This reaction is amenable to scale-up and has been performed using 1.9 g [2]OTf. 
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Figure 4. UV-visible spectrum of complex [3]2Mg(THF)2 (toluene, 25 °C). 

 

3.4.4  Synthesis of Me3SiO(Ph)CNMo(N[tBu]Ar)3 (4a) and 
tBuMe2SiO(Ph)CNMo(N[tBu]Ar)3 (4b) 

 

A solution of (THF)2Mg[O(Ph)CNMo(N[tBu]Ar)3]2 (0.150 g, 0.091 mmol) in 

pentane (10 mL) was chilled to −35 °C in a 20 mL vial.  In a second vial, a solution of the 

electrophile (Me3SiOTf, 2.0 equiv, 0.040 g, 0.181 mmol: tBuMe2SiOTf, 2.0 equiv, 0.048 

g, 0.181 mmol) in pentane (6 mL) was chilled to −35 °C.  2 mL of the solution containing 

the electrophile was added to the first vial and both solutions were frozen (in a liquid 

nitrogen-cooled cold well) before the addition of a further 2 mL of the solution 

containing the electrophile.  The solutions were frozen again before the final 2 mL of 

electrophile solution was added.  This mixture was then allowed to stir at 25 °C.  After 

ca. 2 min a color change from black to forest green was observed.  The solution was 

stirred at 25 °C for 10 min after which time the solution was filtered through Celite and 

pentane solvent was removed in vacuo to yield a greasy forest green solid: 

Me3SiO(Ph)CNMo(N[tBu]Ar)3 (4a) 0.105 g (0.128 mmol, 70%); 
tBuMe2SiO(Ph)CNMo(N[tBu]Ar)3 (4b) 0.098 g (0.114 mmol, 63%). 
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Me3SiO(Ph)CNMo(N[tBu]Ar)3 (4a) 1H NMR (500 MHz, C6D6, 20 °C) δ: 7.10 (m, 2 H, 

Ph), 6.82 (br s, 6 H, ortho), 6.78 (m, 1 H, Ph), 6.64 (s, 3 H, para), 6.6 (m, 2 H, Ph), 2.22 

(s, 18 H, ArCH3), 1.30 (s, 27 H, NC(CH3)3), 0.278 (s, 9 H, Si(CH3)3).  13C NMR (125 

MHz, C6D6, 20 °C) δ: 151.1 (ipso), 147.8 (Ph), 137.5 (N=C), 137.4 (meta), 130.7 (para), 

129.3 (ortho), 127.1 (Ph), 126.7 (Ph), 125.9 (Ph), 121.0 (Ph), 116.3 (Ph), 63.28 

(NC(CH3)3), 31.83 (br s, ν½ 10 Hz, NC(CH3)3), 21.88 (ArCH3), 2.47 (Si(CH3)3).  UV-

visible spectrum (toluene, 20 °C) λmax: 432 nm, 624 nm. 

 
tBuMe2SiO(Ph)CNMo(N[tBu]Ar)3 (4b) 1H NMR (500 MHz, C6D6, 20 °C) δ: 6.69 (br s, 

6 H, ortho), 6.55 (br s, 3 H, para) [due to overlap of the very broad ortho and para 

resonances with the Ph resonances, the chemical shifts of these 5 protons are not 

assigned], 2.18 (s, 18 H, ArCH3), 1.40 (br s, 27 H, NC(CH3)3), 1.15 (s, 9 H, 

SiMe2C(CH3)3), 0.143 (s, 6 H, Si(CH3)2
tBu).  13C NMR (125 MHz, C6D6, 20 °C) δ: 137.5 

(N=C), 137.4 (br s, meta), 130.7 (para), 129.3 (ortho), 127.1 (Ph), 125.9 (Ph), 125.3 (Ph), 

121.2 (Ph), 116.5 (Ph), 61.73 (NC(CH3)3), 32.32 (br s, NC(CH3)3), 27.17 

(SiMe2C(CH3)3), 21.99 (ArCH3), 2.30 (Si(CH3)3).  UV-visible spectrum (toluene, 20 °C) 

λmax: 429 nm, 625 nm. 

 

3.4.5  Reaction of (THF)2Mg[O(Ph)C15NMo(N[tBu]Ar)3]2 [3]2Mg(THF)2 with 

PhC(O)OTf 

 

A pentane (15 mL) solution of (THF)2Mg[O(Ph)C15NMo(N[tBu]Ar)3]2 (0.250 g, 

0.151 mmol) was frozen in a 50 mL flask by storage in a liquid nitrogen-cooled cold 

well.  In a 20 mL vial a pentane (10 mL) solution of PhC(O)OTf (0.95 equiv, 0.068 g, 

0.287 mmol) was chilled to −35 °C.  The PhC(O)OTf solution was added drop-wise over 

5 min to the thawing solution in the 50 mL flask.  After stirring at 25 °C for ca. 2 min a 

color change from black to dark blue-green was observed.  The solution was stirred for a 

total of 15 min before filtering through Celite to give a brown-pink filtrate.  Solvent 

removal in vacuo yielded a greasy brown-pink solid.  A number of products were 

observed in the 1H NMR of the product mixture.  These included 15NMo(N[tBu]Ar)3, 

HN[tBu]Ar and PhC(O)OMo(N[tBu]Ar)3 (6a).  Product 6a was identified by comparison 
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with an independently prepared sample.11  1H NMR for compound 6a (300 MHz, C6D6, 

20 °C) δ: 7.65 (m, 2 H, Ph), 7.34 (m, 2 H, Ph), 6.16 (t, 1 H, Ph), 5.66 (br s, 6 H, ortho), 

4.82 (s, 3 H, para), 4.27 (br s, 27 H, NC(CH3)3), 1.69 (s, 18 H, ArCH3).  15N NMR (60 

MHz, C6D6, 20 °C) δ: 838.9 ppm (15NMo(N[tBu]Ar)3, 1), 449.8 ppm (not assigned), 

261.5 ppm (PhCN15).  GC-MS confirmed the assignment of PhCN15. 

 

3.4.6  Reaction of (THF)2Mg[O(Ph)C15NMo(N[tBu]Ar)3]2 [3]2Mg(THF)2 with 

(CF3CO)2O 

 

A pentane (8 mL) solution of (THF)2Mg[O(Ph)C15NMo(N[tBu]Ar)3]2 (0.155 g, 

0.187 mmol) was frozen in a 20 mL vial by storage in a liquid nitrogen-cooled cold well.  

In a second 20 mL vial a pentane (5 mL) solution of (CF3CO)2O (0.95 equiv, 0.037 g, 

0.0.178 mmol) was chilled to −35 °C.  The (CF3CO)2O solution was added drop-wise 

over 5 min to the thawing solution of [3]2Mg(THF)2.  After stirring at 25 °C for ca. 2 min 

a color change from black to brown-orange was observed.  The solution was stirred for a 

total of 10 min before filtering through Celite to give a brown-orange filtrate.  Solvent 

removal in vacuo yielded a greasy brown-orange solid.  The crude product mixture was 

dissolved in 1.5 mL C6D6 and analyzed by 1H NMR spectroscopy and GC-MS (see 

Appendix 4 for GC-MS data).  Products observed in the 1H NMR included 
15NMo(N[tBu]Ar)3, HN[tBu]Ar and CF3C(O)OMo(N[tBu]Ar)3 (6b).  Product 6b was the 

major product and was identified by comparison with an independently prepared sample.  
15N NMR (60 MHz, C6D6, 20 °C) δ: 838.9 ppm (15NMo(N[tBu]Ar)3, 1), 449.8 ppm (not 

assigned), 261.5 ppm (PhCN15).  Yield of PhCN15:  43% (GC-MS). 

 

3.4.7  Synthesis of CF3C(O)OMo(N[tBu]Ar)3]2 (6b) 

 

An Et2O (6 mL) solution of Mo(N[tBu]Ar)3 (0.137 g, 0.219 mmol) was chilled to 

−35 °C in a 20 mL vial.  In a second vial an Et2O (3 mL) solution of Tl(O2CCF3)3 (0.33 

equiv, 0.040 g, 0.073 mmol) was chilled to −35 °C.  Upon addition of Tl(O2CCF3)3 to the 

solution of Mo(N[tBu]Ar)3 a color change from orange-brown to red was observed.  The 

solution was stirred for a total of 20 min before filtering through Celite to yield a dark 
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red-orange filtrate.  Solvent removal in vacuo gave a red-orange solid identified as 

complex 6b 0.128 g (0.173 mmol, 79%).  1H NMR (300 MHz, C6D6, 20 °C) δ: 10.31 (br 

s, ν½ 59 Hz, 27 H, NC(CH3)3), 3.38 (br s, ν½ 82 Hz, 6 H, ortho), 1.37 (s, 3 H, para), 0.664 

(s, 18 H, ArCH3).  19F NMR (282 MHz, CD2Cl2, 20 oC) δ: −73.9 ppm (br s) 
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Appendix 1: Tables of selected bond lengths and angles 
 
A 1.1  Bond lengths [Å] and angles [°] for 1-BF3. 
 
Mo(1)-N(4)  1.678(4) 
Mo(1)-N(2)  1.946(4) 
Mo(1)-N(1)  1.943(4) 
Mo(1)-N(3)  1.945(4) 
F(1)-B(1)  1.366(7) 
N(1)-C(11)  1.458(6) 
N(1)-C(17)  1.511(6) 
B(1)-F(2)  1.372(7) 
B(1)-F(3)  1.376(7) 
B(1)-N(4)  1.609(7) 
Cl(1)-C(41)  1.771(11) 
N(2)-C(21)  1.455(6) 
N(2)-C(27)  1.519(6) 
Cl(2)-C(41)  1.653(10) 
N(3)-C(31)  1.458(6) 
N(3)-C(37)  1.517(6) 
C(11)-C(12)  1.395(7) 
C(11)-C(16)  1.392(7) 
C(12)-C(13)  1.387(7) 
C(13)-C(14)  1.388(8) 
C(13)-C(131)  1.498(8) 
C(14)-C(15)  1.391(8) 
C(15)-C(16)  1.403(7) 
C(15)-C(151)  1.507(8) 
C(17)-C(110)  1.511(8) 
C(17)-C(18)  1.512(8) 
C(17)-C(19)  1.542(8) 
C(21)-C(26)  1.398(7) 
C(21)-C(22)  1.389(7) 
C(22)-C(23)  1.388(7) 
C(23)-C(24)  1.387(8) 
C(23)-C(231)  1.507(8) 
C(24)-C(25)  1.383(7) 
C(25)-C(26)  1.402(7) 
C(25)-C(251)  1.503(7) 
C(27)-C(29)  1.496(8) 
C(27)-C(28)  1.504(8) 
C(27)-C(210)  1.503(7) 
C(31)-C(36)  1.387(7) 
C(31)-C(32)  1.395(7) 
C(32)-C(33)  1.400(7) 
C(33)-C(34)  1.385(8) 

C(33)-C(331)  1.513(7) 
C(34)-C(35)  1.390(8) 
C(35)-C(36)  1.392(7) 
C(35)-C(351)  1.500(7) 
C(37)-C(310)  1.520(7) 
C(37)-C(39)  1.517(7) 
C(37)-C(38)  1.527(7) 
N(4)-Mo(1)-N(2) 106.36(17) 
N(4)-Mo(1)-N(1) 105.42(17) 
N(2)-Mo(1)-N(1) 112.45(17) 
N(4)-Mo(1)-N(3) 104.80(17) 
N(2)-Mo(1)-N(3) 112.86(16) 
N(1)-Mo(1)-N(3) 114.02(16) 
C(11)-N(1)-C(17) 115.2(4) 
C(11)-N(1)-Mo(1) 113.1(3) 
C(17)-N(1)-Mo(1) 130.8(3) 
F(1)-B(1)-F(2) 111.5(5) 
F(1)-B(1)-F(3) 110.7(5) 
F(2)-B(1)-F(3) 111.4(5) 
F(1)-B(1)-N(4) 108.0(4) 
F(2)-B(1)-N(4) 107.6(4) 
F(3)-B(1)-N(4) 107.4(4) 
C(21)-N(2)-C(27) 116.3(4) 
C(21)-N(2)-Mo(1) 112.3(3) 
C(27)-N(2)-Mo(1) 130.5(3) 
C(31)-N(3)-C(37) 114.8(4) 
C(31)-N(3)-Mo(1) 113.1(3) 
C(37)-N(3)-Mo(1) 130.6(3) 
B(1)-N(4)-Mo(1) 177.6(4) 
C(12)-C(11)-C(16) 119.6(5) 
C(12)-C(11)-N(1) 120.8(4) 
C(16)-C(11)-N(1) 119.6(4) 
C(13)-C(12)-C(11) 121.5(5) 
C(12)-C(13)-C(14) 117.8(5) 
C(12)-C(13)-C(131) 120.9(5) 
C(14)-C(13)-C(131) 121.4(5) 
C(15)-C(14)-C(13) 122.6(5) 
C(14)-C(15)-C(16) 118.3(5) 
C(14)-C(15)-C(151) 122.0(5) 
C(16)-C(15)-C(151) 119.6(5) 
C(11)-C(16)-C(15) 120.2(5) 
C(110)-C(17)-N(1) 110.3(4) 
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C(110)-C(17)-C(18) 109.6(5) 
N(1)-C(17)-C(18) 110.7(5) 
C(110)-C(17)-C(19) 106.9(5) 
N(1)-C(17)-C(19) 107.9(4) 
C(18)-C(17)-C(19) 111.3(6) 
C(26)-C(21)-C(22) 119.3(5) 
C(26)-C(21)-N(2) 118.8(4) 
C(22)-C(21)-N(2) 121.9(4) 
C(23)-C(22)-C(21) 121.3(5) 
C(22)-C(23)-C(24) 118.3(5) 
C(22)-C(23)-C(231) 120.8(5) 
C(24)-C(23)-C(231) 120.9(5) 
C(25)-C(24)-C(23) 122.4(5) 
C(24)-C(25)-C(26) 118.4(5) 
C(24)-C(25)-C(251) 121.3(5) 
C(26)-C(25)-C(251) 120.3(5) 
C(21)-C(26)-C(25) 120.3(5) 
C(29)-C(27)-C(28) 111.1(6) 
C(29)-C(27)-C(210) 108.8(5) 
C(28)-C(27)-C(210) 108.0(5) 
C(29)-C(27)-N(2) 110.0(4) 

C(28)-C(27)-N(2) 109.3(4) 
C(210)-C(27)-N(2) 109.7(4) 
C(36)-C(31)-C(32) 119.8(5) 
C(36)-C(31)-N(3) 121.0(4) 
C(32)-C(31)-N(3) 119.2(4) 
C(31)-C(32)-C(33) 119.8(5) 
C(34)-C(33)-C(32) 119.1(5) 
C(34)-C(33)-C(331) 121.7(5) 
C(32)-C(33)-C(331) 119.2(5) 
C(33)-C(34)-C(35) 121.8(5) 
C(36)-C(35)-C(34) 118.4(5) 
C(36)-C(35)-C(351) 120.9(5) 
C(34)-C(35)-C(351) 120.7(5) 
C(31)-C(36)-C(35) 121.1(5) 
C(310)-C(37)-N(3) 110.5(4) 
C(310)-C(37)-C(39) 109.7(4) 
N(3)-C(37)-C(39) 109.5(4) 
C(310)-C(37)-C(38) 110.0(5) 
N(3)-C(37)-C(38) 108.4(4) 
C(39)-C(37)-C(38) 108.6(5) 
Cl(2)-C(41)-Cl(1) 110.6(5)) 

 
 
A 1.2 Bond lengths [Å] and angles [°] for 1-GeCl2 

 
Mo(1)-N(4)  1.700(4) 
Mo(1)-N(3)  1.942(4) 
Mo(1)-N(2)  1.942(5) 
Mo(1)-N(1)  1.945(5) 
Ge(1)-Cl(1)  1.572(3) 
Ge(1)-N(4)  2.069(4) 
Ge(1)-Cl(2)  2.264(2) 
Ge(1')-Cl(1')  1.565(4) 
Ge(1')-N(4)  2.069(4) 
Ge(1')-Cl(2)  2.267(2) 
N(1)-C(1)  1.510(7) 
N(1)-C(5')  1.593(12) 
N(1)-C(5)  1.598(11) 
N(2)-C(13)  1.516(7) 
N(2)-C(17)  1.587(11) 
N(2)-C(17')  1.597(11) 
N(3)-C(25)  1.510(6) 
N(3)-C(29)  1.566(12) 
N(3)-C(29')  1.571(12) 
C(1)-C(3)  1.510(8) 
C(1)-C(2)  1.518(8) 

C(1)-C(4)  1.526(9) 
C(5)-C(6)  1.407(15) 
C(5)-C(10)  1.448(12) 
C(6)-C(7)  1.407(15) 
C(7)-C(8)  1.415(17) 
C(7)-C(11)  1.452(14) 
C(8)-C(9)  1.351(17) 
C(9)-C(10)  1.478(13) 
C(9)-C(12)  1.507(14) 
C(5')-C(6')  1.393(16) 
C(5')-C(10)  1.474(13) 
C(6')-C(7')  1.417(16) 
C(7')-C(8')  1.399(18) 
C(7')-C(23)  1.554(15) 
C(8')-C(9')  1.376(19) 
C(9')-C(10)  1.472(14) 
C(9')-C(12)  1.493(15) 
C(11)-C(31')  1.487(14) 
C(13)-C(16)  1.512(8) 
C(13)-C(14)  1.521(9) 
C(13)-C(15)  1.529(9) 
C(17)-C(18)  1.396(16) 
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C(17)-C(22)  1.474(13) 
C(18)-C(19)  1.426(16) 
C(19)-C(20)  1.411(19) 
C(19)-C(23)  1.559(15) 
C(20)-C(21)  1.37(2) 
C(21)-C(22)  1.465(15) 
C(21)-C(24)  1.494(15) 
C(17')-C(18')  1.407(15) 
C(17')-C(22)  1.459(12) 
C(18')-C(19')  1.416(15) 
C(19')-C(20')  1.407(17) 
C(19')-C(35)  1.451(14) 
C(20')-C(21')  1.362(17) 
C(21')-C(22)  1.489(13) 
C(21')-C(24)  1.492(14) 
C(25)-C(27)  1.526(8) 
C(25)-C(26)  1.525(7) 
C(25)-C(28)  1.528(8) 
C(29)-C(30)  1.390(15) 
C(29)-C(34)  1.470(12) 
C(30)-C(31)  1.414(15) 
C(31)-C(32)  1.406(17) 
C(31)-C(35)  1.477(14) 
C(32)-C(33)  1.376(17) 
C(33)-C(34)  1.469(13) 
C(33)-C(36)  1.478(14) 
C(29')-C(30')  1.390(15) 
C(29')-C(34)  1.476(13) 
C(30')-C(31')  1.404(16) 
C(31')-C(32')  1.420(18) 
C(32')-C(33')  1.380(18) 
C(33')-C(34)  1.462(13) 
C(33')-C(36)  1.495(14) 
 
N(4)-Mo(1)-N(3) 105.76(19) 
N(4)-Mo(1)-N(2) 106.5(2) 
N(3)-Mo(1)-N(2) 111.7(2) 
N(4)-Mo(1)-N(1) 106.1(2) 
N(3)-Mo(1)-N(1) 112.1(2) 
N(2)-Mo(1)-N(1) 114.0(3) 
Cl(1)-Ge(1)-N(4) 122.43(18) 
Cl(1)-Ge(1)-Cl(2) 123.84(16) 
N(4)-Ge(1)-Cl(2) 94.72(13) 
Cl(1')-Ge(1')-N(4) 122.70(18) 
Cl(1')-Ge(1')-Cl(2) 123.99(15) 
N(4)-Ge(1')-Cl(2) 94.67(13) 

Ge(1)-Cl(2)-Ge(1') 20.42(4) 
C(1)-N(1)-C(5') 112.6(5) 
C(1)-N(1)-C(5) 109.1(5) 
C(5')-N(1)-C(5) 69.3(6) 
C(1)-N(1)-Mo(1) 130.8(3) 
C(5')-N(1)-Mo(1) 107.1(5) 
C(5)-N(1)-Mo(1) 111.3(4) 
C(13)-N(2)-C(17) 112.0(5) 
C(13)-N(2)-C(17') 108.2(5) 
C(17)-N(2)-C(17') 69.4(6) 
C(13)-N(2)-Mo(1) 130.9(4) 
C(17)-N(2)-Mo(1) 108.2(5) 
C(17')-N(2)-Mo(1) 111.5(4) 
C(25)-N(3)-C(29) 111.0(5) 
C(25)-N(3)-C(29') 110.4(5) 
C(29)-N(3)-C(29') 67.8(6) 
C(25)-N(3)-Mo(1) 131.5(3) 
C(29)-N(3)-Mo(1) 109.3(4) 
C(29')-N(3)-Mo(1) 109.1(4) 
Mo(1)-N(4)-Ge(1') 167.8(3) 
Mo(1)-N(4)-Ge(1) 168.1(3) 
Ge(1')-N(4)-Ge(1) 22.39(6) 
N(1)-C(1)-C(3) 110.4(5) 
N(1)-C(1)-C(2) 109.1(5) 
C(3)-C(1)-C(2) 110.1(5) 
N(1)-C(1)-C(4) 109.8(5) 
C(3)-C(1)-C(4) 108.2(5) 
C(2)-C(1)-C(4) 109.2(6) 
C(6)-C(5)-C(10) 125.4(9) 
C(6)-C(5)-N(1) 127.2(9) 
C(10)-C(5)-N(1) 107.4(7) 
C(5)-C(6)-C(7) 119.2(10) 
C(6)-C(7)-C(8) 118.5(11) 
C(6)-C(7)-C(11) 118.3(10) 
C(8)-C(7)-C(11) 123.1(10) 
C(9)-C(8)-C(7) 121.4(11) 
C(8)-C(9)-C(10) 124.9(10) 
C(8)-C(9)-C(12) 117.0(10) 
C(10)-C(9)-C(12) 117.9(9) 
C(6')-C(5')-C(10) 124.8(9) 
C(6')-C(5')-N(1) 128.2(9) 
C(10)-C(5')-N(1) 106.4(8) 
C(5')-C(6')-C(7') 119.1(11) 
C(8')-C(7')-C(6') 120.0(12) 
C(8')-C(7')-C(23) 120.2(10) 
C(6')-C(7')-C(23) 119.8(11) 
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C(9')-C(8')-C(7') 120.1(11) 
C(8')-C(9')-C(10) 125.1(11) 
C(8')-C(9')-C(12) 115.4(11) 
C(10)-C(9')-C(12) 119.2(10) 
C(5)-C(10)-C(9') 171.1(9) 
C(5)-C(10)-C(9) 110.4(8) 
C(9')-C(10)-C(9) 61.7(7) 
C(5)-C(10)-C(5') 76.8(6) 
C(9')-C(10)-C(5') 110.5(8) 
C(9)-C(10)-C(5') 170.4(8) 
C(7)-C(11)-C(31') 48.0(7) 
C(9')-C(12)-C(9) 60.6(7) 
C(16)-C(13)-N(2) 109.1(5) 
C(16)-C(13)-C(14) 110.1(6) 
N(2)-C(13)-C(14) 109.5(5) 
C(16)-C(13)-C(15) 109.3(6) 
N(2)-C(13)-C(15) 109.8(5) 
C(14)-C(13)-C(15) 109.0(5) 
C(18)-C(17)-C(22) 125.7(9) 
C(18)-C(17)-N(2) 127.1(9) 
C(22)-C(17)-N(2) 106.9(7) 
C(17)-C(18)-C(19) 117.7(11) 
C(20)-C(19)-C(18) 120.3(12) 
C(20)-C(19)-C(23) 120.2(11) 
C(18)-C(19)-C(23) 119.5(11) 
C(21)-C(20)-C(19) 120.3(12) 
C(20)-C(21)-C(22) 124.9(11) 
C(20)-C(21)-C(24) 115.7(11) 
C(22)-C(21)-C(24) 119.1(11) 
C(18')-C(17')-C(22) 125.3(9) 
C(18')-C(17')-N(2) 127.6(9) 
C(22)-C(17')-N(2) 107.1(7) 
C(17')-C(18')-C(19') 119.0(11) 
C(20')-C(19')-C(18') 119.3(11) 
C(20')-C(19')-C(35) 122.3(10) 
C(18')-C(19')-C(35) 118.4(10) 
C(21')-C(20')-C(19') 121.1(11) 
C(20')-C(21')-C(22) 124.7(10) 
C(20')-C(21')-C(24) 117.4(10) 
C(22)-C(21')-C(24) 117.7(9) 
C(17')-C(22)-C(21) 171.2(9) 
C(17')-C(22)-C(17) 76.4(6) 
C(21)-C(22)-C(17) 110.9(8) 
C(17')-C(22)-C(21') 110.5(8) 
C(21)-C(22)-C(21') 61.7(8) 
C(17)-C(22)-C(21') 170.0(8) 

C(7')-C(23)-C(19) 48.0(6) 
C(21')-C(24)-C(21) 61.0(8) 
N(3)-C(25)-C(27) 108.8(5) 
N(3)-C(25)-C(26) 109.8(4) 
C(27)-C(25)-C(26) 109.6(5) 
N(3)-C(25)-C(28) 109.0(5) 
C(27)-C(25)-C(28) 109.8(5) 
C(26)-C(25)-C(28) 109.9(5) 
C(30)-C(29)-C(34) 123.1(9) 
C(30)-C(29)-N(3) 127.0(9) 
C(34)-C(29)-N(3) 109.9(7) 
C(29)-C(30)-C(31) 119.8(11) 
C(32)-C(31)-C(30) 119.3(11) 
C(32)-C(31)-C(35) 116.5(10) 
C(30)-C(31)-C(35) 124.2(10) 
C(33)-C(32)-C(31) 122.3(11) 
C(32)-C(33)-C(34) 121.5(10) 
C(32)-C(33)-C(36) 117.4(10) 
C(34)-C(33)-C(36) 121.2(9) 
C(30')-C(29')-C(34) 123.5(9) 
C(30')-C(29')-N(3) 127.2(9) 
C(34)-C(29')-N(3) 109.3(7) 
C(29')-C(30')-C(31') 119.7(11) 
C(30')-C(31')-C(32') 119.8(11) 
C(30')-C(31')-C(11) 124.3(11) 
C(32')-C(31')-C(11) 115.9(10) 
C(33')-C(32')-C(31') 121.0(11) 
C(32')-C(33')-C(34) 122.7(11) 
C(32')-C(33')-C(36) 116.9(10) 
C(34)-C(33')-C(36) 120.5(10) 
C(33')-C(34)-C(33) 59.5(7) 
C(33')-C(34)-C(29) 173.0(8) 
C(33)-C(34)-C(29) 114.1(8) 
C(33')-C(34)-C(29') 113.3(8) 
C(33)-C(34)-C(29') 172.1(8) 
C(29)-C(34)-C(29') 72.9(6) 
C(19')-C(35)-C(31) 48.4(7) 
C(33)-C(36)-C(33') 58.6(7) 
 



 107

A 1.3 Bond lengths [Å] and angles [°] for 1-
SnCl2 
____________________________________ 
Mo(1)-N(4)  1.692(5) 
Mo(1)-N(3)  1.941(6) 
Mo(1)-N(2)  1.948(6) 
Mo(1)-N(1)  1.946(6) 
Sn(1)-Sn(1')  0.9226(12) 
Sn(1)-Cl(1')  1.630(4) 
Sn(1)-N(4)  2.266(5) 
Sn(1)-Cl(2)  2.417(2) 
Sn(1)-Cl(1)  2.417(4) 
Cl(1')-Sn(1')  2.438(4) 
Sn(1')-Cl(1)  1.610(4) 
Sn(1')-N(4)  2.271(5) 
Sn(1')-Cl(2)  2.421(2) 
N(1)-C(1)  1.512(8) 
N(1)-C(5')  1.574(15) 
N(1)-C(5)  1.555(13) 
N(2)-C(13)  1.494(9) 
N(2)-C(17)  1.562(14) 
N(2)-C(17')  1.588(13) 
N(3)-C(25)  1.512(8) 
N(3)-C(29)  1.549(12) 
N(3)-C(29')  1.566(14) 
C(1)-C(3)  1.493(11) 
C(1)-C(2)  1.516(10) 
C(1)-C(4)  1.537(11) 
C(5)-C(6)  1.388(17) 
C(5)-C(10)  1.444(14) 
C(6)-C(7)  1.414(17) 
C(7)-C(8)  1.41(2) 
C(7)-C(11)  1.465(16) 
C(8)-C(9)  1.40(2) 
C(9)-C(12)  1.455(17) 
C(9)-C(10)  1.454(15) 
C(5')-C(6')  1.40(2) 
C(5')-C(10)  1.475(15) 
C(6')-C(7')  1.40(2) 
C(7')-C(8')  1.38(2) 
C(7')-C(23)  1.545(19) 
C(8')-C(9')  1.41(3) 
C(9')-C(12)  1.415(18) 
C(9')-C(10)  1.484(19) 
C(11)-C(31')  1.500(17) 
C(13)-C(14)  1.496(10) 

C(13)-C(16)  1.523(10) 
C(13)-C(15)  1.551(11) 
C(17)-C(18)  1.381(19) 
C(17)-C(22)  1.458(14) 
C(18)-C(19)  1.418(19) 
C(19)-C(20)  1.39(2) 
C(19)-C(23)  1.550(17) 
C(20)-C(21)  1.39(2) 
C(21)-C(24)  1.459(17) 
C(21)-C(22)  1.452(17) 
C(17')-C(18')  1.403(19) 
C(17')-C(22)  1.425(15) 
C(18')-C(19')  1.428(18) 
C(19')-C(20')  1.42(2) 
C(19')-C(35)  1.448(19) 
C(20')-C(21')  1.38(2) 
C(21')-C(24)  1.428(19) 
C(21')-C(22)  1.470(16) 
C(25)-C(27)  1.508(10) 
C(25)-C(28)  1.532(9) 
C(25)-C(26)  1.526(9) 
C(29)-C(30)  1.403(18) 
C(29)-C(34)  1.437(15) 
C(30)-C(31)  1.404(17) 
C(31)-C(32)  1.39(2) 
C(31)-C(35)  1.515(15) 
C(32)-C(33)  1.35(2) 
C(33)-C(34)  1.453(15) 
C(33)-C(36)  1.477(16) 
C(29')-C(30')  1.36(2) 
C(29')-C(34)  1.466(15) 
C(30')-C(31')  1.43(2) 
C(31')-C(32')  1.43(2) 
C(32')-C(33')  1.36(2) 
C(33')-C(34)  1.462(17) 
C(33')-C(36)  1.471(15) 
 
N(4)-Mo(1)-N(3) 105.1(2) 
N(4)-Mo(1)-N(2) 106.2(2) 
N(3)-Mo(1)-N(2) 112.2(3) 
N(4)-Mo(1)-N(1) 106.0(2) 
N(3)-Mo(1)-N(1) 112.4(3) 
N(2)-Mo(1)-N(1) 114.1(3) 
Sn(1')-Sn(1)-Cl(1') 144.10(19) 
Sn(1')-Sn(1)-N(4) 78.57(16) 
Cl(1')-Sn(1)-N(4) 119.51(19) 
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Sn(1')-Sn(1)-Cl(2) 79.28(11) 
Cl(1')-Sn(1)-Cl(2) 126.65(15) 
N(4)-Sn(1)-Cl(2) 91.68(14) 
Sn(1')-Sn(1)-Cl(1) 23.12(13) 
Cl(1')-Sn(1)-Cl(1) 120.98(18) 
N(4)-Sn(1)-Cl(1) 92.40(17) 
Cl(2)-Sn(1)-Cl(1) 97.26(13) 
Sn(1)-Cl(1')-Sn(1') 12.82(7) 
Sn(1)-Sn(1')-Cl(1) 143.9(2) 
Sn(1)-Sn(1')-N(4) 77.96(16) 
Cl(1)-Sn(1')-N(4) 120.27(19) 
Sn(1)-Sn(1')-Cl(2) 78.73(11) 
Cl(1)-Sn(1')-Cl(2) 127.14(17) 
N(4)-Sn(1')-Cl(2) 91.44(14) 
Sn(1)-Sn(1')-Cl(1') 23.08(12) 
Cl(1)-Sn(1')-Cl(1') 120.79(19) 
N(4)-Sn(1')-Cl(1') 91.69(16) 
Cl(2)-Sn(1')-Cl(1') 96.78(12) 
Sn(1')-Cl(1)-Sn(1) 13.01(7) 
Sn(1)-Cl(2)-Sn(1') 21.99(3) 
C(1)-N(1)-C(5') 111.3(6) 
C(1)-N(1)-C(5) 109.5(6) 
C(5')-N(1)-C(5) 69.2(7) 
C(1)-N(1)-Mo(1) 130.7(4) 
C(5')-N(1)-Mo(1) 107.9(6) 
C(5)-N(1)-Mo(1) 111.7(5) 
C(13)-N(2)-C(17) 112.0(7) 
C(13)-N(2)-C(17') 108.9(7) 
C(17)-N(2)-C(17') 68.2(7) 
C(13)-N(2)-Mo(1) 131.0(4) 
C(17)-N(2)-Mo(1) 108.4(6) 
C(17')-N(2)-Mo(1) 111.1(6) 
C(25)-N(3)-C(29) 111.0(6) 
C(25)-N(3)-C(29') 110.9(7) 
C(29)-N(3)-C(29') 67.8(7) 
C(25)-N(3)-Mo(1) 130.7(4) 
C(29)-N(3)-Mo(1) 110.4(6) 
C(29')-N(3)-Mo(1) 108.7(6) 
Mo(1)-N(4)-Sn(1) 168.0(3) 
Mo(1)-N(4)-Sn(1') 167.1(3) 
Sn(1)-N(4)-Sn(1') 23.47(6) 
C(3)-C(1)-N(1) 110.0(6) 
C(3)-C(1)-C(2) 109.6(7) 
N(1)-C(1)-C(2) 109.7(6) 
C(3)-C(1)-C(4) 109.0(7) 
N(1)-C(1)-C(4) 109.6(6) 

C(2)-C(1)-C(4) 109.0(7) 
C(6)-C(5)-C(10) 123.4(10) 
C(6)-C(5)-N(1) 127.5(10) 
C(10)-C(5)-N(1) 109.1(9) 
C(5)-C(6)-C(7) 120.9(12) 
C(8)-C(7)-C(6) 117.8(13) 
C(8)-C(7)-C(11) 122.6(11) 
C(6)-C(7)-C(11) 119.6(12) 
C(9)-C(8)-C(7) 122.1(12) 
C(8)-C(9)-C(12) 117.7(12) 
C(8)-C(9)-C(10) 121.5(12) 
C(12)-C(9)-C(10) 120.9(12) 
C(6')-C(5')-C(10) 123.7(12) 
C(6')-C(5')-N(1) 129.4(12) 
C(10)-C(5')-N(1) 106.6(9) 
C(5')-C(6')-C(7') 119.7(14) 
C(8')-C(7')-C(6') 120.6(16) 
C(8')-C(7')-C(23) 119.0(14) 
C(6')-C(7')-C(23) 120.3(14) 
C(7')-C(8')-C(9') 121.4(16) 
C(8')-C(9')-C(12) 116.4(15) 
C(8')-C(9')-C(10) 122.0(14) 
C(12)-C(9')-C(10) 121.5(14) 
C(5)-C(10)-C(9) 114.2(10) 
C(5)-C(10)-C(9') 170.2(11) 
C(9)-C(10)-C(9') 57.7(9) 
C(5)-C(10)-C(5') 75.0(8) 
C(9)-C(10)-C(5') 169.0(10) 
C(9')-C(10)-C(5') 112.5(10) 
C(7)-C(11)-C(31') 51.5(9) 
C(9')-C(12)-C(9) 59.2(10) 
C(14)-C(13)-N(2) 110.9(6) 
C(14)-C(13)-C(16) 109.8(7) 
N(2)-C(13)-C(16) 109.9(6) 
C(14)-C(13)-C(15) 107.6(6) 
N(2)-C(13)-C(15) 109.3(7) 
C(16)-C(13)-C(15) 109.2(7) 
C(18)-C(17)-C(22) 124.1(11) 
C(18)-C(17)-N(2) 127.8(11) 
C(22)-C(17)-N(2) 107.8(9) 
C(17)-C(18)-C(19) 120.1(12) 
C(20)-C(19)-C(18) 118.5(13) 
C(20)-C(19)-C(23) 120.2(13) 
C(18)-C(19)-C(23) 121.3(12) 
C(19)-C(20)-C(21) 121.5(14) 
C(20)-C(21)-C(24) 115.6(13) 
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C(20)-C(21)-C(22) 123.2(13) 
C(24)-C(21)-C(22) 121.0(13) 
C(18')-C(17')-C(22) 125.4(11) 
C(18')-C(17')-N(2) 126.5(11) 
C(22)-C(17')-N(2) 108.1(9) 
C(17')-C(18')-C(19') 119.4(14) 
C(18')-C(19')-C(20') 116.5(15) 
C(18')-C(19')-C(35) 118.8(14) 
C(20')-C(19')-C(35) 124.7(12) 
C(21')-C(20')-C(19') 124.1(13) 
C(20')-C(21')-C(24) 117.1(12) 
C(20')-C(21')-C(22) 120.9(14) 
C(24)-C(21')-C(22) 121.9(13) 
C(17')-C(22)-C(21') 113.5(10) 
C(17')-C(22)-C(17) 75.6(8) 
C(21')-C(22)-C(17) 168.5(10) 
C(17')-C(22)-C(21) 169.6(10) 
C(21')-C(22)-C(21) 57.9(10) 
C(17)-C(22)-C(21) 112.3(10) 
C(7')-C(23)-C(19) 51.6(8) 
C(21')-C(24)-C(21) 58.7(9) 
C(27)-C(25)-N(3) 109.6(6) 
C(27)-C(25)-C(28) 110.1(6) 
N(3)-C(25)-C(28) 108.8(6) 
C(27)-C(25)-C(26) 109.4(6) 
N(3)-C(25)-C(26) 109.8(5) 
C(28)-C(25)-C(26) 109.2(6) 
C(30)-C(29)-C(34) 123.7(10) 
C(30)-C(29)-N(3) 125.9(11) 
C(34)-C(29)-N(3) 110.3(9) 
C(31)-C(30)-C(29) 119.3(12) 
C(32)-C(31)-C(30) 117.7(12) 
C(32)-C(31)-C(35) 119.5(11) 
C(30)-C(31)-C(35) 122.8(12) 
C(33)-C(32)-C(31) 124.1(12) 
C(32)-C(33)-C(34) 121.2(12) 
C(32)-C(33)-C(36) 118.0(12) 
C(34)-C(33)-C(36) 120.8(11) 
C(30')-C(29')-C(34) 124.7(11) 
C(30')-C(29')-N(3) 127.4(12) 
C(34)-C(29')-N(3) 107.9(10) 
C(29')-C(30')-C(31') 120.4(14) 
C(32')-C(31')-C(30') 116.8(13) 
C(32')-C(31')-C(11) 118.0(12) 
C(30')-C(31')-C(11) 125.2(13) 
C(33')-C(32')-C(31') 123.1(14) 

C(32')-C(33')-C(34) 122.2(12) 
C(32')-C(33')-C(36) 117.2(13) 
C(34)-C(33')-C(36) 120.6(11) 
C(29)-C(34)-C(33) 113.8(9) 
C(29)-C(34)-C(33') 171.5(9) 
C(33)-C(34)-C(33') 59.4(8) 
C(29)-C(34)-C(29') 73.5(7) 
C(33)-C(34)-C(29') 171.1(10) 
C(33')-C(34)-C(29') 112.9(9) 
C(19')-C(35)-C(31) 50.9(8) 
C(33)-C(36)-C(33') 58.6(8) 
_____________________________ 
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A 1.4 Bond lengths [Å] and angles [°] 
for [2b]OTf. 
 
Mo(1)-N(2)  1.715(6) 
Mo(1)-N(1)  1.936(3) 
Mo(1)-N(1)#1  1.936(3) 
Mo(1)-N(1)#2  1.936(3) 
N(1)-C(17)  1.510(5) 
N(1)-C(11)  1.466(5) 
Si(1)-N(2)  1.795(6) 
Si(1)-C(21)  1.848(4) 
Si(1)-C(21)#1  1.848(4) 
Si(1)-C(21)#2  1.847(4) 
F(1)-C(31)  1.289(5) 
O(1)-S(1)  1.405(4) 
S(1)-O(1)#1  1.405(4) 
S(1)-O(1)#2  1.406(4) 
S(1)-C(31)  1.801(9) 
C(11)-C(12)  1.374(6) 
C(11)-C(16)  1.385(6) 
C(12)-C(13)  1.393(6) 
C(13)-C(14)  1.397(6) 
C(13)-C(131)  1.517(6) 
C(14)-C(15)  1.376(6) 
C(15)-C(16)  1.394(6) 
 
C(15)-C(151)  1.518(6) 
C(17)-C(110)  1.540(6) 
C(17)-C(18)  1.517(6) 
C(17)-C(19)  1.527(6) 
C(31)-F(1)#1  1.291(5) 
C(31)-F(1)#2  1.291(5) 
N(2)-Mo(1)-N(1) 108.08(10) 
N(2)-Mo(1)-N(1)#1 108.02(10) 
N(1)-Mo(1)-N(1)#1 110.84(9) 
N(2)-Mo(1)-N(1)#2 108.08(10) 
N(1)-Mo(1)-N(1)#2 110.85(9) 
N(1)#1-Mo(1)-N(1)#2 110.84(9) 
C(17)-N(1)-C(11) 115.6(3) 
C(17)-N(1)-Mo(1) 129.0(3) 
C(11)-N(1)-Mo(1) 114.4(2) 
N(2)-Si(1)-C(21) 107.65(16) 
N(2)-Si(1)-C(21)#1 107.67(16) 
C(21)-Si(1)-C(21)#1 111.22(15) 
N(2)-Si(1)-C(21)#2 107.63(16) 
C(21)-Si(1)-C(21)#2 111.25(15) 

C(21)#1-Si(1)-C(21)#2 111.23(15) 
O(1)-S(1)-O(1)#1 114.47(16) 
O(1)-S(1)-O(1)#2 114.43(16) 
O(1)#1-S(1)-O(1)#2 114.43(16) 
O(1)-S(1)-C(31) 103.9(2) 
O(1)#1-S(1)-C(31) 103.9(2) 
O(1)#2-S(1)-C(31) 103.9(2) 
Mo(1)-N(2)-Si(1) 179.94(13) 
C(12)-C(11)-C(16) 120.0(4) 
C(12)-C(11)-N(1) 120.5(4) 
C(16)-C(11)-N(1) 119.5(4) 
C(11)-C(12)-C(13) 121.3(4) 
C(14)-C(13)-C(12) 117.8(4) 
C(14)-C(13)-C(131) 121.8(4) 
C(12)-C(13)-C(131) 120.4(4) 
C(15)-C(14)-C(13) 121.6(4) 
C(14)-C(15)-C(16) 119.3(4) 
C(14)-C(15)-C(151) 120.4(4) 
C(16)-C(15)-C(151) 120.3(4) 
C(15)-C(16)-C(11) 120.0(4) 
N(1)-C(17)-C(110) 108.7(3) 
N(1)-C(17)-C(18) 111.1(3) 
C(110)-C(17)-C(18) 107.7(4) 
N(1)-C(17)-C(19) 110.2(3) 
C(110)-C(17)-C(19) 109.5(4) 
C(18)-C(17)-C(19) 109.7(4) 
F(1)#1-C(31)-F(1)#2 105.6(5) 
F(1)#1-C(31)-F(1) 105.8(5) 
F(1)#2-C(31)-F(1) 105.8(5) 
F(1)#1-C(31)-S(1) 113.0(4) 
F(1)#2-C(31)-S(1) 113.0(4) 
F(1)-C(31)-S(1) 113.1(4) 
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A 1.5   Bond lengths [Å] and angles [°] 
for [2c]OTf 
_________________________________
___   
Mo(1)-N(4)  1.739(3) 
Mo(1)-N(1)  1.928(3) 
Mo(1)-N(2)  1.935(3) 
Mo(1)-N(3)  1.938(3) 
N(1)-C(11)  1.463(5) 
N(1)-C(17)  1.537(5) 
O(1)-C(41)  1.204(5) 
S(1)-O(3)  1.371(5) 
S(1)-O(4)  1.402(4) 
S(1)-O(2)  1.455(7) 
S(1)-C(5)  1.77(2) 
F(1)-C(5)  1.355(18) 
C(5)-F(2)  1.29(2) 
C(5)-F(3)  1.362(17) 
S(1A)-O(3)  1.301(9) 
S(1A)-O(2A)  1.388(17) 
S(1A)-O(4)  1.435(9) 
S(1A)-C(5A)  1.89(6) 
F(1A)-C(5A)  1.32(7) 
C(5A)-F(3)  1.12(7) 
C(5A)-F(2)  1.33(7) 
N(2)-C(21)  1.459(5) 
N(2)-C(27)  1.531(5) 
N(3)-C(31)  1.452(5) 
N(3)-C(37)  1.527(5) 
N(4)-C(41)  1.422(5) 
O(5)-C(64)  1.424(6) 
O(5)-C(61)  1.440(6) 
C(11)-C(12)  1.385(6) 
C(11)-C(16)  1.386(5) 
C(12)-C(13)  1.383(6) 
C(13)-C(14)  1.393(6) 
C(13)-C(131)  1.519(6) 
C(14)-C(15)  1.367(6) 
C(15)-C(16)  1.400(6) 
C(15)-C(151)  1.517(6) 
C(17)-C(110)  1.504(6) 
C(17)-C(19)  1.523(6) 
C(17)-C(18)  1.536(6) 
C(21)-C(26)  1.383(5) 
C(21)-C(22)  1.392(5) 
C(22)-C(23)  1.389(5) 

C(23)-C(24)  1.393(6) 
C(23)-C(231)  1.506(6) 
C(24)-C(25)  1.379(6) 
C(25)-C(26)  1.409(5) 
C(25)-C(251)  1.518(6) 
C(27)-C(29)  1.525(6) 
C(27)-C(210)  1.524(6) 
C(27)-C(28)  1.534(5) 
C(31)-C(32)  1.387(5) 
C(31)-C(36)  1.395(6) 
C(32)-C(33)  1.399(6) 
C(33)-C(34)  1.398(6) 
C(33)-C(331)  1.504(6) 
C(34)-C(35)  1.382(6) 
C(35)-C(36)  1.393(5) 
C(35)-C(351)  1.508(6) 
C(37)-C(310)  1.521(6) 
C(37)-C(38)  1.528(5) 
C(37)-C(39)  1.532(6) 
C(41)-C(42)  1.479(6) 
C(42)-C(43)  1.384(6) 
C(42)-C(47)  1.392(6) 
C(43)-C(44)  1.380(6) 
C(44)-C(45)  1.380(6) 
C(45)-C(46)  1.377(7) 
C(46)-C(47)  1.377(6) 
C(61)-C(62)  1.486(7) 
C(62)-C(63)  1.513(7) 
C(63)-C(64)  1.507(7) 
 
N(4)-Mo(1)-N(1) 107.03(13) 
N(4)-Mo(1)-N(2) 109.17(14) 
N(1)-Mo(1)-N(2) 109.75(13) 
N(4)-Mo(1)-N(3) 108.88(14) 
N(1)-Mo(1)-N(3) 108.37(13) 
N(2)-Mo(1)-N(3) 113.42(13) 
C(11)-N(1)-C(17) 115.6(3) 
C(11)-N(1)-Mo(1) 115.3(2) 
C(17)-N(1)-Mo(1) 128.5(2) 
O(3)-S(1)-O(4) 121.0(3) 
O(3)-S(1)-O(2) 112.1(4) 
O(4)-S(1)-O(2) 111.3(3) 
O(3)-S(1)-C(5) 105.5(7) 
O(4)-S(1)-C(5) 103.8(6) 
O(2)-S(1)-C(5) 100.2(6) 
F(2)-C(5)-F(1) 104.0(14) 
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F(2)-C(5)-F(3) 108.4(11) 
F(1)-C(5)-F(3) 102.6(14) 
F(2)-C(5)-S(1) 115.4(14) 
F(1)-C(5)-S(1) 111.8(10) 
F(3)-C(5)-S(1) 113.5(13) 
O(3)-S(1A)-O(2A) 96.3(9) 
O(3)-S(1A)-O(4) 123.7(7) 
O(2A)-S(1A)-O(4) 112.6(9) 
O(3)-S(1A)-C(5A) 110(2) 
O(2A)-S(1A)-C(5A) 99(3) 
O(4)-S(1A)-C(5A) 111(2) 
F(3)-C(5A)-F(1A) 108(4) 
F(3)-C(5A)-F(2) 123(6) 
F(1A)-C(5A)-F(2) 102(5) 
F(3)-C(5A)-S(1A) 114(4) 
F(1A)-C(5A)-S(1A) 102(4) 
F(2)-C(5A)-S(1A) 105(3) 
C(21)-N(2)-C(27) 113.9(3) 
C(21)-N(2)-Mo(1) 115.0(2) 
C(27)-N(2)-Mo(1) 130.4(2) 
C(5)-F(2)-C(5A) 28(3) 
C(31)-N(3)-C(37) 115.0(3) 
C(31)-N(3)-Mo(1) 114.2(2) 
C(37)-N(3)-Mo(1) 130.6(2) 
S(1A)-O(3)-S(1) 29.1(3) 
C(5A)-F(3)-C(5) 27(3) 
C(41)-N(4)-Mo(1) 175.7(3) 
S(1)-O(4)-S(1A) 27.4(3) 
C(64)-O(5)-C(61) 108.5(4) 
C(12)-C(11)-C(16) 119.8(4) 
C(12)-C(11)-N(1) 120.3(4) 
C(16)-C(11)-N(1) 119.9(4) 
C(11)-C(12)-C(13) 120.8(4) 
C(12)-C(13)-C(14) 118.4(4) 
C(12)-C(13)-C(131) 120.8(4) 
C(14)-C(13)-C(131) 120.8(4) 
C(15)-C(14)-C(13) 122.0(4) 
C(14)-C(15)-C(16) 118.9(4) 
C(14)-C(15)-C(151) 121.2(4) 
C(16)-C(15)-C(151) 119.9(4) 
C(11)-C(16)-C(15) 120.1(4) 
C(110)-C(17)-C(19) 109.4(4) 
C(110)-C(17)-N(1) 110.2(3) 
C(19)-C(17)-N(1) 110.1(4) 
C(110)-C(17)-C(18) 108.2(4) 
C(19)-C(17)-C(18) 111.5(4) 

N(1)-C(17)-C(18) 107.3(3) 
C(26)-C(21)-C(22) 120.2(4) 
C(26)-C(21)-N(2) 119.6(3) 
C(22)-C(21)-N(2) 120.2(3) 
C(21)-C(22)-C(23) 120.6(4) 
C(24)-C(23)-C(22) 118.4(4) 
C(24)-C(23)-C(231) 121.6(4) 
C(22)-C(23)-C(231) 120.0(4) 
C(25)-C(24)-C(23) 122.2(4) 
C(24)-C(25)-C(26) 118.5(4) 
C(24)-C(25)-C(251) 121.2(4) 
C(26)-C(25)-C(251) 120.2(4) 
C(21)-C(26)-C(25) 120.1(4) 
C(29)-C(27)-C(210) 109.4(4) 
C(29)-C(27)-N(2) 110.5(3) 
C(210)-C(27)-N(2) 109.1(3) 
C(29)-C(27)-C(28) 109.1(3) 
C(210)-C(27)-C(28) 110.5(3) 
N(2)-C(27)-C(28) 108.4(3) 
C(32)-C(31)-C(36) 120.7(4) 
C(32)-C(31)-N(3) 120.3(4) 
C(36)-C(31)-N(3) 119.0(3) 
C(31)-C(32)-C(33) 120.1(4) 
C(32)-C(33)-C(34) 118.2(4) 
C(32)-C(33)-C(331) 120.4(4) 
C(34)-C(33)-C(331) 121.4(4) 
C(35)-C(34)-C(33) 122.3(4) 
C(34)-C(35)-C(36) 118.7(4) 
C(34)-C(35)-C(351) 121.1(4) 
C(36)-C(35)-C(351) 120.2(4) 
C(31)-C(36)-C(35) 120.0(4) 
C(310)-C(37)-N(3) 108.7(3) 
C(310)-C(37)-C(38) 109.9(3) 
N(3)-C(37)-C(38) 109.8(3) 
C(310)-C(37)-C(39) 109.1(3) 
N(3)-C(37)-C(39) 109.8(3) 
C(38)-C(37)-C(39) 109.5(3) 
O(1)-C(41)-N(4) 118.7(4) 
O(1)-C(41)-C(42) 123.9(4) 
N(4)-C(41)-C(42) 117.4(4) 
C(43)-C(42)-C(47) 118.9(4) 
C(43)-C(42)-C(41) 123.6(4) 
C(47)-C(42)-C(41) 117.5(4) 
C(44)-C(43)-C(42) 120.8(4) 
C(43)-C(44)-C(45) 119.7(5) 
C(46)-C(45)-C(44) 120.0(4) 
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C(45)-C(46)-C(47) 120.5(4) 
C(46)-C(47)-C(42) 120.1(4) 
O(5)-C(61)-C(62) 106.7(4) 
C(61)-C(62)-C(63) 101.0(4) 

C(64)-C(63)-C(62) 102.5(4) 
O(5)-C(64)-C(63) 106.3(5) 
_________________________________ 

 
A 1.6 Bond lengths [Å] and angles [°] for [2d]I. 
_____________________________________________________ 
 
Mo(1)-N(2)  1.708(9) 
Mo(1)-N(1)#1  1.939(4) 
Mo(1)-N(1)  1.939(4) 
Mo(1)-N(1)#2  1.939(4) 
N(1)-C(11)  1.453(6) 
N(1)-C(17)  1.508(6) 
Cl(1)-C(31)  1.671(8) 
N(2)-C(21)  1.457(15) 
C(11)-C(12)  1.380(7) 
C(11)-C(16)  1.384(8) 
C(12)-C(13)  1.391(8) 
C(13)-C(14)  1.390(9) 
C(13)-C(131)  1.521(9) 
C(14)-C(15)  1.378(8) 
C(15)-C(16)  1.392(8) 
C(15)-C(151)  1.526(9) 

C(17)-C(19)  1.517(8) 
C(17)-C(110)  1.515(10) 
C(17)-C(18)  1.521(9) 
C(21)-C(22)  1.48(3) 
C(21)-C(22)#2  1.48(3) 
C(21)-C(22)#1  1.48(3) 
C(31)-Cl(1)#3  1.671(8) 
C(31)-Cl(1)#4  1.671(8) 
 
N(2)-Mo(1)-N(1)#1 106.44(12) 
N(2)-Mo(1)-N(1) 106.44(12) 
N(1)#1-Mo(1)-N(1) 112.32(11) 
N(2)-Mo(1)-N(1)#2 106.44(12) 
N(1)#1-Mo(1)-N(1)#2 112.32(11) 
N(1)-Mo(1)-N(1)#2 112.32(11) 
 

C(11)-N(1)-C(17) 115.8(4) 
C(11)-N(1)-Mo(1) 113.2(3) 
C(17)-N(1)-Mo(1) 129.6(3) 
C(21)-N(2)-Mo(1) 180.0(4) 
C(12)-C(11)-C(16) 120.9(5) 
C(12)-C(11)-N(1) 119.9(5) 
C(16)-C(11)-N(1) 119.2(5) 
C(11)-C(12)-C(13) 120.4(6) 
C(14)-C(13)-C(12) 118.6(6) 
C(14)-C(13)-C(131) 121.0(6) 
C(12)-C(13)-C(131) 120.4(7) 
C(15)-C(14)-C(13) 121.0(6) 
C(14)-C(15)-C(16) 120.1(6) 
C(14)-C(15)-C(151) 119.4(6) 
C(16)-C(15)-C(151) 120.5(6) 
C(11)-C(16)-C(15) 119.0(5) 
N(1)-C(17)-C(19) 110.9(4) 
N(1)-C(17)-C(110) 108.7(5) 
C(19)-C(17)-C(110) 110.2(5) 
N(1)-C(17)-C(18) 109.8(4) 
C(19)-C(17)-C(18) 108.8(6) 
C(110)-C(17)-C(18) 108.4(7) 
N(2)-C(21)-C(22) 112.3(12) 
N(2)-C(21)-C(22)#2 112.3(12) 
C(22)-C(21)-C(22)#2 106.5(13) 
N(2)-C(21)-C(22)#1 112.3(12) 
C(22)-C(21)-C(22)#1 106.5(13) 
C(22)#2-C(21)-C(22)#1 106.5(13) 
Cl(1)#3-C(31)-Cl(1) 100.9(6) 
Cl(1)#3-C(31)-Cl(1)#4 100.9(6) 
Cl(1)-C(31)-Cl(1)#4 100.9(6) 
 

A 1.7  Bond lengths [Å] and angles [°] for 3.
 
 
Mo(1)-N(4)  1.777(4) 
Mo(1)-N(2)  1.963(4) 
Mo(1)-N(3)  1.968(4) 
Mo(1)-N(1)  1.971(4) 
N(1)-C(11)  1.441(7) 

N(1)-C(17)  1.498(7) 
N(2)-C(21)  1.458(6) 
N(2)-C(27)  1.497(6) 
N(3)-C(31)  1.439(7) 
N(3)-C(37)  1.501(7) 
N(4)-C(41)  1.300(7) 
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C(11)-C(12)  1.378(8) 
C(11)-C(16)  1.397(8) 
C(12)-C(13)  1.407(7) 
C(13)-C(14)  1.385(8) 
C(13)-C(131)  1.500(8) 
C(14)-C(15)  1.404(9) 
C(15)-C(16)  1.402(8) 
C(15)-C(151)  1.500(9) 
C(17)-C(18)  1.515(8) 
C(17)-C(19)  1.521(8) 
C(17)-C(110)  1.535(8) 
C(21)-C(26)  1.388(8) 
C(21)-C(22)  1.388(7) 
C(22)-C(23)  1.373(8) 
C(23)-C(24)  1.399(8) 
C(23)-C(231)  1.506(8) 
C(24)-C(25)  1.390(8) 

C(25)-C(26)  1.392(8) 
C(25)-C(251)  1.505(8) 
C(27)-C(28)  1.500(9) 
C(27)-C(210)  1.509(8) 
C(27)-C(29)  1.529(8) 
C(31)-C(36)  1.383(7) 
C(31)-C(32)  1.415(8) 
C(32)-C(33)  1.369(8) 
C(33)-C(34)  1.408(9) 
C(33)-C(331)  1.507(9) 
C(34)-C(35)  1.386(8) 
C(35)-C(36)  1.388(8) 
C(35)-C(351)  1.520(9) 
C(37)-C(310)  1.514(8) 
C(37)-C(38)  1.538(8) 
C(37)-C(39)  1.558(8) 

 
N(4)-Mo(1)-N(2) 101.27(18) 
N(4)-Mo(1)-N(3) 102.56(18) 
N(2)-Mo(1)-N(3) 111.50(17) 
N(4)-Mo(1)-N(1) 101.36(19) 
N(2)-Mo(1)-N(1) 120.10(18) 
N(3)-Mo(1)-N(1) 116.33(18) 
C(11)-N(1)-C(17) 116.9(4) 
C(11)-N(1)-Mo(1) 110.9(3) 
C(17)-N(1)-Mo(1) 131.3(3) 
C(21)-N(2)-C(27) 115.8(4) 
C(21)-N(2)-Mo(1) 109.5(3) 
C(27)-N(2)-Mo(1) 134.1(3) 
C(31)-N(3)-C(37) 117.6(4) 
C(31)-N(3)-Mo(1) 111.8(3) 
C(37)-N(3)-Mo(1) 129.5(3) 
C(41)-N(4)-Mo(1) 178.0(4) 
C(12)-C(11)-C(16) 120.1(5) 
C(12)-C(11)-N(1) 121.8(5) 
C(16)-C(11)-N(1) 118.1(5) 
C(11)-C(12)-C(13) 121.2(5) 
C(14)-C(13)-C(12) 118.6(5) 
C(14)-C(13)-C(131) 121.2(5) 
C(12)-C(13)-C(131) 120.2(5) 
C(13)-C(14)-C(15) 121.0(5) 
C(14)-C(15)-C(16) 119.4(5) 
C(14)-C(15)-C(151) 121.4(5) 
C(16)-C(15)-C(151) 119.2(6) 
C(11)-C(16)-C(15) 119.7(5) 

N(1)-C(17)-C(18) 108.0(4) 
N(1)-C(17)-C(19) 110.6(5) 
C(18)-C(17)-C(19) 109.8(5) 
N(1)-C(17)-C(110) 110.2(4) 
C(18)-C(17)-C(110) 108.5(5) 
C(19)-C(17)-C(110) 109.8(5) 
C(26)-C(21)-C(22) 118.8(5) 
 
C(26)-C(21)-N(2) 121.3(4) 
C(22)-C(21)-N(2) 119.9(4) 
C(23)-C(22)-C(21) 121.3(5) 
C(22)-C(23)-C(24) 118.9(5) 
C(22)-C(23)-C(231) 121.2(5) 
C(24)-C(23)-C(231) 119.9(5) 
C(25)-C(24)-C(23) 121.5(5) 
C(24)-C(25)-C(26) 117.8(5) 
C(24)-C(25)-C(251) 121.0(5) 
C(26)-C(25)-C(251) 121.2(5) 
C(21)-C(26)-C(25) 121.7(5) 
N(2)-C(27)-C(28) 111.1(4) 
N(2)-C(27)-C(210) 109.0(4) 
C(28)-C(27)-C(210) 109.3(5) 
N(2)-C(27)-C(29) 109.3(4) 
C(28)-C(27)-C(29) 111.2(6) 
C(210)-C(27)-C(29) 106.8(5) 
C(36)-C(31)-C(32) 118.1(5) 
C(36)-C(31)-N(3) 121.5(5) 
C(32)-C(31)-N(3) 120.4(5) 
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C(33)-C(32)-C(31) 121.7(5) 
C(32)-C(33)-C(34) 118.1(5) 
C(32)-C(33)-C(331) 121.5(6) 
C(34)-C(33)-C(331) 120.4(5) 
C(35)-C(34)-C(33) 121.8(5) 
C(34)-C(35)-C(36) 118.3(5) 
C(34)-C(35)-C(351) 120.1(5) 
C(36)-C(35)-C(351) 121.5(5) 

C(35)-C(36)-C(31) 121.9(5) 
N(3)-C(37)-C(310) 111.6(4) 
N(3)-C(37)-C(38) 107.7(5) 
C(310)-C(37)-C(38) 109.9(5) 
N(3)-C(37)-C(39) 109.9(4) 
C(310)-C(37)-C(39) 109.9(5) 
C(38)-C(37)-C(39) 107.8(5)
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Appendix 2(a):  Representative 15N solid state NMR spectra for 
Lewis acid complexes (1-LA) 

 
A 2(a).1 Experimental, simulated and calculated 15N CPMAS spectra for 

F3B−15NMo(N[tBu]Ar)3, 1−BF3 (Calculated spectrum of 1m-BF3) 
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A 2(a).2 Experimental, simulated and calculated 15N CPMAS spectra for 
Cl3Al−15NMo(N[tBu]Ar)3, 1−AlCl3 (Calculated spectrum of 1m-AlCl3) 
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A 2(a).3 Experimental, simulated and calculated 15N CPMAS spectra for 
Cl3Ga−15NMo(N[tBu]Ar)3, 1−GaCl3 (Calculated spectrum of 1m-GaCl3) 
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A 2(a).4 Experimental, simulated and calculated 15N CPMAS spectra for 
Cl2Ge−15NMo(N[tBu]Ar)3, 1−GeCl2 (Calculated spectrum of 1m-GeCl2) 
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A 2(a).5 Experimental, simulated and calculated 15N CPMAS spectra for 
Cl2Sn−15NMo(N[tBu]Ar)3, 1−SnCl2 (Calculated spectrum of 1m-SnCl2) 
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Appendix 2(b):  Representative 15N solid state NMR spectra 
for imido complexes (2) 

 
 

A 2(b).1 Experimental, simulated and calculated 15N CPMAS spectra for 
[CH3

15NMo(N[tBu]Ar)3]I [2a]I (Calculated spectrum of [2a-m]I) 
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A 2(b).2 Experimental, simulated and calculated 15N CPMAS spectra for 
[(CH3)3Si15NMo(N[tBu]Ar)3]OTf [2b]OTf (Calculated spectrum of [2b-m]OTf) 
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A 2(b).3 Experimental, simulated and calculated 15N CPMAS spectra for 
[PhC(O)15NMo(N[tBu]Ar)3]OTf [2c]OTf (Calculated spectrum of [2c-m]OTf) 
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Appendix 3:  Density Functional Theory Calculations 
 
 
A 3.1  Representative input file for 15NMo(NH2)3, 1-m 
 
#! /bin/sh 
 
nohup $ADFBIN/adf <<EOR > adf.out 
Title NMo_nh2_3 
 
SYMMETRY nosym 
 
ATOMS 
 N     0.000000     0.000000     0.000000 
Mo     0.000000     0.000000     1.660000 
 N     1.912533     0.000000     2.172462 
 N    -0.956267     1.656302     2.172462 
 N    -0.956267    -1.656302     2.172462 
 H    -1.378108     2.234788     1.462907 
 H    -1.021252     1.921025     3.142906 
 H     2.624437     0.076083     1.462907 
 H     2.174282    -0.076083     3.142906 
 H    -1.246329    -2.310871     1.462907 
 H    -1.153031    -1.844942     3.142906 
END 
 
BASIS 
  type TZ2P 
  core none 
END 
 
GEOMETRY 
  sp 
END 
RELATIVISTIC ZORA SpinOrbit 
 
charge 0 
 
XC 
  LDA VWN 
  GGA Becke Perdew 
END 
 
SCF 
  DIIS 
END 
 
end input 
EOR 
 
A 3.2  Optimized geometry for 15NMo(NH2)3, 1m 
 
N         0.000273   -0.000374    0.011827 
Mo       -0.000112    0.000273    1.663469 
N         1.904387    0.001685    2.159868 
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N        -0.955178    1.648290    2.159832 
N        -0.948821   -1.651117    2.160007 
H        -1.338378    2.317686    1.496960 
H        -1.111237    1.966529    3.116064 
H         2.675064   -0.002888    1.497448 
H         2.257033   -0.022920    3.116079 
H        -1.337223   -2.317045    1.496870 
H        -1.143554   -1.946794    3.116252 
 
A 3.3  Optimized geometry for F3BNMo(NH2)3, 1m-BF3 
 
N         0.055495    0.007750   -0.002036 
Mo        0.014467    0.000346    1.668265 
N        -0.938570   -1.633336    2.138379 
N         1.890153    0.000863    2.195411 
N        -0.941169    1.631122    2.141964 
H        -1.307640    2.299598    1.463613 
H        -1.127416    1.938423    3.097018 
H         2.668475    0.015517    1.537721 
H         2.225972   -0.023338    3.158685 
H        -1.310270   -2.300994    1.465841 
H        -1.142815   -1.925394    3.094738 
B         0.121545    0.061459   -1.684336 
F        -0.532909   -1.086355   -2.091417 
F        -0.541676    1.230918   -2.011937 
F         1.470440    0.074212   -1.970352 
 
A 3.4  Optimized geometry for Cl3BNMo(NH2)3, 1m-BCl3 
 
N         1.856833    0.013810    2.142056 
Mo       -0.025622    0.000975    1.658484 
N        -0.003417    0.013894   -0.022729 
B         0.017057    0.023563   -1.575637 
Cl       -0.852866   -1.528951   -2.085917 
N        -0.958547   -1.647112    2.095398 
N        -0.992537    1.622956    2.120111 
Cl       -0.884369    1.563417   -2.068912 
Cl        1.809448    0.044282   -2.039936 
H        -1.195106    1.932316    3.071591 
H        -1.365918    2.277411    1.433577 
H         2.216841    0.010418    3.097216 
H         2.616805    0.027227    1.462452 
H        -1.152840   -1.975766    3.042116 
H        -1.320506   -2.297174    1.398619 
 
A 3.5  Optimized geometry for Cl2GeNMo(NH2)3, 1m-GeCl2 
 
N        -0.022949   -0.004136   -0.088800 
Mo        0.011369   -0.063509    1.579132 
Ge       -0.069608    0.046318   -2.251946 
N         1.913421   -0.072831    2.000406 
N        -0.918341    1.539364    2.211796 
N        -0.911241   -1.720499    2.030103 
H         2.645265   -0.078075    1.288222 
H         2.312484   -0.117016    2.937949 
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H        -1.337200    2.259385    1.627844 
H        -1.045218    1.765189    3.199206 
H        -1.273365   -2.376245    1.336611 
H        -1.057547   -2.071485    2.976756 
Cl        2.181962   -0.284597   -2.370218 
Cl       -0.859892   -2.083020   -2.393800 
 
A 3.6  Optimized geometry for Cl2SnNMo(NH2)3, 1m-SnCl2 
 
N        -0.038458   -0.011444   -0.015785 
Mo        0.011478   -0.061378    1.650534 
Sn       -0.100824    0.100367   -2.364838 
N         1.917010   -0.065721    2.057303 
N        -0.921311    1.547179    2.265199 
N        -0.899743   -1.720955    2.118474 
H         2.639607   -0.076642    1.341929 
H         2.323608   -0.107213    2.991527 
H        -1.347381    2.252689    1.665470 
H        -1.046961    1.793486    3.247350 
H        -1.259866   -2.376183    1.430648 
H        -1.039955   -2.071784    3.065891 
Cl        2.321613   -0.285994   -2.393610 
Cl       -0.933213   -2.205652   -2.451313 
 
A 3.7  Optimized geometry for [CH3NMo(NH2)3]+, [2a-m] 
 
N        -0.013631    0.027029    0.068536 
Mo        0.006004   -0.005736    1.768658 
N        -0.882425    1.603491    2.358478 
N         1.872727   -0.052408    2.256183 
N        -0.946544   -1.609842    2.262356 
C        -0.008810    0.015270   -1.364944 
H        -0.550994   -0.870484   -1.725931 
H        -0.498680    0.923492   -1.743952 
H         1.028584   -0.018969   -1.727635 
H         2.664490   -0.066032    1.613458 
H         2.200365   -0.065857    3.225793 
H        -1.282964    2.340504    1.779276 
H        -1.005327    1.824483    3.351333 
H        -1.359898   -2.289497    1.623846 
H        -1.103059   -1.892110    3.233608 
 
A 3.8  Optimized geometry for [(CH3)3SiNMo(NH2)3]+, [2b-m] 
 
N       0.0017      0.0017      0.0057 
N      -0.9267     -1.6058      2.2509 
N       1.8538     -0.0001      2.2522 
N      -0.9277      1.6053      2.2515 
Mo      0.0001      0.0001      1.7022 
H      -1.3360      2.2976      1.6245 
H      -1.0637      1.8820      3.2267 
H       2.6580      0.0080      1.6258 
H       2.1607     -0.0230      3.2275 
H      -1.3218     -2.3060      1.6242 
H      -1.0990     -1.8612      3.2261 
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H       1.9097      0.0327     -3.3935 
H       2.3403      0.9130     -1.9134 
H       2.3443     -0.8748     -1.9311 
H      -0.9233     -1.6196     -3.4186 
H      -0.3792     -2.4560     -1.9505 
H      -1.9282     -1.5635     -1.9566 
H      -0.9407      1.6589     -3.3947 
H      -1.9360      1.5828     -1.9268 
H      -0.3893      2.4797     -1.9207 
Si      0.0087      0.0125     -1.8270 
C      -0.8912     -1.5567     -2.3193 
C      -0.9013      1.5832     -2.2964 
C       1.8240      0.0216     -2.2953 
 
A 3.9  Optimized geometry for [PhC(O)NMo(NH2)3]+, [2c-m] 
 
N         0.006488   -0.031329   -0.031230 
Mo       -0.046566    0.010830    1.673002 
N        -1.020312    1.599339    2.155442 
N        -0.935293   -1.602091    2.234423 
N         1.799633    0.078068    2.245918 
H        -1.399579    2.291733    1.506786 
H        -1.176526    1.888064    3.125143 
H        -1.273449   -2.326754    1.599284 
H        -1.206577   -1.811033    3.198749 
H         2.597641    0.254694    1.635004 
H         2.098413    0.034847    3.223086 
O        -0.808032    0.522041   -2.098564 
C         0.041318   -0.097053   -1.506359 
C         1.120792   -0.929996   -2.050439 
C         1.197294   -1.041195   -3.453566 
C         2.205645   -1.805356   -4.028301 
C         3.145352   -2.453397   -3.217204 
C         3.071785   -2.349041   -1.824411 
C         2.058087   -1.597985   -1.238761 
H         0.462881   -0.524447   -4.067591 
H         2.264188   -1.896159   -5.111712 
H         3.937463   -3.044539   -3.672437 
H         3.802447   -2.854809   -1.196411 
H         1.996506   -1.530713   -0.153598 
 
A 3.10  Optimized geometry for H2CNMo(N[CH3]Ph)3, 3m-C3 
 
C        -0.077798   -0.257055   -0.038200 
C        -0.031999   -0.266111    1.357612 
C         1.196032   -0.215979    2.022227 
C         2.397091   -0.137091    1.296317 
C         2.341596   -0.145010   -0.108812 
C         1.114180   -0.203656   -0.769349 
N         3.649450   -0.024830    1.976530 
C         4.408522   -1.266709    2.125422 
H         3.783652   -2.060915    2.572254 
H        -0.953355   -0.307249    1.934987 
H         1.085788   -0.194670   -1.857172 
Mo        4.196791    1.793376    2.566630 
N         3.906512    3.338402    1.351623 
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C         2.678616    4.053519    1.492425 
C         2.655306    5.338405    2.073518 
C         1.452262    6.012970    2.264934 
C         0.242117    5.424285    1.879087 
C         0.254899    4.157211    1.294443 
C         1.460779    3.477763    1.095909 
H         1.456683    6.999378    2.728970 
H        -0.678053    3.693222    0.976784 
C         4.972265    4.071132    0.655715 
H         5.849984    3.427178    0.572071 
H         5.272142    4.996058    1.169654 
H         4.635766    4.344882   -0.357539 
N         3.946981    2.304822    4.453100 
C         2.687282    1.915718    5.012771 
C         1.515200    2.633063    4.726838 
C         0.280895    2.199749    5.219961 
C         0.201841    1.059652    6.021163 
C         1.369400    0.351176    6.331218 
C         2.599806    0.774752    5.833550 
H        -0.618805    2.764296    4.979452 
H         1.317429   -0.540888    6.954515 
C         4.884392    2.935050    5.384884 
H         5.063941    2.314298    6.277737 
H         5.839980    3.102506    4.876756 
H         4.491828    3.908252    5.727739 
N         5.974661    1.703245    2.544632 
C         7.270734    1.601269    2.578634 
H         5.269914   -1.095308    2.783988 
H         4.784256   -1.634983    1.152866 
H         3.589806    5.792541    2.401914 
H         7.893169    2.487155    2.736733 
H        -0.697735    5.954755    2.029670 
H         1.578281    3.532683    4.114427 
H         7.756901    0.631275    2.435788 
H         3.508289    0.213250    6.053851 
H         1.467995    2.498356    0.618149 
H        -0.760666    0.722790    6.406168 
H         1.237377   -0.221393    3.112327 
H         3.272657   -0.078260   -0.671586 
H        -1.036140   -0.288964   -0.555934 
 
A 3.11  Optimized geometry for H2CNMo(N[CH3]Ph)3, 3m-Cs 
 
N       0.0150     -0.2453      0.1226 
N      -0.6464      1.3580     -2.2606 
N      -0.0782     -1.8161     -2.3580 
N       2.4391      0.2599     -1.7866 
C       0.0065     -0.2773      1.4173 
C      -0.4002      1.8949     -3.6083 
C      -1.7724      1.9172     -1.5765 
C      -1.5803      2.9769     -0.6789 
C      -2.6575      3.5174      0.0232 
C      -3.9461      3.0113     -0.1647 
C      -4.1476      1.9667     -1.0716 
C      -3.0696      1.4254     -1.7759 
C      -1.1195     -2.6814     -1.7854 
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C       0.1379     -1.9925     -3.7671 
C       1.3452     -2.5334     -4.2386 
C       1.5752     -2.6874     -5.6076 
C       0.6032     -2.3018     -6.5338 
C      -0.6067     -1.7715     -6.0776 
C      -0.8407     -1.6237     -4.7097 
C       3.4590     -0.7907     -1.7309 
C       2.9031      1.5991     -1.8239 
C       3.8055      2.0443     -2.8105 
C       4.1895      3.3837     -2.8681 
C       3.6873      4.3097     -1.9477 
C       2.8060      3.8747     -0.9555 
C       2.4272      2.5336     -0.8857 
H       0.9295     -0.1563      1.9955 
H      -0.9359     -0.4230      1.9558 
H       0.4598      1.3821     -4.0634 
H      -1.2708      1.7536     -4.2698 
H      -0.1648      2.9699     -3.5652 
H      -2.4905      4.3355      0.7241 
H      -5.1508      1.5632     -1.2313 
H      -1.1224     -2.5531     -0.6992 
H      -2.1267     -2.4405     -2.1654 
H      -0.9137     -3.7369     -2.0239 
H      -1.3697     -1.4643     -6.7925 
H       2.5170     -3.1145     -5.9525 
H       2.9711     -1.7583     -1.5649 
H       4.0356     -0.8644     -2.6667 
H       4.1647     -0.6170     -0.9023 
H       2.4235      4.5785     -0.2164 
H       4.8767      3.7105     -3.6485                  
H       3.9861      5.3557     -2.0000                 
H       1.7695      2.1853     -0.0885 
H       4.1828      1.3394     -3.5512 
H       2.0984     -2.8397     -3.5148 
H      -1.7846     -1.2072     -4.3586 
H       0.7873     -2.4125     -7.6017 
H      -4.7859      3.4277      0.3925 
H      -0.5715      3.3610     -0.5359 
H      -3.2246      0.6057     -2.4784 
Mo      0.4881     -0.0833     -1.6129 
 
A 3.12  Optimized geometry for [CH3CH2NMo(NH2)3]+, [2d-m] 
 
N         1.828992    0.014545    2.192469 
Mo       -0.024516    0.002681    1.649339 
N        -0.975190    1.599082    2.175734 
N        -0.000183    0.024315   -0.050127 
C         0.018116    0.022853   -1.493189 
N        -0.945444   -1.621518    2.144071 
H        -1.143728    1.850535    3.153539 
H        -1.372914    2.303171    1.554912 
H         2.125367    0.004047    3.172005 
H         2.641797    0.032342    1.575949 
H        -1.111932   -1.893430    3.116751 
H        -1.328375   -2.321985    1.510154 
H         0.168822    1.065735   -1.816932 
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H         0.903383   -0.555182   -1.805091 
C        -1.266512   -0.563805   -2.087278 
H        -1.192794   -0.528779   -3.181505 
H        -1.400460   -1.609237   -1.784602 
H        -2.144518    0.016278   -1.779343 
 
 
A 3.13  NMR calculations:  Representative input and output files 
 
NMR 
  OUT iso tens refs info 
  CALC all 
  U1K best 
  NUC 1 
  MAXMEMORYUSAGE 960 
  ANALYSIS 
END 
 
End Input 
 
 ******************************************************************************* 
 *                                                                             * 
 *  -------------------------------------                                      * 
 *   Amsterdam Density Functional  (ADF)         2002.03   6 December, 2002    * 
 *  -------------------------------------                                      * 
 *                                                                             * 
 *                                                                             * 
 *                              =================                              * 
 *                              |               |                              * 
 *                              |     N M R     |                              * 
 *                              |               |                              * 
 *                              =================                              * 
 *                                                                             * 
 *                                                                             * 
 *   Online information and documentation:  http://www.scm.com                 * 
 *   E-mail:  support@scm.com   info@scm.com                                   * 
 *                                                                             * 
 *   Scientific publications using ADF results must be properly referenced     * 
 *   See the User Manuals (or the web site) for recommended citations          * 
 *                                                                             * 
 ******************************  pentium_linux  ******************************** 
  
                    
                      **********************************     
                      ||******************************||     
                      ||                              ||     
                      ||  ##   ##  ###  ###  ######   ||     
                      ||  ###  ##  ########  ##   ##  ||     
                      ||  #### ##  ## ## ##  ######   ||     
                      ||  ## ####  ##    ##  ## ##    ||     
                      ||  ##  ###  ##    ##  ##  ##   ||     
                      ||  ##   ##  ##    ##  ##   ##  ||     
                      ||                              ||     
                      | ****************************** |     
                      **********************************     
                     
                            Written for ADF by               
                     
                    Stephen K. Wolff & Georg Schreckenbach   
                     
                      The research group of Tom Ziegler      
                    University of Calgary, Alberta, Canada           
                    ---------------------------------------  
                             Date last modified:             
                             18 June, 1999 (GS)           
                                 References:                 
                                 ===========                 
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                    1. G. Schreckenbach and T. ZIegler,      
                       J. Phys. Chem. 99 (1995) 606          
                     
                    2. G. Schreckenbach and T. Ziegler       
                       Int. J. Quantum CHem. 61 (1997) 899   
                     
                    3. S. K. Wolff and T. Ziegler            
                       J. Chem. Phys. 109 (1998) 895         
                     
                    ---------------------------------------  
                     
  
################################################################################ 
  
 
=== INFO: 
 
NMR was mostly written by S. K. Wolff and G. Schreckenbach in 
the research group of T. Zielger at the University of Calgary 
for the Amsterdam Density Functional package. 
 
Schreckenbach and Ziegler developed a GIAO-DFT formulation for 
calculating NMR shielding tensors, with the incorporation 
a frozen core approximation.  This formulation was extended by 
Wolff to include spin-orbit coupling.  This program is based 
on those formulations. 
 
--- REF: G. Schreckenbach and T. Ziegler 
         J. Int. J. Quantum Chem. 61 (1997) 899. 
 
--- REF: G. Schreckenbach and T. Ziegler 
         J. Phys. Chem. 99 (1995) 606. 
 
--- REF: S. K. Wolff and T. Ziegler 
         J. Chem. Phys. 109 (1998) 895. 
 
  
################################################################################ 
  
  
              <><><><><><><><><><><><><><><><><><><><><><><><><> 
  
                 GENERAL ADF INFORMATION: 
                 ------------------------ 
  
                 TITLE:    NMo_nh2_3                                     
                 JOB ID:   ADF 2002.03  RunTime: Jul08-2003 15:29:58     
                 NONLXC:   Becke88 Perdew86                              
                 SYMMETRY: NOSYM                                         
                   
                 IOPREL:   3 
                 ------>  Scalar ZORA + core pot. (Re MOs) 
                 ------>  Core pot used in K, Full pot used in V 
  
              <><><><><><><><><><><><><><><><><><><><><><><><><> 
  
              ================================================== 
  
                 NUCLEAR COORDINATES (ANGSTROMS): 
                 -------------------------------- 
  
                 N  (  1):       0.0003     -0.0004      0.0118 
                 N  (  2):       1.9044      0.0017      2.1599 
                 N  (  3):      -0.9552      1.6483      2.1598 
                 N  (  4):      -0.9488     -1.6511      2.1600 
                 Mo (  5):      -0.0001      0.0003      1.6635 
                 H  (  6):      -1.3384      2.3177      1.4970 
                 H  (  7):      -1.1112      1.9665      3.1161 
                 H  (  8):       2.6751     -0.0029      1.4975 
                 H  (  9):       2.2570     -0.0229      3.1161 
                 H  ( 10):      -1.3372     -2.3171      1.4969 
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                 H  ( 11):      -1.1436     -1.9468      3.1163 
  
              ================================================== 
  
              <><><><><><><><><><><><><><><><><><><><><><><><><> 
  
                 NUMBERS: 
                 -------- 
  
                 number of virtual electrons:     76.00 
  
                 ---   AOs   ---          ---   MOs   --- 
                 ncor =     0             nocc =    38 
                 nval =   274             nvir =   205 
                 nbas =   274             nmo  =   243 
  
              <><><><><><><><><><><><><><><><><><><><><><><><><> 
  
              ================================================== 
  
                 FRAGMENT TYPES: 
                 --------------- 
  
                 Nitrogen (V)                                       
                 Molybdenum (V, all electron)                       
                 Hydrogen (V)                                       
  
              ================================================== 
              ==================================================

 
                 -------------------------- 
                     ATOM TYPE: N                         
                 -------------------------- 
                 === BASIS 
                   1S    8.74     VALENCE 
                   1S    5.90     VALENCE 
                   2S    5.15     VALENCE 
                   2S    2.50     VALENCE 
                   2S    1.50     VALENCE 
                   2P    3.68     VALENCE 
                   2P    1.88     VALENCE 
                   2P    1.00     VALENCE 
                   3D    2.20     VALENCE 
                   4F    3.30     VALENCE 
                                                                            
                 -------------------------- 
                     ATOM TYPE: H                         
                 -------------------------- 
                 === BASIS 
                   1S    0.69     VALENCE 
                   1S    0.92     VALENCE 
                   1S    1.58     VALENCE 
                   2P    1.25     VALENCE 
                   3D    2.50     VALENCE 
 
                 
                 -------------------------- 
                     ATOM TYPE: Mo                        
                 -------------------------- 

                    === BASIS 
                   1S  269.00     VALENCE 
                   1S   67.10     VALENCE 
                   1S   41.50     VALENCE 
                   2S   49.50     VALENCE 
                   2S   17.55     VALENCE 
                   3S    9.00     VALENCE 
                   3S    5.90     VALENCE 
                   4S    5.10     VALENCE 
                   4S    3.30     VALENCE 
                   5S    2.15     VALENCE 
                   5S    1.35     VALENCE 
                   5S    0.87     VALENCE 
                   2P   25.80     VALENCE 
                   2P   16.75     VALENCE 
                   3P   10.15     VALENCE 
                   3P    7.05     VALENCE 
                   4P    4.95     VALENCE 
                   4P    3.30     VALENCE 
                   4P    2.30     VALENCE 
                   3D   15.30     VALENCE 
                   3D    9.00     VALENCE 
                   3D    5.75     VALENCE 
                   4D    3.50     VALENCE 
                   4D    1.85     VALENCE 
                   4D    0.97     VALENCE 
                   5P    1.35     VALENCE 
                   4F    2.00     VALENCE 
                   
                   

              ================================================== 
              <><><><><><><><><><><><><><><><><><><><><><><><><> 
 
                 TENSOR INFORMATION: 
                 ------------------- 
  
                              CALC                   U1K 
  
                 paramagnetic  = T     mass-velocity = F 
                 diamagnetic   = T     Darwin        = F 
                 Fermi-cont.   = F     Zeeman        = F 
                 ZORA SO       = F     ZORA SO       = F 
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                 ZORA SCALE    = T     ZORA SO FULL  = F 
                                       E IN U1 SCL   = F 
  
              <><><><><><><><><><><><><><><><><><><><><><><><><> 
  
              <><><><><><><><><><><><><><><><><><><><><><><><><> 
  
                 OUTPUT SWITCHES: 
                 ---------------- 
  
                           ISO = T                F1 = F 
                          TENS = T                S1 = F 
                           EIG = F                U1 = F 
                           AOP = F                B1 = F 
                           AOD = F                F  = F 
                           AOF = F                 S = F 
                          INFO = T              REFS = T 
  
              <><><><><><><><><><><><><><><><><><><><><><><><><> 
  
              -------------------------------------------------- 
  
                 CALCULATE THE POTENTIAL? T 
                   
                 ---> Potential is NOT on TAPE10. 
                      So it will be calculated. 
  
              -------------------------------------------------- 
 
 =================================================== 
 Numerical Integration : Atomic Polyhedra (Te Velde)  ***  (parameters, tests)  *** 
 =================================================== 
   
 General Accuracy Parameter :                          4.00 
 
 Symmetry used in the points section:  NOSYM  
 
 
 Summary of the Symmetry Unique Points: 
 -------------------------------------- 
    Nr. of used Symmetry Operators                     1 
 
    Points in the Atomic Spheres                    7166 
    Points in the Atomic Polyhedra                 63774 
    Points in the Outer Region                      6969 
    ---------------------------------------------------- 
    Total                                          77909 
 
    Sum of Weights                                100262.772697 
 
 Total nr. of points:      77909 
 Nr. of blocks:              609 
 Block length:               128 
 Nr. of dummy points:         43 
 
 
 Test of Precision of the Numerical Integration Grid 
 =================================================== 
 
 Integral of the Total Core Density:                   0.00000000000000 
################################################################################ 
******************************************************************************** 
  
****  N U C L E U S :   N  (  1) 
 
=== INFO: 
When an external magnetic field interacts with electron density, 
it induces electronic currents to flow.  The currents produce a 
magnetic field.  This induced magnetic field may re-enforce the 
external magnetic field, or reduce it. 
 



 134 

=== INFO: 
The paramagnetic shielding results from currents induced by the 
external magnetic field, which re-enforce the external magnetic 
field. 
 
--- REF: H. Fukui Mag. Res. Rev. 11 (1987) 205. 
 
 ================================================================================ 
  
===  PARAMAGNETIC NMR SHIELDING TENSORS (ppm) 
  
    ===     paramagnetic b^(1) tensor       ===     paramagnetic u^(1) tensor 
    -----------------------------------     ----------------------------------- 
           0.000     0.000     0.000           -1270.704     2.012    -0.185 
           0.000     0.000     0.000               2.012 -1270.776     0.437 
           0.000     0.000     0.000              -0.185     0.437  -240.799 
    -----------------------------------     ----------------------------------- 
    isotropic shielding =      0.000        isotropic shielding =   -927.426 
 
    ===     paramagnetic s^(1) tensor       ===     paramagnetic gauge tensor 
    -----------------------------------     ----------------------------------- 
          45.776     0.047    -0.008               3.678     0.003    -0.001 
           0.047    45.764    -0.007               0.003     3.677    -0.001 
          -0.008    -0.007    -3.937              -0.001    -0.001    -0.084 
    -----------------------------------     ----------------------------------- 
    isotropic shielding =     29.201        isotropic shielding =      2.423 
 
                        *********************************** 
                        CARTESIAN AXIS REPRESENTATION 
 
                        ==== total paramagnetic tensor 
                        ----------------------------------- 
                           -1221.250     2.062    -0.194 
                               2.062 -1221.335     0.428 
                              -0.194     0.428  -244.820 
                        ----------------------------------- 
                        isotropic shielding =   -895.802 
 
                        *********************************** 
                        ----------------------------------- 
                        PRINCIPAL AXIS REPRESENTATION 
 
                        ==== Shieldings: 
 
                           -1223.356 -1219.230  -244.820 
  
                        ==== Principal Axis System: 
 
                               0.700     0.714     0.000 
                              -0.714     0.700     0.000 
                               0.000     0.000     1.000 
                        ----------------------------------- 
=== INFO: 
When an external magnetic field interacts with electron density, 
it induces electronic currents to flow.  The currents produce a 
magnetic field.  This induced magnetic field may re-enforce the 
external magnetic field, or reduce it. 
 
=== INFO: 
The diamagnetic shielding results from currents induced by the 
external magnetic field, which reduce the external magnetic 
field. 
--- REF: H. Fukui 
         Mag. Res. Rev. 11 (1987) 205. 
  
================================================================================ 
===  DIAMAGNETIC NMR SHIELDING TENSORS (ppm) 
  
    ===       diamagnetic core tensor       ===    diamagnetic valence tensor 
    -----------------------------------     ----------------------------------- 
           0.000     0.000     0.000             316.865    -0.012    -0.008 
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           0.000     0.000     0.000              -0.012   316.870     0.013 
           0.000     0.000     0.000              -0.008     0.013   350.242 
    -----------------------------------     ----------------------------------- 
    isotropic shielding =      0.000        isotropic shielding =    327.992 
 
                        *********************************** 
                        CARTESIAN AXIS REPRESENTATION 
 
                        ==== total diamaginetic NMR tensor 
                        ----------------------------------- 
                             316.865    -0.012    -0.008 
                              -0.012   316.870     0.013 
                              -0.008     0.013   350.242 
                        ----------------------------------- 
                        isotropic shielding =    327.992 
 
                        *********************************** 
                        ----------------------------------- 
                        PRINCIPAL AXIS REPRESENTATION 
 
                        ==== Shieldings: 
 
                             316.856   316.879   350.242 
  
                        ==== Principal Axis System: 
 
                               0.787     0.616     0.000 
                               0.616    -0.787     0.000 
                               0.000     0.000     1.000 
                        ----------------------------------- 
  
================================================================================ 
====  TOTAL NMR SHIELDING TENSOR (ppm) 
  
                        *********************************** 
                        CARTESIAN AXIS REPRESENTATION 
 
                        ==== total shielding tensor 
                        ----------------------------------- 
                            -904.386     2.051    -0.202 
                               2.051  -904.465     0.441 
                              -0.202     0.441   105.422 
                        ----------------------------------- 
                        isotropic shielding =   -567.809 
 
                        *********************************** 
                        ----------------------------------- 
                        PRINCIPAL AXIS REPRESENTATION 
 
                        ==== Shieldings: 
 
                            -906.477  -902.374   105.423 
  
                        ==== Principal Axis System: 
 
                               0.700     0.714     0.000 
                              -0.714     0.700     0.000 
                               0.000     0.000     1.000 
                        ----------------------------------- 
  
******************************************************************************** 
*** MO ANALYSIS OF CONTRIBUTIONS TO U^(1) 
 === INFO: 
Calculations reveal that in general the paramagnetic shielding 
is very sensitive to electronic changes within the molecule. 
The magnitude of the paramagnetic shielding is largly dependent 
on the components of the u^(1) matrix.  These components are 
proportional to the coupling of occupied and virtual orbitals 
by the magnetic field, and inversely proportional to the energy 
difference between these orbitals. 
Following, a simple orbtial picture is presented, then a table. 
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The orbital picture includes the LUMO, HOMO and HOMO-LUMO GAP (HLG). 
In the table that follows, k = 1, 2, 3 is the magnetic field 
component, "vir" is the virtual orbital number, "occ" is the 
occupied orbital number, "sym" is the representation, "cmp" is 
the component of the representation, "<M_k>" is the coupling 
due to the k-th component of the magnetic field, 
"e(vir)-e(occ)" is the energy difference, and "u1k~" is  
half*<M_k>/[e(vir)-e(occ)], which is the main contribution to 
"u^(1)".  Note that "<M_k> = < vir | [ r_{mu} x grad ]_k | occ >" 
Only the five major components are listed. 
 
--- REF: G. Schreckenbach 
         Relativity and Magnetic Properties. A Density Functional Study 
         Ph.D. Thesis 1996. 
 
--- REF: Y. Ruiz-Morales 
         The Calculation and Interpretation of NMR Chemical Shifts 
         in Compounds of Transition Metals and Heavy Elements 
         Ph.D. Thesis 1997. 
 
--- REF: J. Gerratt and I. M. Mills 
         J. Chem. Phys. 49 (1968) 1719. 
 
                        MO                            ENERGY (eV) 
                        ========================================= 
  
                        243   nmo   - - - - - - - - -  ********** 
                         39   LUMO  - - - - - - - - -      -1.904 
                                            |           
                                            |  HLG --->     3.847 
                                            |           
                         38   HOMO  -----------------      -5.751 
                          1   1     -----------------  -20282.190 
  
  
    ---------------------------------------------------------------------------------------------- 
    k   R/I    vir ( sym,cmp)    occ ( sym,cmp)         u1k~            <M_k>        e(vir)-e(occ) 
    ---------------------------------------------------------------------------------------------- 
    1  real     39 (A   , 39)     35 (A   , 35)    -0.160151D+01    -0.587081D+00       4.988 
    1  real     42 (A   , 42)     35 (A   , 35)     0.119527D+01     0.554337D+00       6.310 
    1  real     44 (A   , 44)     34 (A   , 34)     0.115709D+01     0.623591D+00       7.332 
    1  real     42 (A   , 42)     33 (A   , 33)    -0.565803D+00    -0.282290D+00       6.788 
    1  real     43 (A   , 43)     34 (A   , 34)     0.565710D+00     0.282214D+00       6.787 
  
                                                                                 
    2  real     40 (A   , 40)     35 (A   , 35)    -0.159751D+01    -0.586057D+00       4.991 
    2  real     43 (A   , 43)     35 (A   , 35)     0.119477D+01     0.554200D+00       6.311 
    2  real     44 (A   , 44)     33 (A   , 33)    -0.115721D+01    -0.623804D+00       7.334 
    2  real     42 (A   , 42)     34 (A   , 34)     0.564095D+00     0.281364D+00       6.786 
    2  real     43 (A   , 43)     33 (A   , 33)     0.562078D+00     0.280476D+00       6.789 
  
                                                                                 
    3  real     39 (A   , 39)     31 (A   , 31)    -0.113197D+01    -0.655671D+00       7.881 
    3  real     40 (A   , 40)     32 (A   , 32)    -0.113023D+01    -0.654847D+00       7.883 
    3  real     39 (A   , 39)     33 (A   , 33)    -0.832438D+00    -0.334410D+00       5.466 
    3  real     40 (A   , 40)     34 (A   , 34)    -0.831574D+00    -0.334184D+00       5.468 
    3  real     42 (A   , 42)     37 (A   , 37)     0.626748D+00     0.280671D+00       6.093 
  
******************************************************************************** 
 

 
A 3.14  Generation of spectra from calculated chemical shielding tensors 
 
Generation of spectra from calculated values of the chemical shielding tensor was 
achieved using the Simpson program.  A representative input file is included below.  
‘Shift 1’ values are taken from the calculated shielding tensors; ‘448p’ being the 
calculated isotropic shift (δiso); ‘-130p’ the reduced anisotropy (δ33−δiso) and ‘0.3553’ 
being the asymmetry ([δ11−δ22]/ δ33).  ‘Spin rate’ and line broadening (faddlb) must be 
set according to those used in acquisition of the experimental spectrum to which the 
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calculated values are being compared.  Two output files are created (calc.fid and calc.spe) 
upon successful simulation of the desired spectrum. 
 
# MAS CSA spectrum 
# Uses the gcompute method 
 
 
spinsys { 
    nuclei 15N 
    channels 15N 
    shift 1 448p -130p 0.3553 0 0 0 0 
} 
 
par { 
    method           gcompute 
    start_operator   Inx 
    detect_operator  Inp 
    spin_rate        3500 
    gamma_angles     40 
    sw               gamma_angles*spin_rate 
    crystal_file     rep168 
    np               2048 
    proton_frequency 501e6 
} 
 
proc pulseq {} { 
    maxdt 1 
    delay 9999   
} 
 
proc main {} { 
    global par 
 
    set f [fsimpson] 
    fsave $f calc.fid 
    fzerofill $f 4096 
    faddlb $f 100 0 
    fft $f 
    fsave $f calc.spe 
} 
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A 3.15  Plot of the Experimental 15N chemical shift tensor (δ11) (ppm) versus 
calculated 15N chemical shift tensor (δ11) (ppm). 
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Appendix 4:  GC-MS data 

 
Figure 1.  GC-MS chromatogram collected for a 0.017 mM solution of PhCN14 in C6D6 

(top) and the ion fragment spectrum for the signal at retention time 7.940 min assigned to 

[PhCN14]+ (bottom). 
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Figure 2.  GC-MS chromatogram of the crude product mixture (diluted in 1.5 mL C6D6) 

isolated upon reaction of complex [3]2Mg(THF)2 with TFAA (top) and the ion fragment 

spectrum for the signal at retention time 7.940 min assigned to [PhCN15]+ (bottom). 
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Appendix 5:  Synthesis of H2TTP, (TTP)Li2(OEt2)2 and 
(TTP)TiCl 

 
A 5.1:  Synthesis, purification and characterization of H2TTP 
 

The procedure used in the preparation of tetratolylporphyrin (H2TTP) was 
identical to that provided for the synthesis of tetraphenylporphyrin (H2TPP) by Adler et 
al.1 with the exception that tolualdehyde was used in place of benzaldehyde. 

 
The purification of H2TTP is necessary to effect the removal of small amounts of 

tetratolylchlorin (TTC) from the porphyrin product.  Purification was carried out using 
the procedure developed by Rousseau and Dolphin for the purification of H2TPP2.  In this 
procedure 1 g of H2TPP is refluxed for 30 min in toluene (500 mL) in the presence of 0.5 
g sodium dithionite.  An aqueous work-up follows and isolation of the pure H2TPP is 
achieved by recrystallization from CH2Cl2/methanol.  Attempts to scale-up the 
purification (using ca. 3 g of H2TTP in 1 L toluene) failed and the procedure was 
determined to be sensitive to the volume of solvent vs. porphyrin used in the reflux step.   

 
H2TTP 1H NMR (300 MHz, C6D6, 20 °C) δ: 8.87 (s, 8 H, pyrrole), 8.11 (d, 8 H, ortho), 
7.56 (d, 8 H, meta), 2.72 (s, 12 H, -CH3), −2.76 (S, 2 H, NH). 
 
UV-visible spectrum of purified H2TTP (toluene): 

 

 
 

                                                 
1 Adler, A. D.; Longo, F. R.; Finarelli, J. D.; Goldmacher, J.; Assour, J.; Korsakoff, L. J. 
Org. Chem. 1967, 32, 476. 
2 Rousseau, K.; Dolphin, D. Tetrahedron Lett. 1974, 48, 4251. 
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1H NMR data for a variety of para-substituted tetraphenylporphyrins are listed in 
an article by Falvo, Mink and Marsh3. 
 

A 5.2:  Synthesis of (TTP)Li2(OEt2)2 and (TTP)TiCl 
 
Synthesis of early transition metal porphyrin complexes is commonly achieved by 

the reaction of an alkali metal porphyrin complex with a suitable metal halide precursor.  
One of the first examples of a well-characterized alkali metal porphyrin complex was 
provided by Arnold in the synthesis of a dilithium salt of octaethylporphyrin 
[Li(THF)4][Li(oep)].4  The application of this procedure in the synthesis of a lithium-TTP 
complex has been reported5 however, the poor solubility of (THF)2Li2(TTP) in common 
organic solvents forces the use of long reaction times and high temperatures in the 
preparation of most transition metal porphyrin complexes.  Preparation of the etherate 
complex (TTP)Li2(OEt2)2 was reported in 1994 by Arnold et al.6  The authors point out 
that the “solubility properties of (TTP)Li2(OEt2)2 allows metalation reactions to be 
performed in Et2O or hexanes at room temperature….”  In agreement with this data we 
found the synthesis of (TTP)TiCl was readily achieved upon stirring a toluene (20 mL) 
solution of (TTP)Li2(OEt2)2 (0.91 g, 1.09 mmol) and TiCl3·THF3 (0.416 g, 1.12 mmol) 
for 17 h at 25 °C.  Filtration of the toluene solution through Celite followed by the 
removal of solvent in vacuo afforded (TTP)TiCl as a purple powder: 0.52 g (0.687 mmol, 
63 %).  1H NMR (300 MHz, C6D6, 20 °C) δ: 2.36 (s, 12 H, tolyl CH3) 
 
EPR spectrum of (TTP)TiCl (toluene, 25 °C):  
 

 

                                                 
3 Falvo, R. E.; Mink, L. M.; Marsh, D. F. J. Chem. Ed. 1999, 76, 237. 
4 Arnold, J. Chem. Commun. 1990, 976. 
5 Berreau, L. M.; Hays, J. A.; Young, V. G.; Woo, L. K. Inorg. Chem. 1994, 33, 105. 
6 Brand, H.; Capriotti, J. A.; Arnold, J. Inorg. Chem. 1994, 33, 4334. Full characterization 
of (TTP)Li2(OEt2)2 is provided in the experimental section of this paper. 
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