
 

Transmit Simulation and Receive 

Optimization for 802.11b Networks 

by 

Pascal F. Rettig  

Submitted to the Department of Electrical Engineering and Computer Science 
in Partial Fulfillment of the Requiements ofor the Degrees of Bachelor of 

Science and Electrical Engineering and Computer Science 
and Master of Engineering in Electrical Engineering and Computer Science 

at the Massachusetts Institute of Technology 
May 24, 2002 

Copyright 2002 Pascal F. Rettig. All rights Reserved 
 

The author hereby grants to M.I.T permission to reproduce and 
distribute publicly paper and electronic copies of this thesis 

and to grant others the right to do so.  
 

 
Author______________________________________________________________________ 
                   Department of Electrical Engineering and Computer Science 
                                                                May 24, 2002 
 
 
Certified by________________________________________________________________ 
                                                                Chris Riddle 
                                              VI-A Company Thesis Supervisor 
 
 
Certified by________________________________________________________________ 
                                                               Muriel Medard 
                                                    M.I.T. Thesis Supervisor 
 
Accepted by_________________________________________________________________ 
                                                             Arthur C. Smith 
                           Chairman, Department Committee on Graduate Theses 





 

  3 

 

 

Transmit Simulation and Receive Optimization for 

802.11b Networks 

by  

Pascal F. Rettig 

Submitted to the 
Department of Electrical Engineering and Computer Science 

May 24, 2002  

In Partial Fulfillment of the Requirements for the Degree of 
Bachelor of Science in Computer Science and Electrical Engineering 

and Master of Engineering in Electrical Engineering and Computer Science 

 

ABSTRACT 

The simulation presented in this paper provides an implementation of a full simulated transmit chain 
from packet encoding through base band modulation for the 802.11b wireless networking standard. 
This forward transmit chain is coupled with a physical channel simulation that can introduce a 
number of different channel effects to simulate interference caused in the real world. Packets which 
the transmit simulation produces can be sent to a receive simulation to test design parameters or can 
be modulated and sent to 802.11b hardware to test hardware implementation. Using former 
procedure, this paper also evaluates implementations of a Phase lock loop used to track Frequency 
Doppler and a Time Tracking Loop used to track Code Doppler under various Signal to Noise levels. 
The results from these simulations can be used to optimize various receive parameters and 
algorithms. 

 

Thesis Supervisor: Muriel Medard 
Title: Assistant Professor Department of Electrical Engineering and Computer Science 



 

  4 

 

Contents 

1 Introduction ..........................................................................................1-9 

1.1 Tools .......................................................................................................1-9 

1.2 Abbreviations ......................................................................................... 1-10 

2 802.11b networks ..............................................................................2-12 

2.1 Overview ............................................................................................... 2-12 

2.2 MAC layer............................................................................................. 2-14 

2.3 Physical layer – 802.11b specific ............................................................. 2-17 

2.3.1 PLCP sublayer............................................................................ 2-17 

2.3.2 PMD sublayer ............................................................................ 2-18 

2.4 Channel Effects...................................................................................... 2-21 

3 Transmit Simulation .........................................................................3-24 

3.1 Overview ............................................................................................... 3-24 

3.2 Class descriptions ................................................................................... 3-24 

3.2.1 Basic Types................................................................................ 3-25 

3.2.2 Utility classes............................................................................. 3-25 

3.2.3 Creating the Packet – DataPacket................................................. 3-26 

3.2.4 Encoding and spreading – TransmitPMD ..................................... 3-28 

3.2.5 Filtering and transmitting – DoppDiscreteFilter ............................ 3-28 

3.2.6 Simulating the channel – PhyChannel.......................................... 3-29 

3.2.7 ReceiveFiltering – SimCDiscreteFilter ......................................... 3-30 

3.3 Optimizations ......................................................................................... 3-30 

3.4 User interface and packaging................................................................... 3-31 



  

 

3.4.1 Implementation .......................................................................... 3-32 

3.4.2 File format ................................................................................. 3-33 

4 Receive simulation ...........................................................................4-38 

4.1 Receive chain ......................................................................................... 4-38 

4.2 Optimizations to the receive chain ........................................................... 4-38 

5 PLL Receive Calculations...............................................................5-40 

5.1 Continuous time derivation ..................................................................... 5-41 

5.2 Discrete time derivation .......................................................................... 5-43 

5.3 Loop filter design ................................................................................... 5-45 

5.4 Continuous Time Second order PLL........................................................ 5-47 

5.5 Discrete Time second order PLL.............................................................. 5-48 

5.6 PLL Implementation............................................................................... 5-51 

6 Results .................................................................................................6-54 

6.1 Commercial station interaction ................................................................ 6-54 

6.2 Reference Curve – No Doppler or multipath channel................................. 6-55 

6.3 Automatic Frequency Correction and Phase locked loop optimizations ...... 6-56 

6.3.1 Separate, Coexisting AFC and PLL.............................................. 6-56 

6.3.2 Second order PLL....................................................................... 6-58 

6.3.2.1 Single Loop Bandwidth Gain Step .................................... 6-59 

6.3.2.2 Multiple Loop Bandwidth Gain Steps ............................... 6-60 

6.4 Time Tracking Loop Optimizations ......................................................... 6-62 

6.4.1 TTL Description ......................................................................... 6-62 

6.4.2 1st Order TTL Optimization ......................................................... 6-63 

6.4.3 Reference curve reevaluation....................................................... 6-64 

6.4.4 Final TTL evaluation .................................................................. 6-66 



Contents Transmit Simulation and receive optimization for 802.11b networks 

6   

7 References..........................................................................................7-67 

A. Appendix – Transmit Class Interface .............................................69 

B. Appendix – Links to Code .................................................................74 

C. Appendix – PLL Loop filter analysis ...............................................75 

D. Appendix – Sample Configuration File ..........................................78 

 



  

 

Figures 

Figure 2-1 - MPDU Frame format........................................................................... 2-14 

Figure 2-2 - Frame Control Fields ........................................................................... 2-15 

Figure 2-3 - PPDU Frame format............................................................................ 2-18 

Figure 2-5 - Channel model and realization ............................................................. 2-23 

Figure 3-1 - Overview of transmit chain class flow .................................................. 3-25 

Figure 3-2 - txchain_file function call hierarchy....................................................... 3-33 

Figure 5-1 – 1Mbps and 2Mbps receive chain model................................................ 5-40 

Figure 5-2 – Continuous time PLL model................................................................ 5-41 

Figure 5-3 – Discrete time PLL model .................................................................... 5-43 

Figure 6-1 - Commercial station interaction: Probe request + response...................... 6-55 

Figure 6-2 - PER vs. Chip SNR in AWGN for 1Mbps 1KB Packet........................... 6-56 

Figure 6-3 - PER vs Kd in 4 dB AWGN and 25 PPM FERR for 1KB Packet............. 6-57 

Figure 6-4 - Phase error vs. time in 10 dB SNR for AFC and PLL............................. 6-58 

Figure 6-5 - PER vs. Tc in AWGN, 30 PPM FERR for 1 Mbps 1KB Packet.............. 6-60 

Figure 6-6 - PER vs. Tc for Ferr PPM range ............................................................ 6-61 

Figure 6-7 - PER vs. Kdll for -1.00 dB SNR............................................................ 6-64 

Figure 6-8 – Packet peak matches without TTL ....................................................... 6-65 

Figure 6-9 - Packet peak matches with TTL............................................................. 6-65 

Figure 6-10 - New reference curve.......................................................................... 6-66 

 

 

 



Contents Transmit Simulation and receive optimization for 802.11b networks 

8   

Tables 

Table 2-1 - DQPSK Encoding ................................................................................ 2-19 

Table 2-2 - DBPSK Encoding................................................................................. 2-19 

Table 2-3 - QPSK Encoding ................................................................................... 2-20 

Table 3-1 - PhySignal supported configuration variables .......................................... 3-30 

Table 3-2- Frame Configuration Options ................................................................. 3-36 

Table 6-1- Chip offset signal loss............................................................................ 6-62 

Table A-1 - PackedBits public interface ..................................................................... 69 

Table A-2 - PMSignal public interface....................................................................... 69 

Table A-3 DataPacket public interface....................................................................... 70 

Table A-4 CPMSignal public interface....................................................................... 71 

Table A-5 - TransmitPMD public interface................................................................. 71 

Table A-6 - DoppDiscreteFilter public interface ......................................................... 71 

Table A-7 - PhyChannel public interface.................................................................... 72 

Table A-8 - SimCDiscreteFilter public interface......................................................... 72 

Table A-9 - FileToken public interface....................................................................... 73 

 

 

 



 

  1-9 

 

1 Introduction 

This paper describes the creation of an 802.11b arbitrary waveform generator (AWG) and 

channel simulator tool and the use of this tool to characterize the performance of the phase locked 

and time tracking loops on a simulated 802.11b receiver. The AWG can also be used to generate 

packets for commercial 802.11b networks to verify understanding of the standard as well as test 

actual hardware. 

The AWG and channel simulator were coded in C++ that could be linked into MATLAB. 

Automated tests were written as MATLAB scripts which paired the output of the transmit chain with 

that of a separately coded receive chain. The basic receive chain was coded as a MATLAB script by 

another member of the project team. Modifications were made to the phase-tracking portion of the 

code and certain parts were recoded in C for added efficiency when simulating large numbers of 

packets. 

1.1 Tools  

The two primary tools used in the development of this project were Microsoft Visual C++ 

6.0 and MATLAB version 6.0 release 12. MATLAB’s MEX toolkit was used to create Dynamic 

Link Libraries of C++ code that can be called as functions from inside the MATLAB’s command 

window. This allowed for a seamless integration with the MATLAB coded receive chain while still 

taking advantage of the speed of C. 

This paper was written in Microsoft Word 2000. The figures were generated from MATLAB 

output figures or created with Microsoft Visio.  

 



Introduction Transmit Simulation and receive optimization for 802.11b networks 

 

1-10 

1.2  Abbreviations 

The following is an alphabetical list of abbreviations used throughout this document 

AFC Automatic Frequency Control 

AWG Arbitrary waveform generator 

AWGN Additive White Gaussian Noise 

BSS Basic Service Set 

CCK Complementary Code Keying  

Chipx8 The chipping rate times a factor of eight 

CRC Cyclic Redundancy Check 

CSMA/CA Collision Sense Multiple Access with Collision 
Avoidance 

CSMA/CD Collision Sense Multiple Access with Collision 
Detection 

CTS Clear to Send 

dB Decibel 

DSS Distribution System Services 

DSSS Direct Sequence Spread Spectrum 

ESS Extended Service Set 

I In-Phase portion of complex signal 

ICV Integrity Check Vector 

ISP Internet Service Provider 

LAN Local Area Network 

MAC Medium Access Control 

Mcps  Mega-Chips per second 

MEX Matlab Extensions 

MPDU MAC Protocol Data Unit 

MSDU MAC Service Data Unit 

Msps Mega-Symbols per second 

NAV  Network Allocation Vector 

PHY  Physical layer 

PLCP Physical Layer Convergence Procedure 



  1-11 

 

PLL Phase Locked Loop 

PMD Physical Medium Dependant 

PPDU PHY Protocol Data Unit 

PSDU PHY Service Data Unit 

Q Quadrature phase portion of complex signal 

RC4 Encryption Algorithm used in WEP 

RF Radio Frequency 

RTS Ready to Send 

RV Random variable  

SFD Start Frame Delimiter 

Sinc Figure created by the equation (sin x)/x 

SS Station Services 

STL C++ Standard Template Library 

SYNC Synchronization portion of the PLCP preamble  

VCO Voltage controlled oscillator 

WEP Wireless Equivalent Privacy 

WLAN Wireless Local Area Network 

  

  

  
 

 

 



802.11b  networks Transmit Simulation and receive optimization for 802.11b networks 

 

2-12 

2 802.11b networks 

2.1  Overview 

Wireless local area networking is an emerging technology that appears poised to become a 

significant force in business and consumer connectivity products. It combines the productivity gains 

leveraged from network data with the convenience and versatility of wireless. Beyond the simple 

removal of wires, the merging of these two technologies has opened the door for greater access to 

information in many different areas. WLANs have been used to create high-speed wireless ISPs 

where formerly there was no low-cost, high bandwidth option [6]. The relatively low-cost and 

availability of components has also spawned the creation of mid-range Neighborhood area networks 

that can link entire neighborhoods together. Businesses are using WLANs to expand on their wired 

backbones with a large savings in infrastructure costs. Wireless phone providers are looking to add 

802.11 to their phones to give their users more, higher-speed connectivity options when available.  

The standardization of a WLAN protocol has been one of the factors in their recent growth. 

802.11, the first WLAN standard, was created by IEEE in 1997 and later revised in 1999. It is part of 

the IEEE 802 family of local and metropolitan area network standards. It provides for data rates up 

to 2 Mbps when using Direct Sequence Spread Spectrum (one of the physical layer options). An 

extension to 802.11, called 802.11b followed later that year [10]. The extension allowed for two new 

data rates using DSSS, 5.5 Mbps and 11 Mbps, while at the same time staying compatible with the 

original standard. This project implements the 802.11b specification.  

A user can create a wireless network using 802.11 in one of two ways. The first is to use an 

Access Point station (AP) that servers as a central router for all data packets. End user stations called 

terminals talk to each other and the outside world through the AP. Wireless LANs that are 

configured in this way are referred to as being built around a Basic Service Set (BSS). The other 

configuration option is to create a network that consists only of stations, without an AP. Each station 

can talk directly to all other stations in its range, and no centralized control is need; all management 

functionality is distributed. A wireless LAN set up this way is referred to as an Independent BSS 



  2-13 

 

(IBSS).   

The operation of a BSS is extended by connecting AP’s together to form an Extended Service 

Set (ESS). APs are connected over what IEEE calls a distribution system (DS). How the DS is 

implemented is not defined in the standard, but is left to the individual vendors. The DS can take the 

form of a wired connection or a separate WLAN on a different channel. APs from different vendors 

generally cannot connect together to form an ESS. When connected in to a wired LAN, the ESS 

appears to be a single MAC-layer network with stationary terminals. The mobility provided by 

802.11 networks is masked to any networks outside of the ESS, allowing communication over 

standard networks protocols without any modification.  

The functionality of 802.11 is exposed through a set of nine services divided into two groups: 

four Station Services (SS) and five Distribution System Services (DSS). The station services, 

Authentication, Deauthentication, Privacy, and MSDU Delivery, are supported by all stations 

(terminals and the AP), and provide functions similar to wired networks. Authentication verifies that 

a potential terminal is a legitimate user of the system, while Deauthentication ensures that once a 

user has logged off, access is cut off. The privacy service, in its current iteration, uses Wired 

Equivalent Privacy (WEP), an implementation of the RC4 algorithm, to encrypt the data as it is sent 

over the air. The goal of WEP was to provide a level of security equal to that of a standard wired 

LAN, and not to provide a comprehensive security solution for WLANs. Recently, however, it has 

become clear that WEPs ability to fulfill even this minimal goal is suspect; numerous paper 

describing the ease of which WEP can be cracked have been circulating [14,15].  The last service 

MSDU delivery, is similar to the data delivery service of any LAN standard in the IEEE 802 family.  

The remaining group, the Distribution System Services, is the group those services provided 

by the DS. Only those stations with direct access to the DS, specifically APs, offer the DSS. The five 

services are: Association, Disassociation, Distribution, Integration, Reassociation. The association 

service is initiated to create a logical connection between a station and an AP. The Disassociation 

service is used by either the station or the AP to signify that WLAN resources are either no longer 

needed or no longer available. The distribution service is responsible for correctly determining 

where to send frames along the DS, whether to another AP, back into the wireless medium, or to a 

portal. The final service, the integration service, consists of a portal to the outside world by linking 

to other wired or wireless LANs. It handles all data that comes into our goes out of the 802.11 ESS. 

Like any of the other protocol standards in the 802 family, 802.11 defines two layers of the 

complete protocol stack: the Medium Access Control layer and the Physical layer. The Medium 

Access Control (MAC) layer is responsible  for ensuring fair, protected, reliable and collision free 

network operation. The physical layer sits between the MAC and the wireless medium, and manages 



802.11b  networks Transmit Simulation and receive optimization for 802.11b networks 

 

2-14 

the transmission and reception of data over the air. Both are discussed in subsequent sections.  

The transmit simulation that was created for this thesis implements most of the features of the 

MAC and Physical layer. A discussion of each follows. 

2.2 MAC layer 

The MAC layer has a three-fold duty. Firstly, it ensures that data is received reliably, so that 

when errors occur they are noted and the corrupted data is not passed up the protocol stack. 

Secondly, it controls access to the wireless medium in a way that both minimizes data collisions and 

fairly distributes available bandwidth among all the stations. Thirdly, it should protect data from 

decoding by unwanted listeners. Each of these tasks is made more difficult than in the case of wired 

networks because of the peculiarities of the wireless medium.  

 

The ensure that transmitted data is received reliably, the MAC layer prepends control, 

duration, addressing, and sequencing information, and appends a 32-bit cyclic redundancy check 

(CRC) to the data it receives to transmit. The data itself is referred to as the MAC service data unit 

(MSDU). When it is surrounded with header and trailer information, it is called the MAC protocol 

data unit (MPDU). When ready to be sent, the MPDU is sent down to physical layer for 

transmission. Figure 2-1 shows the general frame format, although many frame types do not include 

all the available fields. The size in bytes of each field is indicated.   

Fr
am

e 
Co

nt
ro

l

2 2

Dur
at

io
n/

ID

6 6 6 2 6

Ad
dr

es
s 

1

Seq
ue

nc
e 

Ctrl

Bo
dy

FC
S

0 2312 4...

Ad
dr

es
s 

2

Ad
dr

es
s  

3

Ad
dr

es
s 

4

 

Figure 2-1 - MPDU Frame format 

The frame control field is included in every frame. It is broken up further into a protocol 

revision subfield, a type subfield, a subtype subfield, and eight additional 1-bit flags. The 2-bit 

protocol version is used to ensure that a received frame is compatible and will be decoded correctly. 

The 2-bit type subfield characterizes the frame as a Management, Control, or Data frame. 

Management frames are used to broadcast information about the network as well as access the 

authentication, deauthentication, association, disassociation, and reassociation services. Control 

frame are used to affect the state of other terminals and include the acknowledgement (ACK), clear 



  2-15 

 

to send (CTS), and ready to send (RTS) frames. Data frames are used to transmit higher-level data 

payloads. Certain data frames also include control information to avoid the need to send additional 

separate control frames. The 4-bit subtype field determines the specific frame that is sent in each of 

the three types. The last eight bit flags are used to determine additional information needed to 

decode the frame correctly. “To DS” and “From DS” determine how the four addresses are 

interpreted. “More Frags” indicates that the current MSDU is only a fragment. “Retry” indicates 

whether this frame is a retransmission. “Power Mgt” is used to alert an AP that the station is going to 

sleep. “More Data” indicates that additional data frames are prepared to follow this one. “WEP” is 

used to enable WEP encoding. Finally “Order” indicates that a higher level of the protocol stack 

requested strictly ordered services. The entire frame control field is shown in Figure 2-2 below, with 

the size of each bit field indicated in the boxes.  

Pro
to

co
l V

er
sio

n

2 2 4 1 1 1 1 1 1 1 1

Ty
pe

Su
bt

yp
e

To
 D

S

Fr
om

 D
S

Mor
e F

ra
gs

Ret
ry

Pow
er

 M
gt

Mor
e D

at
a

W
EP

Ord
er

 

Figure 2-2 - Frame Control Fields 

The Duration/ID Field has a dual purpose depending on the frame type. When functioning as 

a duration, it is used by all stations that receive the packet to update their Network Allocation Vector 

(NAV). The NAV stores the amount of times in milliseconds before the medium becomes free again. 

When functioning as an ID, it is used by a station to identify itself to an AP when in power save 

mode. The first address field is always the destination address, and stations use this address to 

determine if they need to continue decoding the packet. The remaining three addresses are optional, 

and their inclusion and decoding depends on the frame type and the To and From DS fields in the 

frame control. The sequence control field holds two subfields, a sequence number and a fragment 

number (if the frame is a fragment). The body of the frame contains fields that are specific to each of 

the frame types. In the case of a DATA frame, the body contains whatever information was passed 

down from higher in the protocol stack.  

To achieve reliable transmission, the MAC must ensure three conditions. First, every packet 

must eventually reach its destination. Secondly, duplicate packets must be discarded. Thirdly, the 

data must be received intact. To address the first condition, 802.11 requires that each unicast packet 

be acknowledged with an ACK frame within 10us of the end of the received packet. If the station 



802.11b  networks Transmit Simulation and receive optimization for 802.11b networks 

 

2-16 

that originally transmitted the frame does not receive an ACK, it will retry the same frame a 

specified number of times. For dealing with the second condition, the sequence control field is used 

as an identifier for each frame. If a frame with the same sequence number as a previous frame is 

received, it will be acknowledged but then discarded. For the third condition, the FCS is used as a 

check on both the MPDU header information and the MSDU.  

 

To control access to the network, the MAC layer uses a medium access scheme named 

collision sense multiple access with collision avoidance (CSMA/CA) and exponential backoff. This 

scheme is similar to the collision sense multiple access with collision detection (CSMA/CD) that is 

used in Ethernet (IEEE 802.3). Collision avoidance, however, must be used instead of collision 

detection because wireless devices cannot generally transmit and receive at the same time. 

Exponential backoff comes into play when a station detects that someone else is transmitting directly 

before the period of time that it wants to transmit. In this case the station sets a random backoff 

counter whose range increases exponentially with each detection of a potentially interfering 

transmission. The specifics of the algorithm can be found in chapter nine of the 802.11 standard.  

In wired LANS, each node on a network branch is generally guaranteed to be able to 

communicate with every other node on that branch. In WLANs, however, because of the more rapid 

falloff in signal strength, a transmitted packet may not be received by remote nodes on the same 

BSS. This introduces a problem when two or more nodes that are outside each others range both 

wish to communicate with a third node. As neither of the two transmitting nodes can hear each, each 

could potentially start a transmission while the other is in the middle of sending a packet. The middle 

node, which can hear both, would end up receiving corrupted packets. To solve this problem, the 

standard defines two optional messages that expand on the standard DATA/ACK 2 frame sequence. 

The first message, Ready to Send (RTS), is a short message sent by the station that wishes to 

transmit a frame. Upon reception of a RTS message that is addressed to it, the receiving station will 

respond with a Clear to Send (CTS) frame. Both the RTS and CTS messages set the duration field to 

the total length of the four-frame sequence. This means that any station receiving either message will 

update its NAV, and thus know to keep the medium free for the right amount of time. Since both the 

original sending station and the receiving station send a message, any potentially interfering station 

that is within listening distance of either station will be notified to wait. The full frame sequence 

RTS/CTS/DATA/ACK is optional, and can be automatically enabled based on the length of the data 

packet.  

 

To attempt to guarantee data security at least to the minimal extent provided by the physical 



  2-17 

 

wires in a wired LAN, the 802.11 working group adopted an optional private-key encryption 

algorithm called Wired Equivalent Privacy (WEP).  WEP’s shortcomings have already been 

mentioned, and as of this writing it appears that many users who are actually concerned with any sort 

of security measures are using other, higher level, encryption methods. WEP is based on the RC4 

algorithm created by RSA Data Security, Inc. RC4 is variable length key symmetric stream cipher. 

IEEE chose a 40-bit length key for 802.11, although it seems that most implementations actually 

allow larger keys. The MSDU is the only portion of the MPDU that is actually encrypted; the header 

and the FCS are left in plain text. The standard supports the use of either up to 4 default keys, which 

would be shared among all stations on a BSS, or the creation of a key mapping relationship with a 

specific station. In the later case only the two stations communicating with each other have access to 

the key. WEP is enabled by toggling on the WEP flag in the Frame Control field of the MPDU 

header. Once enabled, three additional fields are added to the MSDU. The first, a 24-bit Initialization 

Vector is appended to the key when encoding or decoding the frame. After a 6-bit pad, come the 2-

bit Key ID, which is used two select among the four available keys. These first two fields are 

necessarily left unencrypted. Next follow the MSDU and finally a 32-bit Integrity Check Vector 

(ICV), both of which are encrypted. The inclusion of the ICV ensures any tampering with the MSDU 

is noted.  

2.3 Physical layer – 802.11b specific 

The Physical layer (PHY) sits below the MAC and serves as an interface to the physical 

medium. 802.11 defines three different PHYs: direct sequence spread spectrum (DSSS), frequency 

hoping spread spectrum, and infrared. Each of these PHYs is broken into two sublayers. The higher 

Physical Layer Convergence Procedure (PLCP) sublayer provides a uniform interface to the MAC 

and passes data down to the lower Physical Medium Dependant (PMD) sublayer. The PMD 

performs the tasks necessary to actually transmit the frame. Only the 802.11 DSSS PHY and its 

802.11b extensions will be discussed, as they are relevant to the project.  

 

2.3.1 PLCP sublayer 

Upon reception of a frame from the MAC, the PLCP sublayer first adds preamble and 

header information then passes the entire frame down to the PMD. The preamble consists of a 

synchronization field (SYNC) and start frame delimiter field (SFD). 802.11b supports two types of 



802.11b  networks Transmit Simulation and receive optimization for 802.11b networks 

 

2-18 

SYNCs, a long version and a short version. The long version consists of a sequence of 128 bits all 

set to ‘1’, while the short version is 48 bits set to ‘0’. Support for a short preamble was added in 

802.11b. The inclusion of a SYNC field allows the receiver time to acquire the signal and 

synchronize the demodulator before decoding each frame. Following the preamble is a 16-bit start of 

frame delimiter (SFD). This indicates to the receiver that the preamble is finished. When using a 

long preamble, the bit sequence: the SFD is [1111 0011 1010 0000]. In the case of the short 

preamble, the reverse, [0000 0101 110 0111], is sent.  

Following the preamble, a 40-bit PLCP header is added. This header contains four fields: 

signal, service, length, and CRC. The byte long signal field indicates the speed the MPDU will be 

transmitted at divided by 100 kb/s. In 802.11b, there are four valid values: 0x0A for 1Mbps, 0x14 

for 2Mbps, 0x37 for 5.5 Mbps, and 0x6E for 11 Mbps. The one byte service was unused in 802.11, 

but in 802.11b three bit flags are used: one for length field extension, one for choose CCK or PBCC 

coding, and one for indicating that the transmitting clock and frequency are locked to the same 

oscillator. Next is the 16-bit length field, which indicates the duration of the MPDU in 

microseconds. At 11 Mbps the length field extension bit must be used to decode the number of bits 

properly. Last is an 8-bit CRC that validates the header information.  

The MPDU follows, here called the PLCP Service Data Unit (PSDU). The entire packet, 

with preamble, PLCP header and PSDU, combines to form the PLCP Protocol Data Unit (PPDU), 

and this entire frame is passed down to the PMD. Figure 2-3 shows the layout of the PPDU. 

7 or 16 2 1 1 1 2 14 - 2346

Sy
nc

SFD Si
gn

al

Ser
vic

e

Le
ng

th

CRC

M
PDU

PLCP Preamble PLCP Header PSDU

...

 

Figure 2-3 - PPDU Frame format 

2.3.2 PMD sublayer 

The PMD is responsible for transmitting the entire frame onto the wireless medium. Each of 

the three sections of the PPDU, however, must be handled separately as they might all be transmitted 

at different rates. Although the preamble is always sent at 1 Mbps, the PLCP header can be sent at 

either 1 Mbps or 2 Mbps depending on whether the preamble uses a long or short SYNC 



  2-19 

 

respectively. The PSDU is always sent at the rate defined in the PLCP header. To transmit at frame, 

the PMD goes through a four-step process for each section. First it whitens the PPDU by passing the 

entire frame through a scrambler. Second, it differentially phase shift key encodes the scrambled 

data to output orthogonal I and Q streams. Third, it spreads the encoded data. Finally, it passes the 

encoded I and Q streams through a transmit mask filter and then onto the RF chain 

The first step, data whitening, is effected by the passing of the entire bit stream through a 

self-synchronizing 7-bit polynomial. The same 7-bit polynomial is used to unscramble the data. 

Because the scrambler is self-synchronizing, the receiver will be able to successfully unscramble the 

frame provided the demodulator is synchronized at least 7 bits before the start of the SFD. The 

polynomial used is shown in Equation 2-1 below:  

 1)( 47 ++= −− zzzG         (Eq.  2-1) 

 

The method the PMD uses to PSK encode the data in the second step depends on the 

transmit speed of the section it is encoding. At 1 Mbps, it differentially binary phase shift key 

(DBPSK) encodes the entire section one bit at a time. At 2 Mbps, differential quadrature phase shift 

keying (DQPSK) is used, and the entire section is encoded two bits at a time. At the higher data 

rates, DQPSK is still used, but only a portion of the section’s bits are used for encoding, while the 

rest are used to determine the spreading sequence. In addition, odd symbols at the higher rates are 

given an additional 180° rotation. At 5.5 Mbps, two bits of each incoming 4-bit nibble are used. At 

the highest rate, 11 Mbps, only two bits of each incoming byte are used. Because differential PSK is 

used in all cases, only the relative position of the symbol is important. 

 

 

How the PMD performs the third step, spreading, also depends on the rate of current section. 

If the current section is sent at 1 Mbps or 2 Mbps, the section is spread with the 11-bit Barker word 

Table 2-1 - DQPSK Encoding Table 2-2 - DBPSK Encoding 

 

Input Bits Phase change 

00 0° 

01 90° 

11 180° 

10 270° 

 

Input Bit Phase change 

0 0° 

1 180° 



802.11b  networks Transmit Simulation and receive optimization for 802.11b networks 

 

2-20 

sequence shown below. This sequence is used because it has good correlation properties to help 

resolve multipath interference. 

 [ 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1 ]       (Eq.  2-2) 

At the higher speeds, Complementary Code Keying (CCK) is used. In CCK, the spreading sequence 

is dependent on the incoming data. At 5.5 Mbps, 2 bits out of every 4-bit nibble are used to choose 

one of 4 8-chip code words. At 11 Mbps, 6 bits out of every incoming byte are used to choose 

among 64 8-chip code words.  Since CCK codes are already complex, the DQPSK encoding step is 

included to prevent the need for two separate encoding steps. At both 5.5 Mbps and 11 Mbps, the 8 

chips of the complex code word, as transmitted sequentially in time, are determined by the following 

equations: 

 

)(
6

)(
4

)(
2

)(
0

21

321

421

4321

ϕϕ

ϕϕϕ

ϕϕϕ

ϕϕϕϕ

+

++

++

+++

−=

=

=

=

j

j

j

j

ec

ec

ec

ec

 

1

31

41

431

7

)(
5

)(
3

)(
1

ϕ

ϕϕ

ϕϕ

ϕϕϕ

j

j

j

j

ec

ec

ec

ec

=

=

−=

=

+

+

++

 (Eq.  2-3) 

At both rates, the angle f 1 is determined by the DQPSK encoding (see Table 2-1) of the first two 

bits, taking into account an extra 180° rotation on odd numbered symbols. At 5.5 Mbps, the 

remaining angles are defined at follows according to the remaining bits (b2, b3) of the 4-bit nibble. 

 

°⋅=
=

°+°⋅=

180
0

90)180(

34

3

22

b

b

ϕ
ϕ

ϕ

 (Eq.  2-4) 

At 11 Mbps, the remaining three angles are 

defined by the QPSK encoding of the remaining 

6 bits in groups of two. The QPSK encoding is 

shown in Table 2-3.  

 

The fourth and final task of the PMD is to pass 

the spread I and Q data streams through a 

transmit mask filter. The baseband filter was 

Table 2-3 - QPSK Encoding 
 

Input Bits Absolute Phase 

00 0° 

01 90° 

10 180° 

11 270° 



  2-21 

 

designed to meet the 802.11b spectral mask.  The filter spreads out the signal and makes it more 

resistant to channel noise.  

 

2.4 Channel Effects 

With any network, the issues that prevent the successful transmission of data are generally 

caused by one of two categories of problems: either synchronization discrepancies between the 

transmitter and receiver or interference introduced over the medium that is used as a channel for the 

data. All these problems are here lumped under the title of Channel Effects. The program described 

in this paper simulates four Channel Effects that could be used to characterize and optimize the 

performance of a potential receiver. The first pair, Frequency Doppler and Code Doppler, falls into 

the first category of synchronization discrepancies. The second pair, Additive White Gaussian Noise 

(AWGN) and Multipath Fading, is a result of the second category of channel interference. Each 

effect is described in turn.  

Frequency Doppler is introduced due to a difference in the modulation frequency of the 

transmitted signal and the frequency oscillator at the receiver. This difference can be caused by one 

of two factors. First, the transmitter might be in motion relative to the receiver. Depending on the 

direction and speed of the motion, this could result in a noticeable stretching or squashing of the 

signal, slightly changing the frequency of the signal. Doppler introduced in this way is significant in 

longer-range wireless application which are likely to be more mobile, such as cell phones, but is less 

important in 802.11 because of its shorter range. Users are unlikely to remain in range of a network 

if they are traveling at speeds fast enough to introduce significant Frequency Doppler. The second 

factor that can introduce Frequency Doppler is a slight difference in the frequency of the oscillator in 

transmitter and that in the receiver. Although the oscillators may nominally be the same frequency, 

discrepancies may result since they are independently generated. As a result, Voltage Controlled 

Oscillators (VCOs) are often used in the receiver to allow it to attempt to match in real time the 

frequency of the transmitter. This real-time matching is called Phase tracking or Frequency tracking 

[4, 5] and requires some sort of feedback mechanism in the receiver. To be compliant with 802.11, 

the standard dictates that a receiver must be tolerant of up to +/- 30 parts per million of frequency 

error.  

Code Doppler is the result of a difference in the frequency in the receiver and in the 

transmitter of the oscillator that provides the timing reference for digital processing. To decode a 

transmitted 802.11 signal, a receiver must find the peaks of the incoming signal and decodes them at 



802.11b  networks Transmit Simulation and receive optimization for 802.11b networks 

 

2-22 

the chip rate. Unless the timing frequency between transmitter and receiver is synchronized exactly, 

then these peaks will slide forward or backwards over the course of the packet. If the receiver does 

not adjust for this, eventually a decoding error could result. Since the independent oscillators that 

control the timing in the transmitter and receiver cannot be exactly synchronized, the receiver often 

implements another feedback loop to track the slowly shifting peaks of the signal. This is referred to 

as time tracking and is implemented with a time tracking loop [4, 5]. The standard again dictates that 

a receiver must be tolerant of up to +/- 30 parts per million of frequency error.  

Possible implementations of a PLL and TTL and their effects on performance are describe 

later in the paper.   

The first of the physical channel related 

problem, random environmental energy, is the most 

common interference problem in any 

communication medium. Since this noise is 

generally uncorrelated from sample to sample, is 

additive, and is distributed within a certain range 

from a zero-mean, it is modeled as Additive White 

Gaussian Noise (AWGN). The strength of the 

energy of the signal in relation to noise, called the 

signal to noise ratio (SNR) and measured in 

decibels (dB), can be varied to measure the effects 

of different levels of interference. There are two common ways to help reduce the effect of AWGN 

that are implemented in 802.11. The first is to pass the received signal through a matched filter, 

which removes out of band interference and thus lessens the effect of the noise. The second is to use 

a processing gain, which uses more than one incoming chip to make a signal decision, this takes 

advantage in the lack of correlation between adjacent sampled noise signals. [13]. The use of the 11-

bit Barker code is an example  of this, and results in about a 10.4 dB gain in noise tolerance.  

The last channel effect, multi-path fading, is one of the most difficult to deal with. It is the 

result of the fact that from the location of one wireless device to another there are numerous routes a 

signal could take. Since each of these paths might be a different length and bounce off or pass 

through different types of objects, multiple copies of the transmitted signal could reach the receiver 

at different times and different strengths. If these multiple signals are not accounted for, they could 

cause serious interference and ruin the transmission. To combat this effect, a multi-fingered antenna 

called a rake receiver is often used [13]. The spacing of the fingers allows the antenna to pull in the 

Figure 2-4 - Multipath reception of a 

transmitted signal 



  2-23 

 

different strength delayed signals constructively, not destructively. Additionally, an equalizer can be 

used correct larger delay spreads by matching the channel and filtering out interchip interference [4]. 

To ensure valid comparison across different implementations, IEEE 802.11 working group provided 

a standard mathematical channel model that can be used to quantify performance. It provides for a 

simulated channel filter with taps whose average power decays exponentially and whose phase is 

randomly uniformly distributed. Adjusting the TRMS parameter of the model allows the RMS delay 

spread tolerance of a potential system to be measured. The model is shown below: 

 
RMSs

RMSs

TT

TkT
k

kkk

e

e

jNNh

/2
0

/2
0

2

22

1

)
2
1()

2
1(

−

−

−=

=

+=

σ

σσ

σσ

 (Eq.  2-5) 

Where N(Var) is a zero-mean Gaussian random variable with variance Var, Ts is the sampling 

period, and TRMS is the RMS delay spread. The number of taps should be large enough to allow for 

the tail of the filter to decay sufficiently. The IEEE 802.11 Handbook gives the example value for 

kmax equal to 10 times the ratio of Ts/TRMS. Figure 2-5 shows the exponentially decaying channel 

model as well as a potential realization of the model.  

Ts 2Ts 3Ts 4Ts 5Ts 6Ts 7Ts 8Ts 9Ts 10Ts
time

ch
an

ne
l s

tr
en

gt
h

 

Figure 2-5 - Channel model and realization 



Transmit Simulation Transmit Simulation and receive optimization for 802.11b networks 

 

3-24 

3  Transmit Simulation 

3.1 Overview 

The transmit simulation is programmed as set of C++ classes with a file -configurable front end. 

The simulation is capable of creating real 802.11b control, data, and management frames. Options 

can be configured through a class interface. The bitstream can then be generated, and the resultant 

data is PSK encoded and spread according one of the available  802.11b rates (1, 2, 5.5, or 11 Mbps), 

creating I and Q streams at the chip rate (11 Mcps). The data streams are then passed through a 

combination transmit filter and upsampler, outputting data streams at eight times the chip rate (88 

Mhz) that could be RF modulated and sent to an actual 802.11 station. 

For Simulation purposes, however, this I and Q data can be passed through a simulated physical 

channel which supports AWGN, frequency Doppler, scaling, and the 802.11 multipath fading model. 

Code Doppler is also supported through the transmit filter. 

To speed up receive processing, the output from the physical channel is passed through a 

receive filter matched to the transmit filter. The optimized filter in C++ provides a substantial 

performance gain over its MATLAB counterpart. The last frame generated can also be replayed with 

a new channel simulation. This feature is useful when a large number of frames need to be 

generated: it cuts out the processing steps need to parse the input file, created the bits, and transmit 

filter the frame.  

The full interface to each class is listed in Appendix A. 

3.2 Class descriptions 

The classes that are used to generate and transmit the packet information are described below. 

The front end that uses them is described in detail in section 3.3. 

Figure 3-1 shows each of the steps of the transmit simulation and the top-level classes that are 

used by the front end to create the actual frame. The main stages are shown with either boxes or 



  3-25 

 

symbols. The classes used in each stage are shown adjacent in gray. The top-level classes, helper 

classes, and the utility classes used to pass data among the top-level classes are all described below. 

Create MPDU Prepend PLCPFCS

scramble
WEP

Encryption

no WEP no scramble
Transmit

Filter

Chip X8
Upsample

PSK Encode
and Spread

Multipath fading

X

doppler

+

WGN

Output Receive Filter

DataPacket TransmitPMD

D
oppD

iscreteF
ilter

PhyChannelSimCDiscreteFilter

D

…D

D

 

Figure 3-1 - Overview of transmit chain class flow 

3.2.1 Basic Types 

The simulation defines a few basic types to make the rest of the code more intuitive. The 

definitions are created primarily to make the exact length of variables explicit. Using known length 

variables is important because of the need to pack specific numbers of bits into data packets in a 

specific way. Since C++ does not guarantee the size of its pre-defined types on all architectures, 

these definitions also allow for easier porting of the code to different architectures. The three types 

of this sort defined are BYTE, WORD, and DWORD, which represent 8, 16, and 32 bits 

respectively. Additionally, a sigtype type is created to represent a signal sample. Currently sigtype is 

represented as a double precision floating point number. These types are defined “802Typedef.h”, 

listed in the appendix.   

3.2.2 Utility classes 

The simulation uses three main utility classes to store packet data and pass it from one class to 

another. There are each built around the C++ standard template library (STL) vector class. Using the 

vector class provides the two-fold benefit of allowing easy access to individual items and fast 

iteration through the entire collection while at the same time overcoming the inherent limitations of 

C arrays. Using C array requires either static sized array or dynamic allocation with often misused 

pointers. This architecture design allows pointers to be avoided almost completely. The utility 

classes are passed by reference among the top-level classes. 



Transmit Simulation Transmit Simulation and receive optimization for 802.11b networks 

 

3-26 

The first class, PackedBits (see appendix – “PackedBits.h”), is a bit level representation used 

when creating the data in a packet. It provides a number of pack_msb and pack_lsb functions that 

pack anything from a few bits to a double word of data in either most significant bit (MSB) or least 

significant bit (LSB) order respectively. Using a bit level representation allows the bits to be added 

to the packet in the correct order without the need for extensive explicit bit-masking. The 

DataPacket class described below uses these functions to pack bits into a packet. PackedBits inherits 

most of its functionality from the bool specialization of the vector.  

The second class, PMSignal represents a simple, non-complex, physical medium signal. It is 

an instance of a STL vector specialized for the sigtype type, adding a few new constructors and 

utility functions. All the added functions were created in response to needs to the program. Although 

a number of additional operators and functions could have been added to increase its level of 

abstraction, for performance reasons most of the code that uses PMSignal directly accesses the 

inherited vector functions and iterators.  

The last class is CPMsignal, is simply a structure of two PMSignal’s named I and Q. It is used 

to store the in-phase and quadrature parts of a signal together while still allowing each to be accessed 

separately. Using a complex vector to represent both I and Q was inefficient, as most operations 

could be performed on one and then the other separately. This removed the overhead needed to 

extract the inphase and quadrature parts for each iteration of an algorithm’s loop. Both PMSignal 

and CPMSignal are in the appendix in “PMSignal.h”.  

3.2.3 Creating the Packet – DataPacket 

The first stage of the transmit chain is to create the data to be transmitted. This task is handled 

almost entirely by the DataPacket class (see appendix – DataPacket.h and DataPacket.cpp). 

Conceptually, DataPacket encapsulates the MAC layer as well as the PLCP sublayer of physical 

layer of 802.11b. After setting the SYNC type and transmit speed in the constructor, DataPacket 

operates in three stages.  

In the first, the parameters for the packet are set. These include setting the various frame 

control options, setting the MPDU addresses, enabling WEP, and setting the packet type and 

subtype. Because the simulation does not have the format of each frame type programmed into it, the 

fields that are to be included in the frame also need to be selected. All of the parameters have default 

values that will still result in a technically valid packet. By default, all fields are included. As no 

bounds checking is performed on parameters to the option functions, the user must be careful to only 

set values that conform to the standard. A number of fields are auto-generated in the next step and 



  3-27 

 

thus cannot be manually set. Since these parameters are always determined by the other settings, this 

is not a limitation, baring the desire to create intentional error frames. At the end of the first stage, 

DataPacket is prepared to create a packet, although the actual bits are not yet set.  

During the second stage, the bits of the packet are created and packed as elements of a 

PackedBits collection. These steps take place with a sequence of three function calls. The first 

creates the MPDU, the second prepends the PLCP preamble and header, and the third scrambles the 

data. The third function call is optional, as the data can optionally be left unscrambled in order to 

facilitate examination of the bits. As mentioned, DataPacket also auto-generates a few fields. The 

SYNC bits are created, as is the appropriate SFD depending on the choice of preamble length. The 

PLCP length and length extension bit are generated for the PLCP header, as is the 16-bit CRC. If 

WEP encryption is enabled, the MSDU is scrambled and the ICV is generated. The 32-bit FCS is 

also created.  

To create the MPDU, DataPacket needs to know what data is to be transmitted. For this 

purpose the function to create the MPDU takes in an object of the abstract class DataSim. DataSim 

defines only three functions: reset, length, and next. Abstracting the data passed to DataPacket 

allows for easier creation of arbitrary length filler data while at the same time not making it much 

more difficult to use real data. Currently three classes are derived from DataSim: ConstDataSim 

always returns one set byte of data; RandomDataSim produces a random byte each time; 

ArrayDataSim takes in a pointer and returns each byte of that array. (See appendix: DataSim.h and 

DataSim.cpp). 

In case WEP is enabled, DataPacket uses the rc4 class (see appendix “rc4.h” and “rc4.cpp”) 

to encrypt the MPDU data. To successfully enable WEP, the user must first set the key and the IV 

through the DataPacket functions mentioned in the first stage. To use the rc4 class, DataPacket 

passes the user-supplied key and IV and calls the PrepareKey function to prepare the algorithm. 

Subsequently, each time rc4’s encrypt function is supplied with a byte of data it returns the 

encrypted version of that data. With WEP enabled, DataPacket automatically encodes the data, 

includes the IV and appends the ICV. 

The third stage of DataPacket’s functionality is to return the bits of the packet. This is done 

with three accessor functions that separately return the PLCP preamble, PLCP header, and MPDU in 

the form of a constant PackedBits reference. Theoretically the entire packet could have been passed 

as one bit stream, however, as each part might need to be encoded at a different rate, their separation 

makes subsequent processing easier.  



Transmit Simulation Transmit Simulation and receive optimization for 802.11b networks 

 

3-28 

3.2.4 Encoding and spreading – TransmitPMD 

The TransmitPMD class performs the tasks of the PHY PMD sublayer. Its tasks include phase 

shift keying and spreading according to the length of the preamble and the rate of the MPDU.  

Following initialization with the MPDU rate and type of preamble to send, TransmitPMD 

requires three function calls before outputting a frame. Each function call corresponds to encoding 

and spreading one of three parts of the frame. They are sendPreamble, sendHeader, and sendMPDU. 

All take in a reference to a PackedBits class and append their output to a CPMSignal , the second 

argument of each function. 

SendPreamble takes in the bits of the preamble, DBPSK encodes them, and spreads them 

using the Barker code spreading sequence. The result, a 1 Mbps signal, is the only rate supported for 

the preamble. 

SendHeader’s job is only slightly more difficult: It encodes the header bits either at 1 Mbps 

with DBPSK or 2 Mbps with DQPSK, and then spreads them with the Barker sequence. DBPSK is 

used with a long preamble (144 bits) and DQPSK with a short preamble (56 bits). 

SendMPDU, the last function called in the above sequence, must cope with any of the four 

possible data rates available in 802.11b. When using 1Mbps, the data is encoded in the same way as 

the preamble, using DBPSK and the Barker sequence. With 2Mbps, the data is encoded at the rate of 

the faster header with DQPSK. With the faster rates, 5.5Mbps and 11Mbps, sendMPDU calls one of 

two private CCK encoding functions which handle both encoding and spreading.  

3.2.5 Filtering and transmitting – DoppDiscreteFilter 

Once the data has been encoded and spread, it passes to DoppDiscreteFilter, which has the 

threefold task of adding Code Doppler, up-sampling and transmit filtering the signal. 

DoppDiscreteFilter is a template class, which would allow it to filter a vector of any type. Although 

DoppDiscretFilter supports any filter length and upsampling rate, in this case a 22-tap filter 

resampled by a factor of 128 is used. The upsampling rate used is 8.  

The signal is up-sampled and filtered by using the discrete definition of convolution. At eight 

chip intervals, a copy of the transmit filter multiplied by the chip value is combined additively with 

the last samples of the buffer. The buffer is then extended by the upsampling rate and the process is 

repeated through the end of the packet. This method works because the upsampled input signal only 

has information in one out of every eight positions, and so only one out of every eight multiplies is 

necessary. Filtering this way lessens the number of CPU multiplies necessary by a factor of eight 

compared to sequentially upsampling and then filtering.  



  3-29 

 

Code Doppler is controlled by adjusting the offset into a transmit filter that has been up-

sampled by a factor of 128. This allows for a fine-grained simulation of a time skew in the transmit 

clock while still keeping the overall sampling rate at eight times the chipping rate. When the overall 

skew reaches +128 or –128, the transmit pulse is moved one chipx8 symbol to the left or right 

respectively.  

DoppDiscreteFilter sits in “DiscreteFilter.h” (listed in the appendix) along with the other 

filters.  

3.2.6 Simulating the channel – PhyChannel 

The PhyChannel class (See appendix: PhyChannel.h and PhyChannel.cpp) has the fourfold 

task of adding AWGN, Frequency Doppler, Scaling, and Multipath Fading. For speed purposes, the 

effects are additive to the input signal and do not require the creation of new signals. The class takes 

as input a configuration file that controls the activation and parameters of each of the effects. After 

instantiation, a call to the public method AddAll adds all of the effect. The effects can also be added 

individually by calling the appropriate Add[Effect] function. A template configuration file can be 

found in the appendix.  

Additive White Gaussian Noise (AWGN) is added to the signal by first creating a pair of 

normalized, zero-mean Gaussian random values. These values are then scaled according to the 

configurable signal to noise ratio (SNR) and added to each sample of the signal. To make this SNR 

accurate, the signal constellation needed to have an energy of 2, like the output of TransmitPMD, 

and the transmit filter needed to be scaled so as not to effect the energy of the signals.  

Frequency Doppler is controlled by a Frequency Error parameter, which is specified in parts 

per million (PPM) and assumes a 2.4 Ghz signal. The PPM parameter is converted into a time 

dependent phase and then a two-dimensional rotation is performed on each complex I/Q sample. 

Scaling simply multiplies each sample by a user-configurable scaling factor. This can be used 

to test the receive chain AGC.  

The multipath fading effect implements the model adopted by the IEEE 802.11 Working 

group [12] to simulate environmental multipath effects on a transmitted signal. As per the model, the 

program constructs a channel filter whose impulse response consists of a randomly distributed phase 

and a Rayleigh distributed magnitude with exponentially decaying average power [12]. The user can 

configure the number of Taps as well as the RMS delay spread. The transmitted signal is then simply 

passed through the randomly generated complex channel filter.   

The configuration file supports a simple format for setting channel options of the form: 



Transmit Simulation Transmit Simulation and receive optimization for 802.11b networks 

 

3-30 

“VariableName=Value”. The support variable names are listed in the Table 3-7 below. The value is 

specified as either a floating point or integer number.  

 

3.2.7 ReceiveFiltering – SimCDiscreteFilter 

When receive filtering is enabled, the last step of the simulation is to pass the complex 

samples through a receive filter. While this step is not technically part of the transmit chain or the 

physical channel, it is provided as an option to speed up the MATLAB coded receive chain. The 

receive filter is a simulated complex discrete filter, meaning that while it filters a complex signal, the 

filter itself only has a real component. This implementation enables the consolidation of the filtering 

into one loop while at the same time eliminating the additional two multiplications per sample 

necessary for a true complex filter.  

3.3 Optimizations 

Initial executions of the transmit chain ran around 8 seconds, indicating that optimizations 

were necessary prior to using the simulation to generate large amounts of packets. Some simple 

profiling was done to attempt to discover where the major speed bottlenecks. As could have been 

expected, transmit and receive filtering both occupied a substantial portion of the execution time. 

Additionally, the algorithm originally used to create a Gaussian random variable for AWGN 

occupied a noticeable portion of running time.  

The optimization performed on the filtering classes has already been mentioned above. 

Combining transmit filtering and upsampling into one step realized the great performance gain. This 

Table 3-1 - PhySignal supported configuration variables 

Name Description 

CERR Code Doppler error, specified in parts per million 

FERR Frequency error, specified in parts per million assuming a 2.4 GHz carrier frequency 

FPH Frequency phase. Initial rotated phase of the signal 

SNR Signal to Noise ration, specified in dB.  

SCALE Scaling factor, added after the other effects 

TS Sampling time, specified in seconds, used in creating the random channel filter 

TRMS RMS delay spread, specified in seconds, used in creating the random channel filter 

TAPS Number of complex taps to create in the channel filter.   



  3-31 

 

step reduced the number of multiplications necessary for filtering a packet by eightfold without 

reducing the accuracy of the filter. The merging of the separate receive filtering loops for I and Q 

resulted in a significant, if not as dramatic, reduction in running time. The new receive filter ran for 

around 60% of the time of the original filter.  

The creation of a Gaussian RV was originally performed by creating a rayleigh RV from a 

uniform distribution and multiplying it by the cosine or sine of another uniform RV. This method, 

while accurate, required a good deal of calculation for each RV and slowed the addition of AWGN 

to a signal. Another method (see appendix: 802Util.cpp) was substituted and this provided a 

substantial performance gain.  

Should the need arise to further speed up the transmit simulation, a number of additional 

optimizations are possible, each, however, with diminishing returns. Currently, the C standard math 

library cos and sin functions are used to calculate the cosine and sine. Replacing these with a lookup 

table or a taylor series would result in a performance boost, especially when frequency Doppler is 

introduced in the channel. Additionally, the standard C math library rand function is used to create 

uniform distribution RV. Replacing this function with a new pseudorandom number generator could 

also result in a speed up. Any additional optimizations, unless they were to affect the simulation 

between transmit and receive filtering, would result in a negligible performance increase.  

3.4 User interface and packaging 

The simulation is compiled into a file configurable front end. This frontend has two interfaces: 

a command line interface, and a MATLAB native MEX interface.  

The command line interface was created to allow for easier debugging and to prevent the 

need to load up and run MATLAB simply to generate a frame. The MEX interface, on the other 

hand, provided a close coupling with MATLAB and removed the additional step of loading the file 

data from disk to process it. When running simulations that created and processed a large number of 

frames, the approximately 500ms necessary to load a 1024kb data frame from disk proved to be a 

major time sink.  

Originally, there were two frond ends, the now current file configurable one as well as a 

more basic parameter configurable chain that only generated a few types of packets at the different 

data rates. The parameter configurable chain had a performance advantage over the file configurable 

chain because it skipped the pre-processing step of parsing the frame file, but its existence required 

additional vigilance to ensure both chains were kept up to date. As it became clear that most of the 

simulations consisted of varying the channel conditions and not the composition of the packet, a last-



Transmit Simulation Transmit Simulation and receive optimization for 802.11b networks 

 

3-32 

packet replay feature was added to the file configurable chain. This feature was made possible 

because files compiled using the MEX toolkit are output as dynamic link libraries (DLL). The 

execution of a function in one of these DLLs results in that library being loaded into and remaining 

in memory. This feature allows for state variables to persist over more than call to library functions. 

Replay takes advantage of this persistence by storing the last packet it generated in memory before it 

is passed through the simulated channel. The result is that the file -configurable chain runs more 

quickly than the parameter configurable chain if the replay feature is used. Added flexibility in 

generating different types of packets thus came without a loss in performance and the parameter 

configurable chain was dropped.  

3.4.1 Implementation 

The entire front-end interface to the transmit chain is exposed through a single function 

called txchain_file (see appendix: “txchain_file.cpp” and “txchain_file.h”). This function takes in 

two input arguments and a reference to a CPMSignal as an output argument. The two input 

arguments are strings that hold the frame configuration filename and the channel configuration 

filename respectively. The channel configuration filename is passed down to an instance of 

PhyChannel and is handled there. The frame configuration filename, on the other hand, is dealt with 

directly by txchain_file and its helper functions. The function prototype is shown below: 

 

Both the MEX interface and the command line interface use this function to interact with the 

simulation. The two interfaces differ only in the way that they extract the parameters and handle the 

output. The command line interface – see appendix: txchain_dos.cpp – pass the arguments from the 

argv parameter onto txchain_file and call a function to write the output out to disk. Since PMSignal 

already includes a write function to perform that task, outputting is also fairly simple. The MEX 

interface – see appendix: txchain_mex.cpp – is only slightly more complicated because of its need to 

call MEX toolkit function to extract parameters and assign the output.  

Decoding of the frame configuration file is dealt with by a hierarchy of helper functions to 

txchain_file that are each responsible for a smaller, and smaller part of the file. txchain_file is 

responsible for opening the frame file and decoding the top-level tags, or initiating a frame replay. 

The second level functions, txchain_delay, txchain_frame, and txchain_replay, each handle one of 

the three possible top-level options. Further functional division is shown in the table below.  

bool txchain_file(string frameFile,string channelFile,CPMSignal &output) 



  3-33 

 

txchain_file

txchain_delay txchain_replaytxchain_frame

set_packet_options channel_chain

parse_address parse_type parse_subtype parse_include

 

Figure 3-2 - txchain_file function call hierarchy 

For aid in parsing the frame configuration file, txchain_file opens the file using the 

FileToken class. This class handles file input and returns file data in the form of tokens using the 

C++ ifstream class. FileToken provides a number of functions to read tokens and predigest the data. 

Tokens can be returned as strings, integer values, arrays, or untyped values. Untyped values can be 

up to 32-bits long. It can also skip over expected tokens. Single line MATLAB style comments are 

supported (beginning with a ‘%’) as are multi-line C style comments. FileToken supports data in 

base-10, hexadecimal (with a leading ‘0x’), binary (using a trailing ‘b’), as ASCII character codes 

(wrapped in single quotation marks), or as strings (wrapped in double quotation marks). Base-10 

number and ASCII codes are always treated as byte long. Hexadecimal and binary numbers can be 

anywhere from 8-32 bits. FileToken uses C++ exception handling to deal with errors trying to 

tokenize the input. Exceptions are thrown whenever a token cannot be converted to the type required 

by a member function. For error reporting purposes, the class keeps track of the current column and 

row of the current token.    

 

3.4.2  File format 

An example of the frame configuration file format is shown below. An ACK frame is used 

because of its conciseness. Nevertheless, the ACK frame shows all the features of the frame format.  



Transmit Simulation Transmit Simulation and receive optimization for 802.11b networks 

 

3-34 

  

 The frame format supports only two top-level tags, delay and frame. A delay tag is used to 

indicate a delay period where no data is sent. The delay tag must be followed by an integer value and 

then a time unit of measurement. Possible time units are microseconds, “us”, or milliseconds, “ms.” 

A frame tag is used to indicate the beginning of a frame. It must be followed by a set of parenthesis 

containing a comma delineated SYNC type and transmission rate. Possible SYNC types are 

“longSync” or “shortSync”. Possible transmission rates are “1Mbps”, “2Mbps”, “55Mbps”, or 

“11Mbps”. The decimal point is dropped from the 5.5 Mbps rate to ease parsing.  

Once a frame is begun using a frame tag, any number of packet options can be set. The 

frame is then ended using a “end frame” tag. Packet options are set using a functional notation of the 

form: Option(Parameter1,Parameter2,…). By setting the options appropriately, any frame in the 

802.11b standard can be created. None of the frames are built into the simulation, however, and so 

access to the standard is necessary in order to create them correctly. Frame options can roughly be 

broken down into five functional categories: Frame Control, Data, WEP, Field, and Miscellaneous. 

Frame Control options only affect the bits of the Frame Control field. Data options set the MSDU. 

WEP options enable and control WEP encryption. Field options set the included fields and the value 

of any fields not already set. Miscellaneous options set an assortment of other options such as 

scrambling and receive filtering. Table 3-2 shows all the options available divided into the five 

different groups. 

The SetData option is used to pack specific data into the MSDU, and is therefore one of the 

most used options. It supports any number of parameters, each of any size from 8 to 32 bits in byte 

Figure 3-3 - Example ACK Frame file 

% Example ACK frame: 
frame(longSync,1mbps) 
  
    Type(Control)  % ACK is a control packet 
    Subtype(1101b) % ACK subtype 
     
    Include(FC,DURATION,ADR1,FCS) % Only include four fields 
    Duration(0) % Set duration to zero, no frames follow 
    Adr1(0xAB,0xCD,0x87,0x22,0x12,0xA1) % Address of sending station 
 
    BitFile("ack.bits") % save bits for examination 
end frame 
  



  3-35 

 

size increments. An example of the MSDU for an association request (see 7.2.3.4 of the 802.11 

standard) is shown below in figure 3-5: 

  

SetData(0000000000010001b,  % Capability info field 
   0x00FF,       % Listen interval 
 0x00,        % SSID Field 
 0x08,        % Length 8 
 '8','0','2','1','1','D','e','v', 
 0x01,        % Supported rates 
 0x04,        % 4 supported 
 0x02,0x04,0x0B,0x16  % 1,2,5.5 and 11 Mbps 
 ) 

Figure 3-4 - Association Request MPDU example 



Transmit Simulation Transmit Simulation and receive optimization for 802.11b networks 

 

3-36 

 

The appendix lists additional configuration files (“ProbeReq.frame”, “AssocReq.frame”, 

“1KB.frame”).  

 

Table 3-2- Frame Configuration Options 

Frame Control Options Default Description 
ToDs(b) 0 Sets the FC ToDs bit to b.  
FromDs(b) 0 Sets the FC FromDs bit to b.  
Retry(b) 0 Sets the FC Retry bit to b. 
PowerMgmt(b) 0 Sets the FC Power Management bit to b.  

Type(type)  
00b 

Sets the FC Type to type. Supported types are: Control,Mangement, 
and Data.  

Subtype(subtype) 0000b Sets the FC Subtype to subtype. Subtypes can range from 0-16.  
WEP Options Default Description 

WEP(b)  
0 

Enables or DisablesWEP. Need to call the other WEP functions if 
enabled. 

WEPIV(B1,B2,B3) - Sets the three bytes of the WEP IV. 
WEPKey(B1,...,Bn) - Sets the WEP Key, can be any number of bytes upto 16. 
WEPKeyID(d) - Sets the WEP Key ID from 0-3. 

Data Options Default Description 
SetData(D1,...,Dn) - Sets the MSDU to D1 through Dn. 
ConstData(L,B) - Sets the MSDU to constant byte value B of length L. 
RandData(L) - Sets the MSDU to random data of length L. 

Field Options Default Description 

Include(F1,...,Fn)  
All 

Indicates which fields should be included. Valid identifiers are: FC, 
DURATION, ADR1, ADR2, ADR3, SEQ, ADR4 BODY, FCS). 

Sequence(N) 0 Sets the sequence number to N. 
Duration(N) 0 Sets the Duration fields to N. 
Adr1(B1,B2,B3,B4,B5,B6) 0:0:0:0:0:0 Sets Address 1 to the six bytes B1-B6 in hi-lo order. 
Adr2(B1,B2,B3,B4,B5,B6) 0:0:0:0:0:0 Sets Address 2 to the six bytes B1-B6 in hi-lo order. 
Adr3(B1,B2,B3,B4,B5,B6) 0:0:0:0:0:0 Sets Address 3 to the six bytes B1-B6 in hi-lo order. 
Adr4(B1,B2,B3,B4,B5,B6) 0:0:0:0:0:0 Sets Address 4 to the six bytes B1-B6 in hi-lo order. 

Fragment(N,more)  
- 

Makes the Frame a fragment, setting the fragment number to N, and 
the More fragments bit to more. 

Miscellaneous Options Default Description 
Scramble(b) 1 Enables or Disables scrambling of the bit information. 
RxFilter(b) 0 Enables or Disable receive filtering of the frame. 
BitFile("filename") - Outputs the bits of the frame to a file. 
Replay(b) 0 Enables frame replaying on this frame.  



  3-37 

 



Receive simulation Transmit Simulation and receive optimization for 802.11b networks 

 

4-38 

4 Receive simulation 

4.1 Receive chain 

The receive chain was coded as a set of MATLAB scripts by another member of the project 

team. The algorithms it uses to decode the frame mimic those that will be implemented in digital 

hardware. After automatic gain control (AGC) and A to D conversion, the receive simulation runs 

through three sequential loops to decode the preamble, PLCP header, and MPDU. The channel 

match filter, phase tracking, and time tracking loops can each optionally be enabled or disabled. The 

preamble is decoded only if a legitimate SFD is detected, and the MPDU is decoded only if PLCP 

header CRC passes. The decoded MPDU is then returned to the calling function without checking its 

validity. To check whether a received packet is valid, any function calling the receive chain must 

check that a MPDU is returned (its length is greater than 1), and then that the last 32-bits are a valid 

FCS on the rest of the MPDU.  

4.2 Optimizations to the receive chain 

As it was originally coded, the fully MATLAB coded receive chain did not run at a fast 

enough speed to allow for efficient simulation. A 1 KB, 1 Mbps packet required around 60 seconds 

to decode on a Pentium III 450 Mhz. At this rate, one simulation run of one thousand packets 

required sixteen hours and forty minutes. Optimizations were therefore necessary. A trade-off had to 

be reached, however, between spending too many additional hours recoding a constantly changing 

simulation in C and wasting processing time. Analysis of the MATLAB profiler output showed that 

only two function classes in the receive chain used a significant percentage of processing time on a 

per-call basis. These calls were the receive filter and the 32-bit CRC. For the receive filter, it was 

removed from the receive chain, coded in C, and added as an optional feature of the transmit chain. 

For the CRC, the call was moved outside of the receive chain, as described in the section above, and 

was also recoded in C and linked into a MEX DLL (see appendix:crc_mex.c). The C version ran in 



  4-39 

 

well under one second.  

As this first round of optimizations still left a decoding time of 45 seconds, further work 

needed to be done. Without taking into consideration the above optimizations, examination of the 

self time, the time a function spends doing its own calculation, of the top level receive function 

registered at almost 66%. This high percentage meant that to effect a significant speed up, a portion 

of the main function needed to be recoded. The third loop therein, MPDU decoding, was both the 

simplest and the most time consuming, and as such it was the best candidate for replacement. It was 

therefore rewritten in C. The loop was further simplified by supporting only 1 and 2 Mbps frames.  

This left a smaller number of subfunctions that needed to be coded: Barker match filtering, 

descrambling, Phase tracking, time tracking, and DPSK decoding. The recoded third loop is listed in 

the appendix: MPDU_decode.cpp. After inserting MPDU_decode into the receive chain, the total 

decoding time was brought down to 3.5 seconds: 1½ seconds for the preamble, ½ second for the 

header, and 1½ seconds for the MPDU. When combined with an increased higher level overhead due 

to the CRC, and transmit chain time due to the receive filter, the total time per frame settled around 

5.5 seconds. While 5.5 seconds is not ideal, more than an eleven fold relative gain seemed enough of 

a gain to begin simulation runs.  

  



PLL Receive Calculations Transmit Simulation and receive optimization for 802.11b networks 

 

5-40 

5 PLL Receive Calculations 

 

Figure 5-1 – 1Mbps and 2Mbps receive chain model 

 

The digital portion of the receive chain for 1 Mbps and 2 Mbps can be modeled by the 

system shown in figure 5-1. The feedback loop shown above represents the Phase-Locked Loop 

component of the receiver. In a real system, the complex rotator would probably sit earlier in the 

chain and the form of a VCO in order to match the carrier frequency in the analog domain. The PLL 

tracks the differences in the received frequency of the system and the reference frequency on the 

receiver. As mentioned before, 802.11 requires a receiver to be able to support at least 30 PPM in 

frequency error. Because of its shortened range, most of the frequency error introduced in an 802.11 

system is created by the differential between the oscillator of the sending system and the reference of 

the receiving one. This discrepancy generally results in a fixed frequency differential over the course 

of a packet: an input step in terms of frequency and a linear ramp in terms of phase.  

As 802.11b uses either DBPSK or DQPSK, the goal of the PLL is to push the incoming 

complex signal to one of the axes. In the QPSK cases, it drives the signals to the In-Phase or 

Quadrature axis. For the BPSK case, only the In-Phase axis is used. Since 802.11b uses differential 

PSK, the symbol information can easily be stripped by removing rotations of 180° in BPSK, or of 

any 90° increments for QPSK in order to calculate the discriminator.  

Since the PLL attempts to drive the symbols to one of the axes, the ideal discriminator 

would be the angle from the nearest axis after the signal information is removed. Actually 

calculating the angle  would be expensive in hardware. By using a small angle approximation, 

however, we can approximate this angle: If we are driving the symbol towards the In-Phase axis, 

then the error angle can be approximated by the Quadrature portion of the signal and vice versa. This 

system works fairly well, but becomes extremely dependent on the AGC loop in the system and this 

dependence needs to be taken into consideration.  

The system shown above can be approximated by abstracting away from the implementation 



  5-41 

 

details of the PLL to simply looking at the phase angle characteristics of the system. This can be 

seen in figure 5-2. From this figure one can derive the continuous time closed loop function in terms 

of the loop filter f(t). 

 

Figure 5-2 – Continuous time PLL model 

5.1 Continuous time derivation 

 

From figure 5-2, the definition of the error angle, φ (t) is given in terms of the input angle, θ (t) and 

the estimated angle )(ˆ tθ : 

 )(ˆ)()( ttt θθφ −=  (Eq.  5-1) 

The voltage-controlled oscillator used to generate the estimated angle to match the measured angle 

can be modeled as an integrator taking as its input the output of the loop filter: 

 

)(
)(ˆ

)()(ˆ

2

0
2

tEK
dt

td

dEKt
t

=

= ∫
θ

εεθ
 (Eq.  5-2) 

The output of the loop filter E(t), can be given by a convolution of the input error measurement e(t) 

and the filter transfer function f(t): 



PLL Receive Calculations Transmit Simulation and receive optimization for 802.11b networks 

 

5-42 

 ∫ −=
t

dtftE
0

)()()( ττεε  (Eq.  5-3) 

Taking the derivative of Equation 5-1 and substituting in Equations 5-2 and 5-3, gives the following 

result:  

 

∫ −−=

−=

−=

t

dtfK
dt

td
dt

td

tEK
dt

td
dt

td
dt

td
dt

td
dt

td

0
2

2

)()(
)()(

)(
)()(

)(ˆ)()(

τττε
θφ

θφ

θθφ

 

 )()(
)()(

2 tftK
dt

td
dt

td
∗−= ε

θφ
 (Eq.  5-4) 

 In order to use the results of Equation 5-4, the error measurement, e(t) needs to be linearized. 

This linearization can be done by claiming that for small angles, the error angle is equal to the 

difference of the input and the VCO. If this simplification is done, the error measurement becomes 

very dependent on the scaling of the signals, and thus on the output of the Automatic Gain Controller 

(AGC). To represent a simplified model of the AGC, a scaling constant A0 is used. An additional 

scaling constant K1 is introduced to offset this value: 

 

10

10

10

)(
)(

)(
)(

)()(

KA
sF

s

KA
t

t

tKAt

ε

ε
φ

φε

=Φ

=

=

 (Eq.  5-5) 

 If we take the transform of Equation 5-4 and combine it with that of equation 5-5, we get the 

closed loop transfer function of the system in terms of the loop filter: 

 



  5-43 

 

 

)())()((

)()()(
)(

)()()()(

10210

2
10

2

ssKAsFKKAssF

sFsFKsss
KA
sF

sFsFKssss

Θ=+

−Θ=

−Θ=Φ

ε

ε
ε

ε

 

 

 
)()(

)(

210

10

sFKKAs
sKA

s
sF

+
=

Θ
ε  (Eq.  5-6) 

 

If we substitute the error angle )(sφ  back in for the error measurement )(sFε in Equation 5-

6, and plug in the transform of equation 5-1, the result is the final closed loop transfer function of the 

estimated angle over the input angle: 

 

 

)
)(

1)(()(ˆ

)(
)(

)(ˆ)(

)(
)(

)(

210

210

210

sFKKAs
s

ss

s
sFKKAs

s
ss

s
sFKKAs

s
s

+
−Θ=Θ

Θ
+

=Θ−Θ

Θ
+

=Φ

 

 
)(

)(
)(
)(ˆ

210

210

sFKKAs
sFKKA

s
s

+
=

Θ
Θ

 (Eq.  5-7) 

These two final closed loop equations can be transformed into a discrete time transfer 

function by using the discrete time equivalent model shown in figure 5-3. 

 

5.2 Discrete time derivation 

 

 

Figure 5-3 – Discrete time PLL model 

 



PLL Receive Calculations Transmit Simulation and receive optimization for 802.11b networks 

 

5-44 

A discrete version of equation 5-1, and its transform can be extracted as below: 

 

 

)(ˆ)()(

][ˆ][][

)(ˆ)()(

zzz

nnn

tntntn

Θ−Θ=Φ

−=

∆−∆=∆

θθφ

θθφ

 (Eq.  5-8) 

performing the same linearization as in equation 5-5 and passing the signal through a 

discrete loop filter with impulse response f[n] we can extract an equation and transform for the 

output of the loop filter in terms of the discrete error measurement: 

 

 
)()()(

][][][

10

10

zFzKAzF

knfkKAnE

E

k

Φ=

−= ∑∞

−∞=
φ

 (Eq.  5-9) 

 

The VCO can be discreteized by converting the integrator to a summation using a delay element: 

 ∑∫
=

∆=⇒=
n

t

t

ttEKndEKt
0

2
0

2 ][][̂)()(ˆ θεεθ  (Eq.  5-10) 

Equation 5-10 results in a simple difference equation and a first order transform: 

 

 
)()(ˆ)(ˆ

][][̂]1[̂

2

2

ztFKzzz

tnEKnn

E∆+Θ=Θ

∆+=+ θθ
 (Eq.  5-11) 

Plugging the transform from equation 5-9 into the last equation, gives us the estimated angle in 

terms of the discrete error measurement: 

  

 
)(

)1(
)(

)(ˆ

)()()1)((ˆ

210

210

z
z

ztFKKA
z

zFztKKAzz

Φ
−
∆

=Θ

Φ∆=−Θ
 (Eq.  5-12) 

We can expand this from the first discrete equation to give us the closed loop transfer function in 



  5-45 

 

terms of the discrete loop filter: 

 

)(1
)(

)(
)(ˆ

))(ˆ)((
)1(

)(
)(ˆ

210

210

210

ztFKKAz
ztFKKA

z
z

zz
z

ztFKKA
z

∆+−
∆

=
Θ
Θ

Θ−Θ
−
∆

=Θ

 (Eq.  5-13) 

5.3 Loop filter design 

Given the transfer function in both continuous and discrete time, the design of the loop filter 

can be examined in terms of its effect on the resultant error measurement of the system. The final 

closed loop continuous time equation can be simplified by examining the output error Fe(s) as 

opposed to the output angle measurement: 

 
)()(

)(

210

10

sFKKAs
sKA

s
sF

+
=

Θ
ε   

The complexity of the loop filter that needs to be implemented can be determined by 

examining the performance of a few different filters under input stress. Equations 5-14 through 5-16 

list the three different loop filters examined, in order of increasing complexity from first to third 

order: 

 )()(1 ttf δ=  1)(1 =sF  (Eq.5-14) 

 attf += )()(2 δ  
s
a

sF += 1)(2  (Eq.5-15) 

 btattf ++= )()(3 δ  
21 1)(

s
b

s
a

sF ++=  (Eq.5-16) 

As an estimate for )(tθ , we can use an input signal that includes a step position, velocity, 

and acceleration [9]. This system can be modeled with the following equation: 

 
32

2

2
)(

)()()(

sss
s

tuttt

ccc
est

cccest

αυθ

αυθθ

++=Θ

++=
 (Eq.5-17) 

 



PLL Receive Calculations Transmit Simulation and receive optimization for 802.11b networks 

 

5-46 

Since )(testθ  is a linear, time-invariant system, the effect of each portion of this input can be 

evaluated separately without changing the effects of the other parts. We can use the final value 

theorem view the performance of the PLL with each of the different loop filters installed. 

Table 5-1, shows the steady state error of each loop filter in relation to the different parts of 

the input signal. Appendix B contains the value evaluation of each of the nine cases. A sample case 

is listed below for the effect of the velocity step on a first order PLL. 

 

2210

10

2
210

3
10

0

2
210

3
10

210

10

lim)(lim

)(

)()(

KKKA
KA

sKKAs
sKA

stF

sKKAs
sKA

sF

s
KKAs

sKA
sF

cc

c

st

c

υυ

υ

υ

ε

ε

ε

==

+
=

+
=

Θ
+

=

→∞→

 (Eq.5-18) 

 

Here, the velocity step on the first order PLL results in a constant error dependent on the 

speed of the velocity step and the constant K2.  

 

In the case of a 802.11b system, a short distance WLAN, the PLL is needed less for channel 

interference caused by relative motion of the transmitter and receiver than for differences in the 

respective reference oscillators. The reason for this is that a significant, sustained velocity 

differential would generally move the transmitter and receiver too far away to communicate in any 

case. The same holds true for acceleration. Short bursts of acceleration (caused, for instance, by 

dropping a computer) could cause significant interference, but the layers that sit on top of 802.11b, 

Table 5-1 – PLL Input Response 

Loop Filter: Phase Step Velocity Step Acceleration Step 

1st Order 0 

2K
cυ

 
Monotonically     

increasing 

2nd Order 0 0 

2

2
aK

cα
 

3rd Order 0 0 0 
 



  5-47 

 

such as TCP/IP, can retransmit the lost frames. As the wireless medium used by 802.11b can have 

significant interference (for example by Bluetooth devices or microwave ovens) occasional lost 

frames are fairly routine.  

As the 802.11b standard requires that any IEEE compliant system support up to 30 PPM of 

frequency error, using only a 1st order PLL would reduce performance considerably. For handling 

acceleration, because the steady state error is both linearly dependent on the magnitude of the 

acceleration and constant for constant acceleration, a second order Loop filter should be able  to cope 

by slow movement, such as that caused by pedestrian motion, without overly affecting performance. 

The benefit in terms of performance of a third-order loop filter over a second order one would be 

fairly small. A second order PLL seems therefore to be the best tradeoff between hardware 

complexity and performance.  

 

5.4 Continuous Time Second order PLL 

 

Since we are using a second order loop filter, its transfer function and impulse response are as 

follows: 

 attf
s
a

sF +=+= )()(1)( δ  (Eq.  5-19) 

 

Substituting this into the closed loop transfer function (Equation 5-7), we get the full transfer 

function of the system: 

 

s
s

s
a???s
s

a???

s
s

F(s)???s
F(s)???

s
s

⋅
++

+
=

Θ
Θ

+
=

Θ
Θ

)1(

)1(

)(
)(ˆ

)(
)(ˆ

210

210

210

210

 

 
210210

2
210210

)(
)(ˆ

??a?s???s
??a?s???

s
s

++
+

=
Θ
Θ

 (Eq.  5-20) 

 This is a second order equation of the form shown below, in which the natural frequency (ωn), 

damping ration (ζ), and loop bandwidth (BL) are given by combination of the four parameters: 



PLL Receive Calculations Transmit Simulation and receive optimization for 802.11b networks 

 

5-48 

 
22

2

2
2

nn

nn

ss
k

ωζω
ωζω
++

+
 (Eq.  5-21) 

 210

210
2

2 ???
??a?

n

n

=
=

ζω
ω

 (Eq.  5-22) 

 It is also useful to extract the loop bandwidth of the system BL: 

 df
f
f

BL

2

0 )2(
)2(ˆ

∫
∞

Θ
Θ

=
π
π

 

 by using equation 5-23 [J-T Wu]: 

   
)

4
1

(
2
1

ζ
ζω += nLB

 (Eq. 5-23) 

 With the natural frequency and damping ration defined in terms of the constants above, the 

loop bandwidth can be defined as: 

 )(4
1

210 a???BL +=  (Eq. 5-24) 

 

5.5 Discrete Time second order PLL 

The first step to determining the derivation is to take the difference between the output of the 

loop filter over a time step: 

 

 ∫∫
∆−∆

−∆−−−∆=−−
tntn

dtnfedtnfenEnE
)1(

00

))1(()()()(]1[][ εεεεεε  (Eq.  5-25) 

 Substituting loop filter from the continuous time case (Equation 5-19) simplifies Equation 5-

25 down to one integral and the difference of two input functions evaluated a sampling period apart:  



  5-49 

 

 

∫

∫∫
∆

∆−

∆−∆

+∆−−∆=−−

−∆−−+∆=−−

tn

tn

tntn

deatnetnenEnE

adetneadetnenEnE

)1(

)1(

00

)())1(()(]1[][

)())1(()()(]1[][

εε

εεεε

 (Eq.  5-26) 

 Converting the entire equation to discrete time requires a discrete approximation of the 

integral. This can be done a number of ways, from a simple Euler integration to a more complicated 

interpolation. I chose to use the average value between the two samples as a good tradeoff between 

accuracy and complexity:  

 

 
2

])[]1[(
]1[][]1[][

nene
tanenenEnE

+−
∆+−−=−−  (Eq.  5-27) 

Taking the Z-Transform of Equation 5-27 gives the loop filter transfer function: 

 

)(
)1(

))2/1(2/1(
)(

)())2/1(2/1()1)((

)()1(
2

)()()()(

1

1

11

111

ze
z

tazta
zE

zetaztazzE

zez
ta

zezzezEzzE

−

−

−−

−−−

−
∆−−∆+

=

∆−−∆+=−

+
∆

+−=−

 (Eq.  5-28) 

Plugging the discrete loop filter into Equation 5-13, and performing the same linearization 

on the phase angle gives a second order transfer function relating the input difference to the output 

angle: 

 

)(
)1(

))2/1(2/1(
)(ˆ

)(
)1(

))2/1(2/1(
)1)((ˆ

21

11

211

1

1

2

z
z

taztaz
KKAz

ze
z

tazta
tKzz

φ
−

−−

−

−

−
∆−−∆+

=Θ

−
∆−−∆+

∆=−Θ
 (Eq.  5-29) 

  

Taking a discrete version of equation 5-1 and its transform: 

 



PLL Receive Calculations Transmit Simulation and receive optimization for 802.11b networks 

 

5-50 

 

)(ˆ)()(

][ˆ][][

)(ˆ)()(

zzz

nnn

tntntn

Θ−Θ=Φ

−=

∆−∆=∆

θθφ

θθφ

 (Eq.  5-30) 

we can now solve for the final closed loop form of the discrete equation, using Equations 5-29 and 

5-30, 

 

)(
)1(

))2/1(2/1(
)1(

))2/1(2/1(
1)((ˆ

))(ˆ)((
)1(

))2/1(2/1(
)(ˆ

21

11

21021

11

210

21

11

210

z
z

taztaz
KKA

z
taztaz

KKAz

zz
z

taztaz
KKAz

Θ
−

∆−−∆+
=

−
∆−−∆+

+Θ

Θ−Θ
−

∆−−∆+
=Θ

−

−−

−

−−

−

−−

2

2

11
210

21

11
210

))2/1(2/1()1(
))2/1(2/1(

)(
)(ˆ

z
z

taztaztKKAz
taztaztKKA

z
z

⋅
∆−−∆⋅∆+−

∆−−∆+⋅∆
=

Θ
Θ

−−−

−−

 

)12/()22/(
))2/1()2/1(

)(
)(ˆ

210
2

210
2

210210
2

210210

+∆−∆+−∆+∆+
∆−∆−∆+∆

=
Θ
Θ

tKKAatKKAzatKKAtKKAz
tatKKAztatKKA

z
z

  

  (Eq.  5-31) 

 

Using the quadratic formula confirms that the poles from Equation 8 are related to those of Equation 

18 by the standard relationship. A pole at s = -a is matched by a pole at z = e-a∆t.  

In order to implement the system in simulation, the full system difference equation is needed. This 

can be extracted from equations 5-30 and 5-29: 

 

 
]1[)2/1(][)2/1(]1[][

][][ˆ]1[̂

1010

2

−∆−−∆++−=

∆+=+

ntaKAntaKAnEnE

ntEKnn

φφ

θθ
 (Eq.  5-32) 

 

By introducing a new function w[n], the above can be rewritten: 

 

]1[)2/1(]1[][)2/1(][][

]))[)2/1(][)2/1(][(][̂]1[̂

21022102

10102

−∆−∆−−∆=∆+∆−∆=

∆+−∆++∆+=+

ntatKKAntEKntatKKAntEKnw

ntaKAntaKAnEtKnn

φφ

φφθθ

    (Eq.  5-33) 



  5-51 

 

All that is left to be in is to substitute w[n] in for E[n] and this gives the final form: 

 
]1[]1[][

][)2/1(][][ˆ]1[̂
2

210

210

−∆+−=

∆+∆++=+

ntKKaAnwnw

ntatKKAnwnn

φ

φθθ
 (Eq.  5-34) 

If we substitute in the equations for the natural frequency and damping ratio from the continuous 

time derivation, then we get the final form of the difference equation expressed in terms of these two 

parameters and the sampling period: 

 
]1[)(]1[][

][)2/)(2(][][̂]1[̂
2

2

−∆+−=

∆+∆++=+

ntnwnw

nttnwnn

n

nn

φω

φωζωθθ
 (Eq.  5-35) 

This equation can be used in simulation to write a second order PLL  

 

5.6 PLL Implementation 

Implementation of the second order PLL requires setting the values for the damping ratio 

and natural frequency. To do this, we can look at the effects that these variables have on the noise 

performance and tracking time. This will be done for the simplest case of BPSK encoding. 

With the continuous case, phase jitter of the system can be modeled by introducing two 

Gaussian variables onto the incoming I and Q samples: 

 
)()()(

)()()(

tntQtQ

tntItI

qn

in

+=

+=
 (Eq. 5-36) 

If we assume the system is already locked, then the Quadrature portion of the input signal 

can be assumed to be zero, because we are assuming a BPSK signal locked onto the In-Phase axis. 

Provided the amplitude of the input signal is a good deal larger than the amplitude of the noise, then 

using the small angle approximation, the phase jitter can be modeled as below: 



PLL Receive Calculations Transmit Simulation and receive optimization for 802.11b networks 

 

5-52 

 
)()()()()( tntQtntItI qnin =+=

 

 
)(

)(
)(

tI

tn
t q

n ≈θ  (Eq. 5-37) 

Assuming that the noise is circularly symmetric, then the average power of the phase jitter 
2

nθ can be modeled in terms of the signal to noise ratio: 

 
SNRI

n
I

nq
n 2

1
2 2

22
2 ===θ  (Eq. 5-38) 

Since average power of the phase jitter 2
nθ  is equal to the sum of the spectral density of the 

noise over all frequencies, the effect of the phase jitter on the output of the VCO, θ̂ (t) can be 

modeled by integrating the spectral density of the noise )( fS nθ  multiplied by the power of the 

transfer function integrated over all frequencies: 

 df
f
f

fS nout

2

0

2

)2(
)2(ˆ

)(∫
∞

Θ
Θ

=
π
π

θ θ  (Eq. 5-39) 

Since we are assuming AWGN, the spectral density is simply a constant over all 

frequencies, and so Equation 5-39 becomes: 

 Lnout BfS )(2
θθ =  (Eq.5-40) 

Thus the effect of the phase jitter on the output is dependent on the SNR of the signal and 

the loop bandwidth. Examining the loop bandwidth equation for a 2nd order PLL from equation 5-23, 

the minimum occurs at ? = 0.5. BL also stays at under 125% of the minimum of  .25 < ? < 1 [J-T 

Wu].  

If we set damping ration (ζ) to 2-½ , then the poles of the system are equidistant from the real 

and the jw axis. This makes the system act like a 2nd order Butterworth filter, in which the magnitude 

of the filter remains flat over the widest bandwidth before decaying [11]. On account of this, the 

time constant for the system can be characterized by the following equation [4] : 



  5-53 

 

  
l

c B
T

4
3

=  (Eq.  5-41) 

Depending on the value of the time constant, there are four possible outcomes when testing 

the system under the influence of frequency Dopple r spread. First, the PLL will not be able to pull in 

the frequency error at all. In this case, the TC is far too large, and the packet will fail. Second, the 

PLL will pull in the frequency error, but too slowly. In this case the packet preamble will expire 

without frequency lock having been achieved and symbol errors will occur. Third, TC could be too 

large, and the PLL will pull in the frequency error but the large amount of residual error will result in 

symbol errors. Last, TC could be set correctly and the frequency error will be pulled in while at the 

same time the residual error because of AWGN could be small enough not to result in symbol 

decision errors. The goal of the following simulations was to discover the ideal time constant, and 

whether using a sequence of time constants would help decoding.    



Results Transmit Simulation and receive optimization for 802.11b networks 

 

6-54 

6 Results  

6.1 Commercial station interaction 

One of the first tests performed with the transmit simulation was to pass its output through 

an arbitrary waveform generator (AWG) into the base band RF of a commercial 802.11b card set up 

as an AP. The input and output to and from the commercial 802.11b card was connected to an 

oscilloscope and so could be captured and decoded offline.  

A probe request packet was created with a broadcast to address, and a sending address of 

another 802.11b card. A probe request packet was used because it would elicit a response packet (a 

probe response) regardless of the state of communication between two stations: A probe request is 

generally the first communication between a station and an AP. Figure 6-1 shows the results of the 

transmission of the probe request packet. Since the probe request is a broadcast packet, it is not 

acknowledged by the AP with an ACK, instead the AP simply responds with a probe response at its 

leisure. The addressed probe response is sent forth both over the cable to the oscilloscope and over 

the air. As a side effect of the transmission, due to the fact the from address of a real station was 

used to generate the request, that station responded with an acknowledgement to the AP’s probe 

response. The ACK, as per the standard, was sent within 10us of the reception of the probe response. 

It can only be differentiated because of its much lower power level.  

 



  6-55 

 

0 1 2 3 4 5 6

x 10
5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

time (chipx8)

P
ow

er

Signal power vs. time for transmitted Probe Request +Response

 

Figure 6-1 - Commercial station interaction: Probe request + response 

 

6.2 Reference Curve – No Doppler or multipath channel 

When optimally configured, the best performance level the receiver tracking loops could 

possible reach will never be better than the performance of the system without any frequency or code 

Doppler. A good measure of the performance of a phase tracking or time tracking loop, therefore, 

would be how close it approaches this ideal. To this end, a reference packet error rate curve was 

generated over a range of signal-to-noise ratios. This curve shows receiver performance in an 

AWGN channel with a perfectly rotated signal. The signal can be perfectly rotated because the 

transmitting constellation is known (the signal is encoded at a 45 degree offset). Figure 6-2 shows 

the result. In subsequent analysis, references will be made to this figure to compare the efficiency in 

dB that has been lost with the introduction of frequency or code error.  



Results Transmit Simulation and receive optimization for 802.11b networks 

 

6-56 

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

10

20

30

40

50

60

70

80

90

100
PER vs Chip SNR in AWGN for 1Mbps packet with 1024 byte data payload

Chip SNR Ec/Nt [dB]

P
E

R
 %

 

Figure 6-2 - PER vs. Chip SNR in AWGN for 1Mbps 1KB Packet 

 

6.3 Automatic Frequency Correction and Phase locked 

loop optimizations 

6.3.1  Separate, Coexisting AFC and PLL 

The first simulation tests performed were on a receive chain that used Automatic Frequency 

Correction (AFC) to correct frequency error and a separate Phase Locked Loop (PLL) to remove 

residual phase. In theory, the AFC would remove almost all 1st order phase changes, leaving a nearly 

constant phase for the PLL.  

The AFC operates by comparing the two dimensional dot and cross product of the two most recent 

samples. It uses this comparison to ignore any phase that is the result of the phase shift encoding, 

leaving only an incremental phase between the two samples. It calculates a new cross product from 

this incremental phase and then multiplies it by a gain value and adds that result to the current 



  6-57 

 

frequency error. This frequency error then modifies the current phase error. 

The PLL works by calculating a phase discriminator, multiplying it by a gain value, and then using 

that result to push the phase to one of the axis.  

The first test performed was the optimization of the AFC gain parameter under the stress of 

frequency error. For this test, an automated MATLAB script was created to link packet creation (the 

transmit chain) with packet decoding (the receive chain), see appendix – full_chain_kd.m.  

  The gain parameter (Kd), was swept logarithmically over a range of 500 to 5000 for eighteen 

different values. This set of Kd values was sent to the full chain, which ran 1000 trials for each Kd.  

The trials used the SNR of 1.5 db and a 10 part-per-million simulated frequency error. The results 

were similar to what was expected: an inverted bell shape Packet error rate vs. Kd graph. See figure 

6-3. The lowest point on the curve was for a Kd value of around 1470.  

 

10 2 10 3 10 4 
0 

100 

200 

300 

400 

500 

600 

700 

800 

900 

1000 
PER for 8.1 SNR and 25 PPM FERR in relation to 
Kd 

Kd 

PE
R 
% 

 

Figure 6-3 - PER vs Kd in 4 dB AWGN and 25 PPM FERR for 1KB Packet 

The next step was to be an evaluation of the performance benefits from using a two step 

AFC gain progression: an high initial gain to quickly remove the error, and then a smaller gain to 

track the error more closely. Time series plots from the first tests, however, showed that the AFC 

and PLL were not interoperating well: each seemed to be fighting the other’s adjustments. Figure 6-4 



Results Transmit Simulation and receive optimization for 802.11b networks 

 

6-58 

shows the inverse relationship between the phase correction contributed by the PLL and that of the 

AFC. The PLL seems to be reacting to the corrections made by the AFC, countering any angle 

adjustment by the AFC with an inverse adjustment of its own.   

0 20 40 60 80 100 120 140 160
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

P
ha

se
 e

rr
or

time (samples)

Phase error vs. time for 10 db SNR and 10 PPM FERR for AFC and PLL

AFC Phase error
PLL Phase error

 

Figure 6-4 - Phase error vs. time in 10 dB SNR for AFC and PLL 

 

6.3.2 Second order PLL 

After the problems that were revealed using a separate AFC and PLL, the decision was made 

to examine the behavior of a second order phase locked loop. Another option would have been to 

look at the performance of the AFC and first order PLL operating separately in time. Hardware 

considerations, however, made the second order PLL a more attractive choice. Derivations of the 

continuous time and discrete time equations for a second order PLL are given in Section 5.  

  



  6-59 

 

6.3.2.1 Single Loop Bandwidth Gain Step  

 The first step to determining the ideal time constant, prior to running a large scale 

simulation, was to determine some time constant values for which the receive simulation, dealing 

with 30 PPM frequency error, could at least decode the MPDU. As might have been expected, time 

constants in the single digits on the order of a microsecond seemed to fare best. A script was 

therefore set up to sweep TC values over this range for a specific signal to noise ratio (see appendix 

full_chain_pll.m). The results, shown in figure 6-5 below, indicate a fairly steep decline on the lower 

range of scale and a somewhat more gradual incline on the higher range. This indicates that 

attacking the frequency error too quickly results in too much instability, while attacking too slowly is 

given a little more leeway, although not by much. The best operating range is from around 5us to 

around 10us. Operating in this range gives a little bit of leeway in the operation of the AGC, on 

which the PLL discriminator is dependent. The graph shows that varying the signal to noise ratio, 

while expanding the working range of the time constant, does not change the optimal value.  

2 4 6 8 10 12 14

x 10
-6

10

20

30

40

50

60

70

80

90

100
PER vs Tc for 1 Mbps packet with 30 PPM FERR

Tc (s)

P
E

R
 %

-2.00 dB SNR
-1.00 dB SNR
0.00 dB SNR

 



Results Transmit Simulation and receive optimization for 802.11b networks 

 

6-60 

Figure 6-5 - PER vs. Tc in AWGN, 30 PPM FERR for 1 Mbps 1KB Packet 

6.3.2.2 Multiple Loop Bandwidth Gain Steps 

The next step to determining the optimum 2nd order PLL configuration was to determine 

how performance of the tracking loop is affected by using multip le gain steps. It was possible that 

using multiple gain steps would allow for a short time constant to attack the frequency error and then 

a longer time constant to slowly and accurately track the error over the course of the packet. More 

than two time constants could potentially be used to provide finer grained steps. The goal of using 

multiple gain steps was not only to achieve a better packet error rate, but additionally to achieve lock 

more quickly onto the frequency error so as to allow more time for the other synchronization tasks of 

the preamble such as channel matching.  

Still using the first time constant as the variable, the proposed test was to proceed as follows: 

after having waited for three times the initial time constant, switch to a second tracking time 

constant. Given a standard exponential step response, after three time constants, around 95% of the 

frequency error should be removed. With an initial error of 30 PPM, this leaves about 1.5 PPM of 

frequency error remaining. A test similar to the one set up in the last section was run, only using 1.5 

PPM of frequency error instead of 30 PPM. The results were somewhat unexpected, as lowering the 

frequency error does not seem to shift the time constant significantly , but rather simply increased the 

upper range of values at which the time constant could be set. Additionally, decreasing the frequency 

error from 30 PPM down to 1.5 PPM did not result in a dramatic decrease in packet error rate, 

regardless of the time constant that was used. Another batch of simulations was run, this time with a 

number of different frequency error ranges at one SNR. Figure 6-6 shows the results.  



  6-61 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10
-4

0

10

20

30

40

50

60

70

80

90

100

Tc (s)

P
E

R
 %

PER vs Tc for -1 dB SNR and 1 KB Packet at 1 Mbps

0.5 PPM Ferr
1.0 PPM Ferr
5.0 PPM Ferr
10.0 PPM Ferr
20.0 PPM Ferr
30.0 PPM Ferr

 

Figure 6-6 - PER vs. Tc for Ferr PPM range 

One way to analyze these results is to point to the steep decline on the lower range of TC as 

an indication of how little, past a certain point, packet errors are caused by decoding frequency 

fluctuations. This conclusion is aided by the maximum of 10% PER among the different levels of 

frequency error. These show that once a time constant is larger than a certain minimum, regardless 

of the SNR it does not lead to further packet errors. From figure 6-6, it can also be seen that while 

changing the frequency error affects the higher range of time constant values, the lower range in 

quite similar, with the plotted values sharing a near minimum value around 8us. The use of more 

than one gain step would therefore not aid in decoding the packet. Using more than one gain step 

does not decrease the amount of time needed to reach phase lock, as it seems that regardless of the 

amount of frequency error introduced, the ideal value for TC remains the same.  



Results Transmit Simulation and receive optimization for 802.11b networks 

 

6-62 

6.4 Time Tracking Loop Optimizations 

The 802.11 standard dictates that a standard compliant system must support up to 30 parts 

per million of code Doppler error. It turns out that 30 PPM of Code Doppler is much less difficult to 

track than the 30 PPM of Frequency Doppler. For this reason, the time tracking loop can be much 

simpler than the PLL, and only a 1st order TTL is used.  

6.4.1 TTL Description 

The time tracking loop used in the receive simulation is a first order tracking loop with a 

maximum of 1/8 chip advance or retards. It takes the difference of the squares of the Barker 

matching of the previous and next 1/8 chips and multiplies this by a gain value. The result of this 

calculation is added to an error accumulator. If at any point this error accumulator reaches a set 

value, positive or negative, the error accumulator is reset and the tracker advanced or retarded 1/8 of 

a chip.  

The slow time shift that code Doppler introduces over the course of a packet results in a 

gradual worsening of the decoded symbol to noise ratio. The effective signal loss in dB of this decay 

depends on the type of transmit and receive filters that are used. For bandlimited filters, the losses 

can be calculated as shown below [15].  

 )
)sin(

(log20)( 10

c

c

T

T
loss

τπ

τπ
τ =  (Eq.  6-1) 

The parameter t is the offset shift in time. 

The symbol Tc is the duration of one chip. 

The ratio 
cT

τ  therefore is the fractional 

shift over the course of one chip. 

Evaluating the equation with fractional 

shifts gives the results shown in Table 5-1.  

 

 

A 30 PPM error results in approximately a five chip shift over the course of one packet. 

Without an active time tracking loop, an examination of the In-Phase symbol decoding of such a 1 

Mbps packet would show the convergence of the symbols onto the mean less than a quarter of the 

Table 6-1- Chip offset signal loss 

Fractional shift  dB signal loss 

1/16 .06 

1/8 .22 

1/4 .91 

1/2 3.92 



  6-63 

 

way through the packet. This convergence is the result of the slow time shift and the accompanying 

signal strength loss. The reason the symbols do not spread back out is on account of the 

orthogonality properties of shifted Barker symbols. Since the receiver is match filtering entire Barker 

symbols, until the entire 11-chip symbol shifts through, no substantial spreading will result. If the 

code Doppler is increased to 90 PPM, this respreading could be seen.  

6.4.2 1st Order TTL Optimization 

 Much like that for the PLL, the gain constant for the time tracking loop was 

optimized by sweeping it over a range of values at a set SNR. The results are again very dependent 

on the functioning of the AGC, because, as described above, the TTL uses the difference of two 

Barker-matched values to advance or retard the clock. The following simulations were run with a 

simulated AGC that scaled incoming data peaks to around 1. The gain value, Kdll, was used in 

correlation with an advance/retard threshold of ten. Any change in these values would make it 

necessary to rescale Kdll. The MATLAB function full_chain_ttl (See appendix: full_chain_ttl.m), 

was used to generate the results. Above the upper range of the graph, a switch is made every symbol, 

so evaluating Kdll above this range would result in PER values like the upper range.  

10
-4

10
-3

10
-2

10
-1

10
0

10

20

30

40

50

60

70

80

90

100
PER vs KDll for -1.00 dB SNR at 30 PPM CERR with 1 kB packet

Kdll

P
E

R
 %

 



Results Transmit Simulation and receive optimization for 802.11b networks 

 

6-64 

Figure 6-7 - PER vs. Kdll for -1.00 dB SNR 

 The minimum of the graph ends up around .006 with 25% packet error rate. 

Comparing the PER at this mark with the reference curve reveals a somewhat unexpected situation: 

The PER at that –1 dB SNR is almost 20% below that of the reference, which should be theoretically 

impossible.  

6.4.3 Reference curve reevaluation 

 A reevaluation of the reference curve was necessary. The problems causing the PER 

discrepancy could be tracked to the peak detection algorithm used in the receiver. To perform peak 

detection the receiver only uses a correlation over the range of one Barker matched symbol to 

determine the peak offset. As a result, it is possible that at low signal to noise power levels, the real 

peak is obscured by the additive noise, and other peak-offset values have a higher correlation. As the 

original reference curve was run with the time tracking loop disabled, these peaks would not be 

corrected over time. This problem was exacerbated in the receiver because peak detection was only 

performed at a signal decimated to two times the chipping rate. Without the ability to shift within 

this range the detected peak could have been off by as much as ¼ of a chip, which would result in 

the loss of almost a full decibel of signal strength. The time tracking loop allows for 1/8 chip shifts. 

Figures 6-8 and 6-9 show where peak detection was at the end of the preamble over a sample size of 

1000 packets. For Figure 6-8, time tracking was disabled, and for Figure 6-9 it was enabled.  



  6-65 

 

 

15 20 25 30
0

100

200

300

400

500

600

700

800

900

1000

peak offset

1/8 chip peak detection values, 1000 iterations

 

Figure 6-8 – Packet peak matches without TTL 

15 20 25 30
0

100

200

300

400

500

600

700

800

900

1000

peak offset

1/8 chip peak detection values, 1000 iterations

 

Figure 6-9 - Packet peak matches with TTL 

Because the simulated packets always had the same ideal peak, a new reference curve was 

created with peak detection disabled and the peak offset set manually. This turned out to have the 

same result as when the TTL was in enabled with no code Doppler. The new reference graph now 

shows two curves: the original curve, and finally the ideal curve, with the peak offset set manually: 



Results Transmit Simulation and receive optimization for 802.11b networks 

 

6-66 

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

10

20

30

40

50

60

70

80

90

100
PER vs Chip SNR in AWGN for 1Mbps packet with 1024 byte data payload

Chip SNR Ec/Nt [dB]

P
E

R
 %

Original
Peak Matched

 

Figure 6-10 - New reference curve 

 

6.4.4 Final TTL evaluation 

 Armed with the correct reference curve, it becomes clear that at only 30 PPM, the 

effect of the Code Doppler is essentially undetectable with the number of trials used in this 

simulation.  A first order loop is here sufficient to provide the performance needed. 

 



  7-67 

 

7 References  

[1] ANSI/IEEE Std. 802.11, “Wireless LAN Medium Access Control and Physical Layer 

Specifications”, 1999. 

[2] ANSI/IEEE Std. 802.11b, “Higher-Speed Physical Layer Extension in the 2.4 GHz Band”, 

1999.  

[3] R. Bagrodia, J. Short, L. Kleinrock, “Mobile wireless network system simulation”, 

Wireless Networks 1 (1995) 451-467. 

[4] R. E. Best, “Phase-Locked Loops”, McGraw-Hill, Inc. 1984 

[5] R. L. Bogush, “Digital Communications in Fading Channels: Tracking and 

Synchronization”, Mission Research Corporation, 1990. 

[6] G.F. Franklin, A. Emani-Naeini, J. D. Powell, “Feedback Control of Dynamic Systems, 

Addison-Wesley”, Reading, MA, 1991 

[7] G. Fleishman, “An 802.11 ISP on Maine's Rocky Coast”, O’Reilly Devcenter, 2000 

[8] I.M. Jacobs, J. M. Wozercraft, “Principle of Communications Engineering”, John Wiley & 

Sons, New York, NY, 1965. 

[9] T. Kaitz, “Channel and Interference Models for 802.16b”, BreezeCOM Ltd, 2000.  

[10] K. Kaukonen and R.Thayer, “A Stream Cipher Encryption Algorithm ‘Arcfour’”, The 

Internet Society 1999. 

[11] G. Nash, AN535, “Phase-Locked Loop Design Fundaments”, Motorola Inc., 1994 

[12] B. O’Hara and A. Petrick, “IEEE 802.11 Handbook, A Designer’s Companion”, IEEE 

Press, New York, NY 1999. 

[13] A.V. Oppenheim and R.W. Schafer, “Discrete-Time Signal Processing”, Prentice Hall, 

Englewood Cliffs, NJ, 1989.  

[14] A. V. Oppenheim and A. S. Willsky, “Signals & Systems”, Prentice Hall, Upper Saddle 

River, NJ, 1997.  

[15] A. J. Viterbi, CDMA “Principles of Spread Spectrum Communication”, Addison-Wesley, 

Reading, MA 1995. 

[16] Arbaugh, Shankar, and Wan, “Your 802.11 Wireless Network has no Clothes”, University 



References Transmit Simulation and receive optimization for 802.11b networks 

 

7-68 

of Maryland, 2001.  

[17] S. Fluhrer, I. Mantin, and A. Shamir, “Weaknesses in the key scheduling algorithm of 

RC4.” Eight Annual Workshop on Selected Areas in Cryptography (August 2001). 

 
 

  

 

 

 

 

 



 

  69 

 

A. Appendix – Transmit Class Interface 

 

 
 

Table A-1 - PackedBits public interface 

Function Description 
void pack_msb(BYTE byte) 
void pack_msb(WORD word) 
void pack_msb(DWORD dword) 

Three overloaded version of a packing function which packs 8, 
16, or 32 bit variables into the end of the vector in most 
significant bit first order 

void pack_lsb(BYTE byte) 
void pack_lsb(WORD word) 
void pack_lsb(DWORD dword) 

Three overloaded versions of a packing function which pack 
8,16, or 32 bit variables into the end of the vector in least 
significant bit first order 

void packbits_msb(WORD 
word,int num) 

Same as pack_msb, but only packs the first num bits of word 

void packbits_lsb(WORD 
word,int num) 

Same as pack_lsb, but only packs the first num bits of word 

 

Table A-2 - PMSignal public interface 

Function Description 
PMSignal(sigtype const *a,int n) Constructor that creates PMSignal from a normal C array 

PMSignal(int n,sigtype c) Constructor that creates a n length PMSignal with each 
element initialized to c 

PMSignal(PMSignal &inSig,int i1, 
         int i2,int inc) 

Constructor that creates a PMSignal using every inc 
element, in the range from i1 to i2, from and input PMSignal 

Void replace(int i1,int i2, 
             PMSignal &repSig) 

Replaces the elements in the range of i1 to i2 of the 
PMSignal with the entirety of another PMSignal 

operator+=(const PMSignal& s)  Appends s onto the current PMSignal 
void add(const PMSignal& s) Performs a vector addition using the elements of s  



Appendix – Transmit Class Interface Transmit Simulation and receive optimization for 802.11b networks 

 

70 

 

Table A-3 DataPacket public interface 

Stage 1 Functions Description 
DataPacket(BYTE signal,bool sync) Constructor, create  packet of signal and sync type 
void Include(int includeMask)  Includes a specific field 
void MakeFragment(int fragnum,bool 
lastFrag) 

Makes the frame a fragment 

void ResetIncluded()  Resets the included fields to none 
void SetAdr(BYTE *adr,int num) Sets address num to the value of the byte array Adr 
void SetDuration(int duration)  Sets the duration field 
void SetOrder(bool order)  Sets the order frame control bit 
void SetPwrMgmt(bool pwr)  Sets the power management frame control bit 
void SetRetry(bool retry)  Sets the Retry Frame control bit 
void SetSequence(int seq)  Sets the sequence number field 
void SetSubtype(BYTE subtype)  Sets the frame subtype 
void SetToFromDS(bool toDS,bool 
fromDS) 

Sets the To and From DS frame control bits 

void SetType(BYTE type Sets the frame type 
void WEP(bool enable)  Enables WEP Encryption 
void WEPIV(vector<BYTE> iv)  Sets the WEP IV 
void WEPKey(vector<BYTE> key Sets the WEP secret key 
void WEPKeyID(char keyID)  Sets the WEP keyed 

Stage 2 Functions Description 
bool CreateMPDU(DataSim &data) Creates the MPDU from the set options and data  
bool CreatePLCP() Creates the PLCP preamble and header 
bool Scramble() Scrambles all the bits in the packet 

Stage 3 Functions Description 
Const PackedBits &preamble()  Returns the PLCP preamble  
Const PackedBits &header()  Returns the PLCP header 
Const PackedBits &mpdu() Returns the MPDU  



  

 

 

 

Table A-5 - TransmitPMD public interface  

Table A-4 CPMSignal public interface  

Function Description 

PMSignal I,Q  
Public data members that allow access to inphase and 
quadrature portions of complex signal. 

CPMSignal(PMSignal pI,PMSignal pQ) 
Constructor that creates a CPMSignal from two 
PMSignal’s 

Double Energy() Calculates and returns the energy of the CPMSignal 

void Clear() 
Clears the both the inphase and quadrature portions of the 
signal 

operator+=(const CPMSignal& s) Appends s onto the current CPMSignal 
 

Function Description 

TransmitPMD(BYTE signal,bool sync) Initializes the class with signal and sync  

void signalEncode(const PackedBits packet,PMSignal 
&output)  

Encodes packet into a vector of 1’s and 
–1 

void bitEncode(const PackedBits packet,PMSignal 
&output) 

Encodes packet into a vector of 1’s and 
0’s, Used for saving the bit information 

void setEncoder(int s0,int s1) Sets the initial state of the encoder 

void sendPreamble(const PackedBits &preamble, 
CPMSignal &sig) 

Encodes the preamble at 1 Mbps 

void sendHeader(const PackedBits &header,CPMSignal 
&sig) 

Encodes the header at 1 or 2 Mbps 

void sendMPDU(const PackedBits &mpdu,CPMSignal 
&sig) 

Encodes the MPDU at appropriate rate 

 

Table A-6 - DoppDiscreteFilter public interface 

Function Description 

DoppDiscreteFilter( 
       T &filter,int upsample,int taps, 
       DynamicValue &offset_delta)  

Initializes the class with an oversampled filter 
vector, an upsampling multiplier, the number of 
actual taps, and a offset. 

bool filter(T &inVec,T &outVec) Filters an incoming signal and outputs a new vector  



Appendix – Transmit Class Interface Transmit Simulation and receive optimization for 802.11b networks 

 

72 

 

 

Table A-7 - PhyChannel public interface 

Function Description 

PhysicalChannel(const char *filename) Constructor that loads a configuration file 

void createChannel() Creates the channel filter according to configuration 

void loadCFG(const char *filename) Loads a configuration file 

void addFreqDoppler(CPMSignal &sig) Adds frequency Doppler according to configuration 

void addChannelEffects(CPMSignal &sig) Filters the incoming signal through the channel filter 

void addAWGN(CPMSignal &sig) Adds AWGN to the signal according to configuration 

void addScale(CPMSignal &sig) Multiplies the signal by a scaling factor 

void addAll(CPMSignal &sig) Adds all of the above effects to the signal  

Table A-8 - SimCDiscreteFilter public interface 

Function Description 

SimCDiscreteFilter(T &filter_r) Initializes the class with a filter vector 

filter(T &inVecR,T &inVecI,T &outVecR,T 
&outVecI) 

Filters an incoming complex signal and outputs a 
set of new I and Q vectors  



  

 

 

 

Table A-9 - FileToken public interface  

Function Description 

void Open(string filename) Opens file filename for reading. 
void Close()  Closes the current open file. 
bool IsOpen()  Returns whether there is currently a file open. 
String NextToken() Returns the next token in string form. 
String StringToken()  Returns the next string token. 

Int NextValue() Returns the next byte sized token as an integer value, 
if it cannot be converted, throws an exception. 

string LastToken() Returns the last token successfully read. 
Int LastValue() Returns the last byte value token. 
bool AddNextTokenValues(vector<BYTE> 
&vec) 

Adds the last token (up to 32-bits ) to vector vec 

Int LastTokenValue(int *num) Returns the size in bits of the last token read, and sets 
num to the value of that token. 

void EatToken(char *str)  Eats the next token if it is str, otherwise throws an 
exception. 

string PositionString();  Returns a string of the that indicates the position in the 
file of the last token read 

Bool IsDone()  Returns if the file is done  



Appendix – Links to Code Transmit Simulation and receive optimization for 802.11b networks 

 

74 

B. Appendix – Links to Code 

A  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  



  

 

C.  Appendix – PLL Loop filter analysis 

Phase Step with 1st order Loop filter: 

0lim

lim)(lim

)(

210

2
10

0

210
2

10

0

210
2

10

==

+
=

+
=

→

→∞→

sKKA
sKA

sKKAs
sKA

stF

sKKAs
sKA

sF

c

s

c

st

c

θ

θ

θ

ε

ε

 

Velocity Step with 1st order Loop filter: 

2210

10

2
210

3
10

0

2
210

3
10

lim)(lim

)(

KKKA
KA

sKKAs
sKA

stF

sKKAs
sKA

sF

cc

c

st

c

υυ

υ

υ

ε

ε

==

+
=

+
=

→∞→
 

Acceleration Step with 1st order Loop filter: 

∞==

+
=

+
=

→

→∞→

3
210

2
10

0

3
210

4
10

0

3
210

4
10

2
lim

2
lim)(lim

2
)(

sKKA

sKA

sKKAs

sKA
stF

sKKAs

sKA
sF

c

s

c

st

c

α

α

α

ε

ε

 



Appendix – PLL Loop filter analysis Transmit Simulation and receive optimization for 802.11b networks 

 

76 

Phase Step with 2nd order Loop filter: 

0lim

lim)(lim

)(

210

2
10

0

210210
2

10

0

210210
2

10

==

++
=

++
=

→

→∞→

aKKA
sKA

aKKAsKKAs
sKA

stF

aKKAsKKAs
sKA

sF

c

s

c

st

c

θ

θ

θ

ε

ε

 

Velocity Step with 2nd order Loop filter: 

0lim

lim)(lim

)(

210

2
10

0

210
2

210
3

10

0

210
2

210
3

10

==

++
=

++
=

→

→∞→

asKKA
sKA

asKKAsKKAs
sKA

stF

asKKAsKKAs
sKA

sF

c

s

c

st

c

υ

υ

υ

ε

ε

 

Acceleration Step with 2nd order Loop filter: 

aKaKKA
KA

asKKAsKKAs
sKA

stF

asKKAsKKAs
sKA

sF

cc

c

st

c

2210

10

2
210

3
210

4
10

0

2
210

3
210

4
10

22

2
lim)(lim

2
)(

αα

α

α

ε

ε

==

++
=

++
=

→∞→
 

Phase Step with 3rd order Loop filter: 

0limlim

lim)(lim

)(

210

3
10

0210

2
10

0

210
210210

2

10

0

210
210210

2

10

===

+++
=

+++
=

→→

→∞→

bKKA
sKA

s
bKKA

sKA
s

bKKA
aKKAsKKAs

sKA
stF

s
bKKA

aKKAsKKAs

sKA
sF

c

s

c

s

c

st

c

θθ

θ

θ

ε

ε

 



  

 

Velocity Step with 2nd order Loop filter: 

0lim

lim)(lim

)(

210

2
10

0

210210
2

210
3

10

0

210210
2

210
3

10

==

+++
=

+++
=

→

→∞→

bKKA
sKA

bKKAasKKAsKKAs
sKA

stF

bKKAasKKAsKKAs
sKA

sF

c

s

c

st

c

υ

υ

υ

ε

ε

 

Acceleration Step with 2nd order Loop filter: 

0
2

lim

2
lim)(lim

2
)(

210

2
10

0

210
2

210
3

210
4

10

0

210210
2

210
3

10

==

+++
=

+++
=

→

→∞→

bsKKA
sKA

bsKKAasKKAsKKAs
sKA

stF

bKKAasKKAsKKAs
sKA

sF

c

s

c

st

c

α

α

α

ε

ε

 



Appendix – Sample Configuration File Transmit Simulation and receive optimization for 802.11b networks 

 

78 

D. Appendix – Sample Configuration File 

 


