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Abstract

Aspects of wave propagation and scattering with an emphasis on specific applications
in engineering and physics are examined. Frequency-domain methods prevail. Both
forward and inverse problems are considered.

Typical applications of the method of moments to rough surface three-dimensional
(3-D) electromagnetic scattering require a truncation of the surface considered and
call for a tapered incident wave. It is shown how such wave can be constructed as a
superposition of plane waves, avoiding problems near both normal and grazing inci-
dence and providing clean footprints and clear polarization at all angles of incidence.
The proposed special choice of polarization vectors removes an irregularity at the
origin of the wavenumber space and leads to a wave that is optimal in a least squared
error sense. Issues in the application to 3-D scattering from an object over a rough
surface are discussed. Approximate 3-D scalar and vector tapered waves are derived
which can be evaluated without resorting to any numerical integrations. Important
limitations to the accuracy and applicability of these approximations are pointed out.

An analytical solution is presented for the electromagnetic induction problem of
magnetic diffusion into and scattering from a permeable, highly but not perfectly
conducting prolate spheroid under axial excitation, expressed in terms of an infi-
nite matrix equation. The spheroid is assumed to be embedded in a homogeneous
non-conducting medium as appropriate for low-frequency, high-contrast scattering
governed by magnetoquasistatics. The solution is based on separation of variables
and matching boundary conditions where the prolate spheroidal wavefunctions with
complex wavenumber parameter are expanded in terms of spherical harmonics. For
small skin depths, an approximate solution is constructed, which avoids any reference
to the spheroidal wavefunctions. The problem of long spheroids and long circular
cylinders is solved by using an infinite cylinder approximation. In some cases, our
ability to evaluate the spheroidal wavefunctions breaks down at intermediate fre-
quencies. To deal with this, a general broadband rational function approximation
technique is developed and demonstrated. We treat special cases and provide nu-
merical reference data for the induced magnetic dipole moment or, equivalently, the
magnetic polarizability factor. The magnetoquasistatic response of a distribution of
an arbitrary number of interacting small conducting and permeable objects is also
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investigated. Useful formulations are provided for expressing the magnetic dipole
moment of conducting and permeable objects of general shape.

An alternative to Tikhonov regularization for deblurring and inverse diffraction,
based on a local extrapolation scheme, is described, analyzed, and illustrated numeri-
cally for the cases of continuation of fields obeying Laplace and Helmholtz equations.
At the outset of the development, a special deconvolution problem, where a param-
eter describes the degree of additive blurring, is considered. No a priori knowledge
on the unblurred data is assumed. A standard solution based on an output least-
squares formulation includes a regularization parameter into a linear, shift-invariant
filter. The proposed alternative approach takes advantage of the analyticity of the
smoothing process with respect to the blurring parameter. Here a simple local extra-
polation scheme is employed. The problem is encountered in applications involving
potential theories dealing with magnetostatics, electrostatics, and gravity data. As a
generalization to the dynamic case, inverse diffraction of scalar waves is considered.
Examples are presented and the two methods compared numerically.

The problem of inferring unknown geometry and material parameters of a wave-
guide model from noisy samples of the associated modal dispersion curves is consid-
ered. In a significant reduction of the complexity of a common inversion methodology,
the inner of two nested iterations is eliminated: The approach described does not em-
ploy explicit fitting of the data to computed dispersion curves. Instead, the unknown
parameters are adjusted to minimize a cost function derived directly from the de-
terminant of the boundary condition system matrix. This results in a very efficient
inversion scheme that, in the case of noise-free data, yields exact results. Multi-mode
data can be simultaneously processed without extra complications. Furthermore,
the inversion scheme can accommodate an arbitrary number of unknown parameters,
provided that the data have sufficient sensitivity to these parameters. As an impor-
tant application, the sonic guidance condition for a fluid-filled borehole in an elastic,
homogeneous, and isotropic rock formation is considered for numerical forward and
inverse dispersion analysis. The parametric inversion with uncertain model param-
eters and the influence of bandwidth and noise are investigated numerically. The
cases of multi-frequency and multi-mode data are examined. Finally, the borehole
leaky-wave modes are classified according to the location of the roots of the charac-
teristic equation on a multi-sheeted Riemann surface. A comprehensive set of dipole
leaky-wave modal dispersions is computed. In an independent numerical experiment
the excitation of some of these modes is demonstrated. The utilization of leaky-wave
dispersion data for inversion is discussed.

Thesis Supervisor: Jin A. Kong
Title: Professor of Electrical Engineering
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Chapter 1

Introduction

Fields and waves emanate from sources producing them and travel through space

and time while interacting with generally composite media, giving rise to secondary

sources and a complex response of sensors placed in the scene. The thesis presented

here investigates various aspects of this phenomenon with an emphasis on specific

applications in engineering and physics.

The fundamental concept of wave propagation and scattering is schematically

represented by Fig. 1-1. Indicated are the four main themes addressed and the focus

of each core chapter. This illustration thus serves as a first graphical outline of the

thesis. The following is a concise narrative description.

The first topic in this work deals with a question in computational electrodynam-

ics (Chapter 2): How can we propagate energy to a limited region in space while

resembling an unlimited plane wave as closely as possible? A wave that is optimal

in a certain least squared error sense is constructed. The key here lies in project-

ing the requirements of space limitedness and polarization into the class of waves

formed as superposition of plane waves. Both exact, Maxwellian and approximate,

non-Maxwellian vector fields are considered. The application of this material is in

the numerical simulation of the scattering of waves from randomly rough surfaces via

a surface integral equation approach, the method of moments.

The larger portion of the next chapter treats a canonical scattering problem in

low-frequency electromagnetic induction sensing (Chapter 3). It demonstrates how

19
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Figure 1-1: The concept of wave propagation and scattering and its relation to the
chapters of this thesis.

analytical methods of mathematical physics can lead to useful numerical results. To

this end, the method of separation of variables is applied in the prolate spheroidal

coordinate system, tailored to the problem of a conducting and permeable prolate

spheroid under axial excitation. The enforcement of the boundary conditions on

the tangential electric and magnetic fields leads to a marriage of solutions to the

Helmholtz and Laplace partial differential equations. In addition to the numerical

implementation of the resulting—within the domain of magnetoquasistatics—exact

analytical solution, certain approximate approaches are considered. The magneto-

quasistatic problem of multiple scattering from clusters of discrete scatterers is also

investigated.

The subjects of the two chapters above can be classified as direct or forward

problems of wave propagation and scattering. They are complemented with solutions

to two inverse problems (note the reversed direction of the corresponding arrows in

Fig. 1-1).

The first encompasses a method for numerically reverting the propagation phe-

nomenon in order to “image” the secondary sources (Chapter 4). Backpropagation of
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both static and dynamic fields in planar geometries is deconvolution and the method

described constitutes a form of physics-based signal processing. It is contrasted with

the widely used, and more formal, method of Tikhonov regularization in conjunction

with an output least-squares formulation. We discuss a number of applications that

fall into the class of problems with additive blurring kernel, identified and analyzed

at the beginning of the chapter.

While in source inversion the data depend linearly on the unknowns, the second

inverse problem is of nonlinear character (Chapter 5). Here we are aiming at inferring

unknown waveguide parameters from guided-wave dispersion data, which calls for a

model-based inversion scheme. An important virtue of the inversion methodology

developed is the complete elimination of the inner of two nested iterations from the

inversion algorithm. The application to the field of acoustics shows the interdisci-

plinary character of wave propagation and scattering; the methods described in the

thesis are not limited to the applications exemplified.

Glancing once again through the above description, a relatively broad and some-

what unconventional view of this thesis in the context of wave propagation and scat-

tering is offered in terms of contrasting concepts or opposites. By no means ex-

haustive, Table 1.1 summarizes some of the pairs of typical classifiers encountered in

the general subject discussed here. Indicated as well are examples of their relation

to different parts of this work. This serves as another overview of the thesis and

its structure and may help locating its place in the world of fields and waves. The

entries in Table 1.1 are ordered, from top to bottom, with increasing disbalance in

thesis content. To avoid misunderstandings, this schematic list is not to be consid-

ered accurate or exclusive. For example, the scalar approximate 3-D tapered wave

given in Section 2.3.1, within a chapter focusing on electromagnetics, has an applica-

tion in acoustic rough surface scattering. Conversely, the application to acoustics in

Chapter 5 is motivated by a specific technology (borehole logging for exploration of

hydrocarbons) but note the similarity of the structure in Fig. 5-1 with a step-index
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Chapter 2, 3 forward inverse Chapter 4, 5
Chapter 2 computational analytical Chapter 3
Chapter 2 integral differential Chapter 3
Chapter 4 linear nonlinear Chapter 5
Chapter 4 imaging parametric inversion Chapter 5

Chapter 2, 3 exact approximate Chapter 2, 3
Chapter 2, 4, 5 dynamic quasistatic or static Chapter 3, 4
Chapter 2 to 4 electromagnetics acoustics Chapter 5

most of this thesis theory experiment Section 3.3.3
this thesis deterministic stochastic —
this thesis frequency domain time domain —

Table 1.1: Some opposites in wave propagation and scattering and their exemplified
association with the contents of this thesis.

optical fiber (along which the propagation of guided waves is also governed by four

scalar boundary conditions). The absence of stochastic methods, often associated

with the expectation operator E, does not imply that randomness plays no role in

the problems considered. In fact, the inverse methods of Chapter 4 and Chapter 5 are

tested and evaluated using noisy data, which, of course, is a necessity when dealing

with ill-conditioned problems.

Standard methods that are used in or are akin to this dissertation include, e. g.,

Fourier synthesis and the method of moments for surface integral equations (Chap-

ter 2), the method of separation of variables and asymptotic methods (Chapter 3),

regularization, extrapolation, and fast Fourier transformation (Chapter 4), and non-

linear optimization (Chapter 5), to name only a few. Examples of methods in wave

propagation and scattering that are not discussed here are volume integral equa-

tion methods, the finite-difference time-domain (FDTD) technique, the finite element

method, the T-matrix method, and perturbation theory. This does not mean that

the latter methods are not important or not applicable to the problems considered

in this thesis. For example, the FDTD method is an alternative to the method of

moments for the numerical simulation of scattering involving random media.
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While in this introduction we have emphasized the interrelation of the four main

chapters of the thesis between each other in the general framework of wave propaga-

tion and scattering, each of them is self-contained. Each part features an introduction

and conclusions of its own. Previous works and relevant existing literature are refer-

enced throughout.

Looking at the chapters individually shows that they aim at very specific and in

a narrower sense seemingly unrelated problems. They attempt to make contributions

in particular special fields, providing hopefully useful approaches and solutions, and

thereby fueling the perpetual expansion of the general arsenal of methods in wave

propagation and scattering.

The time convention adopted in the thesis is e−iωt and this factor is suppressed

throughout.



24 Chapter 1. Introduction



Chapter 2

Tapered waves for the simulation

of 3-D rough surface scattering

2.1 Introduction

Recent years have seen major advances in the development of fast method of moments

(MoM) solvers for three-dimensional (3-D) scattering of electromagnetic vector waves

from rough surfaces [1]–[3], [5]–[10]. Efforts are now also being directed towards inclu-

sion of objects situated in the neighborhood of the rough surface [4], [11]–[15]. Since

the problem of scattering from an object next to a rough surface is computationally

complex, two-dimensional (2-D) investigations are also popular and of importance

[16]–[23]. The 3-D case with or without objects is aimed at by the research presented

in this chapter [24]–[26].

The methods employed usually require a truncation of the rough surface because

of limited computing resources which leads to erroneous results due to artificial edge

diffraction when ideal plane waves are used to excite the system. The tapered wave

concept is based on providing an illumination for the numerical simulation that resem-

bles the plane wave case to be modeled closely at the center of the scattering scenario

(including a particular arbitrary polarization) while its intensity becomes negligibly

25
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small upon approaching the artificially introduced edges of the rough surface. Thus

unwanted edge effects due to the primary incident wave are avoided and the proper

normalization of computed scattering coefficients allows a meaningful comparison

with the ideal plane wave case; near-field quantities, such as current distributions

induced near the center of the tapered wave, are also expected to be similar. Fur-

thermore, the tapered wave should be constructed in such a way that it satisfies the

Maxwell equations without any approximation. This helps to increase the confidence

in the results obtained from the generally rather complex MoM simulation codes. It

should also be possible to substitute it for a plane wave of arbitrary polar and az-

imuthal angles of incidence without loss of polarization and degradation of tapering.

The above requirements lead us to revise and modify the tapered wave found in the

open literature.

2.2 Maxwellian 3-D tapered wave optimal in a least

squared error sense

2.2.1 Superposition of plane waves

Consider a homogeneous, isotropic medium with real wavenumber k and wave im-

pedance η. Then the following superposition of a 2-D spectrum of plane waves is

an exact solution to the Maxwell equations and represents a wave incident upon the

x-y plane from z > 0:

Ei(r) =

∞∫
−∞

dkρ ei (kρ·ρ−kzz) ψ(kρ) e(kρ) (2.1)

H i(r) =

∞∫
−∞

dkρ ei (kρ·ρ−kzz)
ψ(kρ)

η
h(kρ) (2.2)
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where

r = ρ + ẑ z (2.3)

kρ = x̂ kx + ŷ ky (2.4)

and

kz = kz(kρ) =




√
k2 − k2

ρ kρ ≤ k

−i
√
k2
ρ − k2 kρ > k

(2.5)

with kρ = |kρ|.

The spectrum ψ in (2.1), (2.2) carries the information on the shape of the footprint

(defined as the distribution of the magnitude in the x-y plane) of the incident field

and also on the direction of incidence. It is assumed to be centered about

kiρ = x̂ kix + ŷ kiy (2.6)

= k sin θi (x̂ cosφi + ŷ sinφi) (2.7)

where θi and φi are the polar and azimuthal angles of incidence of the central plane

wave and—pars pro toto—of the tapered wave (Fig. 2-1). In an application, the

central plane wave, traveling in the direction of ki as indicated in Fig. 2-1(a), would

coincide with the plane wave that was replaced by the tapered wave in the numerical

simulation. Details about the functional dependence of ψ are given in Section 2.2.2.

The polarization vectors e and h are of the general form

e(kρ) = eh(kρ) ĥ(kρ) + ev(kρ) v̂(kρ) (2.8)

and

h(kρ) = ev(kρ) ĥ(kρ) − eh(kρ) v̂(kρ) (2.9)

The notations

ĥ(kρ) =




x̂ sinφi − ŷ cosφi kρ = 0

1
kρ

(x̂ ky − ŷ kx) kρ > 0
(2.10)
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z

θi

kiρ

ki

(a) Incident wavevector in 3-D space.

kiρ

kx

ky

k

ψ
φi

(b) The 2-D wavenumber space.

Figure 2-1: Relation between the incident wavevector ki and the spectrum of plane
waves, ψ.
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and

v̂(kρ) =




x̂ cosφi + ŷ sinφi kρ = 0

kz

k kρ
(x̂ kx + ŷ ky) + ẑ kρ

k
kρ > 0

(2.11)

are found in similar form in [27, 28]. The chosen definitions for kρ = 0 take care of the

special case of a normally incident pure plane wave. kρ > k corresponds to evanescent

waves (Section 2.2.2) and, due to (2.5), the horizontal part of v̂(kρ) is imaginary in

this case. It is important to note the discontinuity of ĥ and v̂ at kρ = 0; both unit

vectors change sign when crossing the origin along a straight line in the kρ plane.

The general superposition integrals (2.1), (2.2) were stated similarly in [10, 29];

however, only normal incidence is considered in what follows there. If eh and ev in

(2.8), (2.9) are set to constants then (2.1), (2.2) specializes to the tapered wave used

in [1]–[5], with a particular spectrum ψ briefly discussed in Section 2.2.2. Problems

with this tapered wave encountered near the grazing incidence (for discussion and

references see Section 2.2.2) and near the normal incidence (Section 2.2.3) motivated

our formulation of a different kind of tapered wave, especially with respect to the

polarization vectors.

2.2.2 Amplitude spectrum

If the polarization vector e on the right-hand side of (2.1) is replaced by a scalar

constant ei, then the resulting integral

Ei(r) = ei

∞∫
−∞

dkρ ei (kρ·ρ−kzz) ψ(kρ) (2.12)

is the plane-wave representation of a scalar wave satisfying the scalar Helmholtz

equation and ψ can be identified with the well-known angular spectrum in scalar

diffraction theory [30, 31]. Thus, by obtaining ψ via 2-D Fourier transformation and

making sure that e and h vary only moderately over the spatial frequency range

where ψ is not negligible, arbitrary footprints of the vector tapered wave can be
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approximated. [The mentioned requirement leads to a problem with the tapering

in [1]–[5] near normal incidence (Section 2.2.3).] The information on the direction

of incidence of the tapered wave is included by shifting ψ in the kx-ky plane to be

centered about kiρ. The prescribed footprint itself is fixed with respect to angle of

incidence.

A Gaussian-shaped footprint (Fig. 2-2) whose amplitude at ρ = g is down to 1/e

times the level at the center is implemented by choosing

ψ(kρ) =
g2

4π
e−

g2

4 |kρ−kiρ|2 (2.13)

A pure plane wave is described by

ψ(kρ) = δ(kρ − kiρ) (2.14)

with δ the Dirac delta function. Equation (2.14) follows from (2.13) as the generalized

limit as g → ∞. It should be pointed out that—as is well known from signal theory—

among all footprints of given finite energy and width, the Gaussian leads to the

smallest bandwidth (for the appropriate definition of space and frequency domain

widths) which is desirable for synthesis.

Spectral components with kρ > k are the amplitudes of plane waves that travel

along the x-y plane and are evanescent for z > 0. Their inclusion makes it possible

to synthesize a given footprint near or at grazing incidence.

The spectrum in [1]–[5] is given as a 2-D Fourier integral that needs to be evaluated

numerically. It cannot be used near grazing incidence where the field distribution in

the x-y plane becomes highly oscillatory. Its continued use is rooted in its close

relation to a scalar tapered wave employed previously [32, 33]. The latter wave, on

the other hand, goes back to a popular incident field introduced by E. I. Thorsos

[34] who—for the 2-D case—derived it as an approximation to a summation of plane

waves, accurate for sufficiently small angles of incidence θi (also employed in [18],
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Figure 2-2: Example of a prescribed Gaussian-shaped footprint to be approximated
by the vector tapered wave (g = 2λ).

[35]–[39].) The limitations of the 2-D scalar Thorsos wave at low grazing angles were

analyzed and discussed in [40, 41]. The bound in the resolvability criterion discussed

by Ngo and Rino [42] also becomes significant at low grazing angles.

The recommendation for the 3-D vector case is to start over and simply use the

spectrum given by (2.13) which has the additional benefit of being given in closed

form. Taking advantage of the functional dependence of the Gaussian spectrum,

an option in the 2-D case is to use path deformation techniques to speed up the

evaluation of the exact expression for the incident field [43]. In the 3-D case we can

at least band-limit the integration to a disk about kρ = kiρ within which the spectrum

exhibits a significant magnitude (disk radius a few multiples of 2/g). This leads to

an approximation of the original incident field which satisfies Maxwell’s equations

exactly. The derivation of approximate non-Maxwellian 3-D tapered waves which

can be evaluated without integration is discussed in Section 2.3.
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2.2.3 Polarization

In order to construct a wave that is both reliably tapered and clearly polarized, for

all angles of incidence, we suggest choosing the polarization of the individual plane

wave components as follows:

eh(kρ) = ei · ĥ(kρ) (2.15)

ev(kρ) = ei · v̂(kρ) (2.16)

with the polarization vector of the central plane wave

ei = e(kiρ) = Eh ĥ(kiρ) + Ev v̂(kiρ) (2.17)

Hence, in dyadic notation

e(kρ) = ei ·
[
ĥ(kρ) ĥ(kρ) + v̂(kρ) v̂(kρ)

]
(2.18)

and

h(kρ) = ei ·
[
v̂(kρ) ĥ(kρ) − ĥ(kρ) v̂(kρ)

]
(2.19)

The dominant polarization state of the tapered wave is then determined by the choice

of Eh and Ev in (2.17) which describe the (generally elliptical) polarization of the

central plane wave.

Note that with this choice the integrands of (2.1), (2.2) are continuous at kρ = 0

[as follows from Section 2.3, we have in fact analyticity throughout the kx-ky plane

excluding the circle |kρ| = k provided an analytic spectrum such as (2.13) is used; at

|kρ| = k the integrands are still continuous] as opposed to the tapered wave in [1]–[5].

The latter wave is characterized by the choices

eh(kρ) = Eh (2.20)
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ev(kρ) = Ev (2.21)

leading to rapidly varying polarization vectors e and h near kρ = 0. For the near

normal incidence case this will violate the basic assumption of the footprint design

technique described in Section 2.2.2. When examined numerically it is found that the

approximation of a prescribed, e. g., Gaussian, footprint is poor; the result for normal

incidence shows the largest intensity along a ring in the x-y plane rather than at the

center (Fig. 2-3). This effect is also evident from the following consideration. For a

spectrum that satisfies

ψ(kρ) = ψ(−kρ) (2.22)

it can be shown that, for Ev = 0, we have

Ei(ρ, z) = −Ei(−ρ, z) (2.23)

with the consequence

Ei(ρ = 0, z) = 0 (2.24)

for all z [Fig. 2-3(a)]. Similarly, for Eh = 0 it is found that

ẑ × Ei(ρ, z) = −ẑ × Ei(−ρ, z) (2.25)

and [Fig. 2-3(b)]

ẑ × Ei(ρ = 0, z) = 0 (2.26)

Other problems are leakage of the intensity to larger radii than expected (Fig. 2-3)

and the non-existence of a clear polarization of the wave. By using (2.18), (2.19) these

problems are removed (Fig. 2-4). [The 101 × 101 tapered wave field values for the

results in Fig. 2-3, 2-4, 2-7, and 2-8 were calculated using a summation of 128 × 128

plane waves with a 2-D DFT sampling of the kρ space. The spectrum after [1]–[5]

was calculated using a 2-D FFT algorithm. The horizontal periodicity of the fields
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in the space domain was in all cases 30λ, i. e., twice the surface length shown in the

figures, in order to avoid aliasing (Section 2.2.4).]

Least squared error property

The tapered wave with polarization vectors (2.18), (2.19) is optimal in a least squared

error sense. Consider a vector field

E i(r) = ei

∞∫
−∞

dkρ ei (kρ·ρ−kzz) ψ(kρ) (2.27)

obtained by multiplying a scalar tapered wave with the constant polarization vector ei

as in (2.17). This field combines the desirable properties of well-defined polarization

and controllable tapering. [Note that |E i(ρ, z = 0)|/|ei| corresponds to the prescribed

footprint as discussed in Section 2.2.2 and illustrated in Fig. 2-2.] However, the field

defined by (2.27) is not a valid electric field because in general

∇ · E i(r) �= 0 (2.28)

We can therefore ask for a permissible wave of form (2.1) with the same spectrum ψ

that approximates E i as close as possible. Defining

S(z) =

∞∫
−∞

dρ
∣∣∣Ei(ρ, z) − E i(ρ, z)

∣∣∣2 (2.29)

we find from Parseval’s theorem for 2-D Fourier transforms

S(z) = 4π2

∞∫
−∞

dkρ
∣∣∣e−i kzz ψ(kρ)

∣∣∣2 ∣∣∣e(kρ) − ei
∣∣∣2 (2.30)

To minimize S for all z note that

∣∣∣e(kρ) − ei
∣∣∣2 =

∣∣∣e(kρ) − ei ·
[
ĥ(kρ) ĥ(kρ) + v̂(kρ) v̂(kρ)

]∣∣∣2 +
∣∣∣ei · k̂(kρ)

∣∣∣2 (2.31)
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(a) Horizontally polarized plane wave compo-
nents.
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(b) Vertically polarized plane wave compo-
nents.

Figure 2-3: Resulting footprints at normal incidence for the tapered wave after [1]–[5].
The approximation of the prescribed footprint (Fig. 2-2) is not satisfactory.
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(a) Horizontal polarization.
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(b) Vertical polarization.

Figure 2-4: Resulting footprints at normal incidence for the tapered wave introduced
in the present work and approximating the prescribed footprint of Fig. 2-2.
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where

k̂(kρ) = v̂(kρ) × ĥ(kρ) =
1

k
(x̂ kx + ŷ ky − ẑ kz) (2.32)

Hence, (2.18) yields the optimal Ei and the minimum Sm is given by

Sm(z) = 4π2

∞∫
−∞

dkρ
∣∣∣e−i kzz ψ(kρ)

∣∣∣2 ∣∣∣ei · k̂(kρ)
∣∣∣2 (2.33)

It is emphasized that we refer to S(z) and Sm(z) as “errors” only in the familiar

mathematical sense. The purpose of comparing with the non-Maxwellian field E i(r)
is to uniquely identify a functional dependence of e(kρ) which can be expected to

guarantee tapering and a dominant polarization state of the total field (both as pre-

scribed). In other words, E i(r) which is ideal with respect to tapering and polarization

is projected into the space of waves constructed as 2-D superpositions of plane waves,

lending its desirable properties to an exact solution of Maxwell’s equations.

To illustrate the approximation behavior numerically we computed the relative

root mean squared (RMS) error

√√√√√S(0)

/ ∞∫
−∞

dρ
∣∣∣E i(ρ, 0)

∣∣∣2 =

√
2S(0)/π

g |ei|
(2.34)

where E i is formed using the spectrum (2.13), for varying tapering parameter g and

incidence angle θi (in Fig. 2-5 and 2-6 contour levels decrease monotonically for fixed

θi and increasing g and are separated by 2 dB steps.) The results in Fig. 2-5 for the

tapered wave in [1]–[5] exhibit the previously mentioned problems near normal and

grazing incidence. It is noted that for intermediate angles θi and larger g the error can

be smaller than 1% (−20 dB) and that the approximation behavior for horizontally

polarized [Fig. 2-5(a)] and vertically polarized [Fig. 2-5(b)] plane wave components

is similar. For the tapered wave composed according to (2.18) and (2.13) and for

horizontal polarization [Fig. 2-6(a)] the error is small everywhere and practically in-



38 Chapter 2. Tapered waves for the simulation of 3-D rough surface scattering

dependent of θi. For vertical polarization [Fig. 2-6(b)] the error grows larger towards

grazing but does not exceed moderate levels. The fact that approximating a vertically

polarized plane wave near grazing incidence is harder can be understood intuitively

by noting that the energy flow of the tapered wave has to “bend down” in order to

form the exponentially space-limited footprint, a requirement in apparent contradic-

tion with maintaining a vertical polarization state. However, Fig. 2-6(b) shows that

the optimal approximation finds a reasonable compromise. [For the results shown

in Fig. 2-5 and 2-6 the RMS error was evaluated using a Gauss-Legendre quadrature

over a surface of size 7 g × 7 g, choosing in both dimensions 5 times the number of

sampling points obtained when rounding 7 g/λ to the nearest integer. 128×128 plane

waves were summed to space domain fields with horizontal periodicity of 7 g. The

tapering parameter g was changed in steps of λ/2 and the angle of incidence θi in

steps of 5o.]

Another important property of the wave based on (2.18) is found from (2.19) by

noting that

ei · h(kρ) = h(kρ) · ei = ei ·
[
v̂(kρ) ĥ(kρ) − ĥ(kρ) v̂(kρ)

]
· ei = 0 (2.35)

and thus, according to (2.2),

ei ·H i(r) = 0 (2.36)

The total magnetic field of the tapered wave is everywhere perpendicular to the

electric field of the central plane wave.

The fact (2.36) is reminiscent of the tapered wave (given for the case of normal

incidence only) in [29], designed to have no y component of the magnetic field. Setting

ei = −ŷ (2.37)

in (2.18), (2.19) or, more conveniently, in (2.49), (2.53) of Section 2.3 and comparing
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Figure 2-5: Relative RMS error [dB] at z = 0 for the tapered wave after [1]–[5] as
compared to a non-Maxwellian field with prescribed tapering and polarization.
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Figure 2-6: Relative RMS error [dB] at z = 0 for the tapered wave introduced in this
thesis.
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to (7), (8) in [29] it is found that the waves are different. In particular, the polarization

vectors in [29] are unbounded as |kρ| → k while being analytic throughout the kx-ky

plane excluding the circle |kρ| = k.

The tapered wave given previously by Tran and Maradudin [44] and for the case

of vertical polarization employed in [7]–[9], when generalized to arbitrary azimuthal

angle of incidence and cast into our formalism, turns out to be somewhat related.

Their magnetic polarization vector for horizontal polarization is collinear to (2.19)

when Ev = 0. However, it is normalized to unit length and the magnetic polarization

vector for vertical polarization is then obtained by taking the vector product with

k̂(kρ). It is seen that this construction will not lead to an optimal approximation of

(2.27) and thus to a different wave.

Finally, we point out that our tapered wave has been derived by optimizing the

electric field with respect to an ideal field E i. The magnetic field of the tapered wave

then followed from the familiar relation between the electric and magnetic field of a

plane wave (Faraday’s law). It is clear that in a similar manner we could derive a

dual tapered wave which is obtained by choosing the magnetic polarization vectors

h with respect to a non-Maxwellian field Hi and applying Ampere’s law to find the

electric field.

2.2.4 Issues in the application to 3-D scattering

The tapered wave introduced in this thesis can be used for the simulation of scatter-

ing from randomly rough surfaces with a planar mean surface. In a more complex

scenario, objects are embedded in a layered background with rough interfaces. If

the objects are at least partially situated in the half space where the sources of the

incident wave reside, it is important also to pay attention to the distribution of the

tapered wave for z > 0.

Fig. 2-7 and 2-8 illustrate the cases of oblique and grazing incidence, respectively.

Fig. 2-7(a) shows how the tapered wave forms a slightly converging beam, approxi-
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mating the prescribed footprint at z = 0 [Fig. 2-7(b)]. The non-zero intensity in the

top-right corner of Fig. 2-7(a) is due to the periodic nature of the discretized versions

of (2.1), (2.2) with respect to ρ. This aliasing effect, which in the present case would

have no effect on the illumination of objects situated relatively close to the surface at

z = 0, can be reduced—as usual—by sampling finer with respect to kρ. For footprints

where ψ(kρ) is not given in closed form as in (2.13) but is computed by 2-D FFT this

is achieved by applying zero padding before carrying out the transformation. The

remarkable fact about Fig. 2-8 is that the inclusion and correct treatment of evanes-

cent waves enables synthesis of the prescribed footprint even for θi = 90o [Fig. 2-8(b)].

Aliasing for z > 0 in this case is more severe [Fig. 2-8(a)].

In typical applications of the tapered wave concept, electromagnetic wave scatter-

ing from a conducting object over a conducting rough surface is simulated and Glis-

son’s overlapping triangular flat vector basis functions [45]–[47] for the electric surface

current on both object and rough surface are used in discretizing the electric field in-

tegral equation, applying a Galerkin-type method of moments. We compared the

results of such a scattering code with those obtained by the hybrid method described

in [11]–[15]. The major advantage of this hybrid method is that the decomposition

into flat surface problems with impressed equivalent sources that are determined by

lower order solutions allows introduction of the tensor Green function for layered me-

dia. This removes the need to solve for the surface currents on the rough surface

and to truncate its physical dimensions. In the comparison, the same rough surface

profile, the same patch model for the object, and the same tapered incident wave were

used for solving the problem with the two independent codes; reasonable agreement

was obtained. Discrepancies, however, occurred for near-grazing angles θi = 80 . . . 90o

where the pure MoM results suffer from edge effects due to the truncation of the rough

surface. While the incident wave can be tapered to fall off exponentially towards the

edges the scattered fields from the object decay only as 1/r, giving rise to problems

at very large polar angles where the object acts as a reflector that directs energy
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Figure 2-7: Beam formation of the tapered wave at oblique incidence (θi = 40o,
φi = 90o, g = 2λ, horizontal polarization).
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Figure 2-8: Beam formation of the tapered wave at grazing incidence (θi = φi = 90o,
g = 2λ, horizontal polarization).
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towards the edges. This indicates the increased difficulty of the low grazing angle

rough surface scattering problem when an object is present. In the hybrid method,

the correct behavior of the monostatic HH return is guaranteed at θi = 90o, where

in the flat surface case the boundary condition on the perfectly conducting surface

forces a zero. It should be remarked that, although the utilization of the tapered wave

concept for the method in [11]–[15], which when implemented up to and including the

first order can yield accurate results for slightly rough surfaces, is not imperative, it

may still be useful there because only finite rough surface profiles can be processed.

2.3 Approximate 3-D tapered waves

A clear advantage of the original 2-D scalar Thorsos wave and a major reason for its

popularity is the avoidance of numerical integrations in the evaluation of the incident

field. The price paid is the non-Maxwellian nature of the approximation which,

as reported in [40], can lead to anomalies in the computed results of simulations

that require evaluation of the incident field not only on the rough surface as, e. g.,

in object-surface interaction problems. Also the breakdown of the approximation

near grazing incidence causes serious problems in some applications. Keeping these

limitations in mind and akin to the derivation of the Thorsos wave, in the 3-D case

with the spectrum (2.13) we can argue, in a spirit similar to Laplace’s method for the

asymptotic expansion of integrals [48, 49], that for large g the main contribution to

the superposition of plane waves comes from around kρ = kiρ [Fig. 2-1(b)].

2.3.1 Scalar wave case

Using the truncated bivariate Taylor expansion in kx, ky

√
k2 −

∣∣∣kiρ + kρ
∣∣∣2 ≈ kiz −

kix
kiz

kx −
kiy
kiz

ky
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− kix kiy
k3
iz

kx ky −
k2 − k2

iy

2 k3
iz

k2
x −

k2 − k2
ix

2 k3
iz

k2
y (2.38)

where

kiz = k cos θi (2.39)

we can obtain from (2.12) by carrying out the integrations and symmetrizing the

result with respect to x and y (without any further approximations)

Ei(r) ≈ ei e
i ki·r 1

u(z)
exp

[
− s(r)

g2 u2(z)

]
(2.40)

where

ki = kiρ − ẑ kiz (2.41)

and

s(r) =

(
1 − 2i

g2

k2 − k2
ix

k3
iz

z

) (
x +

kix
kiz

z

)2

+

(
1 − 2i

g2

k2 − k2
iy

k3
iz

z

) (
y +

kiy
kiz

z

)2

+
4i

g2

kix kiy
k3
iz

z

(
x +

kix
kiz

z

) (
y +

kiy
kiz

z

)
(2.42)

and

u(z) =

√√√√(
1 − 2i

g2

k2

k3
iz

z

) (
1 − 2i

g2

1

kiz
z

)
(2.43)

In deriving (2.38)–(2.43), the dispersion relation

k2
iz = k2 − k2

ix − k2
iy (2.44)

has been used. As expected, (2.40) coincides with (2.12) exactly when z = 0. As

g → ∞ the plane wave case is recovered. It is remarked that (2.40) is not a direct

generalization of the Thorsos wave to 3-D because of the different formulation of the
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superposition integral used as starting point. However, using the following argument

we arrive at a condition for the validity of (2.40) that is similar to the one given in

the 2-D case [40]–[42], in particular the dependence on (π
2
− θi)

2 near grazing carries

over to 3-D: The radius of convergence of the full Taylor series (2.38) is limited to

k−kiρ because of the branch point of the square root function encountered for kρ = k

[Fig. 2-1(b)]. Thus

kg (1 − sin θi) � 1 (2.45)

is required for (2.40) to be an accurate representation of (2.12). In addition, the error

of the truncated series (2.38) is multiplied by z with the consequence that the largest

|z| considered should be small relative to g, i. e.,

g � |z|max (2.46)

2.3.2 Vector wave case

Approximations for the 3-D vector wave case are derived in a similar fashion by

additionally expanding the polarization vectors. Substituting

ĥ(kρ) ĥ(kρ) =
1

k2
ρ

[
x̂ x̂ k2

y − (x̂ ŷ + ŷ x̂) kx ky + ŷ ŷ k2
x

]
(2.47)

v̂(kρ) v̂(kρ) =
k2
z

k2 k2
ρ

[
x̂ x̂ k2

x + (x̂ ŷ + ŷ x̂) kx ky + ŷ ŷ k2
y

]

+
kz
k2

[(x̂ ẑ + ẑ x̂) kx + (ŷ ẑ + ẑ ŷ) ky] + ẑ ẑ
k2
ρ

k2
(2.48)

into (2.18), we find

e(kρ) =
ei
k2

·
[
x̂ x̂ (k2 − k2

x) + ŷ ŷ (k2 − k2
y) + ẑ ẑ k2

ρ

− (x̂ ŷ + ŷ x̂) kx ky + (x̂ ẑ + ẑ x̂) kx kz + (ŷ ẑ + ẑ ŷ) ky kz
]

(2.49)
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Equation (2.49) also follows from

ĥ ĥ + v̂ v̂ = I − k̂ k̂ (2.50)

with I the identity tensor and k̂ as in (2.32). Similarly, with the dyads

v̂(kρ) ĥ(kρ) =
kz
k k2

ρ

[
(x̂ x̂− ŷ ŷ) kx ky − x̂ ŷ k2

x + ŷ x̂ k2
y

]

+
1

k
(ẑ x̂ ky − ẑ ŷ kx) (2.51)

ĥ(kρ) v̂(kρ) =
kz
k k2

ρ

[
(x̂ x̂− ŷ ŷ) kx ky + x̂ ŷ k2

y − ŷ x̂ k2
x

]

+
1

k
(x̂ ẑ ky − ŷ ẑ kx) (2.52)

we obtain from (2.19)

h(kρ) = −ei
k
· [(x̂ ŷ − ŷ x̂) kz + (x̂ ẑ − ẑ x̂) ky − (ŷ ẑ − ẑ ŷ) kx] (2.53)

It is observed from (2.49), (2.53) that the tensors in (2.18), (2.19) are symmetric and

anti-symmetric, respectively. More importantly here, it is evident from (2.49), (2.53)

that both e(kρ) and h(kρ), viewed as functions of the two real variables kx and ky,

are analytic throughout the kx-ky plane excluding the one-dimensional set of points

forming the circle |kρ| = k. (It is emphasized that the region of analyticity includes

kρ = 0, c. f., Section 2.2.3.) Thus, the Taylor series

e(kiρ + kρ) =
∞∑

m,n=0

amn k
m
x kny (2.54)

where

amn =
1

m!n!

[
∂m+n

∂kmx ∂kny
e(kρ)

]
kρ=kiρ

(2.55)

converges in the disk

|kρ| < k − kiρ (2.56)
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and similar expressions hold for h(kρ). Applying the approximation (2.38) to (2.1)

with the spectrum (2.13), inserting (2.54), and using twice the Fourier integral identity

(as follows from 3.958.2 in [50])

∞∫
−∞

dxxneiqx−ax2

=

√
π

a
i−n

dn

dqn
e−

q2

4a

=

√
π

a
n!

(
i

2a

)n

e−
q2

4a

[n/2]∑
m=0

(−a)m

(n− 2m)!m!
qn−2m (2.57)

where [n/2] is the integral part of n/2, leads, again without further approximation,

to an expression of the form

Ei(r) ≈ ei ki·r 1

u(z)
exp

[
− s(r)

g2 u2(z)

] ∞∑
m,n=0

amn pmn(r) (2.58)

where s(r) and u(z) are as in (2.42), (2.43), the amn are obtained from (2.49), and

pmn(r) is polynomial in x, y, z up to z-dependent correction factors that, similar to

(2.43), are unity for z = 0 or g → ∞. Note that by dropping the summation in (2.58)

the scalar wave (2.40) is formally recovered. It is remarked that, different from the

scalar case, (2.58) for z = 0 is only an approximation of the superposition of plane

waves that we started out with because of the finite radius of convergence of (2.54)

and the fact that the spectrum (2.13) is not band-limited. The conditions on g for

(2.58) to be a reasonable approximation are as stated above for the scalar case. We

have

a00 = ei (2.59)

and

p00 = 1 (2.60)

Thus the lowest-order electric field approximation following from (2.58) is the same as

what is obtained by approximating kz in (2.27) with the help of (2.38) or multiplying

(2.40) by ei/ei. The pmn of higher order vanish as g → ∞. The algebraic details for
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the pmn of any order (integrating over ky first) are as follows:

pmn(r) = n!

[
2i

g2 u2
1(z)

]n [n/2]∑
k=0

[−g2 u2
1(z)]

k

4k k!

×
n−2k∑
j=0

(m + j)!

j! (n− 2k − j)!

(
y +

kiy
kiz

z

)n−2k−j (
kix kiy
k3
iz

z

)j [
2i

g2 u2
2(z)

]m+j

×
[m+j

2 ]∑
�=0

[−g2 u2
2(z)]

�

4� (m + j − 2
)! 
!

[
x +

kix
kiz

z + w(y, z)

]m+j−2�

(2.61)

where

u2
1(z) = 1 − 2i

g2

k2 − k2
ix

k3
iz

z (2.62)

u2
2(z) =

u2(z)

u2
1(z)

(2.63)

w(y, z) =
2i

g2 u2
1(z)

kixkiy
k3
iz

z

(
y +

kiy
kiz

z

)
(2.64)

When choosing the number of terms to be included in (2.58) one should be aware of

the limited radius of convergence of (2.54) and the underlying approximation (2.38)

which, however, has no effect for z = 0. The amn with m + n < 3 are given by

a00 = ei (2.65)

a10 =
ei

k2 kiz
·
[
− 2 (x̂ x̂− ẑ ẑ) kix kiz − (x̂ ŷ + ŷ x̂) kiy kiz

+ (x̂ ẑ + ẑ x̂) (k2
iz − k2

ix) − (ŷ ẑ + ẑ ŷ) kix kiy
]

(2.66)

a01 =
ei

k2 kiz
·
[
− 2 (ŷ ŷ − ẑ ẑ) kiy kiz − (x̂ ŷ + ŷ x̂) kix kiz

− (x̂ ẑ + ẑ x̂) kix kiy + (ŷ ẑ + ẑ ŷ) (k2
iz − k2

iy)
]

(2.67)

a11 =
ei

k2 k3
iz

·
[
− (x̂ ŷ + ŷ x̂) k3

iz − (x̂ ẑ + ẑ x̂) kiy (k2
ix + k2

iz)

− (ŷ ẑ + ẑ ŷ) kix (k2
iy + k2

iz)
]

(2.68)

a20 =
ei

2 k2 k3
iz

·
[
− 2 (x̂ x̂− ẑ ẑ) k3

iz − (x̂ ẑ + ẑ x̂) kix (k2
ix + 3 k2

iz)

− (ŷ ẑ + ẑ ŷ) kiy (k2 − k2
iy)

]
(2.69)
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a02 =
ei

2 k2 k3
iz

·
[
− 2 (ŷ ŷ − ẑ ẑ) k3

iz − (x̂ ẑ + ẑ x̂) kix (k2 − k2
ix)

− (ŷ ẑ + ẑ ŷ) kiy (k2
iy + 3 k2

iz)
]

(2.70)

Following a similar procedure, approximations for the magnetic field and the dual

tapered wave (Section 2.2.3) can be derived.

2.4 Conclusions

We considered the problem of constructing a 3-D tapered wave as a superposition of

plane waves, taking into account both propagating and evanescent waves. The use of

the simple Gaussian plane wave spectrum was recommended in order to avoid prob-

lems near the grazing incidence. The special choice introduced for the polarization

vectors removed the problems of losing a dominant polarization state and degradation

of tapering near the normal incidence. Mathematically speaking, the proposed polar-

ization vectors are analytic at the origin of the 2-D wavenumber space. Moreover, the

choice of polarization vectors was shown to lead to an exact solution of the Maxwell

equations which is an optimal approximation of an ideal but non-Maxwellian tapered

field that is constructed by multiplying a scalar tapered wave with a constant polar-

ization vector. The result is a reliably tapered wave with a dominant polarization

state that can be used uniformly for all angles of incidence. We discussed the ap-

plication of the proposed tapered wave in simulating 3-D electromagnetic scattering

from a conducting object over a conducting rough surface. Newly encountered prob-

lems near the grazing incidence were attributed to secondary edge effects which are

unrelated to the tapered incident wave but indicate the difficulty of the rough surface

scattering problem at low grazing angles of incidence when objects are present. It was

pointed out that methods which avoid such edge effects could also benefit from the

utilization of the tapered wave. In some situations it might be desirable to have an

approximate 3-D tapered wave at one’s disposal which does not require a 2-D numer-
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ical integration (summation of plane waves), trading accuracy in satisfying Maxwell’s

equations for computational speed. We presented the derivation of approximations

for both the 3-D scalar and vector case. The expansion of the polarization vectors is

based on their analyticity. The local character of the technique employed forces the

breakdown of the approximations at grazing incidence.



Chapter 3

Electromagnetic induction sensing

of conducting and permeable

objects

3.1 Introduction

Low-frequency electromagnetic induction methods are promising candidates for the

development of advanced techniques for the detection and discrimination of subsurface

objects, such as unexploded ordnance (UXO) and landmines buried in soil [51, 52].

Innovative broadband sensors are being engineered [53]. In the frequency range under

consideration here (from about 30 Hz to 300 kHz) rough air-ground interfaces and

most soil dielectric heterogeneities have an insignificant influence, a clear advantage

relative to ground penetrating radar (GPR) [54]. The conductivity of metallic targets

exceeds that of soil by many orders of magnitude so that secondary sources on and

within the targets dominate. Also in this frequency range, displacement currents are

negligible both within the target and its surroundings. These considerations motivate

interest in solutions for the magnetoquasistatic response of conducting and permeable

objects embedded in a homogeneous and insulating medium [55]. Note that in this

53
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idealized model, the fields in the background medium obey Laplace’s equation, while

inside the target they are governed by magnetic diffusion, i. e., a Helmholtz equation

with imaginary squared wavenumber. The frequency range of interest encompasses

the scattering regimes from near magnetostatics up to the limiting case of vanishing

skin depth, when the object can be replaced by an equivalent perfectly conducting

boundary, still within the magnetoquasistatic regime.

Objects of general shape can be analyzed with help of a surface integral formu-

lation and the method of moments (MoM). Results for conducting and permeable

bodies of revolution were reported in [56]. The problem of a prohibitively fine dis-

cretization for skin depths that are small compared to the largest target dimension

can be addressed by a special formulation taking into account the exponential decay

of the fields inside the object [57]. Other numerical techniques under development

include the method of auxiliary sources (MAS) [58].

Recent research in this area has increased the demand for analytical solutions

for canonically shaped objects needed for testing of numerical codes, calibration of

instruments, and the development of model-based inversion methods. Theoretical

investigations can also aid in improving the understanding of some relatively counter-

intuitive diffusion phenomena.

A benchmark solution is that for a conducting and permeable sphere, originally

developed with focus on geophysical applications [59]–[63]. We consider here the prob-

lem of a conducting and permeable prolate spheroid (elongated ellipsoid of revolution)

with the exciting uniform primary field along the major axis. The prolate spheroid

is of fundamental interest because it includes the special cases of the sphere and, in

the limit of infinite length, the circular cylinder. Furthermore, it is an example of an

orientable object that exhibits a continuously varying surface curvature. The oblate

spheroid (flattened ellipsoid of revolution) can be treated in a manner similar to what

is presented in this thesis. For a prolate spheroid, the response to axial excitation

field components is typically the strongest.
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The key ingredients of one of the solutions advanced here (based on scalar spheroidal

wavefunctions) are mentioned in [63, 64] but integral equation approaches to the

boundary value problem are favored there. In [65] no numerical results were reported

and the solution given appears not to satisfy the boundary conditions at the surface

of the spheroid. The lack of a comprehensive treatment of the spheroidal magnetic

diffusion problem in the open literature is the chief motivation of the present work

which also aims at providing numerical reference data. The formally more compli-

cated use of vector spheroidal wavefunctions for both axial and transverse primary

fields is dealt with in [66, 67], from which our approach here is distinguished in that

we rely on both the electric and magnetic fields to construct the ultimate magneto-

quasistatic solution.

It should be noted that the problem of plane wave scattering from dielectric

spheroids, the solution of which is highly developed [68]–[76], is quite different from

the magnetic diffusion or electromagnetic induction problem considered here. Both

phenomena are governed by a Helmholtz equation. However, the squared wavenum-

ber inside a dielectric body is real, while inside a conducting and permeable object

under magnetoquasistatic excitation it is imaginary. The elementary primary field

in magnetic diffusion is not a plane wave but a spatially uniform, time-varying mag-

netic field. In the radar case, an important far-field quantity is the scattering cross-

section while in electromagnetic induction we are interested in the induced magnetic

dipole moment. Numerically, the exact solution of the diffusion problem requires

the evaluation of the spheroidal wavefunctions with complex wavenumber parameter

while Fortran and C routines are readily available only for the real case [77]–[79].

Similarities between the radar and the electromagnetic induction problems include

the appearance of infinite systems of equations due to the non-orthogonality of the

spheroidal wavefunctions for different wavenumbers. In principle, it might be possi-

ble to reduce the formal solution of the appropriate plane-wave scattering problem to

that of the electromagnetic induction problem by considering the mathematical limit
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as the wavenumber of the exterior space approaches zero and treating the imminent

singularities correctly. However, this statement is of no immediate practical value.

We have found it more convenient to solve the electromagnetic induction problem

directly under the tailored and simplifying assumptions of magnetoquasistatics.

In what follows, Section 3.2.1 presents the formal solution of the boundary value

problem. It is specialized in Section 3.2.1 to a succinct expression for the induced

magnetic dipole moment of the scattering body. In Section 3.2.1 we determine an

asymptotic high-frequency form, which in the limit provides the correct normalization

value. A low-frequency form is obtained in Section 3.2.1, which provides a check and

a simplified expression for the magnetic polarizability, R‖
pro, for high relative perme-

abilities, or gives a limiting R‖
pro value under finite permeability but large elongation.

In Section 3.2.1 the same expression for R‖
pro is obtained for the general case with

high permeability as was obtained for the low-frequency case in Section 3.2.1. The

asymptotic high-frequency form of Section 3.2.1 is enhanced in Section 3.2.2 to pro-

vide an approximation for the general solution at high frequencies. An approximate

solution for large elongations is developed in Section 3.2.3. Section 3.2.4 presents the

numerical implementation of results. These reveal that evaluation of the spheroidal

wavefunctions breaks down, rather suddenly, at and above intermediate frequencies.

The problem is exacerbated for large permeabilities and elongations. However, using

the above-mentioned enhanced high-frequency approximation, we succeed in obtain-

ing values at the high-frequency end of the spectrum, leaving possibly a gap only at

intermediate frequencies. This gap can be bridged by the use of a broadband rational

approximation, explained in Section 3.2.5.

When employing electromagnetic induction methods to the detection and iden-

tification of UXO, one is in practice confronted with the problem of discriminating

between UXO and clusters of metallic pieces. In Section 3.3 we develop a suitable for-

mulation for collections of small objects and study simulation results for a theoretical

model [80]. A qualitative comparison with an electromagnetic induction measurement
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is made.

In Section 3.4 we derive useful forms for expressing and calculating the magnetic

dipole moment of an arbitrarily shaped scattering body.

3.2 Magnetoquasistatic response of prolate spheroid

under axial excitation

3.2.1 Solution of boundary value problem

We consider a prolate spheroid of conductivity σ1 and permeability µ1 with major

axis or length


 = d ξ0 (3.1)

and minor axis

2a = d
√
ξ2
0 − 1 (3.2)

as shown in Fig. 3-1. In other words, the interfocal distance of the spheroid is [81]

d =
√

2 − 4a2 (3.3)

and ξ0 is given by

ξ0 =

√


2 − 4a2
(3.4)

with d → 0 and ξ0 → ∞ in the limiting case of a sphere, and d → 
 and ξ0 → 1 in

the limiting case of a long circular cylinder with needle-like end caps (acicular limit).

The spheroid is centered about the origin of a prolate spheroidal coordinate system

(η, ξ, φ) with both the interfocal distance and the rotational axis coinciding with

those of the spheroid so that ξ = ξ0 describes the surface of the spheroid (|η| ≤ 1 and

ξ ≥ 1). As mentioned above, the homogeneous background medium of permeability

µ is considered to be non-conducting.
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Figure 3-1: A conducting and permeable prolate spheroid in a time-varying, spatially
uniform axial primary magnetic field. The background medium is homogeneous and
non-conducting.

A uniform primary magnetic field in direction of the axis of rotation and alter-

nating with angular frequency ω is given by

H0 = ẑ H0z (3.5)

In view of the rotational symmetry of the configuration, the total electric field is of

the form

E = φ̂ Eφ(η, ξ) (3.6)

and thus immediately

∇ · E = 0 (3.7)

It is readily shown that in this case the vector wave equation

∇×∇× E − k2 E = 0 (3.8)
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is reduced by (3.7) to the vector Helmholtz equation

∇2 E + k2 E = 0 (3.9)

and can be reduced further to the scalar Helmholtz equation

∇2
(
Eφ e±iφ

)
+ k2 Eφ e±iφ = 0 (3.10)

The introduction of the auxiliary factor e±iφ in (3.10) is strictly a mathematical

convenience, and the product field Eφ e±iφ has no direct physical meaning.

Expansion into scalar spheroidal wavefunctions

In view of (3.10), inside the spheroid (in region 1) the electric field Eφ = E1φ is

expanded in terms of angular and radial spheroidal wavefunctions of the first kind of

order m = 1 as [81]

E1φ(η, ξ) = H0z iωµ1
d

2

∞∑
n=1

An R
(1)
1n (c1, ξ) S1n(c1, η) (3.11)

where the spheroidal wavenumber parameter

c1 = k1
d

2
=

d

2

√
iωµ1σ1 (3.12)

is complex with argument π/4 (provided that the product ωµ1σ1 is positive real which

is the case in all the numerical examples considered). In region 2 outside the spheroid,

k2 = 0 so that (3.10) becomes Laplace’s equation, and we may express the electric

field in terms of associated Legendre functions of the first and second kind as [82]

E2φ(η, ξ) = H0z iωµ
d

2

[
1

2

√
ξ2 − 1 P1

1(η) +
∞∑
n=1

Bn Q1
n(ξ) P1

n(η)

]
(3.13)
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where we follow Flammer [81] in defining Pm
n in terms of Legendre polynomials by

Pm
n (η) =

(
1 − η2

)m
2 dm

dηm
Pn(η) (3.14)

which is different by a factor of (−1)m from the standard definition [83].

In (3.13), the infinite series represents the exterior secondary or scattered field

that vanishes as ξ → ∞. The first term is induced by the uniform primary magnetic

field in the absence of the scatterer and can also be written as

E0φ = H0z iωµ
ρ

2
(3.15)

where we refer to cylindrical coordinates (z, ρ, φ). If the scattered field is made

vanishingly weak, the electric field (3.6) reduces to

E0 = φ̂ E0φ(ρ, z) (3.16)

By integrating Faraday’s law

∇× E0 = iωµH0 (3.17)

or, equivalently,

− ∂

∂z
E0φ = 0 (3.18)

and
1

ρ

∂

∂ρ
(ρE0φ) = H0z iωµ (3.19)

we find that (3.16) with E0φ given by (3.15) is the only possible electric field E0

produced by (3.5) and complying with (3.6). The presence of the spheroid imposes,

via the boundary condition for the tangential electric field, a symmetry on the exterior

electric field that otherwise would be determined only up to an additive irrotational

field, due to the assumed absence of any currents in the exterior space.
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The non-zero components of the total magnetic field follow from (3.11), (3.13) and

Faraday’s law, applying the curl operator in prolate spheroidal coordinates. They are

given, in region 1, by

H1η(η, ξ) =
H0z√
ξ2 − η2

∞∑
n=1

An T1n(c1, ξ) S1n(c1, η) (3.20)

H1ξ(η, ξ) = − H0z√
ξ2 − η2

∞∑
n=1

An R
(1)
1n (c1, ξ)

d

dη

[(
1 − η2

)
S1n(c1, η)

]
(3.21)

with the derivative

Tmn(c1, ξ) =
d

dξ

[√
ξ2 − 1 R(1)

mn(c1, ξ)
]

(3.22)

and, in region 2, by

H2η(η, ξ) =
H0z√
ξ2 − η2

[
ξ P1

1(η) +
∞∑
n=1

Bn U1n(ξ) P1
n(η)

]
(3.23)

H2ξ(η, ξ) = − H0z√
ξ2 − η2

[
1

2

√
ξ2 − 1V11(η) +

∞∑
n=1

Bn Q1
n(ξ)V1n(η)

]
(3.24)

where

Umn(ξ) =
d

dξ

[√
ξ2 − 1 Qm

n (ξ)
]

(3.25)

Vmn(η) =
d

dη

[√
1 − η2 Pm

n (η)
]

(3.26)

The boundary conditions of continuous tangential electric and magnetic field require,

respectively,

∞∑
n=1

[
An µ1 R

(1)
1n (c1, ξ0) S1n(c1, η) −Bn µQ1

n(ξ0) P1
n(η)

]
=

µ

2

√
ξ2
0 − 1 P1

1(η) (3.27)

∞∑
n=1

[
An T1n(c1, ξ0) S1n(c1, η) −Bn U1n(ξ0) P1

n(η)
]

= ξ0 P1
1(η) (3.28)
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In a crucial step, the angle functions are now expanded as [81]

Smn(c1, η) =
∞∑

r=0,1

′ dmnr (c1) Pm
m+r(η) (3.29)

where the summation starts with r = 0 for n−m even and with r = 1 when n−m

odd, and the prime means that, beginning with the first, only every second term in

the summation is kept, e. g., for an odd n,

S1n(c1, η) = d1n
0 (c1) P1

1(η) + d1n
2 (c1) P1

3(η) + d1n
4 (c1) P1

5(η) + . . . (3.30)

and, if n even,

S1n(c1, η) = d1n
1 (c1) P1

2(η) + d1n
3 (c1) P1

4(η) + d1n
5 (c1) P1

6(η) + . . . (3.31)

The numerical evaluation of the spheroidal expansion coefficients dmnr , which will

also be utilized in the computation of the radial wavefunctions R(1)
mn [based on the

expansion (3.57) below], is discussed in Section 3.2.4. Inserting (3.29) in (3.27),

(3.28) gives
∞∑

n,r=1

[
A2n−1 µ1 R

(1)
1(2n−1)(c1, ξ0) d

1(2n−1)
2r−2 (c1) P1

2r−1(η)

+ A2n µ1 R
(1)
1(2n)(c1, ξ0) d

1(2n)
2r−1 (c1) P1

2r(η) −Bn µQ1
n(ξ0) P1

n(η) δnr
]

=
µ

2

√
ξ2
0 − 1 P1

1(η)

(3.32)

∞∑
n,r=1

[
A2n−1 T1(2n−1)(c1, ξ0) d

1(2n−1)
2r−2 (c1) P1

2r−1(η)

+ A2n T1(2n)(c1, ξ0) d
1(2n)
2r−1 (c1) P1

2r(η) −Bn U1n(ξ0) P1
n(η) δnr

]
= ξ0 P1

1(η) (3.33)

where δnr is the Kronecker delta. Using the orthogonality of the associated Legendre
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functions [83]
1∫

−1

dη P1
m(η) P1

n(η) =
2m (m + 1)

2m + 1
δmn (3.34)

we find from multiplying (3.32), (3.33) by P1
2m−1(η) and integrating for m = 1, 2, . . .

∞∑
n=1

A2n−1 µ1 R
(1)
1(2n−1)(c1, ξ0) d

1(2n−1)
2m−2 (c1) −B2m−1 µQ1

2m−1(ξ0) =
µ

2

√
ξ2
0 − 1 δ(2m−1)1

(3.35)

∞∑
n=1

A2n−1 T1(2n−1)(c1, ξ0) d
1(2n−1)
2m−2 (c1) −B2m−1 U1(2m−1)(ξ0) = ξ0 δ(2m−1)1 (3.36)

and from testing with P1
2m(η)

∞∑
n=1

A2n µ1 R
(1)
1(2n)(c1, ξ0) d

1(2n)
2m−1(c1) −B2m µQ1

2m(ξ0) = 0 (3.37)

∞∑
n=1

A2n T1(2n)(c1, ξ0) d
1(2n)
2m−1(c1) −B2m U1(2m)(ξ0) = 0 (3.38)

Thus we conclude that all harmonics with even index vanish, i. e.,

A2n = B2n = 0 (3.39)

This is expected from the symmetry of the problem which implies

Eφ(ξ, η) = Eφ(ξ,−η) (3.40)

Eliminating the B2m−1 from (3.35), (3.36) we arrive at the infinite system of linear

equations given by

∞∑
n=1

A2n−1 d
1(2n−1)
2m−2 (c1)

[
µ1 U1(2m−1)(ξ0) R

(1)
1(2n−1)(c1, ξ0) − µQ1

2m−1(ξ0)T1(2n−1)(c1, ξ0)
]
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= µ
[

1

2

√
ξ2
0 − 1U1(2m−1)(ξ0) − ξ0 Q1

2m−1(ξ0)
]
δ(2m−1)1 (3.41)

After solving (3.41), the B2m−1 can be obtained directly from

B2m−1 =
1

µQ1
2m−1(ξ0)

[
µ1

∞∑
n=1

A2n−1 R
(1)
1(2n−1)(c1, ξ0) d

1(2n−1)
2m−2 (c1) −

µ

2

√
ξ2
0 − 1 δ(2m−1)1

]

(3.42)

which concludes the formal solution of the boundary value problem. In the following

we discuss the induced magnetic dipole moment and various limiting cases of the

theory. The numerical implementation of (3.41), (3.42) is described in Section 3.2.4.

Induced magnetic dipole moment

The secondary magnetic field due to an induced magnetic dipole of moment m at

r = r0 is given by [51, 56, 84]

Hs(r) =
3 r̂′r̂′ − I

4πr′3
·m (3.43)

where I denotes the identity tensor and

r̂′ =
r − r0

|r − r0|
, r′ = |r − r0| (3.44)

Due to the rapid decay of the higher-order multipole fields, m is a quantity of primary

practical interest in electromagnetic induction methods.

For our spheroid problem, the induced dipole moment is found from (3.23), (3.24)

where the secondary field is represented by the infinite series involving the coefficients

Bn. As ξ → ∞, the term for n = 1 dominates. This is evident from the representation

of Q1
n as (8.1.3 in [83])

Q1
n(ξ) = − 2n (n + 1)!n!

(2n + 1) (2n)!

√
ξ2 − 1

ξn+2
F

(
n + 3

2
,
n + 2

2
;
2n + 3

2
;

1

ξ2

)
(3.45)
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where the hypergeometric function F is given by the specialized Gauss hypergeometric

series (15.1.1 and 6.1.15 in [83])

F

(
n + 3

2
,
n + 2

2
;
2n + 3

2
;

1

ξ2

)
= 1 +

(n + 2) (n + 3)

2 (2n + 3)
ξ−2 + O(ξ−4) (3.46)

Note that (3.46) is a Taylor expansion about ξ = ∞. Thus, using

√
ξ2 − 1 = ξ − 1

2
ξ−1 + O(ξ−3) (3.47)

we have

Q1
n(ξ) = − 2n n! (n + 1)!

(2n + 1) (2n)!

{
ξ−(n+1) +

n2 + 3n + 3

2 (2n + 3)
ξ−(n+3) + O

[
ξ−(n+5)

]}
(3.48)

U1n(ξ) =
n 2n n! (n + 1)!

(2n + 1) (2n)!

{
ξ−(n+1) +

(n + 1) (n + 2)

2 (2n + 3)
ξ−(n+3) + O

[
ξ−(n+5)

]}
(3.49)

By using the leading order terms of the resulting expansions

Q1
1(ξ) = −2

3
ξ−2 − 7

15
ξ−4 + O(ξ−6) (3.50)

U11(ξ) =
2

3
ξ−2 +

2

5
ξ−4 + O(ξ−6) (3.51)

and noting that, as ξ → ∞, the surfaces ξ = const. become spherical and [81]

d

2
ξ → r , η → cos θ (3.52)

where r and θ are spherical coordinates, we find

m = ẑ H0z
πd3

6

√
ξ2
0 − 1

Q1
1(ξ0)

R‖
pro (3.53)
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with the polarizability factor for prolate spheroids under axial excitation

R‖
pro = −2 Q1

1(ξ0)√
ξ2
0 − 1

B1 (3.54)

As shown below, the normalization of R‖
pro is such that

R‖
pro → 1 (3.55)

in the high-frequency limit. Because in (3.53), (3.54) frequency only enters implicitly

through B1, (3.53) is also a statement of the induced dipole moment in this limit. The

value of the associated Legendre function Q1
1(ξ0) < 0 required in the normalization is

given in terms of elementary functions by

Q1
1(ξ0) = −1

2

√
ξ2
0 − 1

(
2 ξ0

ξ2
0 − 1

− ln
ξ0 + 1

ξ0 − 1

)
(3.56)

High-frequency limit

The limit (3.55) is most conveniently verified by setting E2φ according to (3.13) to zero

at ξ = ξ0 (equivalence of perfectly conducting spheroid and spheroid with vanishing

skin depth) and noting that all Bn other than B1 are zero.

Obtaining the high-frequency limit directly from (3.41), (3.42) requires an in-

vestigation of the asymptotic behavior of the radial spheroidal wavefunction and its

derivative. Consider the expansion [81]

R(1)
mn(c1, ξ) =

(
ξ2 − 1

ξ2

)m

 ∞∑
r=0,1

′ (2m + r)!

r!
dmnr (c1)



−1

×
∞∑

r=0,1

′ ir+m−n (2m + r)!

r!
dmnr (c1) jm+r(c1 ξ) (3.57)

where the summation convention is the same as for (3.29) and the jn are the spherical
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Bessel functions of the first kind [83]. As Im{c1} → ∞, the right-hand side of

ir+m−n jm+r(c1 ξ) ∼
in+1

2

e−i c1 ξ

c1 ξ
(3.58)

is in fact independent of the summation index r. Thus (3.57) becomes asymptotically,

for a finite ξ,

R(1)
mn(c1, ξ) ∼

in+1

2

(
ξ2 − 1

ξ2

)m
e−i c1 ξ

c1 ξ
(3.59)

and we find, inserting (3.59) in the definition (3.22) and dividing by (3.59),

Tmn(c1, ξ)

R
(1)
mn(c1, ξ)

∼ −i c1

√
ξ2 − 1 (3.60)

With the help of (3.60) we now obtain from (3.41)

∞∑
n=1

A2n−1 R
(1)
1(2n−1)(c1, ξ0) d

1(2n−1)
2m−2 (c1)

∼ µ

2

√
ξ2
0 − 1U1(2m−1)(ξ0) − 2 ξ0 Q1

2m−1(ξ0)

µ1 U1(2m−1)(ξ0) + iµ c1

√
ξ2
0 − 1 Q1

2m−1(ξ0)
δ(2m−1)1 (3.61)

This shows that in the high-frequency limit the infinite series in (3.42) can be summed

up in closed form. This observation saves ourselves specifying the asymptotic behavior

of the angular expansion coefficients drmn(c1) and we find

B2m−1 ∼ −1

2

2µ1 ξ0 + iµ c1 (ξ2
0 − 1)

µ1 U1(2m−1)(ξ0) + iµ c1

√
ξ2
0 − 1 Q1

2m−1(ξ0)
δ(2m−1)1 (3.62)

indicating that as expected the Bn other than B1 vanish to leading order, and, with

(3.62) from (3.54),

R‖
pro ∼

Q1
1(ξ0)√
ξ2
0 − 1

2µ1 ξ0 + iµ c1 (ξ2
0 − 1)

µ1 U11(ξ0) + iµ c1

√
ξ2
0 − 1 Q1

1(ξ0)
(3.63)

As c1 increases with frequency, the terms containing µ1 become negligible, so that
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(3.63) reduces to (3.55). We return to (3.63) in Section 3.2.2.

Low-frequency limit

In the low-frequency limit we observe that, because the spheroidal angle functions

Smn reduce to the associated Legendre functions of the first kind [81], or

dmnr (c1) → δ(n−m)r (3.64)

in (3.29), the equations (3.41) for the An decouple and only A1 and B1 in (3.42) are

non-zero. Obtaining B1 by eliminating A1 and making use of the asymptotic relations

R
(1)
11 (c1, ξ0) ∼ c1

j1(c1 ξ0)

c1 ξ0

√
ξ2
0 − 1 ∼ c1

3

√
ξ2
0 − 1 (3.65)

and thus

T11(c1, ξ0) ∼
2

3
c1 ξ0 (3.66)

we find from (3.54)

R‖
pro →

2 (µ1 − µ) ξ0 Q1
1(ξ0)

µ1

√
ξ2
0 − 1U11(ξ0) − 2µ ξ0 Q1

1(ξ0)
(3.67)

where

U11(ξ0) = ξ0 ln
ξ0 + 1

ξ0 − 1
− 2 (3.68)

[for the evaluation of Q1
1(ξ0) refer to (3.56)]. The limit (3.67) can be shown to be in

agreement with the corresponding result in magnetostatics given, e. g., in [85]. If in

addition to the low-frequency limit we consider the acicular limit, 
/2a → ∞, then

(3.67) reduces to

R‖
pro → −µ1 − µ

µ
(3.69)

which is the negative magnetic susceptibility of the spheroid. If the elongation of

the spheroid is fixed but the relative permeability goes to infinity, µ1/µ → ∞, (3.67)
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simplifies to

R‖
pro →

2 ξ0 Q1
1(ξ0)√

ξ2
0 − 1U11(ξ0)

(3.70)

Limiting case of large relative permeability

Another interesting limiting case of (3.41), (3.42) is that of large relative permeability,

µ1/µ → ∞, but with c1 fixed [note that c1 depends implicitly on µ1, c. f., (3.12) and

that a fixed c1 can be achieved by letting ω → 0 as µ1/µ → ∞]. More direct than in

the high-frequency limit, (3.41) in this case yields again a closed-form expression for

the infinite sum in (3.42), given by

∞∑
n=1

A2n−1 R
(1)
1(2n−1)(c1, ξ0) d

1(2n−1)
2m−2 (c1) ∼

µ

µ1

[
1

2

√
ξ2
0 − 1 − ξ0 Q1

2m−1(ξ0)

U1(2m−1)(ξ0)

]
δ(2m−1)1

(3.71)

which, however, does not depend on frequency. Substituting (3.71) into (3.42) we

find

B2m−1 ∼ − ξ0

U1(2m−1)(ξ0)
δ(2m−1)1 (3.72)

and, using (3.72) in (3.54), we again arrive at the specialized low-frequency limit

(3.70).

3.2.2 Approximate solution for high frequencies

As we will see in Section 3.2.4, while our frequency range of interest spans several

orders of magnitude, the practical solution of (3.41), (3.42) is possible only for low to

intermediate frequencies. The breakdown of this otherwise exact formulation, which is

found to be a sudden one, is due to the expansion of the spheroidal wavefunctions into

spherical harmonics (3.29), (3.57) which is usable only for sufficiently small magnitude

of c1 [81]. It is therefore important to develop an alternative formulation tractable

at high frequencies; or to develop at least approximate or asymptotic solutions that,

ideally, would have a range of validity that at the low-frequency end overlaps the
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highest frequencies at which the evaluation based on the expansion into spherical

harmonics is still possible.

In Section 3.2.1 we derived (3.63) using the leading-order high-frequency asymp-

totic behavior of the radial spheroidal wavefunction of the first kind and its derivative.

We note that this formula still depends on c1 which makes it a possible candidate

for the purposes of this section. Attractive, beside the simple functional form of

(3.63) [for the evaluation of Q1
1(ξ0) and U11(ξ0) see (3.56) and (3.68), respectively],

is the fact that, as µ1/µ → ∞ with c1 fixed, (3.63) simplifies to (3.70), see also Sec-

tion 3.2.1. Thus, for large relative permeability, a case of practical importance, (3.63)

might in fact be a good broadband approximation since it approaches the correct

asymptotic values at both the low-frequency and the high-frequency end. However,

numerical tests showed that this is true only for the nearly spherical case, 
/2a ≈ 1

(Section 3.2.4). In general, the extremum of the imaginary part of (3.63) occurs at a

frequency that is too high and, consequently, the real part fails to connect with the

exact solution computable at low frequencies. This undesirable behavior makes the

formula less useful in practice.

However, an alternative derivation of (3.63) paves our way to an approximation

that does work. For this purpose, partially inspired by the starting point of the

numerical approach for small skin depths advanced in [57], let us consider a special

separable form of the electric field inside the spheroid for high frequencies,

E1φ(η, ξ) ≈ E2φ(η, ξ0) eγ1 (ξ−ξ0) (3.73)

where γ1 is a dimensionless propagation constant yet to be determined. With (3.73)

the boundary condition on the tangential electric field is satisfied automatically, by

construction. Inserting (3.73) into (3.10), we quickly discover that if we are to satisfy

the wave equation at least approximately we have to set γ1 = −i c1, where the negative

sign is chosen based on the physical reasoning that the field inside the spheroid
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propagates inward and decays exponentially away from the surface. Then, from

Faraday’s law with the curl operator in prolate spheroidal coordinates, we can find

the H1η corresponding to (3.73). By matching with (3.23), satisfying the remaining

boundary condition on the tangential magnetic field, and using (3.13), we are led

back to (3.62) and what follows there.

Thus, reconsidering (3.73), we conclude that this approximation contains a basic

problem, namely, it ignores the variation of the radius of curvature along the surface

of the spheroid (a problem that disappears in the spherical limit). Thus, if we are

trying to implement the picture of a wave locally one-dimensional in the coordinate

normal to the boundary and with complex wavenumber k1, we have to take into

account the metric of the spheroidal coordinate system, motivating the expression

E1φ(η, ξ) ≈ E2φ(η, ξ0) e
−i k1

∫ ξ

ξ0
dξ′ hξ(η,ξ′)

(3.74)

with the metrical coefficient [81]

hξ(η, ξ) =
d

2

√
ξ2 − η2

ξ2 − 1
(3.75)

Before proceeding we note that near the tips or poles of the spheroid where |η| ≈ 1,

(3.73) and (3.74) in fact coincide [specialize (3.75) and recall (3.12)]. Because of the

smaller radius of curvature there, this offers an explanation for the erroneous shift

of the extremum of the imaginary part of (3.63) to higher frequencies. Furthermore,

according to (3.4), in the spherical limit we have ξ0 → ∞ and thus ξ � 1 in the

thin surface layer where (3.74) again reduces to (3.73). Also, the original derivation

leading to (3.63) used an asymptotic formula for the radial wavefunction only but

not for the angular wavefunction or its expansion coefficients dmnr . Neglecting the

angular aspect of the spheroidal problem, which was convenient for deriving the high-

frequency limit, appears now to be related to the shortcomings of (3.63) as a high-

frequency approximation. (Even though we reviewed some of the literature on the
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asymptotics of the angular spheroidal wavefunction [86]–[92], so far we have not been

led to any alternative formulation for the high-frequency case.)

Using (3.74), in Faraday’s law, without further approximation, yields

H1η(η, ξ) ≈ 2

iωµ1d

E2φ(η, ξ0)√
ξ2 − η2

∂

∂ξ

[√
ξ2 − 1 e

−i k1

∫ ξ

ξ0
dξ′ hξ(η,ξ′)

]
(3.76)

≈ 2

iωµ1d

(
ξ√

ξ2 − 1
− i c1

√
ξ2 − η2

)
E1φ(η, ξ)√
ξ2 − η2

(3.77)

Matching the remaining boundary condition on the tangential magnetic field we ob-

tain from (3.77), (3.74), (3.13), and (3.23)

∞∑
n=1

Bn


µ1

µ
U1n(ξ0) −

ξ0√
ξ2
0 − 1

Q1
n(ξ0) + i c1

√
ξ2
0 − η2 Q1

n(ξ0)


 P1

n(η)

=

[
−ξ0

2µ1 − µ

2µ
− i c1

2

√
(ξ2

0 − η2) (ξ2
0 − 1)

]
P1

1(η) (3.78)

to be enforced for all η. Introducing the auxiliary function

Πmn(ξ) =
2m + 1

2m (m + 1)

1∫
−1

dη
√
ξ2 − η2 P1

m(η) P1
n(η) (3.79)

and using (3.34), we get from (3.78) by testing with P1
m(η) for m = 1, 2, . . .

Bm


µ1

µ
U1m(ξ0) −

ξ0√
ξ2
0 − 1

Q1
m(ξ0)


 + i c1

∞∑
n=1

Bn Q1
n(ξ0) Πmn(ξ0)

= −ξ0
2µ1 − µ

2µ
δm1 −

i c1

2

√
ξ2
0 − 1 Πm1(ξ0) (3.80)

Since, according to the definition (3.79) and the parity of the associated Legendre

functions, Πmn(ξ) = 0 whenever m − n odd, the structure of (3.80) is such that all
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the Bm with m even vanish as expected. Thus we arrive at

B2m−1


µ1

µ
U1(2m−1)(ξ0) −

ξ0√
ξ2
0 − 1

Q1
2m−1(ξ0)




+ i c1

∞∑
n=1

B2n−1 Q1
2n−1(ξ0) Π(2m−1)(2n−1)(ξ0)

= −ξ0
2µ1 − µ

2µ
δ(2m−1)1 −

i c1

2

√
ξ2
0 − 1 Π(2m−1)1(ξ0) (3.81)

Once the Bm have been obtained from the infinite system of equations (3.81) the high-

frequency approximation for the response in the far field represented by R‖
pro follows

from (3.54). We will follow this procedure numerically in Section 3.2.4 and 3.2.5

where a straightforward Gauss-Legendre quadrature of (3.79) is employed. Finally, we

observe that, as µ1/µ → ∞ with c1 fixed, (3.81) again simplifies to (3.70), indicating

that the approximation introduced here can be expected to extend to lower frequencies

when the relative permeability is large.

3.2.3 Approximate solution for large elongations

To obtain an approximation of the magnetic polarizability factor R‖
pro of a long con-

ducting and permeable prolate spheroid, we note that, as 
/2a becomes large, the

spheroid fills the interior of a circular cylinder while its needle-like poles retreat to

infinity. Thus, we can expect the responses of a long spheroid and a long circular

cylinder to be similar.

For a circular cylinder with radius a, length 
, permeability µ1, and conductivity

σ1, where 
 � 2a, we estimate the current distribution and magnetic field internal

to the cylinder by those found for an infinitely long cylinder of the same radius,

permeability, conductivity, and orientation. This methodology is similar to using an

infinite-cylinder approximation for plane-wave scattering from finite-length dielectric

cylinders employed in remote sensing applications [93]–[102]. We then obtain the
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approximation for the induced magnetic dipole moment of the finite-length cylinder

based on the exact functional

m
[
J(r), H(r)

]
=

1

2

∫
V

dV r × J(r) + χm

∫
V

dV H(r) (3.82)

where V is the region occupied by the cylinder and χm is the magnetic susceptibility

with respect to the background, defined as

χm =
µ1

µ
− 1 (3.83)

The first term in (3.82) vanishes as ω → 0 or σ1 → 0, while the second term be-

comes zero as ω → ∞ or µ1 → µ. A rigorous derivation of (3.82) starting from the

equivalence principle is given in Section 3.4.

The solution for the problem of a conducting and permeable infinite cylinder in an

alternating spatially uniform magnetic field is outlined in [62]. For a cylinder centered

at ρ = 0, with its axis along ẑ, and a longitudinal primary magnetic field as given by

(3.5), the induced currents are

J(r) = φ̂ H0z
k1 J1(k1ρ)

J0(k1a)
(3.84)

and the internal magnetic field is

H(r) = ẑ H0z
J0(k1ρ)

J0(k1a)
(3.85)

both given in terms of Bessel functions of the first kind with complex argument.

Inserting (3.84), (3.85) into (3.82) and carrying out the integrations leads to the

following expression for the magnetic dipole moment of the long cylinder under axial

excitation:

m ≈ −ẑ πa2
R
‖
cyl (3.86)
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with

R
‖
cyl = −k1a J2(k1a) + 2χm J1(k1a)

k1a J0(k1a)
(3.87)

independent of 
. For ω → ∞, we have the normalization

R
‖
cyl → 1 (3.88)

and, as ω → 0, we find

R
‖
cyl → −χm (3.89)

which coincides with the acicular low-frequency limit for the prolate spheroid, (3.69).

This suggests that the approximation introduced for long but finite-length cylinders

can indeed be used to obtain an approximation of the magnetic dipole moment in-

duced in long prolate spheroids under axial excitation, by replacing R‖
pro in (3.53)

with R
‖
cyl given by (3.87). The use of (3.53) rather than (3.86) pays tribute to the

fact that the volumes of spheroid and cylinder of the same length 
 are different, and

guarantees the exact dipole moment for the spheroid as ω → ∞.

3.2.4 Numerical implementation and results

For the numerical results below, the infinite systems of equations (3.41) and (3.81)

are truncated so that m,n ≤ 35. The same truncation is used in the evaluation of

the infinite series in (3.42). The problem is then solved by performing a singular-

value decomposition of the resulting square system matrix [103], in order to guard

ourselves against possible ill conditioning. For the associated Legendre functions with

real argument and their first derivatives we use the routines published in [77]. The

auxiliary function (3.79) is evaluated using a Gauss-Legendre quadrature [104] with

50 points on the interval 0 < η < 1.

It is of advantage to solve (3.41) for the product A2n−1 R
(1)
1(2n−1) rather than for

A2n−1 [note that knowing the product is sufficient for evaluating (3.42)]. This helps
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prevent overflows as c1 grows larger, by balancing the exponential growth of T1(2n−1)

with that of R
(1)
1(2n−1) [see also (3.59) and (3.60)]. The growing exponentials can be

canceled explicitly by making use of exponential scaling when computing the spherical

Bessel functions with complex argument [105] that are required in the expansion

(3.57). A similar expansion is used for the derivative of the radial wavefunction with

respect to ξ where the derivative of the Bessel function is eliminated by using the

appropriate recurrence relation [83]. [Note that similar growing exponentials can and

should be canceled also from (3.87).] We keep 35 terms of both infinite series in (3.57).

The expansion coefficients d
1(2n−1)
2m−2 are obtained with the help of a complex version of

the corresponding real routine in [77] where we compute sequences of length 45; note

that the normalization of the coefficients requires another truncation of an infinite

series [81]. The complex spheroidal eigenvalues required for the computation of the

expansion coefficients, finally, are obtained using Hodge’s method [106] where the

characteristic values of a tridiagonal, complex symmetric matrix of size 40 × 40,

ordered as a sequence with increasing real parts, are computed using a standard

high-performance linear algebra routine [103]. One advantage of this approach is

that no initial estimates of the eigenvalues are required [107, 108].

The numerical results are plotted vs. induction number

|k1|a =
2a

d
|c1| (3.90)

that, when the product ω µ1 σ1 in (3.12) is real, is given by

|k1|a = a
√
ω µ1 σ1 (3.91)

in which case

c1 =
d
√

i

2a
|k1|a (3.92)
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The induction number |k1|a is related to the skin depth δskin by

|k1|a =
a
√

2

δskin

(3.93)

In Fig. 3-2 to 3-7 the computed real and imaginary parts of the polarizability factor

R‖
pro are shown separately, as a function of |k1|a and with the elongation 
/2a as pa-

rameter. Fig. 3-2 and 3-3 are for a relative permeability µ1/µ of 1 and 10, respectively.

Fig. 3-4 and 3-6 are for µ1/µ = 100, while in Fig. 3-5 and 3-7 we have µ1/µ = 1000.

The solid curves in Fig. 3-2 to 3-7 were obtained from (3.41), (3.42). These curves

are truncated at that point where the numerical implementation of the expansion

of the spheroidal wavefunctions into spherical harmonics is found to break down

abruptly. The breakdown point occurs at a smaller induction number |k1|a for a

larger elongation 
/2a (the curves shown are for 
/2a =1, 1.5, 2, 4, 6, 8, and 10,

respectively) but depends little on relative permeability µ1/µ (note the extended

range of induction numbers in Fig. 3-5 and 3-7). In the spherical limit, 
/2a → 1,

no such breakdown occurs and the results can be shown to be in agreement with the

magnetic polarizability factor Rsph for conducting and permeable spheres of radius a,

given by [59]–[63]

Rsph = −(2µ1 + µ) (1 − k1a cot k1a) − µ (k1a)
2

(µ1 − µ) (1 − k1a cot k1a) + µ (k1a)2
(3.94)

The real and imaginary parts of the polarizability factor Rsph are illustrated in Fig. 3-

8, as a function of |k1|a and with the relative permeability µ1/µ as parameter.

The dash-dotted curves in Fig. 3-2 to 3-7 were computed from (3.87) and can be

considered as an approximation of R‖
pro as 
/2a → ∞. They provide an important

check of the behavior of the results as 
/2a grows larger.

Since the low-frequency limit (3.67) extends to larger induction numbers as µ1/µ

increases (Section 3.2.1), the solid curves in Fig. 3-4 to 3-7 break off earlier than

desirable and were complemented with results from two approximate solutions of the
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boundary value problem, shown as dashed curves. The results from the asymptotic

closed-form solution (3.63) used for Fig. 3-4 and 3-5 exhibit the unacceptable behavior

mentioned in Section 3.2.2; these plots are intended only as an illustration of what is

described there. The dashed curves in Fig. 3-6 and 3-7 were obtained from (3.81). We

can see that here the low-frequency results (solid curves) are indeed extended to the

high-frequency regime. The match in the overlap region is better for smaller 
/2a and

larger µ1/µ. In contrast to the results in Fig. 3-4(b) and 3-5(b), as 
/2a increases, the

minimum of the imaginary part of R‖
pro in Fig. 3-6(b) and 3-7(b) moves down into and

towards the center of the trough representing the case 
/2a → ∞ (dash-dotted lines).

Evidently, for highly permeable spheroids, (3.81) provides a broadband approximation

of the induced magnetic dipole moment, computable without resorting to numerical

implementations of the spheroidal wavefunctions and related quantities (expansion

coefficients, eigenvalues). In general, independent of permeability, we expect (3.81)

to yield accurate results when the skin depth is small compared to the radius of

curvature everywhere along the surface of the spheroid, i. e.,

δskin < ε rmin (3.95)

where

rmin = a
2a



(3.96)

is the radius of curvature at the poles of the spheroid and, e. g., ε = 1/10. Thus

|k1|a >

√
2

ε




2a
(3.97)

is required.

All curves plotted exhibit the expected general behavior of the real part of R‖
pro

that transits monotonically from the non-positive low-frequency limit (3.67) to the

positive high-frequency limit (3.55); the low-frequency limit decreases and approaches
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−χm = −(µ1/µ − 1) as 
/2a increases. The imaginary part of R‖
pro vanishes as

ω → 0,∞ and passes through a single minimum in between. The location of the

minimum moves to smaller induction numbers as 
/2a increases and its absolute

value increases, with a rate that is greater for larger permeability of the spheroid.

The results show that the bandwidth of this minimum, for a permeable spheroid,

decreases as the elongation 
/2a increases, with practical consequences pointed out

in Section 3.3.3.

Since R‖
pro for µ1/µ = 1 (Fig. 3-2) is found to be a relatively weak function of the

elongation 
/2a, in this case we can obtain a closed-form approximation of the induced

magnetic dipole moment by replacing R‖
pro in (3.53) by Rsph given by (3.94). Note

that the normalizing factor in (3.53) depends on 
/2a but is frequency-independent

and given in terms of elementary functions.

In addition to observing the reasonable behavior of the above results under vari-

ation of the parameters 
/2a and µ1/µ, we validated the numerical implementa-

tion of our analytical solutions by comparing with results from MAS [58] (body-of-

revolution code) and the approaches described in [57, 66, 67]. The evaluation of the

spheroidal wavefunctions and related quantities was verified against tabulated data

in [77, 107, 109].
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Figure 3-2: The magnetic polarizability factor R‖
pro for conducting and permeable

prolate spheroids under axial excitation as a function of the induction number |k1|a
for various elongations 
/2a and fixed relative permeability µ1/µ = 1, shown as
solid curves where the evaluation based on the formulation with expanded spheroidal
wavefunctions is possible. The dash-dotted curves represent the corresponding R

‖
cyl

for long circular cylinders given in terms of Bessel functions. The solid curves are for

/2a = 1, 1.5, 2, 4, 6, 8, 10 and break off the earlier the more elongated the spheroid.
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Figure 3-3: Similar to Fig. 3-2 but for a relative permeability of µ1/µ = 10.
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Figure 3-4: The solid and dash-dotted curves are similar to those in Fig. 3-2 but
for a relative permeability of µ1/µ = 100. The dashed curves are obtained from an
asymptotic solution to the boundary value problem, equation (3.63), and are shown
for the same elongations as the solid curves, i. e., 
/2a = 1, 1.5, 2, 4, 6, 8, 10. It is seen
that, in general, this asymptotic solution does not provide a satisfactory broadband
approximation.
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Figure 3-5: Similar to Fig. 3-4 but for a relative permeability of µ1/µ = 1000.
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Figure 3-6: Similar to Fig. 3-4 but for an improved, approximate solution to the
boundary value problem obtained from the infinite system of equations (3.81).
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Figure 3-7: Similar to Fig. 3-6 but for a relative permeability of µ1/µ = 1000.
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Figure 3-8: The magnetic polarizability factor Rsph for conducting and permeable
spheres as a function of the induction number |k1|a for various relative permeabilities
µ1/µ = 1.
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3.2.5 Broadband rational function approximation

We have seen above that it is possible to obtain numerical results for R‖
pro from ω = 0

up to a certain frequency ωL and from some ωH up to arbitrarily high frequencies.

If ωL < ωH the two data sets do not overlap and a gap for ωL < ω < ωH remains.

To address this issue, we approximate an arbitrary polarizability factor by a rational

function R with M simple poles and in the form of partial fractions, given by

R = 1 −
M∑
m=1

rm
1 − iω/ωm

(3.98)

where the ωm are corner frequencies to be determined. The residues rm satisfy

M∑
m=1

rm = 1 −R0 (3.99)

where the low-frequency limit R0 may be known in closed form from the corresponding

magnetostatic problem, c. f., (3.67). Note that automatically R → 1 as ω → ∞ and

the model is forced-stable if ωm > 0. Once available, R lends itself to rapid evaluation

in the frequency domain. Furthermore, simulations in the time domain can be carried

out using recursive convolution [110, 111].

A general physical justification of the model (3.98) is given by the singular expan-

sion method (SEM) for the representation of magnetic polarizability tensors [51]. For

the example of conducting and permeable spheres, (3.94) can be cast into the form

of (3.98) with M → ∞. For a sphere with µ1/µ = 1 we have explicitly

rm =
6

m2π2
(3.100)

and

ωm =
m2π2

a2µ1σ1

(3.101)

For given discrete data R(ω) and a fixed M , we can find the ωm and rm from the
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Figure 3-9: Bridging the gap: The dash-dotted curves are obtained from a broadband
rational function approximation that matches the solution based on the formulation
with expanded spheroidal wavefunctions at the low-frequency end and connects to
an approximate solution to the boundary value problem, obtained from the infinite
system of equations (3.81), at the high-frequency end (relative permeability µ1/µ =
10, elongation 
/2a = 2).

solution of the nonlinear least-squares problem corresponding to (3.98) and with the

linear constraint (3.99), employing standard numerical optimization procedures [112].

The elements of the Jacobian are found from (3.98) and given analytically by

∂R

∂rm
= − 1

1 − iω/ωm
(3.102)

and
∂R

∂ωm
=

iω

ω2
m

rm

(1 − iω/ωm)2 (3.103)

For simplicity, we suggest using a large model order, e. g., M = 20, and, as ini-

tial guess, distributing the ωm uniformly on logarithmic scale. This will lead to an

accurate fit. If necessary for computational efficiency later, model-order reduction

techniques can be employed subsequently.

For the example of a spheroid with 
/2a = 2 and µ1/µ = 10, the broadband

approximation technique is demonstrated in Fig. 3-9. The data and the computed fit
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Ωm rm
0.57336775 0.00893504
0.68717870 −0.01765579
1.08104558 0.55242835
1.09597193 0.62921047
1.52262472 0.61281997
1.86128484 0.59985085
2.15075227 0.38267186
2.59394897 0.57777318
2.95175855 0.03483243
3.30652352 0.24768079
3.68787442 0.06261377
4.05133138 0.09210828
4.42138568 0.02847170
4.78941051 0.04177010
5.15788079 0.00760386
5.52634515 0.02505605
5.89476708 −0.00674325
6.26318930 0.02343928
6.63162237 −0.01539648
7.00012805 0.01558614

Table 3.1: Normalized corner frequencies and residues for the least-squares fit in
Fig. 3-9.

are plotted as solid and dash-dotted curves, respectively, overlying each other. The

low-frequency portion of the data is as in Fig. 3-3. The high-frequency part was

computed from (3.81) and here (3.97) with ε = 1/10 holds. The M = 20 corner

frequencies ωm and residues rm are listed in Table 3.1 where

Ωm = log10(a
2µ1σ1 ωm) (3.104)

The largest absolute mismatches of the fit shown in Fig. 3-9 occur at the low-

frequency end of the high-frequency approximation and are less than 8× 10−3 (0.8 %

of the high-frequency limit) for both real and imaginary part, as can be seen from

the plot of the mismatch vs. induction number in Fig. 3-10.



90 Chapter 3. Electromagnetic induction sensing

10
-1

10
0

10
1

10
2

10
3

-8

-6

-4

-2

0

2

4

6

8
x 10

-3

Induction number

E
rr

or

imaginary

real 

Figure 3-10: The mismatch of the fit in Fig. 3-9.

3.3 Magnetoquasistatic response of a distribution

of small objects

The development in Section 3.2 above is concerned with the characterization of the

magnetoquasistatic response of a single conducting and permeable object of a particu-

lar canonical shape. In this section we turn to the question of modeling the broadband

response of a collection of objects where the characterization of each individual body

is assumed to be given via its frequency-dependent, complex magnetic polarizability

tensor. The restriction to small objects leads to a simple many-body theory that is

somewhat analogous to a possible treatment of multiple scattering effects in compos-

ite dielectric media that consist of particles immersed in a homogeneous background

medium (keyword “mixing formulas”). One practical motivation for the investigation

of the magnetoquasistatic N -body problem is that areas contaminated with UXO

are naturally very rich in metallic pieces from exploded ordance. The discriminat-

ing capabilities of wideband electromagnetic induction methods could help reducing

false alarm rates during field surveying. The basic idea is very simple; smaller pieces
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(clutter) lead to a response with larger natural frequency while the electromagnetic

induction activity of larger objects (potential targets) is shifted towards lower fre-

quencies. Thus, there is need for a theoretical and numerical model for the total

magnetoquasistatic response of a collection of conducting and permeable objects.

3.3.1 Formulation

As in Section 3.2, it is assumed that the frequency is low enough so that displace-

ment currents can be neglected everywhere (magnetoquasistatics). The background

medium with homogeneous permeability µ is a poor electric conductor so that the

sources for the secondary magnetic fields are located on or within the objects. The

fields within the objects are governed by magnetic diffusion. The objects are small

enough so that their excitation can be considered as locally uniform. The distances

between the objects and between the observation point and the objects are large

enough so that only dipolar secondary fields need to be taken into account. Within

these approximations, multiple interaction between the objects is included.

The secondary field at r = rm due to the n-th small object located at r = rn

(m,n = 1, 2, . . . , N ; m �= n) and with unknown induced magnetic dipole moment mn

is given by [51, 56, 84]

Hsn(rm) =
3 r̂mnr̂mn − I

4π r3
mn

·mn (3.105)

where

r̂mn =
rm − rn
rmn

(3.106)

with rmn = |rm − rn| and I is the identity tensor. The n-th object is characterized

by its magnetic polarizability tensor Mn and we have, with H0 the primary magnetic

field,

mn = Mn ·
[
H0(rn) +

N∑
k=1
k �=n

3 r̂nk r̂nk − I

4π r3
nk

·mk

]
(3.107)

In words, the response of the n-th object is excited by the superposition of the primary
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field and the secondary fields of all the other objects. The exciting field at the location

of the object—the effective primary field seen by the scatterer—is projected onto the

induced magnetic dipole moment by its characteristic magnetic polarizability tensor.

Thus, we find

mn −Mn ·
N∑
k=1
k �=n

3 r̂nk r̂nk − I

4π r3
nk

·mk = Mn ·H0(rn) (3.108)

which represents a 3N × 3N system of scalar linear equations for the components of

mn. The coefficients involving Mn are in general complex due to the magnetic diffu-

sion effects in the objects. Leaving out the sum in (3.108) corresponds to neglecting

any interaction between the objects, i. e.,

mn ≈ Mn ·H0(rn) (3.109)

It is seen that this is justified if the rnk are much larger than the largest characteristic

object dimension.

Given the mn, the total magnetic field is found from

H(r) = H0(r) +
N∑
k=1

3 r̂0kr̂0k − I

4π r3
0k

·mk (3.110)

where

r̂0k =
r − rk
r0k

(3.111)

with r0k = |r − rk|.

The similarity of this formulation with the Foldy-Lax theory of multiple wave

scattering is pointed out [27].

The magnetic polarizability tensor for a sphere with radius a, permeability µ1,

and conductivity σ1 is given by

M sph = −2πa3Rsph I (3.112)
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where the classical solution for Rsph is as in (3.94) and plotted vs. induction number

|k1|a in Fig. 3-8 above.

3.3.2 Simulation

As an example we consider the configuration in Fig. 3-11 with measures and material

parameters as indicated. A larger sphere is surrounded by five vertically stacked rings

of a total of 125 smaller spheres with a collective volume equal to that of the large

sphere. Although the radii of the spheres are in general not much smaller than the

inter-object spacings, in the sense of our dipole formulation all objects, including the

large sphere, are considered to be small. The primary field

H0 = ẑ H0z (3.113)

is in the direction of the rotational symmetry axis and assumed to be uniform. For

all results in this simulation, the observation point is on the rotational symmetry axis

at a distance of 1 m from the center of the configuration and the secondary magnetic

field component in direction of the primary field is obtained, divided by the primary

field amplitude H0z, and shown decomposed into real and imaginary parts (in-phase

and quadrature components).

The purpose of the simulation is to investigate if a measurement of the secondary

magnetic field for various frequencies could provide information helping in the decision

if a larger target (UXO) is present among the smaller objects (clutter). Note that

a simple metal detector indicating, say, total metal volume could not be used to

discriminate the target from the collective clutter even if the two were encountered

in absence of each other.

Fig. 3-12 shows the response of the large sphere in the absence of the small spheres

in the non-magnetic case, µ1/µ = 1, and for µ1/µ = 100. The effect of the larger

permeability is, beside producing a positive DC secondary field, to spread out the



94 Chapter 3. Electromagnetic induction sensing

5 cm

1 cm
3 cm

H0

(a) Side view.

10 cm

H0

(b) Top view.

Figure 3-11: Collection of conducting and permeable objects: a central large sphere
and vertically stacked rings of small spheres. The conductivity of all objects is σ1 =
107 S/m and the relative permeability µ1/µ either 1 or 100.
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frequency response and shift the maximum of the imaginary part (natural frequency)

to higher frequencies. A similar observation is made in Fig. 3-13 for the collection of

125 small spheres as in Fig. 3-11, but without the central large sphere. Due to the

smaller dimension of the individual objects in this case the general activity is shifted

to higher frequencies. From the comparison of the solid and dash-dotted lines it is

seen that the interaction between the small spheres is weak. Note that a horizontal

or vertical alignment of objects has an opposite effect in reinforcing or weakening

the primary field so that in the present case a partial compensation of the secondary

fields at the locations of the small spheres is expected.

Fig. 3-14 shows the result when all objects in Fig. 3-11 are present simultaneously.

We find that in the non-magnetic case [Fig. 3-14(a)] two maxima in the imaginary

part and three turning points in the real part are visible. Clearly, this set of curves

indicates the existence of two distinct length scales in the ensemble of objects. The

target (the larger sphere) stands out from the wideband frequency response and is

not obscured by the presence of the clutter. For the practically important magnetic

case as shown in Fig. 3-14(b), however, the situation is quite different. The result

obtained is qualitatively similar to Fig. 3-12(b) and 3-13(b), with only one maximum

in the imaginary part. The two different length scales produce a featureless, broad

collective response, making it more difficult to identify the sizes of the individual

objects that contribute to the total response.

3.3.3 Measurement

In a spirit similar to the simulation in Section 3.3.2 above, an electromagnetic in-

duction measurement was set up. However, here we consider non-spherical, real-life

objects that could be encountered in the field. As before, a larger target is surrounded

by a number of smaller, identical objects that collectively produce a response which

is comparable in maximum amplitude to that of the central target.

Specifically, the configuration consists of a 20 mm diameter deactivated UXO
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(a) µ1/µ = 1.
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(b) µ1/µ = 100.

Figure 3-12: Secondary magnetic field due to the central large sphere in the absence
of the small spheres.
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(a) µ1/µ = 1.
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(b) µ1/µ = 100.

Figure 3-13: Secondary magnetic field due to the vertically stacked rings of small
spheres in the absence of the central large sphere (interaction neglected for the dash-
dotted lines).
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(b) µ1/µ = 100.

Figure 3-14: Secondary magnetic field due to central large sphere surrounded by
vertically stacked rings of small spheres (interaction neglected for the dash-dotted
lines).
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(length 7.62 cm) in an upright position (nose down), surrounded by 57 commercial fin-

ishing nails (steel, diameter 0.182 cm, length 3.81 cm). The nails were approximately

aligned with the primary field and the axis of the shell. They were arranged roughly

equally spaced throughout a disk of 5.6 cm diameter with the shell at its center. Al-

though not entirely randomly distributed, the clutter in the corresponding situation

in the field could be present because once “somebody dropped a box of nails.”

In order to minimize interference from nearby metallic objects, the experiment

was performed outdoors using a wooden rig and styrofoam to hold the sensor and

objects. Averaged measurements of the background secondary field were subtracted

from averaged measurements with the objects in place.

For a description of the sensor itself reference is made to [53]. We just mention here

that coils producing the primary field are arranged in such a way that the primary

field at the center of the coils inside the sensor is weak. This is where the secondary

field is measured with maximized sensitivity. Outside the sensor, in a limited region

far enough from the coils, the primary field is nearly uniform as desired.

The data shown in Fig. 3-15 are for the shell without any nails and for the nails

in absence of the shell, respectively. It is seen that the shell produces a broad low-

frequency response (with the maximum imaginary part at a frequency lower than the

lowest frequency measured) while the collection of nails exhibits a maximum in the

imaginary part at about 7 kHz. Due to the rapid decay of the quadrature response

of the nails towards low frequencies, when the shell and nails are present at the same

time (see the results in Fig. 3-16) two maxima in the imaginary part of the response

are formed, similar to the situation in Fig. 3-14(a) which, however, is for non-magnetic

objects.

Thus, different from the simulation with permeable spherical objects with the total

response shown in Fig. 3-14(b), here the target is not obscured by the clutter, although

all objects are ferrous. It appears then that the large elongation of the nails in the

experiment (
/2a ≈ 20.9) could be responsible for this effect. In Section 3.2.4, we
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(a) 20 mm shell.
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(b) Nails.

Figure 3-15: Measured secondary magnetic field due to 20 mm shell and finishing
nails, each in absence of the other.
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Figure 3-16: Measured secondary magnetic field due to 20 mm shell surrounded by
finishing nails.

have verified the more narrow-band character of the response of elongated permeable

objects with the help of the numerical implementation of our analytical solutions

for prolate spheroids under axial excitation. This is an interesting, simple example

of how these solutions can assist the understanding and interpretation of practical

broadband electromagnetic induction measurements. The theory and methods of

Section 3.2 could further be used in an attempt to model the measurement described

here quantitatively, provided the shell and nails can be represented accurately enough

by prolate spheroids. Difficulties could arise from the uncertainty about the values of

the permeabilities of the objects and from the nonlinear character of ferromagnetic

materials such as steel [51].

3.4 Magnetoquasistatic response of objects of ar-

bitrary shape

We derive here equivalent surface-surface, volume-surface, and volume-volume for-

mulations for the magnetic dipole moment of conducting and permeable objects of
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arbitrary shape. The results can be used for reference in a variety of derivations, both

with theoretical and numerical goal (for an example see Section 3.2.3).

Consider a homogeneous and isotropic body of a certain conductivity and perme-

ability µ1 in a homogeneous, isotropic, and non-conducting medium of permeability

µ. The body occupies the region V1 with surface S1 and n̂ denotes the unit nor-

mal vector on S1 pointing into the background medium, region V2. The total fields

everywhere are assumed to be known.

According to the equivalence principle [28], the secondary fields in V2 can be

thought of being due to the fictitious electric surface current n̂ × H and the ficti-

tious magnetic surface current −n̂×E, both on S1 across which these quantities are

continuous. Electric loop currents and magnetic currents with non-zero divergence,

the latter leading to magnetic charge accumulations, both contribute to the dipole

moment [84] of the body, expressed as

m =
1

2

∫
S1

dS r × (n̂×H2) +
1

iωµ

∫
S1

dS r ∇s · (−n̂× E2) (3.114)

For relations involving the surface nabla operator ∇s see Appendix 2 in [61]. Noting

that

iωµ n̂ ·H2 = n̂ · (∇× E2) (3.115)

= n̂ ·
[(

∇s + n̂
∂

∂n

)
× E2

]
(3.116)

= n̂ · (∇s × E2) (3.117)

= ∇s · (E2 × n̂) + E2 · (∇s × n̂) (3.118)

= ∇s · (−n̂× E2) (3.119)

we find from (3.114)

m =
1

2

∫
S1

dS r × (n̂×H2) +
∫
S1

dS r n̂ ·H2 (3.120)
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Considering the Maxwell equations ∇ × H = J and ∇ · H = −H · (∇µ)/µ, we

can alternatively view the dipole moment as being produced by the physical electric

volume currents circulating in the body and fictitious magnetic surface charges at the

surface of discontinuity of µ, i. e., S1. In this picture we write

m =
1

2

∫
V1

dV r × J1 +
∫
S1

dS r n̂ · (H2 −H1) (3.121)

In the following we show that (3.121) and (3.120) are indeed equivalent. Using

∇(r ·H1) = (r · ∇)H1 + (H1 · ∇) r

+ r × (∇×H1) + H1 × (∇× r) (3.122)

= r · ∇H1 + H1 + r × J1 (3.123)

= ∇ · (r H1) − 2H1 + r × J1 (3.124)

= ∇ · (r H1) − 2∇ · (H1 r) + r × J1 (3.125)

and two Gauss-type integral identities, (3.121) becomes

m =
1

2

∫
S1

dS n̂ r ·H1−
1

2

∫
S1

dS n̂ · r H1 +
∫
S1

dS n̂ ·H1 r+
∫
S1

dS r n̂ · (H2−H1) (3.126)

which, after combining the third and fourth term, is seen to be same as (3.120).

Through (3.120) one obtains m from surface integration while (3.121) is the sum

of a volume and a surface integral. With χm as in (3.83), we can rewrite (3.121) as

m =
1

2

∫
V1

dV r × J1 + χm

∫
S1

dS r n̂ ·H1 (3.127)

=
1

2

∫
V1

dV r × J1 + χm

∫
V1

dV ∇ · (H1 r) (3.128)
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which gives the pure volume integral formulation

m =
1

2

∫
V1

dV r × J1 + χm

∫
V1

dV H1 (3.129)

The second term in (3.129), adding to the dipole moment of the physical eddy cur-

rents, can be viewed as arising from the presence of volumetric magnetic “contrast

sources.”

3.5 Conclusions

By studying the approaches, solutions, and results described above one can gain much

insight into the nature of magnetic diffusion into, and low-frequency scattering from,

conducting and permeable objects.

In the treatment of the problem of a prolate spheroid under axial excitation, a

canonical problem of fundamental importance due to its non-spherical character, we

have seen that the exact solution of the boundary value problem based on spheroidal

wavefunctions that are expanded in terms of spherical harmonics is directly usable

numerically for small to intermediate induction numbers. A fundamental difficulty

in this type of magnetoquasistatic problems, however, lies in the complex wavenum-

bers inside the object that vary over many orders of magnitude. For example, the

truncation of the system matrix in Hodge’s method for determining the spheroidal

eigenvalues (Section 3.2.4) requires that the dimension of the matrix be much larger

than |c1| in (3.90). This limits the applicability of the solution as |c1| grows exponen-

tially. Furthermore, c1 grows with equal real and imaginary parts. Thus we engage

a much less well-known domain of the spheroidal wavefunctions that may well be

freighted with mathematical questions we have not touched upon in the course of

our pragmatic development [109, 113]. Obtaining an approximate solution for high

frequencies that avoids the necessity of evaluating the spheroidal wavefunctions al-
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together teaches the lesson that solving the Helmholtz equation with a reasonable

degree of accuracy defies simplification beyond a certain point. The first such asymp-

totic solution, given in closed form and referring only to functions associated with

solutions of Laplace’s equation, was found to be inaccurate for the frequencies of in-

terest. However, based on a special thin-skin approximation we were able to construct

an infinite system of equations that yields satisfactory results. From the derivation

it is apparent that the complexity here stems from the varying local geometry of

the boundary. This complication disappears in the limit of a long spheroid and we

gave an approximate closed-form solution that relies on Bessel functions rather than

spheroidal wavefunctions. For practical purposes, it is important to join low-frequency

and high-frequency results together in order to find the broadband response of the

spheroid. We realized this by using a straightforward numerical fitting procedure

based on rational functions with simple real poles. The partial fractions obtained can

also readily be employed in time-domain analyses.

In our study of the magnetoquasistatic response of a collection of small conducting

and permeable objects, each individual object is characterized by its complex mag-

netic polarizability tensor. This complex-valued tensor gives the dipolar response

of the object to a locally uniform exciting magnetic field including diffusion effects.

Taking mutual interactions into account, a linear system of equations is solved for

the vector dipole moments induced in the objects. Thus, the total electromagnetic

induction response of the collection of objects is obtained, and the significance of

mutual interaction and the influence of spatial distribution and varying parameters

of the objects can be studied. With the help of a simulation and a measurement we

demonstrated the discriminating capability of broadband electromagnetic induction

methods. The results indicate the importance of size, permeability, and elongation

of the individual objects in influencing the total response. The effect of the mutual

interaction between the objects was found to be numerically small but not necessarily

negligible. The interaction between conducting and permeable objects in the magne-
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toquasistatic regime is naturally limited due to the rapid 1/r3 decay of the secondary

dipole fields. Note that an electrodynamic Hertzian dipole produces fields that decay

as slowly as 1/r.

Finally, we derived rigorous expressions of the magnetic dipole moment induced in

permeable and conducting objects of arbitrary shape in terms of volume and surface

integrals over the total magnetoquasistatic fields. One of the representations forms

the basis for a closed-form approximation of the response of a circular cylinder of

finite length given in Section 3.2.3 above. These formulas should prove useful in

many situations when dealing with problems belonging to the class considered in this

chapter.



Chapter 4

An alternative to Tikhonov

regularization for deblurring and

inverse diffraction

4.1 Introduction

Fields and waves carry information on the distribution of the sources producing them.

This phenomenon can be used for “imaging” structures (in a very general sense)

that are otherwise inaccessible. However, the nature of field evolution and wave

propagation leads to a gradual smearing or blurring of the information and thus to

a loss of resolution when moving away from the sources. For practical reasons, it is

often impossible to measure the fields as closely to the sources as desired or necessary.

It is therefore of interest and importance to study methods that allow us to reverse

the blurring process, i. e., to perform deblurring.

We consider a special, convolutional blurring process which depends on a param-

eter [114, 115]. This parameter is assumed to describe the severity of the smoothing

of the data. In an application, it will typically be related to the distance from the

sources. As shown in Section 4.2, the restriction to additive blurring implies a class

107
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of kernels which lead to an inherently unstable inverse blurring process. As a possible

remedy, in Section 4.3.1 the output least-squares formulation with Tikhonov regular-

ization is described (for references see below). In Section 4.3.2 we introduce a local

extrapolation scheme which offers an alternative solution of the deblurring problem.

We then focus in Section 4.4 on various applications of the theory. A glance

through the references relating to this chapter shows the highly interdisciplinary na-

ture of the problem. We discuss applications relating to magnetostatics, electrostatics,

gravity, and scalar wave diffraction. In numerical examples we compare results based

on Tikhonov regularization and the local extrapolation scheme quantitatively.

4.2 Statement of the problem

We assume that the blurring process is described by the convolution

f̃(ρ, ζ) =

∞∫
−∞

dρ′ g(ρ− ρ′, ζ) f(ρ′) (4.1)

with f the undistorted deterministic data, g a blurring kernel, and ζ ≥ 0 a parameter

describing the degree of distortion. In some applications, ρ is usually two-dimensional

(as suggested by the notation similar to that often employed when dealing with cylin-

drical geometries) but this is not required. Irrespective of the actual dimension of ρ

we will occasionally refer to f and f̃ as “images”.

Without loss of generality we choose ζ = 0 to correspond to no distortion such

that

f̃(ρ, 0) = f(ρ) (4.2)

and hence

g(ρ, 0) = δ(ρ) (4.3)

where δ is the Dirac-delta function.
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Further, we require the blurring to be additive in the sense that for any ζi, ζj with

ζj ≥ ζi

f̃(ρ, ζj) =

∞∫
−∞

dρ′ g(ρ− ρ′, ζj − ζi) f̃(ρ′, ζi) (4.4)

The problem is then to determine f(ρ) from a given f̃(ρ, ζ0) where the actual data

may be corrupted by noise. In a typical physical problem, f will be a field distribution

of interest which cannot be measured directly but only after having been propagated

a distance ζ0 through space (Section 4.4). The kernel or “propagator” g is assumed

to be known and depends on the specific physical situation.

Let G(kρ, ζ) denote the Fourier transform of g(ρ, ζ) with respect to ρ,

G(kρ, ζ) =

∞∫
−∞

dρ e−i kρ·ρ g(ρ, ζ) (4.5)

We will use a similar notation for other transformed quantities as well and assume

that all Fourier transforms exist.

One is tempted to invert (4.1) by simply considering its equivalent in the frequency

domain

F̃ (kρ, ζ) = G(kρ, ζ)F (kρ) (4.6)

However, dividing (4.6) by G(kρ, ζ) and computing the inverse Fourier transform is

an unstable process which can be seen from the following argument.

Taking (4.4) to the frequency domain and inserting (4.6) gives

G(kρ, ζj) = G(kρ, ζj − ζi)G(kρ, ζi) (4.7)

or, equivalently,

G(kρ, ζ + ∆ζ) = G(kρ,∆ζ)G(kρ, ζ) (4.8)

Subtracting G(kρ, ζ) from (4.8), dividing by ∆ζ, taking the limit as ∆ζ → 0, and
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noting that (4.3) means

G(kρ, 0) = 1 (4.9)

leads to the differential equation

∂

∂ζ
G(kρ, ζ) + G′

0(kρ)G(kρ, ζ) = 0 (4.10)

where

G′
0(kρ) = −

[
∂

∂ζ
G(kρ, ζ)

]
ζ=0

(4.11)

The obvious solution to (4.10) with the initial condition (4.9) is

G(kρ, ζ) = e−G
′
0(kρ) ζ (4.12)

Since (4.12) is expected to have low-pass character, ReG′
0(kρ) can be assumed to be

positive and growing for increasingly large kρ = |kρ|. Hence the blurring suppresses

high-frequency components exponentially. For the inverse problem this means that

only for the case of synthetic, noise-free data the above inversion procedure would

work, otherwise, the inversion would be unstable due to exponential amplification of

noise.

4.3 Methods of solution

4.3.1 Tikhonov regularization

The usual way to circumvent the difficulty associated with a kernel of the form (4.12)

is to replace the deconvolution filter 1/G(kρ, ζ) by one that has a built-in safeguarding

against division by exponentially small numbers.
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To derive such a filter a cost functional (for a fixed ζ = ζ0)

C
[
F̂ (kρ)

]
= β


 ∞∫
−∞

dkρ
∣∣∣G(kρ, ζ0) F̂ (kρ) − F̃ (kρ, ζ0)

∣∣∣2 − Ñ


+

∞∫
−∞

dkρ
∣∣∣F̂ (kρ)

∣∣∣2 (4.13)

is considered where α = 1/β > 0 serves as a regularization parameter which weighs

closeness of matching the data [first term in (4.13)] against finiteness of energy or

smoothness (second term) for any approximation F̂ to F , and Ñ is the energy of the

noise corrupting the data representing F̃ .

Functionals similar to (4.13) were first introduced in 1963 by A. N. Tikhonov

for the regularization of solutions to general Fredholm integral equations of the first

kind [116]–[119]. Since then Tikhonov regularization has penetrated into many sectors

of technology and applied sciences and is often the method of choice in approaching

a variety of linear and nonlinear inverse problems numerically.

To minimize C, the right-hand side of (4.13) is rewritten as

∞∫
−∞

dkρ
(
1 + β |G|2

) 


∣∣∣∣∣F̂ − G∗ F̃

|G|2 + α

∣∣∣∣∣
2

+
α |F̃ |2(

|G|2 + α
)2


 − β Ñ (4.14)

where G∗ is the complex-conjugate of G.

Hence, for any chosen α, the optimal deconvolution filter in this output least-

squares formulation with Tikhonov regularization is represented by the transfer func-

tion

ΓT (kρ) =
G∗(kρ, ζ0)∣∣∣G(kρ, ζ0)

∣∣∣2 + α
(4.15)

For α �
∣∣∣G(kρ, ζ0)

∣∣∣2 we essentially have 1/G(kρ, ζ0) but if the inequality is reversed

the low-pass filter G∗(kρ, ζ0)/α dominates. In both extreme cases unsatisfactory re-

construction results would be expected (in the first case due to instability, in the

second due to loss of resolution). The optimal choice of α will in general depend on

the selected optimality criterion, the noise in the data, and the spectrum of the object
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function f .

Simultaneous minimization of (4.13) with respect to the regularization parameter

β, i. e., consideration of
∂C

∂β
= 0 (4.16)

leads to ∞∫
−∞

dkρ
∣∣∣G(kρ, ζ0) F̂ (kρ) − F̃ (kρ, ζ0)

∣∣∣2 = Ñ (4.17)

which is known as the discrepancy principle [120]–[122]. Inserting F̂ = ΓT F̃ into

(4.17) gives the following nonlinear equation for α:

α2

∞∫
−∞

dkρ
|F̃ (kρ, ζ0)|2(∣∣∣G(kρ, ζ0)

∣∣∣2 + α
)2 = Ñ (4.18)

For additive white noise, high-pass filtering of the data representing f̃ with subsequent

estimation of Ñ would be an option to make the right-hand side of (4.18) available.

A more sophisticated alternative is given by wavelet denoising [123]. The issue of

estimating the noise level directly from the data is also addressed in [124].

A regularization parameter choice method that does not explicitly depend on

an estimate of Ñ is given by generalized cross-validation (GCV) [125]–[127]. It is

remarked that GCV is based on a discrete formulation. For comparisons between

methods see [128].

Tikhonov himself described algorithms derived from his regularization method

simply as “practical aids for solving incorrectly posed [ill-posed] problems” [117]. It

is this practicability that still feeds a flurry of research activity, especially in the area

of parameter choice strategies [124], [128]–[130]. This in turn reflects the somewhat

artificial character of the introduction of the regularization parameter in (4.13) [131].

In this light, any viable alternative to Tikhonov regularization is of interest.
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4.3.2 Local extrapolation

In the following, for our problem here, we give a method that is fundamentally differ-

ent from what is described in Section 4.3.1. It is inspired by simple insight into the ge-

ometry and nature of propagation in physical applications of the theory (Section 4.4).

In this sense, we can call the approach described in this section a physics-based signal

processing technique.

For a fixed ρ, f̃(ρ, ζ) is analytic with respect to ζ. This follows from (4.1) in

connection with the assumption of additive blurring (4.4) which leads to the repre-

sentation of the kernel (4.12). Thus we can construct the Taylor series

f̃(ρ, ζ) =
∞∑
m=0

1

m!

[
∂m

∂ζm
f̃(ρ, ζ)

]
ζ=ζ0

(ζ − ζ0)
m (4.19)

and obtain in particular

f(ρ) =
∞∑
m=0

(−ζ0)
m

m!

[
∂m

∂ζm
f̃(ρ, ζ)

]
ζ=ζ0

(4.20)

While the derivatives in (4.20) are not at hand, (4.4) can be employed to determine

f̃(ρ, ζ) from f̃(ρ, ζ0) for any ζ > ζ0 in a stable manner. Thus the deconvolution

problem (4.1) is reduced to an extrapolation problem for each ρ to which standard

methods can be applied.

Consider for example polynomial extrapolation. Choose an integer M > 1 and ζ1,

ζ2, . . ., ζM such that

ζ0 < ζ1 < ζ2 < . . . < ζM (4.21)

Lagrange’s formula gives [83]

f(ρ) ≈
M∑
m=1

am f̃(ρ, ζm) (4.22)
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with weights

am =
M∏
k=1
k �=m

(−ζk)

/
M∏
k=1
k �=m

(ζm − ζk) =
M∏
k=1
k �=m

1

1 − ζm/ζk
(4.23)

Inserting (4.4) into (4.22) yields the estimate

f̂L(ρ) =
M∑
m=1

am

∞∫
−∞

dρ′ g(ρ− ρ′, ζm − ζ0) f̃(ρ′, ζ0) (4.24)

The M convolutions in this local extrapolation scheme can be carried out numerically

in the frequency domain, applying the fast Fourier transform (FFT) algorithm. Note

that we exclude the given image from the extrapolation, thus suppressing noise in the

data through the smoothing character of the blurring process.

The local character of f̂L is most obvious from (4.22). If the f̃(ρ, ζm) were mea-

sured instead of calculated from f̃(ρ, ζ0) the result of the extrapolation for any partic-

ular ρ would be completely independent of the others. But the convolutions in (4.24)

are localized operations as well since the main contribution to the integral comes

from around ρ′ = ρ. This is because (4.7) implies that g(ρ, ζ) is a blurred version

of g(ρ, 0) = δ(ρ), the latter being perfectly localized, and thus the largest values of

g(ρ, ζ) are expected near ρ = 0.

The operation (4.24) is also a linear, shift-invariant filtering of the data. One

might therefore ask how the corresponding transfer function looks like, in order to

compare with (4.15). Transforming (4.24) to the frequency domain and inserting

(4.12) gives the following:

ΓL(kρ) =
M∑
m=1

amG(kρ, ζm − ζ0) =
M∑
m=1

am e−G
′
0(kρ) (ζm−ζ0) (4.25)

The last expression displays explicitly the idea of how local extrapolation stabilizes the

solution of the inverse problem: Since ζm > ζ0 it is seen that ΓL is in terms of decaying

exponentials whenever 1/G(kρ, ζ0) = exp[G′
0(kρ) ζ0] is a growing exponential. This,
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however, does not imply that the extrapolation might not cause a large error for

poorly chosen am.

An alternative representation of ΓL is given by

ΓL(kρ) = Ĝ(kρ)/G(kρ, ζ0) (4.26)

where

Ĝ(kρ) =
M∑
m=1

amG(kρ, ζm) (4.27)

which is an approximation of G(kρ, 0) = 1 based on an extrapolation of G(kρ, ζm),

m = 1, 2, . . . ,M . Representing the noise in the measurement of F̃ (kρ, ζ0) explicitly

by N(kρ) we have

F̂L(kρ) = ΓL(kρ)
[
G(kρ, ζ0)F (kρ) + N(kρ)

]
(4.28)

= Ĝ(kρ)F (kρ) + ΓL(kρ)N(kρ) (4.29)

In the absence of noise, (4.29) reduces to F̂L = Ĝ F which suggests the identifi-

cation of Ĝ as the model resolution kernel. It represents a measure of how well the

image is reconstructed. If the model resolution kernel is unity, i. e., its corresponding

spatial representation is a delta function, then the resolution is perfect and the re-

constructed image is identical to the original image. If, on the other hand, the model

resolution kernel is different from unity, then the reconstructed image will in general

be a smoothed version of the original image.

From (4.29), the image reconstruction error is given by

F̂L(kρ) − F (kρ) =
[
Ĝ(kρ) − 1

]
F (kρ) + ΓL(kρ)N(kρ) (4.30)

=
[
Ĝ(kρ) −G(kρ, ζ = 0)

]
F (kρ) + ΓL(kρ)N(kρ) (4.31)

Hence, the error in reconstructing the image depends on how well Ĝ(kρ) approximates
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G(kρ, ζ = 0) and how effective is the exponential decay introduced by the transfer

function ΓL in suppressing the noise in the data. These two objectives are in conflict

and hence a compromise has to be achieved for optimally reconstructing the image

and maximally suppressing the data noise. This will depend on the choice of the ζm

and the total number of sampling points M .

By choosing the sampling points of (4.21) to be equidistant, the number of pa-

rameters in the local extrapolation scheme can be reduced to two, namely M and the

spacing of the grid ∆ζ. We then have for polynomial extrapolation

am =
M∏
k=1
k �=m

k + ζ0/∆ζ

k −m
=

(−1)m−1

(m− 1)! (M −m)!

M∏
k=1
k �=m

(
k +

ζ0

∆ζ

)
(4.32)

which is a polynomial in ζ0/∆ζ of degree M − 1. The representation of ΓL as given

in (4.25) becomes

ΓL(kρ) =
M∑
m=1

am e−G
′
0(kρ)m∆ζ (4.33)

For a fixed and finite M , and as ∆ζ → 0, the transfer function (4.33) with the

coefficients (4.32) can be shown to reduce to

ΓL(kρ) =
M−1∑
k=0

1

k!

[
G′

0(kρ) ζ0

]k
(4.34)

which is a truncated power series expansion of

1

G(kρ, ζ0)
= eG

′
0(kρ) ζ0 (4.35)

Hence, even though (4.33) is in terms of decaying exponentials, in this limit ΓL(kρ)

will be growing with kρ, with faster growth for larger M (approaching the expected

mathematical limit of exp[G′
0(kρ) ζ0] as M → ∞). This will cause a large reconstruc-

tion error due to the amplification of the noise in (4.31) [see Fig. 4-6(b) and 4-9(b)

where the error grows as ∆ζ → 0, increasingly with M , and note the similar but
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different behavior of (4.15) as α → 0]. Furthermore, in the same limit (fixed and

finite M , and ∆ζ → 0), the extrapolated f̃ in (4.22) and G in (4.27) are oversampled

and under-represented (since M∆ζ → 0). In this case, one would be attempting to

extrapolate a function from its value at one point, introducing an error in representing

f by f̂L and G(kρ, 0) by Ĝ(kρ). Numerically, as ∆ζ → 0, the derivatives required in

the extrapolation and which are replaced by finite differences (note that an interpo-

lating polynomial can be rewritten in terms of divided differences [83]) will exhibit

a large round-off error which may actually cause the result to diverge as 1/(∆ζ)M−1

[not visible in Fig. 4-6(b) and 4-9(b) where a linear scale for ∆ζ is used, and where

the error was computed for ∆ζ down to only a moderately small value and is not

shown when exceeding 100 %].

On the other hand, and as ∆ζ → ∞, the transfer function (4.33) becomes expo-

nentially small whenever ReG′
0(kρ) > 0, hence suppressing the data noise. In this

case the error in the reconstructed image will be dominated by the error of Ĝ in

approximating unity. As ∆ζ → ∞, the extrapolated function G(kρ, ζ) will be un-

dersampled and Ĝ(kρ) will not be an accurate representation of G(kρ, ζ = 0). This

effect can be expected to be more severe at the higher frequencies, thus leading to a

smoothed image.

From the above discussion, one may conclude that for a certain number of sampling

points M there is an optimum ∆ζ which minimizes the error in the reconstructed

image [Fig. 4-6(b) and Fig. 4-9(b)].

If we consider a particular M then a possible criterion for choosing ∆ζ can again be

based on the discrepancy principle (4.17), solving for ∆ζ from the following equation:

∞∫
−∞

dkρ

∣∣∣∣∣1 −
M∑
m=1

am(∆ζ)G(kρ, ζ0 + m∆ζ)

∣∣∣∣∣
2 ∣∣∣F̃ (kρ, ζ0)

∣∣∣2 = Ñ (4.36)

Here the spectral integral could also be replaced by its spatial counterpart, using

Parseval’s relation and introducing a convolution in the integrand. It is pointed



118 Chapter 4. An alternative to Tikhonov regularization

out that this is not an option for (4.18) because of its more complicated algebraic

structure.

An alternative extrapolation technique that gives an estimate of f(ρ), which de-

pends nonlinearly on the data f̃(ρ, ζm) [c. f., (4.22)] and which therefore does not lead

to a linear filter as in (4.24), uses, e. g., Padé approximation [104, 132]. The idea be-

hind employing such a nonlinear method is that, in principle, it can lead to deblurred

data with spectral contents at frequencies which were completely suppressed by the

forward smoothing process, and therefore it may possibly lead to sharper images.

However, high sensitivity to noise will require additional low-pass filtering. In all

the numerical experiments conducted, we did not find any superior results with this

nonlinear method, which led us to return to the simpler polynomial extrapolation.

4.4 Applications and numerical examples

4.4.1 Magnetostatic imaging

Here we consider the problem of imaging geometrical imperfections of the otherwise

flat interface between free space and a magnetic medium with permeability µ1. This

is illustrated in Fig. 4-1 where µ1 � µ0 is assumed (this is not necessary for what

follows). Only pit-like defects are considered, i. e., for ζ > 0 we always have free

space. We assume that the imaging system is supposed to be based on inducing a

tangential magnetic flux in the medium (in such a way that the normal component of

the background field, i. e., the magnetic field for the case of a perfectly planar interface,

vanishes) and measuring the normal component of the magnetic flux density, Bζ(kρ),

in free space due to the defect. For example, a Hall detector could be used to scan

the two-dimensional planar distribution Bζ(ρ, ζ0) for a fixed ζ0. Due to mechanical

constraints always ζ0 > 0. However, we might be interested in Bζ(ρ, 0) because this

distribution can give us a first idea of the general shape of the defect to be analyzed.

This could be useful in deriving an initial guess for an algorithm that inverts for the
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B = Bρ + ζ̂ Bζ

µ = µ0

µ = µ1

ρ

ζ

ζ0

Figure 4-1: Leakage of the magnetic flux density due to a defect (µ1 � µ0).

three-dimensional features of the imperfection.

The problem of obtaining Bζ(ρ, 0) from Bζ(ρ, ζ0) is equivalent [28] to deducing the

distribution of a magnetic surface charge distribution ρms(ρ) = Bζ(ρ, 0), impressed

onto a perfectly planar perfect electric conductor occupying the half space ζ < 0, from

a similar measurement. Alternatively, Bζ(ρ, ζ0) can be thought of as being produced

by a magnetic surface charge distribution ρ′ms(ρ) = 2Bζ(ρ, 0) located at ζ = 0 in free

space. Consideration of above equivalent problems shows that the task of retrieving

Bζ(ρ, 0) from Bζ(ρ, ζ0) can also be viewed as a source inversion problem.

The second equivalent problem mentioned, with a planar charge distribution in

free space, sometimes called “equivalent stratum” [133], leads directly to an integral

equation relating Bζ(ρ, ζ0) and Bζ(ρ, 0):

Bζ(ρ, ζ0) = µ0


− ∂

∂ζ

∞∫
−∞

dρ′
ρ′ms(ρ

′)

4π µ0

√
|ρ− ρ′|2 + ζ2



ζ=ζ0

(4.37)
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or

Bζ(ρ, ζ0) =

∞∫
−∞

dρ′ g(ρ− ρ′, ζ0)Bζ(ρ
′, 0) (4.38)

with the planar Poisson kernel

g(ρ, ζ) =
ζ

2π (ρ2 + ζ2)3/2
(4.39)

Apparently (4.38) can also be interpreted as solution to Dirichlet’s problem for

Laplace’s equation in the half space ζ > 0 [134]. The reason for this is that Bζ(r)

being proportional to a derivative of a harmonic potential is itself harmonic.

Equation (4.38) is of the form (4.1) with f̃(ρ, ζ) = Bζ(ρ, ζ) and f(ρ) = Bζ(ρ, 0).

Equation (4.4) follows directly from the space invariance of the physical configuration

considered (propagation in free space), i. e.,

Bζ(ρ, ζ + ∆ζ) =

∞∫
−∞

dρ′ g(ρ− ρ′,∆ζ)Bζ(ρ
′, ζ) (4.40)

Thus, the magnetostatic imaging problem described here falls exactly into the class

of inverse additive blurring problems solved by the methods in Section 4.3.

As an illustration of the application of the local extrapolation scheme of Sec-

tion 4.3.2, consider Fig. 4-2. The data in the plane ζ = ζ0 are continued upward onto

planes at ζ > ζ0, by virtue of (4.40). All the data points at ζ = ζ0 contribute to a

single point located at ζ > ζ0. Bζ(ρ, 0) is then extrapolated locally, for each ρ, from

the generated data at ζ > ζ0 along the vertical lines ρ = const.

Application of the Tikhonov regularization method of Section 4.3.1 and a com-

putationally efficient implementation of the local extrapolation scheme via the FFT

algorithm require a transition to the spatial frequency domain with respect to the

transverse dimensions described by ρ. The kernel (4.39) corresponds to its Fourier

transform

G(kρ, ζ) = e−kρ ζ (4.41)



4.4. Applications and numerical examples 121

ρ

ζ

ζ0

Figure 4-2: Schematic representation of the basic idea of local extrapolation applied
to the magnetostatic imaging configuration of Fig. 4-1.

The correspondence (4.39)/(4.41) follows from another Fourier pair, namely

1

2π
√
ρ2 + ζ2

= F−1

{
e−kρ ζ

kρ

}
(4.42)

by differentiating with respect to ζ. Equation (4.42) in turn can be shown by evaluat-

ing the inverse Fourier transform in polar coordinates, doing the angular integral first,

and applying an identity [50] to the remaining Fourier-Bessel transform [31] involving

the Bessel function of zeroth order J0. Alternatively, (4.39) can be obtained directly

from (4.41) in a similar fashion, applying a different identity [50]. Clearly, (4.41) is

in the form (4.12). Equation (4.3) follows from (4.39) as the generalized limit ζ → 0.

Formulas for the continuation of the tangential (secondary or scattered) compo-

nents Bx,y can be obtained as well. They are the same as (4.38), with the same kernel.

Bx,y(ρ, ζ) for ζ > 0 can also be computed from Bζ(ρ, 0). The governing equations are

derived from (4.37) by replacing the derivative with respect to ζ by the derivative
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with respect to x or y. The resulting kernels are given by

g(ρ, ζ) =
â · ρ

2π (ρ2 + ζ2)3/2
â = x̂, ŷ (4.43)

with corresponding Fourier transforms

G(kρ, ζ) =
â · kρ
i kρ

e−kρ ζ (4.44)

However, the continuation from ζ = 0 to Bζ at ζ > 0 is the most important case

because this component is orthogonal and hence insensitive to the background field

(see the introduction to this section). It is interesting to note that an estimate for

Bx,y(ρ, 0) can be obtained from Bζ(ρ, ζ0) with help of the local extrapolation scheme

by using the kernels (4.43) for the continuation from Bζ to Bx,y. However, the kernels

for continuation from Bx,y to Bζ are found to correspond to

G(kρ, ζ) =
i kρ

â · kρ
e−kρ ζ (4.45)

Note that (4.44) is bounded whereas (4.45) is not.

It is seen that the consideration of “cross-continuation”, i. e., from one component

of B to a different one, leads to convolution kernels such as (4.43) which do not fit

directly into the general framework of Section 4.2. However, (4.44) and (4.45) show

that the continuation process here consists of the cascade of a linear, shift-invariant

transformation, which is independent of ζ, and a blurring process in the sense of

Section 4.2 that is the same in all cases considered.

While we considered magnetostatic imaging in this section, similar ideas apply to

electrostatics. In a typical application one may attempt to image the induced electric

charges on a buried metallic pipe where it is assumed that the pipe is excited by an

electric field perpendicular to its longitudinal axis.
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4.4.2 Downward continuation of gravity data

Earth’s gravity is the sum of gravitational and centrifugal force. Since it is irrota-

tional it can be derived from a scalar gravity potential. It is useful to introduce a

reference potential called normal potential due to a rotating ellipsoid, and the corre-

sponding normal gravity field [135]–[137]. The gravity disturbance δg and the gravity

anomaly ∆g are defined as the difference of the magnitudes, or as the magnitude of

the difference [137], of the actual gravity vector and the normal gravity vector. The

important difference between the two quantities is that for the gravity disturbance

δg the comparison is made at one and the same point, while for the gravity anomaly

∆g to be defined at a point P the normal gravity is taken at a corresponding point Q

on that level surface of the normal gravity field which has the same potential as the

actual gravity field at P , where Q is situated on the orthogonal projection line of P

onto the reference ellipsoid. Despite this complication which is due to practical limi-

tations of classical terrestrial geodesy, with r0 denoting the distance to the geocenter,

r0 δg and r0 ∆g outside the Earth are commonly treated as harmonic functions (for

the rigorous justification of this simplification see the literature cited above). It is

the quantities δg and ∆g that are measured by means of gravimetry.

The problem of determining δg or ∆g from a measured distribution at locations

towards the disturbing masses is referred to as downward continuation [133], [138]–

[141]; it is of great importance in the Earth sciences. Note that this problem was

mentioned by Tikhonov as an illustrative example in an early paper [117].

In a typical application airborne gravimetry is used to measure two-dimensional

distributions of the gravity disturbance or anomaly at some altitude while the actual

interest is in the distribution at a lower altitude or at the Earth’s surface. A similar

problem arises in shipborne gravimetry with the goal to obtain gravity data at the

ocean bottom (for an interesting example of how people try to overcome the loss of

resolution when measurements are made at the sea surface refer to [142]). In many

cases, such as mapping of the gravity field, a successful downward continuation is the
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ultimate numerical objective. However, the capability of enhancing the resolution

of the measured data might also prove helpful in the solution of other geophysical

inverse problems [143].

Making the assumption that the geocenter is very far away from the region of

interest and considering the continuation of the gravity disturbance or anomaly from

one plane to another leads again to the kernel given by (4.39) corresponding to (4.41).

At this point it is appropriate to remark that the basic idea of the local extrapola-

tion scheme in the context of geophysical interpretation of planar gravity and also

magnetic data—downward continuation by means of upward continuation followed by

polynomial extrapolation—was brought forward already in 1960 by R. G. Henderson

[133, 144].

However, the nowadays achievable high accuracy of gravimetry in conjunction with

the global positioning system also calls for more accurate downward continuation

schemes. The problem of continuation of harmonic functions from one spherical

surface to another leads to the non-convolutional spherical Poisson kernel so that the

methods of this paper cannot be applied without modification. The essential idea of

the local extrapolation scheme, however, can also be employed in this case, carrying

out the extrapolation along radial lines towards the center of the sphere. Bláha et al.

demonstrate how a convolutional approximation of the spherical Poisson kernel can be

obtained [145] so that the upward continuation could be performed in a numerically

efficient manner with use of the FFT algorithm.

4.4.3 Inverse diffraction of scalar waves

The applications discussed in the previous subsections were based on static potential

theories, i. e., we considered the blurring of solutions to Laplace’s equation. In the

following we generalize these ideas to the dynamic case.

In the temporal frequency domain, scalar waves in a homogeneous, source-free

region characterized by a real wavenumber k = 2π/λ where λ is the wavelength in
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ζ0

U(ρ, ζ0)

U(ρ, 0)

sources

Figure 4-3: Plane-to-plane continuation of scalar wave fields away from the sources.

the medium are solutions to the Helmholtz equation

(
∇2 + k2

)
U(r) = 0 (4.46)

which for k = 0 specializes to Laplace’s equation.

For the propagation of the planar distribution of a disturbance U(ρ, 0) away from

the sources to a parallel plane at a distance ζ0 (Fig. 4-3) again an equation of the

form (4.1) holds:

U(ρ, ζ0) =

∞∫
−∞

dρ′ g(ρ− ρ′, ζ0)U(ρ′, 0) (4.47)

The propagator g in this expression of Huygens’ principle for the plane (also referred

to as Rayleigh diffraction formula of the first kind) is most conveniently found by

the application of Green’s theorem in conjunction with the method of images [146],

leading to

g(ρ, ζ) =
1

4π


 ∂

∂ζ ′


 eik

√
ρ2+(ζ−ζ′)2√

ρ2 + (ζ − ζ ′)2
− eik

√
ρ2+(ζ+ζ′)2√

ρ2 + (ζ + ζ ′)2






ζ′=0

(4.48)

After some algebra, this yields in generalization of (4.39) and for arbitrary ζ > 0

g(ρ, ζ) =
ζ

2π (ρ2 + ζ2)3/2

(
1 − ik

√
ρ2 + ζ2

)
eik

√
ρ2+ζ2 (4.49)
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Note that as ζ → 0, significant values of g are found only for kρ � 1 in which case

1 − ik
√
ρ2 + ζ2 ≈ e−ik

√
ρ2+ζ2 (4.50)

which cancels the third term in (4.49). Thus the singular behavior of the kernel (4.49)

is the same as that of (4.39), and (4.3) follows as before.

While obtaining G(kρ, ζ) corresponding to (4.49) by direct Fourier transformation

appears difficult, this task is achieved by taking the point of view of scalar diffraction

theory [31]. By interpreting the Fourier transform of U(ρ, 0) as an “angular spectrum”

of plane waves whose wavevectors satisfy all the same dispersion relation we arrive at

G(kρ, ζ) =




eiζ
√
k2−k2

ρ kρ ≤ k

e−ζ
√
k2

ρ−k2

kρ > k
(4.51)

Observe how this complies with (4.12) and how (4.51) simplifies to (4.41) in the case

k = 0.

The application of Tikhonov regularization to this dynamic deblurring problem,

which is also known as inverse diffraction problem for the plane [147]–[151], is dis-

cussed in [152].

It is clear that direct application of the local extrapolation scheme would lead to

poor results (unless k ζ0 � 1) due to the oscillatory behavior of (4.49) with respect

to ζ. We therefore devised a method that separates the deblurring process into

two subsequent problems, one of which is well-posed and the other solvable by local

extrapolation. The key is to treat propagating waves (kρ ≤ k) and evanescent waves

(kρ > k) separately. More specifically, let

G(kρ, ζ) = Gp(kρ, ζ)Ge(kρ, ζ) (4.52)
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where

Gp(kρ, ζ) =




eiζ
√
k2−k2

ρ kρ ≤ k

1 kρ > k


 = eiζ Re

√
k2−k2

ρ (4.53)

and

Ge(kρ, ζ) =




1 kρ ≤ k

e−ζ
√
k2

ρ−k2

kρ > k


 = e−ζ Im

√
k2−k2

ρ (4.54)

Note that |Gp| = 1 for all kρ and that the effect of Gp can hence be removed in a

stable manner by correcting the phases of the Fourier transform of U(ρ, ζ0). The

blurring due to Ge can then be elevated by applying the local extrapolation scheme.

Note that Ge(kρ, ζ) is real and even in kρ, thus ge(ρ, ζ) will be real and even in ρ.

One potential application of the procedure outlined above is in diffraction tomo-

graphy [153]. In this (originally but not necessarily) ultrasonic imaging technique an

inhomogeneity is illuminated by an incident wave and reconstructed from the mea-

sured scattered waves originating from the secondary sources induced in the object.

Deblurring could be applied to gather preliminary information on extent and shape

of the object which would be useful in deriving an initial guess for the reconstruction

algorithm.

Another application is object field reconstruction in scanning near-field optical

microscopy, an imaging technology that has generated a lot of interest recently [154]–

[156].

For inverse diffraction of vector waves and for the planar geometry, the theory of

this section can be applied to each of the components of the vector field individually

and without modification. This is permissible because the vector Helmholtz equation

in Cartesian coordinates separates into three scalar Helmholtz equations (4.46). Equa-

tion (4.47) also follows from Huygens’ principle for electromagnetic waves, expressed

as the Kirchhoff vector formula for diffraction [28] and using the Green function (4.49).
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4.4.4 Numerical examples

In this section we compare results of the application of the local extrapolation scheme

as introduced in Section 4.3.2 with the Tikhonov regularization of Section 4.3.1. For

simplicity, (4.21) is taken to be equidistant which leaves M and the grid spacing

∆ζ as parameters in the local extrapolation scheme [c. f., (4.32)]. The Tikhonov

regularization approach depends on the single parameter α.

For the first example, the blurring kernel considered is given by (4.39), i. e., this

case study applies to the plane-to-plane continuation of solutions to Laplace’s equa-

tion as encountered in, e. g., electrostatics, magnetostatics, and gravitational theory

(Section 4.4.1, 4.4.2). Two-dimensional ρ is represented by Cartesian coordinates x

and y. The length unit mm was arbitrarily chosen while the problem is actually

scale-invariant. Each of the five images in Fig. 4-4 and 4-5 consists of 64 by 64 pixels

and is shown by two plots: On the left-hand side the data are plotted with linear

greylevels where white corresponds to the smallest value in the particular image and

black to the largest. On the right-hand side the data are displayed along the 64 traces

x = const.

Fig. 4-4 demonstrates the forward blurring process. An undistorted image f(ρ)

which is equal to one inside a square with sides of 15 mm length and zero elsewhere

is assumed as shown in Fig. 4-4(a). Blurring with ζ = ζ0 = 2.5 mm leads to the

data f̃(ρ, ζ0) in Fig. 4-4(b) where the decrease in maximum amplitude should be

noted. The 2-D convolution is implemented using the FFT algorithm. Addition of

pseudorandom white Gaussian noise n(ρ) generates the corrupted data set displayed

in Fig. 4-4(c). The noise level is adjusted to N/S = 10 % where for in general complex

data (see the second example)

N

S
=

√√√√ ∑
pixels

|n2(ρ)|
/ ∑

pixels

|f̃(ρ, ζ0)|2 (4.55)

Using the data of Fig. 4-4(c) as input, the two deblurring methods of Section 4.3
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are applied, leading to the results shown in Fig. 4-5. For both approaches the pa-

rameters are chosen for optimal performance (see below): α = 8× 10−3 for Tikhonov

regularization [Fig. 4-5(a)] and M = 5, ∆ζ = 1.3 mm for the local extrapolation

scheme [Fig. 4-5(b)]. The results show that deblurring is capable of enhancing the

resolution of noisy data. In both cases a reasonable approximation f̂(ρ) to the as-

sumed ideal image f(ρ) in Fig. 4-4(a) is obtained and the original maximum amplitude

is restored accurately.

In order to extend the quantitative comparison between the two deblurring meth-

ods processing of the data in Fig. 4-4(c) is repeated many times with varying pa-

rameters α [Fig. 4-6(a)] and M , ∆ζ [Fig. 4-6(b)]. A root mean squared (RMS) error

measure is defined as

Relative RMS Error =

√√√√ ∑
pixels

|f̂(ρ) − f(ρ)|2
/ ∑

pixels

|f(ρ)|2 (4.56)

It is remarked that in a real-world situation f(ρ) is unknown but that in a numerical

assessment the quantity (4.56) is one of primary interest.

It is seen that the relative RMS error for both methods can be minimized by

appropriately choosing the parameters α and ∆ζ; above choice leading to the results

in Fig. 4-5 is confirmed as nearly optimal. If either of the parameters is chosen too

small, the respective method becomes unstable as predicted in Section 4.3. On the

other hand, if they are chosen too large the overall operation has the character of a

low-pass filter which smoothes out the data instead of enhancing their resolution. We

did not compare the locations of the minima in Fig. 4-6 with the solutions of (4.18)

and (4.36), respectively. In practice, making a good heuristic choice of the parameter

for the local extrapolation might be easier than for Tikhonov regularization because

of the simple geometrical meaning of ∆ζ.

A similar comparison can be made for the solution of the inverse diffraction prob-

lem as outlined in Section 4.4.3. In this second example, all images have a resolution
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of 128 times 128 pixels. The data are now in general complex-valued and only their

magnitude is shown. Dimensions are given in wavelengths λ.

We start with a real-valued, non-negative object function as shown in Fig. 4-7(a)

and which has been considered previously by Bertero et al. [151]. Since the image

contains details with dimensions that are less than a wavelength the problem is related

to the question of achievability of super-resolution. In [151], images reconstructed

from far-field data (ζ0 > λ) were shown. Here we consider the case of the near-field

zone (ζ0 < λ) and when no a priori information such as finiteness of support and

positivity of the object function are incorporated.

Fig. 4-7(b) shows the magnitude of the data at ζ = ζ0 = λ/4, exhibiting a general

decrease in amplitude and severe blurring. It is pointed out that this ζ0 is in fact

fairly large as in, e. g., scanning near-field optical microscopy distances down to 0.01λ

are considered to be of relevance [155]. The reconstructions in Fig. 4-8 are based on

the data displayed in Fig. 4-7(c) where noise with N/S = 5 % was added.

Fig. 4-8(a) shows the result for Tikhonov regularization with α = 6 × 10−3, and

Fig. 4-8(b) was obtained with local extrapolation (M = 5, ∆ζ = 0.125λ) where

the treatment of propagating and evanescent waves was cascaded as described in

Section 4.4.3. As in the first example, both methods perform about equally well.

Again, Fig. 4-9 confirms the parameter choices leading to Fig. 4-8 as nearly optimal.

The general similarity between the results for the two examples illustrated in

Fig. 4-4 to 4-6 and Fig. 4-7 to 4-9, respectively, is remarkable in as much as the

underlying physics are quite different (Laplace vs. Helmholtz equation).



4.4. Applications and numerical examples 131

-30 -20 -10 0 10 20 30
-30

-20

-10

0

10

20

30

x  [mm]

y 
 [m

m
]

-30 -20 -10 0 10 20 30
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

y  [mm]

N
or

m
al

iz
ed

 d
at

a 
  (

x=
co

ns
t.)

(a) Square with sides of 15 mm length.
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(b) Blurred image (ζ = ζ0 = 2.5 mm).
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(c) Addition of white Gaussian noise (N/S = 10 %).

Figure 4-4: Example of the blurring process (Laplace equation).
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(a) Tikhonov regularization (α = 8 × 10−3).
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(b) Local extrapolation (M = 5, ∆ζ = 1.3 mm).

Figure 4-5: Deblurring based on noisy data (Laplace equation).



4.4. Applications and numerical examples 133

10
-4

10
-3

10
-2

10
-1

10
0

0

0.2

0.4

0.6

0.8

1

     α

R
el

at
iv

e 
R

M
S

 e
rr

or

(a) Tikhonov regularization.
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(b) Local extrapolation.

Figure 4-6: Relative RMS error vs. choice of parameters (Laplace equation).
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(a) Square with sides of 5 × λ/2 length.
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(b) Blurred image (ζ = ζ0 = λ/4).
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(c) Addition of white Gaussian noise (N/S = 5 %).

Figure 4-7: Example of the blurring process (Helmholtz equation).
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(a) Tikhonov regularization (α = 6 × 10−3).
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(b) Local extrapolation (M = 5, ∆ζ = 0.125 λ).

Figure 4-8: Deblurring from noisy data (Helmholtz equation).
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(b) Local extrapolation.

Figure 4-9: Relative RMS error vs. choice of parameters (Helmholtz equation).
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4.5 Conclusions

The inverse convolutional, additive blurring process is shown to be unstable in general.

The two regularized solutions described in this chapter do not incorporate any a

priori knowledge on the unblurred data and, when applied to the examples of the

planar Poisson kernel and its generalization to the dynamic case, yield results of

comparable qualities. The observation that the local extrapolation scheme, in the

cases considered, does not perform better than the deconvolution filter derived with

the help of Tikhonov regularization is not surprising since the latter is equipped with

an optimality property with respect to squared error. However, from the included

discussions of the many physical and engineering applications it is clear that the

local extrapolation scheme is not only a viable alternative to Tikhonov regularization

but that its applicability is of value. For example, its underlying basic idea can be

applied also to non-convolutional blurring processes which typically arise from non-

planar geometries. Furthermore, the local extrapolation scheme including strategies

for the choice of parameters can be formulated entirely in the space domain, without

resorting to any numerical inverse Fourier transforms. Finally, the inherent localized

nature of the extrapolation scheme may prove useful in certain situations, e. g., in the

case of contamination of the data by localized noise.
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Chapter 5

Inversion of guided-wave dispersion

data with application to borehole

acoustics including leaky waves

5.1 Introduction

A common picture for the propagation in waveguides comprises elementary waves

bouncing between the boundaries of the structure, interfering constructively only for

certain directions of the elementary wavevectors [28]. This determines the set of

possible waveguide modes and their propagation constants. The propagation char-

acteristics in the waveguide can therefore be expected to be closely related not only

to the geometrical dimensions of the structure but also to the properties of the ma-

terials constituting the waveguide. In a different picture, the propagating field of

an open waveguide penetrates into the surrounding medium, probing its constitutive

parameters which influence the dispersive characteristics of the waveguide.

This motivates obtaining dispersion data with the goal of inferring unknown pa-

rameters of the configuration with the help of an appropriate inversion scheme. A

conceptual advantage of this basic idea is the source independence of the dispersion in

139
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waveguides which circumvents the need for modeling the transmitters and receivers of

the envisioned apparatus. A disadvantage is that dispersion curves can be measured

only indirectly, i. e., the inversion has to be preceded by a processing of the measured

waveforms in order to extract the dispersion information which is then input to the

inversion. This by itself can be difficult and prone to the introduction of uncertainties

beyond those of the measurement. However, the advantage of source independence

might justify the additional pre-processing step.

After describing a methodology for the inversion of general modal dispersion data,

as an important practical example with considerable commercial potential, we take

the case of borehole acoustics. A logging tool equipped with transmitters and an

array of receivers is considered for recording time-domain waveforms that can be pro-

cessed in order to separate the various arrivals and obtain samples of the pertinent

dispersion curves [157, 158]. Previous approaches for the estimation of one or more

parameters influencing the acousto-elastic wave propagation along the borehole in-

clude curve fitting procedures that are designed to minimize the error between the

measured dispersion samples and synthetic data obtained from a forward model that

uses an iterative modal search routine [159, 160]. The same forward model could be

utilized to approximate the partial derivatives of the synthetic data with respect to

the model parameters that are required in a systematic inversion algorithm. Alter-

natively, these sensitivity coefficients can be computed by numerical quadrature of

appropriate perturbation integrals [159]–[162]. Perturbation theory and comparison

of measured and computed dispersion curves plays an important role also in the in-

terpretation of dispersion data influenced by nonlinear effects [163]–[165]. Kimball

describes a processing scheme that is not based on direct curve fitting but, again,

computed dispersions are required explicitly [166, 167].

For the linear case and in contrast to the methods listed above, in the present work

we suggest minimizing a cost function that is derived directly from the determinant

representing the boundary conditions at the interfaces of the waveguide model [168].
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This cost function can be evaluated rapidly, without the need for any iterations,

and allows the possibility of processing multi-frequency and multi-mode data in a

potentially exact inversion. An arbitrary number of unknown parameters can be

accommodated, provided that the data have sufficient sensitivity to these parameters.

The theoretical investigations and numerical simulations carried out and described

in this chapter do not incorporate any influence of the tool and only the simplest

case of a fluid-filled borehole in a homogeneous and isotropic elastic rock formation is

examined. We give a suitable formulation of the pertaining guidance condition and

investigate the inversion with uncertain model parameters, the influence of bandwidth

and noise, and the utilization of multi-frequency and multi-mode data. Finally, we

turn to the leaky-wave modes of the fluid-filled borehole, a topic of general interest

not only for the problem of inversion of borehole dispersions.

5.2 Parametric inversion of guided-wave modal dis-

persions

5.2.1 Modal dispersion curves

The guidance condition or characteristic equation for a two-dimensional waveguide

structure invariant in the z direction and described by a parameter vector x containing

geometrical and material constants can be written as

D(kz, ω, x) = 0 (5.1)

Here D is the determinant of the system matrix L of the homogeneous linear system

of equations that follows from matching the appropriate boundary conditions, kz

is the wavenumber in the direction of propagation, and ω is the angular frequency

considered.

For a fixed parameter vector x, it is meaningful to treat D as a function of two
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independent complex variables [169], kz and ω. When seeking steady-state solutions

to problems involving a time-harmonic excitation, ω will be real. When computing

transients utilizing a temporal Laplace transform both kz and ω are in general com-

plex, depending on the specific paths of integration chosen [170]–[176]. Due to the

unique roles of time and space in a mixed initial boundary value problem kz and ω

are not exchangeable and no simple conversion exists between roots of (5.1) found in

the complex kz domain (for a fixed ω) and the complex ω domain (for a fixed kz).

For open waveguides that allow radiation of energy away from the vicinity of

the waveguide into the background medium (which only in the simplest situation is

homogeneous) the complex ω and kz domains are multi-sheeted Riemann surfaces,

i. e., collections of complex planes connected across branch cuts (c. f., Section 5.5).

Except for isolated singularities (branch points and poles), D is analytic on these

surfaces.

If we choose a smooth curve Ω in the ω domain (typically, but not necessarily,

the positive real axis), then the roots of (5.1) for some ω = ω0 ∈ Ω constitute a set

of modes. Choosing a particular mode by picking one of the roots, the dispersion

relation kz(ω, x) for this mode (with respect to Ω) is obtained by tracing the locus

of the root in the kz domain as ω moves away from ω0 and along Ω. We can require

that the dispersion curve {kz(ω, x) : ω ∈ Ω} also be a smooth function of ω in order

to avoid a mix-up with other modes at possible points of degeneracy where different

dispersion curves intersect.

This notion of dispersion leads directly to a numerical method for computing

modal dispersion curves practically. Starting from ω0, one or two (depending on

whether ω0 is an endpoint of Ω or not) sequences of sufficiently close frequencies on

Ω are chosen. For example, by inspecting |D(kz, ω0, x)| in the kz domain, a mode

is selected and an initial guess for kz(ω0, x) obtained. In identifying local minima of

|D| as zeros, the minimum principle in complex analysis is helpful, assuring us that

a local minimum of |D| embedded into a neighborhood, for which it is the absolute
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minimum and throughout which D is analytic, must be a zero:

Minimum Principle [177]. If f is a non-constant analytic function on a

bounded open set G and is continuous on the closure of G, then either f

has a zero in G or |f | assumes its minimum value on the boundary of G.

Using the initial guess, kz(ω0, x) is determined by finding the zero of D with the help

of, e. g., the complex Newton-Raphson method [104]. Subsequently, stepping along Ω

away from ω0, all the samples of kz(ω, x) are computed for each ω, using the kz found

at the previous frequency as initial guess. Thus the dispersion curve is obtained by

this mode tracking procedure.

5.2.2 Inversion of modal dispersion data

We now turn to the inverse problem, i. e., estimation of the N unknown elements of

x from bandlimited, possibly noisy samples of one or more dispersion curves. The

number of parameters N to be determined can be less than the dimension of x, e. g.,

in case some of the elements of x were obtained from other measurements.

Given M measured pairs (ωi, kzi) that satisfy

kzi = kz(ωi, x) + ni , i = 1, 2, . . . ,M (5.2)

where the ni represent the noise in the data and, as in the case of multi-mode data,

the kz(ωi, x) may belong to different modes, one possible formulation of the problem

aims at minimizing the cost function

‖e0(x)‖2 =
M∑
i=1

|kz(ωi, x) − kzi|2 (5.3)

The problem with this approach is that every single evaluation of (5.3) for varying

x, in whatever optimization method employed, requires the M roots kz(ωi, x) which

can be determined exactly only by iteration (Section 5.2.1). If one tries to avoid
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these iterations by pre-computing a look-up table of kz for all possible x, ω, and

modes—which itself might be an extensive computational task and may require a

prohibitively large database—then the necessary interpolations during the inversion

would preclude an exact answer even in the case of noise-free data. Furthermore, the

implicit mode identification problem, i. e., relating each kzi to the correct dispersion

curves may complicate the situation. If kzi is used as initial guess when iteratively

computing kz(ωi, x), the wrong mode can be picked up accidentally.

The above difficulties can be avoided by solving the inverse problem without

resorting to the dispersion curves kz(ω, x) explicitly. We therefore suggest to pursue

the minimization of the “guidance mismatch”

‖e(x)‖2 =
M∑
i=1

|D(kzi, ωi, x)|2 (5.4)

It is obvious that the cost function defined by (5.4), for the case of noise-free data,

can be made zero, similar to (5.3). For noisy data, the least-squares problem can be

solved by applying the Gauss-Newton method [112]. The partial derivatives in the

Jacobian are typically replaced by finite differences unless the structure considered

is simple enough so that the differentiations can be carried out analytically. It is

seen that, whereas the cost function in (5.3) is of the same form as in curve fitting

problems, in (5.4) the data kzi and thus the noise influence e in a nonlinear fashion.
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Figure 5-1: A fluid-filled borehole in an elastic, homogeneous, and isotropic rock
formation, forming a circularly cylindrical fluid-solid interface.

5.3 Sonic guidance condition for a fluid-filled bore-

hole

5.3.1 Formulation for forward and inverse dispersion analysis

For linearized acoustic wave propagation along a fluid-filled borehole in an elastic,

homogeneous, and isotropic rock formation (Fig. 5-1), L is 4 × 4 (see below) and

x = [ a, vs, vp, vf , Dfr ] (5.5)

with a the borehole radius, vs the shear wave velocity in the formation, vp and vf

the compressional wave velocities in the formation and the fluid, respectively, and

Dfr = Df/D the ratio of mass densities of the fluid and the formation (relative fluid

mass density, usually less than one).
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The four scalar boundary conditions at an interface between two elastic media

where transverse slip may occur require continuity of the normal component of the

particle velocity vector v, and continuity of the normal component and vanishing of

the tangential components of the traction vector τ · n̂, where τ is the symmetric stress

tensor and n̂ the unit vector normal to the interface [178]. An inviscid fluid can be

considered as special case of an elastic medium with zero shear wave velocity. In this

case, the stress tensor specializes to

τ = −p I (5.6)

with p the fluid pressure and I the identity tensor. Thus the boundary conditions at

the fluid-solid interface in Fig. 5-1 are continuity of ρ̂ · v and

ρ̂ · τ · ρ̂ = −p (5.7)

φ̂ · τ · ρ̂ = 0 (5.8)

ẑ · τ · ρ̂ = 0 (5.9)

Starting from [179], we adopt an ei kzz−iωt space-time dependence by using the

identity relating the Hankel functions of the first and second kind [83]

H(1)
n (ζ∗) =

[
H(2)
n (ζ)

]∗
(5.10)

where ζ is a generic complex variable, the asterisk denotes complex conjugation, and

n = 0, 1, . . . is the azimuthal mode order. Some rearranging leads to L = [Lij] with

L11 = kfρa Jn+1(kfρa) − n Jn(kfρa) (5.11)

L21 = Dfr (ksa)
2 Jn(kfρa) (5.12)

L31 = 0 (5.13)

L41 = 0 (5.14)
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L12 = n− An(kpρa) (5.15)

L22 = 2
[
n (n− 1) + (kza)

2 + An(kpρa)
]
− (ksa)

2 (5.16)

L32 = 2n [1 − n + An(kpρa)] (5.17)

L42 = 2i kza [An(kpρa) − n] (5.18)

L13 = −i kza (5.19)

L23 = 2i kza [n + 1 −Bn(ksρa)] (5.20)

L33 = i kza [2 (n + 1) −Bn(ksρa)] (5.21)

L43 = (ksa)
2 − 2 (kza)

2 − nBn(ksρa) (5.22)

L14 = n (5.23)

L24 = 2n [n− 1 − An(ksρa)] (5.24)

L34 = (ksρa)
2 − 2n (n− 1) − 2An(ksρa) (5.25)

L44 = −ni kza (5.26)

where Jn(ζ) denotes the Bessel function of the first kind and order n and we introduced

the auxiliary functions

An(ζ) = ζ H
(1)
n+1(ζ)/H

(1)
n (ζ) (5.27)

Bn(ζ) = ζ H(1)
n (ζ)/H

(1)
n+1(ζ) = ζ2/An(ζ) (5.28)

The normalized radial wavenumbers kαr satisfy the dispersion relations

k2
αr = k2

α − k2
z , α = s, p, f (5.29)

where kα = ω/vα.
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For proper modes, i. e., modes that are bound to the surface of the open waveguide

(the fluid-formation interface) and that are either radially evanescent or represent an

outgoing, radially decaying wave and which thus satisfy the radiation condition at

infinity, we have Re kαr ≥ 0 and Im kαr > 0 , α = s, p.

The choice of sign for kfρ only contributes a factor of (−1)n to the determinant

and thus does not influence the location of the roots of the characteristic equation.

In fact, the associated branch points for D in the complex kz domain (for a fixed ω)

and the complex ω domain (for a fixed kz) would be removable after multiplication

of the determinant by, say, (kfρa)
n.

The elements of the boundary condition system matrix, (5.15)–(5.26), were formu-

lated with care to avoid infinite values as kαr → 0 , α = s, p. Since we are interested

in minimizing the cost function in (5.4), we should also remove zeros of the determi-

nant that do not correspond to guided wave modes in order to avoid the introduction

of unwanted minima.

For n > 0, column 1 of L as given by (5.11)–(5.14) vanishes as kfρ → 0. Even

if, in an inversion, the component vf of x is not varied because this parameter might

already be known (for a water-filled borehole, vf = 1,500 m/s) this can be a problem

when computing dispersion curves. The zero can be removed by dividing column 1

by kfρa.

For all n and as ksρ → 0, the determinant based on the above formulation vanishes

in a more subtle way. In view of

lim
ζ→0

An(ζ) = 2n (5.30)

lim
ζ→0

Bn(ζ) = 0 (5.31)

we find that column 3 and column 4 become linearly dependent as ks → kz. By

adding
nLi3

i kza
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to Li4 and dividing the result by its third element the following new formulation for

the fourth column of L is obtained, as a replacement of (5.23)–(5.26):

L14 = 0 (5.32)

L24 = n

[
1 − (ksρa)

2 − (n− 2)Bn(ksρa)

4n + (ksρa)2 − 2An(ksρa) − nBn(ksρa)

]
(5.33)

L34 = 1 (5.34)

L44 =
ni

kza

nBn(ksρa) − (ksρa)
2

4n + (ksρa)2 − 2An(ksρa) − nBn(ksρa)
(5.35)

The fourth-order determinant with L14 = L31 = L41 = 0 and L34 = 1 can then be

evaluated by expanding down the first column of the matrix and across the first row

of the two 3 × 3 minors, yielding

D = L11 {L22 [(L33 L44) − L43] + L23 [L42 − (L32 L44)]

+ L24 (L32 L43 − L33 L42)}

− L21 {L12 [(L33 L44) − L43] + L13 [L42 − (L32 L44)]} (5.36)

5.3.2 High-frequency limit

We can verify our formulation by deriving the equation for the Scholte wave velocity

vSch (the speed of a surface wave along a planar fluid-solid interface) where

kz = kSch =
ω

vSch

(5.37)

is expected to satisfy the guidance condition for the fluid-filled borehole in the high-

frequency limit, ω → ∞, when all wavenumbers become so large that the local cur-

vature of the fluid-solid interface is negligible. Using

An(ζ) ∼ −iζ (5.38)

Bn(ζ) ∼ iζ (5.39)
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as |ζ| → ∞ and
Jn+1(kfρa)

Jn(kfρa)
∼ ±i (5.40)

as Im kfρ → ±∞, we obtain as ω → ∞ and for Im kfρ > 0

(
k2
z − k2

sρ

)2
+ 4 ksρ kpρ k

2
z + Dfr k

4
s kpρ /kfρ = 0 (5.41)

which, as expected, is independent of n, a, and ω (the frequency ω can be dropped

from the equation), and which checks with [180]. It is noted that, for real vSch and

vf , (5.40) implies vSch < vf , and—more stringent—for the surface wave to be bound

to the fluid-solid interface

vSch < vs,p,f (5.42)

is required.

5.4 Parametric inversion of borehole dispersions

In the following we will apply the inversion method introduced in Section 5.2.2 to the

physical model described by the determinant in Section 5.3.1. Although this example

is drawn from acoustics, the methodology applies equally well to electromagnetics

and other areas that allow for wave guidance; different waveguide structures can be

examined by considering the appropriate guidance conditions. As mentioned above,

the choice of the application example is driven by the significant industrial application

of borehole logging. In the rest of the paper ω = 2πf is real and positive.

In the cases studied, we assume the practically relevant parameters for a fast and

a slow formation considered previously in [179]; they are repeated in Table 5.1 for

reference. A formation is classified as fast or slow depending on whether the shear

wave velocity in the formation, vs, is greater or less than the fluid wave velocity vf .

The Scholte wave velocities vSch as obtained iteratively from (5.41) are also given in

Table 5.1 and found to be in compliance with (5.42).
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a [cm] vs [m/s] vp [m/s] vf [m/s] D/Df vSch [m/s]

fast 10.16 2,032 3,658 1,500 2.350 1,439.6
slow 10.16 508 1,890 1,500 2.054 452.2

Table 5.1: Parameters for a water-filled borehole in a fast and a slow formation. Given
also are the resulting Scholte wave velocities vSch.

5.4.1 Inversion with uncertain model parameters

We now concentrate on the inversion of the formation shear wave velocity vs, a quan-

tity of particular practical interest in the exploration of hydrocarbons, and investigate

the effect of systematic errors introduced into the model parameters borehole radius

a and formation compressional wave velocity vp, where in the first case the exact vp is

assumed to be known and in the second case the exact a. The parameters fluid com-

pressional wave velocity vf and relative fluid mass density Dfr are provided without

error.

For noise-free data, it is sufficient to provide a single “measurement” in order to

determine the one parameter vs (M = N = 1). This point is taken from the dispersion

of the lowest-order mode with n = 1, which can be excited by a dipole source placed

on the borehole axis and which is known as flexural wave dispersion [160, 181]. For the

parameters in Table 5.1, the flexural dispersions are plotted in Fig. 5-2 (these curves

can also be found in [179]) where phase slowness is defined as Re{kz}/ω. Generally

speaking, slowness is the reciprocal of velocity. The dashed horizontal lines labeled

as “S”, “P”, “F”, and “Sch” show the slownesses corresponding to vs, vp, vf , and

vSch, respectively. “S” is the low-frequency asymptote of the flexural dispersion while

“Sch” is approached as ω → ∞.

The results in Fig. 5-3 for four different frequencies at which the sample of the

dispersion curves in Fig. 5-2 was obtained show that if in the inversion the assumed

borehole radius is larger than the true borehole radius (leading to the dispersions in

Fig. 5-2) then the inverted shear wave velocity exhibits a positive error; the opposite is
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Figure 5-2: Flexural dispersions for a water-filled borehole.



5.4. Parametric inversion of borehole dispersions 153

true for a too small borehole radius. Starting off with a relatively small absolute value

at the lowest frequencies considered (4 kHz for the fast formation and 1 kHz for the

slow formation), the error in inverted vs initially grows as the frequency increases and

then tends to smaller values again. This is consistent with the asymptotic behavior

of the flexural dispersion curve which for both low and high frequencies approaches

values that are independent of a. The relative errors in inverted shear wave velocity

for the slow formation are found to be about ten times smaller than for the fast

formation where in the latter case the ratio of error in shear wave velocity to error

in borehole radius can be close to one. This shows that in the slow formation an

accurate estimate of vs can be obtained even when the value of a is uncertain. In

the fast formation a good estimate of the borehole radius is required to obtain an

accurate inversion result. On the other hand, reversing the roles of vs and a, if vs

in the fast formation is known with little error then the dispersion information for

intermediate frequencies could be used to find an accurate estimate of a. This would

not work for the slow formation where the flexural dispersion is much less sensitive

to borehole radius.

Similar curves are found for the inversion of vs when the assumed formation com-

pressional wave velocity vp exhibits an error (Fig. 5-4). Positive errors in vp yield

a result for vs that is smaller than the exact value. The magnitude of the error of

inverted vs is found to be increasing with frequency. This is consistent with the fact

that the low-frequency asymptote of the flexural dispersion is independent of vp while

the Scholte wave velocity vSch depends on vp. In fact, given vs, vf , Dfr, and vSch,

(5.41) can be rearranged to give an explicit expression for vp. The result is

v−2
p = v−2

Sch −
(
2 v−2

Sch − v−2
s

)4

[
4 v−2

Sch

(
v−2

Sch − v−2
s

)1/2 − Dfr v−4
s

(
v−2

Sch − v−2
f

)−1/2
]2 (5.43)

As with the dependence of inverted shear wave velocity on the error in borehole
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Figure 5-3: Relative error in inverted formation shear wave velocity for varying rela-
tive error of assumed borehole radius (flexural dispersion).
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Figure 5-4: Relative error in inverted formation shear wave velocity for varying rela-
tive error of assumed formation compressional wave velocity (flexural dispersion).
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radius, errors in formation compressional wave velocity have a much larger influence

on the inverted vs in the case of the fast formation. Comparing Fig. 5-4 with Fig. 5-

3, one notes that, in general, the sensitivity of the flexural dispersion data to vp is

smaller than the sensitivity to a. Thus the flexural dispersion for the slow formation

is found to be insensitive to both a and vp while in the case of the fast formation it is

sensitive to a and moderately sensitive to vp. The shear wave velocity vs acting as the

low-frequency asymptote has of course a strong influence on both dispersions. Similar

conclusions can be found in [160] where a perturbation model is used to calculate the

sensitivity of the flexural dispersion curve to small changes of the parameters.

While from Fig. 5-3 and Fig. 5-4 we can read off detailed information about the

error of the inversion as it depends nonlinearly on errors of the underlying model, with

frequency as parameter, in Fig. 5-5 we show results for continuously varying frequency

(the frequency ranges displayed are the same as in Fig. 5-2). The relative sensitiv-

ities plotted are defined, for arbitrary frequency, as the slopes of the corresponding

curves in Fig. 5-3 and Fig. 5-4 at the origin, that represents the case of an inversion

without error in the assumed model. These relative sensitivities thus give the error

of the otherwise exact inversion of shear wave velocity for small errors in the model

parameters. For example, the relative sensitivity with respect to borehole radius in

the fast formation [Fig. 5-5(a)] peaks near 6 kHz at around 70 %. This means that

for an inversion with 1 % error in borehole radius we would expect a result with 0.7 %

error in shear wave velocity, assuming that all other parameters are known exactly.

Stoneley dispersion

The Stoneley mode [182] is the lowest-order axisymmetric mode (n = 0) and can

be excited by a monopole source placed on the borehole axis. The dispersion curves

for the fast and the slow formation are plotted in Fig. 5-6 and can also be found in

[179]. For comparison, the flexural dispersions of Fig. 5-2 are also shown in Fig. 5-

6. At the high-frequency end of the spectrum, the Stoneley mode approaches the
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Figure 5-5: Frequency-dependent relative sensitivity of inverted formation shear wave
velocity to model error in borehole radius or formation compressional wave velocity
(flexural dispersion).
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Figure 5-6: Stoneley dispersions for a water-filled borehole, together with the flexural
dispersions of Fig. 5-2.
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vt [m/s] cutoff [kHz]

fast 1,351.5 none
slow 655.0 0.835

Table 5.2: The resulting tube wave velocities vt and Stoneley cutoff frequencies for
the configurations with parameters given in Table 5.1 and as indicated in Fig. 5-6.

same asymptotic value as the flexural dispersion, given by the Scholte wave velocity

vSch [recall that (5.41) is independent of the azimuthal mode order n]. The dashed

horizontal line labeled “T” in each subfigure of Fig. 5-6, shown in addition to the

asymptotes in Fig. 5-2, indicates the slowness corresponding to the tube wave velocity

vt. The tube wave velocity is the low-frequency asymptote of the Stoneley dispersion

and given by [182, 183]

v−2
t = v−2

f + Dfr v
−2
s (5.44)

The resulting tube wave velocities for the parameters in Table 5.1 can be found in

Table 5.2. According to (5.44), the tube wave velocity is always slower than the fluid

compressional wave velocity vf and, in a fast formation, slower than the formation

shear wave velocity vs [see the introduction to Section 5.4 and Fig. 5-6(a)]. However,

in a slow formation, vt > vs is possible, namely if

vs
vf

<
√

1 − Dfr (5.45)

as follows from the definition (5.44) under the assumption Dfr < 1. Since for the

high-frequency asymptote, vSch < vs as stated in (5.42), under the condition (5.45)

the Stoneley dispersion crosses the shear wave velocity at some cutoff frequency below

which the wave is leaky, with ksρ and kz in (5.29) complex. This phenomenon can be

observed in Fig. 5-6(b), with the cutoff frequency given in Table 5.2. Leaky borehole

modes are discussed in detail in Section 5.5. We have included the leaky Stoneley

mode into the results of this section for the sake of completeness, however, we leave
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out the plot of the associated modal attenuation as defined in (5.47) below.

The results in Fig. 5-6 show that the qualitative behavior of the Stoneley dispersion

in the two formations considered is completely different. In the slow formation, the

non-leaky portion of the Stoneley dispersion is close to the flexural dispersion while

this is not the case in the fast formation. While the phase slowness of the Stoneley

mode in Fig. 5-6(a) is monotonically decreasing, it is monotonically increasing in

Fig. 5-6(b).

The similarities and differences between Stoneley and flexural dispersions carry

over to the results in Fig. 5-7 and 5-8 that are Stoneley results analogous to the

results displayed in Fig. 5-3 and 5-4 for the flexural dispersion. Note the opposite

signs in Fig. 5-7(a) as compared with Fig. 5-3 and 5-7(b). However, positive errors in

formation compressional wave velocity lead to negative errors in inverted formation

shear wave velocity in all cases (Fig. 5-4 and 5-8).

The frequency-dependent relative sensitivities for inverting Stoneley dispersion

data that are depicted in Fig. 5-9 and 5-10 have a definition and meaning similar to

the sensitivities plotted previously for the flexural dispersion (Fig. 5-5). The data

of the four curves in Fig. 5-5 are shown again in Fig. 5-9 and 5-10 for comparison.

Since the tube wave velocity vt as given by (5.44) is independent of borehole radius a

and formation compressional wave velocity vp, all Stoneley sensitivity curves shown

go to zero as the frequency tends to zero. The sensitivity of inverted shear wave

velocity to an error in the assumed borehole radius for the fast formation [Fig. 5-9(a)]

is generally smaller in magnitude when inverting Stoneley dispersion data than when

using flexural dispersion data, unless low frequencies are considered. The magnitude

of the sensitivity of inverted shear wave velocity to an error in assumed vp for the fast

formation [Fig. 5-9(b)] is somewhat larger for the Stoneley dispersion as compared

with the flexural dispersion. Setting the leaky Stoneley results aside, the most striking

feature of Fig. 5-10 for the slow formation is the general closeness of the sensitivity

curves for the Stoneley and the flexural dispersions. The sharp peaks of the relative
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Figure 5-7: Relative error in inverted formation shear wave velocity for varying rela-
tive error of assumed borehole radius (Stoneley dispersion).



162 Chapter 5. Inversion of guided-wave dispersion data

-15 -10 -5 0 5 10 15
-2

-1

0

1

2

3

4

5

Relative error of compressional wave velocity [%]

R
el

at
iv

e 
er

ro
r 

of
 s

he
ar

 w
av

e 
ve

lo
ci

ty
 [%

]

2 kHz

3 kHz

1 kHz

4 kHz

(a) Fast formation.

-15 -10 -5 0 5 10 15
-0.2

-0.1

0

0.1

0.2

0.3

0.4

Relative error of compressional wave velocity [%]

R
el

at
iv

e 
er

ro
r 

of
 s

he
ar

 w
av

e 
ve

lo
ci

ty
 [%

]

4 kHz

3 kHz

2 kHz

1 kHz

(b) Slow formation.

Figure 5-8: Relative error in inverted formation shear wave velocity for varying rela-
tive error of assumed formation compressional wave velocity (Stoneley dispersion).
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sensitivities for the leaky Stoneley mode in Fig. 5-10 occur at that frequency where

the dispersion curve in Fig. 5-6 goes through a very steep section.

5.4.2 Bandwidth and noise

It is important to realize that sensitivity of the dispersion data to several parameters

(e. g., vs, vp, and a for the fast formation) does not necessarily allow the simultaneous

inversion of the data for these parameters. For example, if the data depend only on

the ratio vs/vp and are sensitive to this ratio then they will be sensitive to changes in

vs with vp fixed, and vice versa, but simultaneous determination of both parameters

will be impossible due to the non-uniqueness of the problem. Simultaneous inversion

for N parameters requires, beside M ≥ N where M is the number of data points, a

sufficient degree of independent information about the individual parameters in the

data. Guided by principles of communications engineering, it is quite natural for

the problem at hand to try adding more information to the data by sampling the

dispersion curve with a larger bandwidth.

For the example of the fast formation and for inverting vs and vp from flexural

dispersion data, we will examine if the increased technological demands of designing

a wideband system would be worth pursuing.

We choose a fixed spacing ∆f = 200 Hz between the samples which are centered

about fc = 6.5 kHz [a point to the right of the turning point of the dispersion curve

in Fig. 5-2(a)], and, starting with M = 2, add points at both ends of the sampled

interval, extending the bandwidth by 400 Hz at each step. For a fixed systematic

model error in formation compressional wave velocity vp of −10 % and with no noise

added to the data, Table 5.3 shows the error in inverted shear wave velocity vs with

increasing bandwidth or, equivalently, number of samples M . It is seen that the

inversion result is practically independent of bandwidth and the resulting error, which

could as well be read off from Fig. 5-4(a), is determined by the error in vp. Table 5.3

also provides the number of iterations required in the application of the Gauss-Newton
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Figure 5-9: Frequency-dependent relative sensitivity of inverted formation shear wave
velocity to model error in borehole radius or formation compressional wave velocity
using Stoneley or flexural dispersion data (fast formation).
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Figure 5-10: Frequency-dependent relative sensitivity of inverted formation shear
wave velocity to model error in borehole radius or formation compressional wave
velocity using Stoneley or flexural dispersion data (slow formation).
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Bandwidth M Inverted vs Error Iter.
[kHz] [m/s] [%]

0.2 2 2,082.3 2.5 4
0.6 4 2,082.6 2.5 5
1.0 6 2,083.0 2.5 5
1.4 8 2,083.7 2.5 6
1.8 10 2,084.4 2.6 6
2.2 12 2,085.3 2.6 6
2.6 14 2,086.3 2.7 6
3.0 16 2,087.3 2.7 5

Table 5.3: Effect of increasing bandwidth on the inversion for formation shear wave
velocity with −10 % error in formation compressional wave velocity (fast formation,
flexural dispersion, fc = 6.5 kHz, no noise).

method. The initial guess for vs is obtained directly from the data by taking it to be

a few percent larger than the largest “measured” phase velocity.

In order to achieve a more accurate result for vs and remove the uncertainty due

to vp, one can try to invert the data for the two parameters simultaneously (N = 2).

In the present noise-free case and for all bandwidths in Table 5.3, this gives back

the exact values for vs and vp listed in Table 5.1 and originally used to generate the

dispersion curve in Fig. 5-2(a). This potentially exact inversion of dispersion data is an

important feature of the methodology employed in this thesis. However, the condition

numbers of the inversion matrix in Table 5.4 show that the problem at hand is not

well posed, i. e., the successful simultaneous inversion for vs and vp relies on the fact

that the supplied data contain no errors. The condition number in the context here is

defined as the ratio of the largest to the smallest of the eigenvalues of J
T

0 ·J0 where J0

is the 2M ×N real Jacobian matrix at the start of the Gauss-Newton iteration. The

reciprocal of this condition number is an indicator of how well defined the solution

to the minimization problem is in terms of uniqueness. As seen from the data in

Table 5.4, increasing the bandwidth when sampling the flexural dispersion yields a

considerable improvement of the condition number for the simultaneous inversion of
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Bandwidth M Condition
[kHz] number

0.2 2 582,000
0.6 4 64,400
1.0 6 18,800
1.4 8 7,780
1.8 10 3,900
2.2 12 2,210
2.6 14 1,370
3.0 16 903

Table 5.4: Effect of increasing bandwidth on the conditioning of the problem of
simultaneous inversion for formation shear and compressional wave velocities (fast
formation, flexural dispersion, fc = 6.5 kHz, no noise).

vs and vp. But even for 3 kHz bandwidth, after a decrease by about three orders of

magnitude, the condition number is still much larger than the ideal unity.

When examining the cost functions associated with the cases in Table 5.4 as

functions of vs and vp, it is found that, while there is a minimum at the correct

position which is accurately determined by the Gauss-Newton iteration procedure,

it is located inside a long valley with a shallow bottom [c. f., Fig. 5-11(b) below].

Small perturbations in the data therefore can lead to a great displacement of the

minimum’s location and thus to an inaccurate inversion result. This effect is similar

to the determination of the location of the intersection point of two almost parallel

lines in a plane; small changes in the parameters describing the lines can move the

intersection point far away from its original position.

The detrimental effect of ill conditioning in the presence of noise is demonstrated

by the results in Table 5.5. Pseudo-random white Gaussian noise is added to the real-

valued slowness data with 3 kHz bandwidth, with the noise level defined as relative

root mean squared (RMS) error. It is seen that only for the cases of zero and 0.5 %

noise, reasonable inversion results are obtained. For further increase of the noise level

a rapid degradation is observed.
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Noise Inverted Inverted Error Error Iter.
[%] vs [m/s] vp [m/s] vs [%] vp [%]

0.0 2,032.0 3,658.0 0.0 0.0 7
0.5 2,023.7 3,784.1 −0.4 3.5 7
1.0 2,227.9 2,969.8 9.6 −18.8 7
1.5 2,981.3 3,057.0 46.7 −16.4 18

Table 5.5: Effect of increasing noise level on the simultaneous inversion for formation
shear and compressional wave velocities (fast formation, flexural dispersion, fc =
6.5 kHz, 16 samples with 3 kHz bandwidth).

Returning to the case of inversion for formation shear wave velocity with fixed

−10 % error in formation compressional wave velocity (as in Table 5.3), the results

documented in Table 5.6 show that the inversion with N = 1 is robust against noise

in the data. Because only one realization of the noise process is considered, after an

initial increase of the resulting error in inverted shear wave velocity with increasing

noise level, we observe an improvement of the error; this would not be expected on

average.

Similar results as described above are found when inverting the flexural dispersion

data for the shear wave velocity and the borehole radius simultaneously. Again, a

high degree of non-uniqueness of the problem precludes accurate extraction of both

parameters from the data when noise is present, a situation that cannot be circum-

vented by increasing the bandwidth. It is pointed out that this is not because of a

possible shortcoming of the inversion procedure employed but rather dictated by the

physics of the problem.

The conclusion here is that for the fast formation one of the parameters vs, vp,

or a can be determined from the flexural dispersion data considered. For the slow

formation, only vs can be inverted successfully due to a lack of sensitivity to the

other parameters. Increasing the bandwidth does not add enough information to the

data in order to overcome this problem. It primarily helps in the identification of the

dispersion curve so that, e. g., outliers in the data can be removed prior to further
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Noise Inverted Error Iter.
[%] vs [m/s] [%]

0.0 2,087.3 2.7 5
0.5 2,091.8 2.9 5
1.0 2,094.3 3.1 5
1.5 2,094.9 3.1 5
2.0 2,093.4 3.0 5
2.5 2,089.9 2.9 5
3.0 2,084.3 2.6 4
3.5 2,076.8 2.2 4
4.0 2,067.3 1.7 4
4.5 2,055.5 0.6 4
5.0 2,042.5 0.5 4

Table 5.6: Effect of increasing noise level on the inversion for formation shear wave
velocity with −10 % error in formation compressional wave velocity (fast formation,
flexural dispersion, fc = 6.5 kHz, 16 samples with 3 kHz bandwidth).

processing, and in providing a larger number of measured points so that noise averages

out. The latter, however, could also be realized by stacking repeated narrow-band

measurements at one frequency.

5.4.3 Multi-frequency and multi-mode data

Since we found that increasing the bandwidth about an intermediate frequency of

the flexural dispersion does not add any significant independent information to the

data (Section 5.4.2), we experimented with providing the inversion algorithm with

narrow-band data collected at different frequencies and combining data belonging to

different dispersion curves.

Multi-frequency data

Since the formation shear wave velocity constitutes the low-frequency asymptote of

the flexural dispersion, it is obvious that by combining one point taken from that
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section of the dispersion curve where the asymptote practically has been reached [e. g.,

at 2 kHz in Fig. 5-2(a)] and one point at an intermediate frequency (such as 6.5 kHz

for the fast formation), a simultaneous inversion for vs and one other parameter to

which the second measurement is sensitive (a or vp for the fast formation) would be

possible. However, this scenario is somewhat trivial because obtaining the first point

requires measuring the low-frequency part of the dispersion curve which, if acquired

with success, would yield knowledge of vs directly. Furthermore, it is pointed out that

if a kzi is close to ωi/vs the cost function in (5.4) exhibits, due to the non-removable

branch point of the determinant D at ω/vs in the complex kz domain, an undesired

kink with respect to the component of x representing the model shear wave velocity,

which is close to the location of the pursued minimum and thus likely to interfere with

the optimization. These considerations lead to the question of how far the first point

can be moved up the dispersion curve (away from the knee towards higher frequencies,

keeping the second measurement fixed) while the two data points can still be used to

deduce vs and a second parameter (a or vp) simultaneously, without recreating the

non-unique situation as in Section 5.4.2. The outcome of this numerical experiment is

that typically the transition to an underdetermined problem is a sharp one, occurring

almost immediately after the data point departs away from the asymptote.

Multi-mode data

Since typical logging tools have both monopole and dipole sources available, it is

reasonable to combine flexural and Stoneley mode dispersion data and to investigate

the possibility of simultaneous inversion for more than one parameter. The capability

of processing such multi-mode data without any modifications is a major advantage

of the inversion scheme introduced in Section 5.2.2, which is not based on dispersion

curve fitting. For the borehole problem with proper modes, on input each data point

(ωi, kzi) has to be characterized only with respect to the azimuthal mode order n so

that the determinant can be evaluated accordingly; no further labeling of the data is
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Iter. Inverted vs Inverted a
[m/s] [cm]

0 1,828.8000 9.144000
1 2,156.9832 11.342040
2 2,042.9865 10.389955
3 2,032.3390 10.172504
4 2,031.9958 10.160209
5 2,032.0002 10.160003
6 2,032.0000 10.160000

Table 5.7: Numerical values of the iterates shown in Fig. 5-11(a).

necessary.

As an example, consider the fast formation and simultaneous inversion for forma-

tion shear wave velocity vs and borehole radius a. Combination of one point from

the Stoneley mode at 5 kHz and one point from the flexural mode at 6 kHz leads to

a minimum of the cost function that is much better defined than in the case of using

flexural data only. However, when using the same data for the simultaneous inversion

of vs and formation compressional wave velocity vp no improvement results and a

long, shallow minimum of the cost function is encountered.

This and the application of the Gauss-Newton minimization approach are illus-

trated in Fig. 5-11. Starting from an initial guess with −10 % error in both parameters

[vs and a in Fig. 5-11(a), and vs and vp in Fig. 5-11(b)] the straight lines drawn con-

nect successive iterates. Shown also are contours of the RMS cost based on (5.4).

At the points marked “x” the cost is zero; the contour lines are equidistant on linear

scale. For reference, Table 5.7 and 5.8 give the numerical values of the inverted pa-

rameters at each iteration step, starting with the initial guesses. These data illustrate

the rapid convergence of the Gauss-Newton method applied to our problem.

The dark strips surrounding vs = 1, 677 m/s in Fig. 5-11(a) and 5-11(b) are ex-

plained as follows. The cost function exhibits a kink here due to a branch point

when vs approaches the largest phase velocity provided as input. This is the point of
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Figure 5-11: Examples of the Gauss-Newton search in the case of simultaneous inver-
sion for formation shear wave velocity and borehole radius or formation compressional
wave velocity (fast formation, Stoneley and flexural dispersion).
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Iter. Inverted vs Inverted vp
[m/s] [m/s]

0 1,828.8000 3,292.2000
1 1,995.6785 3,970.3752
2 2,028.9154 3,542.2408
3 2,032.1967 3,648.9515
4 2,031.9901 3,658.1178
5 2,032.0003 3,657.9982
6 2,031.9997 3,658.0026

Table 5.8: Numerical values of the iterates shown in Fig. 5-11(b).

the flexural dispersion at 6 kHz in Fig. 5-6 [1/(1, 677 m/s) = 596µs/m]. The special

formulation of the determinant given in Section 5.3.1 takes care of keeping the value

here finite (neither zero nor infinite). In the inversion, we have to make sure that

the initial guess for vs is to the right of the kink, knowing that the Stoneley and the

flexural mode both are slower than the formation shear wave velocity vs.

By providing several samples of the Stoneley and flexural dispersion curves from

around 5 kHz and 6 kHz, respectively, and dividing M , the number of data points,

unevenly between the two modes, it is possible to change their relative importance

in the inversion and influence the shape of the minimum shown in Fig. 5-11(a). If

the same number of data points is provided from both dispersion curves, however,

the minimum is found to be similar to the case M = 2, once again showing the weak

influence of data bandwidth on the information content of the data.

For the slow formation, we found that combining Stoneley and flexural dispersion

data does not help in improving the conditioning of either of the two simultaneous

inversion problems (e. g., when using two points located both at 2 kHz).
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5.5 Borehole leaky-wave modes

Encouraged by the partial success of employing multi-mode information in the in-

version for more than one parameter, we now focus our attention on the so-called

leaky-wave modes.

In electromagnetics, there exists an extensive body of literature on the subject

of leaky guided waves. The classical steepest-descent analysis implicating leaky-wave

modes can be found in Collin’s Field Theory of Guided Waves [184], originally pub-

lished in 1960. The leaky-wave modes supported by open waveguides of various

configurations have been studied extensively by A. A. Oliner and his collaborators;

for an overview of papers starting in the early 1980s, refer to [185]. The observation

that guided-wave modes associated with a layered background medium and not only

its bulk wavenumbers give rise to branch points in the complex kz domain and thus

to various classes of leaky waves was made in [185, 186]. Recent efforts are, e. g.,

directed towards application of steepest-descent analysis to such more complicated

structures [187, 188].

In what follows below, we explore the possibility of a systematic treatment of the

leaky-wave domain in the area of acoustics. Leaky waves arising in borehole acoustics

were discussed in [171]–[176], [189].

5.5.1 Classification of leaky-wave modes

Leaky-wave modes are unphysical or “improper” in the sense that they cannot exist as

individual propagating waves. They exhibit an exponential radial growth while being

attenuated longitudinally, not satisfying the radiation condition at infinity. Despite

this they can contribute to the wave field in limited space regions and help in the

understanding of how energy is radiated away from open waveguides. We turn to

the question if the dispersions of these modes, for acoustic wave propagation in a

borehole, can actually be measured later in this section.
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Instead of concentrating on proper modes alone by requiring kαr for α = s, p to

be in the first quadrant of the complex plane including the positive imaginary axis,

c. f., Section 5.3.1, we now specify kαr analytically as

kαr = inα
√
k2
z − k2

α (5.46)

where nα can be 1 or −1 and the unique principal value of the square root is taken,

i. e., that branch of the square root which maps the complex plane onto the right half-

plane including the positive imaginary axis and zero, consistent with the standard

numerical implementation of this function. Each specific choice of the ns, np pair

corresponds to locating kz on one of four copies of the complex plane whose collection

form what is known as Riemann surface, serving as the complex kz domain. The four

Riemann sheets are connected across hyperbolic Sommerfeld branch cuts [190, 191]

emanating from the branch points ±kα and approaching ±i∞. The choice of the

Sommerfeld branch cuts is implicit in the definition (5.46) where the branch cut for

the square root function is along the negative real axis. While from a mathematical

point of view there is a high degree of arbitrariness in the introduction of branch

cuts (if the main purpose is the construction of domains on which analyticity holds)

the Sommerfeld branch cuts are of fundamental nature physically. This is because,

for real, positive kα (with each of the hyperbolas degenerated to an “L” on the real

and imaginary axes) and nα = 1, (5.46) maps the first quadrant of the respective kz

sheet onto the second quadrant of the complex kαr plane (with the kz > kα portion

of the real axis mapped onto the positive imaginary axis corresponding to surface

waves that propagate without attenuation in the axial direction); if nα = −1 the first

quadrant is mapped onto the fourth quadrant corresponding to waves that propagate

in the axial and radial directions while being attenuated in the axial direction and

growing in the radial direction (leaky waves). This leads to a clear relation between

the kαr and kz depending on which of the four Riemann sheets kz is located, with
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corresponding physical meaning.

We are thus led to a natural classification of the roots of (5.1) and the associated

modes (again considering real, positive kα for simplicity). Real roots kz > kα on

the sheet with ns = np = 1 (termed the top sheet) represent modes that are bound

to the surface of the waveguide. They are thus classified in the present work as

proper nm modes, where n, as before, is the azimuthal mode order and m a second

index distinguishing the various modes encountered for a given n. Without proof we

state here that no other than real roots with |kz| > kα are found on the top sheet

(note that if kz is a root then −kz is also a root). Roots in the first quadrant of

the sheet with ns = −1, np = 1 which we call the S sheet are associated with leaky

modes that exhibit leakage in the shear component only and are labeled as Snm.

Accordingly, when ns = np = −1, i. e., on the SP sheet, the roots correspond to leaky

SPnm modes with shear and compressional components that grow exponentially in

the radial direction. Finally, the P sheet where ns = 1, np = −1 is populated with

leaky Pnm modes that have bound shear and leaky compressional components.

For example, in this classification scheme the modes corresponding to the Stoneley

dispersions in Fig. 5-6 would be designated as proper 01 modes and the leaky Stoneley

mode in Fig. 5-6(b) as S01. The transition from S01 to proper 01 is an example of the

migration of a zero of D from a bottom Riemann sheet to the top sheet as frequency

increases.

5.5.2 Leaky-wave modal dispersions

For the parameters of the fast formation in Table 5.1 and for azimuthal mode order

n = 1 (dipole modes) we computed a comprehensive classified set of modal disper-

sion curves (Fig. 5-12 and Fig. 5-13). All modes detected (by inspection of |D|,
Section 5.2.1) and with an attenuation of less than 50 dB/m in the frequency range

f = 0 . . . 15 kHz were included. Phase slowness is defined as Re{kz}/ω and modal
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attenuation as

αdB =
20 m

ln 10
Im{kz} × 1 dB/m (5.47)

The modes encountered on each of the four Riemann sheets were labeled with m =

1, 2, . . . according to phase slowness at the low-frequency end of the spectrum, starting

with m = 1 for the slowest mode. Thus, the flexural dispersion in Fig. 5-2(a) is

here referred to as belonging to the proper 11 mode [Fig. 5-12(a)]; since a lossless

formation is considered, the proper modes have zero attenuation [Fig. 5-13(a)]. The

various leaky modes exhibit a quite rich frequency dependency. It is observed that,

as ω → 0, the phase slowness of the leaky waves considered here either approaches

zero or goes to infinity [Fig. 5-12(b) to Fig. 5-12(d)], contrasting the behavior of the

proper modes. At high frequencies, the slowness of the leaky S12 mode approaches

1/vs while SP12 and P11 apparently go to 1/vp, a dependence that makes the latter

two modes interesting candidates for inversion of vp. Comparing Fig. 5-13(b) through

Fig. 5-13(d), our interest in SP12 further increases since this mode exhibits a relatively

low attenuation over a wide frequency band.

We conclude the qualitative description of the computed dipole dispersion curves

with reporting an as yet unexplained “resonant” behavior of the SP12 mode at higher

frequencies. The modal dispersion, plotted in Fig. 5-14 over an extended frequency

range f = 0 . . . 35 kHz, shows well-defined and roughly equally spaced maxima of

attenuation at f = 13.69, 21.88, 30.03 kHz with sections of decreasing attenuation

and slightly increasing phase slowness in between. At the location of each of the

attenuation maxima the phase slowness forms a kind of step with finite negative

slope.

In principle, given its dispersion data, the leaky SP12 mode is found to be suited

for helping in the simultaneous inversion of vs and vp in the fast formation. When

examining the guidance mismatch as defined in (5.4) with M = 2, where one sample

is taken from the proper 11 dispersion at 6 kHz and the other from the SP12 dispersion

at 9 kHz, a well-defined minimum in the vs-vp plane is encountered, promising a robust
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Figure 5-12: Comprehensive classified set of dipole modal dispersions: modal phase
slowness (fast formation).
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Figure 5-13: Comprehensive classified set of dipole modal dispersions: modal atten-
uation (fast formation).
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Figure 5-14: “Resonant” behavior of the leaky SP12 dispersion at higher frequencies
(fast formation).

inversion of the two parameters in the presence of noise. The attenuation of the SP12

mode at the sampling frequency, read off from Fig. 5-13(c) as about 15 dB/m, is not

exceedingly high.

5.5.3 Excitation of leaky-wave modes

Before conducting any further sensitivity experiments we should address the question

which of all the leaky modes satisfying the boundary conditions at the surface of

the open waveguide are actually excited with appreciable amplitude, so that their

dispersions could possibly be obtained experimentally.

For this purpose we simulated the dipole excitation problem in the fast formation

under consideration (Table 5.1) with a 3-D Green tensor code for cylindrically layered

structures [192]. The dipole source was placed on the borehole axis, with the dipole

axis in the radial direction. Sixteen receivers on the borehole axis with interspacing

of 15.24 cm (6 in) were simulated to record the radial component (co-polarized with

the dipole source) of the velocity waveforms in the time domain, in response to a

transmitted pulse with a spectrum of Blackman-Harris type and center frequency

7.5 kHz. For the results discussed below, the receiver closest to the source had a
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separation from the source equal to the receiver spacing. The time sampling step was

4µs and the fast Fourier transform (FFT) employed of length 1024.

The simulated noise-free waveforms were then input to a modified matrix pencil

algorithm [158] which returns estimated modal dispersion data (Fig. 5-15). It is

important to note that this is a pure signal processing step the application of which

requires no knowledge of the configuration of the waveguide and no information about

the details of the source. The model order was set to p = 6, the tolerance for accepting

forward-backward pole matches was 10 %, and the FFT of length 2048. Discarding

poles with a residue of less than −30 dB as compared to the pole showing the strongest

excitation over the whole frequency range, the remaining dispersion data are plotted

in Fig. 5-15, marked with circles of 10 sizes each of which covers 3 dB of energy.

We furthermore selected dispersion curves from Fig. 5-12 and Fig. 5-13 (obtained

independently by mode tracking) and overlaid them with the discrete dispersion data

as shown in Fig. 5-15.

The result is a quite convincing demonstration of the physical reality of leaky

waves in general! In fact, here, with the receiver array not far from the source, they

are seen to be the dominant contributors to the energy of the wavefield. We clearly

identify the excitation of the SP13, SP14, and S13 leaky modes over certain sub-spectra

(note the simultaneous match in phase slowness and attenuation). Above 4.5 kHz the

chain of estimated dispersion data that up to this point matches closely the SP13

dispersion curve appears to divert in favor of the S12 dispersion, leading to a poorer

match. This observation might reflect a non-uniqueness of the decomposition into

leaky-wave modes. We also find the proper 11 mode (dominant for a greater distance

from the source) and, much weaker, the proper 12 mode. The estimation of both

proper modes suffers from a removable phase wrapping problem, seen in the phase

slowness data [Fig. 5-15(a)] beginning at about 10 kHz and 13 kHz, respectively; the

estimated phase slownesses erroneously jump down to zero, an effect that does not

concern us here. Finally, to a number of poles a phase slowness close to 1/vs and
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1/vp is assigned, commonly interpreted as indication of shear and compressional head

waves. We are not discussing here the possibility of using the latter information for

the deduction of vs and vp.

While all of the above is interesting, we find that the sought after SP12 mode

is not encountered in the simulation results in Fig. 5-15. Testing the possibility of

simultaneous inversion of vs and vp in a similar way as for SP12, but now combining the

point from the proper 11 dispersion at 6 kHz with a sample from the SP13 dispersion at

4 kHz, then with one from the S12 dispersion at 5.5 kHz, one from the SP14 dispersion

at 13 kHz, and finally one from the S13 dispersion at 14.5 kHz, leads in the first two

cases to a very poorly defined minimum and in the second two cases to a poorly defined

minimum of the guidance mismatch in the vs-vp plane. Thus, the leaky-wave mode

dispersion data extracted with help of the present signal processing methodology are

not helpful in the simultaneous inversion of vs and vp.

While we cannot exclude the possibility that a different signal processing scheme

would indicate the contribution of leaky modes not shown in Fig. 5-15, the question

whether or not a particular mode is excited and thus physically significant will depend

on the frequency-dependent location of the associated root in the kz domain. For

the electromagnetic open-waveguide problem, necessary conditions for the physical

significance of leaky-wave modes have been established, namely the path consistency

condition [193, 194] and the capturing of the roots by a steepest-descent path [187,

188]. Similar conditions may hold for acousto-elastic waves.

5.6 Conclusions

We have described a very efficient and versatile procedure for a parametric model-

based inversion of guided-wave modal dispersions. The new method avoids the explicit

computation or tabulation of dispersion curves and is applicable to multi-frequency

and multi-mode data. Using a suitable formulation of the guidance condition, we
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investigated the practically important case of sonic wave propagation along a fluid-

filled borehole in a homogeneous, isotropic elastic rock formation, concentrating on the

inversion for the formation shear and compressional wave velocities and the borehole

radius. While the inversion principle proved to work well, in some cases physical

limitations were encountered, caused by a lack of sensitivity of the data or non-

uniqueness of the inverse problem. Some of the results are summarized qualitatively

in the following paragraph.

For the fast formation considered, the individual flexural and Stoneley dispersions

were found to be invertible robustly only for one of the three parameters. A simulta-

neous inversion for more than one parameter proved difficult due to the high degree

of non-uniqueness encountered. For the slow formation considered, the data were

shown to be relatively insensitive to the formation compressional wave velocity and

the borehole radius. Collecting data over a wider frequency band (but away from the

asymptotes) seemed not to improve this situation. Combining Stoneley and flexural

dispersion data was found to be beneficial for the simultaneous inversion for formation

shear wave velocity and borehole radius, but only in the case of the fast formation.

Inspired by similar efforts in the area of electromagnetics, we classified the bore-

hole leaky-wave modes according to the location of the roots of the characteristic

equation on the various Riemann sheets of the complex longitudinal wavenumber do-

main. This natural classification scheme can be generalized to multi-layer structures.

A comprehensive set of dipole leaky-wave modal dispersions was computed for the fast

formation, showing a rich variety of frequency dependencies. The mode termed SP12

was found to be suitable for the inversion for formation compressional wave velocity.

In an independent numerical investigation (using a 3-D Green tensor code with subse-

quent dispersion data extraction) the excitation of several of the predicted leaky-wave

modes was clearly demonstrated (with the receiver array close to the source point).

None of the extracted modes, however, proved useful for the simultaneous inversion

for the formation shear and compressional wave velocities. Despite this, we hope that
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similar systematic investigations of the leaky-wave mode regime might contribute to

a more detailed understanding of the sonic wave propagation along boreholes.
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Chapter 6

Summary

The material in Chapter 2 discusses the construction of tapered waves for the numer-

ical simulation of three-dimensional (3-D) rough surface scattering via the method of

moments. The use of such waves enables truncating the computational model of the

rough surface and avoids artificial edge diffraction due to an illumination with plane

waves. We consider the class of incident fields that can be written as the most gen-

eral superposition of a two-dimensional (2-D) spectrum of plane waves with arbitrary

individual polarization, including propagating and evanescent waves. The amplitude

spectrum is chosen to synthesize an arbitrary footprint of the tapered wave. The

use of a simple Gaussian spectrum is recommended and avoids problems near the

grazing incidence. A dominant polarization state of the tapered wave for all angles of

incidence is achieved as prescribed, by choosing the polarization vector of each indi-

vidual plane wave as the orthogonal projection of the polarization vector of the central

plane wave onto the plane determined by the respective wavevector. The virtue of

this procedure is the removal of an irregularity at the origin of the 2-D wavenumber

space that follows from a conventional construction in which constant horizontal and

vertical polarization components are used. This irregularity would lead to anoma-

lies observed at and near the normal incidence. The resulting polarization vector as

proposed is analytic throughout the domain of 2-D wavenumbers corresponding to

187
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propagating waves. Furthermore, the above mentioned orthogonal projection leads

to a certain least squared error property of the total Maxwellian field with respect to

a field distribution that is ideal regarding tapering and polarization but that does not

satisfy Maxwell’s equations. An exhaustive numerical comparison of the behavior

of the optimal tapered wave versus the tapered wave, that exhibits the mentioned

irregular behavior at normal incidence, as a function of incidence angle and footprint

size is carried out. Relations to other tapered waves are pointed out and issues in the

application of the tapered wave concept to 3-D scattering are discussed. The forma-

tion of the beam of the tapered wave is illustrated and it is noted that the inclusion

of evanescent waves enables clean footprints even at grazing incidence. However, at

grazing incidence and when objects are present in the simulation, energy is directed

toward the edges of the simulation domain, leading to secondary edge diffraction al-

though a tapered incident wave is used, showing the aggravated challenge of the low

grazing angle scattering problem. In a conceptually logic next step, the established

regularity of the polarization vector is exploited in deriving a closed-form approxima-

tion of the tapered wave that can be evaluated without resorting to any numerical

integration. The derivation is based on an asymptotic expansion of the superposition

integral with the Gaussian amplitude spectrum for large footprint sizes. The result

has an interesting algebraic structure consisting of three separate factors that repre-

sent a plane wave, an amplitude shape factor, and a variable polarization vector. The

local character of the expansion forces the breakdown of this approximation near the

grazing incidence, similar to the 2-D scalar Thorsos wave.

In Chapter 3, the focus is on low-frequency broadband electromagnetic induction

involving highly but not perfectly conducting and permeable objects. In view of the

large conductivity contrast encountered in practice, the development is carried out

in the domain of magnetoquasistatics. This regime is characterized by magnetic dif-

fusion inside the objects, governed by a Helmholtz equation with imaginary squared

wavenumber, and rapidly decaying, quasistatic scattered or secondary fields in the
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background medium, described by Laplace’s equation. The problem of a conduct-

ing and permeable prolate spheroid under axial, time harmonic excitation is solved

analytically in terms of an infinite matrix equation. To this end, the fields inside

the spheroid are expanded in terms of angular and radial spheroidal wavefunctions

of the first kind, and the fields outside the spheroid in terms of associated Legendre

functions of the first and second kind. These expansions are based on the separabil-

ity of the scalar Helmholtz and Laplace equation in prolate spheroidal coordinates.

We then match the tangential electric and magnetic fields and expand the angular

spheroidal wavefunctions in terms of associated Legendre functions of the first kind,

thereby eliminating the angular variable from the problem but retaining the infinite

series in the resulting linear equations for the unknown expansion coefficients. A

consideration of the far scattered field using the asymptotic behavior of the associ-

ated Legendre function of the second kind leads to an expression of the magnetic

dipole moment induced in the spheroid or, equivalently, the magnetic polarizabil-

ity factor of the spheroid, in terms of the first of the exterior expansion coefficients

and elementary functions. We then derive special cases of the theory, among them

the high-frequency limit and the low-frequency limit including the additional limits of

large elongation and large relative permeability. A reconsideration of the derivation of

the high-frequency limit shows that a particular asymptotic formula might constitute

a broadband, closed-form approximation for the magnetic polarizability, however, a

negligence of the angular aspect of the problem leads to an inaccuracy at intermediate

frequencies. This prompts the development of an analytical thin-skin approximation

that takes the metric of the spheroidal coordinate system into account, leading to

an infinite system of equations featuring associated Legendre functions of the second

kind and integrated associated Legendre functions of the first kind, instead of ra-

dial spheroidal wavefunctions of the first kind and spheroidal expansion coefficients,

that are difficult to compute in a stable manner at high frequencies. The resulting

high-frequency approximation, seen to extend to lower frequencies when the relative
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permeability is large, implies a significant reduction in mathematical complexity as

compared to the exact solution. Approximate solutions for long spheroids and long

circular cylinders are derived, given in terms of Bessel functions with complex argu-

ment and based on an exact functional, relating the induced magnetic dipole moment

and the fields interior to the spheroid, and an infinite cylinder approximation. For

numerical implementation, the infinite matrix equations are truncated and the ra-

dial spheroidal wavefunctions expanded in terms of spherical Bessel functions with

complex argument and spheroidal expansion coefficients. Hodge’s method is used to

obtain the complex spheroidal eigenvalues. To bridge a sometimes remaining gap

between low-frequency and high-frequency results, a broadband rational function ap-

proximation is developed and demonstrated. The magnetoquasistatic response of a

collection of small conducting and permeable objects is investigated, using a Foldy-

Lax-type multiple scattering formulation with the induced magnetic dipole moments

as unknowns. A simulation and measurement results demonstrate the discriminating

capability of broadband electromagnetic induction methods.

Chapter 4 concentrates on a particular class of linear inverse problems, motivated

as follows. As fields and waves propagate into space, information on the spatial details

of their originating sources is gradually lost. This is evident from the observed blurring

of the field distribution in free space when propagating, e. g., from a plane to a paral-

lel plane away from the sources. This free-space diffraction phenomenon, based on a

formulation that employs the equivalence principle, corresponds to a straightforward

outward analytical continuation of the data, which is a numerically stable operation.

However, the inverse problem, i.e., the determination of the field distribution on a sur-

face located between the surface where the data are given and the unknown sources, is

unstable. The solution of this problem, where no a priori knowledge on the unblurred

data is assumed, is of interest in, but not limited to, such diverse fields as magnetome-

try, gravimetry, diffraction tomography, and scanning near-field optical microscopy.

In an abstraction from the physical applications that are described in the second half
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of the chapter, we have considered a multi-dimensional deconvolution problem, where

the kernel depends on a parameter. This scalar, non-negative parameter describes

the degree of blurring of the unknown object function. Based on the sole assump-

tion that the blurring is additive, i. e., that a certain degree of distortion can as well

be obtained by repeated application of the convolution operator with appropriate

fractional choice of the blurring parameter, it is shown that the frequency domain

representation of the kernel must be of exponential form. Consequently, the blurring

process suppresses high-frequency components exponentially and the deconvolution

problem is ill-conditioned. The ill-posedness of this type of inverse problems is often

addressed with the help of the popular Tikhonov regularization technique, where a

weighted energy functional is added to a data mismatch cost functional to be mini-

mized. For our case of a convolutional operator this leads to a linear, shift-invariant

filter which can be implemented numerically in the spatial frequency domain, using

the fast Fourier transform algorithm. A strategy for choosing the regularization pa-

rameter is discussed. However, the somewhat artificial character of the introduction

of the regularization parameter in the Tikhonov method, calls for the development of

an alternative approach. Inspired by the geometry of the underlying physical applica-

tions, a solution based on a local extrapolation scheme is developed. Here an outward

continuation away from the sources (a stable operation) is performed first, followed

by an inward extrapolation towards the sources along lines perpendicular to the data

surfaces. From a detailed analysis of this process, it is concluded that there is an op-

timal choice of the extrapolation parameters for which the error in the reconstructed

data is minimized. It is interesting to note that, although fundamentally different, the

two solutions behave similarly at the two extreme ends of their respective parameter

space; the methods become either unstable due to exponential amplification of noise

or inaccurate due to loss of resolution. For the planar inverse diffraction problem it

is shown that a separate treatment of propagating and evanescent waves allows the

application of the local extrapolation scheme to data obeying the Helmholtz equation.
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While numerical results for the planar Poisson kernel and its generalization to the

dynamic case indicate no superior performance of the local extrapolation method as

compared with the common Tikhonov regularization technique, its direct applicabil-

ity to non-convolutional problems is of interest. Furthermore, the local extrapolation

scheme including parameter choice strategies can be formulated entirely in the space

domain. Its local character may prove useful, e.g., in the case of contamination of the

data by localized noise.

The inversion of guided-wave dispersion data with the goal of inferring unknown

waveguide constitutive and geometric parameters is the topic of Chapter 5. The

forward problem of obtaining modal dispersion curves is considered first. The de-

terminant of the system matrix of the homogeneous linear system of equations that

follows from matching the appropriate boundary conditions is a function of in general

complex axial wavenumber, angular frequency, and a waveguide parameter vector.

The discrete zeros of this determinant or roots of the guidance condition correspond

to different modes. The corresponding dispersion curves, giving the associated axial

wavenumber as a function of frequency and obtained by a numerical mode tracking

procedure, depend on the waveguide parameter vector. Thus, for the inverse prob-

lem, an estimate of the waveguide parameter vector from noisy samples of one or

more dispersion curves can in principle be obtained with help of a curve fitting proce-

dure. However, this scheme has several disadvantages, largely caused by the nesting

of the iterations of mode tracking and nonlinear optimization. Therefore, an inversion

methodology is proposed which eliminates the inner of the two iterations by formu-

lating the cost function to be minimized directly in terms of the determinant of the

boundary conditions, allowing a rapid, iteration-free evaluation of the cost function.

As an example of a significant technological application with considerable commercial

potential, the sonic guidance condition for a fluid-filled borehole is considered. In the

formulation, care is exercised in avoiding parasitic zeros and infinite values that are

likely to cause problems in numerical forward and inverse dispersion analyses. The
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high-frequency limit, the guidance condition of the Scholte wave, is obtained as a

check. For the examples of a fast and a slow rock formation, the inversion of for-

mation shear wave velocity, a quantity of great practical interest, with an error of

the assumed model in borehole radius and formation compressional wave velocity is

investigated numerically. Results are given for both the flexural and the Stoneley

mode (the lowest-order dipole and monopole modes, respectively), providing useful

insights into the nonlinear dependence of inverted formation shear wave velocity on

the model errors. The frequency-dependent sensitivities of inverted shear wave veloc-

ity to the model errors are also displayed. These sensitivities are not to be confused

with the elements of the Jacobian in the Gauss-Newton method used to perform the

inversion via nonlinear optimization. The simultaneous inversion of formation shear

and compressional wave velocities from flexural dispersion data in the fast formation

is studied next, varying the bandwidth of the provided data and the level of contami-

nating noise. It is found that the simultaneous inversion problem is difficult due to the

intrinsic insensitivity of the data with respect to the formation compressional wave

velocity. Increasing the bandwidth is beneficial, but less than desirable. The inversion

for formation shear wave velocity only, is found to be robust in the presence of noise

and little dependent on bandwidth. A numerical experiment using multi-frequency

data for simultaneous inversion is described and evaluated. Combining data from

different dispersions—in the example the flexural and Stoneley dispersions in the fast

formation—enables the simultaneous inversion of formation shear wave velocity and

borehole radius. The leaky borehole modes are subsequently considered and classified

according to the location of the associated roots on a multi-sheeted Riemann surface.

A comprehensive classified set of dipole modes in the fast formation is presented. Us-

ing a 3-D Green tensor code and a modified matrix pencil algorithm, the excitation

of some of the leaky modes is demonstrated. The possibility of using these modes in

an inversion is discussed.
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