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ABSTRACT

Most Artificial Intelligence (AI) work can be characterized as either “high-level”
(e.g., logical, symbolic) or “low-level” (e.g., connectionist, behavior-based
robotics). Each approach suffers from particular drawbacks. High-level Al uses
abstractions that often have no relation to the way real, biological brains work.
Low-level Al, on the other hand, tends to lack the powerful abstractions that are
needed to express complex structures and relationships. I have tried to combine
the best features of both approaches, by building a set of programming
abstractions defined in terms of simple, biologically plausible components. At
the “ground level”, I define a primitive, perceptron-like computational unit. I
then show how more abstract computational units may be implemented in terms
of the primitive units, and show the utility of the abstract units in sample
networks. The new units make it possible to build networks using concepts such
as long-term memories, short-term memories, and frames. As a demonstration of
these abstractions, [ have implemented a simulator for “creatures” controlled by
a network of abstract units. The creatures exist in a simple 2D world, and exhibit
behaviors such as catching mobile prey and sorting colored blocks into matching
boxes. This program demonstrates that it is possible to build systems that can
interact effectively with a dynamic physical environment, yet use symbolic
representations to control aspects of their behavior.
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Chapter 1

Introduction

In this chapter I describe my objectives in this work, and explain what I mean by
“grounded abstractions”. I also lay out a road map for the following chapters.

1.1 High-level vs. Low-level Al

There have been two broad divisions of models used for Artificial Intelligence
programming. The traditional, “high-level” approach, which includes symbolic and
logical Al has been to specify programs at a very abstract level. Alternatives such as
connectionism, neural nets, and behavior-based robotics I refer to as “low-level”,
because they try to simulate some theory of what real brains actually do at something
close to the neural level, without any explicit representational abstractions.

The high-level approach is characterized by the use of powerful programming
abstractions, such as procedural representations, arbitrary recursion, and indefinitely
large data structures. One drawback of this approach is that the abstractions used often
have no relation to the way real, human brains work. Such abstractions may be
unjustified, in that there can be unwarranted assumptions that they make sense in the
context of a biological brain. In addition, the nature of these abstractions heavily
influences the structure of programs written with them. Therefore, programmers are not
naturally led to the kinds of solutions to problems that the brain uses.



It is, of course, possible that there are other ways to design an intelligent system than by
imitating nature. However, if the ultimate task of Al is to build an artificial human-
equivalent intelligence, then it makes sense to be inspired by the solution nature has
found. It may not be the only approach, but it is surely worthy of investigation.

The low-level approach is motivated by just such considerations. However, this
approach tends to suffer from the reverse problem from high-level Al Programs or
robots created in this paradigm typically lack any explicit abstractions whatsoever,
relying instead on the assumption that complex skills such as reasoning and language
arise from combinations of simple behaviors. Of course this idea should be explored
further, but it is difficult to imagine all of these skills existing without some high-level,
symbolic structure. And in any case, without abstractions, it is difficult to design these
complex behaviors.

1.2 Grounded Abstractions

I have tried to combine the best features of both of these approaches, removing their
weaknesses, by building a set of useful abstractions which are well-grounded in terms of
a biologically plausible model. By this I mean that the meanings of the abstractions
should be reducible to operations that can plausibly be performed by biological
computers, i.e., brains.

I specifically do not mean that Al systems need be “grounded” in the sense of requiring
literal physical embodiment in a robot. There may be valid sociological reasons for
exploring robot intelligence —~ for example, the fascinating question of what degree of
intelligence observers impute to a robot vs. a simulation running the same software.
And of course there are pragmatic, commercial reasons for building robots. But there is
no reason to believe that intelligence requires a physical body that can interact with the
same, real objects that humans interact with. As Marvin Minsky says, “Minds are simply
what brains do.” [Minsky, 1986] The hardware is irrelevant; the process is what matters.

The question of whether intelligence requires a simulated environment at all similar to
ours is a much more difficult question, which I will not attempt to answer here. Instead,
I accept as a reasonable hypothesis the idea that perception and action may contribute
important elements to intelligence.



The kinds of systems I propose building have a connectionist flavor, in that they involve
simulating networks of interacting units of some sort. Unlike most connectionist
systems, the individual units may have a great deal of computational power - trying to
build a useful brain by simulating some theoretical model of neurons directly is a
daunting task. But the computational capabilities of an individual unit should be of a
nature that is reducible to the kinds of operations we can realistically envision actual
“meatware” performing.

I take the position that the critical ingredient missing from current AI work is effective
models of memory representation and management, and particularly that concepts
along the lines of Minsky’s frames and K-lines are essential [Minsky, 1975, 1980].

What those concepts themselves are lacking is detail. I show how to build systems with
frames and K-line-like memories from the ground up, by determining how they can
work in terms of elementary computational units, and only gradually throwing away
low-level verisimilitude and constructing valid high-level abstractions.

Of course, one can program in terms of memories and frames in a more conventional
manner than I am proposing, by simply using the ordinary computer science concepts of
variables and records with named fields. However, one should be careful about so
cavalierly mapping those cognitive concepts to the nearest computer science equivalent.
When designing any system, be it a LISP program, a behavior-based robot, or a space
shuttle, the architecture of the system is profoundly influenced by the nature of the tools
at hand. The requirements brains impose on how memories can be manipulated may be
nothing like the requirements compilers impose on how variables can be manipulated.
This leads to putative Al systems which function nothing like the way brains do.

1.3 Learning

Learning is a hallmark of intelligence, and certainly an important requirement for any
human-level artificial intelligence. However, I propose that before studying learning as
such, we need a firmer grasp on the nature of the underlying representations that are to
be modified as learning occurs, and on what the desired results of learning should be.
Only after having designed a system capable of performing a certain kind of task will
one be able to design a mechanism for learning the appropriate structure.



It is instructive to reflect on the fact that a great deal of what is called intelligence relies
not on learning per se, but on the overall memory patterns that are partially the result of
learning. It takes on the order of half an hour for the brain to make a permanent memory
trace [Minsky, 1986]. Thus, any intelligent behavior a person exhibits on a time scale less
than this is being performed using only short-term memories. Theoretically, it should be
possible to build a system that behaves like a person, but does not learn. It would be as
intelligent as any person, save the ability to form long-term memories. It would be able
to solve complex problems, engage in conversations, and interact normally with a
complex physical environment — just like the well-known human patient H. M., who is
unable to form new long-term memories, but is otherwise quite normal [Squire &
Kandel, 1999].

Of course, one cannot expect to design, by hand, a system with all the knowledge a
human has. Some researchers are undertaking the vast, distributed task of accumulating
“commonsense knowledge databases”, that can serve to replace the knowledge base that
humans have had laboriously to learn [Guha & Lenat, 1994]. This is one possible
solution to the problem, but I feel that ultimately most of the knowledge an Al needs
will have to be learned — at least once. This is because it seems unlikely to me that the
knowledge representations being currently used in such databases will happen to align
usefully with the representations that are ultimately required by a truly intelligent

machine.

But even if learning is ultimately required, one must still first determine what kinds of
structures need to be learned. Therefore, I do not speculate in any detail on unit
network learning mechanisms, and the system I implemented does not learn by forming
permanent changes to the network structure. I do, however, consider the requirements
of long-term memory formation when proposing memory architectures.

1.4 Inspiration and Related Work

Marvin Minsky’s “Society of Mind” (SoM) model of how the mind works [Minsky, 1986]
has been my primary inspiration; I will show how my constructions can be interpreted
in the light of that model. In a sense, SoM is an existing model which satisfies my goal of
combining the best attributes of high-level and low-level Al It contains many powerful
abstractions, such as frames, polynemes, K-lines, pronomes, etc. Furthermore, unlike
most high-level Al these abstractions are all biologically inspired, and are plausible
mechanisms for activities in real, human brains. However, the vast scope of the model



means that it necessarily lacks a certain amount of specificity. That is, there is no
prescription for actually implementing versions of K-lines, frames, etc. Instead, the ideas
are presented at the levels of abstraction at which it is easiest to think of them. But
without a firm grounding in terms of explicit proposed mechanisms, that one can
actually build and test, it is hard to know precisely what the abstractions mean.

This thesis represents a step in the direction of implementing the abstractions described
in SoM.

1.5 Overview

In Chapter 2, I introduce my basic computational unit, and suggest some general
organizing principles for connecting units together.

In Chapter 3, I describe a mechanism for representing long-term memories, and show
how it can be used to connect units together without excessively multiplying the
number of wires required.

In Chapter 4, I give an architecture for short-term memories, which are like long-term
memories, except that they can be formed with no rewiring required. I show how one
may use them to build some useful behaviors that are not typically found in behavior-
based robots.

In Chapter 5, I discuss the concept of frame, and show how short-term memories are
useful for dealing with frames and frame systems. I propose a novel way of activating
and recognizing frames, which puts frames on a more equal footing with other kinds of
units.

In Chapter 6, I relate my constructions to various Society of Mind concepts.

In Chapter 7, I describe a simulation which implements the abstractions presented, in
the context of a two-dimensional world inhabited by creatures controlled by networks of

generalized units.

Chapter 8 summarizes my contributions.

10



Chapter 2

Units and Agencies

In this chapter I define characteristics of a simple computational unit, which I will use as
the basis for further constructions and abstractions.

2.1 Basic Computational Units

My basic computational unit is a simple device which has a number of inputs and
outputs, and a current numerical activation level determined by a nonnegative transfer
function applied to a weighted sum of the inputs. Units are wired to other units. A
weight may be negative; in this case the input is inhibitory (Figure 2-1).

outputs

inhibitory
connection

weighted inputs \

Figure 2-1: A Basic Unit

This kind of unit is clearly inspired by models of neurons [McCullough & Pitts, 1943].
However, I make no attempt to match units directly to neurons, or units to cluster of
neurons, or neurons to clusters of units. Neither will I pretend to construct networks that
are organized in direct correspondence with the detailed architecture of the brain. Those
are tasks for systems neuroscience. Rather, I am after a general organizational
compatibility with the way brains could conceivably work.

11



The primary design constraint in wiring units together is that networks of these units
should be organized into structures that are derivable from evolvability considerations —
that is, structures that could form by replication and differentiation.

Iintentionally leave the dynamics of networks of units somewhat vague. [ assume that
all the units in a network are continuously updating their activation levels based on their
inputs, and that there is some finite propagation delay of signals on the wires. But I
make no timing assumptions beyond this when designing constructions in terms of
units.

My intention is that all the constructions I make and behaviors I build should be
realizable, ultimately, as networks of these basic units. Of course, computers are
ultimately realized as vast networks of logic gates, which can be built from these units,
50 in a sense any program is realizable as a network of my units. However, the human
brain does not seem to be organized in the same way as a microprocessor. The
abstractions and constructions I build in terms of my units will be motivated by an
assumption of biological plausibility.

Some units are taken to be sensors, in that their activation level is a function of
interaction with an external environment. These might include tactile, proprioceptive,
and visual sensors.

Likewise, some units are actuators, whose computed activation level modifies aspects of
the external environment. These would include motors, muscles, etc. It also makes sense
to consider actuators which modify the unit network itself, as an underlying mechanism
for learning.

12



2.2 Unit Abstractions

Throughout this thesis I will give definitions of new kinds of units in terms of networks
of preexisting units. As a simple example, here is an implementation of an AND-gate as
a unit with two inputs, whose transfer function is a step function with a threshold of 1.5:

- - =

Figure 2-2: AND-gate Abstraction

The symbol ‘=’ should be read as “is realized as”. Arrows on inputs and outputs will
often be omitted when they are clear from context, as they are for logic gates.

Of course, this unit will only function correctly as an AND-gate if its inputs are either 0
or 1, so it is important to be aware of usage constraints when combining units. Such
standards of interconnect are typical of logic families such as TTL.

Other logic gates may be constructed similarly.

2.3 Agencies

I will call a functionally related group of units an agency. The units in an agency are
assumed to be localized when one thinks of them as existing in a space. This may seem
irrelevant when thinking of unit networks as merely describing abstract data flow
patterns. But thinking of them as localized helps make unit constructions more
biologically plausible, since the components in brains may be constrained in their
connection patterns due to varying physical location.

Following on the idea of an agency as a localized clump of units, it is natural to think of
the agency as connecting to other agencies via large bundles of wires coming in and
going out (Figure 2-3). (The bundles in the figure are displayed schematically; for real
agencies there could be hundreds or thousands of wires in a bundle.)

13



Agency

Outputs

Inputs

Figure 2-3: An Agency

The behavior of an agency is therefore determined both by its internal connection
pattern and state, and by its external environment, as reflected by the input signals.

One can also imagine agencies existing in hierarchies or heterarchies; that is, higher
levels of structure can be represented in terms of agency relationships (Figure 2-4).

Figure 2-4: Some Possible Agency Relationships

14



One may conceive of qualitatively different kinds of agencies designed for different
purposes. For example, one agency could contain a unit network designed to implement
the high-level control processes for finding and eating food. This agency would have a
rich internal structure, with groups of units designed to activate in particular patterns
and sequences when the appropriate conditions obtained.

Other agencies might serve simply as representations of some detected conditions. For
example, an agency could have a set of units, subsets of which are used to denote kinds
of object shape or texture. This agency need have no internal structure at all — except
perhaps for control mechanisms to map between input/output patterns and internal
state. These control mechanisms are what I call memories, described in Chapter 3.

2.4 Cross-exclusion

One common pattern of internal connections in an agency involves cross-exclusionary
links (Figure 2-5). These ensure that only one unit or related group of units can be active
at a time, by using inhibitory connections between the units to be exclusively active.
(The inhibitory weights must be greater than 1 for cross-exclusion to work; the higher
the weight, the greater the tendency to resist changing state.)

Figure 2-5: Cross-Exclusion

For example, an agency representing color information might cross-exclude units used
to represent shades of red from those used to represent shades of blue. Conflicting
inputs would lead to one state or another becoming active, but not both. Cross-exclusion
is also useful for managing activation of behaviors that have competing resource needs.

15



Chapter 3

Long-Term Memories

In this chapter I show how to represent long-term memories in unit networks, how to
use them to give the networks a degree of plasticity, and how to abstract the
constructions for them so that the low-level details do not need to be simulated.

3.1 Activators and Recognizers

An agency is always in some total state determined by the states (activation levels) of its
component units.

It is often useful to be able to restore a previous partial or total state of an agency. This is
done with memories. Long-term memories may be viewed as I/O units responsible for
translating signals on the agencies’ interface wires into previously remembered states,
and vice-versa. A simple model for a long-term memory activator is as follows: it is a unit
that detects a particular pattern on the input wires, defined by a particular subset being
active at some level, and when thus activated in turn activates some subset of the units
in the agency.

Likewise, a long-term memory recognizer is a unit that detects a particular activation
pattern within the agency, and propagates its activation to some subset of the output
wires. The unit activation patterns can correspond to individual units, or to arbitrary
subsets of the agency’s units.

16



Agency Inputs O Agency Outputs
O long-term memory L
recognizer

O units O LT
O O

O

long-term memory
activator

T 11

Figure 3-1: Long-Term Memory

One can view a memory activation or recognition pattern as a symbol denoting a
particular partial state of the agency. Note that a set of input/output wires can
potentially carry many more symbols than there are wires, by re-using wires among
multiple symbols. If there are enough wires, then multiple symbols may be present on

them at once, with minimal interference.

Conceivably the activator and recognizer mechanisms could be bypassed entirely, with
the input/output wires mapped directly to individual unit inputs/outputs, one-to-one.
However, this would require more interface wires than the scheme described above. It
would also have disadvantages regarding the utility of long-term memories, discussed

below (Section 3.2, Polynemes).

This coding scheme allows potential connections between large numbers of units,
without requiring a dedicated wire for each connection. It was invented by Calvin
Mooers [Mooers, 1956] in 1947.

In order to make new long-term memories, new units must be allocated and connected
to the correct interface wires and internal units. This operation clearly has some analog
in biological learning — one form of long-term memory storage appears to be
implemented by “long-term potentiation”, which modifies synaptic weights [Squire &
Kandel, 1999].

17



It is desirable to let the network itself, rather than some external mechanism, control the
formation of new memories. That is, one would like to be able to build subsystems
within the network that detect when relevant events have occurred, and remember
useful features of them, by creating new long-term memories. Therefore it seems
necessary to extend the model with a mechanism for allocating new units from a pool,
and creating or modifying connection weights between units within an agency.

This is easily done — simply assume there is a particular type of actuator unit, the effect
of whose activity is to increase or decrease the connection weight between a pair of units
it is connected to. The units to be allocated would then be preexisting components in a
pool of units with zero connection weights.

However, such a mechanism does not really need to be specified in any detail, because
whatever the details, one may treat the mechanism abstractly when programming unit
network simulations (Section 3.3, Abstracting Long-Term Memories).

3.2 Polynemes

A useful way to use long-term memories and symbols is to induce several agencies to
respond simultaneously in their own ways to the same symbol. (This is why long-term
memory activators are needed — without them, there would be no way for the same
input pattern to be meaningful to multiple agencies.) Minsky calls this a polyneme, and 1
will use his terminology. For example, suppose an agency is used to denote the concept
of apple, by being put into a particular state. Doing so will activate a specific pattern on
the agency’s output wires. If these reach several other agencies — say those for
representing shape, size, color, etc. — then each such agency can put itself into a state
representing the appropriate and respective apple attributes. Shape would be in a round
state, and so on (Figure 3-2).

With polynemes, a collection of individual attributes can be “chunked” into a higher-
level symbol used to refer to them collectively. Agencies that want to do something
involving apple memories can invoke them with a single symbol instead of one for each
attribute-specific agency.

Of course, it would also be useful to be able to recognize the apple condition from the

conjunction of the attribute-representing agencies being in the appropriate states. If their
outputs combine to form part of the inputs to the apple-representing agency, then it can

18



recognize the conjunction of the (generally different) output symbols each attribute
agency generates when apple attributes are active. In effect, a new apple symbol has been
constructed out of the combination of the symbols for red, round, and so on. This way,
when an apple is seen, and the attribute-representing agencies are put into states
representing apple attributes (round, red, fist-sized ...), their long-term memory
recognizers output the symbols that the apple polyneme recognizer associates with the
apple state.

Figure 3-2: Polynemes

Note that under the above scheme, the new recognizer symbol for apple is not the same
as the apple polyneme symbol. One frequent criticism of symbolic Al is that it
unreasonably assumes a common, structured symbolic language for representing
concepts and communicating them between parts of the brain or program. I am
proposing no such thing. Individual agency groups form their own symbol “language”,
but this language is just an unstructured set of arbitrary labels for long-term memory
states. The symbols emerge naturally as patterns that acquire particular significance to
agencies that see them.

19



One way new long-term memories can form is by the creation of new polynemes and
polyneme recognizers. This can be done by a scripted process: suppose some learning-
management agency decides something important has happened relative to a set of
agencies, that warrants learning a new pattern. It can store the agencies’ contents in a
particular set of short-term memories (Chapter 4) used for learning, then initiate the
lengthy process of modifications necessary to create the new long-term memory
activators and recognizers necessary to construct the polyneme. This involves allocating
some new units that learn the necessary weighting coefficients for connections to the
inputs, outputs, and units in the agencies.

Specifically, a new recognizer is allocated in the source agency, which connects
randomly to some number of output wires. This generates a new symbol. The target
agencies are all trained to build new long-term memory activators associating that
symbol with the states stored in their short-term memories. Simultaneously, a new long-
term memory activator is allocated in the source agency, and is trained to recognize the
combined output pattern that the memories induce in the target agencies.

Of course, this process might disrupt ordinary communication between the agencies
involved. Consistent with this observation, there is some evidence that much of long-
term memory formation occurs during sleep [Wilson, 1994].

3.3 Abstracting Long-Term Memories

Assuming the proposed architecture for long-term memories, simulating networks
using them involves simulating a lot of activator and recognizer units, and large
numbers of input and output wires mediating the connections.

However, within the constraints of the overall agency topology, connections between
units in different agencies may be treated abstractly. That is, units connected by long-
term memories may be wired directly together, provided that the source unit’s agency
has outputs that reach the target units’ agency (Figure 3-3). This may be done even while
the network is running — that is, new long-term memories may be formed by simply
“rewiring” the network.
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Figure 3-3: Long-Term Memory Abstraction

It is worth emphasizing both the utility of this abstraction mechanism and its limitations.

This technique abstracts plasticity — it lets you connect things up in ways that you can’t
easily with connectionist networks or behavior-based robotics. Most behavior-based
architectures assume a fixed behavior topology, or at least a very restricted mechanism
for forming new connections. Thus, allowing new connections to form between arbitrary
units or groups of units in connected agencies, at run-time, gives a greater degree of
flexibility than a typical behavior-based robot has.

However, it gives a lesser degree of flexibility than is available in most conventional
programming environments. Connections cannot justifiably be made between arbitrary
units, only between units in connected agencies. It is not reasonable to assume all
agencies are connected, either, because not all regions of the brain are directly connected
together. Apart from this biological constraint, allowing agencies to “see too much” of
the rest of the network would likely make most kinds of learning much more difficult.
Finally, network modifications that are intended to be permanent cannot justifiably be
formed instantly; it takes time for long-term memories to form in biological brains. (This
last restriction can be relaxed assuming a suitable short-term memory caching

mechanism.)

Therefore, the long-term memory models given above may be used to modify network
connectivity in a fairly flexible manner, but the kinds of unrestricted pointer
assignments possible in ordinary programming languages can lead to programs that
don’t map well to biological hardware — and thus that, as Al programs, should perhaps
be viewed with skepticism.
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Chapter 4

Short-Term Memories

In this chapter I present models for short-term memories, which are like long-term
memories with the added feature that they may be reassigned very quickly. I describe
some useful ways to use short-term memories in unit networks, and I show how to
abstract the short-term memory constructions in order to get their benefits without
having to simulate their detailed composition.

4.1 Short-Term Memories

It is useful to be able to form memories very rapidly. For example, suppose there is a
network that controls a creature which uses some particular agencies to store visual
attributes of objects it is seeing. If a red ball, say, is seen, it might be useful to remember
the attributes currently stored in some of these agencies, then restore them a short time
later — perhaps for use by other processes interested in grabbing the red ball.

Biological brain hardware constraints apparently prohibit the kind of memories I called
long-term memories from being used this way, however — it seems to take on the order
of half an hour to form a long-term memory. Instead, one needs short-term memories for
tasks such as this. They should have the same kind of functionality as long-term
memories, plus the ability rapidly to reassign the agency states they activate and
recognize.
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One way to make a short-term memory for an individual unit is to associate a mirror unit
with it, which is used to remember its activation level. To reassign the memory’s
contents, gate the original unit’s output to the mirror unit’s input. (The mirror unit must
maintain its state in order to retain values; one way to do this is with self-input.) To
activate the memory, gate the mirror unit to the original unit’s input. To recognize the
memory (that is, to detect when the unit state matches the state stored in the mirror), use
a comparison gate between the original and mirror units (Figure 4-1).

mirror
activate

comparator

(xon) recognize

assign

primary unit

to/from gated mirrors for
other short-term memories
Figure 4-1: Short-Term Memory for a Single Unit

To make a short-term memory for an entire agency, use one mirror per unit, and the
same kind of pattern-detecting units used for long-term memories to trigger both
activation and assignment. To recognize the entire memory, apply a long-term memory
recognizer to the collection of comparison gates for the unit/mirror pairs (Figure 4-2).
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Figure 4-2: Short-Term Memory for an Agency
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One can imagine the short-term memories for an agency existing in sheets of mirror
units, one sheet per memory (Figure 4-3). This is reasonable biologically - it is easy for
genes to build repeated structures, and brains are full of them. Then the connections
between source units and mirrors would run perpendicularly through the sheets.

Agency

Figure 4-3: Short-Term Memories as Sheets of Mirror Units

There are alternative or hybrid schemes that might be considered for storing short-term
memories. The values on the agency input wires could be mirrored, rather than the unit
values themselves. This would make short-term memory activation restore previous
memories indirectly, by cuing long-term memories, rather than directly. Or some
combination of the two techniques could be used. Generally, an agency can have short-
term memories for whichever of its units need to be mirrored to support its intended

function.

The short-term memory architecture I have described allows arbitrary memories to be
compared easily. To compare two memories, first activate one, then store it in a short-
term memory, then activate the other one. The degree of match will be reflected by the
activity of the recognizer for the short-term memory used.

Interestingly, one feature of the Society of Mind model is the assumption that memories
cannot be compared in this fashion. Instead, Minsky proposes performing comparisons
by noting time changes in response from agencies when quickly swapping in first one
memory and then the other [Minsky, 1986, Sec. 23.3].
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The ability to do comparisons the way I have described, which turns out to be very
useful, depends critically on the assumption that short-term memories have recognizer
units. If all the units in an agency have mirrors, then this is easy. However, if instead
only the input wires are mirrored (as considered above), it is harder to see how short-
term memories can be recognized. But if the output wires are also mirrored, then when
the short-term memory is formed a record will also be formed of the agency output, and
this can then be matched against current agency output.

One can compare states of many agencies at once, by using short-term memories as
polyneme components. Then the polyneme recognizers will detect the simultaneous
match of all the target agencies with a particular short-term memory. This possibility is
illustrated in detail in the following section.

4.2 Uses for Short-Term Memories

One useful role for short-term memories is as a way for different agencies to
communicate. If agency A wants to invoke agency B to perform some task, then the
details of that task can be specified by loading the appropriate information into one of
B’s short-term memories. More generally, two agencies can communicate by using
memories of a third agency that is accessible to both.

Suppose there is a set of attribute-representing agencies for shape, size, color, etc., as
described in Section 2.6 (Polynemes). Then suppose an eating agency wants to eat an
apple. It can activate the apple polyneme, putting the attribute agencies in appropriate
apple states, then instruct the agencies to store their current contents in a target memory
(by activating target’s assigner), and finally activate a find agency which attempts to find
whatever is in target.

If there is a polyneme for target, then find can detect when an apple has been found, by
checking target’s polyneme recognizer. More explicitly, when an apple is seen, the color,
shape, etc. agencies will get put into states corresponding to the appropriate apple
attributes. Each agency’s state will then match its target short-term memory, so the
individual target recognizers will be active. The combined activity of all of them will
activate the target polyneme recognizer. This works just the way recognizing any
polyneme works, but in this case any object can be recognized with just one recognizer.
This lets that short-term memory act as a common address via which different agencies
can communicate.
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Note the utility of the short-term memory recognizers. With them, it is easy to construct
a simple network that, e.g., automatically finds a given object. Without them, it is not
obvious how to perform such a task. One could perhaps imagine that rather than using a
particular short-term memory to store apple, it could simply be placed directly into the
attribute agencies. Their contents would get replaced by attributes coming in reflecting
current perceptions, but maybe some kind of “trace” of recent activity would make the
agencies more likely to “notice” when they were in the apple state again soon after. This
is conceivable, but it is not obvious how to associate the detected state with a particular
source. That is, the agency might know that it is detecting a recently active state, but that
is less information than knowing that it is in the same state as a particular short-term
memory.

One more thing short-term memory recognizers can do, when used as part of polyneme
recognizers, is detect specific differences between memory state and current agency state.
This capability is critical to, e.g., Winston's abstraction-learning algorithm [Winston,
1992].

4.3 Abstracting Short-Term Memories

Just as with long-term memories, the constructions I have given for short-term memories
could be directly simulated as unit networks. This would require something like five
new units per original unit per memory (see Figure 4-1), plus activator, assigner, and
recognizer units for each memory.

But again, these constructions may legitimately be abstracted. The simplified version
requires three units per memory, total — an activator, an assigner, and a recognizer
(Figure 4-4). The assigner is a unit that, when activated, instantly “rewires” the activator
and the recognizer so that they directly connect to the currently active units in the
memory’s source agency.
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Assign Recognize

Figure 4-4: Short-Term Memory Abstraction

(“Control Logic” represents the constructions in Figs. 4-1 and 4-2.)

It is certainly unusual to think of a connectionist network which allows the connections
to be rewired instantly as it is running, but such a thing is perfectly justified by treating
the units that are rewired as denoting the explicit short-term memory structures given

above.

Again, such operations are subject to agency topology constraints. Furthermore, the
number of short-term memories allocated to a given agency should not be too large.
What is too large? I don’t know, but on the order of a dozen doesn’t seem unreasonable.
One should perhaps be wary of networks that need hundreds or thousands of short-

term memories assigned to any one agency.

Likewise, programs that need large memories that can be indexed as arrays don’t seem
to be translatable to reasonable networks — even if the quantity of memory were
available, there would have to be some digital representation of the index.
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Chapter 5

Frames

In this chapter I develop the important Al idea of frame, and describe how to build
frames in unit networks. After showing that there are some problems with the simplest
approach, I propose an improvement to the short-term memory architecture described
in Chapter 4, and show how this makes frames much more tractable and powerful.

5.1 The Frame Idea

The concept of frame [Minsky 1975] has been an important element of much Al research.
Briefly, a frame is a structure that represents a particular kind of object or situation,
where the details are to be filled in by specifying values for slots. For example, a frame
for representing the contents of a room would have slots for walls, furniture, carpet, etc.
A frame for representing a person could have slots for particular parts such as head,
arms, and legs; it could also have slots for attributes in different domains — say social
attributes, such as gender, age, and relationship. Frames can also represent sentences or
larger linguistic structures (Figure 5-1).
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Figure 5-1: A Sentence-Frame

Frames’ utility lies in their enabling some kind of action or reasoning based on slot
contents. For example, a room-frame could be used when performing an action such as
opening a window, by using the attributes of whatever was currently attached to a
window slot of the frame. A person-frame would be useful in a conversation, by using
the information in the relationship slot to modify goals and expectations of the
conversation. A “trans-frame” is a kind of frame representing general change of state
from one condition to another. Trans-frames can facilitate a certain kind of reasoning, by
chaining one frame’s destination slot to the next one’s source slot.

The true power of frames comes when they are used in frame systems, which are ways of
using frames to select new frames using the same slots, to shuffle slot assignments, or to
transform slot contents.

For example, a frame might represent a particular view of an environment. Information
that has been accumulated about the environment can be partially represented as slot
contents. When the view changes slightly, due to the motion of the observer, the view
contents will change in a way that is largely predictable. This can be captured by using a
frame system. The currently active “picture-frame” detects the motion, and can select a
new frame to better represent the new situation, or reassign some of the slots, or modify
the contents of some of the slots. This is much more effective than completely
regenerating all the information about the current environment on a moment by
moment basis.

Finally, frames can represent defaults in terms of built-in slot assignments that can be
overridden. For example, a generic office-frame might have slots for desk, chair, etc.
initially filled in with a default chair-frame, desk-frame, etc. But the frame can be
applied in a specific situation, by overriding the defaults with specific slot assignments
as they become available. The existence of defaults lets one reason effectively using
typical aspects of situations when specific aspects are unknown.
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5.2 Frames in Terms of Units

To use frames in the kinds of unit networks under discussion, they must be represented
in terms of some kind of unit structure.

A natural way to consider representing frames is by analogy with a conventional
“record” structure. A frame can be a unit which effectively has selectable slots, by
making it activate half the inputs of a set of AND-gates, the other half of whose inputs
are activated by some sort of field-selector units (Figure 5-2). So activating a particular
sentence-frame and the actor selector symbol at the same time will cause whatever
memory is in the actor slot to become active. These other memories can be polynemes,
frames, or any sort of unit.

Figure 5-2: Frame as Units: Slot Selection with AND-Gates
5.3 Slot / Short-Term Memory Relationship

Since a frame must be able to represent a variety of situations, depending on slot
contents, it makes sense that the slot contents have to reside in short-term memories.
However, given this, it would seem that the field-selectors described above have no
purpose. For suppose an agency wants to activate the actor slot of an active frame. It
activates a selector unit, which in conjunction with the frame unit activates an AND-gate
that does — what? What needs to be done to activate the actor slot is simply to activate
the actor short-term memory, since that is the slot where the actor memory is stored. It
would seem that the frame unit itself, and the AND-gate, have nothing to do with this.
The actor field-selector unit can simply be the actor short-term memory activator unit.
(All short term memories have activator, recognizer, and assigner units — see Figure 4-4.)
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However, this analysis disregards the default slot assignments. Those are stored in long-
term memories, and must be selected based on the frame as described. That is the
purpose of the AND-gates.

When a slot is selected, both the default assignment and the values in slot’s
corresponding memory are activated at the same time. Minsky’s idea is that the default
is activated weakly, and any conflict resulting (for example, involving cross-exclusion
links) will be resolved in favor of the actual slot assignment.

(One interesting question about using short-term memories as frame slots is whether
memories can be re-used for different slots of different frames. One can imagine a wide
variety of kinds of frame, with even more kinds of slots. If agencies had to reserve an
entire short term memory (which is after all a copy of the agency) for each potential slot,
that might result in a lot of wasted space. Maybe there are only a small number of actual
short-term memories for a typical agency, which can be re-used to get any number of
slots — as long as no one frame, or common combination of frames, needs more slots
than there are short-term memories.)

5.4 Specialization

As detailed knowledge is acquired filling in the slots for a given frame, it can be useful
to remember that knowledge by somehow storing those slot assignments in long-term
memory. For example, a generic person-frame should gradually be refined into a
specific person-frame for representing information about a particular friend. The
obvious way to do this is with the defaulting mechanism. A new frame unit can be
formed, as a new long-term memory, with some of the current slot assignments turned
into default assignments of the new frame. A default can even be strengthened into a
constraint, by increasing its activation strength. Once formed, the new frame can
continue to refine its default or required slot assignments by further long-term memory
modifications.

This makes slots seem a little bit schizophrenic, with some of the values residing in
short-term memories, and others in long-term memories accessed via slot selectors. This
could cause problems when one frame acts as part of a frame system to transfer control
to a different frame using the same slots. Since some or all of the slot contents were not
stored in the short-term memories, those contents would be lost.
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For example, a generic person-frame might have links to switch to an “antagonist-
frame” when a conversation starts to turn into an argument. If the specialized friend-
frame switches to this frame, then the information stored in long-term memory about
that friend will not be accessible in the new context.

5.5 Sequential Activation, Complex Recognition

The problem raised in the last section, and similar issues, mean that frames need to be
completely “unpacked” into short-term memories before being effectively used. This
involves activating each slot selector in turn, and then storing the active agency contents
into the appropriate short-term memories. Then other frames or behaviors needing the
slots can have ready access to them.

This is a rather inconvenient process to have to go through to activate a frame, especially
when this unpacking process must be controlled by the unit network itself.

However, recognizing frames — that is, determining from current context when a given
frame should be active - is even harder. Consider the friend-frame described above.
When you see that friend on the street, how do you recognize him or her? The
knowledge stored in the details of the slot assignments should be available for this kind
of recognition. However, the frame unit doesn’t work the way a polyneme does — it can’t
have a simple recognizer that detects simultaneous activation of all the component
agency recognizers. This is because the information is stored in many different slots.
Something like the reverse of the unpacking process needed for activation must happen,
but it is more complicated. As you observe the person on the street and note various
attributes, your current mental model is accumulating detail as a set of short-term
memory assignments. But to match those against a frame, somehow the frame has to
detect the total sequence of “this slot, that assignment”, “that slot, that other
assignment”, etc., and match the assignments against its own slot values. But the
sequence is not guaranteed to occur in any particular order, since you might observe
various aspects of the person at various moments.

This is is one aspect of the “frame recognition problem”, which is the general problem of

how to select the best frame to use for a given situation. Various schemes to handle it
have been proposed, all of them complex [Minsky, 1975].
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A simpler illustration of the frame recognition problem is that a chair cannot be
recognized simply by the simultaneous detection of all of its parts. The relationship
between the parts (that is, the roles or slots those parts occupy) is also necessary
information.

5.6 Frames as Super-Polynemes

It is possible to simplify the frame problems quite a bit, by adding more power to the
short-term memory model given above. Specifically, it would be very useful if short-
term memories, which are essentially copies of their source agencies, could somehow
form and recognize their own long-term memories in the same ways that the source
agencies that contain them do.

For purposes of frame activation, the problem is that the default slot assignments must
be loaded into the short-term memory slots. If the short-term memories could simply
learn to associate a given frame symbol with the appropriate default assignment, this
problem would be solved.

Consider the analogous situation for an ordinary polyneme, such as apple. All the
agencies that receive the apple symbol have learned to associate it with their own
particular internal states. This is done by allocating long-term memory activator units
and adjusting their weights (Section 3.1). Since short-term memories are really copies of
entire agencies, it’s conceivable they could do the same thing.

For example, imagine a child learning how to throw a baseball for the first time. He
already has some experience with throwing toy balls, so he might have a generic frame
to use for throwing balls. Suppose that a new frame is formed, to become a specialized
version of the throwing frame, just for baseball. When throwing a baseball, the contents
of the ball slot are always the same — hard, white, and apple-sized. The agencies that
represent those attributes — feel, color, and size — each have a short-term memory that’s
used for storing ball attributes, for whatever kind of ball is currently being used. If those
short-term memories work just like the agencies they are copies of, then they can learn
to associate the new baseball-throwing frame with their appropriate states for a baseball.
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This would solve the activation unpacking problem. But if short-term memories can
form internal long-term memory activators, then they should be able to form internal
long-term memory recognizers as well. That means they can put particular symbols on
the output wires when they are in particular states, just as the agencies themselves do.

And that means that frame recognition becomes easy under this model. Frames can be
recognized in exactly the same way as polynemes, by the simultaneous activation of the
recognizers for the relevant attribute agencies (Figure 3-2).

The implementation concept of a frame here is completely different from that described
in Section 5.2 — there are no AND-gates with which to select slots. When a frame is
active, all its slots are effectively activated at once, because it’s just like a polyneme
(Figure 5-3). All of them engage in the normal default-resolution process that previously
required individual slot selection. There is no need to unpack the frame sequentially.

\ destination

object

u
destination

destination

Material

Figure 5-3: Trans-Frame as Super-Polyneme

I call frames under this scheme super-polynemes, because they act just like regular
polynemes, but can directly address short-term memories as well as agencies.

Let’s go back to the problem of recognizing the appropriate person-frame based on
seeing a friend on the street. Once enough visual detail has been stored into the relevant
short-term memories, those memories will collectively activate the right person-frame —
regardless of the order in which they are filled in. This works because the person-frame
can receive output symbols from those short-term memories, and learn to recognize the

correct combination of them.
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5.7 Frame Abstractions

No new kinds of constructions are needed to support the abstraction of frames as super-
polynemes — simply assume that the short-term memory mirrors (Figure 4-3) also have
the same internal construction as their agencies (Figure 3-1).

This assumption does allow for a new kind of unit relationship, however. When a unit
acts as a symbol for a short-term memory rather than an agency, that relationship
deserves to be labeled. Wires that load particular long-term memories into short-term
memory states should be represented as connected to those long-term memory states,
with labels indicating the short-term memory. This is illustrated in Figure 5-3, which
shows a part of a trans-frame for “put the apple in the box”.

The only apparent problem with this scheme is that it might seem to require that
symbols be learned multiple times, one for each role they can occupy. For example, an
agency that loads an apple state in response to a particular symbol might have a short-
term memory that loads an apple state in response to a completely different symbol.

However, this problem is illusory, because it is not really apple that the short-term
memory has learned - it’s a specific frame, which simply happens to want apple in that
short-term memory slot. The symbol for apple only has to be learned once. After that, the
corresponding state can be loaded into any short-term memory, and thus occupy any
role.

This abstraction mechanism is very powerful, and it blurs the line between frames and
other units. It means any unit can effectively activate or recognize units not just in other
agencies, but in particular short-term memories of other agencies.

For example, the apple polyneme could be taken to have some frame-like properties as
well. Specifically, apples have insides and outsides, with different properties. Those
could be frame slots. Thinking of an apple’s surface will activate one set of attributes,
and thinking of its interior will activate different ones.
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5.8 Hierarchical Frame Representations

The previous example might seem to raise a serious problem: if the apple symbol is being
used as an item in a frame slot, and it has frame slots itself, then won’t the slots interfere
when the parent frame is active? How can the apple attributes be loaded into slots of
attribute-representing agencies, when rather than comprising specific agency states, the
apple attributes are themselves distributed over multiple short-term memories? In some
sense, apple seems to be “too big” an object to load into a single slot.

This situation is really just a particular case of the general issue of representing
hierarchical frame structures in short-term memories. To do this, agencies at different
levels must be involved. At some level, there is an agency that contains a unit (or set of
units) which represents the apple frame. When that unit is active, it puts the lower-level
agencies’ short-term memory slots into appropriate states: the inside slots are loaded
with attributes for the insides of an apple, etc.

The agency containing the apple frame unit itself is the one whose short-term memories
can meaningfully hold apple. The trans-frame must use slots of that agency to represent
objects which are frames using slots of lower-level agencies.

It might seem that frames are thus restricted in the kinds of objects that can occupy their
slots, since they must target particular agencies. But actually, units of any agency can
activate frames and other units in arbitrary other agencies (subject to overall agency
topology), so one can use a kind of indirection to link different kinds of frame structures

together (Figure 5-4).

apple-frame

Figure 5-4: Hierarchical Frame Structures in Short-Term Memory Slots
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I use this approach for implementing trans-frames in my simulation. There, the high-
level slots hold scripts which can perform arbitrary memory operations. The scripts used
load low-level attributes into the slots that are needed by other behaviors the trans-
frame invokes.

Of course, there is only so much short-term memory available in a network, and
therefore it can only represent frame structures up to a certain size. But this is a
limitation people have, as well. When a problem becomes too large to solve “in your
head”, you resort to making notes and diagrams — a form of external memory.

One last remark I should make is that Figure 5-4 seems to resemble a general semantic
net, so the question might arise of why I don’t just build semantic nets in LISP to begin
with.

The answer is that typically operations are performed on semantic nets, but I am

interested in what happens in unit networks. The difference is that arbitrarily deep
recursive procedures are not permitted iz finite networks.
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Chapter 6

Applicability of Results to Society of
Mind Model

AsIremarked in the introduction, Marvin Minsky’s “Society of Mind” (SoM) model
inspired much of this work.

This chapter serves both as a dictionary mapping SoM concepts to concepts in my
model, and as a summary of the contributions and extensions I feel I have made to the
SoM model.

In this chapter, [SoM] refers to [Minsky, 1986].

6.1 Agents

I have avoided using the term agent, because since SoM was published the word has
come to have too many different meanings. Even within SoM, agent sometimes means
what I call unit, and other times corresponds more to collections of units or entire
agencies. The term is used in a functional sense in SoM, so the issue of actual
representation is secondary. This work focuses on representation, so I refer instead to
units, assemblies of units, or agencies, depending on the particular actual structure I am
discussing.
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6.2 Agencies

I use the term agency in a very specific sense, to describe a collection of units with
particular kinds of memory interfaces. In SoM agency often refers more to functional
characteristics of agents or groups of agent rather than structural or representational
characteristics.

In fact, my usage is probably overly specific, in that the boundaries between agencies
probably need to be more fuzzy than they are in my model (see Level-Bands, below).

6.3 K-lines

K-lines [Minsky, 1980] are the mechanism of memory formation in SoM. A K-line is
formed by attaching to recently active agents in a situation where some useful problem
has been solved, or some other situation has occurred that warrants remembering the
current state.

My long-term memories are generally in correspondence with permanent K-lines, and
my short-term memories provide an implementation of temporary K-lines — devices that
were mentioned, but not described in much detail, in SoM.

One aspect of short-term memories that I consider a valuable contribution to the SoM
model is that they have recognizers, just as long-term memories do (Section 4.2). This
lets arbitrary memories be compared easily, without the time-blinking proposed in SoM
[SoM, Sec. 23.2]. Since I have actually done behavioral programming in an SoM-inspired
framework (Chapter 7), I can report that this capability makes many behaviors much
simpler to construct than they would otherwise be.

Short-term memories, as copies of agencies, are also permitted to form their own long-
term memories in my model; this solves several problems with frames.

There are two important things missing from my model relative to a full implementation
of K-lines, however. The first is a learning mechanism. I have sketched the means, but

not the control process, for forming new long-term memories.

The second thing missing is level-bands, below.
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6.4 Level-Bands

Level-bands are one of the theoretically most powerful, but least well specified, aspects of
K-line theory. When new K-lines are made, they connect most strongly at a particular
“level of abstraction” some distance below the current level of activity, in some sense.
Various kinds of interactions at the “fringes” of the level band can have profound
computational effects.

I have not yet implemented any aspects of level bands, but I am trying to extend my
model in order to do so.

6.5 Nemes

A Neme is an agent whose output represents a fragment of an idea or a state of mind. It
is more or less what I call a symbol, which is an agency input/output pattern
corresponding to a particular long-term memory.

6.6 Polynemes

[ use the term polyneme generally as Minsky does. Polynemes are described in Section
3.2. One apparent addition to the SoM model is the ability to treat short-term memories
as full-fledged polynemes, with accompanying recognizers (Section 4.1). Furthermore, I
have provided what I think is a more detailed description of how polynemes could be
learned (Section 3.2) than is found in SoM. Finally, I have extended the polyneme
concept in that I treat frames as “super-polynemes” (Section 5.6).

6.7 Micronemes

Nemes are represented by combinations of low-level agents called micronemes. They
correspond roughly to agency input/output wires, but in my system they do not have
an individual meaning, as they do in SoM [SoM, Sec. 20.5]. In fact, they are below the
abstraction level in my system, and in my implementation.
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6.8 Frames

Frames [Minsky, 1975] as used in SoM are described in Sections 5.1 and 5.2. The biggest
overall difference in my model from the SoM model involves the structure of frames. I
describe some problems with building frames in terms of unit networks in Section 5.5,
and in section 5.6, I argue that some additional capabilities of short-term memories solve
these problems. The frame structure I propose does not involve component selection via
AND gates; instead, all the slot are active at once; they are loaded directly into
appropriate short-term memory slots.

Frames can be viewed as a generalized kind of polyneme under this model.

6.9 Pronomes

The term pronome is used in SoM to refer both to frame slot selectors and to their
associated short-term memories. In my system, the selectors are synonymous with the
short-term memory activators, and I generally use the term slot to describe a short-term
memory when viewed as a component of a frame.
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Chapter 7

Implementation

I'have implemented many of the above ideas in a C++ program that simulates a creature
in a 2D world. Its environment consists of walls, boxes, blocks, and food. Its primary
task in life is to pick up blocks, and deposit them in boxes with matching colors. It also
gets hungry, and needs to eat food. The food can be thought of as prey — it moves
around, and must be chased down and caught. The creature also registers pain when it
runs into walls.

The creature’s interface to the world is via a biologically plausible set of sensors and
actuators. It has no absolute location knowledge or direct knowledge of world state, for

example.

Given this world interface and the unit-based creature design, various kinds of short-
term memory control processes and frames are needed to perform the desired behaviors.
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Figure 7-1: A Hungry Creature Hunts Some Prey

The configurable display on the right shows memory contents and unit activation
values. Behaviors may be closely monitored and debugged. For example, the fact
that the creature is carrying a red block is reflected in the contents of the

grab attributes short-term memory of the visual attribute agencies.

The display across the bottom contains the contents of the retina. Only the
attributes from the target area in the fovea are directly available to the creature’s
sensory network.

7.1 Overall Architecture

The creature control mechanisms are implemented as a network of approximately 350
interconnected computational units, similar to those described in Chapters 2-5. It might
seem that an organism with 350 “brain cells” would not be capable of any very
sophisticated behavior, but each unit represents many more primitive units. The
connections between units in different agencies represent spatial patterns on large
bundles of wires (Figure 2-4). Each of the short-term memories represents an
independent copy of the units in its source agency, along with control logic (Figure 4-2).
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The network is run as a discrete-time simulation. I experimented with various update
strategies, including synchronous updating and stochastic updating. The network
behavior proved relatively insensitive to updating strategy, so I settled on a simple
fixed-order sequential update. Units recompute a floating-point activation level when
updated, and use either a threshold function or a simple sum pinned below at 0.

At each time step, all the units are recomputed, then the actuators modify the creature’s
physical state, then the world objects update their states, and finally the sensor units are
updated with new sensory input. There is no process of “settling the network” between
world interactions, thus the creature’s brain is forced to propagate information fast
enough to keep up with the world. Relative to simulation time, units are updated
approximately every 5 msec. — in the same ballpark as neuron propagation delay times.
However, this comparison is not very precise, because units don’t map directly to
neurons. Nonetheless, it is a good idea to design behavior architectures that don’t
require thousands of propagations to react.

7.2 Sensors

7.2.1 Vision

The creature possesses a one-dimensional retina, 45 cells wide — essentially a z-buffer
image of its current field of view. The retina is part of an early vision system which is
outside the unit simulation proper. This system mediates between the world simulation
and the units in the vision agencies. It maintains a “focus point”, which corresponds to a
spot on the retina with motion tracking. When the focus point is in the fovea, the early
vision system reports quantized values of distance, color, shape, and size to units in the
vision agencies. It remembers how long it has been since each part of the visual field has
been focused on, and from this computes integrated left interest, right interest, and ahead
interest values. It also registers the degree to which the eye is turned left or right, and
reports when the focus point has drifted to the left or to the right of the the center of the

retina. Finally, it reports on dangerously close large objects (walls) to the left, to the
right, or ahead.



On the output side, the early visual system responds to an actuator unit which resets the
focus point to the center of the fovea.

Though the retina represents a wide (90 degree) field of view, the creature (i.e. the unit
network) can only directly perceive one set of visual attributes at a time. Information on
the rest of the retina is reduced to visual interest values and proximity detectors. To
build up a more complete picture of its current surroundings, the creature must foveate
to different parts of the visual field, accumulating previously perceived relevant
information into short-term memories, or otherwise modifying current state.

7.2.2 Proprioceptive Sensors
The creature has sensor units detecting whether it is moving forward or backward,
turning left or right, or opening or closing its mouth.

7.2.3 Tactile / Internal Sensors

There are sensor units registering pain in the front or the back (resulting from collisions
with walls). There are also units detecting food in the mouth, an object being carried,
and hunger level. Hunger increases with time and decreases when food is eaten.

7.3 Actuators

7.3.1 Body Actuators

There are actuator units which make the creature move forward, move backward, turn
left, turn right, open or close its mouth, pick up an object at its current location, and drop
any object it is carrying.

7.32 Eye Actuators

The eye actuator units turn the eye left and right, and (as previously mentioned) reset
the focus point to the center of the fovea.
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7.4 Behaviors

Some of the behaviors described here are diagrammed explicitly in Appendix A.

7.4.1 Object Location

Most creature behaviors involve locating objects of particular types. This is done by
loading the desired attributes into a target object short-term memory of the visual
attribute agencies. For example, food is represented in the system as small, round, green
objects. In order to locate food, the creature loads these attributes into the target object
short-term memories of the size, shape, and color agencies (by activating a food
polyneme directed to those memories).

Low-level vision behaviors cause the eye to foveate from place to place until an object
with the desired characteristics is located. This detection is manifested by the recognizer
for target object polyneme becoming active, indicating that the attribute agencies are all
in a state matching that memory.

Low-level motion control behaviors cause the creature to turn left or right whenever the
eye is respectively left or right. When combined with the ability to track the focus object,
these behaviors cause the creature to find and point itself toward a matching object —
when one is in the field of view. When there is no such object in the field of view, the eye
will be turned maximally left or right trying to reach the unexplored portion of the
visual field, thus causing the creature to rotate around and explore its complete
immediate environment.

These behaviors constitute an implementation of the “automatic finding machine”
Minsky describes [Minsky, 1986, Sec. 21.5].

Generally, a go to it behavior will be running, since the creature is usually searching for
some object or other. This causes the creature to move forward when target object is seen.
In combination with the object location behaviors, this makes the creature find and go to
an object or location matching target object. This works even when the desired object is
moving - e.g., food, which wanders around randomly.

46



7.4.2 Picture-Frames

Since the creature can only directly perceive one set of attributes at any given instant, it
must build up a memory-based model of its environment. This is done by storing
“landmark” information (wall and box locations) in short-term memories representing
the landmarks to the left, to the right, and directly ahead. As described in Chapter 4,
these short-term memories constitute the slots of picture-frames. The main frame system
using these slots shuffles the slot assignments as necessary when the creature turns. For
example, when the creature turns sufficiently far to the left the ahead-landmark becomes
the new right-landmark, the left-landmark becomes the new ahead-landmark, and the
currently perceived landmark, if any, becomes the new left-landmark.

At any given moment, the landmark memory matching the eye direction gets updated
with currently seen landmark attributes. This process is a simple implementation of
direction-neme-controlled temporary K-line selection, as described in SoM Section 24.8.
A more sophisticated implementation would build up hierarchical frame structures into
a picture-frame.

Various picture-frame instances recognize particular landmark configurations, and
activate units in a location-representing agency. This is an example of the utility of the
concept of frames as super-polynemes (Section 5.6). In a system without this kind of
model, recognition would have to take the form of a complex process of perception-
sequence pattern-matching. As mentioned, frame recognition is traditionally viewed as a
hard problem — this is an instance of my model reducing the task to what is essentially
polyneme recognition. Of course, the picture-frames I have implemented so far are
particularly simple. But the same technique can be used to recognize more complex
frame structures as well.

7.4.3 Navigation

The location-representing agency maintained by the picture-frames, when combined
with knowledge of location relationships, lets the creature navigate from place to place.
For example, if it is looking for the red box, but it is in a location from which that box
can’t be seen, then it can pick a series of landmarks to find that will get it there. This is
done incrementally, by loading the target landmark memory with whichever landmark is
appropriate in the given location, given the goal location (as represented by the target
location place memory). The object location behavior will lock onto the target landmark
when the target object itself is not present. This is sufficient for the “go to it” behavior to
follow the landmark trail until the goal is in sight.
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In practice, this means that if a red block, for example, is picked up in a location where
there are walls between the creature and the red box, it will successfully follow a path
around the walls to the box.

In this implementation, the location map is encoded explicitly rather than learned. The
“explicit encoding” is nevertheless in terms of a distributed representation within the
unit network, and not in some external conventional data structure.

7.4.4 Trans-Frames

The creature has a general capability, implemented as a “trans-frame”, to take a given
object to a given location. As in the case of picture-frames, the trans-frame slots are
realized as short-term memories. In this case there are source and destination slots which
are short-term memories of a memory control script-representing agency. The trans-
frame uses these to find its source and destination. First it activates source, which causes
some script to be activated. This should be a script which loads the target object short-
term memory with the desired source object attributes. The trans-frame then invokes a
get it behavior, which goes to the target object and picks it up. (Get it may also be
thought of as a frame, since it is a behavior based on a slot (short-term memory)
assignment.) After the object has been picked up, the trans-frame activates the destination
script (which loads the destination attributes into the target object memory), runs a go to
it behavior, then drops the object.

This is the most general form of trans-frame behavior, but the frame also implements
Minsky’s concept of default slot assignments [Minsky, 1986, Sec. 8.5]. In particular,
generally a full-blown script is not necessary to determine what the target objects should
be. If the source and destination objects are known in advance, then simpler visual
attribute slots may be used instead of script slots. Then the trans-frame will invoke
default source and destination scripts, which will in turn load the attribute slots into the
target object memory. For example, to carry some food to a wall, an agency should first
load the food attributes into a source object short-term memory of the attribute
representing agencies, load the wall attributes into a destination object memory, then
activate the trans-frame.
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If instead one set of attributes is not known in advance (see Block-Sorting, below), then
the default behavior may be overridden, by putting a controlling script in one of the
script slots. The default scripts are activated weakly by the trans-frame, and cross-
exclusionary links let explicit slot assignments override the default behavior smoothly.
This is exactly the way Minsky proposed that defaults could be used with K-lines
[Minsky, 1980].

However, it should also be noted that in this implementation frames are not quite so
distinguished from other kinds of units as they tend to be in the SoM picture. Again, this
is because my short-term memory model lets me treat slot contents uniformly with other
units. Frames are just units which can directly activate or recognize long-term memory
patterns in short-term memory slots as well as in their source agencies.

7.4.5 Block-Sorting

As noted above, the default trans-frame behavior is not sufficient when either the source
or the destination attributes are not known in advance. One example of this is the
creature’s block-sorting task. It has a high-level goal of picking up blocks and depositing
them in boxes which match the blocks’ colors. So if a blue block is picked up, then it
must be deposited in the blue box. Therefore, this behavior cannot use the trans-frame’s
default behavior - the destination attributes are not completely known until after the
block has been picked up, but the trans frame had to already be running in order to get
the block in the first place.

In this case, the block-sorting task overrides the default trans-frame behavior by loading
an appropriate script into the destination script slot. This script, which is run after the
source object has been picked up, loads the target object attributes with the correct
values, partially determined by the attributes of the object that was just picked up.

(The creature cannot actually perceive the attributes of the object it is carrying, so this
last operation requires the use of another memory. The behavior used to pick up objects
also stores the attributes of what is about to be picked up in a grab attributes memory,
which is then used by the block-sorting destination script.)
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7.4.6 Hunger Avoidance

Avoiding hunger is another high-level goal of the creature. The high-level goals are
those behaviors which tend to require dedication to a particular task. Block-sorting,
hunger, and pain avoidance fall into this category, and all are members of a cross-
exclusionary agency, to ensure that only one is trying to control the creature at any given
time.

Other behaviors, such as object avoidance during navigation, can function concurrently
with high-level goals — they do not need to be cross-excluded.

When the hunger level has increased sufficiently, the input to hunger avoidance is
sufficiently strong to counter the cross-exclusionary inhibition from block-sorting, and
eating behavior takes over. This involves loading the food attributes into the target
object memory, activating “go to it” (also used by “get it”, above), then executing the
appropriate actions (opening and closing the mouth at the right time) when food is
reached.

7.4.7 Pain Avoidance

Pain avoidance is another high-level goal. When pain is sensed (by running into a wall),
control is immediately wrested from whichever other goal is running at the time, and
the creature moves (either forward or backward) so as to eliminate the pain. To keep the
previous goal from immediately reactivating when the pain is gone, a “hurt” unit is
loaded with a value which gradually decreases — keeping the pain avoidance behavior
running while there is still a memory of recent pain.

The creature tries to avoid running into walls in the first place, but occasionally cannot
help it, since it might be focused on some object and not notice the approaching wall in
time to stop.

7.4.8 Boredom

When the creature is not moving forward, a boredom accumulator increases. When it
reaches a critical point, the creature assumes that whatever behavior it is trying to
perform is not successful, and tries a change of venue. It does this by picking a location
far from its current one, and placing this in the “target location” short-term memory that
is also used in ordinary navigation.

In practice, this behavior becomes active when the creature is looking for food or a block
in a location where there is none. Wandering to the other side of the world generally
fixes this problem.
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7.5 Interface

The simulation is implemented as Macintosh application, with an interface window
(Figure 7-1) and menus selecting various control and display parameters. The world as
viewed from above is displayed in the main part of the window. The retina contents are
represented along the bottom. On the right is a configurable scrolling panel which
allows inspection of agency, memory, and unit values.

The visual update rate may be adjusted, and the simulation may be stopped and single-
stepped. When stopped, the creature may be driven manually in order to position it in
test contexts.

The unit inspection panel has proven to be an invaluable aid in inspecting and
correcting creature behaviors — essentially it serves as a unit network debugger. The
relevant values may be selectively displayed and observed as the simulation is single-
stepped.
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Chapter 8

Contributions

I have defined a simple, biologically plausible computation model which can be used as
a “ground level” for building up useful Al programming abstractions.

I have defined abstractions for long-term memories, which allow networks of simple
units to be wired up flexibly. These abstractions are justified by the mechanism of
Zatocoding [Mooers, 1956].

I have defined abstractions for short-term memories, which allow a form of controlled
instant network rewiring. They embody a realization of the “temporary K-line” concept.
Beyond this, they make it easy to compare arbitrary memories directly. The abstractions
are justified by specific constructions in terms of logic gates.

[ have proposed a novel architecture for building frames out of gate-like units. The key
feature is the ability to directly address short-term memory contents. This architecture
makes it easy to recognize frames implemented as networks of units.

I'have demonstrated applications of all these abstractions by programming a simulation
of a creature controlled by an abstract unit network. The creature can navigate around
its world, hunt prey, and sort colored blocks into matching boxes. It interacts with a
dynamic environment via a biologically plausible set of sensors and actuators, yet is
driven by symbolic processes that use memories, scripts, picture-frames, and trans-
frames.
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Appendix A

Selected Creature Behavior Diagrams

In this appendix I give diagrams for some creature behaviors.

Agencies are represented as large shaded ovals. Within agencies, ovals are long-term
memories, and rectangles are short-term memories. Input wires to memories activate
them; output wires from memories recognize them (using abstractions in Sections 3.3
and 4.3).

As discussed in Section 5.7, wires that load particular long-term memories directly into
short-term memory states are represented as connected to those long-term memory
states, with labels indicating the short-term memory. In some diagrams labeled wires
connect to short-term memories as well; in this case the meaning is that the contents of
the target short-term memory are loaded into the labeled short-term memory. (I have
not provided an explicit mechanism for this detail; it can be interpreted as first
activating the target memory, then assigning the labeled memory.)

Labeled wires connecting to an agency instead of to a memory within an agency load the
current agency state into the labeled short-term memory (that is, activate the labeled

short-term memory’s assigner unit).

Labeled output wires from a long-term memory represent recognition of that long-term
memory being stored in the labeled short-term memory.
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Figure A-1: Sequence Abstraction

When the sequence is activated, do will be activated until until becomes active;
then then do will be activated. This is logically equivalent to an if-then-else, but the
sequence construction is typically used to perform an action until a condition
becomes true, then perform a different action.

eye sensors attributes

Figure A-2: Vision System (Simplified)
Eye attitude (left or right) controls body turning. When farget is seen, the focus
spot is tracked; otherwise, the eye moves toward the region of greatest interest in

the visual field.

See Sections 7.2.1 and 7.4.1 for details.
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Figure A-3: Avoid Hunger Construction

Go to it relies on the vision system to find an object matching target, and moves
forward when target is recognized (i.e. matches attribute agency states).

Avoid hunger loads food (small + green + round) into target, opens the mouth when
near food, and eats when at food.

find matching
box

scripts

attributes

Figure A-4: Fill Box Construction

Fill Box sets box as the source object, and overrides the default trans-frame
destination script with memory control to find a box matching the color of the
object grabbed. See Figure A-5 and Section 7.4.4 for details.
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Figure A-5: Trans-Frame Construction
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When active, the trans-frame weakly activates the default source and destination
scripts into the source and destination script slots. The default scripts load the
source and destination attribute short-term memories into the target attribute
short-term memory. Other values in the script slots can override the defaults.

See section 7.4.4 for details.
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