
Error Exponents for Multipath Fading Channels:

A Strong Coding Theorem

by

Desmond S. Lun

B.Sc., University of Melbourne (2001)
B.E. (Hons.), University of Melbourne (2001)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Science in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2002

c© Massachusetts Institute of Technology 2002. All rights reserved.

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Department of Electrical Engineering and Computer Science

August 9, 2002

Certified by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Muriel Médard

Assistant Professor of Electrical Engineering
Thesis Supervisor

Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Arthur C. Smith

Chairman, Department Committee on Graduate Students



2



Error Exponents for Multipath Fading Channels: A Strong

Coding Theorem

by

Desmond S. Lun

Submitted to the Department of Electrical Engineering and Computer Science
on August 9, 2002, in partial fulfillment of the

requirements for the degree of
Master of Science in Electrical Engineering and Computer Science

Abstract

We derive upper and lower bounds on the probability of error (the exponents of which
are the error exponents) with “peaky” signaling — the signaling strategy that achieves
the capacity of the multipath fading channel under an average power constraint in
the limit of infinite bandwidth. These bounds constitute a strong coding theorem
for the channel as they not only delimit the range of achievable rates, but also give
us a relationship among the error probability, data rate, bandwidth, “peakiness”,
and fading parameters such as the coherence time. They can be used to compare
peaky signaling to other large bandwidth systems over fading channels, such as ultra-
wideband (UWB) radio and wideband CDMA. We first derive an upper bound for
general fading, then specialize to the case of Rayleigh fading where we obtain upper
and lower bounds that are exponentially tight and therefore yield the reliability func-
tion. We study the behavior of the reliability function and the upper and lower error
probability bounds numerically.
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Chapter 1

Introduction

The channel coding theorem, as derived by Shannon [14, 15], states that there is

a capacity associated with a communications channel and that transmission can be

achieved with an arbitrarily low probability of error only for rates below capacity. A

stronger form of the theorem was derived by Fano [3] and Gallager [5, 6] for discrete-

time memoryless channels, which gives upper and lower bounds on the minimum

probability of error that decay exponentially in the block length of the code for rates

below capacity. The exponents with which these bounds vanish with increasing block

length are the error exponents for the channel. Thus, in addition to a statement

regarding achievability, there is a relationship among the error probability, data rate,

block length, and channel behavior. The utility of such a result is manifold; for exam-

ple, by considering the modulation system as part of the channel, the error exponents

can be used to yield a more meaningful comparison of various modulation systems for

a coding application than the one that could be made on the basis of channel capacity

alone. Another useful application of error exponents is for assessing the performance

that is achievable with block coding given a constraint on the maximum block length

or decoding delay — a constraint that is pertinent in any actual implementation but

that is not addressed by Shannon’s coding theorem.

Multipath fading channels are the standard channel model for wireless communi-

cation. Their capacity is known in the case where there is no bandwidth constraint

[17]; so for rates under capacity, the probability of error can be made arbitrarily
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small by making the transmission bandwidth arbitrarily large. This establishes a

weak achievability result. In the present work, we turn our attention to developing

a strong coding theorem for the multipath fading channel, i.e. we look at upper and

lower bounds on the probability of error that vanish with increasing transmission

bandwidth. Note that, unlike discrete-time memoryless channels, it is the transmis-

sion bandwidth that is increased to decrease the error probability rather than the

decoding delay. Though decoding delay still features, it is not of principal interest.

1.1 Problem motivation

The emergence of proposals for systems such as ultra-wideband (UWB) radio and

wideband CDMA in recent years has brought about renewed interest in very large

bandwidth fading channels. In the very large bandwidth regime, there are a number

of information-theoretic results that can be brought to bear.

First, it is known that direct-sequence spread-spectrum signals perform poorly in

terms of capacity. Telatar and Tse [17] considered a finite number of time-varying

paths and demonstrated that the mutual information for white-like signals (such as

those used in DS-CDMA) is inversely proportional to the number of resolvable paths

in the wideband limit. It follows that the mutual information is close to zero if the

number of resolvable paths is large. Médard and Gallager [9] considered a channel that

exhibits time and frequency decorrelation and showed that the mutual information

approaches zero with increasing bandwidth if spread-spectrum input signals are used.

Spread-spectrum signals were characterized as those whose energy and fourth moment

(kurtosis) in a fixed band scale inversely with the total bandwidth and the square

of the total bandwidth respectively — loosely speaking, those that spread energy

more or less evenly over the entire available band. Subramanian and Hajek [16]

instead considered a wide-sense stationary uncorrelated scattering fading channel with

a constraint on the fourth moment of the output signal and again found an inverse

relation between capacity and bandwidth.

Secondly, given an infinite bandwidth and an average received power constraint,
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the capacity of the multipath fading channel is the same as that of the AWGN channel.

No channel state information is assumed to be available to either the receiver or

the transmitter. The capacity can be reached by transmitting at a low duty cycle

and using frequency-shift keying — so called peaky signaling (transmission energy is

concentrated into narrow regions of time and frequency). This result was presented

by Kennedy [8] and by Gallager [6, §8.6] for the case of Rayleigh fading, and most

recently by Telatar and Tse [17] for general multipath fading. The peaky transmission

scheme proposed in [17], which is described fully in subsequent chapters, will form

the basis of our work and will be referred to as capacity-achieving since it achieves

capacity in the wideband limit.

In summary, using signals whose energy is spread evenly over a wide band results

in poor performance with channels that exhibit time and frequency decorrelation (as

is typical for fading channels). This makes sense intuitively since we are essentially

transmitting over a large number of independent channels. If energy is spread evenly

over the available band, then the ability to measure each channel decreases as the

bandwidth increases and performance suffers. Rather, a peaky signaling strategy

allows capacity to be achieved in the wideband limit.

It follows that, if the bandwidth is large enough, then spreading energy over that

band in an even manner that keeps the fourth moment constrained, for example with

direct-sequence or related spread spectrum techniques, is not advisable. In addition,

peaky signaling should yield good performance. The bandwidth at which spreading

begins to become detrimental, however, is not entirely clear (though the issue is

partially addressed in [10]) nor is the bandwidth at which peaky signaling begins to

become advantageous. The latter is the issue that will be addressed by a strong coding

theorem. In particular, we shall be able to assess the performance of the capacity-

achieving peaky transmission scheme for a given, finite bandwidth, thus facilitating

comparison with other transmission schemes on broadband fading channels. For

example, impulse radio [19, 20, 12] (a form of UWB) is a proposed spread-spectrum

system that appears sub-optimal from the point of view of approaching capacity.

Without a strong coding result, however, we have little means for comparing the
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capacity-achieving scheme with the transmission scheme used in impulse radio. The

result will moreover bring out the dependence of the error probability on the other

characteristics of the scheme, such as its peakiness or peak power. The peak power

is an important implementation issue since it is restricted by the physical limitations

of the antenna and the power supply, as well as by safety regulations.

1.2 Thesis outline

The necessary background is covered in Chapter 2 — we present the channel model

and the capacity-achieving peaky transmission scheme expounded by Telatar and Tse

in [17]. We show that peaky signaling is indeed capable of achieving capacity in the

wideband limit, which constitutes a weak coding theorem for the multipath fading

channel. In Chapter 3, we analyze the probability of error with peaky signaling. We

upper bound the probability of error and arrive at a strong coding theorem. We

shall see that an upper bound that decays much faster as bandwidth increases can

be obtained if the fading process is assumed to be Rayleigh, and that, under this

additional assumption, a lower bound that is exponentially tight to the upper bound

can be found.
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Chapter 2

Capacity of the multipath fading

channel

In this chapter, we provide a summary of one of the main topics addressed in [17]: that

of the capacity of the multipath fading channel without bandwidth constraint. This

is a “weak” coding theorem in the sense that it only delimits the range of achievable

rates. We shall build upon the result in the subsequent chapter.

2.1 Channel model

The channel output waveform y(t) that results from an input waveform x(t) passed

through a multipath fading channel is generally given by

y(t) =
L∑

l=1

al(t)x(t− dl(t)) + z(t), (2.1)

where L is the number of paths, al(t) and dl(t) are the gain and delay on the lth path

at time t respectively, and z(t) is white Gaussian noise with power spectral density

N0/2.

We associate with the channel a coherence time Tc and delay spread Td. The co-

herence time roughly quantifies the duration of time over which the passband channel
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is essentially time invariant; for a carrier frequency of fc, the coherence time satisfies

sup
l,s,t:|s−t|≤Tc

fc[dl(t)− dl(s)] � 1. (2.2)

The delay spread or multipath spread is a measure of the range of differences in the

path delays; it satisfies

sup
l,m,t

[dl(t)− dm(t)] ≤ Td. (2.3)

We use a block fading model in time; i.e. we assume that the processes {al(t)}
and {dl(t)} are constant and i.i.d. over time intervals of Tc. Real channels typically

vary in a much more continuous manner, and with some statistical correlation over

time intervals greater than Tc. The block fading assumption, however, is frequently

used in the analysis of fading channels (see, for example, [10, 13, 1]) as it greatly

increases the tractability of the problem while capturing the essential time-varying

quality embodied by channel coherence. We assume, in addition, that the channel

is underspread, i.e. Td � Tc. For wireless channels, delay spreads are usually on the

order of microseconds whereas coherence times are on the order of milliseconds. The

underspread assumption is therefore not particularly restrictive.

2.2 Peaky signaling

We now describe the capacity-achieving scheme. We shall show that the scheme

indeed achieves all rates below capacity in the next section.

Suppose that we have a code-book of size M . Let θ ∈ (0, 1]. The mth code word

is represented at baseband as a complex sinusoid of amplitude
√
P/θ at frequency

fm, i.e.

xm(t) =



√
P/θ exp(j2πfmt) 0 ≤ t ≤ Ts,

0 otherwise;

(2.4)
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where the time duration of the signal Ts is taken to be the coherence time Tc. The

frequency fm is chosen such that it is an integer multiple of 1/T ′
s, where T

′
s = Ts−2Td;

therefore, the size of the code-bookM is directly related to the minimum transmission

bandwidth required W by W =M/T ′
s.

Let us consider the channel output over the interval [Td, Ts − Td]. If the time axis

at the receiver is shifted appropriately, then during this interval, {al(t)} and {dl(t)}
are constant owing to the assumptions of the model, and we denote their values by

{al} and {dl} respectively. Hence by (2.1), the received signal when message m is

sent is

y(t) =
L∑

l=1

al

√
P/θ exp(j2πfm(t− dl)) + z(t)

= G
√
P/θ exp(j2πfm(t− dl)) + z(t)

(2.5)

where G =
∑L

l=1 al exp(−j2πfmdl) is the complex fading gain. We define signal power

in the conventional sense as the received signal power, and thus normalize the channel

gain so that E[|G|2] = 1.

At the receiver, we form the correlator outputs

Rk =
1√
N0T ′

s

∫ Ts−Td

Td

exp(−j2πfkt)y(t)dt (2.6)

for 1 ≤ k ≤M . Therefore,

Rk = δkmG

√
PT ′

s

θN0

+Wk, (2.7)

where {Wk} is a set of i.i.d. circularly-symmetric complex Gaussian random variables,

each satisfying E[|Wk|2] = 1.

The message is then repeated over N disjoint time intervals to obtain time diver-

sity. Hence, denoting the kth correlator output at interval n by Rk,n, we have

Rk,n = δkmGn

√
PT ′

s

θN0

+Wk,n, (2.8)
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for 1 ≤ k ≤ M and 1 ≤ n ≤ N , where, owing to the block fading assumption, {Gn}
is a sequence of i.i.d. complex random variables (with no particular distribution) and

{Wk,n} is a set of i.i.d. circularly-symmetric complex Gaussian random variables of

unit variance. We construct the decision variables

Sk =
1

N

N∑
n=1

|Rk,n|2 = 1

N

N∑
n=1

∣∣∣∣∣δkmGn

√
PT ′

s

θN0

+Wk,n

∣∣∣∣∣
2

(2.9)

and use a threshold decoding rule: Let

A = 1 + (1− ε)PT
′
s

θN0

(2.10)

(where ε ∈ (0, 1) is an arbitrary parameter) be the threshold. If Sk exceeds A for one

value of k only, then we estimate m̂ = k; otherwise we declare an error. Note that

the decoding rule is non-coherent, measuring only the energy of the received signal.

We transmit using the above scheme for a fraction of time θ and then transmit

nothing for the remainder of the time. Hence the average power is P . Observe that

the scheme transmits lnM nats in NTs/θ seconds, so the rate R is given by

R =
θ

NTs

ln(M). (2.11)

2.3 The weak coding theorem

The following theorem establishes a weak coding result for the channel.

Theorem 2.3.1 (Weak coding theorem for multipath fading channels)

All data rates R that satisfy

R <

(
1− 2

Td

Tc

)
P

N0

(2.12)

can be achieved with an arbitrarily small probability of error over a multipath fading

channel with average power constraint P but no bandwidth constraint.
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Proof. Owing to symmetry, we can assume without loss of generality that the message

m = 1 was sent. An error occurs if S1 < A or if Sk ≥ A for some 2 ≤ k ≤ M . Let

B1 be the event that S1 < A given m = 1 and let Bk be the event that Sk ≥ A given

m = 1 for 2 ≤ k ≤M . Then, denoting the probability of error by pe, we have

pe = Pr

{
M⋃

k=1

Bk

}

≤ p(1)
e +Mp(2)

e ,

(2.13)

where, for notational convenience, we have defined

p(1)
e � Pr{B1}, (2.14)

p(2)
e � Pr{B2}. (2.15)

Observe that

E[S1|m = 1] = E



∣∣∣∣∣G1

√
PT ′

s

θN0

+W1,1

∣∣∣∣∣
2



= A+ ε
PT ′

s

θN0

,

(2.16)

so E[S1|m = 1] > A. Hence it is evident that p
(1)
e → 0 as N → ∞ since {Gn} is an

i.i.d. sequence and therefore ergodic (in fact, the weak result still holds if we relax

the i.i.d. assumption to an ergodicity assumption). Recalling that the rate is given

by (2.11), it follows that for a fixed rate R, p
(1)
e → 0 as M → ∞.

To upper bound p
(2)
e , we use a Chernoff bound:

p(2)
e = Pr{NS2 ≥ NA|m = 1}

≤ exp

(
−N sup

r>0
{rA− ln(E[exp(r|W2,1|2)])}

)
.

(2.17)

Since W2,1 is a circularly-symmetric complex Gaussian random variable with unit

variance, it follows that |W2,1|2 is an exponentially-distributed random variable with

19



unit mean, and E[exp(r|W2,1|2) is its moment-generating function. Hence

p(2)
e ≤ exp

(
−N sup

r>0
{rA− ln(1− r)}

)

= exp(−N [A− 1− ln(A)]).

(2.18)

By substituting for the threshold using (2.10) and for N using (2.11), we can write

p(2)
e ≤ exp

(
− ln(M) · θE2(θ, ε)

RTs

)
, (2.19)

where

E2(θ, ε) =
(1− ε)PT ′

s

θN0

− ln

(
1 +

(1− ε)PT ′
s

θN0

)
. (2.20)

Therefore,

Mp(2)
e ≤ exp

(
− ln(M)

[
θE2(θ, ε)

RTs

− 1

])
. (2.21)

Hence Mp
(2)
e → 0 as M → 0 as long as θE2(θ, ε)/RTs > 1, i.e.

(1− ε)PT ′
s

N0

−RTs − θ ln
(
1 +

(1− ε)PT ′
s

θN0

)
> 0, (2.22)

which is an equivalent condition to

R <
(1− ε)PT ′

s

TsN0

− θ

Ts

ln

(
1 +

(1− ε)PT ′
s

θN0

)
. (2.23)

Noting that θ and ε may be taken arbitrarily close to 0 and recalling that Ts = Tc,

the result follows. �

2.4 Converse to the coding theorem

We can view the multipath fading channel as the cascade of two channels: one that

causes the multipath fading and a second that adds white Gaussian noise. Since the
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capacity of the continuous-time Gaussian channel without bandwidth constraint is

P/N0 (see, for example, [2, §10.3]), then owing to the data processing inequality (see,

for example, [2, §2.8]), it follows that the capacity of the cascaded channel can be no

greater than P/N0. Therefore, transmission with an arbitrarily small probability of

error cannot take place for rates greater than P/N0.

In summary, the capacity of the multipath fading channel with average power

constraint P but no bandwidth constraint is at least (1−2Td/Tc)P/N0 (which is very

close to P/N0 because of the underspread assumption) and at most P/N0. Thus,

the peaky transmission scheme from §2.2 is referred to as capacity-achieving, and we

equate the capacity of the multipath fading channel to that of the AWGN channel,

though we keep in mind that these statements do not apply in an exact sense.
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Chapter 3

Probability of error with peaky

signaling

We now derive upper and lower bounds on the probability of error with peaky sig-

naling; specifically, with the capacity-achieving peaky transmission scheme described

in §2.2. These bounds decay to zero with increasing transmission bandwidth for all

rates under capacity, thus yielding a “strong” coding theorem that differs from the

weak coding theorem of §2.3 in that it not only delimits the range of achievable rates,

but also brings out the relationship among the error probability, data rate, and pa-

rameters of the transmission scheme. It is worth emphasizing that the lower bound

applies to the probability of error of the capacity-achieving scheme and not to general

transmission schemes over fading channels. Therefore, there may exist transmission

schemes that achieve better performance than the lower bound. Nevertheless, the

lower bound is useful as it gives us a notion of the tightness of the upper bound.

The capacity and error exponents associated with a fading channel have been

studied previously by Telatar [18] though the model used is very different. Telatar

built upon Gallager’s results for energy-limited channels [7], where the channel is

modeled as discrete-time and discrete-input. He showed that, using random block

codes and 0-1 signaling, the capacity of the Rayleigh fading channel is the same as that

of the AWGN channel in the limit of large bandwidth and large signal-to-noise ratio,

and examined the rate at which this limiting behavior is approached. He found that
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the rate of this approach is very slow and therefore, under the conditions imposed by

the energy-limited formulation, inordinately large bandwidths are required for good

performance, not to mention very complex encoding and decoding schemes.

3.1 The strong coding theorem for multipath fad-

ing channels

Recall from the previous chapter that we have the following upper bound on the error

probability pe:

pe ≤ p(1)
e +Mp(2)

e (3.1)

where, conditioned upon the message being m = 1, p
(1)
e is the probability that the

decision variable S1 does not exceed the threshold A (the event B1) and p
(2)
e is the

probability that the decision variable S2 exceeds the threshold (the event B2). An

upper bound on p
(2)
e was obtained and thus, in order to upper bound pe, it remains

only to find an upper bound on p
(1)
e . As a first step, we can upper bound p

(1)
e using

the Chebyshev inequality.

Theorem 3.1.1 (Strong coding theorem for multipath fading channels)

Let a multipath fading channel have coherence time Tc, delay spread Td, and Gaussian

noise of power spectral density N0/2. Let σ
2 = var(|Gn|2) be the variance of the

complex fading gains. Then there exists a transmission scheme of average power

P , peak power P/θ, bandwidth M/T ′
s, and rate R with probability of error upper

bounded by

pe ≤ min
ε∈(0,1)

{
RTs

ε2 ln(M)

(
σ2

θ
+

2N0

PT ′
s

+
θN2

0

P 2T ′
s
2

)

+exp

(
− ln(M)

RTs

[
(1− ε)PT ′

s

N0

−RTs − θ ln
(
1 +

(1− ε)PT ′
s

θN0

)])}
(3.2)

where θ is in the half-open interval (0, 1], Ts = Tc, and T
′
s = Ts − 2Td.
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Moreover, for all rates R less than (1− 2Td/Tc)P/N0, the probability of error can

be made to vanish as M → ∞.

Proof. We use the transmission scheme described in §2.2. We observe that, in this

scheme,

var(S1|m = 1) =
1

N
var



∣∣∣∣∣G1

√
PT ′

s

θN0

+W1,1

∣∣∣∣∣
2



=
1

N
var

(
PT ′

s

θN0

|G1|2 + |W1,1|2 + 2

√
PT ′

s

θN0

Re{G1W1,1}
)
.

(3.3)

Keeping in mind that G1 and W1,1 are independent, it is straightforward to verify

that

cov

(
PT ′

s

θN0

|G1|2 + |W1,1|2, 2
√
PT ′

s

θN0

Re{G1W1,1}
)
= 0, (3.4)

hence

var(S1|m = 1) =
1

N

[
var

(
PT ′

s

θN0

|G1|2 + |W1,1|2
)
+ var

(
2

√
PT ′

s

θN0

Re{G1W1,1}
)]

=
1

N

[
P 2T ′

s
2σ2

θ2N2
0

+
2PT ′

s

θN0

+ 1

]
,

(3.5)

and substituting for N using (2.11) gives

var(S1|m = 1) =
RTs

θ ln(M)

[
P 2T ′

s
2σ2

θ2N2
0

+
2PT ′

s

θN0

+ 1

]
. (3.6)

Recalling (2.16) for the expectation of S1 given that m = 1, we have

p(1)
e = Pr{S1 < A|m = 1}

≤ Pr

{∣∣S1 − S1

∣∣ > εPT ′
s

θN0

∣∣∣∣m = 1

}
.

(3.7)
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We now apply the Chebyshev inequality to obtain

p(1)
e ≤ var(S1|m = 1)

θ2N2
0

ε2P 2T ′
s
2

=
RTs

ε2 ln(M)

(
σ2

θ
+

2N0

PT ′
s

+
θN2

0

P 2T ′
s
2

)
.

(3.8)

The upper bound (3.2) follows by substituting the upper bound on p
(1)
e given by

(3.8) and the upper bound on Mp
(2)
e given by (2.21) combined with (2.20) into (3.1)

and minimizing ε over its domain to set the optimal threshold.

The second part of the theorem follows by noting that the first term of the upper

bound, being the upper bound on p
(1)
e , vanishes asM → ∞ for all R while the second

term of the upper bound, being the upper bound on Mp
(2)
e , can be made to vanish

as M → ∞ only for R < (1− 2Td/Tc)P/N0, as established in §2.3. �

Although Theorem 3.1.1 does indeed give a valid upper bound on the error proba-

bility, the bound decays very slowly in M : For sufficiently large M , the first additive

term dominates, which decays as 1/ ln(M). The theorem, however, holds for any

distribution of Gn
1. If we were given some information on the statistics of Gn, we

could determine the statistics of S1, which depend on those of Gn through

S1 =
1

N

N∑
n=1

∣∣∣∣∣Gn

√
PT ′

s

θN0

+W1,n

∣∣∣∣∣
2

, (3.9)

and potentially obtain a bound that decays much faster.

3.2 The strong coding theorem for Rayleigh fading

channels

In wireless channels, the Rayleigh fading model is commonly used, where Gn is mod-

eled as a circularly-symmetric complex Gaussian random variable, so |Gn| has a

1We speak here of any Gn for 1 ≤ n ≤ N ; it does not matter which one, since their distributions
are all identical
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Rayleigh distribution. The Rayleigh fading model is valid when there is a large

number of independent scatterers or reflectors in the channel and no line-of-sight or

specular path; wherein application of the central limit theorem leads to the model.

Even though there may be a relatively small number of reflectors in typical wire-

less situations, the Rayleigh fading model is often adopted regardless because of its

simplicity.

Making the additional assumption of Rayleigh fading leads to a simple exponential

bound on the error probability:

Theorem 3.2.1 (Strong coding theorem for Rayleigh fading channels)

Let a Rayleigh fading channel have coherence time Tc, delay spread Td, and Gaussian

noise of power spectral density N0/2. Then there exists a transmission scheme of

average power P , peak power P/θ, bandwidth M/T ′
s, and rate R with probability of

error upper bounded by

pe ≤ 2 exp(− ln(M) · E(R, θ))), (3.10)

where

E(R, θ) =
θ

RTs

{
RTsN0

PT ′
s

+
θN0

PT ′
s

ln

(
1 +

PT ′
s

θN0

)
− 1

− ln

(
RTsN0

PT ′
s

+
θN0

PT ′
s

ln

(
1 +

PT ′
s

θN0

))}
, (3.11)

θ is in the half-open interval (0, 1], Ts = Tc, and T
′
s = Ts − 2Td.

Moreover, for all rates R less than (1− 2Td/Tc)P/N0, the probability of error can

be made to vanish as M → ∞.

Proof. We again use the transmission scheme described in §2.2. Applying the Chernoff
bound yields

p(1)
e = Pr{NS1 < NA|m = 1}

≤ exp

(
−N sup

r<0
{rA− ln(E[exp(r|G1

√
PT ′

s/(θN0) +W1,1|2)])}
)
.

(3.12)
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Now, since we have assumed that the fading is Rayleigh, the Gn are i.i.d. circularly-

symmetric complex Gaussian random variables so the |Gn

√
PT ′

s/(θN0) +W1,n|2 are

i.i.d. exponentially-distributed random variables with mean PT ′
s/(θN0) + 1. Thus,

the expectation of exp(r|G1

√
PT ′

s/(θN0) +W1,1|2) is simply the moment-generating

function of an exponentially-distributed random variable, and we have

p(1)
e ≤ exp

(
−N sup

r<0
{rA− ln(1− r[1 + PT ′

s/(θN0)])}
)

= exp(−N [A′ − 1− ln(A′)]),

(3.13)

where

A′ =
A

PT ′
s/(θN0) + 1

. (3.14)

By substituting (2.10) and (2.11), we can write

p(1)
e ≤ exp

(
− ln(M) · θE1(θ, ε)

RTs

)
, (3.15)

where

E1(θ, ε) =
−εPT ′

s

θN0 + PT ′
s

− ln

(
1− εPT ′

s

θN0 + PT ′
s

)
. (3.16)

For notational convenience, we define p
(1)
e,u to be the upper bound on p

(1)
e given by

(3.15) and p
(2)
e,u to be the upper bound on p

(2)
e given by (2.19), viz.

p(i)
e.u = exp

(
− ln(M) · θEi(θ, ε)

RTs

)
, (3.17)

for i = 1, 2.

Now, if we choose ε optimally, we have

pe ≤ min
ε∈(0,1)

{p(1)
e,u +Mp

(2)
e,u}. (3.18)

It is evident upon differentiation that, as functions of ε, p
(1)
e,u is strictly decreasing
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whilst Mp
(2)
e,u is strictly increasing. In addition, p

(1)
e,u =Mp

(2)
e,u when

ε = ε0 � θN0 + PT
′
s

PT ′
s

[
1− RTsN0

PT ′
s

−θN0

PT ′
s

ln

(
1 +

PT ′
s

θN0

)]
, (3.19)

which is in the interval (0, 1) if

0 ≤ R < T ′
sP

TsN0

− θ

Ts

ln

(
1 +

PT ′
s

θN0

)
. (3.20)

Therefore, given that (3.20) is satisfied, we can upper bound (3.18) by

pe ≤ 2 min
ε∈(0,1)

{max(p(1)
e,u,Mp

(2)
e,u)}

= 2p(1)
e,u

∣∣
ε=ε0

= 2 exp(− ln(M) · E(R, θ)),

(3.21)

where E(R, θ) = θE1(θ, ε0)/(RTs) is given by equation (3.11).

Observe that we can write E(R, θ) = θ[z − 1− ln(z)]/(RTs) where

z =
RTsN0

PT ′
s

+
θN0

PT ′
s

ln

(
1 +

PT ′
s

θN0

)
> 0. (3.22)

Hence, since ln(z) < z − 1 for all z > 0, E(R, θ) > 0 over its domain of definition,

given by (3.20). The interval (3.20) grows as θ decreases, approaching the interval

that encompasses all rates under capacity as θ approaches zero. Thus, there exists

θ ∈ (0, 1) such that E(R, θ) is positive as long as the rate does not exceed capacity (i.e.

(2.12) is satisfied) and therefore such that the bound on pe given by (3.21) vanishes

as M approaches infinity. �

3.3 Lower bound on the error probability

We have arrived at an exponential upper bound on the probability of error of the

capacity-achieving scheme. There is, however, little information on the tightness of

the bound. In a manner analogous to the case of the discrete memoryless channel, we
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derive a lower bound on the probability of error and compare it to the upper bound.

Theorem 3.3.1

The transmission scheme described in §2.2 has a probability of error that is lower
bounded by

pe > exp(−N [E1(θ, ε) + o1(N)]) + (M − 1) exp(−N [E2(θ, ε) + o2(N)])

− (M − 1) exp(−N [E1(θ, ε) + E2(θ, ε)])− (M − 1)(M − 2)

2
exp(−N [2E2[θ, ε)]),

(3.23)

where E1(θ, ε) and E2(θ, ε) are given by (3.16) and (2.20) respectively. The quantities

o1(N) and o2(N) approach zero with increasing N and can be taken as

o1(N) =
1

2N
ln(2πN) +

1

12N2
, (3.24)

o2(N) =
1

2N
ln(2πNA2) +

1

12N2
. (3.25)

Proof. Having made the Rayleigh fading assumption, the probabilities p
(1)
e and p

(2)
e

can in fact be evaluated exactly since, conditioned upon m = 1, S1 and S2 are both

χ2 random variables with 2N degrees of freedom. Indeed, using the cdf for χ2 random

variables [11, §2.1.4], we have

p(1)
e = Pr{S1 < A|m = 1}

= Pr




N∑
n=1

∣∣∣∣∣Gn

√
PT ′

s

θN0

+W1,n

∣∣∣∣∣
2

< NA




= exp(−NA′)
∞∑

k=N

(NA′)k

k!
,

(3.26)

where A′ is defined by equation (3.14). Similarly,

p(2)
e = exp(−NA)

N−1∑
k=0

(NA)k

k!
. (3.27)
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Because (NA′)k/k! and (NA)k/k! are both positive for all k, we arrive at the inequal-

ities

∞∑
k=N

(NA′)k

k!
≥ (NA′)N

N !
, (3.28)

and

N−1∑
k=0

(NA)k

k!
≥ (NA)(N−1)

(N − 1)!
(3.29)

by taking only one of the summation terms. Therefore,

p(1)
e ≥ exp

{
−NA′ + ln

[
(NA′)N

N !

]}
(3.30)

and

p(2)
e ≥ exp

{
−NA+ ln

[
(NA)N−1

(N − 1)!

]}
. (3.31)

We now apply Stirling’s formula [4, §II.9] to bound the factorial function, and obtain

the lower bounds

p(1)
e > exp{−N(A′ − 1− ln(A′) + o1(N))}

= exp(−N [E1(θ, ε) + o1(N)])
(3.32)

and

p(2)
e > exp{−N(A− 1− ln(A) + o2(N))}

= exp(−N [E2(θ, ε) + o2(N)])
(3.33)

where o1(N) and o2(N) are given by (3.24) and (3.25) respectively.

By comparing the two lower bounds above with the upper bounds previously

obtained, (3.13) and (2.19), we notice that they are exponentially tight to their re-

spective upper bounds in the sense that the exponents are arbitrarily close for N

31



sufficiently large or, equivalently, for ln(M) sufficiently large. Indeed, we have

exp(−N [Ei(θ, ε) + oi(N)]) < p(i)
e ≤ exp(−NEi(θ, ε)) (3.34)

for i = 1, 2.

Having found lower bounds on p
(1)
e and p

(2)
e , we are now in a position to derive a

lower bound on the error probability pe. We commence with the following observation:

pe ≥
M∑

k=1

Pr{Bk} −
∑
j �=k

Pr{Bj ∩Bk}

= p(1)
e + (M − 1)p(2)

e − (M − 1)p(1)
e p

(2)
e − (M − 1)(M − 2)

2
p(2)

e

2

(3.35)

by the independence of the events Bk. Using (3.34), we straightforwardly obtain

(3.23), thus completing the proof. �

We now turn our attention to the exponential dependence of error probability on

ln(M), which, we recall, is directly related to the bandwidth. We define the reliability

function of the Rayleigh fading channel using peaky signaling with duty factor θ as

lim
M→∞

− ln(minε∈(0,1) pe)

ln(M)
, (3.36)

analogously to the treatment of the discrete memoryless channel [6, §5.8]. It represents
the true exponential dependence of the error probability on ln(M) for M sufficiently

large.

Theorem 3.3.2

The reliability function of the Rayleigh fading channel using peaky signaling with

duty factor θ is equal to E(R, θ), the error exponent of the upper bound, for all

non-negative rates R.

Proof. Applying l’Hôpital’s rule to the lower bound (3.23) yields

lim
N→∞

− ln(pe)

N
≤ min(E1(θ, ε), E2(θ, ε)−RTs/θ) (3.37)
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for 0 ≤ RTs/θ < A− 1− ln(A). Recall from §3.2 that, before optimization over ε, we

have the following upper bound on the error probability:

pe ≤ exp(−NE1(θ, ε)) + exp(−N [E2(θ, ε)−RTs/θ]), (3.38)

from which the reverse inequality to (3.37) follows straightforwardly.

For RTs/θ ≥ A− 1− ln(A), we use

pe = 1− Pr

{
M⋂

k=1

Bc
k

}

≥ 1− (1− p(1)
e )(1− p(2)

e )(M−1),

(3.39)

which implies

pe ≥ 1− (1− p(2)
e )(M−1), (3.40)

and get, again by applying l’Hôpital’s rule,

lim
N→∞

ln(pe) ≥ 0. (3.41)

By noting that pe is a probability and is therefore at most 1, the reverse inequality

follows. Hence

lim
N→∞

− ln(pe)

N
= 0. (3.42)

Thus we see that the upper and lower bounds on pe are exponentially tight.

We have now established that − ln(pe)/N converges for all ε ∈ (0, 1) and, coupled

with the fact that the function ln is monotonically increasing, it follows that

lim
N→∞

− ln(minε∈(0,1) pe)

N
= lim

N→∞
max
ε∈(0,1)

− ln(pe)

N
= max

ε∈(0,1)
lim

N→∞
− ln(pe)

N
= E1(θ, ε0)

(3.43)
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Figure 3-1: Reliability function Er(R, θ) as a function of R for θ = 10−2 (solid),
θ = 10−3 (dashed), and θ = 10−4 (dotted).

where ε0 is such that E1(θ, ε0) = E2(θ, ε0) − RTs/θ and is given by equation (3.19).

Hence

lim
M→∞

− ln(minε∈(0,1) pe)

ln(M)
= lim

N→∞
−θ ln(minε∈(0,1) pe)

NRTs

=
θE1(θ, ε0)

RTs

= E(R, θ). (3.44)

�

3.4 Numerical results

We now proceed to evaluate the quantities derived in the previous sections for partic-

ular parameter choices. We choose fading parameters that are typical for very-high

frequency transmission in an indoor environment: Let Td = 10−7 s and Tc = Ts =

2× 10−3 s. Suppose the peak power limitation is P/θ ≤ 250; and let P = N0 = 1, so

C � 1 nat/s (1.44 bits/s). This choice of peak power restriction is not unreasonable;

if the average power of the transmitter is 1 mW, for example, then the restriction

implies that its peak power will not exceed 0.25 W.

We commence by looking at the behavior of the reliability function (3.11) for
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Figure 3-2: Optimal duty factor θ as a function of R.

various values of the duty factor θ, as shown in Figure 3-1. Note the rapid decay of

the exponent. We therefore expect that the minimum bandwidth required to achieve

a particular performance to increase very rapidly as the rate approaches capacity. It

is also evident that smaller values of the duty factor are required to achieve higher

rates, though the optimal θ for a given rate is not immediately apparent. This

optimization can be performed numerically and the result is shown in Figure 3-2. As

expected, we see that the optimal duty factor gradually decreases to zero as capacity

is approached. More surprising, however, is the fact that, even for very low rates, it

is necessary that θ � 5 × 10−4 for a maximal error exponent, which translates to a

peak power that is approximately 2000 times larger than the average. Thus, recalling

that the peak power limitation is P/θ ≤ 250, it follows that, for any rate, the duty

factor is optimized over its restricted domain for θ = 4× 10−3.

We now turn to investigating the interplay among the physical parameters of

interest. The upper and lower bounds are shown as functions of the bandwidth at

an Eb/N0 of 13 dB (i.e. a rate of 0.035 nats/s or 0.050 bits/s) in Figure 3-3 and at

an Eb/N0 of 15 dB (i.e. a rate of 0.022 nats/s or 0.032 bits/s) in Figure 3-4. These

plots allow us to estimate the bandwidth required to achieve a particular performance

for a given Eb/N0. In Figures 3-5 and 3-6, we fix the bandwidth at 1 GHz and 10
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Figure 3-3: Error probability as a function of bandwidth at an Eb/N0 of 13 dB; upper
bound for the multipath fading channel (solid), upper bound for the Rayleigh fading
channel (dashed), and lower bound for the Rayleigh fading channel (dotted). The
bandwidth W is in Hz.
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Figure 3-4: Error probability as a function of bandwidth at an Eb/N0 of 15 dB; upper
bound for the multipath fading channel (solid), upper bound for the Rayleigh fading
channel (dashed), and lower bound for the Rayleigh fading channel (dotted). The
bandwidth W is in Hz.
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Figure 3-5: Error probability as a function of Eb/N0 at a bandwidth of 1 GHz; upper
bound for the multipath fading channel (solid), upper bound for the Rayleigh fading
channel (dashed), and lower bound for the Rayleigh fading channel (dotted).
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Figure 3-6: Error probability as a function of Eb/N0 at a bandwidth of 10 GHz; upper
bound for the multipath fading channel (solid), upper bound for the Rayleigh fading
channel (dashed), and lower bound for the Rayleigh fading channel (dotted).

37



14 16 18 20
E_b/N_0 (dB)

5

10

15

20
log10(W)

Figure 3-7: Bandwidth required as a function of Eb/N0 for θ = 4 × 10−3 and error
probability bounds of 10−5 (solid), 10−7 (dashed), and 10−9 (dotted). The bandwidth
W is in Hz.

14 16 18 20
E_b/N_0 (dB)

0.005

0.01

0.015

0.02

0.025

theta

Figure 3-8: Duty factor θ as a function of Eb/N0 for a bandwidth of 10 GHz and error
probability bounds of 10−5 (solid), 10−7 (dashed), and 10−9 (dotted).

GHz respectively, and show the upper and lower bounds as functions of Eb/N0. The

general upper bound (3.2) is shown to quantify exactly how much looser it is than

that (3.10) under the additional assumption of Rayleigh fading. For the lower bound,

we use (3.39). The minimizations over ε for the general bound and for the lower

bound are performed numerically.

Of the three bounds, it is the upper bound under the Rayleigh fading assumption

that is the most interesting. The general upper bound is too loose to allow us to

consider any remotely feasible settings, and lower bounds on the error probability

relate to the best possible performance, which is usually of less interest than the worst
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possible performance (related to upper bounds on the error probability). In addition,

the upper bound under the Rayleigh fading assumption has a simple exponential

expression that the other two bounds do not. Thus, we concentrate on this upper

bound and examine the relationship between bandwidth and Eb/N0 (Figure 3-7) and

between the duty factor θ and Eb/N0 (Figure 3-8) for fixed target error probabilities.

The plot of the duty factor as a function of Eb/N0 tells us how peaky the signal needs

to be to achieve a particular probability of error for a given Eb/N0 and bandwidth,

and therefore the peak power required. For all of the preceding plots, we have taken

the peak power limitation to be P/θ ≤ 250; this plot gives us a notion of the increase

in Eb/N0 (or decrease in rate) that would be necessary to maintain performance if the

peak power limitation were lower (and conversely how much Eb/N0 could be decreased

if the peak power limitation were higher).

39



40



Chapter 4

Conclusion

Explicit upper and lower bounds on the probability of error of a peaky transmission

scheme that achieves the capacity of the multipath fading channel in the limit of in-

finite bandwidth — the exponents of which are the error exponents of the channel —

were calculated. The upper bounds can be made to decay to zero as the bandwidth

goes to infinity for all rates below capacity, thus yielding a strong coding theorem sim-

ilar to those derived by Gallager for discrete-time memoryless channels. Specifically,

an upper bound for general fading and upper and lower bounds under the additional

assumption of Rayleigh fading were obtained. It was shown that, in the latter case,

the upper bound decays much faster as bandwidth increases than in the former, and

that the upper and lower bounds are exponentially tight, hence yielding the true

exponential dependence of the error probability, or the reliability function. These

bounds allow us to assess the performance of the scheme for a given finite bandwidth

and peak power constraint, and give us a notion of how quickly the error probability

decays to zero as the bandwidth approaches infinity and of the importance of the

various parameters relevant to determining this rate of decay. The interaction among

the error probability, bandwidth, data rate, and peakiness of the transmission scheme

for specific numerical cases was investigated.

Finally, note that this scheme and the analysis of the error probability can be

straightforwardly extended to a multiple access scenario. Since transmission takes

place at a low duty cycle, multiple users can be multiplexed by time-division. If
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the users are co-operating, then it is clear that �1/θ� non-interfering users can be

supported for a given value of the duty factor θ. If they are not co-operating, then

a term due to interference from other users can be incorporated into our existing

expressions for the upper bound on the probability of error. The probability of two

time-slots overlapping, however, is dominated by 2(m−1)θ as θ approaches zero when

there are m users. Hence, unless the duty factor θ is very minute (at most on the

order of the target error probability), such a näıve non-co-operative scheme is unlikely

to yield good performance.
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