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p53-DEPENDENT APOPTOSIS MODULATES THE CELLULAR RESPONSE
TO ONCOGENES AND THE CYIrOTOXICITY OF ANTICANCER AGENTS

By Scott William Lowe

Submitted to the Department of Biology on January 27, 1994 in partial
fulfillment of the requirements for degree of Doctor of Philosophy in Biology

ABSTRACT

The p53 tumor suppressor gene is considered the most frequently
mutated gene in human cancer, and p53 mutations have been associated with
aggressive cancers, metastasis, and with poor prognosis. However, the
molecular basis for the association between p53 mutation, advanced tumor
stage, and poor prognosis remains unknown. In order to investigate the
mechanisms whereby p53 suppresses neoplastic growth, transforming
interactions between endogenous p53 and both viral and cellular oncogenes
were analyzed in primary and established fibroblasts. In particular, p53-
deficient mouse embryonic fibroblasts were used to systematically examine
the role of p53 in regulating cellular responses to transfected oncogenes.

These studies establish a direct mechanism of tumor suppression by
p53 involving the selective destruction of oncogene-expressing cells by
apoptosis. Absence of p53 resulted in failure to execute the apoptotic program
and allowed transformation of primary cells by a single oncogene. These
studies demonstrate that (i) cellular p53 levels and stability increased upon
introduction of the adenovirus early region 1A (E1A) oncogene into
fibroblasts, (ii) p53 was required for ElA-associated apoptosis, and (iii) p53
suppressed transformation by ElA. While tumorigenicity was significantly
enhanced by genetic changes that promoted cell survival, cells co-expressing
E1A and ras oncogenes were highly tumorigenic but remained sensitive to
apoptosis. Therefore, tumorigenic phenotypes apparently arise by various
routes which alter the balance of growth, differentiation, and survival in
different ways.

The involvement of p53 in eliminating oncogene-expressing cells
accounts for the observation that p53 loss typically occurs late in tumor
progression, and may be a factor in limiting metastatic spread or influencing
the outcome of cancer therapy. In this regard, oncogene-associated apoptosis
was triggered by treatment with ionizing radiation and several
chemotherapeutic drugs, and p53 was required for efficient execution of the
death program. Moreover, tumors derived from cells expressing endogenous
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p53 typically regressed following treatment of animals with ionizing
radiation, whereas tumors derived from p53-deficient cells were resistant and
continued to grow. These data provide a molecular explanation for the
association between p53 mutation and poor prognosis, and suggest a novel
mechanism whereby tumor cells can acquire cross-resistance to anticancer
agents.

Thesis Supervisor: Dr. H. Earl Ruley
Title: Professor, Vanderbilt University School of Medicine
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Since the identification of p53 in 1979, a considerable amount of effort

has been devoted to understanding its activity in both normal and neoplastic

cells. p53 is unique among molecules involved in carcinogenesis, since both

activating and inactivating mutations appear to promote oncogenic

transformation. Thus, for many years, p53 was thought to be a dominant-

acting oncogene. Only after nearly a decade of investigation did evidence

emerge indicating that p53 was in fact a tumor suppressor gene. Presently,

p53 is considered to be the most frequently mutated gene in human cancer,

and intensified efforts have lead to a dramatic increase in our understanding

of its function. Nevertheless, many questions remain. What biological

processes are affected by p53 that limit neoplastic growth? How are these

processes affected by p53 mutation during tumor progression?

Sections I-III of this discussion summarize what is presently known

about p53, with particular emphasis on properties relevant to its activity as a

tumor suppressor. Since data presented in subsequent chapters implies that

p53 participates in the process of apoptosis, Section IV discusses features of

apoptosis relevant to carcinogenesis. Finally, Section V discusses the

experimental rationale and preliminary data that preceded the experiments

presented in Chapters 2-5 and Appendix 1.

SECTION I: Historical perspective of p53: oncogene vs. tumor suppressor

gene

Discovery of p53

p53 was first identified as a cellular protein bound to simian virus 40

(SV40) large T antigen and later, to an adenovirus early region 1B (E1B)-

encoded protein (Lane and Crawford, 1979; Linzer and Levine, 1979). A

related protein was also detected in SV40-free embryonic carcinoma cell lines
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using antisera directed against SV40-infected cells (Linzer and Levine, 1979).

Antisera to Balb/c Meth A cells (a chemically transformed mouse line)

detected an antigen of 53 kD in several chemically and spontaneously

transformed mouse lines with no known viral etiology (De Leo et al., 1979).

The fact that viral oncogenes targeted a cellular protein whose expression was

altered in other transformed cells suggested that p53 influenced oncogenic

transformation. Increased p53 expression was observed in several human

tumor lines, raising the possibility that p53 contributed to human cancer

(Crawford et al., 1981).

Several observations associated p53 with positive growth control,

implying that p53 accumulation could promote oncogenic transformation.

First, p53 was expressed at relatively low levels in untransformed cell lines

(e.g. 3T3; (Linzer and Levine, 1979; Oren et al., 1981)). Second, p53 expression

in nontransformed cells appeared to be under cell cycle control (Milner and

Milner, 1981; Reich and Levine, 1984). Thus, proliferating cells expressed

higher p53 levels than quiescent cells (Milner and Milner, 1981), and

mitogenic stimulation of quiescent lymphocytes or 3T3 cells enhanced p53

transcription prior to S phase entry (Milner and Milner, 1981; Reich and

Levine, 1984). By contrast, the much higher levels of p53 observed in both

SV40 and spontaneously transformed cells resulted from increased p53

protein stability (Oren et al., 1981; Reich et al., 1983; Gronostajski et al., 1984).

Third, microinjection of p53-specific antibodies into quiescent 3T3 cells

blocked cell cycle progression following serum stimulation. This observation

implied that p53 activity was required for the transition from the resting to

proliferating state ((Mercer et al., 1982; Mercer et al., 1984), reviewed in (Oren,

1985)).
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p53 functions as a typical nuclear oncogene

Several similarities were noted between p53 and the c-myc oncogene.

For example, both c-myc and p53 mRNA levels increased following mitogen

stimulation of quiescent cells (Reich and Levine, 1984), and both were DNA-

binding proteins (Luka et al., 1980; Lane and Gannon, 1983). Thus, p53 was

characterized as a nuclear oncogene. The identification and cloning of several

p53 cDNAs and genomic clones allowed researchers to directly test this

hypothesis (reviewed in (Oren, 1985)). These studies demonstrated that p53,

like myc, cooperated with activated ras oncogenes to transform primary rat

embryonic fibroblasts (Eliyahu et al., 1984; Parada et al., 1984) and promoted

the establishment of primary cells into immortalized lines (Jenkins et al.,

1984). Furthermore, overexpression of p53 in the established RAT1 line made

these cells highly tumorigenic, suggesting that the transforming activity of

p53 was distinct from its immortalizing activity (Eliyahu et al., 1985).

The p53 gene is rearranged in several tumor lines

Since p53 accumulation was thought to promote oncogenic

transformation, it was somewhat surprising that several tumor lines lacked

p53 expression altogether. For instance, HeLa cells expressed undetectable

levels of p53 protein, although the transcript was expressed at normal levels

(Crawford et al., 1981; Matlashewski et al., 1986). In HL-60 cells, a human

promyelocytic leukemia line, the p53 gene contained large deletions such that

neither normal nor aberrant forms of p53 were expressed. However, HL-60

cells overexpressed c-myc, so it was assumed that the deficiency in p53

function was overcome by an alternative, related pathway (Wolf and Rotter,

1985).

In cells transformed either by Abelson virus or by Friend leukemia
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virus, the p53 gene was frequently inactivated by virus insertion (Wolf et al.,

1984a; Mowat et al., 1985; Oren, 1985). It was surprising that such a high

frequency of independent tumors would contain an inactivated oncogene.

Nevertheless, the tumorigenicity of p53-deficient lines was considerably

lower than lines expressing p53 (Wolf et al., 1984a; Mowat et al., 1985), and re-

introduction of p53 into a weakly tumorigenic Abelson virus-transformed

line dramatically increased its ability to form lethal tumors (Wolf et al.,

1984b). Thus, while it appeared that p53 inactivation conferred a selective

advantage during neoplastic progression of these leukemias, the enhanced

tumorigenicity of p53-expressing clones was consistent with the proposed

action of p53 as a nuclear oncogene.

p53 genes are oncogenically activated by mutation

The gene transfer studies described above indicated that p53

overexpression was sufficient for cellular immortalization and ras co-

transformation. Direct evidence supporting this view emerged from a study

demonstrating that the immortalizing activity of p53 was conditional on the

promotor/enhancer construct used to express the cDNA, such that weaker

promoters were ineffective (Jenkins et al., 1985). However, certain mutations

within the p53 coding sequence enhanced the immortalizing activity of the

previously defective constructs. Each of these mutants encoded more stable

proteins, implying that p53 accumulation and immortalization could occur by

activating mutations within the p53 gene.

Not all p53 clones had transforming and immortalizing activities. For

example, a p53 cDNA cloned from F9 cells (Pennica et al., 1984) failed to

transform primary REFs in cooperation with ras oncogenes (Hinds et al., 1987;

Finlay et al., 1988). Although this clone may have been a mutant, subsequent

mutagenesis produced clones that cooperated with ras in transformation
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assays (Finlay et al., 1988). The p53 proteins encoded by these novel mutants

had extended half-lives and physically associated with hsc70, both

characteristics of p53s encoded by other cDNAs. Since experimentally-

induced mutations in the F9 clone were oncogenic, it was suggested that the

F9 clone was actually "wild-type" p53. Presumably, the other clones had

sustained activating mutations.

Studies comparing the F9 clone to an oncogenic clone derived from a

genomic library provided definitive evidence that transforming clones were

mutants (Hinds et al., 1989). The different biological activities of these clones

were linked to a single nucleotide change at position 135; the F9 clone

encoded an alanine while the genomic clone specified a valine. All other

sequenced p53 genes encoded alanine at this position, and a restriction

fragment length polymorphism indicated that the valine codon did not exist

in mouse genomic DNA. This implied that wild-type p53 contained alanine

at position 135 and was incapable of cooperating with ras in transformation.

The fact that p53 clones containing such a diverse spectrum of point-

mutations were active in transformation assays raised the possibility that

these mutations abrogated normal p53 function (Eliyahu et al., 1988; Hinds et

al., 1989).

Wild-type p53 suppresses oncogenic transformation

Nearly a decade after its discovery, the involvement of p53 in

oncogenic transformation was re-evaluated. Unlike myc and other nuclear

oncogenes, overexpression of the proto-oncogene was not sufficient for p53's

transforming activity. Rather, mutation within the coding sequence was

required for both p53 accumulation and oncogenic transformation.

Furthermore, it was suggested that p53 was not an oncogene at all, but rather

a tumor suppressor gene (Ben David et al., 1988; Hinds et al., 1989).
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This suggestion was confirmed by experiments demonstrating that

wild-type p53 suppressed oncogene-mediated focus formation in primary

embryonic fibroblasts, including foci induced by ras and mutant p53, ras and

myc, ras and ElA, and ElA and E1B (Finlay et al., 1989; Eliyahu et al., 1989). Of

the foci obtained from transfections including wild-type p53, most did not

express detectable levels of exogenous p53, and those that did had sustained

mutations within the p53 gene (Finlay et al., 1989). The fact that

overexpression of wild-type p53 inhibited focus formation by ras and mutant

p53 alleles suggested that these transforming mutants inhibited wild-type p53

in a dominant-negative manner (Finlay et al., 1989; Eliyahu et al., 1989).

p53 suppresses neoplastic growth in vivo

The pattern of p53 mutation in human cancer was consistent with the

proposed tumor suppressor activity of p53. Alterations in the p53 gene

occurred frequently in colon carcinoma (Baker et al., 1989). The pattern of p53

mutation in these tumors was characteristic of a tumor suppressor gene:

most tumors had acquired point mutations in one p53 allele in conjunction

with loss of the other allele (Fearon and Vogelstein, 1990; Vogelstein, 1990).

Indeed, re-introduction of wild-type p53 into several colon carcinoma lines

dramatically reduced their growth potential, and no lines expressing wild-

type p53 were obtained ((Baker et al., 1990). Moreover, mutant p53 alleles

derived from these tumors were oncogenic in ras co-transformation assays,

suggesting that these missense mutations conferred a selective advantage

during tumor progression (Hinds et al., 1990). p53 appeared to suppress

neoplastic growth in many tissues, since similar patterns of p53 mutation and

allelic loss were subsequently observed in many other tumor types (Nigro et

al., 1989; Takahashi et al., 1989).
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Germ line mutations in p53 were shown to contribute to Li-Fraumeni

syndrome, a familial cancer syndrome. While many familial cancer

syndromes effect a specific tissue, Li-Fraumeni patients develop diverse

mesenchymal and epithelial tumors. Thus, p53 appears to affect processes

common to many cell types. In all families analyzed, tumor-susceptibility co-

segregated with the inheritance of a mutant p53 allele (Malkin et al., 1990;

Srivastava et al., 1990; Vogelstein, 1990), and tumors from these patients

displayed loss of the remaining wild-type allele (Malkin et al., 1990). These

observations strongly suggested that p53 functioned as a tumor suppressor in

human cancer.

Gene disruption studies in mice confirmed that p53 was indeed a

tumor suppressor gene (Donehower et al., 1992). Mice homozygous for the

disrupted p53 allele developed normally, but were predisposed to lethal

tumors. Therefore, in the context of the whole animal, the primary function

of p53 was to suppress neoplastic growth.

Conclusions

Present evidence strongly supports the view that p53 functions as a

tumor suppressor gene, and many of the original contradictions regarding p53

function are now readily explained. For example, the fact that the original

p53 clones harbored mutations accounts for the observation that

overexpression of these genes is oncogenic. These mutant p53 alleles--at least

when sufficiently overexpressed--apparently inhibit wild-type p53 function.

Accordingly, the observation that these alleles encode more stable proteins

might simply reflect selection for forms that accumulate sufficiently to

interfere with wild-type p53. However, the inhibitory effects of p53 mutants

are probably incomplete, since many tumors also lose the remaining allele.
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Nevertheless, several observations suggest that p53 is an atypical

tumor suppressor gene. For example, re-introduction of mutant alleles into

p53-deficient erythroleukemias enhances tumorigenicity (Wolf et al., 1985;

Shaulsky et al., 1990). A similar result is obtained using p53-deficient

fibroblast lines, implying that some p53 activities result from gain of function

mutations (Dittmer et al., 1993). Moreover, the involvement of p53 in

suppressing transformation does not readily explain why microinjection of

p53-specific antibodies (Mercer et al., 1982; Mercer et al., 1984) or p53 antisense

RNA (Shaulsky et al., 1990) inhibits proliferation. It should be noted,

however, that p53-deficient primary mouse fibroblasts grow readily in culture

(Donehower et al., 1992; Livingstone et al., 1992). Therefore, p53 function is

not required for normal cell cycle progression.

SECTION II: p53 genes and proteins

Following the characterization of p53 as a tumor suppressor gene, an

overwhelming volume of information has emerged concerning the role of

p53 in normal and transformed cells. These efforts have increased our

understanding of p53 function and have provided insight into both cancer

etiology and tumor progression (see, for example (Hsu et al., 1991; Sidransky

et al., 1992)). Areas of current investigation include: characterization of the

spectrum and frequency of p53 mutations in human cancer (reviewed in

(Harris and Hollstein, 1993), identification of p53 targets and regulators

(Vogelstein and Kinzler, 1992; Pietenpol and Vogelstein, 1993), exploration of

the mechanisms whereby viral oncogenes promote oncogenic transformation

(reviewed in (Levine, 1990; Levine et al., 1991)), and understanding of the

selective pressure for p53 mutation during tumor progression (Lane, 1992;

Oren, 1992). The following section contains an overview of this information,
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with particular reference to issues addressed in this thesis.

p53 and human cancer

p53 mutations contribute to neoplasia in many tissues. p53 mutations

have been observed in most tumor types examined, including malignant

melanoma (Stretch et al., 1991), soft tissue sarcomas (Toguchida et al., 1992b;

Toguchida et al., 1992a), and cancers of the lung (Takahashi et al., 1989; Chiba

et al., 1990; D'Amico et al., 1992; Takahashi et al., 1991), colon (Baker et al.,

1989; Nigro et al., 1989; Shaw et al., 1991), bladder (Sidransky et al., 1991),

prostate (Isaacs et al., 1991), breast (Nigro et al., 1989; Bartek et al., 1990; Varley

et al., 1991), cervix (Crook and Vousden, 1992; Crook et al., 1992). liver (Hsu et

al., 1991; Bressac et al., 1991), skin (Brash, et al., 1991), and certain lymphomas

and leukemias (Gaidano et al., 1991). Taken together, these studies support

the view that p53 is the most frequently mutated gene in human cancer.

Although the spectrum and frequency of p53 mutations occurring in human

malignancy implies that p53 affects processes common to many cell types, p53

is not required for normal growth and development (Donehower et al., 1992).

p53 structure and hot spots for mutation. The cloning and

characterization of p53 genes from a variety of species (including human,

monkey, mouse, rat, frog, and fish) has identified several conserved regions

within p53 genes and proteins. Computer-assisted analysis of p53 amino acid

sequences has not identified any conserved functional motifs that would shed

light on its function (i.e. kinase domains, helix-loop-helix, etc.). Five

homologous regions exist in all p53 sequences (Soussi et al., 1990). In human

p53 (total of 393 amino acids), these domains correspond to amino acids 13-19

(I), 117-142 (II), 171-181 (III), 234-258 (IV), and 270-286 (V). Domains II-V are

hydrophobic and are thought to form the core of the protein. In addition, all

p53 genes encode molecules with an acidic amino terminus and a basic
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carboxy-terminus (Oren, 1985). These regions may have functional

significance with regard to the transcriptional activities of p53.

One striking feature of p53 in carcinogenesis is the diversity of

mutations observed in tumors. While activating mutations in oncogenes

(e.g. ras) generally occur at only a few positions throughout the molecule, p53

mutations have been observed in over 40 codons (Levine et al., 1991). This

observation is consistent with the view that p53 mutations produce defective

(rather than activated) proteins, but remains surprising given the apparent

requirement for these mutants to suppress wild-type p53 function.

Nevertheless, p53 mutations in human tumors almost uniformly occur

within conserved regions II to V (hydrophobic core), consistent with the

surmised importance of conserved domains for protein function ((Nigro et

al., 1989), reviewed in (Levine et al., 1991)). Moreover, many mutant alleles

encode p53s with characteristic antigenic properties, indicating that these

proteins have similar conformational alterations (Finlay et al., 1988; Gannon

et al., 1990). However, mutant p53 alleles can have distinct biological and

biochemical properties (Hinds et al., 1990; Halvey et al., 1990; Hicks et al.,

1991), reviewed in (Levine et al., 1991)).

While p53 mutations can occur at many places throughout the

molecule, different cancers often display preferential patterns of mutation,

including specific codons and/or nucleotide substitutions (reviewed in

(Harris and Hollstein, 1993)). These mutational "hotspots" have implicated

specific carcinogens in the etiology of a certain cancers. For example, p53

mutations in skin cancer show marked preference for codons containing

pyrimidine dimers, consistent with mutagenic role of ultraviolet light (Brash,

et al., 1991). Alternatively, p53 mutations in Li-Fraumeni syndrome occur
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between codons 245-258, although the biological implications of this pattern

are unknown (Vogelstein, 1990).

p53 mutations enhance tumor progression. Of particular interest is the

involvement of p53 in colorectal cancer. The availability of tissue from all

stages of this cancer (benign to malignant) has facilitated the identification of

the genetic events that contribute to both the initiation and progression of

this tumor (Fearon and Vogelstein, 1990). Malignant carcinomas frequently

(>75%) show allelic loss on chromosome 17p, encompassing the p53 locus

(Baker et al., 1989; Nigro et al., 1989; Shaw et al., 1991). Allelic loss often

occurs in conjunction with point-mutations in the remaining p53 allele. By

contrast, benign adenomas rarely show p53 loss or mutation (Vogelstein et al.,

1988; Shaw et al., 1991). Since malignant carcinomas apparently arise from

benign adenomas, p53 mutation is a late event in colon carcinogenesis that

occurs during progression from benign to malignant stages (Fearon and

Vogelstein, 1990). Point-mutations in p53 may provide a selective advantage

during tumor progression, allowing an expanded population of cells and

increasing the probability of subsequent allelic loss.

p53 mutations occur late in the progression of other tumor types,

including melanoma (Stretch et al., 1991), brain cancer (Sidransky et al., 1992),

gastric cancer (Yamada et al., 1991), prostate cancer (Bookstein et al., 1993),

ovarian cancer (Mazars et al., 1991), multiple myeloma (Neri et al., 1993), and

acute lymphoblastic leukemia (Yeargin et al., 1993). In some instances, p53

mutation has been observed in a metastasis specimens but not the primary

tumor (Yamada et al., 1991). The specificity of p53 mutations for late stage

tumors indicates that p53 loss is required for tumor progression rather than

initiation. Consistent with this hypothesis, studies using p53-deficient mice

indicate that endogenous p53 does not reduce the incidence of chemically-
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induced skin polyps, but limits their progression to more malignant forms.

Thus, polyps in p53-deficient mice were 10 times more likely to progress to

malignant carcinomas (Kemp et al., 1993). p53 mutations are apparently poor

tumor initiators in human cancer, since Li-Fraumeni patients develop

surprisingly few tumors (averaging <2) with a typical onset of over thirty

years (Vogelstein, 1990). This is in contrast to other familial cancer

syndromes, in which patients generally develop many more tumors at a

much younger age.

What could be the selective pressure for p53 mutation late in tumor

progression? One possibility suggests that p53 becomes rate-limiting for

tumor progression by changes that occur earlier in oncogenesis. For colon

cancer, it has been suggested that:

"Genetic alterations that occur during the progression of
colorectal tumors may increase the sensitivity of cells to p53
inhibition, making wild-type p53 expression a key, rate-limiting
factor for further growth and expansion. At this point, and not
before, mutations in the p53 gene would confer a selective
growth advantage to cells in vivo, which would explain the
frequent occurrence of p53 mutations and allelic loss only in the
more advanced stages of colorectal tumorigenesis." (Baker et al.,
1990).

Alternative routes to p53 inactivation. Factors that inhibit p53 activity

could mimic p53 mutation, and several contribute to human cancer. A

remarkable illustration of alternative routes to p53 inactivation occurs in

cervical carcinoma. Approximately 70% of these cancers contain sequences

from human papilloma virus types 16 and 18 (Howley, 1991). The E6 protein

encoded by these viruses promotes the degradation of p53 by a ubiquitin-

dependent pathway (Werness et al., 1990; Scheffner et al., 1990). HPV-positive

cells therefore express extremely low levels of p53 protein (e.g. HeLa cells; see

above). p53 genes are uniformly wild-type in these cancers, apparently
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because there is no selective pressure for p53 mutation. By contrast, all HPV-

negative cancers harbor p53 mutations (Crook et al., 1991; Crook et al., 1992),

implying loss of p53 function is essential for cervical carcinoma progression.

The cellular oncogene mdm-2 may also contribute to carcinogenesis by

inhibiting p53 functions. mdm-2 is amplified in approximately one third of

human sarcomas (Oliner et al., 1992). p 53 mutation and mdm-2 amplification

appear functionally redundant, since p53 mutations are not observed in

sarcomas containing amplified mdm-2. Like HPV E6, MDM-2 physically

associates with p53 (Momand et al., 1992). Although MDM-2 does not induce

p53 degradation, it blocks several activities normally attributed to wild-type

p53 (Momand et al., 1992; Finlay, 1993).

It seems probable that other trans-acting mechanisms will be identified

that inhibit p53 activity. For example, several observations presented in this

thesis suggest that, under appropriate circumstances, activation of the bcl-2

oncogene could mimic p53 mutation (see Chapters 2 and 3). Thus, while p53

mutation contributes to many forms of cancer, the incidence at which p53

function is lost may be significantly higher.

p53 interactions with viral oncoproteins

DNA tumor viruses and carcinogenesis. Much of what is known about

p53 has emerged from studies of the small DNA tumor viruses. Several of

these viruses can initiate tumors in animals, including certain adenoviruses,

papilloma viruses, and SV40. In order to divert cellular enzymes for their

own replication, viruses must foster a cellular environment permissive for

DNA synthesis. Viral oncoproteins achieve this by mimicking signals that

promote cell growth, or by inactivating factors that either limit proliferation

or contribute to the differentiated state. Viral DNA occasionally integrates

into host genome. If expressed in the absence of productive infection (i.e.
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generation of more virions and cell lysis), viral oncoproteins can promote

transformation. Since cellular activities altered during viral transformation

may also contribute to spontaneous tumorigenesis, viral oncoproteins can

uncover relevant processes in tumor initiation and progression.

Transforming interactions between viral oncogenes also provide

models of multistep carcinogenesis. For example, adenovirus transformation

requires the early region 1A (E1A) and 1B (E1B) genes (reviewed in(Flint,

1984; Branton et al., 1985)). The effects of these proteins on cell growth and

transformation are not additive, but rather synergistic. Adenovirus E1A

stimulates cell growth, but sustained proliferation requires co-expression of

the ElB-encoded proteins (Rao et al., 1992). The E1B proteins do not increase

the efficiency with which ElA initiates proliferation. Furthermore, in the

absence of ElA, E1B has no detectable effect on cell growth (van den Elsen et

al., 1983).

The transforming activities of several viral oncoproteins require

physical interactions with cellular factors normally involved in growth

control. The fact that unrelated viruses target the same cellular factors

suggest that these molecules control rate-limiting processes in oncogenic

transformation. The significance of these interactions is illustrated by the

physical association between several viral oncoproteins (ElA, large T antigen,

and HPV E7) and the product of the retinoblastoma tumor suppressor gene

(Rb) (Whyte et al., 1988; DeCaprio et al., 1988; Dyson et al., 1989). In normal

cells, Rb appears to negatively regulate cell cycle progression. By binding to

Rb, viral oncogenes release the cell from negative growth controls and

facilitate transformation. Consistent with this model, the Rb binding-domain

is required for the transforming activity of ElA (reviewed in (Ruley, 1990)).
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Viral oncoproteins target p53. Interactions between viral early region

proteins and p53 also contribute to oncogenic transformation by human

adenoviruses, SV40 and HPV (reviewed in (Levine, 1990; Levine et al., 1991)).

Given the role of p53 as a tumor suppressor, the viral tumor antigens are

thought to interfere with p53 functions that preclude transformation. The

papilloma virus types 16 and 18 E6 protein forms a physical complex with p53

and promotes its proteolytic degradation by a ubiquitin-dependent pathway

(Werness et al., 1990; Scheffner et al., 1990; Scheffner et al., 1993).

Consequently, the interaction between p53 and the viral oncoprotein

inactivates p53 function. This appears necessary for viral transformation,

since non-oncogenic papilloma viruses (e.g. HPV-11) encode E6 proteins

incapable of associating with p53 (Werness et al., 1990) or promoting p53

degradation (Scheffner et al., 1990). The evidence that large T antigen and

p55E1B inactivate p53 is less convincing, however, because p53 levels and

protein stability are increased in SV40 and adenovirus-transformed cells.

Nevertheless, both large T antigen and p55E1B inhibit p53-mediated

transcriptional activation (Farmer et al., 1992; Yew and Berk, 1992; Segawa et

al., 1993), a property normally associated with wild-type p53 (see below).

Since oncogenic transformation frequently involves the loss of p53

function, it is surprising that p53 levels and stability are greatly increased in

adenovirus and SV40 transformed cells. The stabilization of p53 associated

with viral tumor antigens may simply be coincidental--perhaps p53 becomes

inaccessible to the proteolytic enzymes. This view is supported by the

observation that Ad-5 E1B sequesters p53 in a dense perinuclear structure

(Zantema et al., 1985). However, the stability of nuclear p53 also increases in

adenovirus type 12-transformed cells in the absence of stable interactions with

Ad12 p55EIB (Zantema et al., 1985). Moreover, free and T antigen-associated
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p53 have similar half-lives in SV40-transformed cells, implying that

sequestration by large T antigen does not stabilize p53 (Deppert and Haug,

1986; Deppert and Steinmayer, 1989).

Although the significance of p53 stabilization has been obscure, the

phenomenon may have implications with regard to p53 function or

regulation. For example, since p53 may have both positive (as well as

negative) effects on cell growth (Mercer et al., 1982; Shohat et al., 1987), tumor

antigens could promote cell transformation by increasing p53 levels (van den

Heuvel et al., 1990). Alternatively, p53 stabilization may reflect a cellular

process that resists viral infection and/or transformation. Binding of the

viral oncoprotein could allow transformation by countering the effects of

increased p53 expression. Studies presented in Chapters 2 and 3 of this thesis

support the latter model.

Biochemical properties of p53

Although the biochemical properties of p53 have been studied in

considerable detail, it has been difficult to determine which activities are

pertinent to tumor suppression. Since both mutant p53 and viral

oncoproteins abrogate the ability of wild-type p53 to suppress neoplastic

growth, these molecules are expected to disrupt or alter relevant p53

properties.

Immunochemistry. The availability of many p53-specific

immunochemical reagents has facilitated the analysis of p53 cell biology and

biochemistry. These antibodies display species specificity (e.g. PAb248;

mouse), conformational-specificity (e.g. PAb246), or species-independent

reactivity (e.g. PAb421) (Harlow et al., 1981; Yewdell et al., 1986). Monoclonal

antibodies that bind to specific epitopes spanning murine p53 have been

particularly useful, as have the conformational-specific antibodies PAb246
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and PAb240 (Yewdell et al., 1986; Gannon et al., 1990). PAb246 recognizes an

epitope that is specific to wild-type p53, such that mutant p53 proteins do not

react (Finlay et al., 1988). Alternatively, PAb240 is specific for many mutant

p53s, and is incapable of binding wild-type p53 (Gannon et al., 1990). In

addition to providing valuable diagnostic reagents, the interaction between

p53 and conformation-specific antibodies illustrates an important point;

diverse p53 mutants encode proteins with similar conformational alterations.

Post-translational modifications. Post-translational modifications such

as phosphorylation provide insight into potential mechanisms regulating p53

function. Although 53 is phosphorylated at several residues, few studies

have correlated changes in p53 activity with site-specific phosphorylation.

However, phosphorylation at both serine-315 and serine-389 may have

relevance to p53 regulation in normal and transformed cells.

p53 can associate with p34cdc2 in vivo (Sturzbecher et al., 1990; Milner et

al., 1990), and is phosphorylated in vitro by p34cdc2 /cyclin A and B complexes

at serine-315 (Bischoff et al., 1990; Sturzbecher et al., 1990). While these results

provide a physical link between p53 and cell cycle control, p53 proteins

containing alanine substitutions at codon 315 retain several properties

normally associated with wild-type p53, including their ability to bind large T

antigen and inhibit SV40 replication (Meek and Eckhart, 1990; Sturzbecher et

al., 1990).

p53 is phosphorylated at serine-389 (Meek et al., 1990), a highly

conserved residue (Soussi et al., 1990). Serine-389 is phosphorylated by casein

kinase-II in vitro, and a related activity exists in vivo (Meek et al., 1990).

Moreover, casein kinase II associates with p53 in insect cells (Herrmann et al.,

1991), suggesting that phosphorylation by this enzyme occurs physiologically.

p53 is also phosphorylated at this position by a DNA-dependent protein
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kinase (Lees-Miller et al., 1990; Hupp et al., 1992). Phosphorylation of

unmodified p53 by casein kinase II or DNA-dependent protein kinase

dramatically enhances its affinity for p53-specific DNA sequences (Hupp et al.,

1992). Furthermore, although overexpression of wild-type p53 can inhibit cell

growth, p53 proteins containing alanine substitutions at codon 389 have no

effect (Milne et al., 1992). Therefore, phosphorylation at this site may regulate

p53 tumor suppressor activities. It should be noted, however, that a small

polyribonucleotide can be covalently attached to serine-389 (Samad and

Carroll, 1991), and it remains possible that the phenotype of the alanine-389

mutant reflects the absence of this RNA-linkage.

Oligomerization. p53 forms homo-oligomers both in vitro and in vivo

(Kraiss et al., 1988; Eliyahu et al., 1988; Finlay et al., 1989; Milner et al., 1991).

Moreover, wild-type and mutant p53 associate in the same complexes,

providing a potential biochemical explanation for the dominant-negative

effects of mutant p53 proteins (Eliyahu et al., 1988; Finlay et al., 1989;

Friedman et al., 1990; Milner et al., 1991). Although p53 can form mono-, di-

and tetra-oligomers, it appears as though the tetramers predominate in vivo

(Friedman et al., 1993). p53 oligomerization requires a C-terminal domain

that encompasses a predicted alpha-helical region and an adjacent basic region

(Sturzbecher et al., 1992).

The normal function of p53 oligomerization remains obscure, since

oligomerization mutants--at least when sufficiently overexpressed--retain

several activities associated with wild-type p53. These include inhibition of

SV40 replication, suppression of oncogene-induced focus formation, and the

ability to function in transcriptional transactivation (Shaulian, et al., 1993;

Sturzbecher, et al., 1992). By contrast, it appears that oligomerization is both

necessary and sufficient for the trans-dominant action of mutant p53s. Thus,
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the transforming activity of several mutants co-segregates with the

oligomerization domain, and synthetic peptides encompassing this region

inhibit wild-type p53 transactivation (Shaulian et al., 1992; Unger et al., 1993).

Subcellular localization. While p53 has been observed in both the

cytoplasm and nucleus, it appears that nuclear localization is essential for

transformation suppression (Shaulsky et al., 1990; Shaulsky et al., 1991).

Several observations suggest that altered p53 subcellular localization

contributes to oncogenic transformation. First, the adenovirus-5 p55E1B

oncoprotein sequesters p53 outside the nucleus (Zantema et al., 1985).

Second, p53 accumulates in the cytoplasm of certain breast cancers that harbor

only wild-type p53 genes (Moll et al., 1992). Finally, many mutant p53

proteins are cytoplasmic (Martinez et al., 1991; Gannon and Lane, 1991;

Zerrahn et al., 1992). However, exclusion from the nucleus is not the only

mechanism whereby p53 mutation promotes transformation, since many

mutant alleles encode nuclear proteins (Vogelstein and Kinzler, 1992).

DNA binding activity. Early studies demonstrated that p53 had an

affinity for double-stranded DNA (Luka et al., 1980; Lane and Gannon, 1983;

Steinmeyer and Deppert, 1988). High-affinity DNA binding requires the C-

terminal basic region (Foord et al., 1991). Proteins encoded by mutant p53

genes display a much weaker affinity for DNA then does wild-type p53,

suggesting that this property is relevant for p53 tumor suppression (Foord et

al., 1991; Kern et al., 1991a). Interestingly, most activating mutations in p53

occur in the internal conserved regions, implying that mutations outside the

DNA-binding domain can affect the affinity of p53 for DNA.

More recently, p53 has been shown to display high affinity for specific

DNA sequences. The initial DNase-footprinting studies identified p53-

specific sequences adjacent to the SV40 origin of replication (Bargonetti et al.,
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1991), within the human ribosomal gene cluster (Kern et al., 1991b), and in

the murine muscle creatine kinase gene enhancer (Zambetti et al., 1992). A

consensus recognition site has been defined by comparison of sequences from

a large number (18) of clones containing p53 binding sites (El-Deiry et al.,

1992). Sequence-specific binding is probably required for tumor suppression,

since mutant p53 proteins are incapable of these interactions. Furthermore,

both mutant p53s and SV40 large T antigen prevent site-specific binding of

wild-type p53 (Bargonetti et al., 1991; Kern et al., 1991b; Zambetti et al., 1992;

Bargonetti et al., 1992).

DNA replication. The interactions between p53 and large T antigen

provide insight into the relationship between p53 and DNA synthesis. Large

T antigen regulates initiation and propagation of SV40 DNA replication both

in vivo and in vitro. First, large T antigen binds the SV40 origin of

replication and acts as a helicase. Second, T antigen interacts with DNA

polymerase a to promote synthesis of SV40 DNA (Gannon and Lane, 1990).

Because SV40 replication is well-characterized, the effects of p53 on

large T antigen functions have been analyzed in detail. Both human and

murine p53 prevent T antigen-dependent replication in vivo and in vitro

(Braithwaite et al., 1987; Sturzbecher et al., 1988; Wang et al., 1989; Friedman et

al., 1990), apparently by inhibiting the initiation functions of large T antigen

(Sturzbecher et al., 1988; Wang et al., 1989). Tumor-derived mutant p53s

encode proteins that fail to suppress SV40 replication or bind T antigen.

Moreover, mutant proteins inhibit suppression of SV40 replication by wild-

type p53, probably by physically interacting with wild-type p53 (Friedman et

al., 1990). It remains possible that p53 blocks DNA synthesis directly, by

competing with DNA polymerase a for binding to large T antigen (Gannon

and Lane, 1987). However, these observations are difficult to reconcile with
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the fact that human cells expressing endogenous p53 can replicate SV40 DNA.

Perhaps p53 levels under physiological circumstances are not sufficient to

inhibit SV40 replication.

These observations suggest a model for p53 activity in normal cells

(reviewed in (Levine et al., 1991)). Since p53 inhibits SV40 replication, it may

perform similar functions in the regulation of cellular DNA synthesis in

uninfected cells. This view predicts that p53 binds a T antigen homologue

and suppresses its initiator activities. Thus, p53 mutants that fail to associate

with this molecule might release the cell from negative growth controls and

facilitate tumor progression. The existence of a cellular "T antigen" could

explain why all mutant proteins fail to bind their viral counterpart.

Several lines of evidence suggest that p53 may regulate DNA

replication in mammalian cells. First, overexpression of wild-type p53 has

been shown block S phase entry (see below). Second, the original sequences

demonstrated to specifically associate with p53 were adjacent to a viral

(Bargonetti et al., 1991) and a putative cellular (Kern et al., 1991b) replication

origin. Finally, the N-terminal region of p53 interacts with replication

protein A (RPA). RPA binds DNA and promotes unwinding at replication

origins. GAL4-p53 N-terminal fusion proteins activate RPA-dependent

replication in vectors containing GAL4 recognition sites adjacent to the

replication origin. In addition, full length p53 interacts with RPA and blocks

DNA-binding (Dutta et al., 1993). While the in vivo significance of these

observations has not been established, p53 interactions with RPA provide a

provocative system for further investigation.

Transcriptional transactivation. Sequence-specific DNA binding by p53

may also regulate transcription. Prior to the identification of specific p53

binding sites in DNA, several studies suggested that p53 could function as a
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transcription factor. For example, wild-type p53 fused to the GAL4 DNA

binding domain was able to transactivate transcription from reporter

constructs containing GAL4 binding sequences in both yeast and mammalian

cells (Fields and Jang, 1990; Raycroft et al., 1990). Efficient transactivation

required the N-terminal acidic domain of p53 (Fields and Jang, 1990).

Moreover, fusion proteins derived from mutant p53 alleles were incapable of

transcriptional transactivation (Raycroft et al., 1990; Raycroft et al., 1991).

p53 activates the transcription of several viral and cellular genes,

apparently by binding specific DNA sequences. Transcription of the muscle

creatine kinase gene is positively regulated by wild-type p53 due to the

presence of a p53-response element in the muscle creatine kinase enhancer

(Weintraub et al., 1991). DNase-footprinting studies identified a 50 base pair

element within this region that confers p53-dependent transactivation upon a

heterologous promoter in cultured cells (Zambetti et al., 1992). Mutant p53

proteins are unable to activate transcription in this assay. In another series of

experiments, a DNA sequence capable of binding p53 in vitro was placed near

a minimal promoter in a reporter gene construct (Kern et al., 1992).

Transfection of wild-type p53 into cultured cells activates transcription of the

reporter gene, and the reporter activity correlates with the number of p53

binding sites. Mutant proteins reduce p53-dependent transactivation in a

dose-dependent manner, apparently by preventing wild-type p53 from

binding to its response element. Wild-type p53 (but not mutant) activates

transcription from similar constructs in vitro, indicating that transactivation

is a direct effect (Farmer et al., 1992).

p53 may positively regulate the transcription of several other genes.

Overexpression of wild-type p53 activates its own transcription, although this

may be indirect (Deffie et al., 1993). mdm-2 expression is induced upon p53

30



overexpression, possibly as a negative feedback control of p53 activity (Wu et

al., 1993; Barak et al., 1993). Efficient induction of transcription requires a p53-

response element in the first intron of the mdm-2 gene (Wu et al., 1993; Barak

et al., 1993), p 53 activates transcription of GADD45 through a p53-response

element located in the third intron of the GADD45 gene. Although its

function is unknown, GADD45 is preferentially expressed in growth-arrested

cells following DNA damage (Papathanasiou et al., 1991). Finally, several

approaches have identified a gene, CIP1/WAF1 (Harper et al., 1993; El-Deiry et

al., 1993), whose transcription is strongly induced by p53 (El-Deiry et al., 1993).

It is not known whether this activation is direct.

Consistent with the putative role of p53 in negative growth control,

p53 suppresses transcription of several genes that promote proliferation.

These include proliferating cell nuclear antigen (PCNA) (Mercer et al., 1991),

c-fos (Ginsberg et al., 1991), c-jun (Ginsberg et al., 1991), and interleukin-6

(Santhanam et al., 1991). p53 also has been shown to repress transcription of

the mdr-1 (Chin et al., 1992) and hsp-70 genes (Agoff et al., 1993).

Transcriptional repression apparently involves interactions between p53 and

the basal transcription machinery or other transcription factors. For example,

wild-type (but not mutant) p53 physically associates with TATA-binding

protein in vitro (Seto et al., 1992), and inhibits transcriptional initiation from

TATA-dependent promoters both in vitro and in vivo (Seto et al., 1992; Mack

et al., 1993). In addition, physical interactions between p53 and the CAAT

binding protein are required for p53-dependent repression of the hsp-70

promoter (Agoff et al., 1993).

All mutant p53 proteins are defective in transcription assays, implying

that transcriptional control is important for p53 suppressor activities

(reviewed in (Vogelstein and Kinzler, 1992)). Several additional observations
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support this view. First, SV40 large T antigen, adenovirus E1B, and HPV E6

inhibit p53-mediated transactivation (Farmer et al., 1992; Yew and Berk, 1992;

Lechner et al., 1992; Segawa et al., 1993). Moreover, the oncogenicity of p55E1B

co-segregates with its ability to block p53-mediated transactivation (Yew and

Berk, 1992). Second, the cellular oncoprotein MDM2 blocks p53-mediated

transactivation (Momand et al., 1992), apparently by concealing its

transactivation domain (Oliner et al., 1993). This interaction may inhibit p53

function in vivo, since mdm-2 amplification frequently occurs in tumors

expressing wild-type p53 (Oliner et al., 1992).

It has been difficult to demonstrate which p53-regulated genes are

relevant to p53 activities as a tumor suppressor. For example, p53

overexpression may induce indirect changes in gene expression that reflect

differences in the growth state of the cell. The product of the CIP/WAFi

gene is presently the most likely molecule to mediate tumor suppression by

p53. p53 activates CIPI/WAFI transcription, and the overexpression of

CIP1/WAF1 induces growth arrest and suppress transformation (El-Deiry et

al., 1993). Moreover, the p21 protein product of CIP/WAF physically

associates with cyclin-dependent kinase (cdk) complexes in vivo (Xiong et al.,

1993; Harper et al., 1993) and inhibits cdk activity in vitro (Harper et al., 1993).

Therefore, CIP/WAF1 provides a direct link between p53 transcriptional

transactivation and an anti-proliferative response.

Transcription factor verses replication factor. A considerable amount

of evidence implicates p53 in transcriptional control, but other studies suggest

that p53 directly inhibits DNA replication. Nevertheless, the bias of evidence

supporting a role for p53 as in transcriptional control may simply reflect

current technological limitations in studying DNA replication (Oren, 1992).

Perhaps p53 is involved in both processes, since both transcription and DNA
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replication require an open DNA complex. This view is supported by recent

studies demonstrating that transcriptional activation domains, including the

N-terminal domain of p53, can also influence DNA replication by interacting

with replication protein A (He et al., 1993; Li and Botchan, 1993; Dutta et al.,

1993).

SECTION III: Mechanisms of tumor supression by p53

Although p53 may inhibit DNA synthesis or participate in

transcriptional regulation, less is known about how these processes prevent

the initiation or progression of malignant tumors. On theoretical grounds,

tumor suppressor genes may participate in negative growth control, cell

survival, senescence, or differentiation. Remarkably, p53 has been implicated

in each of these processes. Given this complex biology, it is essential to

understand the physiological activities of p53 that create the selective pressure

for p53 loss during tumor progression.

Many studies have addressed this issue by overexpressing wild-type or

mutant p53 proteins to enhance or interfere with p53 functions, respectively.

While such studies can reveal the possible consequences of activating or

inactivating p53, the relevance of this approach to identifying circumstances

in which endogenous p53 acts as a tumor suppressor is unknown.

Furthermore, studies that overexpress mutant p53 proteins to inhibit wild-

type p53 functions are inconclusive, because mutant p53 alleles are not simply

dominant-negative inhibitors of wild-type p53 (Dittmer et al., 1993).

p53 and differentiation

Tumor cells typically appear less differentiated than the tissue from

which they are derived, implying that the differentiated state limits neoplastic

growth. Increases in p53 expression have been associated with differentiation,
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and it is conceivable that p53 mutation could prevent or reverse the

differentiation process. In normal lymphoid cells, endogenous p53 levels

increase upon terminal differentiation (Kastan et al., 1991b). Wild-type p53

induces the expression of several B-cell specific markers upon introduction

into a p53-deficient Abelson virus-transformed pre-B-cell line (Shaulsky et al.,

1991). These more differentiated derivatives grow readily but are less

tumorigenic than the p53-deficient line. In kidney cells, p53 can associate

with the WT1 tumor suppressor, a transcription factor thought to function in

kidney development (Maheswaran et al., 1993). Co-expression of p53 with

WT1 alters transactivation from both p53-dependent and WT1-dependent test

genes, raising the possibility that p53 modulates the differentiation program.

However, p53 is not required for B cell or kidney differentiation, since p53-

deficient mice display no obvious developmental defects (Donehower et al.,

1992).

p53 and senescence

Cultured primary cells inevitably cease proliferation, apparently

because they become nonresponsive to mitogens. This property, senescence,

is intrinsic to primary cells in culture and may prevent aberrant growth.

Cultured cells occasionally acquire mutations that allow them to overcome

senescence and produce established lines capable of growing indefinitely (i.e.

immortal). A number of viral and cellular oncogenes also facilitate the

immortalization process (reviewed in (Ruley, 1990)). Cells derived from

spontaneous tumors are almost always immortal, implying escape from

senescence is essential for oncogenesis.

Several lines of evidence suggest that wild-type p53 participates in

senescence of cultured cells. First, overexpression of "dominant-negative"

p53 alleles can immortalize primary cells (Jenkins et al., 1984; Jenkins et al.,
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1985). Second, the regions of SV40 large T antigen required to immortalize

primary cells co-segregate with its ability to bind p53 (Peden et al., 1989; Zhu et

al., 1991). Third, p53 mutations typically occur during establishment of

embryonic fibroblasts into permanent lines (Harvey and Levine, 1991), and

primary fibroblasts from mice containing disrupted p53 genes appear

immortalized (Chapter 3 and (Harvey et al., 1993)). Finally, epidermal

fibroblasts from Li-Fraumeni patients (which have endogenous p53

mutations) are readily established into permanent cell lines (Bishoff et al.,

1990). While these studies strongly suggest that p53 is required for senescence

of cultured cells, it remains to be determined how this phenomenon relates

to tumor progression and/or p53 loss in vivo.

Suppression of cell growth by p53

Ectopic expression of wild-type p53 can inhibit proliferation, suggesting

that p53 normally functions in negative growth control. Re-introduction of

p53 into p53-deficient colon carcinoma and osteosarcoma lines inhibits clonal

outgrowth, apparently by blocking S phase entry (Baker et al., 1990; Diller et

al., 1990). These conclusions were based on the observation that most

transfected cells contained G1 DNA content, with relatively few cells in S

phase or G2/M. However, cell cycle analysis involved analyzing a small

percentage of transiently transfected cells within a large population by flow

cytometry, and purified cells were not placed back in culture. Thus, it

remains possible that cell cycle progression was unaffected, and that high p53

levels were toxic to cells in S phase or G2/M.

Using inducible p53 expression vectors or temperature-sensitive p53

alleles, it has been conclusively demonstrated that p53 overexpression can

inhibit proliferation (Mercer et al., 1991; Michalovitz et al., 1990; Martinez et

al., 1991). Down-regulation of p53 activity allows proliferation to resume,
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indicating that high p53 levels are not overtly toxic. Most studies suggest that

p53 blocks S phase entry (Mercer et al., 1991; Martinez et al., 1991), but p53 may

also inhibit proliferation in other cell cycle phases (Michalovitz et al., 1990).

Although p53 homologues have not been identified in S. cerevisiae, p53

inhibits yeast cell cycle progression (Nigro et al., 1992). Thus, it appears that

the cellular machinery involved in p53-mediated cell cycle arrest is highly

conserved.

Induction of apoptosis by p53

p53 overexpression can induce cell death by an active process known as

apoptosis, or programmed cell death. This activity was first demonstrated

using a myeloid leukemia cell line expressing a only a temperature-sensitive

p53 allele (Yonish-Rouach et al., 1991). Cell viability was unaffected at the

restrictive temperature for wild-type p53 expression, but cells rapidly initiated

apoptosis at the permissive temperature. Interleukin-6 suppressed apoptosis

without affecting p53 levels. p53 overexpression induces apoptosis in other

cells, including p53-deficient lines derived from colon carcinoma (Shaw et al.,

1992), a Burkitt's lymphoma (Ramqvist et al., 1993), murine erythroleukemias

(Ryan et al., 1993), a v-myc induced T cell lymphoma (Wang et al., 1993), and

certain oncogenically-transformed primary rodent cells containing

endogenous p53 (Debbas and White, 1993).

Activation of p53 for tumor suppression

Although forced overexpression of wild-type p53 can inhibit

proliferation or kill cells by apoptosis, low levels of p53 are constitutively

expressed in all cells without interfering with normal growth or survival.

Thus, p53 expression or activity must increase under circumstances in which

the protein functions as a tumor suppressor. This consideration raises
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Figure 1. Model for p53 activity in tumor suppression.
p53 is activated by upstream signals that increase p53 levels or activity,

leading to direct inhibition of DNA synthesis or altered gene transcription of
growth-related genes. Downstream effectors may elicit the biological
response. Depending on the circumstances (e.g. cell type, cell environment),
p53 activation leads to growth arrest, senescence (i.e. irreversible growth
arrest), or apoptosis. p53 mutation prevents either detection of upstream
signals or activation of downstream effectors. In either case, the appropriate
biological response is not activated.

several fundamental questions (see Figure 1). How is p53 activated and under

what circumstances? What signals or properties of tumor cells (or potential

tumor cells) are responsible for activation? What is the fate of cells in which

p53 has been activated?

Since the biological consequences of p53 overexpression may not be

physiological, it has been difficult to design experiments that adequately assess

endogenous p53 activities. Null mutants are useful in this regard, since they

allow direct analysis of gene function in a physiological context. Although

many tumor cells have lost endogenous p53 expression, functional studies

using these lines are limited by the lack of appropriate controls. Recently, the

development of mouse strains carrying disrupted p53 alleles has permitted

the isolation of cells--differing only in the status of the p53 gene--in which p53

function can be systematically analyzed. Using this approach, a model for p53

function in tumor suppression has rapidly emerged.

37

A · I 1 · A

? "~~
0 1 __



Genomic instability and gene amplification

Aneuploidy and genomic instability are common features of tumor

cells. DNA amplification can be used as a measure of genomic instability;

unstable cells are highly susceptible to DNA amplification while normal cells

are not (Tlsty, 1990). p5 3 normally maintains genomic stability, since primary

mouse embryonic fibroblasts lacking endogenous p53 rapidly become

aneuploid upon continuous passaging in culture (Livingstone et al., 1992).

CAD (trifunctional enzyme carbamoyl-P synthetase, aspartate

transcarbamylase, dihydroorotase) gene amplification is required for cellular

resistance to N-(phosphonacetyl)-L-aspartate (PALA), a uridine biosynthesis

inhibitor. p53-deficient cells (including mouse embryonic fibroblasts derived

from "knock-out" mice, immortalized fibroblasts derived from Li-Fraumeni

patients, and human tumor lines) display an approximately 102 to 103 -fold

increase in PALA-resistant cells than do their wild-type p53 expressing

counterparts (Livingstone et al., 1992; Yin et al., 1992). Furthermore, DNA

amplification (and PALA resistance) is reduced to undetectable levels upon

re-introduction of wild-type p53 (Yin et al., 1992).

PALA typically induces cell cycle arrest in G1, probably by activating a

cell cycle checkpoint mechanism that limits proliferation in the absence of

sufficient quantities of macromolecular precursors. p53-deficient cells

continue to proliferate following PALA treatment, suggesting that p53

normally functions this G1 checkpoint (Livingstone et al., 1992; Yin et al.,

1992). These studies suggest that p53 loss increases genomic instability by

eliminating a G1 checkpoint and permitting inappropriate S phase entry.

However, other mechanisms contribute to genomic instability, since tumor

cells containing wild-type p53 genes are also unstable (Livingstone et al.,

1992).
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Cellular response to DNA damage

All cells possess repair mechanisms that reduce the frequency with

which DNA damage produces mutation, and defects in these processes

predispose individuals to cancer (reviewed in (Hartwell, 1992)). Cell cycle

progression into S phase or mitosis prior to repair of genetic damage can fix

mutations. Therefore, part of the repair process involves cell cycle

checkpoints that arrest cells in either G1 or G2 following detection of DNA

damage.

Increases in endogenous p53 levels and stability precede cell cycle arrest

following DNA damage induced by ionizing radiation and other genotoxic

agents (Maltzman and Czyzyk, 1984; Kastan et al., 1991a; Fritsche et al., 1993).

Furthermore, p53-deficient human tumor lines fail to arrest in G1 following

y-irradiation, and re-introduction of wild-type p53 restores the checkpoint

(Kastan et al., 1991a; Kuerbitz et al., 1992). Unlike their normal counterparts,

embryonic fibroblasts derived from p53-deficient mice do not arrest in G1

following y-irradiation (Kastan et al., 1992). The latter study demonstrates

that p53 is required for this G1 checkpoint.

Ionizing radiation and other DNA damaging agents--many used in

cancer chemotherapy--induce p53 accumulation by enhancing p53 stability

(Maltzman and Czyzyk, 1984; Kastan et al., 1991a). Cells derived from cancer-

prone individuals with ataxia-telangiectasia (AT) also fail to arrest following

y-irradiation, apparently because the products of the AT genes are required for

p53 stabilization (Kastan et al., 1992). p53 accumulation activates GADD45

transcription (Kastan et al., 1992), but it is unclear whether gene regulation by

p53 actively contributes to G1 arrest. At present, the most likely candidate for

a p53 effector is CIP1/WAF1, since p21cIPl/WAF1 directly interacts with the cell

cycle machinery (Xiong et al., 1993; Harper et al., 1993; El-Deiry et al., 1993).
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This view predicts that transcription of CIP1/WAF1 will not be induced

following y-irradiation of AT fibroblasts.

Guardian of the Genome model

The involvement of p53 in a cell cycle checkpoint has suggested a

model to account for p53 action in suppressing oncogenic transformation

(Lane, 1992). In this view, p53 is an essential component of a G1 checkpoint

mechanism that limits cell cycle progression following DNA damage,

presumably to allow sufficient time for DNA repair. p53 levels and stability

increase upon detection of DNA damage leading to growth arrest, either

directly or by transcriptional activation of target genes that block proliferation.

In the absence of p53 function, as would occur upon p53 mutation or by p53

binding to cellular or viral oncogenes, p53 is unable to transactivate target

genes or induce growth arrest. Thus, cells continue to proliferate following

DNA damage, increasing the probability of mutation, some of which are

oncogenic. Similarly, cells with defects in the G1 checkpoint are more likely

to become aneuploid or amplify DNA (reviewed in (Hartwell, 1992)).

The "guardian of the genome" model provides explanations for the

hypothetical questions posed above (Figure 2). p53 is activated for tumor

suppression by changes in p53 protein stability leading to p53 accumulation.

The signal responsible for p53 activation is DNA damage. Other molecules,

which may include the products of the ataxia-telangiectasia genes, may be

involved in detection of DNA damage or the stabilization of p53. The

observation that caffeine blocks both growth arrest and p53 accumulation

following y-irradiation suggests that p53 stabilization is required for activation

(Kastan et al., 1991a). No particular properties of potential tumor cells are

required for p53 activation; indeed, the ability to increase p53 levels following

DNA damage is intrinsic to all normal cells. Finally, the fate of cells that
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Figure 2. p53 and the cellular response to DNA damage.
DNA damage increases p53 protein stability owing to the activities of the
ataxia-telangiectasia gene products. The resulting increase in p53 levels either
directly or indirectly activates a G1 checkpoint and induces growth arrest,
possibly through increased transcription of genes such as GADD45 or
CIP1/WAF1 (p21). Growth inhibition allows DNA damage to be repaired and
decreases the mutation frequency. Cells lacking p53 are unable to activate the
G1 checkpoint following DNA damage; thus, cells continue to progress into S
phase without sufficient time to repair damaged DNA. This increases the
likelihood that cells will sustain oncogenic mutations, leading to tumor
progression.

activate p53 is transient growth arrest, which is sustained until the damaged

DNA is repaired.

At least several mutations are required for the malignant phenotype

(Fearon and Vogelstein, 1990). Since p53 loss increases the rate at which cells

acquire oncogenic mutations, the "guardian of the genome" model predicts

that p53 mutation should be a potent initiator of tumorigenesis. Indeed,

humans and mice carrying germline mutations in the p53 gene are

predisposed to spontaneous tumors (Vogelstein, 1990; Donehower et al.,

1992). This view also implies that p53 activity indirectly suppresses

transformation. Thus, cells lacking p53 functions acquire additional

mutations, and it is these mutations that directly influence the neoplastic

phenotype.
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Nevertheless, there are reasons to doubt that this indirect mechanism

is the principle means by which p53 mutation contributes to carcinogenesis.

First, p53 mutation is not an initiating event in most cancers, but rather

appears to promote tumor progression. In colon cancer, p53 mutations are

rarely observed in benign adenomas, but are associated with advanced stages

of malignancy (see discussion in Section II). On average, tumor cells have

sustained 2-3 other oncogenic changes prior to p53 mutation (Fearon and

Vogelstein, 1990). In addition, p53-deficiency does not enhance either the

initiation or promotion of carcinogen-induced benign skin polyps in mice,

but dramatically increases their progression to malignant carcinomas (Kemp

et al., 1993). Second, p53 may directly influence both the initiation and

maintenance of transformed phenotypes. Thus, dominant-negative p53

alleles enable ras oncogenes to transform both primary and established cells

(Hinds et al., 1989; Hicks et al., 1991). Transformed foci appear within days

after gene transfer, and stable transformation requires continuous expression

of mutant p53 (Zambetti et al., 1992). This requirement would be unnecessary

if p53 loss had only increased the occurrence of other transforming

mutations.

SECTION IV: Apoptosis as a potential mechanism of tumor suppression

Tumor suppressors have been viewed largely as molecules concerned

with negative growth control. However, recent advances in the

understanding of apoptosis, or programmed cell death, have suggested that

regulation of cell survival may also influence tumorigenesis. Since

mutations that repress the apoptotic program could facilitate tumor

progression, it seems likely that several tumor suppressor genes will

participate in apoptosis.
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Characteristics of apoptosis

A formal description of apoptosis was forwarded in 1972 (Kerr et al.,

1972). Apoptosis is now considered an essential process in normal

development and tissue homeostasis, and defects in apoptotic programs

contribute to several human diseases (reviewed in (Raff, 1992)). Apoptosis

was initially defined by morphological criteria; cells undergoing apoptosis

display cell shrinkage, loss of cell-cell contacts, membrane blebbing,

chromatin condensation, and nuclear fragmentation (Kerr et al., 1972). Prior

to loss of membrane integrity, dying cells are engulfed by macrophages or

other surrounding cells. This process is distinct from necrosis, where cells

burst and release their cytoplasmic contents into the surrounding

environment. This difference may explain the physiological importance of

apoptosis: apoptosis provides a mechanism to eliminate unwanted cells

without initiating an inflammatory response. Thus, apoptosis has been

sometimes referred to as "physiological" cell death, whereas necrosis has been

described as "accidental" cell death (Raff, 1992; Vaux, 1993).

Cells undergoing apoptosis frequently activate an endonuclease that

cleaves between nucleosomes, leading to eventual degradation of DNA to

oligomers that are multiples of approximately 180-200 nucleotides (Wyllie,

1980; Wyllie et al., 1984). Although extensive DNA degradation would

certainly lead to loss of viability, it may not be necessary for apoptosis, since

some forms of apoptosis occur either prior to or without detectable DNA

degradation (reviewed in (Fesus, 1993)).

Apoptosis and programmed cell death: requirements for gene function

Apoptosis is often equated with "programmed cell death", because it

occurs by a gene-directed process that requires the active participation of the

cell. Both RNA and protein synthesis inhibitors block apoptosis in cultured
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thymocytes, suggesting that apoptosis is a cellular response to physiological

stimuli that requires new gene expression (Wyllie et al., 1984; Sellins and

Cohen, 1987). This simple interpretation is complicated by the observation

that RNA and protein synthesis inhibitors have variable effects depending on

the cell type and apoptotic stimuli (reviewed in (Fesus, 1993; Vaux, 1993)). For

example, many cells become susceptible to tumor necrosis factor a-induced

apoptosis upon treatment with cycloheximide (Laster et al., 1988). Although

this may reflect the presence of a short-lived molecule that suppresses

apoptosis, none has been identified.

Genetic studies in C. elegans provide direct evidence that apoptosis is a

gene-directed process, as well as insight into the genetic mechanisms

regulating apoptosis. The ced-3 and ced-4 genes are required for execution of

the apoptotic program (Ellis and Horvitz, 1986). Consequently, animals

harboring loss of function mutations in ced-3 or ced-4 possess extra cells.

These additional cells remain viable and frequently differentiate. ced-4

encodes a protein that may bind calcium (Yuan and Horvitz, 1992), and ced-3

has structural similarities to the mammalian interleukin-lp-converting

enzyme (ICE) (Yuan et al., 1993). ICE may function similarly in mammalian

cells, since overexpression can induce apoptosis (Miura et al., 1993). The ced-9

gene either directly or indirectly antagonizes the activities of ced-3 and ced-4

and has functional similarities to the mammalian bcl-2 oncogene

(Hengartner et al., 1992). Thus, activating mutations in ced-9 prevent normal

cell deaths from occurring. Loss of function mutations in ced-9 are associated

with ectopic cell deaths in C. elegans, implying that apoptosis may occur by

"default" in this organism.

Apoptosis is a common feature of malignant tumors.

In order to maintain tissue homeostasis, cell proliferation must equal
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cell loss. Neoplastic growth occurs when cell proliferation exceeds cell loss.

By comparing potential doubling times of tumors (estimated by mitotic index

or thymidine incorporation) to observed growth rates it has been

demonstrated that cell loss in tumors is often extremely large: in many

tumors, the actual rate of tumor growth is less than 5% of the potential

growth rate (based on the percentage of proliferating cells) (Wyllie, 1985).

Consequently, factors that decrease the "cell loss factor" can dramatically

enhance tumor progression.

Cell loss in tumors occurs predominantly from cell death by either

necrosis or apoptosis. Tumor necrosis results primarily from hypoxia and

nutrient deprivation, so necrotic cells typically are observed in zones at a

distance from blood vessels (discussed in (Wyllie, 1985)). Although necrosis

contributes significantly to tumor cell loss, it cannot explain the magnitude of

cell death observed in many tumors (Kerr, et al., 1972). The role of apoptosis

in determining net tumor growth has been largely overlooked, perhaps

because cell apoptotic deaths are not localized. Dying cells shrink and are

rapidly phagocytosed by macrophages or neighboring cells. However,

apoptosis accounts for a large proportion of cell loss in tumors, particularly

during periods of tumor regression (Searle, et al., 1975).

The susceptibility of normal and neoplastic cells to apoptosis has

several implications with regard to cancer (Kerr, et al., 1972; Wyllie, 1985;

Dive and Hickman, 1991; Wyllie, 1993). First, suppression of apoptosis in

normal cells could cause hyperplasia, creating an expanded cell population

from which cells acquiring oncogenic mutations could arise. Second, since

apoptosis contributes significantly to the cell death in tumors, mutations that

suppress apoptosis could promote tumor progression. Finally, the cytotoxicity

of many anticancer agents may result from their ability to activate apoptosis.
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Loss of apoptotic pathways could therefore reduce the effectiveness of cancer

therapy.

Oncogenes can modulate apoptosis

bcl-2. The molecular biology of apoptosis in human cancer was largely

ignored until the bcl-2 oncogene was shown to modulate apoptosis. bcl-2 was

first identified by its proximity to a common translocation breakpoint

involved in many human lymphoid malignancies (Tsujimoto et al., 1985;

Bakhshi et al., 1985; Cleary and Sklar, 1985). These translocations deregulate

bcl-2 expression by placing the oncogene under the transcriptional control of

the immunoglobulin heavy chain promoter. Unlike most other oncogenes,

bcl-2 has no obvious effect on proliferation (Vaux et al., 1988; Nunez et al.,

1990) but instead enhances survival by inhibiting apoptosis (Vaux et al., 1988;

Nunez et al., 1990; Hockenbery et al., 1990). Thus, deregulated expression of

bcl-2 promotes neoplastic growth by preventing normal cell deletion.

Overexpression of bcl-2 inhibits most forms of apoptosis (Korsmeyer,

1992). Gene disruption studies indicate that bcl-2 is normally required for

maintenance of lymphoid organs (Veis et al., 1993) and may function in an

anti-oxidant pathway (Hockenbery et al., 1993). Given the numerous settings

in which bcl-2 over-expression blocks cell death, it is surprising that bcl-2-

deficient mice complete embryonic development (Veis et al., 1993). Perhaps

this reflects functional redundancy, since bcl-2 is a member of a larger gene

family (Maheswaran et al., 1993; Oltvai et al., 1993).

Adenovirus E1A and E1B. Interactions between the adenovirus E1A

and E1B genes provide insight into the regulation of apoptosis in oncogenic

transformation. The ElA oncogene promotes proliferation and S phase entry,

probably by associating with cellular proteins involved in negative growth

control (Whyte et al., 1988; Whyte et al., 1989). In addition to complementing
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E1B activities in adenovirus transformation, ElA collaborates with activated

ras oncogenes to transform primary cells (Ruley, 1983). The E1B-encoded

proteins, p19EB and p55ElB, have no obvious effect on cell proliferation in

the absence of E1A (van den Elsen et al., 1983), and do not substitute for ras in

co-transformation with other oncogenes (e.g. myc) (Ruley, 1990).

The role of E1B in adenovirus transformation has been clarified by the

observation that it, like bcl-2, inhibits apoptosis. This conclusion stemmed

from the characterization of several adenovirus mutants (cyt and deg), which

cause cytopathic effects and degradation of viral and chromosomal DNA

(Takemori et al., 1968; D'Halluin et al., 1979). All cyt and deg mutants contain

mutations within the viral E1B gene, including several that abolish p19E 1B

expression (White et al., 1984). Moreover, E1A expression is required for the

cyt and deg phenotypes (White and Stillman, 1987), which resemble apoptosis

(White et al., 1991). Thus, E1A induces apoptosis, which is countered by an

E1B-encoded protein (Rao et al., 1992).

Regulation of apoptosis may explain the collaborative interactions

between E1A and E1B in adenovirus transformation. EA initiates cellular

proliferation, but at the same time increases susceptibility to apoptosis (Rao et

al., 1992). Consequently, proliferation cannot be sustained. E1A sequences

required for apoptosis coincide with those required for induction of DNA

synthesis (White et al., 1991), implying that these processes are linked. E1B, by

countering apoptosis, allows sustained proliferation without directly

influencing cell growth (Rao et al., 1992). While these studies do not rule out

the possibility that E1B has additional activities, they suggest that inhibition

of apoptosis enhances oncogenic transformation.

c-myc. Like ElA, the c-myc oncogene can promote both proliferation

and apoptosis (Evan et al., 1992). Similarly, the regions of myc required for
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apoptosis and proliferation are identical. Apoptosis associated with c-myc is

particularly pronounced when cells are cultured in low serum concentrations

or at high cell density. It has been suggested that myc "primes" cells for

apoptosis (Wyllie, 1993). Thus, myc-overexpressing cells express the cellular

machinery required for immediate execution of the death program, but

"trigger" apoptosis only in response to growth-limiting conditions.

The fact that a cellular oncogene induces both proliferation and

apoptosis suggests that activation and escape from apoptosis may be of general

importance in tumor progression. Consistent with this hypothesis, bcl-2

blocks myc-induced apoptosis (Fanidi et al., 1992; Bissonnette et al., 1992) and

collaborates with myc in oncogenic transformation of cultured cells (Vaux et

al., 1988) and in transgenic animals (Strasser et al., 1990). Similar mechanisms

may contribute to human cancer, since lymphoid cancers containing both

deregulated myc and bcl-2 have been identified (Gauwerky, et al., 1989).

Proliferation verses cell death. The studies described above imply that

cellular susceptibility to apoptosis modulates the transformed phenotype. At

least two models can account for the association between proliferation and

apoptosis. First, oncogenes such as myc and E1A may directly regulate both

proliferation and apoptosis (see, for example, (Shi et al., 1992)). Since

proliferation and apoptosis are incompatible, the activation of either process

must involve synergism between oncogenes and other factors, perhaps the

cellular environment. Negative regulators of apoptosis specifically interfere

with the oncogene's apoptotic activity without affecting proliferation.

Alternatively, apoptosis may reflect a cellular response to forced proliferation

(see Chapters 2, 3, and (Rao et al., 1992)). In this view, the activity of the

oncogene is solely mitogenic, and apoptosis ensues under circumstances

where the proliferation is perceived as aberrant. Negative regulators of
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apoptosis block activation (or implementation) of the cellular response. In

either case, inactivation of apoptosis results in sustained proliferation and

transformation.

Tumor suppressor genes and apoptosis

Neoplastic growth involves both activation of oncogenes and

inactivation of tumor suppressor genes. As described above, oncogenes can

enhance tumor progression either by promoting proliferation or suppressing

apoptosis. Certain oncogenes that induce proliferation also promote

apoptosis, suggesting that oncogenic changes that occur during tumor

progression may increase cellular susceptibility to apoptosis. Since apoptosis

is a common feature of malignant tumors, a significant growth advantage is

conferred upon a cell that is able to circumvent the death program.

Oncogenes may promote apoptosis as part of their normal spectrum of

activities or as a cellular response to forced proliferation. In the latter view,

molecules involved in the cellular response are candidate tumor suppressor

genes. In the presence of gene function, apoptosis occurs in response to

aberrant proliferation--a veritable tumor suppressor activity. Upon

inactivation of gene function, cells are unable to initiate apoptosis in response

to oncogenic stimuli, leading to enhanced tumor growth and progression.

Loss of function mutations occurring in such a tumor suppressor gene would

not initiate tumorigenesis, but rather promote progression of tumors to more

malignant states. Certainly, the p53 tumor suppressor gene has characteristics

of such a molecule.
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SECTION V: Thesis Overview

Oncogene collaborations and multistep carcinogenesis

Transformation of cultured cells to a tumorigenic state typically

requires two or more genes acting in concert. For example, activated ras

oncogenes transform primary cells (i.e. tissue explants that have not been

passaged in culture) poorly, if at all, while genes such as myc, adenovirus

early region 1A (ElA), simian-virus 40 (SV40) large T antigen, and certain

mutant p53 alleles enable ras to transform primary cells to a tumorigenic state

(reviewed in (Ruley, 1990)). Similarly, c-myc, ElA, large T antigen and

mutant p53 alleles do not transform but facilitate the establishment of cells

into lines capable of growing indefinitely in culture. While these results

suggest that in vitro establishment is a necessary precondition for oncogenic

transformation, ras is unable to transform the established REF52 cell line,

demonstrating that in vitro establishment (i.e. immortalization) alone does

not render cells susceptible to transformation by ras (Franza et al., 1986).

We have investigated transforming interactions between ras and other

oncogenes in order to identify relevant biochemical interactions involved in

normal growth control and transformation. REF52 cells are particularly

useful in this regard, since they provide one of the tightest biological systems

in which transformation by ras strictly requires a second, collaborating

oncogene. Previous studies have suggested that ras fails to transform REF52

cells because continuous expression of even modest levels of oncogenic p21H-

ras inhibits proliferation (Franza et al., 1986). Thus, EIA, SV40 large T antigen,

and mutant p53 oncogenes collaborate with ras by circumventing cellular

controls that cause ras to inhibit cell growth (Franza, et al., 1986; Hirakawa, et

al., 1988; Hicks, et al., 1991). This hypothesis is supported by the observation
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that REF52 cells transformed by ras and a temperature-sensitive SV40 large T

antigen (tsA58) undergo growth arrest at the restrictive temperature for T

antigen expression (Hirakawa, et al., 1988). By contrast, oncogenic

transformation by "immortalizing" oncogenes such as E1A and c-myc may be

limited by mechanisms that increase cellular susceptibility to apoptosis (see

discussion in Section IV).

Preliminary observations

The research presented in this thesis originated from the studies

investigating the cellular mechanisms that limit transformation by ras

oncogenes. During the course of these studies, several observations suggested

a series of experiments that would clarify the role of p53, ElA, and E1B in

adenovirus transformation. Therefore, we began to focus on the cellular

responses to E1A and its transforming interactions with other oncogenes.

Nevertheless, these studies continued to investigate processes in which

normal cells resist transformation by single oncogenes. The following is a

brief description of the observations that provided the conceptual framework

for this thesis.

ras-induces growth arrest of REF52 cells. While conditional

transformation of REF52 cells by tsA58 provided a convenient means to

regulate cellular responses to ras (Hirakawa, et al., 1988), the approach was

limited since the cells were initially transformed. To conclusively

demonstrate that growth arrest resulted from ras expression (rather than

removal of large T antigen) it was necessary to develop a direct method to

express oncogenic ras in normal REF52 cells. Retrovirus-mediated gene

transfer has proven useful in this regard, since genes can be synchronously

introduced into a relatively large number of cells and are expressed within

hours of gene transfer.
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Figure 3. Effects of T24 H-ras expression following retroviral-mediated gene
transfer.

Cells were plated at a density of 2 x 105/150 mm dish and infected with
either a neo-expressing (A, C, E) or ras-expressing (B, D, F) retrovirus at a high
multiplicity of infection (5-10 cfu/cell). Photomicrographs were taken at 5
days post-infection. A and B, REF52 cells; C and D, Al cells (REF52 clone
expressing E1A); E and F, RAT2 cells.
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Figure 4. Growth of REF52 cells expressing T24 H-ras following retroviral
gene transfer.

REF52 cells were plated at a density of 2 x 105/150 mm dish and infected
with the neo-expressing (o) or ras-expressing retrovirus (u), or left uninfected
(0). Cell numbers were determined at various times post-infection and
normalized to the value on day 0. Each data point was obtained from at least
4 independent infections.

REF52 cells infected with a ras-expressing retrovirus (U3Histkras;

containing the T24 H-ras allele) acquired a large, flat morphology, whereas

infection of REF52 cells with a control retrovirus (U3Histkneo; (von

Melchner and Ruley, 1989)) had no effect. Moreover, infection of E1A-

expressing REF52 cells or RAT2 cells with the ras retrovirus rapidly induced

morphological transformation (Figure 3). REF52 cells infected with control

retroviruses continued to proliferate at a rate similar to uninfected controls;

however, infection with the ras retrovirus inhibited cell growth (Figure 4),

predominantly in the G1 phase of the cell cycle (Figure 5). Furthermore, ras-

expressing cells were unable to enter S phase following serum depletion and
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Figure 5. Cell cycle profile of ras-arrested REF52 cells.
REF52 cells were infected with the either neo-expressing or ras-

expressing retrovirus. On the second day after infection, cells were
trypsinized, stained with propidium iodide, and analyzed for DNA content by
flow cytometry.

re-stimulation (Figure 6). These results indicated that ras-overexpression was

indeed capable of arresting REF52 cell proliferation.

Is p53 involved in ras-induced arrest? Several observations suggested

that p53 might participate in ras-induced growth arrest. First, mutant p53

alleles encoding dominant-negative proteins enabled ras to transform REF52

cells, thereby circumventing ras-induced arrest (Hicks et al., 1991). Second,

overexpression of wild-type p53, like ras, can inhibit proliferation in G1

(Michalovitz et al., 1990; Mercer et al., 1990; Diller et al., 1990). If so, it seemed

plausible that increases in endogenous p53 expression might accompany ras-

induced growth arrest. Since E1A prevented ras-arrest, we hypothesized that

E1A might block p53 accumulation.
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Figure 6. Serum stimulation of quiescent and ras-arrested REF52 cells.
REF52 cells were either left untreated (A, B), or infected with the neo-

expressing (C, D) or ras-expressing (E, F) retroviruses. After 24 hours after
infection, cultures were placed in medium containing 0.5% calf serum. After
48 hours of serum deprivation, cultures were re-stimulated with medium
containing 10% FBS. Cells were analyzed for DNA content either prior to (A,
C, E), or 15 hours after serum addition (B, D, F).

Figure 7. p53 levels in retrovirus-infected cells (following page).
REF52 cells, REF52 cells expressing E1A (lAl) and RAT2 cells were

infected with viruses expressing either neo (N) or ras (R). p53 levels were
estimated by immunoprecipitation of 35S-lysates (see Chapter 2) 10 days after
infection. The mobility of p53 is marked with an arrow at the right of the gel.
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The results of this experiment were quite unexpected. ras had no

obvious effect on p53 expression prior to or during cell cycle arrest. By

contrast, ElA-expressing cells contained dramatically elevated p53 levels

(Figure 7). Furthermore, p53 levels remained high in ElA-expressing cells,

despite oncogenic transformation by ras. These results indicate that p53

accumulation was not required for ras-induced growth arrest. Rather, p53

expression was induced in response to ElA.

Paradox of ElA-induced p53 levels. Since oncogenic transformation

frequently involves the loss of p53 function, it was paradoxical that p53 levels

were increased in cells expressing ElA--an oncogene that promotes

proliferation. Although p53 levels are elevated in adenovirus-transformed

cells, the increase was thought to result from either the physical association

between p53 and the adenovirus E1B protein or a secondary consequence of

oncogenic transformation (Zantema et al., 1985; Jochemsen et al., 1987; Mak et

al., 1988; van den Heuvel et al., 1990). However, our studies suggested that

the increase might result from activities associated with E1A.

Why would increases in p53--the product of a tumor suppressor gene--

occur in cells expressing ElA? A simple explanation for this phenomenon is

that p53 accumulation reflects mutations within the p53 gene, which often

encode more stable proteins (Finlay et al., 1988). However, this was

apparently not the case (see Chapter 2). Alternatively, viral proteins may alter

p53 function, such that elevated p53 levels promote oncogenic

transformation (van den Heuvel et al., 1990). Finally, p53 accumulation may

reflect a mechanism whereby cells attempt to resist viral transformation.

Consistent with this possibility, REF52 cells tolerated ElA expression poorly,

and frequently lost ElA altogether (see Chapter 2).

58



The latter hypothesis was supported by studies demonstrating that EIA

can induce apoptosis (see Section IV). Since ElA increased p53 levels, it was

possible that p53 accumulation might induce apoptosis. Moreover, the

observation that E1B blocks apoptosis and collaborates with EA in

adenovirus transformation suggested that E1B might circumvent the effects

of elevated p53. While p53 physically associates with p55E1B, pl9E1B (which

does not interact with p53) was more efficient at protecting against E1A-

induced apoptosis (Rao et al., 1992).

Nevertheless, the notion that apoptosis might involve p53

accumulation was reinforced by the demonstration that forced

overexpression of p53 could induce apoptosis (Yonish-Rouach et al., 1991;

Shaw et al., 1992). Although physiological situations in which p53 functioned

in apoptosis remained undefined, the fact that ElA increased endogenous p53

levels suggested that ElA-associated apoptosis might represent the first such

setting. Moreover, since p53 expression increased in response to an oncogene

that was unable to transform alone, it seemed plausible that p53

accumulation was part of a cellular mechanism that resists oncogenic

transformation. Therefore, we decided to investigate the role of p53 in E1A-

induced apoptosis.

p53 accumulation and apoptosis

The observation that p53 levels increase in response to E1A provides

the cornerstone for the studies presented here. Much of the experimentation

was aimed at identifying both the causes and consequences of this

phenomenon. Given our interest in defining mechanisms in which

oncogenes interact in transformation, we were intrigued by the possibility

that ElA-induced p53 expression might reveal fundamental clues as to how

p53 functions as a tumor suppressor gene. From an intellectual standpoint,
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we wished to investigate the following: Do increases in p53 levels represent a

cellular response to aberrant proliferation (i.e. oncogenes) that enable cells to

resist oncogenic transformation? Is p53 involved in apoptosis? Does

apoptosis suppress transformation?

Chapter 2 describes the biochemical characterization of p53

accumulation in cells expressing EA, with specific comparisons to p53

expression in cells co-expressing ElA and E1B. These studies demonstrated

that p53 was stabilized in cells expressing ElA alone, and that the effects of

ElA could account for the p53 stabilization observed in adenovirus-

transformed cells. Moreover, p53 stabilization was associated with apoptosis,

suggesting a physiological setting in which p53 was suppressing oncogenic

transformation. Chapter 3 describes experiments designed to directly test this

hypothesis. p53-deficient mouse embryonic fibroblasts were used to

determine whether p53 was required for ElA-induced apoptosis. Like wild-

type cells co-expressing ElA and E1B, p53-deficient cells expressing only E1A

were resistant to apoptosis. p53-dependent apoptosis appeared to suppress

transformation by EA, since p53-deficient cells expressing EA were

tumorigenic. In contrast to E1B, activated ras oncogenes did not block E1A-

associated apoptosis, but collaborated with ElA to transform cells to a highly

tumorigenic state. Thus, transformation by ElA can occur by at least two

distinct mechanisms, one involving escape from apoptosis (EIB) and another

that compensates for apoptosis (ras).

The involvement of p53 in apoptosis has several implications for

human cancer, particularly with regard to cellular responses to anticancer

agents. Chapter 4 demonstrates that several anticancer agents trigger p53-

dependent apoptosis in ElA-expressing cells. p53 was required for induction

of apoptosis by y-irradiation and several chemotherapeutic compounds,

60



implying that loss of p53 during tumor progression could produce cross-

resistant tumors. Chapter 5 provides direct data implicating p53 in tumor

response to y-irradiation. Finally, Appendix 1 investigates whether p53 is

required for apoptosis in other settings, specifically in the mouse thymus.

Although several stimuli trigger apoptosis in primary thymocytes, p53-

dependent apoptosis was activated only in response to y-irradiation.

Therefore, apoptosis can occur by p53-dependent and independent pathways.

In conclusion, although initially interested in the mechanisms that

prevented ras from transforming cultured cells, we identified a mechanism

that precludes transformation by ElA. Thus, p53 can suppress oncogenic

transformation by modulating apoptosis. These studies provide a rationale

for the observation that p53 loss occurs late in tumor progression, after other

oncogenic mutations have occurred. Moreover, they suggest that the ability

of tumor cells to trigger p53-dependent apoptosis may influence the

effectiveness of cancer therapy, and provide a biological explanation for the

prognostic significance of p53 mutation.
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CHAPTER 2

Stabilization of the p53 tumor suppressor is induced by adenovirus ElA and

accompanies apoptosis

This work has been published: Lowe, S. W. and Ruley, H. E. (1993) Genes
Dev. 7, 535-545.
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INTRODUCION

p53 was identified as a cellular protein associated with simian virus 40

(SV40) large T antigen (Lane and Crawford, 1979; Linzer and Levine, 1979),

and later, with the adenovirus-5 E1B (p55E1B) and human papilloma virus

types 16 and 18 E6 proteins (Sarnow et al., 1982; Werness et al., 1990).

Although the gene was originally classified as a dominant-acting oncogene,

present evidence indicates that p53 functions primarily as a tumor suppressor

(Levine et al., 1991; Malkin et al., 1990; Srivastava et al., 1990; Donehower et

al., 1992).

Mechanisms whereby p53 protects against neoplastic growth are

unknown. Forced overexpression of wild-type p53 can suppress cell growth

(Finlay et al., 1989; Eliyahu et al., 1989) and promote cell death by apoptosis

(Yonish-Rouach et al., 1991; Shaw et al., 1992) However, the relevance of

these experiments to the natural circumstances in which p53 participates in

tumor suppression and/or apoptosis is unknown, since physiological changes

in p53 levels or activity that might mediate cellular resistance to oncogenic

transformation have not been identified.

Interactions between viral early region proteins and p53 also contribute

to oncogenic transformation by human adenoviruses, SV40 and HPV

(Levine, 1990). Given the role of p53 as a tumor suppressor, the viral tumor

antigens are thought to interfere with p53 functions which preclude

transformation. This is illustrated by the human papilloma virus E6 protein

which promotes the proteolytic degradation of p53 (Scheffner et al., 1990).

Similarly, stable complexes between p53 and p55ElB may inactivate p53

function by sequestering the protein outside the nucleus (Zantema et al., 1985)

or by blocking interactions between p53 and other cellular targets (Yew and

Berk, 1992).
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Since oncogenic transformation frequently involves the loss of p53

function, it seems paradoxical that the stability and levels of p53 are greatly

increased in adenovirus and SV40 transformed cells. Although the

stabilization of p53 associated with viral tumor antigens may simply be

coincidental, the phenomenon may have significance regarding p53 function

or regulation. For example, p53 may have positive as well as negative effects

on cell growth (Mercer et al., 1984; Shohat et al., 1987; Shaulsky et al., 1990;

van den Heuvel et al., 1990) Thus, the tumor antigens could promote cell

transformation, in part, by increasing the levels of p53. Alternatively, the

stabilization of p53 may result from factors other than tumor antigen binding,

possibly as part of a mechanism whereby cells attempt to resist viral

transformation. Binding of the tumor antigen could allow transformation by

countering the effects of increased p53 expression.

While evidence supporting this last model is limited, several studies

suggest tumor antigen binding may not stabilize p53. First, p53 turnover

decreases in adenovirus type 12-transformed cells, even though the protein

does not form a stable, immunoprecipitable complex with Ad12 p55E1B

(Zantema et al., 1985). Second, the half-lives of free and T antigen-associated

p53 are similar in SV40-transformed cells (Deppert and Haug, 1986). In both

cases, the effect of the tumor antigen on p53 turnover was attributed to

metabolic changes associated with cell transformation, although neither study

excluded the possibility of physical interactions between the tumor antigen

and p53.

The present study analyzed p53 expression in normal and transformed

REF52 cells. Although established as a permanent line, REF52 cells resemble

primary cells in that transformation can require two or more oncogenes

acting in concert (Ruley, 1990). For example, REF52 cells are not transformed
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by either ras or adenovirus E1A individually, but are oncogenically

transformed by combinations of the two oncogenes (Franza et al., 1986). SV40

large T antigen and dominant transforming forms of p53 also transform in

collaboration with ras (Hirakawa and Ruley, 1988; Hicks et al., 1991). Since

p53 is the only known cellular gene product with this activity, we analyzed

the effects of various oncogenes on cellular p53 expression. Quite

unexpectedly, the half-life of endogenous p53 was extended in all cells

expressing adenovirus-5 EA. Moreover, the stabilization of p53 was

associated with the selective loss of ElA-expressing cells by a process

resembling apoptosis. While having no additional effect on p53 turnover,

E1B protected cells against the toxic effects of ElA.

MEITHODOLOGY

Cell culture

REF52 cells were maintained in Dulbecco's Modified Eagle's medium

(DME) supplemented with 5% fetal bovine serum (FBS), 5% calf serum (CS),

penicillin (50 units/ml), and streptomycin (50 gg/ml). REF52 cells expressing

Adenovirus Type 5 (Ad5) ElA (e.g. clone Al) or transformed by T24 H-ras

and E1A (e.g. clone RNA7) have been described (Franza et al., 1986). Clones

R53/4 and 52LTR/6 expressed mutant p53 genes (p53Pro1 93 and p53vall 35 ,

respectively (Hicks, et al., 1991)) and were obtained from Dr. Michael Mowat

(Manitoba Institute of Cell Biology). 'V2 cells producing the tsA58-3 and LJ-12S

retroviruses (Jat and Sharp, 1989) were maintained on DME containing 10%

CS.

Gene transfer

Retroviruses expressing the Ad5 EA 12S cDNA were isolated

following transfection of pLJ-12S into 'V2 cells. LJ-12S expresses a 12S E1A
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cDNA and a neo gene from the viral long terminal repeat (LTR) and an SV40

early promoter, respectively (Dr. Mark Timmers, unpublished). Cells

expressing LJ-12S were isolated in media supplemented with 0.4 mg/ml G418.

The tsA58-3 retrovirus expresses a temperature sensitive large T

antigen (tsA58) and neo (Jat and Sharp, 1989). To introduce SV40 large T

antigen into clones already expressing neo, 5 x 106 tsA58-3 producer cells were

g-irradiated for 27 minutes (3000 rads) and co-cultivated with 2 x 103 target

cells for 3 days at 370C in the presence of 2 pgg/ml polybrene. Colonies of

infected target cells arose by 10 days at 370C, while the irradiated producer cells

detached from the plate. Colonies were pooled and transferred to the

permissive temperature for large T expression (330C) for at least 3 days prior

to analysis. No cells remained in parallel cultures containing only irradiated

producer cells.

Ad5 E1A and E1B genes were introduced into cells by calcium

phosphate co-precipitation. plAHygro (Ad5 ElA linked to a hygromycin B

resistance gene) was co-transfected with p5XX (Ad5 XbaI-XhoI genomic E1B

fragment) and stable transfectants were isolated in medium containing 100

gg/ml hygromycin B. Alternatively, p5XX was introduced into 1Al cells by

co-transfecting pY3 (Blochinger and Diggelmann, 1984) and selecting for

hygromycin B resistance. Stable lines were isolated and expanded in 25 gg/ml

hygromycin B. For transient expression studies cells were transfected with

pCHl10O and either plAneo (Franza et al., 1986) or pBluescript (Stratagene)

plasmid DNAs (15 and 5 gg/ml, respectively).

Immunoprecipitation

Monoclonal antibodies PAb419, PAb421, and M73 react with SV40 large

T antigen, p53, and Adenovirus ElA, respectively (Harlow et al., 1981; Harlow

et al., 1985). PAb240 reacts with most dominant-transforming forms of p53 but
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does not recognize wild-type p53 (Gannon et al., 1990). 13D2 reacts with the

p55EIB product and was obtained from Dr. Eileen White (Rutgers University).

Cellular proteins were labeled with 100 gCi/ml 35 S-Express protein labeling

mix (New England Nuclear) for either 4 or 18 hours in methionine-free

medium (Flow Labs) containing 5% dialyzed FBS. For 18 hour labelings, 5%

normal DME was included. Cell lysates were prepared (Hinds et al., 1987),

normalized to equivalent trichloroacetic acid precipitable counts (usually 2 x

107 cpm), and cleared of non-specific IgG binding proteins (Harlow et al., 1986).

p53, large T antigen, and E1B [Hinds, 1987 #58] and ElA proteins (Harlow et

al., 1986) were precipitated, fractionated on 10% SDS-polyacrylamide gels and

visualized by fluorography. Signal intensities were quantified using a

Molecular Dynamics PhosphorImager and ImageQuant software.

For pulse-chase experiments, 5 x 105 cells were seeded into 100 mm

dishes and allowed to adhere overnight. Dishes were washed twice with

phosphate-buffered saline (PBS) and incubated in the presence of

methionine-free medium for 2 hours. Cultures were pulse-labeled for 1 hr

with 200 gCi 35S-labeled amino acids, washed twice with PBS, and chased for

various times with normal growth medium supplemented with 10 mM

unlabeled methionine. At various intervals, cells were lysed and the amount

of labeled p53 was determined by immunoprecipitation as described above.

Immunofluorescence

For immunofluorescence experiments, cells were seeded on glass cover

slips at sub-confluent densities and allowed to adhere overnight. The cells

were washed twice with PBS and fixed in freshly prepared formaldehyde

solution (4% w/v paraformaldehyde and 0.4% v/v picric acid in PBS). After

15 minutes at room temperature, the fixed cells were washed in PBS,

permeablized in methanol-acetone (1:1) for 2 minutes, and washed again in
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PBS. To minimize non-specific staining, the cover slips were pre-incubated

in PBS containing 5% goat serum for 1 hour at room temperature. The

primary antibody (PAb421 hybridoma tissue culture supernatant diluted 1:10

in PBS-5% goat serum), was applied to the cover slips and the samples were

incubated for 2 hours at 370C. Subsequently, the cover slips were washed in

PBS and incubated with fluorescein isothiocyanate (FITC)-labeled goat anti-

mouse IgG (1:200 dilution in PBS-5% goat serum, Calbiochem) for 20 minutes

at 370C. Finally, the samples were washed extensively in PBS-0.2% Tween 20

and mounted in PBS-glycerol (1:3) containing 0.1% (w/v) p-

phenlyenediamine (Sigma). Control cultures were treated identically, except

the primary antibody was omitted. Transiently transfected cells were

analyzed in a similar manner except anti-[-galactosidase (Promega) and

mixtures of primary (PAb421, PAb248 and PAb246 for p53 or M58 and M73 for

E1A) and secondary (rhodamine-anti-rabbit IgG and fluoroscein-anti-mouse

IgG) antibodies were used.

Cell Viability

Cells were seeded at 3 x 104 cells/60 mm dish in 10% FCS or 0.5% CS.

At various times thereafter, floating and adherent cells were pooled and

viability was assessed by trypan blue exclusion. Fresh media was added 3.5

days after seeding. At least 200 cells were counted for each determination.

Degradation of genomic DNA was taken as evidence of cell death by

apoptosis. Cells were seeded at 2 x 105 cells/150 mm dish in 10% FCS or 0.5%

CS. After 3 days, genomic DNA was isolated from pools of floating and

adherent cells and analyzed by agarose gel (1%) electrophoresis.
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RESULTS

p53 levels are elevated in cell lines expressing adenovirus E1A

p53 expression was analyzed in REF52 clones following

immunoprecipitation using a broadly-reactive anti-p53 antibody (PAb421).

Cells expressing adenovirus E1A (Al) and cells transformed by T24 H-ras and

E1A (e.g. RNA7) expressed significantly more p53 than the parental cell line

(Figure 1A). On average, the p53 levels in ElA-expressing clones were 10-fold

higher than in REF52 cells, and were similar to the levels expressed in 293

cells, a human cell line expressing adenovirus E1A and E1B. In 293 cells, a

protein of approximately 55 kD co-immunoprecipitated with p53, indicating

that p53 was complexed to Ad5 p55E1B (Sarnow et al., 1982).

Steady-state levels of p53 are frequently elevated in naturally occurring

tumor cells and in oncogenically-transformed cell lines. In most cases, the

increase results from point mutations that stabilize the protein (Finlay et al.,

1988; Eliyahu et al., 1988; Hinds et al., 1989). Many, but not all, of the mutant

proteins share similar conformational alterations: they express an epitope

recognized by PAb240 (Gannon et al., 1990) and bind hsc70, a constitutively

expressed member of the heat shock family (Pinhasi-Kimhi et al., 1986). For

example, p53 from R53/4 cells (which express T24 H-ras and a mutant p53

gene, p53pro 193) complexed to a 70kD protein and was immunoprecipitated

with PAb240 (Figure 1). In contrast, the p53 expressed in REF52, RNA7, and

1A1 cells neither associated with hsc70 nor reacted with PAb240 (Figure 1A)

suggesting that the p53 was wild-type in conformation.

Increased p53 expression requires only the 12S E1A product

Differential splicing generates two ElA transcripts, designated 12S and

13S, which encode proteins of 243 and 289 amino acids, respectively.

Sequences required for oncogenic transformation in collaboration with
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Figure 1. p53 levels in REF52 cells expressing adenovirus E1A.
Cells were labeled for 4 hours. with 35 S-labeled amino acids and p53

was immunoprecipitated using either PAb421 (421) or PAb240 (240). The
immunoprecipitated proteins were separated on 10% SDS polyacrylamide gels
and visualized by fluorography. (A) p53 levels in cell lines expressing the
entire Ad5 ElA gene (next page). (B) p53 levels in cell lines infected with a
retrovirus expressing the 243R ElA protein, analyzed after minimal selection
in culture (less than 20 population doublings) (second page). REF52, a rat
embryo fibroblast line; R53/4, a REF52 clone transformed with T24 H-ras and
p53pro193; 293, a human adenovirus-transformed cell line; RNA7, REF52 cells
transformed by T24 H-ras and ElA; Al, a REF52 clone expressing Ad5 ElA;
LTR/6, REF52 clone expressing p53vall13 5; 12S1, 12S3, and 12S7, REF52 clones
expressing the 243R ElA protein. p53 and hsc70 are marked with arrows. The
mobility of molecular weight standards (in kilodaltons) are shown at the left
of each gel.

70



-- hsc70

-4p53

REF52
I I9

t C)

R53/4
r O
N -r
IR C4

293
- 0

Itr C1

RNA7
' I

C 
4 CM

1AI
-0

- C 4

.. - - -

A.

200-

rs_ I

68 

44

29-

m�----·-·IIC----------·llr;l--·-·�----· -

,.I

`I!



B. REF52 LTR/6 A1 12S1 12S3 12S7
r IO r r-O- ro .l ro

qT N t N t C T C T cl .
c N d 04 cr t cs v sq

1-hsc70

-- p53

200

97

68

44

29

-�---·----C -· -�0- ----



activated ras oncogenes are contained within the amino-terminal domain

shared by the 289R and 243R proteins (Ruley, 1990). Clones Al and RNA7

express both the 243R and 289R proteins (Franza et al., 1986). Therefore, to

determine whether the 243R protein was sufficient to increase p53 levels, a

12S cDNA was introduced into REF52 cells by retrovirus-mediated gene

transfer, and p53 expression was assessed immediately after a sufficient

number of cells were obtained for metabolic labeling (1 x 106 cells, obtained

after 20 population doublings). p53 levels in the 12S ElA-expressing cells

(clones 12S1, 12S3, and 12S7) were 10 times higher than the parental cell line

(Figure B), indicating that the 243R protein was sufficient for p53 induction.

Unlike p53val 135, none of the cellular p53s formed complexes with hsc70 or

reacted with PAb240.

Nuclear localization of p53 in E1A-expressing cells

The intracellular localization of p53 was examined by

immunofluorescent staining (Figure 2). The staining pattern in REF52 cells

was relatively weak, and predominantly nuclear. Moreover, most cells in the

population expressed similar levels of p53. Likewise, the p53 in cells

expressing the entire EIA gene, only 12S ElA, T24 H-ras and ElA, T24 H-ras

and 12S, ElA was predominantly nuclear. However, anti-p53 fluorescence

was considerably more intense and heterogeneous than in normal REF52

cells, suggesting that individual cells expressed variable levels of p53. Finally,

cells transformed by E1A and E1B also expressed high levels of p53, but the

protein localized within distinct perinuclear regions (Zantema et al., 1985).

Elevated p53 levels in cells transiently expressing E1A

p53 expression was monitored in primary mouse embryo fibroblasts by

immunofluorescent staining 36-40 hours after transferring EA genes by

DNA-mediated gene transfer (Figure 3). A P-galactosidase gene (pCH110) was
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Figure 2. Localization of p53 in E1A-expressing cells.
Cells were stained with PAb421 and FITC-labeled goat anti-mouse IgG.

(A, D) REF52 cells; (B, E) 1A1, clone expressing Ad5 ElA; (C, F) 12S1, clone
expressing a 243R EIA cDNA; (G, J) RNA9, clone transformed by ElA and T24
H-ras; (H, K) r12S-2, clone transformed by 12S ElA and T24 H-ras; (I, L)
1A1XX8, cell line derived following transfer of Ad5 E1B into Al cells.
Fluorescent images are shown above phase-contrast photomicrographs of the
same field.
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introduced together with either ElA or control plasmids, to identify cells that

had acquired exogenous DNA. The cells were stained with rabbit anti-3-

galactosidase antibody and with murine antibodies specific for either E1A or

p53, together with a mixture of anti-rabbit IgG (rhodamine) and anti-mouse

IgG (fluoroscein) secondary antibodies. Approximately 10% of the transfected

cells expressed both ElA and -galactosidase (Figure 3A & B), and of these, 25-

50% expressed discernibly higher levels of p53 (Figure 3C & D). In contrast,

higher levels of p53 were not induced in cells transfected with control

plasmids (e.g.. Bluescript) and pCH110 (Figure 3E & F). Occasional cells

which displayed anti-p53 fluorescence were present in both transfected and

untransfected cultures and did not stain with anti-[-galactosidase. Similar

results were also obtained following the transfer of ElA genes into REF52 and

NIH 3T3 cells (Figure 4), and high p53 levels were induced in HeLa cells

infected with adenovirus-5 mutants lacking early region B, as judged by

western blot analysis (Dr. Eileen White, personal communication). Thus, the

induction of p53 by ElA is rapid and occurs in a variety of cell types.

Binding of SV40 large T antigen to p53 in cells expressing E1A

Oncogenic p53 variants lose the ability to bind SV40 large T antigen

(Braithwaite et al., 1987; Wang et al., 1989). Various clones were infected by

retroviruses expressing SV40 large T antigen, and then analyzed for

complexes containing both p53 and large T antigen (Figure 5). As expected,

p53 levels in REF52 cells were elevated following the transfer of large T

antigen, and p53 was quantitatively precipitated by using antibodies against

large T antigen (PAb419). In contrast, introduction of SV40 large T antigen

into E1A-expressing cells (e.g.. clone lAl) had little additional effect on p53

levels, even though all of the p53 coprecipitated with large T antigen. Thus,

while SV40 large T antigen and E1A independently increase p53 levels,
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Figure 3. Induction of p53 following transient expression of E1A.
Primary mouse embryo fibroblasts were co-transfected with pCH 10

and either plAneo (A-D) or pBluescript (E, F). After 36-40 hours the cells
were incubated with a rabbit anti-3-galactosidase antibody and with murine
antibodies specific for either E1A or p53 and stained with a mixture of anti-
rabbit IgG (rhodamine) and anti-mouse IgG (fluoroscein) secondary
antibodies. Cells in the same field were photographed to show anti-5-
galactosidase fluorescence (A, C and E) and either anti-ElA (B) or anti-p53
fluorescence (D, F).
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Figure 4. Induction of p53 in 3T3 cells following introduction of E1A.
NIH 3T3 cells were transfected with either plAneo (A, C) or pBluescript

(B, D). Forty hours after transfection, cells were incubated with murine
monoclonal antibodies specific for either EA (A, B) or p53 (C, D) followed by
FITC-conjugated anti-mouse IgG. Photomicrographs are from representative
fields.
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Figure 5. Interactions between p53 and SV40 large T antigen in cells
expressing E1A .

A temperature-conditional SV40 large T antigen (tsA58) was
introduced into REF52 cells and clones expressing ElA. Cells were labeled for
4 hours with 100 gCi/ml 35S-labeled amino acids at 330C, and p53/T antigen
complexes were precipitated using monoclonal antibodies against p53
(PAb421) and large T antigen (PAb419). WSR1, REF52 clone transformed by
wild-type large T antigen and T24 H-ras; RNA7, clone transformed by T24 H-
ras and E1A; Al, AHy, and 1A3, clones expressing Ad5 ElA. REF/T,
RNA7/T, 1A1/T, 1AHy/T, and 1A3/T are cell populations derived from the
same clones following infection with a retrovirus vector expressing tsA58.
Bands corresponding to SV40 large T antigen (T) and p53 are indicated with
arrows. The mobility of molecular size markers are shown on the left.
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the effects are not additive. Moreover, the p53 stabilized by E1A appears to

maintain a wild-type conformation, capable of binding T antigen.

Binding of p55E1B to p53 in cells expressing E1A

These observations suggest that the elevated levels of p53 in

adenovirus-transformed cells might result largely, if not entirely, from E1A

expression. To examine whether E1B had any additional effect on p53 levels

or protein stability, cell lines expressing both ElA and E1B were constructed.

Plasmids encoding Ad5 ElA and Ad5 E1B were simultaneously introduced

into REF52 cells by co-transfection. Alternatively, E1B was introduced into

cells already expressing ElA (clone 1A1). Clones were isolated in hygromycin,

expanded, and analyzed after a limited number of passages.

p53 and p55E1B were independently immunoprecipitated from 35S-

methionine-labeled cell lysates. All clones expressing ElA and E1B contained

p53/p55ElB complexes, yet p53 levels were no higher than in cells expressing

ElA alone (Figure 6). A protein of approximately 155kD associated with the

p53_p55ElB complex in cells expressing both ElA and E1B. This protein co-

immunoprecipitated with antibodies to either p53 or p55E1B; therefore,

recovery of the 155 kD protein did not result from antibody crossreaction.

The 155 kD protein was not associated with p53 in REF52 cells or in cells

expressing ElA or T24 H-ras and EA, suggesting that the protein bound

specifically to p53/p55E 1B complexes.

Stabilization of p53 in cells expressing E1A

Levels of p53 gene transcripts and rates of protein turnover were

measured to determine the mechanism whereby p53 levels were increased.

As judged by northern blot analysis, ElA had no obvious effect on p53 gene

transcription. The levels of p53 transcripts in cells transformed with T24 H-

ras and E1A and cells expressing ElA or 12S ElA where comparable to those
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Figure 6. Interactions between p53 and p55E1B in cells expressing ElA.
Cells were labeled for 18 hours with 100 Ci/ml 35 S-labeled amino

acids, and p53/ p55E1B complexes were precipitated using PAb421 (421) and
13D2, an antibody to p55E 1B. AHy, clone expressing Ad5 ElA; 293, human
cells expressing Ad5 ElA and E1B; 1AXX3, 1AXX6, 1AXX7, clones derived
following co-transfection of ElA and E1B into REF52 cells; 1A1XX6, 1A1XX8;
cell lines derived from clone 1Al following introduction of E1B. The
mobilities of p53, p55E1B, and a co-precipitating 155kD protein are marked
with arrows, and the mobilities of molecular size markers are indicated at the
left.
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Figure 7. p 53 gene expression.
p53 transcripts were detected by northern blot analysis of total RNA

following separation on a 1% agarose gel. A 32P-labeled rat p53 cDNA
fragment was used as a probe. 1AHy and Al, REF52 cells containing Ad5
ElA; 12S1, 2, 3, 5, and 7, clones expressing a 12S EA cDNA; RNA7, cells
transformed by T24 H-ras and Ad5 E1A. The locations of the 28S and 18S
ribosomal RNAs are shown at the right.
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present in normal REF52 cells (Figure 7). Therefore, EA did not appear to

effect p53 transcription.

To examine p53 turnover, cells were labeled with 35S-methionine for 1

hour and chased with excess unlabeled methionine for various times and

levels of labeled p53 were monitored by immunoprecipitation.

Autoradiograms illustrating p53 turnover in representative clones are shown

in Figure 8. The half-life of p53 in the parental line was 20-30 minutes,

consistent with previously reported values for wild-type protein

(Gronostajski et al., 1984; Reich and Levine, 1984). In contrast, p53 in clones

expressing E1A were 5-10 times more stable, with half-lives exceeding 2

hours. Moreover, p53 half-lives in cells expressing ElA and those expressing

both ElA and E1B were not significantly different. This indicates that ElA is

responsible for the increased stability of p53 in at least some cells transformed

by human adenoviruses. However, we cannot exclude the possibility that

E1B has an independent (but non-additive) effect on p53 levels.

Elevated p53 levels require continuous E1A expression

E1A is selected against, such that clones transfected with ElA

expression plasmids frequently lose the gene during serial passaging unless

selection is maintained for a linked drug resistance gene or unless the cells

are transformed by a collaborating oncogene (e.g. ras or E1B). In the present

study, cells were allowed to lose ElA in order to study the association between

E1A expression and high p53 levels. Clone Al, derived from a neo resistant

colony following transfer of plAneo (Franza et al., 1986), was passaged twice

weekly in the absence of G418. The cells quickly (3 weeks, approximately 20

population doublings) lost the epithelial morphology characteristically

associated with E1A, and became indistinguishable from the parental cells

(Figure 9). Loss of ElA expression in the resulting cell population (designated
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Figure 8. Stabilization of p53 in cells expressing E1A.
Cells were incubated for 2 hours with media lacking methionine,

labeled for 1 hr with 100 gCi/ml 35 S-labeled amino acids, washed twice with
PBS and chased with excess unlabeled methionine. Cells were lysed at
various times, and p53 was immunoprecipitated using PAb421. 1Al and
1AHy, clones expressing Ad5 EA; 1AXX3, REF52 clones derived by co-
transfecting EA and E1B; 1A1XX8, cell line derived from lAl following
transfer of E1B.
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Figure 9. Morphology of revertant lAl cells.
Clone lAl was sub-cultured (1:8) every 3 days in the presence or

absence of G418. (A) normal REF52 cells, (B) 1Al cells after approximately 12
doublings in the absence of G418 (the field illustrates a mixed population of
REF52-like and lAl-like cells), (C) 1A1 cells maintained in G418.
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lAlrev) was demonstrated by immunoprecipitation using an ElA-specific

monoclonal antibody (Figure 10, right panel). Similarly, p53 levels in lAlrev

cells were 10-fold lower than the original Al clone, declining to the levels

observed in normal REF52 cells (Figure 10, left panel). These results indicate

that the stabilization of p53 requires continuous E1A expression.

Cells expressing E1A undergo apoptosis.

Recently, both EA and p53 have been shown to induce apoptosis

(Yonish-Rouach et al., 1991; Rao et al., 1992; White et al., 1992; Shaw et al.,

1992). We therefore examined ElA-expressing REF52 cells for signs of

apoptosis; namely, reduced viability of cells grown at high densities or in

media containing low serum and degradation of genomic DNA. Cultures of

E1A expressing cells contained significant numbers of dead cells when

maintained in 10% FBS, as judged by trypan blue dye exclusion (Figure 11A).

In contrast, the viability of either REF52 cells or cells transformed by E1A and

E1B was nearly 100%. The viability of cells transformed by T24 H-ras and E1A

was higher than cells expressing E1A alone, except that cell viability

frequently declined at high cell densities (not shown). Death of E1A-

expressing cells was particularly pronounced in media containing 0.5% calf

serum. Although E1B protected against the loss of cell viability associated

with E1A, T24 H-ras did not.

Genomic DNA was isolated from various clones 3 days after seeding in

media containing 10% FBS or 0.5% CS, and analyzed by agarose gel

electrophoresis. DNA from EA expressing clones generated a "ladder"

characteristic of internucleosomal cleavage Figure 11B). DNA degradation

was particularly pronounced when cells were maintained in low serum.

Cells transformed T24 H-ras and E1A also contained degraded DNA when
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Figure 10. Elevated p53 levels requires continuous E1A expression.
Cells were labeled for 18 hours with 35 S-labeled amino acids. p53 was

precipitated using either PAb421 (421) or PAb240 (240) and E1A polypeptides
were precipitated using a monoclonal antibody, M73. REF52, the parental rat
embryo fibroblast line; Al, REF52 cells expressing E1A and lAlrev, derived
by passaging 1A1 cells for approximately 20 population doublings (6 passages)
in the absence of G418 selection. Autoradiograms illustrating levels of p53
(left) and E1A (right) are shown. The mobilities of p53, E1A and molecular
size markers are indicated.
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Figure 11. ElA-induced apoptosis.
A. Cells (3 x 104 cells/60 mm dish) were seeded in 10% FCS (top) or

0.5% CS (bottom). At various times, the viability of floating and adherent
cells was assessed by trypan blue exclusion. Fresh media was added 3.5 days
after seeding. REF52 (triangle); Ad5 ElA (closed circle); 12S ElA (open circle);
T24 H-ras + ElA (closed circle); Ad5 ElA + Ad5 E1B (open square). Each point
represents the average from three independent cell clones. At least 200 cells
were counted for each determination.

B. Cells (2 x 105 cells/150 mm dish) were seeded in 10% FCS or 0.5% CS.
After 3 days, genomic DNA was isolated from both floating and adherent
cells, fractionated by agarose gel electrophoresis and stained with ethidium
bromide. REF52, parental line; 1AHy, clone expressing Ad5 ElA; RNA7,
clone transformed by T24 H-ras and ElA; AXX3, clone transformed by ElA
and E1B.
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cultured in low serum; whereas, no DNA degradation was observed in

normal REF52 cells or cells transformed by ElA and E1B.

DISCUSSION

E1A stabilizes p53 protein

The stabilization of p53 in cells transformed by adenovirus type 5 has

been thought to result from physical interactions with the p55 EIB tumor

antigen or from changes associated with oncogenic transformation.

However, the present study demonstrates that the metabolic stabilization of

p53 can occur in untransformed cells expressing ElA alone. Indeed, neither

transformation by ras nor binding of p55E1B or SV40 large T antigen extended

the half life of p53 above that observed in cells expressing ElA alone.

The mechanism whereby EA increases the half-life of p53 is

unknown. The effect is presumably indirect since the two proteins are not

known to interact physically (Egan et al., 1988; Whyte et al., 1989). Moreover,

the effects of SV40 large T antigen and EA on p53 turnover were not

additive. While the stabilized p53 was unaltered with regard to

electrophoretic mobility, subcellular localization or interactions with

monoclonal antibodies and viral tumor antigens, we cannot exclude the

possibility that p53 is modified in a manner that makes the protein less

susceptible to proteolytic degradation. Alternatively, E1A may affect pathways

involved in p53 turnover.

The levels of 53 have been measured in cells expressing different

segments of adenovirus early region 1, and have been correlated with the

levels of E1B (Zantema et al., 1985; Jochemsen et al., 1987; Mak et al., 1988; van

den Heuvel et al., 1990). Consequently, stabilization of p53 has been

attributed to interactions with p55E1B and or changes associated with
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transformation. However the correlation between p53 and E1B levels is

probably indirect, since ElA expression is typically much higher in cells

cotransfected with ElA and E1B than in cells transfected with E1A alone (van

den Elsen et al., 1983; Senear and Lewis, 1986; Jochemsen et al., 1987; Yoshida

et al., 1987). Both cis- and trans-acting effects of E1B on ElA transcription

have been reported (Natarajan, 1986; Herrman et al., 1987; Jochemsen et al.,

1987; Yoshida et al., 1987). The phenomenon may also reflect selection against

cells expressing higher levels of E1A in the absence of E1B (Figure 8).

Stabilized p53 is indistinguishable from wild-type p53

Although conformational changes may stabilize p53, several

observations indicate that the p53 induced by E1A is structurally wild-type

and therefore is biochemically competent to function as a tumor suppressor.

First, p53 levels were elevated in all clones expressing ElA, including those

analyzed soon after transfer of ElA. These included cells (primary mouse

embryo fibroblasts, mouse 3T3 cells and HeLa cells) known to contain only

wild type p53 genes. Second, the p53 was localized to the nucleus and did not

associate with hsc70 or react with PAb240. Third, all of the p53 was capable of

binding SV40 large T antigen. Fourth, p53 levels reverted to normal as cells

lost EA, whereas, it would be highly unlikely that the cells could

concomitantly lose mutant p53 genes. Finally, mutant p53 genes enable ras to

transform REF52 cells (Hicks et al., 1991), an unlikely interaction if the cells

already contain mutant p53.

Is p53 stabilization involved in ElA-associated apoptosis?

Recently, EA has been found to induce a cytotoxic phenotype

resembling apoptosis (White et al., 1991; White et al., 1992; Rao et al., 1992).

The phenomenon accounts for the DNA degradation (deg) and cytocidial (cyt)

phenotypes associated with adenovirus strains containing mutations in the
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19kD E1B protein and probably contributes to the enhanced sensitivity of E1A-

expressing cells to killing by tumor necrosis factor-a (TNF-ca). Thus, the 19kD

E1B and Bcl-2 proteins each protect cells from ElA-induced apoptosis, and

pl9E1B protects against killing by TNF-a. Similarly, a significant proportion of

REF52 cells expressing ElA are nonviable, such that the ElA gene is quickly

lost during serial passaging. Cell death is particularly pronounced in low

serum and is accompanied by DNA degradation, as is characteristic of cells

undergoing apoptosis.

Several observations suggest that p53 stabilization is involved in E1A-

induced apoptosis. First, both ElA and wild-type p53 induce apoptosis (White

et al., 1991; White et al., 1992; Rao et al., 1992; Yonish-Rouach et al., 1991;

Shaw et al., 1992). Second, p53 stabilized by EIA appears structurally wild-

type. Third, p53 levels revert to normal as cells lose ElA. Fourth, E1B

physically associates with p53 and allows cells to tolerate E1A. This also

suggests that the stabilization of p53 is not simply a consequence of DNA

degradation (Maltzman and Czyzyk, 1984; Kastan et al., 1991) or apoptosis.

Finally, in an accompanying report (Debbas and White, 1993), pl9E1B was

found to protect cells from p53-induced apoptosis while a dominant-negative

form of p53 (p53val1 35) allowed EIA to transform in the absence of E1B.

Myc, like ElA and dominant transforming forms of p53, can promote

the establishment of primary cells into permanent lines and transform

primary cells in collaboration with ras oncogenes (Ruley, 1990). While Myc

can also induce apoptosis (Evan et al., 1992), ElA activities involved in both

transformation and apoptosis in REF52 cells appear to be independent of c-

myc,. In particular, c-myc transcription is unaffected by ElA and (Kohl and

Ruley, 1987), and the levels of c-myc transcripts decline when cells expressing

E1A are exposed to conditions (low serum) that promote apoptosis (M.
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Ragozzino and H.E.R. unpublished). It will be important to test whether the

half-life of p53 changes during Myc-induced apoptosis.

ras oncogenes do not abolish E1A-associated apoptosis

It is perhaps significant that T24 H-ras did not completely protect

against ElA-induced apoptosis, even though ElA is not selectively lost from

cells co-transformed with T24 H-ras. Presumably, a selective advantage

provided by ras and/or transformation compensates for cell losses due to ElA.

Since cells transformed by ras and ElA are highly tumorigenic, escape from

apoptosis appears to be neither a prerequisite for, nor a consequence of,

oncogenic transformation in vitro.

Role of E1B in adenovirus transformation

Two region E1B proteins, p55E1B and p19E1B, separately collaborate with

ElA to transform cultured cells and contribute to the oncogenicity of human

adenoviruses (Bernards et al., 1986; Barker and Berk, 1987; White and

Cipriani, 1990). Both E1B proteins protect against the consequences of p53

stabilization. Binding of p55E1B blocks p53 functions (Yew and Berk, 1992) and

sequesters the protein from the nucleus (Zantema et al., 1985). p9ElB, and to

a lesser extent p55E1B, protect against ElA-induced apoptosis (White et al.,

1992; Rao et al., 1992) and pl9E1B protects against p53-induced apoptosis

(Debbas and White, 1993). Thus, an important, if not the primary, oncogenic

role of both E1B proteins is to counter cellular responses to EA (i.e.

stabilization of p53 and associated apoptosis) that preclude transformation by

E1A alone. This would also explain why no transforming activities have been

attributed to E1B in the absence of ElA (van den Elsen et al., 1983).

p53 stabilization may suppress transformation

In summary, p53 turnover can be regulated in response E1A. This

represents the first example of a physiological setting in which high levels of
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endogenous p53 are induced in response to an oncogenic challenge, with the

apparent consequence of suppressing transformation. Similarly, the

stabilization of native p53 and associated apoptosis may provide a defense

against the progression naturally occurring tumors in vivo.
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CHAPTER 3

Abrogation of oncogene-associated apoptosis allows transformation of

p53-deficient cells

This work is in press: Lowe, S. W., Jacks, T., Housman, D. E. & Ruley, H. E.
(1994) Proc Natl Acad Sci USA.
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INTRODUCTION

The p53 tumor suppressor is the most frequently mutated gene in

human tumors (Levine et al., 1991). Presently, the only model to account for

the action of p53 as a tumor suppressor views p53 as a "guardian of the

genome" (Kastan et al., 1992; Lane, 1992). According to this model, p53 is an

essential component of a DNA damage control system which, when

operating normally, reduces the likelihood that cells will sustain oncogenic

mutations. This view stems from the observations that p53 expression and

stability are induced in cells exposed to DNA-damaging agents (Kastan et al.,

1991), leading to either cell cycle arrest (which may facilitate DNA repair

(Kastan et al., 1992)) or cell death by apoptosis (Lowe et al., 1993b; Clarke et al.,

1993). Failure to activate p53 expression following DNA damage may account

for the high cancer incidence in individuals with ataxia-telangiectasia (Kastan

et al., 1991), and in mice lacking p53 (Lowe et al., 1993b).

Nevertheless, there are reasons to doubt that this indirect mechanism

is the only means by which p53 mutation contributes to cancer. First, loss of

p53 typically occurs late in tumor progression, after oncogenic mutations

have already occurred (Fearon and Vogelstein, 1990; Stretch et al., 1991;

Mazars et al., 1991; Yamada et al., 1991; Sidransky et al., 1992). Second, mutant

p53 alleles, which can inhibit normal p53 function (Vogelstein and Kinzler,

1992), enable ras oncogenes to transform both primary and established cells

(Hinds et al., 1989; Hicks et al., 1991). Transformed foci appear within days,

and stable transformation requires continuous expression of mutant p53

(Zambetti et al., 1992). Thus, p53 may directly influence both the initiation

and maintenance of transformed phenotypes. This view is supported by

studies concerning the transforming interactions between the adenovirus

early region 1A (ElA) gene and other oncogenes. Primary cells are not
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transformed by ElA alone, but are transformed to a tumorigenic state with

combinations of E1A and either adenovirus E1B or activated ras oncogenes

(Ruley, 1990). We recently demonstrated that p53 levels and stability increase

in response to EA, and suggested that stabilized p53 suppressed

transformation by enhancing apoptosis (Lowe and Ruley, 1993). Consistent

with this hypothesis, proteins that either block p53 transactivation

(adenovirus p55E1B and mutant p53) or protect against ElA-associated

apoptosis (adenovirus pl9EIB and mutant p53) can collaborate with ElA in

oncogenic transformation (Yew and Berk, 1992; Vogelstein and Kinzler, 1992;

Rao et al., 1992; Debbas and White, 1993).

Although suggestive, the evidence that p53 directly suppresses

oncogenic transformation is circumstantial, since it has not been possible to

assess the physiological activities of endogenous p53. While forced

overexpression of wild-type or mutant p53 can reveal the possible

consequences of activating or inactivating p53 function, the relevance of this

approach to circumstances in which endogenous p53 acts as a tumor

suppressor is unknown. Certainly, proteins not normally involved in cell

proliferation might suppress cell growth or viability when sufficiently

overexpressed. Furthermore, mutant p53 alleles can transform p53-deficient

cells, indicating they are not simply dominant-negative suppressors of wild-

type p53 (Dittmer et al., 1993).

In this study, transforming interactions between endogenous p53 and

transfected oncogenes were analyzed using embryonic fibroblasts derived

from mice carrying disrupted p53 genes. Since the recipient cells differed only

in their p53 status, differences between cellular responses to exogenous genes

could be unambiguously attributed to p53 function. Embryonic fibroblasts

also provide a well-characterized model of multistep carcinogenesis in which
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oncogenic transformation typically requires two or more oncogenes acting in

concert (Ruley, 1990). These studies indicate that p53 can directly suppress

oncogenic transformation by its involvement in apoptosis. Consequently,

p53 loss allows transformation of primary cells by a single oncogene.

METHODOLOGY

Cells, plasmids, and gene transfer

p53+ /1 , p53+ /' , and p53 1/ - mouse embryonic fibroblasts (MEFs) were

obtained from 12.5 day embryos derived from crosses between mice with a

disrupted p53 allele (T.J. and R. Weinberg, unpublished). Cells were cultured

in DME containing 10% fetal bovine serum (FBS), and used between passages

3 and 5. plAHygro contained the adenovirus-5 ElA gene (nucleotides 1-1834)

inserted into pY3 (expressing hygromycin phosphotransferase (Blochinger

and Diggelmann, 1984)). pT24neo encodes a ras oncogene (T24 H-ras) (Franza

et al., 1986) and p5XX encodes the entire E1B gene. pLTRKH215 and

pLTRcGala expressed a dominant-transforming p53 allele (p53KH215) and

mouse wild-type p53, respectively (Hinds et al., 1989). Stable lines expressing

E1A were generated by calcium phosphate precipitation (Franza et al., 1986)

using 1 g plAHygro and a 10-fold molar excess of pT24neo, p5XX,

pLTRKH215, or pLTRcGala. Alternatively, pY3 was used at an equivalent

molar amount to 1 g plAHygro. For each precipitation, the total mass of

DNA was adjusted to 20 gg using pBluescript. After transfection, cultures

were sub-cultured into medium containing either 100 gg/ml (p53-/- MEFs) or

15 gg/ml (p53+ / + and p53+ / - MEFs) Hygromycin B (Sigma), concentrations

which were determined empirically. After 2-3 weeks, isolated clones from

each transfection were expanded and colony numbers were estimated after

crystal violet staining.

106



Viability assays

EIA-expressing colonies are morphologically distinct from normal

MEFs, and display ElA-specific immunofluorescence staining (see below).

Three weeks after transfection, colonies were marked and transferred to

medium containing 0.1% FBS. Colonies were photographed at various times

and scored for regression after 72 hours. Alternatively, cell lines were seeded

at 1-2 x 106 cells/100mm plate, and subsequently transferred to medium

containing 0.1% FBS. At various times, adherent and non-adherent cells

were pooled for viability measurements by uptake of fluorescein

isothiocyanate (FITC) and flow cytometry (Shi, et al., 1990). Cells were

incubated in medium containing 40 mg/ml FITC for 15 minutes at 370 C.

Subsequently, cells were washed in PBS, and fixed in 5% formalin (v/v), and

analyzed by flow cytometry. At least 105 cells were analyzed for each

determination.

For analyzing DNA fragmentation, low molecular weight DNA was

purified from pools of adherent and non-adherent cells 24 hours after transfer

to 0.1% FBS. Cells were washed in phosphate buffered saline (PBS), and

resuspended in ice cold buffer containing 0.15M NaCl, 10mM Tris (pH 7.4), 2

mM MgCl 2, and mM DTT. Nonidet-P40 was added to a final concentration

of 0.5% (v/v) and the samples were incubated on ice for 30 minutes. Nuclei

were isolated by centrifugation, resuspended in buffer containing 0.35M NaCl,

10mM Tris (pH 7.4), 2mM MgCl 2, and lmM DTT, and incubated on ice for 15-

30 minutes. The nuclei were then removed by centrifugation, and the

supernatant was extracted with phenol and chloroform. The low molecular

weight DNA was recovered by ethanol precipitation. Samples were

resuspended in 20 pgl Tris-EDTA and treated with RNase A for 30 minutes

prior to electrophoresis on 1% agarose gels.
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p53 expression and cell cycle analysis

E1A, p53, and 5-galactosidase-specific immunofluorescent staining was

performed described in Chapter 2. p 53 half-life was estimated by p53

immunoprecipitation of 35S-labeled cell lysates as described in Chapter 2.

Western blot analysis was performed using lysates derived from 106 cells of

each sample. For each sample, cells were washed in PBS and lysed in

Laemmli buffer (Harlow and Lane, 1988). The proteins were separated on

7.5% SDS-polyacrylamide gels and transferred to PVDF membranes

(Millipore). Membranes were blocked and probed with a pool of p53-specific

monoclonal antibodies (PAb421, PAb240, and PAb248) (Yewdell et al., 1986;

Gannon et al., 1990). p53 was detected using an alkaline phosphatase-

conjugated secondary antibody and a chemiluminescent substrate ((Haldi and

Guarente, 1989; Isaacs et al., 1991); Lumi-Phos 530, Boehringer-Mannheim)).

Cell cycle analysis

For cell cycle analysis, cells were plated at 1-2 x 106 cells/100mm dish

and were incubated with 5-bromo-2'-deoxyuridine (BrdU) for 4 hours,

beginning 14 hours after transfer to 0.5% FBS. Subsequently, cultures were

washed to remove dead cells, and the adherent cells were collected after

treatment with trypsin and prepared for flow cytometry (van Erp et al., 1988).

The cells were washed in PBS and fixed in 70% ethanol for 30 minutes at

-20°C. Subsequently, the cells were centrifuged, resuspended in 1 ml of 0.2

mg/ml pepsin (Sigma) in 2N HC1, and incubated for 30 minutes at room

temperature. After neutralizing the samples with 3 ml 0.1M Na2B 40 7, the cells

were washed with PBS followed by PBS supplemented with 0.5% Tween20

and 2% FBS (PTS). The cells were resuspended in 100 gl of PTS containing 5

gl of an FITC-conjugated anti-BrdU antibody (Boehringer Mannheim) and

incubated for 30 minutes at room temperature. The cells were then washed
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with PTS, resuspended in 0.5 ml PTS containing 0.5 mg/ml RNase A and 50

gg/ml propidium iodide (Calbiochem), and incubated for at least 30 minutes

at room temperature. All samples were passed though 70 gm mesh prior to

FACS analysis. FACS analysis was performed on a FACStar Plus (Becton

Dickinson) flow cytometer. The percentage of cells in each phase of the cell

cycle (at the end of the BrdU labeling period) was estimated using the

MODFIT program (Verity Software House). The co-efficient of variance for

each fit was usually less than 5%. The percentage of cells incorporating BrdU

during the 4 hour pulse was estimated from the log red fluorescence and log

green fluorescence plot using the disp2D program (Becton Dickinson).

Tumorigenicity experiments

Tumorigenic potential was measured by the ability of cells to form

progressive tumors in athymic nude mice. To avoid selection for a

transformed phenotype, hygromycin-resistant clones were expanded

minimally prior to injection. 4-6 week male nude mice (Swiss nu/nu,

Taconic) were injected with 2 x 106 cells and monitored for tumors at the

injection sites for approximately 9 months. Tumors were scored positive

when they became clearly visible (-2mm diameter).

RESULTS

Introduction of E1A into p53+/+, p53 /-, and p53' /' mouse embryo fibroblasts

Both E1A and mutant p53 alleles facilitate immortalization of primary

cells in culture (Houweling et al., 1980; Jenkins et al., 1984). As an initial step

in analyzing interactions between E1A and endogenous p53, we compared the

ability of E1A (alone, or with other oncogenes) to promote clonal outgrowth.

E1A was introduced into p53+/+, p53 / ', and p53-/- MEFs using plAHygro, a

plasmid that co-expresses adenovirus-5 E1A and hygromycin

109

--~~~~~~~~~~~~~~~~~~~ -- -



phosphotransferase. Thus, colonies arising in hygromycin B had a high

probability of expressing E1A. ElA-specific immunofluorescence of a

representative hygromycin B-resistant colony is shown in Figure 1. A

plasmid expressing only hygromycin phosphotransferase (pY3) was used to

assess the effects of endogenous p53 genes on clonal outgrowth. While p53+ /+

and p53+ /' MEFs transfected with pY3 produced very few colonies (3 and

22/106 cells, respectively), p53-/- MEFs generated many colonies (466/106 cells)

(Figure 2). Thus, the absence of endogenous p53 resulted in efficient clonal

outgrowth.

The ability of E1A to produce colonies correlated with p53 dosage. E1A

was inefficient at promoting clonal outgrowth in p53+ / + MEFs; transfection of

plAHygro averaged only 8 colonies/106 cells (Figure 2A). A 5-10 fold increase

in colonies was obtained when plAHygro was co-transfected with plasmids

expressing either adenovirus-5 E1B, T24 H-ras, or a mutant p53 allele. p53+ /'

MEFs express less p53 than wild-type MEFs (Livingstone et al., 1992), and

transfection of plAHygro into p53+ / cells produced many more colonies than

in p53+ /+ MEFs (254/106 cells). Still, colony numbers increased approximately

two-fold when ElA was co-introduced with either E1B, T24 H-ras, or mutant

p53 (Figure B). Transfection of plAHygro into p53/1 MEFs generated as

many colonies as any oncogene combination (526/106 cells). Wild-type p53

significantly reduced colony numbers in p53 / - MEFs (Figure 2C), and of those

that did emerge and were analyzed, none (0/3) expressed detectable p53

immunofluorescence (not shown). Since endogenous p53 levels are

increased in response to E1A (Lowe and Ruley, 1993) and p53 overexpression

causes either growth arrest or apoptosis (Levine et al., 1991; Yonish-Rouach et

al., 1991), the increase in p53 levels that accompanies E1A expression may

suppress clonal outgrowth.
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Figure 1. EA-specific immunofluorescence of cells transfected with
plAHygro following selection in Hygromycin B.

plAHygro was introduced into p53+/+ MEFs and ElA-expressing
colonies were selected in hygromycin B. Approximately 3 weeks later,
colonies were analyzed for ElA-expression by immunofluorescent staining.
Top, phase contrast photomicrograph of a representative colony; bottom,
ElA-specific immunofluorescence of the same field.
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Figure 2. Introduction of exogenous genes into MEFs.
Transfection of various plasmids into (A) p53+/+, (B) p53+/-, and (C)

p53-/- embryonic fibroblasts (106 cells/transfection). The transfected
plasmid(s) expressed the following: column 1, hygromycin
phosphotransferase; 2, ElA; 3, ElA and E1B; 4, E1A and T24 H-ras; 5, ElA and
a mutant p53; 6, ElA and wild-type p 53; and 7, no DNA. The ElA expression
vector (plAHygro) co-expressed the adenovirus-5 EIA gene and hygromycin
phosphotransferase, allowing isolation of ElA-expressing colonies in
medium containing hygromycin B. Colony numbers were estimated
approximately 2 weeks after transfection. The values represent the average
and standard deviation determined from at least 3 transfections.

Attempts to expand ElA-expressing colonies into stable cell lines

revealed striking differences among fibroblasts of the three genotypes. Most

p53-/- colonies expressing ElA (12 of 15) or hygromycin phosphotransferase (3

of 4) were established into permanent lines. By contrast, ElA-expressing

colonies derived from p53+ /+ MEFs rarely reached a size suitable for transfer

(500-1000 cells), and none (0/3) could be established. p53+/ + colonies were

established when ElA was co-expressed with either E1B (5/6), T24 H-ras

(6/10), or mutant p53 (9/16). Although many colonies of ElA-expressing

p53+/- MEFs were obtained (see Figure 1B), only one clone (1/10) produced a
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Figure 3. p53-immunoprecipitation of clone 1A.B1.
Clone 1A.B1 was incubated with 100 gCi/ml 35S-labeled methionine for

2 hours. Immunoprecipitations were performed on cell lysates using a p53-
specific (p53; PAb421) and control (M; PAb240) antibody as described in
Chapter 2. Immunoprecipitations from untransfected p53+/- and p53-/- MEFs,
and a p53+/- clone co-expressing ElA and T24 H-ras (which was readily
established into a permanent line) are shown for comparison.

114

_ _ I �I_ I __�__� __�__�I__



W r

Q 1

LLr%OW X

-LI C 
LL 11 Z

I
fl

·a�illlsCII-rsr�-P·l-·--�-D------��



permanent line. Immunoprecipitation analysis indicated this clone did not

express p53 (Figure 3). Therefore, in the absence of other oncogenes, the

combination of ElA and endogenous p53 was incompatible with long term

growth.

p53-dependent death of cells expressing E1A

ElA can induce apoptosis, particularly following serum depletion, and

E1B inhibits apoptosis (Rao et al., 1992; Lowe and Ruley, 1993). Since ElA

increases p53 levels (Lowe and Ruley, 1993) and p53 is necessary for some

forms of apoptosis (Lowe et al., 1993b; Clarke et al., 1993), we tested whether

p53 was required for ElA-associated cell death. Although stable lines co-

expressing ElA and endogenous p53 were not established, the availability of

unexpanded colonies provided a means to analyze the effects of ElA on cell

viability. Therefore, ElA-expressing colonies (with or without E1B) were

marked, transferred to medium containing 0.1% fetal bovine serum (FBS),

and inspected for growth or regression. Although the untransfected

fibroblasts remained viable in 0.1% FBS (Figure 4), the majority of p53+/+ and

p53+/' colonies expressing ElA completely regressed by 72 hours after serum

withdrawal (8/8 and 23/25 colonies regressed, respectively; illustrated in

Figure 5). In contrast, p53- / colonies remained viable in 0.1% FBS (2/25

colonies regressed) and many continued to grow. Although E1B enhanced

the viability of p53+/ colonies expressing ElA in 0.1% FBS, the increase was

less than the effect of p53 absence (6/12 colonies regressed). Therefore, p53

deficiency substituted for E1B in suppressing ElA-associated cell death.

Because multiple clones were analyzed prior to significant growth in culture,

resistance to death was not due to genetic alterations occurring upon clonal

expansion.
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Figure 4. Viability of untransfected MEFs in 0.1% FBS.
p53+/+ (closed circles) and p53-/- (open circles) MEFs were transferred to

medium containing 0.1% FBS. At the indicated times, cell viability was
determined from pools of adherent and non-adherent cells by the trypan blue
exclusion method. At least 200 cells were counted for each determination.

ras oncogenes do not inhibit p53-dependent apoptosis

Like E1B, T24 H-ras allowed establishment of ElA-expressing colonies

containing endogenous p53. To test whether T24 H-ras also prevented p53-

dependent cell death, cell lines expressing ElA were transferred to medium

containing 0.1% fetal bovine serum (FBS) and cell viability was measured by

flow cytometry (see representative data in Figure 6) at various times

thereafter (Figure 7). While all cells remained viable in 10% FBS, p53+/ + cells

co-expressing E1A and T24 H-ras died rapidly in 0.1% FBS. p53+/ - cells co-

expressing E1A and T24 H-ras also died in 0.1% FBS, but less rapidly than

wild-type cells. In contrast, all p53-/- lines remained viable in low serum, as

did p53 / + cells co-expressing E1A and E1B. Cells undergoing apoptosis

typically activate an endonuclease that cleaves between nucleosomes,

resulting in degradation of genomic DNA (Wyllie, 1980). p53+/ + cells co-
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Figure 5. Regression of ElA-expressing colonies upon serum depletion.
plAHygro was introduced into p53+ /+ (+/+), p53+ / - (+/-), and p53-/ - (-/-)

MEFs and colonies were isolated by selection in hygromycin B. After 3 weeks,
E1A-expressing colonies were marked and photographed at the indicated
times following transfer to medium containing 0.1% FBS (without
hygromycin B).
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Figure 6. Analysis of cell viability by uptake of FITC and flow cytometry.
Adherent and non-adherent cells were pooled, incubated with FITC,

and analyzed by flow cytometry. Quantitation was performed using Coulter
software. (A) untreated MEFs co-expressing EIA and T24 H-ras (5% non-
viable); (B) MEFs co-expressing ElA and T24 H-ras 72 hours after transfer to
0.1% FBS (89% non-viable).

expressing EIA and T24 H-ras contained large amounts of degraded DNA

after transfer to 0.1% FBS, whereas cells lacking p53 or expressing E1B did not

(Figure 8). The degraded DNA was present in multiples of approximately 180-

200 base pairs, consistent with internucleosomal DNA cleavage and cell death

by apoptosis.

p53 expression and cell proliferation during apoptosis

Wild-type cells co-expressing ElA and T24 H-ras contained elevated p53

levels, resulting from a 5-10 fold increase in protein stability (Figure 9A). The

increase was probably due to ElA effects, since transient introduction of ElA

(but not T24 H-ras) increased p53 levels (Figure 10). Interestingly, p53 levels

in cells co-expressing ElA and T24 H-ras were higher than MEFs treated with

5 Gy ionizing radiation (a treatment that also stabilizes p53 (Kastan et al.,

1991)) (Figure 9B). However, p53 levels did not increase further upon transfer

to 0.1% FBS, indicating that high p53 levels were not sufficient for apoptosis.

Since EA sequences required for apoptosis are identical to those

required for induction of DNA synthesis (White et al., 1991), we tested
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Figure 7. Viability of cell lines upon serum withdrawal.
Viability of cells expressing ElA (A), ElA and T24 H-ras (B), and E1A

and E1B (C) in media containing either 10% FBS (closed symbols) or 0.1% FBS
(open symbols) was measured by uptake of FITC and flow cytometry. Cell
lines were derived from p53 /' (squares), p53+/ - (triangles), and p53+/ + (circles)
MEFs. Each values represents the average and standard deviation obtained
from at least 3 independent clones, and were normalized to the percentage of
viable cells in each population at the start of the experiment (generally >90%).

whether p53-dependent apoptosis might be triggered by unscheduled

proliferation. p53+ / + and p53-/ - MEFs and their ElA-expressing derivatives

were incubated with 5-bromo-2'-deoxyuridine (BrdU) for 4 hours beginning

14 hours after transfer to medium containing 0.5% FBS. Cells were analyzed

for DNA content (by propidium iodide staining) and DNA synthesis (by BrdU

incorporation) using multiparameter flow cytometry. These data are

illustrated in Figure 11 and summarized in Table 1. p53+ / + MEFs arrested

rapidly upon serum withdrawal (Figure 11A, B), although p53 /' fibroblasts

exited the cell cycle more slowly (Figure 11 C, D). In 0.1% FBS, cells expressing

ElA continued to proliferate with no reduction in BrdU-positive cells, even

though many p53+ / + cells had initiated apoptosis (compare Figure 11B and

11F). Although these results do not distinguish between the effects of E1A or

T24 H-ras, cells that tolerate E1A expression alone also proliferate after serum
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Figure 8. Analysis of low molecular weight DNA from cells incubated in
0.1% FBS.

Low molecular weight DNA was isolated from 2 x 106 cells 24 hours
after transfer to 0.1% FBS. DNA was resolved on 1% agarose gels and
visualized by ethidium bromide staining. Since samples were normalized by
cell number, viable cells contained almost no low molecular weight DNA.
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Figure 9. p53 expression in cells co-expressing E1A and T24 H-ras during
apoptosis.

A) Cells were incubated for 2 hours with methionine-deficient
medium, labeled for 1 hr with 100 gCi/ml 35 S-labeled amino acids, and chased
with excess unlabeled methionine. At various times, cells were lysed and p53
was immunoprecipitated using PAb421. p53 half-life was estimated following
quantitation of the p53 signal by phosphorimager. The p53 half-life was
approximately 0.5 hours in untransfected MEFs and 4-5 hours in cells co-
expressing E1A and T24 H-ras.

B) p53 levels were estimated by western blot using cell lysates derived
from 106 cells. Lane 1, p53-/- MEFs; lane 2, p53+/+ MEFs; lane 3, p53+/+ MEFs 8
hours following exposure to 5 grays ionizing radiation; lanes 4 and 5,
untreated p53+/+ cells co-expressing ElA and T24 H-ras; lanes 6-8, p53+/+ cells
co-expressing E1A and T24 H-ras at 1, 4, and 8 hours (respectively) after
transfer to 0.1% FBS.
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Figure 10. p53 expression following transient transfection of E1A, T24 H-ras,
and hygromycin phosphotransferase.

Primary mouse embryo fibroblasts were co-transfected with pCH110
and either plasmids expressing ElA (A, B), T24 H-ras (C, D) or hygromycin
phosphotransferase (E, F). After 36-40 hours the cells were incubated with a
rabbit anti-p-galactosidase antibody and with murine antibodies specific for
either ElA (A, C, E) or p53 (B, D, F). Coverslips were subsequently stained
with a mixture of anti-rabbit IgG (rhodamine) and anti-mouse IgG
(fluoroscein) secondary antibodies. Anti-p-galactosidase fluorescence and
anti-p53 fluorescence in are from the same field (compare A and B, C and D, E
and F, respectively).
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Figure 11. Cell cycle analysis by flow cytometry.

p53+/+ (A, B) and p53-/- (C, D) MEFs, or p53+/+ (E, F) and p53-/- (G, H)
cell lines co-expressing ElA and T24 H-ras were incubated in either 10% FBS
(A, C, E, and G) or 0.5% FBS (B, D, F, and H). 14 hours later, cells were
incubated in BrdU for 4 hours, and cell proliferation was assessed by DNA
content (propidium iodide staining) and incorporation of BrdU (using a FITC-
anti-BrdU antibody) by flow cytometry.
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Table 1. Cell cycle progression following serum depletion.
Cell Type Percent of Total

Treatment Genes p53 GO/G1 S G2/M % BrdU
none none +/+ 61+/-3 17+/4 22+/-5 28+14

none -/- 40+/-5 21+/-9 39+/4 46+/-13
E1A+ras +/+ 34+/-3 47+/-3 19+/-1 74+/-1

E1A -/- 27+/-1 52+/-2 21+/-2 79+/-1
E1A + ras -/- 23+/-2 62+/-2 15+/-0 89+/-2

0.5% FBS none +/+ 77+/4 3+/-1 20+/-4 5+/-3
none -/- 52+/4 9+/-1 40+/-6 19+/-1

E1A+ras +/+ 34+/-0 40+/-2 26+/-1 69+/-2
E1A -/- 30+/-3 52+/-3 18+/-2 74+/-2

E1A + ras -/- 27+/4 57+/4 15+/-1 86+/-3

Untransfected MEFs and various ElA-expressing clones were transferred to
medium containing 0.5% FBS and incubated with BrdU as described in
Methodology. Cellular proliferation was assessed by DNA content
(propidium iodide staining) and incorporation of BrdU (using a FITC-anti-
BrdU antibody) by multiparameter flow cytometry. The percentage of cells in
each phase of the cell cycle was estimated by computer analysis of the
propidium iodide fluorescence. The percentage of cells synthesizing DNA
during the 4 hour pulse was estimated from the amount of BrdU
incorporation. The data represent the average and standard deviation from 3
independent experiments.

withdrawal, suggesting that ElA is sufficient to circumvent growth arrest (M.

Raggozino and H.E.R., unpublished observations). Therefore, p53-dependent

apoptosis coincided with continued cell cycle progression under conditions

that would normally suppress cell growth.

p53-deficient cells expressing E1A are tumorigenic

Since apoptosis provides a mechanism whereby p53 can act as a tumor

suppressor (Yonish-Rouach et al., 1991; Lowe et al., 1993b; Clarke et al., 1993),

we investigated whether reduced susceptibility to apoptosis would increase

tumorigenic potential. Nude mice were injected with p53+ /+ and p53-/ - cells

and monitored for tumors at the sites of injection (Table 2). p53- / - cells

expressing E1A were tumorigenic, with latency periods similar to p53+ /+ cells
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Table 2. Tumorigenicity of E!A-expressing cells

p53 genotype

(-/-) (+/+)
Genesa clone frequencyb latencyC clone frequencyb latencyC
none MEF 0/4 NA MEF 0/4 NA
Hygro 3 0/4 NA

6 0/4 NA
ElA 1 2/4 194

3 2/4 136
4 1/4 133
6 3/4 144

E1A/E1B 2 3/4 117 4 0/4 NA
4 2/4 117 5 2/4 125
6 3/4 140 6 0/2 NA

E1A/ras 6 4/4 8 1 4/4 14
8 4/4 6 2 3/4 16
9 3/4 8 3 4/6 21

aexogenous genes introduced into MEFs. bnumber of tumors/number of sites
injected. Cnumber of days from injection of cells to tumor detection. Clones
derived from p53+ / + (+/+) or p53' / - (-/-) MEFs or untransfected cells were
introduced into athymic nude mice (2 x 106 cells) and monitored for tumors
at the sites of injection. Tumors were scored positive when they became
clearly visible (-2 mm diameter).

co-expressing ElA and E1B. Untransfected MEFs and p53 ' /- MEFs expressing

only hygromycin phosphotransferase were not tumorigenic, indicating that

tumorigenicity required ElA. Because all clones were derived from drug-

resistant colonies, no prior selection for a transformed phenotype was

imposed. Therefore, abrogation of p53-dependent apoptosis permits

transformation of MEFs by ElA alone, and the absence of p53 substituted for

E1B in transformation.

The latency of tumors derived from p53- /' cells co-expressing ElA and

T24 H-ras was significantly less than tumors derived from wild-type cells

(Table 2). Nevertheless, endogenous p53 did not abolish the tumorigenicity

of cells co-expressing ElA and T24 H-ras; tumors appeared after approximately
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Figure 12. Viability of tumor cells following serum withdrawal.
Cells derived from a p53+/+ MEFs tumor co-expressing ElA and T24 H-

ras (clone 1AR.C3) were dispersed with trypsin and re-established in culture.
Subsequently, cells were either maintained in 10% FBS (closed circles) or
transferred to medium containing 0.1% FBS (open circles). Viability was
measured by trypan blue exclusion at various times thereafter. Circle, clone
1AR.C3; triangles, tumor cells derived from clone 1AR.C3; squares, clone
1AR.A8 (p53-/- line co-expressing ElA and T24 H-ras).

2 weeks. Since wild-type cells transformed by ElA and T24 H-ras were

sensitive to apoptosis in vitro yet highly tumorigenic, it was possible that

tumors arose from resistant variants. To test this possibility, tumor cells

derived from a p53+ /+ clone co-expressing E1A and T24 H-ras were re-

established in culture, and transferred to medium containing either 10% or

0.1% FBS. The tumor-derived cells lost viability as rapidly as the original

clone, indicating that tumorigenicity did not result from mutations that

suppressed apoptosis (Figure 12). These observations indicate that escape

from apoptosis is not a prerequisite for either transformation or tumor

growth.
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DISCUSSION

Direct suppression of transformation by p53

The present study establishes a direct mechanism of tumor suppression

in which p53 participates in the destruction of aberrantly growing cells by

apoptosis. We show that p53 levels and stability increase in response to ElA,

p53 is required for ElA-associated apoptosis, and p53 suppresses oncogenic

transformation by ElA. This mechanism of tumor suppression suggests that

p53 mutations, which typically occur late in tumor progression (Fearon and

Vogelstein, 1990; Stretch et al., 1991; Mazars et al., 1991; Yamada et al., 1991;

Sidransky et al., 1992), could enhance the survival of cells expressing

oncogenes activated early in tumor progression. p53 loss may also increase

the likelihood that cells acquire oncogenic mutations by allowing

inappropriate cell proliferation following DNA damage (Kastan et al., 1992).

In either case, p53 action is required to protect the organism from the

deleterious consequences of genetic damage.

The effects of p53-deficiency on the cell growth and survival were

surprisingly dose-dependent. Thus, p53+/ - cells transfected with either ElA or

E1A and T24 H-ras formed almost as many colonies as the p53 /' cells, and

p53+/ - cells transformed by ras and ElA displayed an intermediate level of

resistance to apoptosis. These observations imply that mutations leading to

partial loss of p53 functions could allow the growth of expanded cell

populations from which p53-deficient variants might arise.

Immortalization by p53 loss or E1A

Adenovirus EA and mutant p53 alleles facilitate the immortalization

of primary cells (Houweling et al., 1980; Jenkins et al., 1984; Harvey and

Levine, 1991). In this study, p53-deficiency had a greater effect on the growth

potential of embryonic fibroblasts than any of the oncogenes tested, suggesting
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that p53 loss may be sufficient for immortalization. By contrast, while ElA

promotes colony outgrowth, the establishment of permanent cell lines

appears to require additional genetic changes (Zerler et al., 1986). Our results

indicate that p53 loss and escape from ElA-associated apoptosis contributes to

immortalization by EIA.

Role of E1B in adenovirus transformation

Two region E1B products, p55E1B and p9E1B, separately collaborate

with E1A to transform cultured cells (Bernards et al., 1986). We show in this

study that p53 loss and E1B have equivalent effects on cell growth, survival,

and transformation. Thus, the primary role of E1B is to bypass ElA-induced

p53 stabilization, which precludes transformation by E1A alone. Two E1B-

encoded proteins are involved, since p55E1B binds p53 and p19E 1B prevents

apoptosis upon p53 overexpression (Rao et al., 1992; Debbas and White, 1993).

p53 stabilization may "prime" cells for apoptosis

Although ElA-associated apoptosis occurs during normal propagation

of cells, cell death is greatly enhanced upon removal of growth factors.

Similarly, myc-expressing fibroblasts lose viability when exposed to

environmental conditions that normally limit proliferation (Evan et al.,

1992). It has been suggested that myc "primes" cells for apoptosis; thus, myc-

expressing cells are able to immediately execute the apoptotic program while

normal cells are not (Wyllie, 1993). However, the ultimate fate of the cell--

proliferation or apoptosis--is determined by environmental signals. We

suggest that p53 stabilization is part of one mechanism whereby oncogenes

prime cells for apoptosis.

Elevated p53 levels are probably necessary for suppressor activity, since

p53 is normally expressed at low levels without adversely affecting cell

growth or survival (Levine, et al., 1991). However, p53 stabilization is not

133



sufficient for apoptosis, since exposure of normal cells to ionizing radiation

also stabilizes p53 but induces growth arrest without apoptosis (Kastan et al.,

1992). EA promotes proliferation despite high p53 levels, suggesting that

E1A prevents p53-dependent growth arrest. Similarly, failure of E1A-

expressing cells to undergo p53-dependent growth arrest following y-

irradiation accompanies apoptosis (Lowe et al., 1993a). Thus, stimuli that

normally limit proliferation instead induce apoptosis in cells unable to

respond appropriately due to the expression of an oncogene. In this manner,

p53 could function as part of a general mechanism to selectively destroy

aberrantly growing cells.

Apoptosis as a mechanism of tumor suppression

The present study demonstrates that tumorigenicity can be significantly

enhanced by genetic changes that promote cell survival. A similar

mechanism accounts for co-transformation by myc and bcl-2 (Bissonnette et

al., 1992; Fanidi et al., 1992). While the involvement of p53 in myc-associated

apoptosis has not been examined, both activation and escape from apoptosis

appear to be of fundamental importance to multistep carcinogenesis and

tumor progression. In contrast, cells transformed by ElA and T24 H-ras are

highly tumorigenic yet remain sensitive to apoptosis, even when passaged as

tumors and placed back in culture. Therefore, escape from apoptosis is

neither a prerequisite for, nor a consequence of, oncogenic transformation.

This is perhaps not surprising since apoptosis is a common feature of

malignant tumors (Wyllie, 1985).

We suggest that cells can acquire tumorigenic phenotypes by various

routes which alter the balance of growth, differentiation and survival in

different ways. Oncogenes such as p19E1B and bcl-2 block apoptosis directly,

whereas the enhanced growth rate of ras-transformed cells may simply
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compensate for cell losses due to apoptosis. ras co-transformation may also

protect cells from environmental conditions that trigger apoptosis, for

example, through the production of autocrine growth factors. In either case,

tumor growth can occur while the cells remain genotypically susceptible to

apoptosis. This may be a factor in limiting tumor progression and metastatic

spread and, as described elsewhere, appears to modulate the cytotoxicity of

anticancer agents (Lowe et al., 1993a).
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CHAPTER 4

p53-dependent apoptosis modulates the cytotoxicity of

anticancer agents

This work is published: Lowe, S. W., Ruley, H. E., Jacks, T. & Housman, D. E.
(1993) Cell 74, 957-967.
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INTRODUCTION

Both radiation and chemotherapy have had a significant impact on the

treatment of cancer. A major impediment to successful therapy, however, is

the failure of some tumor types to respond to either form of treatment and

the appearance of resistant cell populations upon relapse of an originally

responsive malignancy. Consequently, the underlying basis of cellular

resistance to anticancer agents has been the focus of much experimental

study. In general, these investigations have examined how

chemotherapeutic agents reach their intracellular targets or the molecular

nature of the drug-target interaction (Chin et al., 1993; Chabner and Myers,

1989). For example, high levels of expression of the mdr-l gene have been

shown to limit the intracellular concentration of various chemotherapeutic

compounds and may contribute to multidrug resistance (Chin et al., 1993).

A more complete understanding of cellular resistance to cancer therapy

may require the elucidation of the mechanisms by which anticancer agents

cause cell death. Since ionizing radiation and many chemotherapeutic agents

induce DNA damage or cause disruptions in DNA metabolism, the tumor-

specific cytotoxicity of these agents has been attributed to their genotoxic effect

on actively proliferating cells. However, in many cases, the cellular damage

caused by active doses of these agents is not sufficient to explain the observed

toxicity (Dive and Hickman, 1991; Chabner and Myers, 1989).

In recent years, the exploration and understanding of the process of

programmed cell death, or apoptosis, has forced a reconsideration of the

mechanism whereby tumor cells can acquire or lose sensitivity to cytotoxic

treatments. Apoptosis has been described as "physiological" cell death, since

it is a genetically determined cellular program essential for normal

development and maintenance of tissue homeostasis (Raff, 1992). Cells
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undergoing apoptosis display shrinkage, loss of cell-cell contact, chromatin

condensation, and internucleosomal degradation of DNA (Wyllie, 1980).

Many toxic stimuli have been shown to induce apoptosis, even at doses or

concentrations insufficient to cause general metabolic dysfunction (Lennon et

al., 1991; Dive and Hickman, 1991). These results suggest that divergent types

of cellular damage may lead to the generation of a common signal(s) that

initiates the cell death program. Accordingly, the ability of tumor cells to

detect cellular damage and activate the apoptotic response may determine the

ultimate success of cancer therapy.

There is mounting evidence that the expression of oncogenes can

sensitize cells to apoptosis. Both the adenovirus early region 1A (ElA) gene

and c-myc can increase cellular susceptibility to programmed cell death,

particularly under conditions of low serum concentration or high cell density

(Rao et al., 1992; Evan et al., 1992). Overexpression of these genes can also

confer susceptibility to apoptosis induced by several anticancer agents,

including tumor necrosis factor-a (Chen et al., 1987), etoposide (Fanidi et al.,

1992), and other compounds used in chemotherapy (Lotem and Sachs, 1993).

Thus, the sensitivity of tumor cells to chemotherapeutic regimens may be

accentuated by their inappropriate expression of oncogenes. In the present

study, we examine the response of primary mouse embryo fibroblasts and

their ElA-expressing derivatives to radiation and several chemotherapeutic

compounds. Although the parental fibroblasts were largely resistant to these

agents, ElA-expressing cells rapidly underwent apoptosis following treatment

with relatively low doses of ionizing radiation, 5-fluorouracil, etoposide, or

adriamycin.

Recently, we and others have demonstrated a crucial role for the p53

tumor suppressor gene in the execution of some forms of apoptosis (Lowe et
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al., 1993b; Clarke et al., 1993). The production of animals with homozygous

inactivation of the p53 gene (T.J. and R.A. Weinberg, unpublished) has

permitted us to develop cell populations in which the p53 function can be

examined in a systematic manner. Utilizing this strategy, we have explored

the effects of p53 expression on normal and oncogene-expressing cells

following irradiation and treatment with various chemotherapeutic agents.

The results of these studies are clear: p53 is required for the efficient

activation of apoptosis following irradiation or treatment with

chemotherapeutic compounds. Thus, the absence of p53 expression leads to a

dramatic increase in cellular resistance to these agents, implying that tumor

cells can acquire drug and radiation resistance through mutations that

interfere with apoptosis. In particular, the status of the p53 gene, which is

mutated in a high percentage of human cancers (Hollstein et al., 1991; Levine

et al., 1991), may be an important determinant of the efficacy of many

treatment protocols.

METHODOLOGY

Cells and cell culture

p53+/+, p53+/', and p53-/ mouse embryonic fibroblasts used in this

study have been previously described (Livingstone et al., 1992; Kastan et al.,

1992). Clones expressing ElA and various other oncogenes were generated by

calcium phosphate co-precipitation (Chapter 3). All cells were maintained in

DME containing 10% fetal bovine serum (FBS) supplemented with penicillin

and streptomycin (growth media). In general, MEF cultures were used

between passages 3 and 5.

Colony regression assays

plAHygro, which encodes the adenovirus-5 EA gene and hygromycin
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phosphotransferase, was transfected into p53 1/+, p53+/ -, and p53-/' MEFs by

calcium phosphate co-precipitation (Chapter 3). Thus, colonies arising in

hygromycin B had a high probability of co-expressing ElA. ElA-expressing

colonies have a distinct morphology that distinguishes them from normal or

hygromycin-resistant MEFs, and have been shown to express EA by

immunofluorescent staining. Approximately 3 weeks after transfection,

cultures were transferred to normal growth medium (without Hygromycin

B), and ElA-expressing colonies were marked and treated with 5 Gy ionizing

radiation using a Gammacell 40 irradiator equipped with a 137Cs source.

Alternatively, colonies were incubated in the presence of 1 jgM 5-fluorouracil

(Sigma), 0.2 gM etoposide (Sigma), or 0.2 pgg/ml adriamycin (provided by F.

Haluska). Selected colonies were photographed at various times thereafter.

All colonies were scored for significant regression 72 hours after treatment,

except for colonies incubated in adriamycin, which were scored for regression

after 24 hours.

Dose-response assays

For irradiation experiments, exponentially growing cells were detached

from plates and adjusted to 106 cells/ml. Samples were irradiated for different

times, and 1 ml of each cell suspension was added to 100 mm dishes

containing normal growth medium. Cell viability was assessed 36 hours after

irradiation by pooling adherent and non-adherent cells and measuring

uptake of fluorescein isothiocyanate (FITC) by FACS analysis (Shi et al., 1990;

Chapter 3). At least 105 cells were measured for each determination. Cells

used in chemical cytotoxicity experiments were plated at 1-2 x 106

cells/100mm dish, allowed to adhere, and incubated with various

concentrations of 5-fluorouracil, etoposide, adriamycin, or sodium azide

(Sigma). Cell viability was determined 24 hours following treatment.
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Apoptosis assays

Chromatin structure was visualized by staining fixed cells with 2,4-

diamidino-2-phenylindole (DAPI) 8-10 hours after treatment with anticancer

agents. Fragmentation of cellular DNA was measured 24 hours after

treatment as described (White et al., 1984; Chapter 3). Adherent and non-

adherent cells were pooled, washed in phosphate buffered saline (PBS), and

resuspended in ice cold buffer containing 0.15M NaCl, 10mM Tris (pH 7.4), 2

mM MgCl 2, and mM DTT. Nonidet-P40 was added to a final concentration

of 0.5% (v/v) and the samples were incubated on ice for 30 minutes. Nuclei

were isolated by centrifugation, resuspended in buffer containing 0.35M NaCl,

10OmM Tris (pH 7.4), 2mM MgCl2, and 1mM DTT, and incubated on ice for 15-

30 minutes. The nuclei were then removed by centrifugation, and the

supernatant was extracted with phenol and chloroform. The low molecular

weight DNA was recovered by ethanol precipitation. Samples were

resuspended in 20 gl Tris-EDTA and treated with RNase A for 30 minutes

prior to electrophoresis on 1% agarose gels.

Cell cycle analysis

Cellular proliferation was assessed by DNA content and incorporation

of 5-bromo-2'-deoxyuridine (BrdU) by multiparameter flow cytometry (van

Erp et al., 1988). Cells were plated in growth medium at 1-2 x 106 cells/100mm

dish, allowed to adhere, and exposed to 5 Gy ionizing radiation. 14 hours

after treatment, BrdU (Amersham) was added and the cultures were

incubated at 370C for an additional 4 hours. Cultures were washed twice with

PBS to remove dead cells, and the adherent cells were collected after

treatment with trypsin. The cells were washed in PBS and fixed in 70%

ethanol for 30 minutes at -20°C. Subsequently, the cells were centrifuged,

resuspended in 1 ml of 0.2 mg/ml pepsin (Sigma) in 2N HC1, and incubated
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for 30 minutes at room temperature. After neutralizing the samples with 3

ml 0.1M Na2B 40 7, the cells were washed with PBS followed by PBS

supplemented with 0.5% Tween20 and 2% FBS (PTS). The cells were

resuspended in 100 gl of PTS containing 5 gl of an FITC-conjugated anti-BrdU

antibody (Boehringer Mannheim) and incubated for 30 minutes at room

temperature. The cells were then washed with PTS, resuspended in 0.5 ml

PTS containing 0.5 mg/ml RNase A and 50 g/ml propidium iodide

(Calbiochem), and incubated for at least 30 minutes at room temperature. All

samples were passed though 70 m mesh prior to FACS analysis. FACS

analysis was performed on a FACStar Plus (Becton Dickinson) flow cytometer.

The percentage of cells in each phase of the cell cycle (at the end of the BrdU

labeling period) was estimated using the MODFIT program (Verity Software

House). The co-efficient of variance for each fit was usually less than 5%.

The percentage of cells incorporating BrdU during the 4 hour pulse was

estimated from the log red fluorescence and log green fluorescence plot using

the disp2D program (Becton Dickinson).

RESULTS

Previous studies have shown that functional p53 is required for the G1

cell cycle arrest in fibroblasts exposed to ionizing radiation (Kastan et al., 1992)

and for the initiation of apoptosis in irradiated mouse thymocytes (Lowe et

al., 1993b; Clarke et al., 1993). In a separate study, we used wild-type and p53-

deficient mouse embryonic fibroblasts to demonstrate that apoptosis

associated with expression of the adenovirus ElA oncogene also is dependent

on p53 (Chapter 3). ElA-associated apoptosis is observed during normal

propagation of cells, but the level of cell death dramatically increases when

cells were maintained in low concentrations of serum. Since conditions of
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growth limitation appear to trigger cell death in ElA-expressing cells, we

sought to determine whether other treatments known to inhibit proliferation

might also lead to p53-dependent apoptosis.

E1A-expressing cells rapidly undergo p53-dependent cell death following

exposure to ionizing radiation.

Due to the difficulty in establishing cell lines that continuously express

E1A and endogenous p53 (Chapter 3), we analyzed cell viability using

unexpanded colonies derived following introduction of E1A into early

passage mouse embryo fibroblasts (MEFs). Specifically, p53+ / + , p53+ / ', and

p53 / MEFs were transfected with plAHygro, a plasmid co-expressing both

the adenovirus-5 E1A oncogene and hygromycin phosphotransferase, and

ElA-expressing colonies were selected in hygromycin B. In a separate series of

experiments, a plasmid encoding the adenovirus E1B gene (which counteracts

the effects of p53 (Debbas and White, 1993; Lowe and Ruley, 1993)) was co-

introduced with plAHygro. After approximately 3 weeks in hygromycin-

containing medium, ElA-expressing colonies were marked and inspected for

regression after exposure to 5 grays (Gy) ionizing radiation.

The viability of colonies exposed to ionizing radiation is illustrated in

Figure 1 and summarized in Table 1. While irradiation of untransfected

fibroblasts had no effect on cellular viability (see below), virtually all p53+ / +

and p53+ /' colonies expressing ElA rapidly degenerated. By contrast, p53-/ -

colonies expressing E1A were resistant to irradiation, indicating that cell

death required p53 function. Although not as effective as the absence of p53,

co-expression of E1B protected ElA-expressing p53+ / + cells from death

following irradiation.
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Figure 2. Colony regression after treatment with chemotherapeutic agents.
plAHygro was introduced into p53+ / + (+/+), p53+ / - (+/-), and p53-/- (-/-)

MEFs and colonies were selected in hygromycin B. ElA-expressing colonies
were marked and photographed 72 hours after treatment with 1 M 5-
fluorouracil or 0.2 pM etoposide. Alternatively, colonies were treated with 0.2
ig/ml adriamycin and photographed 24 hours after treatment. All

experiments were performed in the absence of Hygromycin B.
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Table 1. Viability of ElA-expressing
with chemotherapeutic agents.

colonies after y-irradiation or treatment

Colony Viability (72 h)C
Treatment

Radiation
(5 Gy)

Genesa
EIA
E1A
ElA

ElA + E1B
ElA + E1B
E1A + E1B

p53b

(+/+)
(+/-)

(+/+)

Regressing
5
25
1
4
9

ND

Resistant
1
0
24
9

16
ND

% Resistant
17
0

96
69
64

ND

5fluorouracil

(lpgM)

Etoposide
(0.2 M)

E1A
E1A
ElA

E1A
ElA
EIA

(+/+)
(+1-)
(-/-)

(+/+)
(+1-)
(-/-)

5
23
1

5
20
0

0
2
26

1
5

25

0
8
96

17
20

100

Adriamycin E1A (+/+) 3 0 0
(0.2 gg/ml) ElA (+/) 22 3 12

E1A (-/-) 0 25 100
plAHygro (with or without an E1B expression vector) was transfected into
p53+/+, p53+/-, and p53-/- MEFs and colonies were selected in hygromycin B.
Approximately 3 weeks after transfection, the colonies were marked and
exposed to 5 Gy ionizing radiation, lpM 5-fluorouracil, 0.2 p.M etoposide, or
0.2 jig/ml adriamycin in the absence of Hygromycin B. Colonies were
inspected by microscopy for significant regression and cell death 72 hours after
initiating treatment (as shown in Figure 1 and 2), except for colonies
incubated in adriamycin which were scored after 24 hours.

Genotoxic compounds used in cancer chemotherapy induce p53-dependent

cell death in cells expressing E1A.

A variety of genotoxic compounds used as chemotherapeutic agents

also increase p53 levels and can cause growth inhibition (Kastan et al., 1991;

Fritsche et al., 1993). Several of these compounds were tested for their ability

to induce p53-dependent cell death in ElA-expressing cells using the colony

regression assay described above. 5-fluorouracil (anti-metabolite), etoposide
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(topoisomerase II inhibitor) and adriamycin (intercalating agent) were chosen

for these experiments because they have different intercellular targets

(Chabner and Myers, 1989). As observed following irradiation, p53+/+ and

p53+/' colonies that expressed E1A displayed a remarkable sensitivity to each

of these agents: the majority of colonies completely regressed within 72 hours

of treatment (Figure 2 and Table 1). Again, cell death required p53 function,

since p53 / cells were resistant to all treatments. p53-deficient colonies did

show some degree of regression after several days in adriamycin. The vast

majority of ElA-expressing colonies derived from p53+/-MEFs degenerated

completely following treatment with various genotoxic compounds;

however, a small number retained viability even after 6 days. By using a

polymerase chain reaction assay that distinguishes between mutant and wild-

type p53 alleles, three out of four resistant colonies were shown to have lost

the wild-type allele, and therefore had become deficient for p53 (Figure 3).

Taken together, these data indicate that ElA increased cellular sensitivity to

several chemotherapeutic agents and that the ensuing cell death was

dependent on a functional p53 gene.

Anticancer agents trigger p53-dependent apoptosis in cells transformed by

E1A and T24 H-ras.

E1A is unable to oncogenically transform embryonic fibroblasts alone,

but collaborates with either the adenovirus EIB gene or activated ras alleles to

transform primary cells to a tumorigenic state (Ruley, 1990). While E1B

inhibits p53-dependent apoptosis such that p53-deficient cells are transformed

by E1A alone (Chapter 3), the basis for ras co-transformation with EA is

unknown. Thus, cells co-expressing T24 H-ras and EA are highly

tumorigenic but susceptible to apoptosis upon serum withdrawal (Chapter 3).

Since oncogenically transformed fibroblasts provide an experimental
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Figure 3. p53 status in viable EA-expressing colonies derived from p53+/-
MEFs following treatment with chemotherapeutic agents.

DNA was isolated from an ElA-expressing colony derived from p53+/-
cells previously incubated in 1.0 cpM 5-fluorouracil for 1 week (designated R1).
p53 status was determined by a polymerase chain reaction assay that
distinguishes between the wild-type and disrupted p53 alleles. As controls,
the identical assay was performed on untransfected MEFs derived from
p53+/+, p53+/-, and p53-/- MEFs. Produces were separated on 1% agarose gels,
the location of the null-specific (m) and wild-type-specific (wt) bands are
designated to the right of the gel.
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Figure 4. Viability wild-type and p53-deficient cells after irradiation.
The viability of cells expressing (A) or lacking (B) endogenous p53 was

measured by FITC uptake and flow cytometry 36 hours after treatment with
the indicated dose of ionizing radiation. Each point represents the average
and standard deviation obtained from at least 3 independent clones. All
values were normalized to the relative viability of the corresponding
untreated controls from the same experiment (generally greater than 90%).
Open circles, untransfected MEFs; closed circles, p53-/- cells expressing E1A;
squares, cells co-expressing ElA and T24 H-ras; triangles, cells expressing E1A
and E1B.

system analogous to naturally occurring tumors, we examined the effects of

various anticancer agents on transformed lines expressing E1A.

Like cells expressing ElA alone, exposure of p53+/+ cells transformed by

E1A and T24 H-ras to ionizing radiation caused a dose-dependent decrease in

viability, with significant death occurring at doses as low as 1 Gy. Radiation

treatment had a minimal effect on all p53-/- lines, and most cells retained

viability after treatment with 20 Gy (Figure 4). Although we have not

extensively analyzed long-term viability following irradiation, p53-/ - cells co-

expressing ElA and T24 H-ras irradiated with 5 Gy displayed no significant
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loss of growth or tumorigenic potential (see Chapter 5). p53+ /' cells co-

expressing ElA and T24 H-ras died following irradiation, but to a considerably

lesser extent than wild-type cells (not shown). However, ionizing radiation

had no effect on the viability of either p53+ /+ or p53-/1 untransfected MEFs, or

p53+ / + lines that co-expressed E1B with E1A. It is noteworthy that doses of

ionizing radiation sufficient to kill p53+ / + cells co-expressing E1A and T24 H-

ras cause only transient growth arrest in untransfected fibroblasts ((Kastan et

al., 1991; Kastan et al., 1992) and see below).

Similarly, p53+/+ cells oncogenically transformed by E1A and T24 H-ras

were extremely sensitive to low concentrations of 5-fluorouracil, etoposide,

and adriamycin (Figure 5). Cell death required p53, since p53-/' cells co-

expressing ElA and T24 H-ras were largely resistant to these treatments. The

differences in concentrations required for half-maximal killing of p53+ / + and

p53-/1 cells co-expressing ElA and T24 H-ras were greater than 20-fold in this

assay. No decrease in viability was observed in the untransfected MEFs of

either p53 genotype following exposure to 5-fluorouracil or etoposide, even at

doses as high as 100 gM 5-fluorouracil. However, the viability of p53-/1 cells

co-expressing ElA and T24 H-ras began to decline at higher concentrations of

these two drugs, and the viability of all cells declined with increasing

concentrations of adriamycin. Thus, at sufficiently high concentrations, these

agents can cause cell death in a p53-independent manner.

During apoptosis, loss of membrane integrity is typically preceded by

chromatin condensation and internucleosomal cleavage of genomic DNA

(Wyllie, 1980). As visualized by staining with 2,4-diamidino-2-phenylindole

(DAPI), significant numbers of p53+ / + cells co-expressing ElA and T24 H-ras

contained condensed chromatin and fragmented nuclei within 8 hours

following treatment with the various anticancer agents (Figure 6). In
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igure 5. Viability of wild-type and p53-deficient cells after treatment with
chemotherapeutic agents.

Viability of the untransfected MEFs and p53+ /+ and p53'/ - clones co-
expressing EA and T24 H-ras was estimated by FITC uptake and FACS
analysis 24 hours after treatment with the indicated concentrations of 5-
fluorouracil (A), etoposide (B), and adriamycin (C). Each point represents the
average and standard deviation obtained from at least 3 independent clones.
All values were normalized to the relative viability of the corresponding
untreated controls from the same experiment (generally greater than 90%).
Closed circles, untransfected p53+/+MEFs; open circles, untransfected p53-/

MEFs; closed squares, p53+ / + cells co-expressing ElA and T24 H-ras; open
squares, p53-/1 cells co-expressing ElA and T24 H-ras.

contrast, p53- / - populations rarely contained cells with altered chromatin

structure. After irradiation, p53+ /+ cells co-expressing ElA and T24 H-ras

contained large amounts of low molecular weight DNA, which produced a

characteristic "ladder" on agarose gels (Figure 7A). The degraded DNA was

present in oligomers that were multiples of approximately 180-200 base pairs,

suggesting internucleosomal cleavage. Cells lacking p53 or expressing E1B did

not contain degraded DNA after exposure to ionizing radiation. Treatment

with low doses of 5-fluorouracil, etoposide, and adriamycin also induced

DNA fragmentation in p53+ /+ cells co-expressing ElA and T24 H-ras, but not

in p53-deficient cells (Figure 7B). These data suggest that cell death in E1A-
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Figure 6. Analysis of chromatin structure following treatment with anticancer
agents.

p53-/- (A, C, E) and p53+/+ (B, D, F) cells transformed by ElA and T24 H-
ras were treated with anticancer agents and chromatin structure was
visualized by staining with DAPI 8 hours later. Cells and genotypes were
treated as follows: (A) untreated, p 53-/-; (B) 1 M 5-fluorouracil, p53+/+; (C) 5
Gy ionizing radiation, p53'/-; (D) 5 Gy ionizing radiation, p53+/+; (E) 0.2 ptg/ml
adriamycin, p 53 -/-; (F) 0.2 ,ug/ml adriamycin, p53+/+.
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Figure 7. Analysis of low molecular weight DNA from cells exposed to
ionizing radiation or treated with chemotherapeutic agents.

Low molecular weight DNA was isolated from 2 x 106 cells 24 hours
after exposure to ionizing radiation (A) or treatment with chemotherapeutic
agents (B). Cells were irradiated with 5 Gy (+) or incubated in media
containing 1 .M 5-fluorouracil (5-FU), 0.2 piM etoposide (ETOP), or 0.1 g/ml
adriamycin (ADR). In B, only cells p53+ / + (+/+) or p53 ' / - (-/-) cells co-
expressing E1A and T24 H-ras were analyzed. DNA was resolved by
electrophoresis on 1% agarose gels and visualized by ethidium bromide
staining. Note that viable cell populations do not contain significant
quantities of low molecular weight DNA.
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Figure 8. Viability of cells treated with sodium azide.
Cell lines co-expressing EA and T24 H-ras (squares) and the

untransfected MEFs (circles) were incubated in various concentrations of
sodium azide (p53+ /+ , closed symbols, p53-/ , open symbols). Cell viability was
estimated by uptake of FITC and FACS analysis 12 hours after initiating
treatment. Each data point represents the average value derived from 2
independent clones.

expressing cells resulted from a common cellular response (apoptosis) to

these treatments rather than from the genotoxic action of the agents

themselves.

p53 is not required for cell death following treatment with sodium azide.

Since cells expressing E1A undergo p53-dependent apoptosis following

serum depletion (Chapter 3), irradiation, and treatment with various

chemotherapeutic compounds, it was of interest to determine whether co-

expression of p53 with E1A made cells sensitive to any toxic treatment.

Untransfected MEFs and various clones co-expressing EA and T24 H-ras

were treated with sodium azide, an electron transport poison. Sodium azide-

treated cells displayed a similar dose-dependent decrease in viability whether
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or not they expressed endogenous p53, although untransfected fibroblasts

were less sensitive than cells co-expressing ElA and T24 H-ras (Figure 8).

Thus, sodium azide-induced death did not require p53 function.

E1A expression allows cells to bypasses p53-dependent growth arrest

following irradiation.

Treatment with DNA damaging agents causes growth inhibition in

embryonic fibroblasts and other cell types (Kastan et al., 1991; Fritsche et al.,

1993), and the G 1 cell cycle arrest that occurs following irradiation requires p53

function (Kastan et al., 1992). Thus, introduction of ElA into embryonic

fibroblasts altered the cellular response to y-irradiation from growth arrest to

apoptosis. EA sequences required for apoptosis are identical to those

required for ElA-induced activation of DNA synthesis (White et al., 1991).

Furthermore, wild-type cells expressing E1A continue to cycle in mitogen-

deficient medium, even as they die by apoptosis (Chapter 3). These data

suggest that p53-dependent apoptosis is triggered by unscheduled

proliferation. Therefore, we investigated the effects of EA and p53

expression on cell cycle progression following exposure to ionizing radiation.

Cell cycle progression was assessed in cells exposed to ionizing

radiation or 5-fluorouracil by 5-bromo-2'-deoxyuridine (BrdU) incorporation

and measurement of cellular DNA content. p53+/ + and p53-/' MEFs and E1A-

expressing derivatives were incubated with BrdU for 4 hours beginning 14

hours after treatment. This represents a period when the proliferation of

irradiated fibroblasts is maximally inhibited (Kastan et al., 1991) and when

p53+ / + cells expressing ElA have initiated apoptosis. The relative amounts of

cells in each phase of the cell cycle were estimated from the overall DNA

content (as measured by propidium fluorescence) and the percentage of cells

synthesizing DNA during the 4 hour BrdU pulse.
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Figure 9. Cell cycle analysis of irradiated cells by flow cytometry.
p53+/+ (A, B) and p53-/- (C, D) MEFs, or p53+/+ (E, F) and p53-/- (G, H)

cell lines co-expressing EA and T24 H-ras were left untreated (A, C, E, and G)
or irradiated with 5 Gy (B, D, F, and H). 14 hours after treatment, cells were
incubated in 5-bromo-2'-deoxyuridine (BrdU) for 4 hours. Cell proliferation
was assessed by DNA content (propidium iodide staining) and incorporation
of BrdU (using a FITC-anti-BrdU antibody) by multiparameter flow cytometry.
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Table 2. Cell cycle progression following exposure to ionizing radiation.
Cell Type Percent of Total

Treatment Genes p53 GO/G1 S G2/M % BrdU
none none +/+ 61+/-3 17+/-4 22+/-5 28+/4

ElA+ras +/+ 34+/-3 47+/3 19+/-1 74+/-1
none -/- 40+/-5 21+/-9 39+/4 46+/-13
ElA -/- 27+/-1 52+/-2 21+/-2 79+/-1

E1A + ras -/- 23+/-2 62+/-2 15+/-0 89+/-2

5 Gy none +/+ 70+/-1 4+/-2 27+/-1 6+/-2
ElA+ras +/+ 22+/-2 16+/-3 62+/-4 45+/-3

none -/- 35+/-3 18+/-5 47+/-2 43+/-13
ElA -/- 15+/-2 22+/-1 63+/-2 70+/-5

ElA + ras -/- 19+/-6 33+/-6 48+/-10 57+/-4
Untransfected MEFs and various clones were treated with 5 Gy ionizing
radiation and incubated with BrdU as described in Methodology. Cell
proliferation was assessed by DNA content (propidium iodide staining) and
incorporation of BrdU (using a FITC-anti-BrdU antibody) by multiparameter
flow cytometry. The percentage of cells in each phase of the cell cycle was
estimated by computer analysis of the propidium iodide fluorescence. The
number of cells synthesizing DNA during the 4 hour pulse was estimated
from the amount of BrdU incorporation. The data represent the average and
standard deviation from 3 independent experiments.

As shown in Figure 9 and summarized in Table 2, a 5-fold decrease in

cells incorporating BrdU was observed in p53+/+ MEF cultures treated with

ionizing radiation, and cells arrested predominantly in the G 1. Irradiated

p53-/- MEFs continued to synthesize DNA and accumulated in G2/ M,

consistent with the involvement of p53 in radiation-induced G1 (but not G 2)

arrest (Kastan et al., 1992). Cells expressing ElA continued to synthesize DNA

following treatment with ionizing radiation whether or not they expressed

endogenous p53 (Table 2). Thus, ElA prevented p53+/+ cells from arresting in

G1 following irradiation. However, neither ElA nor the combination of ElA

and T24 H-ras prevented irradiated cells from accumulating in G 2/M (Table

2). Although these results do not rule out the possibility that T24 H-ras was

responsible for circumventing cell cycle arrest, REF52 cells, which tolerate
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E1A expression alone (Chapter 2), also continued to proliferate following

irradiation (not shown). Therefore, as observed following serum depletion

(Chapter 3), ElA bypasses p53-dependent growth arrest following exposure to

ionizing radiation.

DISCUSSION

The cytotoxicity of anticancer agents may reflect their ability to induce

programmed cell death

Although the primary cellular targets of many anticancer agents have

been identified, less is known about the processes leading to the selective

death of cancer cells (Eastman, 1990; Dive and Hickman, 1991). Because

ionizing radiation and many chemotherapeutic compounds induce DNA

damage or cause disruptions in DNA metabolism, cell death is frequently

attributed to the genotoxicity of these agents in actively proliferating cells.

However, treatment with radiation and most chemotherapeutic agents

results in dramatic changes in cellular gene expression (Holbrook and

Fornace, 1991; Fornace, 1992) and, in many cell types, induces apoptosis

(Kaufmann, 1989; Barry et al., 1990; Lennon et al., 1991; Dive and Hickman,

1991; Sen and D'Incalci, 1992). These observations suggest that the cytotoxic

action of many anticancer agents involves a genetically-determined

mechanism that requires the active participation of the target cell.

Unfortunately, a better understanding of this process has been hampered by

the inability to obtain mutants in the cell death program (Eastman, 1990).

Oncogenes and p53 can modulate the cytotoxicity of anticancer agents

The present study demonstrates that ionizing radiation and several

chemotherapeutic agents trigger apoptosis in cells expressing the ElA

oncogene, and identifies a molecule, the p53 tumor suppressor, that is
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required for efficient activation of the cell death program. Treatment of E1A-

expressing fibroblasts with relatively low doses of either ionizing radiation or

chemotherapeutic compounds rapidly induced apoptosis, while having little

or no effect on the viability of untransfected fibroblasts or ElA-expressing cells

lacking p53. The specificity of these agents for cells co-expressing EA and

endogenous p53 was not due to the their more active proliferation, since

p53 /1 - cells expressing EA grew more rapidly but were resistant.

Overexpression of the c-myc oncogene also sensitizes cells to apoptosis (Evan

et al., 1992). Like cells expressing ElA, myc-associated apoptosis is enhanced

by several chemotherapeutic agents (Fanidi et al., 1992; Lotem and Sachs,

1993), although the involvement of p53 in this process has not been directly

examined. Taken together, these data indicate that the cytotoxic action of

many anticancer agents is largely determined by the genotype of the cell

rather than the genotoxicity of the agent.

Since oncogenes can sensitize cells to apoptosis, alterations in cell cycle

regulation may be necessary to activate the cell death program. It is

noteworthy that both ionizing radiation and many chemotherapeutic agents

induce apoptosis in a manner indistinguishable from that caused by

depriving cells of growth factors. This observation is consistent with the

model described elsewhere, which views oncogene-associated apoptosis as a

cellular response to unscheduled or aberrant proliferation (Lowe et al., 1994).

Our data demonstrate that ElA-expressing cells continue to proliferate

following serum depletion (Lowe et al., 1994) and exposure to ionizing

radiation. Thus, various stimuli that would normally cause growth arrest

instead induce apoptosis in cells unable to respond appropriately due to the

expression of an oncogene. Although the signal that triggers apoptosis is not

known, the fact that different types of cellular damage induce similar changes
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in p53 turnover and gene expression (Holbrook and Fornace, 1991; Fornace,

1992) suggests a common response to stress, not unlike the bacterial SOS

response (Walker, 1987). Thus, p53 may normally act to suppress growth

while the cell attempts repairs, and promote apoptosis in cells that continue

to proliferate.

Increases in p53 levels are associated with p53-dependent apoptosis

The stability of p53 protein is increased in cells expressing ElA (or ElA

and T24 H-ras), resulting in elevated p53 levels (Lowe and Ruley, 1993; Lowe

et al., 1994). Since normal cells express low levels of p53 without adversely

effecting cell survival, p53 stabilization may be necessary for apoptosis.

Nevertheless, p53 induction is not sufficient for cell death. For example,

irradiation of normal cells also stabilizes p53, but causes cell cycle arrest

without apoptosis (Kastan et al., 1992). Furthermore, cells transformed by

ElA and T24 H-ras express stabilized p53 but are viable under normal culture

conditions, and p53 levels do not increase further when apoptosis is triggered

by serum depletion (Lowe et al., 1994) or y-irradiation (Figure 10).

p53-independent mechanisms

Several studies have demonstrated that not all forms of apoptosis

require p53 (Lowe et al., 1993b; Clarke et al., 1993). In this study, p53-

independent cytotoxicity was more pronounced at relatively high doses of

radiation or chemotherapeutic drugs. Similarly, established cell lines known

to lack p53 expression undergo apoptosis upon treatment with

chemotherapeutic agents, but the process requires higher concentrations than

used here. (Kaufmann, 1989; Lennon et al., 1991; Sen and D'Incalci, 1992).

Thus, cells that sustain sufficient damage may undergo apoptosis regardless of

their p53 status. Since p53 can suppress immortalization (Harvey and Levine,

1991; Lowe et al., 1994), it would not be surprising if many established cells
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Figure 10. p 5 3 levels in cells co-expressing E1A and T24 H-ras following
irradiation.

p53 levels were determined by Western blot using lysates derived from
106 cells. The blot was probed with a pool of p53-specific monoclonal
antibodies (PAb421, PAb240, and PAb248), and p53 was visualized by
chemiluminescence as described in Methodology. Cell lysates were derived
from: untransfected MEFs (lane 1); untreated p53+/+ cells co-expressing E1A
and T24 H-ras (lane 2), or treated with 0.1% FBS (lanes 3, 4) or 5 Gy ionizing
radiation (lanes 5, 6) (lanes 3 and 5 are from 4 hours after treatment; lanes 4
and 6 are from 10 hours after treatment); untreated p53-/- cells co-expressing
E1A and T24 H-ras (lane 7).
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acquire defects in p53-dependent apoptosis. This could explain why higher

concentrations of chemotherapeutic agents are required to induce apoptosis

in most established lines (Sen and D'Incalci, 1992), and the inability to obtain

cross-resistant mutants with defects in apoptotic pathways (Eastman, 1990).

The present study utilized early passage mouse embryo fibroblasts which

differed only in their p53 status. Since many experiments were performed on

unexpanded colonies, resistance to cell death was not due to genetic

alterations that might be selected for upon clonal expansion.

Apoptosis and tumor suppression by p53

Although this report has focused on the cellular response of oncogene-

expessing cells to anticancer agents, these data reflect a more general

mechanism by which p53 may function as a tumor suppressor. We have

suggested that the involvement of p53 in oncogene-associated apoptosis

represents a direct mechanism whereby p53 eliminates abnormally growing

cells (Lowe et al., 1994). In the absence of p53, oncogene-expressing cells are

unable to trigger the death program in response environmental signals.

While these signals can arise from drugs that interfere with cellular

homeostasis or cause DNA damage, they also may originate from mitogen-

deprivation, high cell density, or changes in cellular micro-environment that

might accompany metastasis. Furthermore, loss of p53 may increase the

likelihood that cells will acquire further mutations (Kastan et al., 1992; Lane,

1992). Thus, for multiple reasons, cells undergoing p53 mutation or loss

would have a selective advantage during tumor progression.

Cross-resistance to anticancer agents involving inhibition of p53-dependent

apoptosis

Since it appears that the cytotoxicity of many anticancer agents

involves a common genetic program, lesions in apoptotic pathways could
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generate a cross-resistant phenotype. The present study demonstrates that

loss of p53 function enhances cellular resistance to a variety of agents used in

cancer therapy. Although cellular sensitivity and resistance were more

thoroughly examined in the complete absence of p53 function, hemizygous

cells displayed an intermediate level of resistance to anticancer agents. Point

mutations leading to the expression of dominant-negative p53 alleles may

have a similar effect, and their intrinsic ability to inhibit wild-type p53

function may contribute to variability in cellular response to anticancer

agents. Factors which modulate p53 function could also influence cellular

resistance to anticancer agents. These factors include the mdm-2 oncogene

(Momand et al., 1992; Oliner et al., 1992), the human papilloma virus E6

protein (Scheffner et al., 1990; Crook et al., 1992), or as described here, the

adenovirus E1B gene. Conversely, mutations that activate genes that

normally suppress apoptosis might also contribute to drug resistance. Indeed,

overexpression of the bcl-2 oncogene rescues myc-expressing cells from

apoptosis occurring upon serum withdrawal and etoposide treatment (Fanidi

et al., 1992).

Implications for human cancer

The data presented here provide a rationale for understanding the

response to radiation and chemotherapy in human tumors. The ability to

achieve a significant therapeutic index differentiating normal cells from

tumor cells may be a consequence of genetic alterations that accompany

malignant transformation, which lowers the threshold at which cell injury

triggers apoptosis. Furthermore, the vulnerability of tumor cells to radiation

or chemotherapy is greatly reduced by mutations that abolish p53-dependent

apoptosis. Our data suggest that p53 status in tumor cells may be a strong
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determinant of response to treatment with either chemotherapy or radiation.

How well does this view correspond to clinical experience?

Three types of clinical patterns are notable. First, there are a number of

tumor types in which a high percentage of primary tumors have acquired p53

mutations. These include malignant melanoma (Stretch et al., 1991), and

cancers of the lung (Takahashi et al., 1989; Chiba et al., 1990; D'Amico et al.,

1992; Takahashi et al., 1991), colon (Fearon and Vogelstein, 1990), bladder

(Sidransky et al., 1991), prostate (Isaacs et al., 1991) and cervix (Crook and

Vousden, 1992; Crook et al., 1992). In general, patients with these tumors

respond poorly to treatment with either radiation or chemotherapy.

Furthermore, in many of these tumor types, the presence of p53 mutation

correlates with poor prognosis (Davidoff et al., 1991; Thorlacius et al., 1993;

Sun et al., 1992; Horio et al., 1993; Visakorpi et al., 1992; Jaros et al., 1992).

Second, there are tumors that rarely exhibit p53 mutations at presentation.

Included in this group are testicular cancer (Heimdal et al., 1993), Wilm's

tumor (J. Pelletier, personal communication) and childhood acute

lymphoblastic leukemia (Gaidano et al., 1991; Jonveaux and Berger, 1991). In

these forms of cancer, chemotherapeutic intervention is extremely effective.

Third, upon relapse of acute lymphoblastic leukemia, failure of therapy

correlates with the occurrence of mutations in the p53 gene (Felix et al., 1992;

Yeargin et al., 1993) Furthermore, in several tumor types, p53 mutations

have been identified in relapse specimens that were not present in the

primary tumor (Hayashi et al., 1991; Sidransky et al., 1992; Felix et al., 1992;

Neri et al., 1993). Indeed, these observations suggest that there may be a

strong correlation between a tumor's p53 status and patient response to

chemotherapy or radiation. While this view must represent only a part of the

rationale for treatment response, it suggests that a more detailed examination
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of the relationship between p53 status and response to radiation and

chemotherapy may be important for developing more effective therapeutic

intervention.
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CHAPTER 5

The p53 tumor suppressor gene enhances tumor response to y-

irradiation in a transplanted tumor model

This work is ongoing.
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INTRODUCTION

The use of radiation and chemotherapy in the treatment of human

malignancy has had a significant impact on prolonging the disease free

interval and, to a lesser extent, the overall survival rate (Pitot, 1987).

However, anticancer agents are frequently ineffective; some tumor types fail

to respond to either form of treatment or become nonresponsive upon tumor

relapse. Since the identification of therapeutic agents and establishment of

treatment regimens has been empirical, the mechanisms that determine their

effectiveness are largely unknown. Thus, the development of better

therapeutic agents may require: (i) the identification of factors that determine

the tumor-specific action of anticancer agents, (ii) the elucidation of the

biological and biochemical mechanisms responsible for their cytotoxic action,

and (iii) understanding the molecular basis for cross-resistance. In the

absence of a molecular understanding of these processes, one of the major

objectives of clinical cancer research has been the identification of prognostic

factors that could determine the type or aggressiveness of cancer therapy

required (for one example, see (Harris et al., 1992). Since the failure of tumors

to respond to treatment reflects the ultimate basis for "poor prognosis", it is

possible that prognostic indicators may provide insight into biological

mechanisms determining therapeutic effectiveness.

Mutations in the p53 tumor suppressor gene are associated with

aggressive cancers (Baker et al., 1989; Ichikawa et al., 1992; Mazars et al., 1992;

Tsuda and Hirohashi, 1992; Bookstein et al., 1993; Donghi et al., 1993; Fagin et

al., 1993; Neri et al., 1993), metastasis (Yamada et al., 1991; Crook and

Vousden, 1992; Marchetti et al., 1993), and with poor prognosis (Crook and

Vousden, 1992; Thompson et al., 1992; Thor et al., 1992; Horio et al., 1993;

Riou et al., 1993). Because p53 is considered the most frequently mutated gene
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in human cancer (Hollstein et al., 1991; Levine et al., 1991), considerable effort

has been invested into understanding its function. However, the molecular

basis for the association between p53 mutation, advanced tumor stage, and

poor prognosis remains unknown. We have recently demonstrated a role for

p53 in modulating apoptosis--or programmed cell death--in response to

oncogenes (Lowe and Ruley, 1993; Lowe, et al., 1994) and anticancer agents

(Lowe, et al., 1993a; Lowe, et al., 1994b). These studies suggest that certain

oncogenes activated during tumor progression might sensitize cells to p53-

dependent apoptosis. Thus, p53 mutations could increase the threshold with

which tumor cells activate the death program in response to both

physiological stimuli and anticancer agents, suggesting a biological basis for

the prognostic significance of p53 mutation.

While in vitro cell culture models provide simple systems for studying

anticancer agent cytotoxicity and apoptosis, their relevance to tumor response

in vivo remains unknown. Complicating factors in vivo can influence the

cellular response to anticancer agents (Hellman, et al., 1988). For example,

oxygen in the tumor environment is significantly reduced relative to its

availability in cell culture. Since radiation-induced toxicity requires oxygen,

hypoxia may reduce the cellular response to y-irradiation in vivo. Thus,

tumor vascularization can dramatically influence the response of tumors to

ionizing radiation. For chemotherapeutic agents, it is often difficult to

translate concentrations of a drug used in cell culture to in vivo doses, since

the effective concentration a tumor receives is determined by a multitude

pharmokinetic factors (Chabner and Myers, 1989). These factors make it

difficult to demonstrate that mechanisms causing cell death in vitro are

responsible for tumor regression in vivo.
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In order to determine whether p53 status can influence tumor response

to anticancer agents, we were interested in establishing a well-controlled

model for tumor progression in which the role of p53, apoptosis, and tumor

response could be studied in a systematic manner. The effects of p53 on

tumor progression have been characterized following transplantation of p53-

deficient fibroblasts containing tranfected oncogenes into athymic nude mice.

Several considerations suggested that this system would be useful for

assessing the effects of p53 on tumor response to anticancer agents. First,

primary mouse embryo fibroblasts transformed by E1A and activated ras

oncogenes provide a model of genetic changes that spontaneously occur

during tumorigenesis (Ruley, 1983). Using embryonic fibroblasts derived

from normal and p53-deficient mice, we have shown that cells transformed

by ElA and ras are highly tumorigenic in athymic nude mice, but are

susceptible to p53-dependent apoptosis in vitro (Lowe, et al., 1993a; Lowe, et

al., 1994). Second, cells remain sensitive to apoptosis even after being

passaged as tumors and placed back in culture, indicating that tumor growth

does not require mutations that suppress apoptosis (Lowe, et al., 1994).

Consistent with this observation, apoptosis is a common feature of malignant

tumors (Wyllie, 1985). Finally, tumors are easily monitored for growth or

regression following subcutaneous injection of cells into athymic nude mice.

In the present study, animals harboring tumors derived from p53+/+

and p53-/- embryonic fibroblasts were treated with ionizing radiation, and

tumors were monitored for growth or regression. Tumors derived from

wild-type cells generally regressed in response to ionizing radiation--some

disappearing completely--prior to eventual regrowth. By contrast, tumors

derived from p53-deficient cells never regressed significantly. While some

p53-/- tumors remained stationary for several days, others continued their
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pre-treatment growth rate. These results indicate that p53 status and

susceptibility to p53-dependent apoptosis can determine tumor

responsiveness to treatment with anticancer agents.

METHODOLOGY

Cells and Injections

p53+/+ and p53-/- mouse embryonic fibroblasts (MEFs) were obtained

from 12.5 day embryos derived from crosses between mice with a disrupted

p53 allele (T. Jacks and R. Weinberg, unpublished). Cells were cultured in

DME containing 10% fetal bovine serum (FBS), and transfected between

passages 3 and 5. The generation of lines co-expressing ElA and an activated

ras oncogene (T24 H-ras) have been described previously (Chapter 2). Cells

were passaged minimally in culture prior to injection in order to minimize

selection for mutations that suppressed apoptosis.

For injection, cells were detached from tissue culture plates with

trypsin, washed in phosphate buffered saline (PBS), and resuspended at a cell

density of 8 x 106 cells/ml in PBS. Athymic nude mice (Taconic) were injected

with 2 x 106 cells/site (0.25 ml) at two separate sites (each rear flank). Mice

were used between ages 6 weeks and 6 months. In general, tumor latency was

significantly reduced in younger mice; however, tumor response to y-

irradiation was similar.

Tumor size measurements

Upon the appearance of solid tumors, tumor volumes were estimated

from caliper measurements of tumor length (L) and width (1) according to the

standard formula adopted by the National Cancer Institute ((L x 12)/2). In

general, tumors were allowed to grow until the volume of the tumor was

0.15-0.5 cm3 prior to treatment. This represents a volume when tumor
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growth is relatively constant; tumors are large enough to measure accurately,

yet small enough to monitor the progression of non-responding tumors for at

least two weeks. Since animals were injected at two sites, it was not

uncommon that one tumor would arise significantly before the other.

Therefore, in order to minimize the number of mice, tumors were

occasionally treated outside this size range.

Irradiation protocols

When tumors reached an appropriate size, the mice were treated using

several irradiation protocols. These included single fraction total body

irradiation using 5 Gy and 7 Gy. These doses represent typical doses used in

treating human cancer and were shown to induce p53-dependent apoptosis in

vitro (Chapter 4). For mice, 7 Gy is the highest tolerated dose that can be used

for total body irradiation, with a mortality rate of approximately 30% (Hall,

1988). 5 Gy is tolerated somewhat better by mice. In addition, a fractionation

scheme was employed involving multiple treatments of low-dose irradiation

over a period of several days. Empirical studies have indicated that 10

fractions of 2 Gy, over a period of approximately 2 weeks, induces the same

biological toxicity as a single dose of 5 grays (Hall, 1988).

RESULTS

Mouse embryonic fibroblasts transformed by ElA and activated ras

oncogenes provide an experimental system analogous to naturally occurring

tumors. EA and T24 H-ras (ras) have been introduced into embryonic

fibroblasts derived from wild-type mice (p53+ / + ) or mice homozygous for

disrupted p53 genes (p 53-/-) (Chapter 2). p53+/+ and p53-/- lines are virtually

identical except for the status of p53; consequently, differences in tumor

response to y-irradiation can be directly attributed to p53 function. Moreover,
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Figure 1. Tumor growth following subcutaneous injection of cells into
athymic nude mice.

Embryonic fibroblasts transformed by ElA and T24 H-ras were injected
into athymic nude mice (2 x 106 cells/site) and tumor volumes were
estimated as described in Methodology. Open circles; tumors derived from
p53-/- cells; closed circles; tumors derived from p53+/+ cells.

because these cells are oncogenically transformed regardless of their p53

status, selective pressure for other mutations is minimized.

Baseline tumor growth

To establish a baseline for tumor growth in this system, athymic nude

mice were injected with either p53+/+ or p53-/- cells and tumor size was

monitored. p53-/- tumors were detected earlier and grew faster than p53+/+

tumors (Figure 1). Upon detection of a solid tumor, growth often proceeded

slowly for a period of several days, but typically increased by the time tumors

reached 0.15 cm3. Tumors continued to expand at a relatively constant rate up

to quite large volumes (>4 cm3 for p53-/- tumors). This indicated that changes

in tumor growth following y-irradiation could be attributed to the effects of
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treatment rather than complicating factors such as limiting nutrient supply.

These observations suggested that treatment of tumors between 0.15-0.5 cm3

would provide a good window for measuring both tumor growth and

regression.

Tumor latency

In agreement with earlier studies (Chapter 3), p53+ /+ cells formed

tumors less frequently and with a longer latency than p53-/- cells (Table 1).

Mice injected with p53-/- cells developed tumors at all injected sites, with a

latency averaging 9 days. The latency of tumors derived from p53+/+ cells was

three times longer that for p53-/- cells (27 days). However, both the frequency

and latency of tumors derived from p53+/+ cells was quite variable. Thus, one

clone (1AR.C8) formed tumors with a relatively high frequency (9 of 13 sites

injected), while the other (1AR.C10) was poor at forming tumors (2 of 9 sites

injected).

Irradiation of animals harboring tumors

Animals harboring tumors were treated with various doses of y-

irradiation and tumors were monitored for growth or regression. Tumors

derived from one p53+/+ clone (1AR.C8) regressed upon irradiation following

all treatment protocols (Table 1). Using single fraction schemes, tumor

volumes generally decreased to less than 10% of the original volume within 1

week of treatment (Figure 2 and Table 1). In several instances, all visible

evidence of the tumor disappeared. However, in all mice that survived

radiation treatment, tumors eventually relapsed. In those mice that were re-

treated, tumors again regressed, indicating that cells surviving the original

treatment had not acquired mutations that conferred radiation resistance

(Figure 3). In the only informative instance, the tumor response upon re-
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Table 1. Effect of p53 on tumor latency and response to ionizing radiation.
Volumeb

7 Gy 5 Gy FractionationC

Clone Tumor Latencya 7 d 14 d 7 d 14d 7 d 14 d
74
51

30 90
0 84
0 64

100 152

17 72 33 100
9 16 47 38

764
194
470
374
424

597
404
1458

586
365

386
240
263

213
138
420

277
98

439
488
730

339
310

1024

555
250

0
0
0

6
0
0

18 18

74 54
18 16
29 20

203
167
188

100*
120*
133
168
177
173
22

281
170
227

NA
NA
133
224
198
206
47

NA, not applicable

180

11
10

C8
(+/+)

C10
(+/+)

A8

A9

A4

396
397
384
380

378L
385L
385R
927L
927R
378R
386

AVE:
S.D.:

399L
399R
376L
383L
383R
377L
377R
382L
388L
388R
387L
400L
400R
376R
381R
381L
382R
389L
389R
387R
941L
941R
AVE:

SD:

22
21
16
30
47
24
28
19
16
30
44
27
10

10
16
7
4
4
7

10
7

10
10
19
7

12
4
7
7
7

10
10
19
4
4
9
4

428
92

199
243
174

221
226
375

245
101



Legend to Table 1

adays between injection of cells (see Methodology) and tumor detection
(.002cm 3).
bTumor volumes are presented as the percentage of the pre-treatment
volume.
Canimals were given 2 Gy /day for 12 days (no treatment was given on days 6
and 7).
*volumes from 5 days after treatment initiation were used, since mice died
shortly thereafter.

181

Y II ___



1.00

~' 0.75
0

E
*' 0.50

0
E
I- 0.25

0
0 15 30 45 60

Time (days)

Figure 2. Single fraction irradiation of animals harboring tumors derived
from p53+/+ and p53-/- cells.

Embryonic fibroblasts transformed with EIA and T24 H-ras were
injected subcutaneously into athymic nude mice and tumor volumes were
monitored (circles, p53+/+; squares, p53-/-). When tumors had reached an
appropriate volume (arrows), animals were treated with 7 Gy ionizing
radiation. Tumor volumes were monitored for a period of more than 2
weeks after treatment. Open squares; tumor #400L; closed squares; tumor
#399R; open circles, tumor #397; closed circles, tumor #396.

treatment was significantly reduced (Figure 3A). Thus, the response period

was shorter and relapse occurred more rapidly. A second p53+ / + clone

(1AR.C10) produced very few tumors when injected into nude mice (2/9).

The tumors that did arise grew slowly, and neither displayed rapid regression

following treatment. However, the single dose protocol produced a

significant lag in tumor expansion, and the multiple fraction protocol

produced a 50% reduction in volume during the course of treatment (Table

1).

Remarkably, tumors derived from p53-/- animals displayed very little

response to single fraction irradiation (Table 1 and Figure 2). Although some
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Figure 3. Retreatment of animals after tumor relapse.
Tumors derived from p53+/+ cells transformed by EA and T24 H-ras

were treated with (A) 5 Gy ionizing radiation (tumor #380) or (B) 7 Gy
ionizing radiation (tumor #384) and monitored for tumor regression. Upon
tumor relapse, animals were retreated with the original dose. The arrows
indicate the times of radiation treatment. In B, tumor volumes could not be
monitored further because the animal developed acute radiation toxicity.

tumors displayed a transient shrinkage or slowed growth, in 13 of 14 instances

tumor volumes had increased by 1 week following treatment. In several

cases, tumors continued growing at their pre-treatment rate (not shown).

Interestingly, fractionation schemes were superior in controlling the growth

of p53-/- tumors, although tumors never regressed (Figure 4). It is worth

noting that the absence of p53 has no influence on the transient G2 arrest that

occurs following treatment of cultured cells with ionizing radiation (Kastan et

al., 1992). Perhaps continuous low dose irradiation maintains cell cycle arrest

in G2.
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Figure 4. Multiple fraction irradiation of mice harboring tumors derived
from p53+ /+ and p53-/- cells.

Embryonic fibroblasts transformed with ElA and T24 H-ras were
injected subcutaneously into athymic nude mice and tumor volumes were
monitored (circles, p53+/+; squares, p53-/-). When tumors had reached an
appropriate volume, animals were treated with ten fractions of 2 Gy ionizing
radiation (with days 6 and 7 left untreated). The shaded bars over each tumor
indicate the treatment window. Where possible, tumor volume was
monitored for a period of more than 2 weeks. In all cases, the mice suffered
acute radiation toxicity and were sacrificed at two weeks. Open squares;
tumor #941L; closed squares; tumor #387R; open circles, tumor #386; closed
circles, tumor #385R.

DISCUSSION

p53 mutations in human cancer have been associated with poor

prognosis. In the present study, we demonstrate that p53 status can influence

tumor response to y-irradiation. Thus, tumors derived from cells expressing

p53 generally regressed upon y-irradiation, whereas p53-deficient tumors

continued to expand. In vitro studies indicate that the differential response of

these tumors may reflect the inability of p53-deficient cells to trigger apoptosis

(Chapter 3). However, these experiments are ongoing, and further
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characterization of this system will be required to confirm this hypothesis.

Nevertheless, these studies provide a potential molecular explanation for the

association between p53 mutation and poor prognosis.

Although p53-deficient tumors were uniformly non-responsive to

ionizing radiation, some p53+/+ tumors also responded poorly following

treatment. Both tumors that displayed a reduced response were derived from

the same p53+/+ clone. This clone was susceptible to apoptosis following

treatment with ionizing radiation in cell culture. Perhaps complicating

factors in the tumor environment modulate the ability of p53-expressing cells

to activate apoptosis in response to y-irradiation. Alternatively, since escape

from apoptosis could promote tumor expansion as well as influence

radiosensitivity (Chapter 3), cells may acquire mutations during the course of

tumor progression (or, in this case, during expansion in cell culture) that lead

to radioresistance. Indeed, resistant tumors may have acquired p53

mutations--either before or after introduction into animals--that reduced

their susceptibility to apoptosis in response to ionizing radiation. Moreover,

p53 mutations confer a selective advantage to tumor cells (Sidransky et al.,

1992), indicating that cells acquiring p53 mutations could readily become the

predominant cell type. It will be interesting to analyze the p53 genes derived

from resistant tumors to determine whether reduced response to y-irradiation

correlates with p53 mutation.

In addition to y-irradiation, several chemotherapeutic agents induce

p53-independent apoptosis in vitro. In this study, we concentrated on

irradiation protocols, primarily because y-radiation is not complicated by

pharmokinetic factors that influence drug delivery. These factors make it is

difficult to extrapolate in vitro drug concentrations to effective doses in vivo.

Nevertheless, will be important to determine whether p53 status also affects
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tumor response to chemotherapeutic agents. In this regard, preliminary

studies indicate that adriamycin causes tumor regression in a p53-dependent

manner.

The experimental system used in this study allowed direct comparison

of tumors derived from cells expressing or lacking p53. Although this study

assessed response to radiation in bona fide tumors, extension of these results

to spontaneous tumors is somewhat premature. It will be important to

determine whether the response of spontaneous tumors can be influenced by

p53 status, and whether tissues other than those of fibroblast origin behave

similarly. However, similar experimental systems may be useful in

developing more effective treatment protocols.
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CHAPTER 6

General Discussion
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SECTION I: Apoptosis and tumor suppression by p53'

The studies presented in this thesis establish a direct mechanism of tumor

suppression in which p53 participates in the destruction of aberrantly growing

cells by an apoptotic process. First, p53 levels and stability increase in response

to EA. p53 accumulation contributes to ElA-associated cell death, since

fibroblasts which lack p53 can express ElA without undergoing apoptosis.

Finally, p53 suppresses transformation by ElA, as demonstrated by the fact that

p53-/ - cells are transformed to a tumorigenic state by EA alone. This

mechanism of tumor suppression suggests that p53 mutations, which typically

occur late in tumor progression, could enhance the survival of cells expressing

oncogenes activated early in tumor progression.

The fact that p53 is expressed in all normal cells without adversely

affecting cell growth or survival implies that p53 activity must be regulated,

particularly under circumstances that limit neoplastic growth. Given this

consideration, several fundamental questions were posed concerning p53 and its

activities as a tumor suppressor gene (see Chapter 1): How is p53 activated and

under what circumstances? What signals or properties of tumor cells (or potential

tumor cells) are responsible for p53 activation? What is the fate of cells in which

p53 has been activated?

The involvement of p53 in the apoptotic response to oncogenes suggests a

model for p53 activity during tumor progression (see Figure 1). In this view, the

signal responsible for p53 activation is an oncogenic stimulus that causes forced

or deregulated proliferation. In response, p53 is activated for tumor suppression

by changes in p53 protein stability that allow p53 accumulation. The subsequent

fate of cells is determined by environmental factors. Thus, cells expressing

stabilized p53 continue to proliferate in a permissive growth environment, but
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Figure 1. p53-dependent apoptosis in apoptotic response to oncogenes.
Oncogenic stimuli can induce a cellular response leading to increases in p53
protein stability. p53 accumulation enhances susceptibility to apoptosis, such
that cells are immediately able execute the apoptotic program in response to anti-
proliferative signals (e.g. serum deprivation, DNA damage). Factors associated
with the anti-proliferative environment either directly or indirectly synergize
with stabilized p53 to activate downstream effectors and promote apoptosis.
Loss of p53 function would enhance the survival of oncogene-expressing cells
(even in an anti-proliferative environment) and allow tumor progression.

trigger apoptosis under conditions where further growth is perceived as

aberrant. Since cells expressing "activated" p53 are highly susceptible to

apoptosis, cells acquiring p53 mutations have a strong selective advantage. In

the absence of the apoptotic pathway, neoplastic growth continues unchecked.

It also has been suggested that p53 loss increases the likelihood that cells

acquire oncogenic mutations by allowing inappropriate proliferation following

DNA damage (Kastan et al., 1992; Lane, 1992). In either case, p53 can be

compared to a "molecular policeman" whose action is required to protect the

organism against the deleterious consequences of genetic damage. However, the

involvement of p53 in oncogene-associated apoptosis suggests a mechanism by

which p53 functions directly in tumor suppression, and accounts for the

observation that p53 mutations are typically observed late in tumor progression.

By contrast, the involvement of p53 in the cellular response to DNA damage
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indirectly suppresses transformation, by reducing the occurrence of oncogenic

mutations. This may initiate neoplastic growth in patients with several heritable

cancer syndromes (e.g. Li-Fraumeni syndrome), and accounts for the accelerated

loss of genomic stability occurring late in tumor progression (Kastan et al., 1992;

Livingstone et al., 1992; Yin et al., 1992).

The requirement for p53 in the cellular response to DNA damage accounts

for the observation that p53-deficient mice develop normally, since p53 is not

required for normal cell cycle progression but rather functions in a cell cycle

checkpoint (Kastan et al., 1992). Similarly, p53 is not required for apoptosis

during embryonic development. The involvement of p53 in apoptosis becomes

apparent, however, upon expression of an oncogene. Apoptosis is particularly

pronounced following serum depletion or treatment with genotoxic compounds.

In mouse thymocytes, p53-dependent apoptosis is observed in response to DNA

damage, but not physiological stimuli (Appendix I). Thus, p53-dependent

growth arrest and apoptosis may be limited to pathological situations that are

not prevalent during embryogenesis.

p53 stabilization

The importance of controlling tumor suppressor activities is analogous to

that of proto-oncogenes, where tight regulation allows proto-oncogenes to be

expressed in normal cells without causing cell transformation. Similarly, normal

cells tolerate p53 expression because its activity is regulated. p53 levels increase

both in response to oncogenes or following DNA damage, with the consequence

of either directly or indirectly suppressing transformation. In both circumstances

p53 expression is regulated at the level of protein turnover.

It remains possible that p53 stabilization is not a cause but a consequence

of "activated" p53. For example, p53 could become stabilized by circumstances

that increase its affinity for DNA, thereby sequestering it from proteases.
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However, it seems unlikely that DNA-binding accounts for p53 stabilization,

since adenovirus-5 p55E1B sequesters p53 outside the nucleus without affecting

p53 accumulation in response to EA (Chapter 2).

Ionizing radiation and ElA may stabilize p53 by similar mechanisms,

since the effects of each treatment on p53 levels are not additive (Chapter 4). It is

possible that ElA, like y-irradiation, induces p53 stability by causing double-

stranded breaks in DNA, perhaps as a consequence of premature S phase entry.

Alternatively, p53 stabilization may occur by separate signal transduction

pathways. The existence of distinct pathways for p53 stabilization has been

demonstrated by the different genetic requirements for p53 accumulation in

response to ultraviolet light and ionizing radiation (Khanna and Lavin, 1993). In

this regard, ElA induces p53 accumulation in HeLa cells (E. White, personal

communication) whereas y-irradiation does not (Fritsche et al., 1993). The

increase in p53 stability occurring upon y-irradiation may require the ataxia-

telangiectasia (AT) gene products ((Kastan et al., 1992); for contradictory data, see

(Lu and Lane, 1993)) and p53 accumulation is blocked by caffeine (Kastan et al.,

1991), It will be important to determine whether E1A can induce p53 in AT

fibroblasts or in caffeine-treated cells.

Decreased p53 turnover could result from modifications in either p53

structure or the cellular environment. EA could stabilize p53 by either directly

or indirectly suppressing cellular proteolytic activities. Alternatively, ElA could

either directly or indirectly alter p53 structure and reduce its susceptibility to

proteolytic degradation. Ubiquitination appears to destabilize p53 in papilloma

virus E6-expressing cells (Scheffner et al., 1990; Scheffner et al., 1993), but

whether a similar mechanism regulates p53 stability in normal cells or in

response to ElA is unknown. Interestingly, ElA induces p53 accumulation in

E6-expressing HeLa cells (E. White, personal communication), implying that the
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mechanism in which EA stabilizes p53 is dominant to E6-facilitated

destabilization (alternatively, ElA may simply suppress E6 expression). It is

conceivable that other structural modifications affect p53 stability. p53 is both

phosphorylated and linked to a short ribonucleotide, but the association between

these modifications and p53 stability has not been tested. However, the

stabilized p53 in ElA-expressing cells has no obvious conformational alterations,

and is unaltered with regard to electrophoretic mobility, subcellular localization,

or interactions with monoclonal antibodies and viral tumor antigens (Chapter 2).

Priming and triggering of apoptosis

Although ElA-associated apoptosis occurs during normal propagation of

cells, cell death is significantly enhanced following treatment with anti-

proliferative agents (Chapters 2-4). Moreover, p53 accumulates in proliferating

cells, and p53 levels do not increase further under apoptotic conditions (Chapters

3 and 4). This suggests that p53 stabilization is not sufficient for apoptosis,

rather, apoptosis appears to require both stabilized p53 and an anti-proliferative

signal.

p53 stabilization may be part of the mechanism in which oncogenes

"prime" cells for apoptosis (for a discussion of "priming" see (Wyllie, 1993)).

Thus, ElA-expressing cells are able to immediately execute the apoptotic

program whereas normal cells are not. Cells expressing ElA and stabilized p53

remain viable under conditions conducive to growth, but lose viability when

exposed to anti-proliferative stimuli. Nevertheless, increased p53 stability is not

sufficient to prime cells for apoptosis, since both p53 overexpression and -

irradiation (which also stabilizes p53) frequently induce cell cycle arrest. EA

enables cells to proliferate despite the presence of high p53 levels, and

presumably cells become primed for apoptosis by the combination of ElA and

stabilized p53.
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Several observations are consistent with the view that apoptosis requires

elevated p53 levels, a growth-inhibitory environment, and forced proliferation.

First, increases in p53 levels and stability are tightly associated with apoptosis in

response to ElA and following y-irradiation of mouse thymocytes (Chapters 2

and 3; Appendix I). Second, cell death is triggered by anti-proliferative stimuli,

including serum depletion and genotoxic agents. In other experiments, p53-

dependent apoptosis was triggered in cells expressing ElA by colchicine, a

microtubule inhibitor that blocks mitosis (data not shown). Third, regions of

E1A required for apoptosis correspond to those that stimulate cell proliferation

(White et al., 1991). It will be important to determine whether these same regions

are sufficient for p53 stabilization. Fourth, ElA circumvents cellular controls that

limit proliferation. Thus, p53 levels in E1A/T24 H-ras expressing cells are as

high as those that occur in growth-arrested fibroblasts following y-irradiation

(Chapter 3). Although irradiated fibroblasts expressing stabilized p53 undergo

transient growth arrest, cells co-expressing ElA and T24 H-ras grow rapidly

(Chapters 3 and 4). Moreover, cells expressing ElA continue to proliferate upon

transfer to mitogen-poor medium or following y-irradiation, even as they die by

apoptosis (Chapters 3 and 4). Taken together, these observations suggest that

p53 functions as part of a general mechanism to selectively destroy aberrantly

growing cells.

Growth Arrest or Apoptosis?

Forced overexpression of p53 can induce either growth arrest or apoptosis

(see, for example, (Michalovitz et al., 1990; Yonish-Rouach et al., 1991)).

Similarly, physiological stimuli that stabilize p53 have been associated with both

growth inhibition and apoptosis (Chapter 4; Appendix I; (Kastan et al., 1992)). In

these studies, ElA altered the cellular response to stabilized p53 from growth

arrest to apoptosis. For example, treatment of normal fibroblasts with ionizing
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radiation stabilizes p53 and induces p53-dependent growth arrest (Chapter 4;

Kastan et al., 1992). The E1A oncogene, and perhaps other oncogenes as well,

bypasses p53-dependent G1 arrest following y-irradiation, leading to aberrant

proliferation and p53-dependent apoptosis. Thus, stimuli that normally limit

proliferation instead induce apoptosis in cells unable to respond appropriately

due to the expression of an oncogene.

The observation that ElA bypasses p53-dependent growth arrest suggests

that p53 is primarily concerned with negative growth regulation, and is

consistent with the notion that apoptosis is a consequence of abnormal growth.

Thus, fibroblasts lacking p53 display no overt susceptibility to apoptosis, but

have a greatly enhanced proliferative capacity as defined by the ability to grow at

clonal densities (Chapter 3). p53-deficient cells cycle faster, require less time to

pass through G1, and leave the cycling state more slowly than wild-type MEFs

(Chapter 3). Thus, in fibroblasts, the involvement of p53 in apoptosis is only

apparent in oncogene-expressing cells [However, note that primary thymocytes

are susceptible to p53-dependent apoptosis in response to ionizing radiation

(Appendix 1)].

How does stabilized p53 induce growth arrest? The recent cloning of

CIP/WAF1 has provided a direct link between p53 accumulation and growth

inhibition. In normal fibroblasts, increases in p53 levels activate CIPI/WAFl

transcription (El-Deiry et al., 1993). Subsequently, the CIP/WAF1 gene product,

p21, associates with the cylin dependent kinases (cdks) and inhibits their activity

(Harper et al., 1993). Since active cdk4/cyclin D complexes phosphorylate the

retinoblastoma gene product (Rb) and release the E2F transcription factors for

initiation of S phase (Ewen et al., 1993), p53 could arrest cell growth, in part, by

indirectly suppressing cdk activity and Rb phosphorylation. However, E1A

sequesters Rb, and therefore cells contain free E2F even though Gl-specific
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cyclin-dependent kinases are inactive. This may explain why ElA-expressing

cells bypass p53-dependent growth arrest following y-irradiation.

How does stabilized p53 induce apoptosis? p53 could induce apoptosis

directly, by regulating genes involved in the apoptotic process. In this view, the

genes regulated by p53 in ElA-expressing cells must be distinct from those in

normal cells (which lead to growth inhibition). Perhaps stabilized p53 expressed

in growing cells synergizes with a factor normally not present in p53-arrested

cells to regulate apoptotic genes. Free E2F is a candidate for such a factor, since

E2F would normally be sequestered in p53-arrested cells.

Alternatively, stabilized p53 may regulate the same set of genes under

circumstances that lead to both growth arrest and cell death, and apoptosis

occurs as a result of distinct downstream factors. Consistent with this view, it

has been suggested that p53-induced apoptosis results from an incompatible

combination of growth-promoting and growth-inhibitory stimuli (Yonish-

Rouach et al., 1993). A molecular basis for "conflicting signals" has been

described above: cells expressing E1A (and stabilized p53) can induce

CIP1lWAF and suppress cdk activity, but since Rb is sequestered, this inhibition

has no effect on the availability of free E2F. Thus, cells contain inactive cyclin-

dependent kinases and "active" E2F, a situation that does not exist in normal

cells. This may trigger apoptosis, perhaps by synergistic action of "inactive" cdk

(or the absence of active cdk) and "active" (i.e. free) E2F. In cells lacking p53 or in

adenovirus-transformed cells--which are resistant to apoptosis--p21CIP1/WAF is

not associated with cdk/cyclin complexes (Xiong et al., 1993). Therefore, these

cells contain active cyclin-dependent kinases and free E2F, which is compatible

with proliferation.

Does p53-dependent apoptosis occur only in response to ElA?

The above sections propose a model whereby p53 participates in a
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mechanism to eliminate aberrantly growing cells. While this view is based solely

on cellular responses to a viral oncogene, the principles identified here may have

general relevance for oncogenic transformation and tumor progression. For

example, cell proteins that interact with ElA regions that promote apoptosis may

normally serve as distal targets of signal transduction pathways by which

external stimuli regulate cell growth and survival (White et al., 1991; Ruley,

1990). By interfering with these activities, ElA mimics cellular activities involved

in spontaneous transformation.

Like ElA, certain cellular oncogenes induce both proliferation and

apoptosis, including c-myc and the E2A-PBX1 encoded protein (Evan et al., 1992;

Dedera et al., 1993). While the involvement of p53 in myc and E2A-PBX1-

associated apoptosis has not been thoroughly examined, several observations

suggest that myc-induced apoptosis may involve p53. First, dominant-negative

p53 alleles synergize with myc in ras-co-transformation of primary cells (Eliyahu

et al., 1989). Second, overexpression of these p53 mutants in certain myeloid

leukemia lines reduces myc-induced sensitivity to genotoxic drugs (Lotem and

Sachs, 1993). Third, activation of c-myc and p53 mutation commonly occur in the

same tumors, particularly in Burkitt's lymphoma (Gaidano et al., 1991). This

observation is reminiscent of the incompatibility between E1A and endogenous

p53 expression (Chapters 2 and 3). Finally, preliminary studies indicate that p53-

deficient mouse embryonic fibroblasts are resistant to myc-induced apoptosis

(data not shown).

The fact that a viral oncogene induces p53-dependent apoptosis suggests

that p53 stabilization and apoptosis may represent a natural defense against viral

infection. Indeed, the human immunodeficiency virus induces apoptosis upon

acute infection (Laurent-Crawford, et al., 1991), and both Epstein-Barr virus and

Sindbis virus express viral proteins that modulate apoptosis (Gregory, et al.,
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1991; Levine, et al., 1993). However, the involvement of p53 in these processes

has not been examined. E1A sequences required for apoptosis map to conserved

region 1, and related sequences exist in both SV40 large T antigen and HPV E7

(Ruley, 1990). Thus, it would not be surprising if E7 or certain T antigen mutants

(encoding conserved region 1 but lacking the p53 binding domain) also induce

apoptosis.

p53 is also required for radiation-induced apoptosis in primary mouse

thymocytes (Appendix 1; Clarke et al., 1993). Again, p53 accumulation

accompanies apoptosis (Appendix 1). p53-dependent apoptosis appears specific

for agents that damage DNA, since other stimuli (such as glucocorticoids) induce

apoptosis in a p53-independent manner. This may protect the organism from the

potentially deleterious consequences of aberrant T cell receptor rearrangement,

by eliminating cells containing broken DNA ends that might otherwise produce

chromosomal rearrangements. Thymocytes are extremely susceptible to

apoptosis, but unlike fibroblasts expressing E1A, immature thymocytes do not

proliferate. Thus, p53-dependent apoptosis in thymocytes may represent a

distinct mechanism from ElA-associated apoptosis in fibroblasts. However, it

remains possible that proliferation-associated changes accompany radiation-

induced apoptosis in thymocytes. Identification of additional activities involved

in both processes will be required to clarify this issue.

Other direct mechanisms of tumor suppression by p53

The observation that E1A stabilizes p53 arose from studies investigating

ras-induced cell cycle arrest (see Chapter 1). p53 may participate in this process,

since both ElA (which prevents p53-dependent arrest following Yirradiation, see

Chapter 4) and dominant-negative p53 alleles circumvent ras-induced arrest.

Consistent with this view, activated ras oncogenes are unable to promote clonal

outgrowth in wild-type embryonic fibroblasts, but morphologically transform
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p53-deficient cells (not shown). In should be noted that, unlike in EA-

expressing cells, increases in CIP1/WAF activity in ras-expressing cells could

inhibit Rb phosphorylation and prevent release of E2F. Indeed, this model

accounts for the observation that ElA-induced apoptosis is dominant to ras

arrest, since E1A blocks p53-dependent growth arrest but ras does not prevent

apoptosis (Chapters 3 and 4).

While p53 accumulation was not observed following ras-induced arrest

(Chapter 1), increases in p53 levels may not be required to maintain the arrested

state. For example, UV irradiation of fibroblasts stabilizes p53 and induces

growth arrest, but p53 levels decline long before cells resume proliferation (Lu

and Lane, 1993). Alternatively, increases in p53 levels may not be necessary for

ras-induced arrest. Nevertheless, p53-dependent arrest in response to oncogenes

may represent another direct mechanism of tumor suppression by p53.

In addition, p53 could directly inhibit neoplastic growth by its

involvement in cellular senescence. In these studies, p53 loss appeared sufficient

for immortalization (Chapter 3). Therefore, p53 mutation may release the cell

from normal growth controls that limit proliferative capacity, allowing unlimited

population expansion. It is presently unclear what factors activate p53 for

cellular senescence, or even whether senescence involves p53 stabilization.

SECTION II: Implications of p53 mutation and escape from apoptosis

p53 mutation and tumor progression

Since tumor expansion is determined by the balance between cell division

and cell loss, factors that influence either proliferation or viability could have a

dramatic effect on tumor progression. Therefore, increases in cellular

susceptibility to apoptosis limit neoplastic growth, while mutations that suppress

apoptosis promote tumor expansion (see discussion in Chapter 1). In these
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studies, p53-dependent apoptosis has been established as a cellular mechanism

that limits tumor expansion. Perhaps high cell density or limiting concentrations

of growth factors, conditions that trigger apoptosis in cell culture, also are

prevalent in the emerging tumor. Thus, p53 mutations prevent neoplastic cells

from sensing growth-limiting factors and allow proliferation to continue

unchecked. As discussed above, this accounts for the association between p53

mutation and malignant progression (see also, (Kemp et al., 1993)).

It is often assumed that p53 mutations promote neoplastic transformation

by a dominant-negative mechanism. Indeed, forced overexpression of mutant

p53s can inhibit wild-type function (Kern et al., 1992). It is unclear, however,

whether all mutant p53s function as dominant-negative inhibitors under

physiological circumstances. In these studies, the effects of p53-deficiency on the

cell growth and survival were surprisingly dose-dependent (Chapters 3 and 4;

Appendix 1), implying that point-mutations leading to partial loss of p53

functions may provide a selective advantage in the absence of a dominant-

negative effect. This could allow the growth of an expanded cell population

from which p53-deficient variants arise.

p53 mutations and metastasis

Tissue homeostasis and integrity may be determined, in part, by factors

that inform cells of their environment. The location and concentrations of these

molecules may influence net tissue expansion or confine cells to specific tissues.

It has been suggested that apoptosis is activated when concentrations of these

factors ("survival factors") decrease below a certain threshold, for example, when

cells outgrow their nutrient supply or migrate to a foreign environment (Raff,

1992). However, during metastasis, tumor cells become able to tolerate foreign

environments. Thus, the susceptibility of tumor cells to apoptosis may limit

metatstatic spread.
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Since p53 may participate in the process by which environmental factors

influence apoptosis (Chapter 2 and 3), p5 3 mutation could increase the likelihood

of metastasis. Indeed, p53 mutation has been associated with metastasis in

several tumor types. This is particularly striking in gastric cancer, where p53

mutations were observed in the metastases, but not primary tumors, of several

patients (Yamada et al., 1991).

p53 mutation and tumor response to cancer therapy

It is becoming more apparent that anticancer agents elicit their cytotoxic

effects by triggering apoptosis. Similarly, mutations affecting cell death

pathways may be responsible for non-responsive tumors or tumor relapse.

These studies suggest that certain oncogenes may sensitize cells to apoptosis,

which can be triggered by anticancer agents in a p53-dependent manner (Chapter

4). p 5 3 mutations may influence tumor response to anticancer agents and

ultimately patient prognosis by decreasing the efficiency with which these agents

trigger apoptosis. Indeed, the absence of p53 eliminated the response of tumors

to ionizing radiation using a transplanted tumor model (Chapter 5).

It is presently unknown whether p53-dependent apoptosis influences

tumor response to anticancer agents in human cancer. Although discussed

extensively in Chapters 4 and 5, it is worth re-stating that p53 mutations are: (i)

more prevalent in tumor types that are notoriously refractile to treatment, (ii) are

associated with poor prognosis, and (iii) have been correlated with tumor

relapse. Although these studies are suggestive, they fall far short of proving that

p53-dependent apoptosis influences tumor response to cancer therapy.

Nevertheless, the situation in acute lymphoblastic leukemia (ALL) is

particularly compelling. The original studies examining the frequency p53

mutation in ALL were contradictory: several groups detected very low

frequencies of p53 mutation in ALL (Gaidano et al., 1991; Jonveaux and Berger,
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1991), while another study suggested p53 mutation was a common event

(Yeargin et al., 1992). This discrepancy was clarified when it became apparent

that the specimens containing p53 mutations were from relapse patients, whereas

the specimens lacking p53 mutations were obtained at tumor presentation (prior

to chemotherapy) (Yeargin et al., 1993). In the only published instance where

presentation and relapse specimens were analyzed from the same patient, a p53

mutation was observed only in the relapse specimen (Felix et al., 1992).

Moreover, it was noted that this patient did not respond further to therapy. In 6

of 8 similar comparisons, p53 mutations were associated with tumor relapse (M.

Haas, personal communication). While these studies were not designed to

associate p53 mutation with tumor response to anticancer agents, it is striking

that p53 mutations would be specific for relapse specimens. Thus, the only cells

that survived the initial therapy must have possessed or acquired a mutation

within the p53 gene.

In order to develop better treatment and diagnosis of human cancer, it will

be necessary to determine whether p53 and apoptosis contribute to tumor

response to anticancer agents. Present studies related to this issue suffer from

several limitations. First, no study has been designed to correlate tumor

response with p53 status. Second, many studies do not adequately take into

account tumor stage when determining the frequency of p53 mutations in a

given tumor type. Since p53 mutations typically occur late in tumor progression,

this information is essential. Third, p53 accumulation has been equated with p53

mutation. Thus, p53 immunochemical staining of paraffin sections has been used

extensively to assess mutation frequencies. However, in situations this has been

examined, considerable disagreement exists whether p53 accumulation reflects

mutation (for two opposing views concerning p53 accumulation and mutation in

breast cancer, see (Thompson et al., 1992; Harris et al., 1992)). Finally, the
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limitations of human research have prevented comparison of p53 status from the

same tumor at different stages (e.g. primary tumor vs. metastasis; presentation

vs. relapse specimen) as recently described for ALL. Such comparisons are

clearly the most informative, and further examination of p53 status in these types

of specimens will be required to resolve this issue.

SECTION III: Mechanisms of transformation by EA and cooperating

oncogenes

In order to identify mechanisms by which p53 suppresses transformation,

we examined the role of p53 in regulating the cellular response to transfected

oncogenes. These studies addressed the following questions: Does the presence

of endogenous p53 suppress transformation by individual oncogenes, specifically

ElA? Do oncogenes that collaborate with ElA in transformation circumvent

transformation suppression by endogenous p53? Finally, does apoptosis play a

direct role in suppressing oncogenic transformation?

In addressing these questions, these studies provide insight into the

biological and biochemical basis for transforming interactions between ElA and

both viral and cellular oncogenes. Consider the following: (i) p53 was required

for ElA induced apoptosis (Chapters 3 and 4), (ii) p53-dependent apoptosis was

associated with increases in p53 levels and stability (Chapters 2 and 3), (iii) high

p53 levels were not sufficient for apoptosis, rather, apoptosis was associated with

aberrant cell cycle progression (Chapters 3 and 4), (iv) E1B had no additional

effect on p53 stability (Chapter 2), but suppressed apoptosis (Chapters 2 and 3),

(v) absence of p53 substituted for E1B in promoting growth, survival, and

transformation with ElA (Chapters 3 and 4), and (vi) activated ras oncogenes do

not block p53-dependent apoptosis (Chapters 2-5), but collaborate with ElA to

transform cells to a highly tumorigenic state (Chapters 2 and 5).
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Figure 2. ElA-associated apoptosis.
ElA expression induces proliferation and, at the same time, increases p53

protein stability. Cells expressing stabilized p53 are "primed" for apoptosis; they
can continue to proliferate in a permissive environment but trigger apoptosis in
an anti-proliferative environment. Even under normal culture conditions, cells
expressing E1A alone are highly prone to apoptosis, such that permanent cell
lines cannot be established.

p53 and E1A-associated apoptosis

One view of p53 function in ElA-associated apoptosis is illustrated in

Figure 2 (see discussion above). Cells expressing ElA contain stabilized p53 and

are susceptible to p53-dependent apoptosis. Cells expressing stabilized p53 can

either proliferate or initiate apoptosis, and apoptosis is enhanced by anti-

proliferative stimuli such as serum deprivation or genotoxic agents. For cells

expressing ElA alone, apoptosis occurs during the normal propagation of cells.

Thus, co-expression of ElA and endogenous p53 is largely incompatible with

long term growth. In REF52 cells expressing ElA, cells lose ElA expression

(Chapter 2); in ElA-expressing MEFs, p53 expression is selected against (Chapter

3). Cellular susceptibility to p53-dependent apoptosis apparently suppresses

transformation by ElA, since p53-deficient cells are transformed by E1A alone

(Figure 3).
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Although considered an "immortalizing" oncogene, ElA was inefficient at

promoting colony outgrowth in normal embryonic fibroblasts (Chapter 3).

Alternatively, stable cell lines expressing E1A were readily established from p53-

deficient cells, while the only ElA-expressing line obtained cells containing

endogenous p53 suffered p53 loss during clonal expansion. It has been

suggested that immortalization by ElA requires additional genetic changes

(Zerler et al., 1986). These results suggest that these changes involve p53

mutation and escape from ElA-associated apoptosis.

Transformation involving escape from p53-dependent apoptosis

The interactions between ElA and p53 have particular relevance to the

role of E1B in adenovirus transformation (Figure 3). These studies suggest that

the elevated p53 levels observed in adenovirus-transformed cells are due neither

to E1B binding nor oncogenic transformation, but reflect a cellular response to

ElA expression. While having no additive effect on p53 levels, E1B protects

against p53-dependent apoptosis and enables ElA to transform. In this regard,

the absence of p53 substituted for E1B activities, and E1B provided no significant

advantage to p53-deficient cells. Thus, the primary function of the E1B proteins

in adenovirus transformation-and perhaps adenovirus replication as well--is to

counteract the effects of stabilized p53.

Several other genes that cooperate with ElA in oncogenic transformation

of normal cells appear to block p53-dependent apoptosis. These include the bcl-2

oncogene (Rao et al., 1992) and mutant p53 alleles (Debbas and White, 1993).

Taken together, these data suggest that inhibition of p53-dependent apoptosis

occurs by at least two mechanisms. Cooperative interactions between ElA and

either p55E 1B or mutant p53 proteins probably involve physical interactions with

p53 that inhibit transcriptional transactivation (Yew and Berk, 1992; Kern et al.,

1992; Zambetti et al., 1992; Farmer et al., 1992). Alternatively, the p19E1B and bcl-2
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Figure 3. Oncogenic transformation involving escape from p53-dependent
apoptosis.

E1B, while having no effect on ElA-induced p53 stabilization, inhibits
p53-dependent apoptosis. E1B prevents apoptosis by two distinct mechanisms:
by direct binding to p53 (p55ElB) and by interfering with the apoptotic pathway
(p19E1B). Thus, cells proliferate rather than undergo apoptosis, are non-
responsive to anti-proliferative signals, and are weakly tumorigenic. The
primary function of both E1B proteins is to inhibit p53-dependent apoptosis,
since p53 absence substitutes for E1B in promoting growth, survival, and
transformation of ElA-expressing cells.
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oncogenes act downstream of p53 by interfering with the apoptotic pathway

(Rao et al., 1992). The latter mechanism is apparently more efficient, since p19E1B

is better than p55E1B at blocking apoptosis (Rao et al., 1992).

Oncogenic transformation involving ras oncogenes

The transforming interactions between ElA and activated ras oncogenes

are distinct from those involved in adenovirus transformation. While E1B

suppresses apoptosis, cells transformed by E1A and T24 H-ras are highly

tumorigenic yet remain sensitive to apoptosis. ras p21s normally are involved in

signal transduction pathways that propagate external growth signals from the

cell surface to the nucleus. It is possible that the potent proliferative activities of

activated ras oncogenes compensate for cell loses due to EA (Figure 4).

Consistent with this, ElA-expressing cells transformed by ras grow faster than

their E1B-expressing counterparts, both in cell culture and as tumors.

Nevertheless, anti-proliferative stimuli are capable of inducing p53-dependent

apoptosis in the presence of activated ras oncogenes, suggesting that cell death is

not simply due to lack of growth or survival factors.

Alternate routes to transformation.

These studies demonstrate that oncogenic transformation can occur by

distinct mechanisms, which alter the balance of growth, survival and

transformation in different ways. This is perhaps not surprising, since neoplastic

transformation can involve a plethora of activated oncogenes and inactivated

tumor suppressor genes. One route to transformation involves forced

proliferation and inactivation of the apoptotic response. However, escape from

apoptosis is neither a prerequisite for, nor a consequence of, oncogenic

transformation. Thus, cells can be highly tumorigenic but susceptible to

apoptosis. The latter mechanism implies that tumor growth can occur while cells
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Figure 4. Transformation involving ras oncogenes.
ras oncogenes have no effect on ElA-induced p53 stabilization or the

ability of anti-proliferative signals to trigger p53-dependent apoptosis in E1A-
expressing cells. However, ras compensates for cell losses due to EA, perhaps
by providing a strong proliferative signal. Thus, cells co-expressing EA and ras
are highly tumorigenic yet remain sensitive to apoptosis. Since susceptibility to
apoptosis requires p53 stabilization, apoptosis cannot be triggered in p53-
deficient cells. Under these circumstances, rapid proliferation continues without
apoptosis.

207

ElA + ras

ElAZ/t E1A

v O At-- 



remain genotypically susceptible to apoptosis, and accounts for the observation

that apoptosis is a common feature of malignant tumors.

SECTION IV: Experimental approach

The observations and conclusions of this thesis were strengthened by the

use of an experimental approach that, until recently, has been impossible in

mammalian systems. The production of animals with homozygous inactivation

of the known genes has permitted the isolation of cell populations in which gene

function can be examined in a systematic manner. Analysis of gene function in

cells derived from "knock-out" mice combines the power of classical genetic

approaches (i.e. null mutants) with the strengths of mammalian cell culture

systems (e.g. gene transfer technology, cell biology).

In this study, embryonic fibroblasts derived from mice containing

disrupted p53 genes were used to study the role of p53 in regulating cellular

responses to transfected oncogenes. Because these cells were essentially identical

except for the status of their p53 genes, differences in cellular responses could be

directly attributed to p53 function. Similar analysis of embryonic fibroblasts

derived from mice deficient for other genes should provide further insight into

the mechanisms of normal and neoplastic growth.

SECTION V: Future directions

Much of the experimentation described here was directed at

demonstrating that p53 is involved in apoptosis. Now that this is apparent, it

will be important to develop a better understanding of other molecules involved

in the apoptotic program. Presently, little is known about the molecular

pathways leading to p53 stabilization or factors downstream of p53 that elicit the

biological response. What is the cellular lesion(s) responsible for the decision to

activate the death program? What detects cellular damage or stress? How does

208



aberrant growth and/or cellular damage increase p53 stability? Does p53 mediate

apoptosis (i.e. directly regulate apoptotic genes) or is apoptosis indirect? What

additional activities are involved in the apoptotic response? How does E1A alter

the cellular response to stabilized p53 from growth arrest to apoptosis? This last

question is of particular interest, since a molecular understanding of this process

may provide insight into the regulation of cell cycle checkpoints. In addition, it

will be important to determine what other oncogenes induce p53-dependent

apoptosis (e.g. c-myc).

These studies may have relevance to human cancer, particularly with

regard to mechanisms that determine the cytotoxicity of anticancer agents. p53 -

dependent apoptosis was required for effective killing by several anticancer

agents in cell culture and p53 status influenced tumor response to y-irradiation.

A much more detailed analysis of p53 mutation during tumor progression and

upon tumor relapse will be required to determine whether similar mechanisms

influence tumor progression and response in human cancer. If so, systems

analogous to those described in Chapters 4 and 5 may be useful in identifying

novel anticancer drugs, including agents that restore p53 activities or activate

apoptosis in a p53-independent manner.
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APPENDIX 1

p53 is required for radiation-induced apoptosis in mouse thymocytes

This work is published: Lowe, S. W., Schmitt, E. M., Smith, S. W., Osborne, B. A.,
and Jacks, T. (1993) Nature 362, 847-849.
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INTRODUCTION

The p53 tumor suppressor gene is the most widely mutated gene in

human tumorigenesis (Hollstein et al., 1991; Levine et al., 1991). p5 3 encodes a

transcriptional activator (Fields and Jang, 1990; Raycroft et al., 1990; Farmer et al.,

1992; Kern et al., 1992; Zambetti et al., 1992) whose targets may include genes

that regulate genomic stability (Livingstone et al., 1992; Yin et al., 1992), the

cellular response to DNA damage (Kastan et al., 1991; Kastan et al., 1992), and

cell cycle progression (Michalovitz et al., 1990; Martinez et al., 1991).

Introduction of wild-type p53 into cell lines which have lost endogenous p53

function can cause growth arrest (Mercer et al., 1990; Diller et al., 1990; Baker et

al., 1990) or induce a process of cell death known as apoptosis (Yonish-Rouach et

al., 1991; Shaw et al., 1992).

During normal development, self-reactive thymocytes undergo negative

selection by apoptosis (MacDonald and Lees, 1990), which can also be induced in

immature thymocytes by other stimuli, including exposure to glucocorticoids

(Wyllie, 1980) and ionizing radiation (Sellins and Cohen, 1987). Although normal

negative selection involves signaling through the T cell receptor (MacDonald and

Lees, 1990), the induction of apoptosis by other stimuli is poorly understood. We

have investigated the requirement for p53 during apoptosis in mouse

thymocytes. We report here that immature thymocytes lacking p53 die normally

when exposed to compounds that may mimic T cell receptor engagement and to

glucocorticoids but are resistant to the lethal effects of ionizing radiation. These

results demonstrate that p53 is required for radiation-induced cell death in the

thymus but is not necessary for all forms of apoptosis.
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METHODOLOGY

p53-deficient animals

Mutant mice used in these experiments carried a germline disruption of

the p53 gene (T.J. and R. Weinberg, unpublished) that was made by gene

targeting in D3 embryonic stem cells (Gossler et al., 1986). The mutation consists

of a replacement by the bacterial neo gene of p53 sequences between exons 2 and

6; immunoprecipitation analysis has confirmed that the mutation eliminates

production of p53 protein (Livingstone et al., 1992). The mutation is carried on a

hybrid (C57BL/6 x 129/sv) genetic background. Although genetic background is

known to influence the sensitivity of thymocytes to treatments such as irradiation

(Mori et al., 1992), we obtained consistent results from all animals within a given

genotype.

Viability of isolated thymocytes

Thymocytes were prepared from animals between 5 to 8 weeks by

removing the thymus and dispersing cells in PBS. In preliminary studies, >50%

of untreated thymocytes spontaneously underwent apoptosis during the course

of a typical experiment (24 hours), making it difficult to determine the effects of

the experimental treatments. Therefore, culture conditions were optimized to

maximize the viability of untreated cells. Since fluctuations in pH during

thymocyte manipulation prior to treatment could diminish viability, medium

containing 25mM HEPES (pH 7.2) was compared to standard bicarbonate

buffered medium. Also, serum concentrations were varied in order to maximize

thymocyte viability. At all serum concentrations, thymocyte viability was greater

in HEPES-buffered medium (between 2% and 10% FBS), although viability

declined in medium containing 20% FBS (Figure 1).

Cell density was varied to maximize viability during the 24 hour

treatment period. Surprisingly, cell density had little effect on viability in 5%
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Figure 1. Effect of buffers and serum concentration on thymocyte viability.
Thymocytes were isolated from a wild-type animal (6 weeks old), adjusted

to a density of 1 x 106 /ml, and incubated in media containing either bicarbonate
buffer (black) or HEPES buffer (shaded) and the indicated concentration of FBS.
Cell viability was measured at 24 hours by FITC uptake and flow cytometry.
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Figure 2. Effect of cell density on thymocyte viability.
Thymocytes were isolated from a wild-type mouse (6 weeks), adjusted to

the indicated density, and incubated in HEPES-buffered DME supplemented
with either 5% FBS (closed circles) or 10% FBS (open circles). After 24 hours at
370C, cell viability was estimated by uptake of F1TC and flow cytometry.
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FBS, but viability declined significantly with increasing cell density in 10% FBS

(Figure 2). Based on these results, all experiments used DME supplemented with

5% fetal bovine serum and 25 mM HEPES (pH 7.2) at 2 x 106 cells/ml. All

thymocytes were isolated from mice age 4.5-7 weeks. At time zero, cultures were

treated as described, transferred to 16mm wells, and incubated at 370C. The

relative amounts of nonviable cells were determined at various times by uptake

of fluoroscein isothiocyanate (FITC) and flow cytometry (see Chapter 3 and (Shi

et al., 1990)). A representative example of flow cytometry data from a viable and

non-viable population is shown in Figure 3. Cell death by apoptosis was

confirmed by analysis of genomic DNA (Wyllie, 1980). Irradiation was

performed with a GammaCell 40 equipped with a 137Cs source.

Thymocyte apoptosis in vivo

Thymocytes were recovered from mice 48 hours after treatment with 0.5

mg dexamethasone (administered by intraperitoneal injection in phosphate

buffered saline, PBS), gamma irradiation (500 rad), or no treatment and stained

with phycoerythrin-conjugated anti-CD4 and FITC-conjugated anti-CD8

antibodies (anti-L3T4 and anti-Lyt 2, Becton Dickinson). Multiparameter

analysis of live cells was carried out on a FACStar Plus (Becton Dickinson).

Dead cells were excluded by staining with propidium iodide and by gating of

forward and side scatter of light during FACS analysis. The relative

contributions of CD4 and CD8-expressing subpopulations were estimated using

the Disp2D program (Becton Dickinson). Total genomic DNA was analyzed

from 106 thymocytes isolated 10 hours after the treatments described above,

according to the protocol of Barry and Eastman (Barry and Eastman, 1993).
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Figure 3. Flow cytometry of viable and non-viable thymocytes.
Thymocytes were isolated from a wild-type animal treated with 5 Gy

ionizing radiation. Cell viability was determined by uptake of FITC and flow
cytometry. Dead cells have increased green fluorescence. (A, B) dot plots
illustrating cell size (LFLS, log forward light scatter) versus green fluorescence
from representative samples. (A) untreated thymocytes at time 0; (B) 18 hours
after treatment with 5 Gy ionizing radiation. Histograms of the same samples
are illustrated directly below (C and D). The percentage of viable cells was
determined from histograms using Coulter software. The dashed line delineates
the cutoff between viable and non-viable cells.

Western blot analysis

Thymocytes were isolated as described above, except the cultures were

incubated in 75 cm2 tissue culture flasks (10 ml/flask). For each sample, 2 x 107

cells were treated, washed in PBS, and lysed in Laemmli buffer (Harlow and

Lane, 1988). The proteins were separated on 7.5% SDS-polyacrylamide gels and

transferred to PVDF membranes (Millipore). Membranes were blocked and

probed with a pool of p53-specific monoclonal antibodies (PAb421, PAb240, and

PAb248) (Yewdell et al., 1986; Gannon et al., 1990). p53 was detected using an
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alkaline phosphatase-conjugated secondary antibody and a chemiluminescent

substrate ((Haldi and Guarente, 1989; Isaacs et al., 1991); Lumi-Phos 530,

Boehringer-Mannheim).

RESULTS

p53-dependent and independent apoptosis in vitro

Because of the potential involvement of p53 in inducing apoptosis

(Yonish-Rouach et al., 1991; Shaw et al., 1992; Kern et al., 1992; Lindquist, 1992),

we studied cell death in thymocytes derived from mice carrying a germline

disruption of the p53 gene (T. J. and R. Weinberg, unpublished). Thymocytes

were isolated from p53 homozygous mutant, heterozygous, and wild-type

animals and subjected in vitro to various treatments known to induce apoptosis.

There were no significant differences between viability of untreated thymocytes

over the time period of the experiments (Figure 4); on average, viability of

untreated cells was approximately 70% at 24 hours. Although treatment with

phorbol ester/calcium ionophore (which may mimic engagement of the T cell

receptor (Crabtree, 1989)) and dexamethasone induced death with similar

kinetics in thymocytes of all three genotypes (Figure 5A, B), p53-deficient cells

displayed a dramatic resistance to the effects of ionizing radiation (Figure 5C).

Moreover, the p53-deficient thymocytes remained viable following doses up to

2000 centiGray (cGy); wild-type cells were susceptible to treatment with as little

as 100 cGy (Figure 6). In addition, at all doses and times examined, cells isolated

from heterozygous animals displayed intermediate viability compared to wild-

type and homozygous mutant animals (Figures 5 and 6).

Apoptosis in vivo

We further tested the effects of dexamethasone and y-irradiation on

thymocyte survival in vivo. Thymocytes isolated from treated animals were
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Figure 4. Viability of untreated thymocytes in vitro.
Thymocytes were isolated from p53+/+ (circles), p53+/- (triangles), and

p53-/- (squares) animals and incubated in normal growth medium (HEPES-
buffered DME supplemented with 5% FBS). At various times, cell viability was
determined by uptake of FITC and flow cytometry.

examined for the presence of the cell-surface markers CD4 and CD8 using two-

color flow cytometry. Thymuses from untreated normal and mutant animals

contained approximately 75-80 % immature, CD4+CD8+ cells, which are

susceptible to apoptosis (Smith et al., 1989). Forty-eight hours following

treatment with dexamethasone, all thymuses sustained a significant reduction in

cell numbers which could be attributed to selective loss of CD4+CD8+ cells

(Figure 7A, B). Similarly, thymuses from wild-type animals exposed to gamma

radiation contained a low percentage of CD4+CD8+ cells (Figure 7A, B). In

contrast, irradiation of p53 homozygous mutant animals caused only minor

reductions in CD4+CD8+ cells (Figure 7A, B).
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Figure 5. Induction of apoptosis in isolated thymocytes.
Thymocytes were treated with (A) 10 nM phorbol ester (phorbol 12-

myristate 13-acetate, PMA) and 500 nM calcium ionophore (A23187), (B) 1 M
dexamethasone, or (C) 5.0 Gy ionizing radiation, and viability was assessed at
various times thereafter. Thymocytes were isolated from p53-/- (squares), p53+/-
(triangles), and p53+/+ (circles) animals. Values represent the average viability
from 4 independent experiments with standard deviations; each experiment
compared cells derived from one mutant, one heterozygote, and one wild-type
animal and were normalized to untreated samples from the same animal. Two
experiments utilized littermates derived from F1 crosses.

Conditions that induced cell death produced the internucleosomal

degradation of thymic DNA, which is indicative of apoptosis (Wyllie et al., 1984)

(Figure 7C). This characteristic "DNA ladder" was not evident following

irradiation of homozygous mutant animals (Fig. 3c). Consistent with the data

from in vitro experiments, mice that were heterozygous for the p53 mutation

were less susceptible than wild-type mice to the effects of ionizing radiation, both

in survival of CD4+CD8+ cells and extent of DNA laddering (Figure 7 B,C).

p53 levels during apoptosis

Given the apparent requirement for p53 function in radiation-induced

apoptosis of thymocytes, we examined steady-state level of p53 protein in wild-

type cells following exposure to ionizing radiation. Consistent with findings in
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Figure 6. Viability of isolated thymocytes treated ionizing radiation.

Thymocytes were isolated from p53-/- (squares), p53+/- (triangles), and
p53+/+ (circles) animals and treated with the indicated doses of ionizing
radiation. Viability was assessed after 20 hours by FITC uptake and flow
cytometry. Values represent averages from 3 independent experiments and are
normalized to the amount of viable cells remaining in untreated cultures derived
from the same animal.

Figure 7. Thymocyte apoptosis in vivo (next page)
p53 homozygous mutant, heterozygous, and wild-type animals were

treated with dexamethasone or ionizing radiation and isolated thymocytes
examined for the cell surface expression of CD4 and CD8 (after 48 hours) and the
condition of genomic DNA (after 10 hours). A, Two-color immunofluorescence
contour plots from FACS analysis of CD4 and CD8 surface expression in wild-
type and p53 homozygous mutant mice. B, Mean percentage of surviving
CD4+CD8+ thymocytes from p53+/+ (0), p53+/- (), and p53-/- () mice 48
hours following treatment with dexamethasone (D), gamma irradiation (R), or no
treatment (N). C, agarose gel electrophoresis of total thymus DNA from wild-
type (+/+), p5 3 heterozygous (+/-), and p53 homozygous mutant (-/-) mice 10
hours following treatment with dexamethasone (D), gamma irradiation (R), or no
treatment (N). The position of molecular size standards (in nucleotides) is shown
at right.
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other cell types (Kastan et al., 1991; Kastan et al., 1992; Flint, 1984; Sarnow et al.,

1982), irradiation of thymocytes caused a dramatic increase in p53 levels. The

accumulation of p53 protein was apparent within 1 hour (Figures 8), before

significant degradation of DNA (not shown; (Sellins and Cohen, 1987)). In

contrast, treatment with phorbol ester/calcium ionophore and dexamethasone

resulted in little or no increase in p53 levels.

DISCUSSION

p53 dependent and independent apoptosis

These results establish the involvement of p53 in a cell death pathway,

specifically radiation-induced apoptosis in the thymus. Equally important, these

data demonstrate that apoptosis can also occur in the absence of p53 function.

Thus, cell death in the thymus can be subdivided into at least two distinct

pathways, one requiring p53 and one that is p53 independent. The existence of

multiple apoptotic pathways in the thymus has been suggested from the analysis

of bcl-2 transgenic mice (Sentman et al., 1991; Strasser et al., 1991). Furthermore,

the apparently normal development of mice homozygous for a p53 mutation (ref.

(Donehower et al., 1992), and T.J. and R. Weinberg, unpublished) suggests that

p53 is not required for cell death in many, perhaps most, instances.

p53 has been implicated in controlling a checkpoint during the G1 phase

of the cell cycle that may monitor the state of the DNA before entry into S phase

(Kastan et al., 1992; Lane, 1992). For example, p53-deficient fibroblasts fail to

arrest transiently in G1 after gamma irradiation, although they still pause

normally in G2 (Kastan et al., 1992). A rapid accumulation of p53 precedes G1

arrest in fibroblasts (Kastan et al., 1991; Kastan et al., 1992) and, as shown here,

radiation-induced apoptosis in thymocytes. Thus, the different cellular

responses (apoptosis versus G1 arrest) may result from the activation of distinct
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Figure 8. p53 levels in isolated thymocytes undergoing apoptosis (next page).
Thymocytes were isolated from wild-type (+/+) and homozygous mutant

(-/-) animals and treated with cytotoxic agents. At 1 and 4 hours following
treatment, p53 levels were determined by Western blot. The treatment and
genotype of the cells are indicated above the appropriate lanes: normal tissue
culture media (untreated); PMA + A23187 (P/A); dexamethasone (dex); ionizing
radiation (IR). The time (in hours) after treatment is indicated over each lane.
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target genes by p53. Alternatively, activation of the same target genes in the two

cell types could have different consequences. The fact that elevated levels of p53

can lead to the initiation of apoptosis is consistent with earlier studies that

demonstrated a link between p53 expression and cell death (Yonish-Rouach et

al., 1991; Shaw et al., 1992), and it is possible that many conditions that lead to an

accumulation of p53 could induce apoptosis. Those stimuli which cause

apoptosis in thymocytes in the absence of p53 function may utilize other

transcription factors to activate the same set of "cell death" genes.

Apoptosis and tumor suppression

The data presented here define another mechanism by which p53 can act

as a tumor suppressor gene. It has been proposed that the mutational

inactivation of p53 during tumorigenesis might allow the further accumulation of

oncogenic mutations, due to the removal of an important G1 checkpoint (Kastan

et al., 1992; Lane, 1992). In thymocytes, and perhaps in other cell types as well,

the absence of p53 function can lead to inappropriate cell survival after y

irradiation. The failure to eliminate cells that have incurred DNA damage could

lead to the selection of cells that have undergone neoplastic transformation. Note

that among the various tumor types that occur in p53 homozygous mutant mice,

lymphoma is by far the most common ((Donehower et al., 1992) and T.J. and R.

Weinberg, unpublished), and the four cases of this tumor that have been

examined from our p53-deficient mice have consisted predominantly of

CD4+CD8+ cells (T.J., unpublished results). Thus, like bcl-2 activation

(Tsujimoto, 1984; Sentman et al., 1991; Strasser et al., 1991), the inactivation of p53

may contribute to tumorigenesis through an inhibition of apoptosis.
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