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Abstract

Glassy polymers, such as polystyrene (PS), poly(methyl methacrylate) (PMMA) and
polycarbonate (PC), are common engineering polymers that have found uses in con-
sumer products ranging from portable computers and optical lenses, to automotive
components and appliance housings. PMMA and PS are typically considered to be
brittle polymers, since they fail in a brittle manner under low triaxiality conditions,
such as under uniaxial tension. Polycarbonate is considered to be a more ductile
polymer than PMMA and PS, since it will deform plastically under uniaxial tension.
However, PC does exhibit brittle behavior under certain loading conditions, such as
low temperatures, high strain rates, or highly (tensile) triaxial stress states. A tech-
nique used for reducing the brittleness (increasing the fracture toughness) of glassy
polymers is rubber-toughening. The technology of rubber-toughening, which involves
blending a small volume fraction (5-20%) of rubber particles with the homopolymer,
has been used commercially since the 1940s, and has been of major importance to
the plastics industry. The technology of rubber-toughening is qualitatively well un-
derstood, but quantitative tools to study the material response are still at an early
stage of development.

The purpose of this thesis is to develop numerical tools to investigate the me-
chanical behavior of rubber-toughened glassy polymers, with emphasis on rubber-
toughened PC. To this end, several tools are developed. Three-dimensional microme-
chanical models of the hetereogeneous microstructure are developed to study the
effects of particle volume fraction on the underlying elastic visco-plastic deformation
mechanisms in the material, and how these mechanisms influence the macroscopic

[continuum-level] response of the material. A continuum-level constitutive model is
developed for the homogenized large-strain elastic-viscoplastic behavior of the mate-
rial. The model is calibrated against micromechanical modeling results for rubber-
toughened polycarbonate. The constitutive model is used to study boundary value
problems such as notched tensile bars, where a multi-scale modeling approach en-
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ables assessment of failure due to local stress and strain levels in the material. The
results are compared to experimental studies to establish correlations between the
continuum-level response of the material, and observed failure mechanisms in the
material.

Thesis Supervisor: Mary C. Boyce
Title: Professor

Thesis Supervisor: David M. Parks
Title: Professor
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A fool is a man who never tried an experiment in his life.

- Erasmus Darwin (1731-1802)

If you are going through hell, keep going.

- Sir Winston Churchill (1874-1965)

5



6



Contents

1 Introduction

2 Constitutive Behavior of Homogeneous Glassy Polymers

2.1 K inem atics . . . . . . . . . . . . . . . . . . . . . . . . . .

2.2 Stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.3 Linear elastic behavior . . . . . . . . . . . . . . . . . . . .

2.4 Viscoplastic flow . . . . . . . . . . . . . . . . . . . . . . .

2.5 Back-stress . . . . . . . . . . . . . . . . . . . . . . . . . .

2.5.1 Material parameters for glassy polycarbonate . . .

3 Micromechanical Modeling

3.1 Periodic boundary conditions and macroscopic response .

3.2 The 3D V-BCC model ... ................

3.2.1 Boundary conditions . . . . . . . . . . . . .

3.2.2 Results for the 3D V-BCC model . . . . . .

3.3 The lattice-based multi-void models . . . . . . . . .

3.3.1 Boundary conditions . . . . . . . . . . . . .

3.3.2 The LC model (cubic voids on a lattice) . .

3.3.3 The LS model (spherical voids on a lattice).

3.3.4 Lattice-based multi-void models: Summary.

3.3.5 R esults . . . . . . . . . . . . . . . . . . . . .

3.4 The multi-void Voronoi model . . . . . . . . . . . .

3.4.1 Geom etry . . . . . . . . . . . . . . . . . . .

7

21

33

35

37

37

38

40

41

45

. . . . . . 48

. . . . . . . . . . 52

. . . . . . . . . . 53

. . . . . . . . . . 57

. . . . . . . . . . 65

. . . . . . . . . . 68

. . . . . . . . . . 68

. . . . . . . . . . 71

. . . . . . . . . . 78

. . . . . . . . . . 80

. . . . . . . . . . 88

. . . . . . . . . . 88



3.4.2

3.4.3

3.4.4

Finite element discretizat

Evaluation of the multi-vi

Results . . . . . . . . . .

3.5 Summary of the developed RVEs

3.5.1

3.5.2

Micromechanics.....

Macromechanics . . . . .

4 Constitutive Modeling of Porous

4.1 Kinematics . . . . . . . . . . .

ion . . . . . . . . . .

id Voronoi model

Glassy Polymers

. . . . . . . . . . . .

4.2 Stress . . . . . . . . . . . . . . . . . . . . . .

4.3 Linear elastic behavior . . . . . . . . . . . . .

4.4 Back-stress . . . . . . . . . . . . . . . . . . .

4.5 Viscoplastic flow . . . . . . . . . . . . . . . .

4.5.1 Porous viscoplasticity . . . . . . . . . .

4.5.2 Application to glassy polymers . . . .

4.6 Calibration of constitutive model parameters .

4.6.1 Calibration of the functions A1 , A2 and

4.6.2 Comments on the choices of Ai . . . .

4.7 Conclusions . . . . . . . . . . . . . . . . . . .

A 3 .

5 Fracture Processes in Rubber-Toughened Polycarbonate

5.1 Multiscale studies of failure processes . . . . . . . . . . . . . . . .

5.2 Macroscopic response . . . . . . . . . . . . . . . . . . . . . . . . . .

5.3 Microscopic response . . . . . . . . . . . . . . . . . . . . . . . . . .

5.4 Quality of the constitutive model calibration . . . . . . . . . . . . .

5.5 C onclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 Summary and Future Work

6.1 Micromechanical modeling . . . . . . . . . . . . . . . . . . . . . . .

6.2 Constitutive modeling . . . . . . . . . . . . . . . . . . . . . . . . .

6.3 Multi-scale modeling . . . . . . . . . . . . . . . . . . . . . . . . . .

8

91

93

102

113

115

116

121

124

125

126

127

131

131

136

137

138

140

140

143

147

150

155

161

165

167

168

170

171



6.4 Future

6.4.1

6.4.2

6.4.3

6.4.4

A Paper I

B Paper II

w ork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Micromechanical modeling . . . . . . . . . . . . . . . . . . . .

Constitutive modeling . . . . . . . . . . . . . . . . . . . . . .

Multi-scale modeling . . . . . . . . . . . . . . . . . . . . . . .

Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9

172

172

175

176

176

179

225



10



List of Figures

1-1 The Davidenkov construction illustrating the ductile-to-brittle tran-

sition in a glassy polymer: (a) effects of strain rate, (b) effects of

tem perature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1-2 Rubber particle morphologies: (a) soft-core/hard-shell, (b) hard-core/soft-

shell/hard-shell, (c) "onion" morphology, (d) "salami" structure. . . . 23

1-3 Deformation mechanisms: (a) Crazing between rubber particles in

HIPS (Bucknall [15]), and (b) distributed shearing of the matrix in

a porous polycarbonate film (van der Sanden [72]). . . . . . . . . . . 25

1-4 Stress-strain response under uniaxial compression (Eaxiai = -0.01s-1)

for polycarbonate at room temperature and different rubber-particle

volume fractions (Johnson [38]). . . . . . . . . . . . . . . . . . . . . . 27

1-5 Investigation of the mechanical behavior of rubber-toughened glassy

polymers: (a) improvement of consumer product performance through

rubber-toughening, (b) idealizations of the microstructure, (c) continuum-

level constitutive modeling, (d) multi-level finite element modeling to

establish fracture criteria for rubber-toughened glassy polymers. . . . 28

2-1 Finite strain kinematics of the glassy polymer. . . . . . . . . . . . . . 36

2-2 Schematic of the constitutive model for glassy polymers: (A) linear

elastic spring, (B) non-linear orientation hardening spring, (C) vis-

coplastic dashpot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

11



2-3 Homogeneous polycarbonate under axial loading: (a) uniaxial tension

for a constitutive response using the Argon (Table 2.2) and power-

law (Table 2.3) equations for the viscous flow, respectively, at different

true strain rates, (b) uniaxial tension and compression, illustrating

the influence of the pressure parameter a on the stress-strain response

using the Argon equation for the viscous flow. . . . . . . . . . . . . . 43

3-1 Different topological idealizations of the porous microstructure: (a)

two-dimensional axisymmetric single-void models, (b) three-dimensional

single-void models, (c) two-dimensional multi-void models, (d) three-

dimensional multi-void models. . . . . . . . . . . . . . . . . . . . . . 47

3-2 A spatially periodic RVE: (a) the undeformed RVE, (b) the deformed

RVE with three of its periodic neighbors. . . . . . . . . . . . . . . . . 49

3-3 The 3D V-BCC cell. . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3-4 Two neighboring 3D V-BCC cells. . . . . . . . . . . . . . . . . . . . . 54

3-5 Two points, A and B, that are reflectively symmetric with respect to

a plane with unit normal n. . . . . . . . . . . . . . . . . . . . . . . . 54

3-6 The (undeformed) 3D V-BCC cell model used for plane strain defor-

mation and principal stress states. . . . . . . . . . . . . . . . . . . . . 56

3-7 The (undeformed) 3D V-BCC cell model used for simple shear defor-

mation: (a) 12-orthographic view; (b) 13-orthographic view; (c) 3D

view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3-8 Contours of P under macroscopic uniaxial tension for an initial void

volume fraction, fo = 0.15. The development of plastic shear local-

ization is shown for increasing levels of macroscopic axial strain: (a)

E33~ 0.034, (b) E33 0.05, (c) E3 3 ~ 0.23 and (d) E 33 ~ 0.40. . . 60

3-9 Macroscopic response of the 3D V-BCC model under macroscopic uni-

axial tension at different initial void volume fractions: (a) evolution of

macroscopic axial stress with macroscopic axial strain, (b) evolution of

macroscopic volumetric strain with macroscopic axial strain. . . . . . 61

12



3-10 Contours of yP under macroscopic plane strain tension for an initial

void volume fraction, fo = 0.15. The development of plastic shear

localization is shown for increasing levels of macroscopic axial strain:

(a) E33 ~ 0.035, (b) E 33 ~ 0.045, (c) E33 ~ 0.069 and (d) E 33 ~ 0.127. 63

3-11 Macroscopic response of the 3D V-BCC model under macroscopic plane

strain tension at different initial void volume fractions: (a) evolution

of macroscopic axial stress with macroscopic axial strain, (b) evolution

of macroscopic volumetric strain with macroscopic axial strain. ..... 64

3-12 Contours of yP under simple shear deformation for an initial void vol-

ume fraction, fo = 0.15. The development of plastic shear localization

is shown for increasing levels of macroscopic nominal shear strain, F:

(a) P ~ 0.048, (b) F ~ 0.068, (c) F ~ 0.085 and (d) I ~ 0.122. . . . . 66

3-13 Macroscopic response of the 3D V-BCC model under simple shear de-

formation at different initial void volume fractions: evolution of macro-

scopic nominal shear stress with macroscopic nominal shear strain. . . 67

3-14 Periodically located points on the surface of the lattice-based multi

-void m odels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3-15 The lattice-based multi-void RVE with cubic voids. N = 6. . . . . . . 69

3-16 The LC model: Influence of the number of voids, M, on the predicted

macroscopic stress-strain response (fo = 0.15). . . . . . . . . . . . . . 72

3-17 The LC model: Superposition of the mean response at N = {4, 6,8}

and fo = 0.15 for (a) macroscopic hydrostatic deformation and (b)

macroscopic simple shear deformation. . . . . . . . . . . . . . . . . . 73

3-18 The LS model: Example topology for the case of N = 6, fo = 0.15 and

a mesh density given by k = 2 (number of divisions in each direction

of the lattice units). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3-19 The LS model: Influence of the number of voids, M, on the predicted

macroscopic stress-strain response (fo = 0.15). . . . . . . . . . . . . . 76

13



3-20 The LS model: Superposition of the response at N = {4, 6, 8} and fo =

0.15 for (a) macroscopic hydrostatic deformation and (b) macroscopic

simple shear deformation. . . . . . . . . . . . . . . . . . . . . . . . . 77

3-21 The LS model: Influence of mesh refinements on the predicted macro-

scopic stress-strain response (fo = 0.15). . . . . . . . . . . . . . . . . 78

3-22 Macroscopic response of the LS model under uniaxial tension at dif-

ferent initial void volume fractions (N = 6, k = 2): (a) evolution of

macroscopic axial stress with macroscopic axial strain, (b) evolution of

macroscopic volumetric strain with macroscopic axial strain. . . . . . 81

3-23 Contours of ?P under uniaxial tension for an initial void volume frac-

tion, fo = 0.15. The development of plastic shear localization is shown

for increasing levels of macroscopic axial strain: (a) E33 ~ 0.040, (b)

E33~ 0.075, (c) E 3 3 ~ 0.11 and (d) E33 0.50. . . . . . . . . . . . . 83

3-24 Macroscopic response of the LS model under simple shear deforma-

tion at different initial void volume fractions: evolution of macroscopic

nominal shear stress with macroscopic nominal shear strain. . . . . . 85

3-25 Contours of -1P under simple shear deformation for an initial void vol-

ume fraction, fo = 0.15. The development of plastic shear localization

is shown for increasing levels of macroscopic nominal shear strain: (a)

F ~ 0.048, (b) I' 0.12, (c) I 0.15 and (d) r ~ 0.25. . . . . . . . . 87

3-26 Geometry generation for the multi-void Voronoi model: (a) insertion

of a non-conflicting primary void, and its periodic image voids, (b)

Voronoi tessellation of the set of primary and image void centers, (c)

the Voronoi cells containing the primary voids, comprising the space-

filling, periodic RVE, (d) the RVE with its neighbors. . . . . . . . . . 90

3-27 The multi-void Voronoi model with three void-containing cells: (a)

three pairs of periodic surface segments, (b) two three-void RVEs, fit-

ting together. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

14



3-28 The multi-void Voronoi model: (a) two periodically located external

surfaces with the same node and element topology, (b) finite element

topology for a Voronoi cell containing a spherical void. . . . . . . . . 93

3-29 The multi-void Voronoi model: Macroscopic response for different num-

ber of voids (fo = 0.15). . . . . . . . . . . . . . . . . . . . . . . . . . 95

3-30 Four simulations (a-d) using 15 voids (fo = 0.15): Three normal

stresses corresponding to a macroscopically-imposed state of hydro-

static deform ation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3-31 The multi-void Voronoi model (fo = 0.15): Superposition of the re-

sponses at 5, 10 and 15 voids for (a) macroscopic hydrostatic deforma-

tion and (b) macroscopic simple shear deformation. . . . . . . . . . . 101

3-32 The multi-void Voronoi model: effects of finite element mesh refine-

ments on the macroscopic hydrostatic response. . . . . . . . . . . . . 103

3-33 Macroscopic uniaxial tension: (a) axial stress-strain response, (b) evo-

lution of volumetric strain with axial deformation. . . . . . . . . . . . 104

3-34 Contours of plastic shear strain-rate, P, for a ten-void RVE under

macroscopic uniaxial tension (fo = 0.15): (a) E 33 = 0.034, (b) E33 =

0.044, (c) E33 = 0.055, (d) E33 = 0.18. . . . . . . . . . . . . . . . . . 106

3-35 Macroscopic plane strain tension: (a) axial stress-strain response, (b)

evolution of volumetric strain with axial deformation. . . . . . . . . . 107

3-36 Contours of plastic shear strain-rate, yP, for the case of macroscopic

plane strain tension and fo = 0.15, using P = 10 voids: (a) E 33 =

0.033, (b) F33 = 0.043, (c) E33 = 0.053, (d) E33 = 0.18. The macro-

scopic plane-strain constraint is imposed in the 1-direction. . . . . . . 108

3-37 Macroscopic simple shear deformation. . . . . . . . . . . . . . . . . . 110

3-38 Contours of plastic shear strain-rate, yP, for the case of macroscopic

simple shear deformation and fo = 0.15: (a) F = 0.032, (b) F = 0.042,

(c) F = 0.093, (d) r = 0.20. . . . . . . . . . . . . . . . . . . . . . . . 112

3-39 Macroscopic hydrostatic deformation. . . . . . . . . . . . . . . . . . . 113

15



3-40 Contours of plastic shear strain-rate, yP, for the case of macroscopic

hydrostatic deformation and fo = 0.15: (a) J = 1.04, (b) J = 1.07, (c)

j = 1.09, (d) J = 1.14. . . . . . . . . . . . . . . . . . . . . . . . . . . 114

3-41 Comparison of the micromechanical models under macroscopic uniaxial

tension (fo = 0.15): (a) macroscopic axial stress vs. macroscopic axial

strain, (b) macroscopic volumetric strain vs. macroscopic axial strain. 117

3-42 Comparison of the micromechanical models under macroscopic simple

shear deformation: macroscopic nominal stress vs. macroscopic nomi-

nal shear strain (fo = 0.15). . . . . . . . . . . . . . . . . . . . . . . . 119

4-1 The porous glassy polymer: (a,b) features of macroscopic deformation,

(c) schematic of the proposed model. . . . . . . . . . . . . . . . . . . 122

4-2 Finite strain kinematics of the porous glassy polymer. . . . . . . . . . 124

4-3 Constitutive model predictions using the fits on Aj: (a-b) uniaxial

tension, (c-d) plane strain tension, (e) simple shear deformation, and

(f) hydrostatic deformation. . . . . . . . . . . . . . . . . . . . . . . . 141

5-1 Correlation between experiments and simulations: (a) experimentally

observed fracture, (b) simulation of notched conditions using the de-

veloped constitutive model, (c) simulation of material point behavior

by means of an RVE, (d) development of fracture criteria. . . . . . . 148

5-2 Geometries of the axisymmetric tension bars: (a) unnotched bar, (b)

R = 0.76 mm notched bar, (c) R = 1.905 mm notched bar. . . . . . . 151

5-3 The finite element meshes of the notched axisymmetric bars: (a) R =

0.76 mm notched bar, and (b) R = 1.905 mm notched bar. . . . . . . 151

5-4 Force-displacement curves for different tensile bar geometries: (a) un-

notched, (b) R = 0.76 mm notched bar; The gray zone indicates

an approximate displacement range for fracture of the 10% rubber-

toughened specimen, (c) R = 1.905 mm notched bar. . . . . . . . . . 152

16



5-5 Fracture surfaces: (a) 0.76mm notched specimen of homogeneous poly-

carbonate, (b) 1.905mm notched specimen of homogenous polycarbon-

ate, (c) 0.76mm notched specimen of 5% rubber-toughened polycar-

bonate (Johnson [38]). . . . . . . . . . . . . . . . . . . . . . . . . . . 154

5-6 Negative pressure distribution along a specimen midplane for the case

of fo = 0 and R = 0.76 mm: (a) evolution of negative pressure on

the specimen midplane as a function of axial specimen deformation,

(b) indication of peak negative pressure locations along the specimen

midplane as a function of axial specimen deformation. . . . . . . . . . 157

5-7 Distribution of If along the specimen midplane (fo = 0, R = 1.905 mm).158

5-8 Macroscopic stretch invariant distribution along the specimen mid-

plane (fo = 0): (a) il-curves for fo = 0.05, (b) ip-curves for fo = 0.05,

(c) il-curves for fo = 0.10, (d) ~j-curves for fo = 0.10. The gray zones

indicate axial specimen deformation at observed fracture. . . . . . . . 160

5-9 Extraction of the deformation gradient at a point in the specimen,

and the subsequent application of the deformation to the multi-void

Voronoi m odel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

5-10 Contours of pressure and effective plastic stretch in the polycarbonate

matrix at various stages of the specimen deformation: (a) 0.4 mm, (b)

1.3 m m , (c) 1.5 m m . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

5-11 Deformation history of the monitored material point: (a) Components

of the deformation gradient, (b) true normal strain rates. . . . . . . . 163

5-12 Self-consistency scheme to ascertain the quality of the consitutive model

calibration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

5-13 Stress history of the monitored material point: (a) Components of

Cauchy stress, (b) stress triaxiality. . . . . . . . . . . . . . . . . . . . 165

17



18



List of Tables

2.1 Summary of the elastic and strain hardening parameters for annealed

polycarbonate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.2 Summary of the viscoplastic parameters for polycarbonate using Ar-

gon's expression. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.3 Summary of the viscoplastic parameters for polycarbonate using the

power-law expression. . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1 Resulting initial void volume fraction, fo, as a function of RVE size

(N) and number of voids (M) for the RVE with cubic voids. ..... 69

3.2 Resulting initial void volume fraction, fo, as a function of RVE size

(N) and number of voids (M) for the RVE with spherical voids, using

f "''" -= 0.45. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 74

3.3 Microstructural information for the four simulations using 15 voids

(fo = 0.15). . . . . . . . . . . . . . . . . . . . . . . . . .. . . .. . 97

19



20



Chapter 1

Introduction

Glassy polymers, such as polystyrene (PS), poly(methyl methacrylate) (PMMA) and

polycarbonate (PC), are common engineering materials that have found uses in con-

sumer products ranging from portable computers and optical lenses, to automotive

components and appliance housings. PMMA and PS are typically considered to be

brittle polymers, since they fail in a brittle manner under low triaxiality conditions,

such as under uniaxial tension. Polycarbonate is considered to be a more ductile

polymer than PMMA and PS, since it will deform plastically under uniaxial tension

at ambient temperatures and low strain-rates. However, PC exhibits brittle behavior

under certain loading conditions, such as low temperatures and / or high strain-rates,

as shown schematically by the Davidenkov construction in Fig. (1-la,b). Brittle frac-

ture is thought to initiate when a fracture stress is reached before ductile plastic flow

occurs in the material. In addition to temperature and strain rate effects, highly tri-

axial (tensile) stress states, resulting from sharp geometry changes, such as notches

and cracks, have been shown to promote brittle behavior of PC (see, for example,

Hyakutake and Nisitani [37], Nimmer and Woods [51], and Tsuji, et al. [69]). In

summary, at low temperatures, high strain rates, or highly triaxial stress states, PC

shares the unfavorable failure characteristics displayed by "brittle" glassy polymers

such as PS and PMMA. The increasing use of glassy polymers in areas traditionally

dominated by metals, for example in the automotive industry, has motivated the de-

velopment of new engineering polymers with improved mechanical properties, and, in

21



Ductile Brittle Brittle - Ductile
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Figure 1-1: The Davidenkov construction illustrating the ductile-to-brittle transition
in a glassy polymer: (a) effects of strain rate, (b) effects of temperature.

particular, an increased fracture toughness.

A technique often used to increase the fracture toughness of glassy polymers is

rubber-toughening. The technology of rubber-toughening (Fig. 1-5a) involves blend-

ing a small volume fraction (5-20%) of [easily-cavitating] rubber particles with the

homopolymer. Rubber-toughening has been used commercially since the 1940s, and

has been of major importance to the plastics industry. In fact, rubber-toughening

has proved so effective in improving toughness, that the technology has been applied

to almost all commercial glassy polymers. Rubber particles of different morphologies

can be used to toughen glassy polymers. At their simplest, the particles are homoge-

neous rubber spheres; however, in most toughened plastics, the morphology is more

complex. Figure (1-2) shows the most commonly used particle morphologies. Figs. (1-

2a-c) show different morphologies involving alternating concentric shells of rubber and

glassy polymer. These "layered" particles are often used to toughen PMMA (Lovell,

et al. [45]), and are also effective in toughening PC and poly(vinyl chloride) (PVC)

(Lutz and Grossman [46]). Figure (1-2d) shows a "salami"-type particle morphol-

ogy, often found in high-impact polystyrene (HIPS) (Bucknall [14]). These particles

consist of PS subinclusions in a polybutadiene phase.
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(a) (b)

(c) (d)

Figure 1-2: Rubber particle morphologies: (a) soft-core/hard-shell, (b) hard-

core/soft-shell/hard-shell, (c) "onion" morphology, (d) "salami" structure.

From an engineering standpoint, toughness can be defined as the ability of a ma-

terial to absorb and dissipate energy prior to final fracture. There are two major

mechanisms by which energy is dissipated in rubber-toughened glassy polymers. De-

pending on the properties of the glassy polymer matrix, these mechanisms are either

massive crazing or massive distortional plasticity1 . High-impact polystyrene displays

massive crazing; the rubber particles act to provide a profusion of craze initiation sites

(Bucknall and Smith [16]). Figure (1-3a) shows a section of deformed HIPS with fib-

rillation in the rubber phase of the "salami" particles, and crazing in the polystyrene

matrix (Bucknall [15]). Rubber-toughened polycarbonate, on the other hand, displays

massive shear banding, as polycarbonate usually deforms through ductile shearing.

Cavitation of the rubber particles is thought to relieve hydrostatic stresses, and the

[cavitating] particles provide a profusion of stress concentrations throughout the poly-

carbonate matrix, which promotes ductile plastic shearing of inter-particle ligaments

(see, for example, Yee [77]). This distributed shearing of the polycarbonate matrix

is illustrated in Fig. (1-3b) where a [two-dimensional] porous polycarbonate film has

'Distortional plastic flow of glassy polymers is often referred to as shear yielding in the literature.
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been stretched horizontally to 10% strain (van der Sanden [72]). Regardless of the spe-

cific deformation mechanism, the objectives of rubber-toughening in glassy polymers

are to maximize the material volume that takes part in the deformation process, and

to maximize the deformation at each contributing material point, thereby maximizing

the total energy dissipation before final fracture.

The focus of this thesis is the mechanical behavior / performance of rubber-

toughened polycarbonate. As discussed previously, homogeneous polycarbonate is

generally considered to be a "tough" polymer, which will usually deform plastically

through ductile shearing, and ultimately fracture subsequent to significant plastic

straining. While polycarbonate is, in this sense, ductile in nature, the introduc-

tion of a modestly sharp notch has been shown to trigger brittle behavior due to

the high hydrostatic (tensile) stresses near the notch tip. Polycarbonate also un-

dergoes a ductile-to-brittle transition at high strain rates and / or low temperatures

(Fig.1-1). Thus, rubber particles are introduced to decrease the "notch sensitivity"

of the material, and to shift the ductile-to-brittle transition to higher strain-rates

and lower temperatures. The conditions [stress triaxiality, strain-rate, temperature]

for the ductile-to-brittle transition in rubber-toughened polycarbonate depend on the

volume fraction of the rubber phase and the dispersion of the rubber particles in the

polycarbonate matrix. Cheng, et al. [18] found that polycarbonate modified with

linear polybutadiene resulted in a wide range of rubber particle sizes, and such a

distribution did not enhance toughness of the blend, compared to the homopolymer.

Core-shell rubber particles (Fig. 1-2a) allow for good dispersion in the matrix, and

Kim [40] found that these particles are effective in enhancing toughness of polycar-

bonate. In summary, the major factors that influence the ductile-to-brittle transition

in rubber-toughened polycarbonate are

" temperature,

" rate of deformation,

* level of stress triaxiality and magnitude of stress,

* volume fraction of rubber particles,
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(a)
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Figure 1-3: Deformation mechanisms: (a) Crazing between rubber particles in HIPS
(Bucknall [15]), and (b) distributed shearing of the matrix in a porous polycarbonate
film (van der Sanden [72]).
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* dispersion of the rubber particles in the polycarbonate matrix.

While these factors are generally recognized as playing a role in the ductile-to-brittle

transition of rubber-toughened polycarbonate, quantitative models to predict this

transition are lacking; there are no ductile or brittle fracture criteria available in the

literature2 . If brittle fracture can be averted through an improvement of the local

loading conditions of the polycarbonate matrix, the rubber-toughened polymer is able

to undergo large plastic strains before final [ductile] fracture.

While substantial progress has been made in the development of constitutive mod-

els for homogeneous glassy polymers, there are no quantitative constitutive models for

the large-strain deformation of rubber-toughened glassy polymers. The large-strain

deformation of homogeneous glassy polymers has been successfully modeled by Boyce,

Parks and Argon [12], and by Arruda and Boyce [7] (see Chapter 2 for a review). The

addition of rubber particles to a glassy polymer significantly alters the mechanical

response of the arising material. The large-strain deformation of rubber-toughened

polycarbonate has been studied experimentally by, for example, Cheng, et al. [18],

Kim, et al. [40] and Johnson [38]. Figure (1-4) shows experimentally-obtained uni-

axial compression data for different rubber-toughened polycarbonate blends at room

temperature and constant axial strain-rate (Eaxiai = -0.01s') (Johnson [38]). The

curves in Fig. (1-4) show that, when compared to the homopolymer, the introduction

of rubber particles to glassy polycarbonate

* decreases the elastic stiffness,

" lowers the yield stress,

" decreases the amount and rate of post-yield softening,

" decreases the strain-hardening slope.

As mentioned previously, constitutive models that account for these observed differ-

ences in constitutive response are lacking. Attempts have been made to model some

2 The notion of "brittle fracture" is appropriate when the material fails early during deformation,
with insignificant accompanying plastic straining and dissipation, whereas "ductile fracture" refers
to failure subsequent to significant plastic straining and dissipation.
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Figure 1-4: Stress-strain response under uniaxial compression (Eaxia = -0.01s 1 )
for polycarbonate at room temperature and different rubber-particle volume fractions

(Johnson [38]).

of the main features of deformation of rubber-toughened glassy polymers, including

elastic properties and initial "yield surfaces" (see, for example, Steenbrink, et al. [65]

and Pijnenburg and van der Giessen [56])3. These studies have modeled the rub-

ber particles as voids, as the particles are assumed to have cavitated early during

deformation. An inherent limitation of these models is that they were developed

through modifications of porous plasticity models for dilute volume fractions of voids

in a rate-independent, non-hardening matrix. Many issues were not addressed, such

as the existence of a deformation-induced back-stress, the anisotropic growth of the

rubber particles (or voids), etc.

The purpose of this thesis is to develop numerical tools to investigate the mechan-

ical behavior of rubber-toughened glassy polymer blends, with emphasis on rubber-

toughened polycarbonate (Fig. 1-5). Three-dimensional micromechanical models of

the hetereogeneous microstructure are developed to study the effects of filler volume

fraction on the underlying elasto-viscoplastic deformation mechanisms in the blend,

3The notion of yield surface for a viscoplastic material is formally incorrect, as it pertains to

rate-independent plasticity. Nevertheless, at a given norm of [deviatoric + hydrostatic] strain-rate,

it can be instructive to describe the onset of plastic flow by such a surface.
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Figure 1-5: Investigation of the mechanical behavior of rubber-toughened glassy poly-
mers: (a) improvement of consumer product performance through rubber-toughening,
(b) idealizations of the microstructure, (c) continuum-level constitutive modeling, (d)
multi-level finite element modeling to establish fracture criteria for rubber-toughened
glassy polymers.
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and how these mechanisms influence the macroscopic [continuum-level] response of the

blend (Fig. 1-5b). A continuum-level constitutive model is developed for the homog-

enized large-strain elastic-viscoplastic behavior of the blend (Fig. 1-5c). The model is

calibrated to micromechanical modeling results for rubber-toughened polycarbonate.

The constitutive model is used to study boundary value problems such as notched

tensile bars, where a multi-scale modeling approach enables assessment of failure due

to local stress and strain levels in the blend. The results are compared to experi-

mental studies to establish correlations between the continuum-level response of the

blend, and observed failure mechanisms in the blend (Fig.1-5d). The availability of

a multi-scale continuum-level constitutive modeling framework for rubber-toughened

glassy polymers is important from an engineering standpoint. It can be utilized in the

development of consumer products, thereby reducing the costs for mechanical testing

and evaluation (Fig.1-5a).

The outline of the thesis is as follows: In Chapter 2, a constitutive model for the

rate and temperature dependent deformation of glassy polymers is reviewed within

a large-strain continuum-mechanics framework. The constitutive model has been

implemented into the commercial finite element program ABAQUS [1]. The imple-

mentation of the model allows the analysis of boundary value problems, and, in par-

ticular, it provides the basis for modeling the porous polycarbonate microstructures

in Chapter 3.

In Chapter 3 are developed several micromechanical models of the rubber-toughened

polycarbonate (Fig. 1-5b). In these models, the rubber particles are replaced by voids,

as the rubbery phase is assumed to cavitate at an early stage during deformation. The

polycarbonate matrix behavior is modeled using the constitutive framework outlined

in Chapter 2. The micromechanical models differ in their assumptions on the void

arrangement, and in the number of voids considered. First, a model is presented in

which the voids are assumed to be spherical and arranged on a BCC lattice, thereby

enabling the use of a single void volume element. Two models are then introduced

in which several voids, randomly placed on a cubic lattice, are considered. The two

models differ in their respective idealizations of the void shapes; the voids are taken
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as spherical or cubical. The last model considers spherical voids, randomly dispersed

in the glassy polymer matrix; no underlying lattice structure confines the voids to

certain locations. The developed models are used to study the micromechanics and

macromechanics of rubber-toughened (here porous) glassy polycarbonate, and the

relative merits and drawbacks of each model are discussed.

In Chapter 4, the results from Chapter 3 are used to elucidate the differences in

mechanical response of porous polycarbonate, compared to the mechanical response of

the homogeneous material for a range of moderate, yet industrially relevant, porosity

levels: fo = {0.05, 0.10, 0.15} (Fig. 1-5c). Equipped with the insight from Chap-

ter 3, the merits and limitations of existing constitutive porous plasticity models in

the literature are discussed. A constitutive model for the mechanical behavior of

porous polycarbonate is then formulated within a large-strain continuum mechanics

framework. The model is designed to capture the essential features of deformation

of porous polycarbonate, observed in the micromechanical modeling of Chapter 3.

We implement the developed constitutive model into the commercial finite element

program ABAQUS [1]. The implementation of the constitutive model into a finite el-

ement program enables the study of boundary value problems, in which each material

point represents the homogenized mechanical response of the porous material.

In Chapter 5, the developed constitutive model for porous polycarbonate is used

to study the deformation and fracture processes in rubber-toughened tensile bars.

The constitutive model enables studies of the macroscopic mechanical behavior of

the bars, and it also enables studies of [homogenized] stress and strain fields in the

bars. Various notched and un-notched tensile bars are simulated, and the results are

compared to experimental observations. These comparative studies, when made over

a wide range of temperatures, strain-rates and strain histories, can provide a basis for

establishing brittle and ductile fracture criteria for rubber-toughened polycarbonate.

A thorough experimental study is required to provide the data necessary to quantita-

tively establish fracture criteria, and at present, such a study is not available. In light

of this, we are limited to a qualitative assessment of the mechanisms involved in the

fracture process. To aid in gaining an understanding of the fracture process, a multi-
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scale finite element modeling technique is employed in which the micromechanical

models of the porous microstructure of Chapter 3 are revisited. The micromechanical

models are used to study local stress and strain fields at [matrix] material points in a

notched bar where fracture was observed to initiate. This modeling scheme enables

the study of progression of local deformation and fracture in the polycarbonate matrix

prior to macroscopically-observed fracture.

In Chapter 6, we summarize the work carried out in the thesis, and provide direc-

tions for future work. We discuss possible routes toward developing fracture criteria

for rubber-toughened polycarbonate by means of the numerical tools devloped in

this thesis. We also suggest modifications necessary to apply the developed tools to

the study of other classes of materials, such as particle-toughened semi-crystalline

polymers and polycrystalline metals.
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Chapter 2

Constitutive Behavior of

Homogeneous Glassy Polymers

The mechanical response of glassy polymers beyond the elastic regime can be broadly

categorized into two modes: A glassy polymer can deform in a ductile manner through

large-strain plastic shearing, or it can undergo brittle fracture through crazing, a

dilatational process. For example, at ambient temperatures and low strain rates,

polycarbonate is ductile under uniaxial tension, as it deforms plastically through

shearing; the material is able to undergo large plastic strains without failing in a

brittle manner. The brittle mode of crazing is encountered in glassy polymers such

as polystyrene under uniaxial tension, and in polycarbonate under states of high

hydrostatic stress, such as at crack tips. The topic of crazing will not be discussed

in this chapter, but it is noted that the process of crazing is itself the product of

large plastic strains which are localized within very small volumes of material. The

large-strain mechanical behavior of glassy polymers has been studied over the past

few decades, and several continuum-level constitutive models of increasing complexity

have been developed for this class of materials. The purpose of this chapter is to give

a brief review of these developments in order to provide a basis for the finite element

simulations of Chapter 3 and the continuum-level constitutive modeling of porous

glassy polymers in Chapter 4.

Haward and Thackray [33] proposed a one-dimensional spring-dashpot model to
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characterize the major features of deformation of glassy polymers. The model con-

sists of three constitutive elements (Fig. 2-2): A linear elastic spring (A) acts in series

with a parallel arrangement of a dashpot (B) and a non-linear spring (C). The linear

elastic spring is used to characterize the initial response of the glassy polymer as

elastic (Hookean). The dashpot is used to model the viscous part (an intermolecular

resistance) of the material behavior, and the non-linear spring is used to model the

orientation-induced strain-hardening upon continued plastic straining. For the vis-

cous part, a number of flow models have been proposed, which are appropriate for

a solid polymer, and Haward and Thackray used the Eyring viscosity equation [26].

The non-linear spring was assumed to follow the laws of rubber elasticity, as presented

by Treloar [68]. A model based on non-Gaussian statistics was selected, as it provided

a limit to chain extensibility in accordance with experimental observations. Argon [4]

pointed out that the use of rubber elasticity for the non-linear spring in the model by

Haward and Thackray was a particular way of representing entropy changes in the

molecular network.

Parks et al. [54] extended the one-dimensional spring-dashpot framework by

Haward and Thackray to three dimensions. In their model, the intermolecular resis-

tance was taken to be constant, leading to rate-independent plastic flow. The entropic

resistance (strain-hardening) was modeled, as suggested by Haward and Thackray, us-

ing non-Gaussian rubber elasticity. The network response was represented using the

three-chain model proposed by Wang and Guth [75]. This description of the entropic

resistance results in a back-stress tensor having a one-to-one correspondence to the

plastic distortion which reflects the molecular texture developed in the polymer.

Boyce et al. [12] extended the three-dimensional model by Parks, et al. to include

the effects of deformation rate, pressure, strain-softening and temperature on the

plastic resistance. In their model, the intermolecular resistance of the material was

represented using the rate- and temperature-dependent model by Argon [4], modified

to account for strain-softening and effects of pressure on plastic flow.

Arruda and Boyce [7] studied the strain-hardening characteristics of two glassy

polymers, polycarbonate (PC) and poly(methyl methacrylate) (PMMA). They showed

34



that the network description used by Parks, et al., and Boyce, et al., does not predict

correctly the state of deformation dependence observed in these polymers. Arruda

and Boyce proposed a new statistical mechanics-based constitutive model for rubber

elasticity using an eight-chain network model. This model has been shown to correctly

account for the deformation dependence of several rubber materials [8]. Arruda and

Boyce modified the glassy polymer model of Boyce, et al., by using the eight-chain

rubber elasticity model, instead of the previously-used three-chain model, to model

the strain-hardening response of the glassy polymer. Comparisons to experimental

data for PC and PMMA showed that the eight-chain model description of the strain-

hardening successfully captured the state of deformation dependence in both these

polymers.

As its predecessors, the glassy polymer model by Arruda and Boyce involves three

components (Fig. 2-2): a linear spring (A) used to characterize the initial response

as elastic; and a non-linear spring (B) that accounts for an anisotropic resistance to

molecular chain alignment, which develops as a back-stress with plastic straining; a

viscoplastic dashpot (C) representing the rate and temperature-dependent plastic flow

which corresponds to an isotropic resistance to chain segment rotation. Constitutive

descriptions for each of these elements, as well as the finite strain kinematics of the

constitutive model, are summarized below.

2.1 Kinematics

The constitutive model uses the multiplicative decomposition of the deformation gra-

dient, F, into elastic and plastic parts according to Lee [44],

F = F Fp, (2.1)

where the superscripts e and p denote the elastic and plastic (relaxed) configurations,

respectively. The plastic deformation gradient, FP, is obtained in the relaxed config-

uration by elastically unloading to a stress-free state via F'-1 (Fig. 2-1). The elastic
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Figure 2-1: Finite strain kinematics of the glassy polymer.

deformation gradient, Fe, can be decomposed as

Fe = VeRe, (2.2)

where Ve is the left elastic stretch tensor, and the proper orthogonal tensor Re is

an elastic rotation. The velocity gradient, L, can be expressed as the sum of a

(symmetric) stretching tensor, D, and a (skew) spin tensor, W, and it is given as

follows:

L = PF-' = D + W = F Fe- 1 +FeLPFe-I = Le + LP,
Le LP

where Le and LP are the "elastic" and "plastic" velocity gradients in the

configuration, respectively, and LP is the "plastic velocity gradient" in the

configuration'. The plastic velocity gradient in the current configuration

(2.3)

current

relaxed

can be

'The notion of "elastic" and "plastic" velocity gradients is widely accepted, but the terminology
is formally inaccurate as there are, in general, no corresponding "elastic" or "plastic" velocity fields.
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decomposed into symmetric and skew parts as,

LP = DP + WP. (2.4)

In this formulation, we prescribe the skew part of the plastic velocity gradient in

the current configuration to be zero, WP = 0, and by this process eliminate the

rotational indeterminacy of the Fe FP decomposition [13]. The evolution of the plastic

deformation gradient (the flow rule) is then given by

PP = f -F = Fe'-DPFeFP = Fe- 1 DPF, (2.5)

where DP is constitutively prescribed below.

2.2 Stress

The total Cauchy stress, T, acting on the material is the sum of the contributions

from the viscoplastic dashpot and the non-linear orientation hardening spring (back-

stress):

1
T = T* + Fe TBFeT, (2.6)

Je

where Je = det Fe. The stress acting on the dashpot, T*, is defined in the current

configuration. The back-stress, TB, is defined in the relaxed configuration, and is

pushed forward to the current configuration via Fe.

2.3 Linear elastic behavior

The isotropic linear elastic spring (A) used to characterize the initial response of the

material is constitutively described by the fourth-order elasticity tensor, Ce,

Ce = 2A I+ {r, - 2/3p}10 1, (2.7)
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Figure 2-2: Schematic of the constitutive model for glassy polymers: (A) linear elastic
spring, (B) non-linear orientation hardening spring, (C) viscoplastic dashpot.

where p and r are the shear and bulk moduli, respectively, and 1 and I are the second

and fourth-order identity tensors, respectively. Elastic strains in glassy polymers are

often on the order of a few percent, and a suitable strain measure is therefore the

elastic logarithmic (Hencky) strain, E' = InVe. The Cauchy stress, T, is then given

by (Anand [2]),

T = Ce [Ee] (2.8)
Je

2.4 Viscoplastic flow

The plastic stretching, in the current configuration, is given by

DP = PN, (2.9)

where N is the tensorial direction of the plastic stretching, and P is a plastic shear

strain rate. The plastic flow is taken to be incompressible, and the tensor N is aligned

with the deviator of the driving stress for plastic flow,

dev (T*)N dev(T*) (2.10)
||dev (T*) 11'

where ... denotes the 2-norm of the argument. The plastic strain rate, 'P, is, in

general, a function of the properties of the glassy polymer, temperature and stress.
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The plastic flow has been successfully modeled by Argon [4] to include these effects.

The expression for yP proposed by Argon is

AG 5* /6
?? = o exp - - (2.11)

where Ao is the pre-exponential factor, proportional to the attempt frequency, AG is

the zero-stress level activation energy, k is Boltzmann's constant, T* = Ildev T*1I/v'

is the effective shear stress, s is the athermal shear strength, and 9 is the absolute

temperature.

The viscoplastic flow in glassy polymers can also be modeled using a power-law

expression for the viscous flow rate (see, for example, G'Sell and Jonas [30]). The

power-law expression is given by

(7*)1/m

il = , - , (2.12)

where 1)o is, in general, a function of temperature, and m is a plastic strain-rate

sensitivity parameter. Using this formulation, the plastic stretching is expressed as

DP = 2 N vP N, (2.13)

where the factor 3/-2 is a consequence of the manner in which the power-law viscos-

ity is frequently formulated2 . The limit of m -+ 0 implies rate-independence, while

m -- 1 models linear viscous behavior. The shear strength, s, in Eqs. (2.11) and

(2.12) can be modified to account for the observed pressure-dependent yield in glassy

polymers (Boyce et al. [12]) by the formal change,

s -+ s + ap, (2.14)

2The plastic strain-rate potential for an isotropic incompressible power-law viscous behavior is
1/m+1

given by < = (Tq,m) = , where Teq is the Mises equivalent tensile stress.

Differentiation of this expression with respect to the driving stress for plastic flow gives the plastic

stretching tensor as DP = ( ) 1 /nN.
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where a is a dimensionless constant, and p = -tr (T) /3 is the pressure. Strain-

softening in aged glassy polymers has been modeled by letting the shear strength s

evolve from an initial value, so, to a [lower] constant saturation shear strength, 8 sat,

according to

= h - s ", (2.15)
ssat)

where h > 0 is a softening parameter (Boyce et al. [12]). In Eq. (2.15), 5 sat is taken

to be independent of temperature and strain rate.

2.5 Back-stress

At large plastic deformations of the glassy polymer, the molecular chains become

preferentially oriented. The work associated with the chain alignment is internally

stored in entropic form, and it gives rise to a deviatoric back-stress in the material.

The back-stress can successfully be described within the context of rubber elasticity

using the Arruda-Boyce eight-chain material model [8]. The deviatoric back-stress,

dev (TB),is given by

dev (TB) = CR 1 ( dev (BP), (2.16)

where dev (BP) = dev (FPFPT) and A h = [tr (BP) /3]1/2. The material proper-

ties describing the orientation-hardening characteristics are CR, the initial hardening

modulus, and N, the number of rigid molecular units between entanglements. The

Langevin function L is given by

,C(O) = coth (0) - (2.17)
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and the inverse Langevin function is implicitly defined by

2.5.1 Material parameters for glassy polycarbonate

Arruda [6] performed uniaxial compression and plane strain compression experiments

on glassy polycarbonate and poly(methyl methacrylate). The experiments were car-

ried out for a range of temperatures and [low] strain rates. The glassy polymer

model, using the Argon expression (Eq. 2.11), modified to account for pressure effects

(Eq. 2.14), was calibrated against the experimental results obtained for polycarbon-

ate at room temperature, and the model parameters are given in Tables 2.1 and

2.2. Table 2.1 shows the linear elastic bulk (r) and shear modulus (p) at room

temperature, as well as the two material parameters N and CR required to model

the orientation-hardening. Table 2.2 shows the parameters {i0, AG, so, sat, h, a} for

the plastic flow part. The uniaxial tensile stress-strain response using the mate-

rial parameters in Tables 2.1 and 2.2 is shown in Fig. (2-3a) for three strain rates:

Eaxial = {O.001s- , O.Ols-1 , 0.1s5}.

Figure (2-3b) shows the effects of pressure on plastic flow (a = {0, 0.075}). It is

seen in the figure that under uniaxial tension and compression, the effect of pressure

is indeed present, but does not have a major influence on the stress-strain response

of the material. Under highly triaxial stress states, the effect of pressure on plastic

flow increases, while under highly deviatoric stress states, this effect is diminishing.

In Chapter 3, various idealizations of porous glassy polymers will be used to address

the influence of porosity on the macroscopic stress-strain response of the material. In

a porous glassy polymer, it is expected that presence of voids will act to relieve local

negative pressures in the glassy polymer matrix, which reduces the influence of the

parameter a of the matrix on the macroscopic stress-strain response of the porous

material. In the following discussion, it will therefore be assumed that a = 0.

As will be illustrated in Chapter 4, the mathematically simple power-law viscous

flow description (Eq. 2.12) is suitable in the development of a constitutive descrip-
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r, (MPa) p (MPa) N

2250 870 2.15

CR (MPa)

12.8

Table 2.1: Summary of the elastic and strain hardening parameters for annealed
polycarbonate.

%O (s-1)

2. 1015

AG (J)

3.3 -10-19

so (MPa)

99.37

8 sat (MPa)

77.5

h (MPa)

500

a

0.075

Table 2.2: Summary of the viscoplastic parameters for polycarbonate using Argon's
expression.

tion for the plastic flow of porous glassy polymers. The constitutive model for the

glassy polymer using the power-law description for the viscous flow (Eq. 2.12) was

therefore calibrated against the stress-strain curves based on Tables 2.1 and 2.2. The

resulting set of material parameters for the plastic flow are shown in Table 2.3. The

constitutive model for glassy polymers will serve two purposes in the thesis: It will

be used to represent the glassy polymer matrix phase in micromechanical modeling

of rubber-toughened polymers, and it will provide a framework for the development

of continuum-level constitutive models for rubber-toughened polymers.

Ssat (MPa) h (MPa)

39 245

Table 2.3: Summary of the
law expression.

viscoplastic parameters for polycarbonate using the power-

42

i'o (s-1 )

0.009

m

0.033

so (MPa)

73.5



90

80

70

60

50

40

30

20

0.ls-
0.0o1s-

-Argon
- Power-law

0.1 0.2 0.3
Axial true strain

(a)

10

0
0.4 0.5

Tension ,

Compression

.Argon:

....... : c= 0.075
-- a = 0
SAxial true strain rate |=0.0 Is-

0.1 0.2 0.3 0.4 0.5

I Axial true strain I
(b)

0

Figure 2-3: Homogeneous polycarbonate under axial loading: (a) uniaxial tension

for a constitutive response using the Argon (Table 2.2) and power-law (Table 2.3)

equations for the viscous flow, respectively, at different true strain rates, (b) uniaxial

tension and compression, illustrating the influence of the pressure parameter a on the

stress-strain response using the Argon equation for the viscous flow.
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Chapter 3

Micromechanical Modeling

Micromechanical modeling, through the identification of a representative volume ele-

ment (RVE) of material, has become an increasingly important tool for understanding

deformation mechanisms in porous (or particle-modified) materials. Many microme-

chanical models have idealized the porous microstructure as a stacked hexagonal array

(SHA) of identical, spherical voids in a matrix (Fig. 3-la) (see, for example, Tver-

gaard [70], Koplik and Needleman [41], and Steenbrink, et al. [65]). The SHA void

distribution enables the simplification of the porous material to a locally-periodic

"unit cell", which is solved numerically as a two-dimensional axisymmetric bound-

ary value problem. Socrate and Boyce showed that the axisymmetric SHA model

gives realistic predictions of macroscopic stress and strain as long as the void volume

fraction is low; that is, when the voids are essentially isolated, and there is limited

interaction. At large void volume fractions, when the interactions between voids be-

come stronger, the periodicity of the SHA model forces matrix deformation to localize

through a thin inter-void ligament near the void equator, and this yields unrealistic

predictions of the macromechanical and micromechanical behavior. A more suitable

representation of the void distribution is obtained if the voids are staggered, rather

than stacked. Socrate and Boyce [63] developed two axisymmetric cell models based

on BCC and BCT arrangements of voids. The model based on a BCC arrangement

of voids, termed the axisymmetric V-BCC model, is shown in Fig. (3-1a). These

models were shown to give more realistic predictions of macroscopic stress and strain,
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as well as micromechanical behavior, for higher void volume fractions. A limitation

of any axisymmetric model, however, is that it can only be used to study macroscopic

deformation and loading histories that are themselves axisymmetric, such as uniaxial

tension, or uniaxial tension with a superimposed hydrostatic stress. The axisymmet-

ric V-BCC model by Socrate and Boyce was extended by Danielsson, et al. [21], to

a fully three-dimensional description of the geometry (Fig. 3-1b). This model (the

3D V-BCC model) can be used to study arbitrary macroscopic deformation histories,

including plane strain tension and simple shear deformation, and it will be discussed

in this chapter.

The idealization of the void distribution as stacked or staggered arrays is conve-

nient, as it allows for single-void RVEs to be considered. By considering single-void

RVEs, it is possible to accurately resolve local matrix field quantities in the vicin-

ity of the void, such as stress, strain and strain-rate. In a single-void RVE, plastic

deformation mechanisms, such as shear banding between voids, are forced to occur

periodically throughout the composite. In a real porous material, where the voids are

randomly distributed, such deformation events are expected to occur sequentially, giv-

ing rise to a percolation of plastic flow through the material. In order to account for

the distribution of deformation events expected in a porous material, Smit, et al. [62]

proposed a two-dimensional plane-strain cell model based on a random distribution

of cylindrical voids in a polycarbonate matrix (Fig. 3-1c). The authors argued that

the significant post-yield softening predicted in porous polycarbonate by single-void

models is an artifact of the local periodicity of the voids, and that it is only through

the introduction of a spatially random distribution of voids that a micromechanical

model can capture the macroscopically stable blend behavior which results from the

successive percolation of plastic flow through the matrix.

A limitation of the model proposed by Smit, et al. is its plane geometry, and ide-

alization of a random distribution of spherical voids into a random array of cylindrical

voids. The model by Smit, et al. showed the percolation of plastic flow through the

matrix, but the plane geometry of the micromechanical model did not allow for strain

or stress gradients in the direction of macroscopic constraint. When the real material
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2D: Plane strain or
axisymmetric loading

(a)

The axisymmetric The axisymmetric
SHA model V-BCC model

Socrate and Boyce (2000)

(c)

The 2D plane strain
multi-void model

Smit, et al. (1999)

3D: Arbitrary states
of deformation

(b)

The 3D V-BCC model, shown
with a periodic neighbor

Danielsson, et al. (2002)

(d)

The LC model:
Cube-shaped voids
on a cubic lattice

The LS model:
Spherical voids

on a cubic lattice

The Multi-void Voronoi model

Figure 3-1: Different topological idealizations of the porous microstructure: (a) two-
dimensional axisymmetric single-void models, (b) three-dimensional single-void mod-
els, (c) two-dimensional multi-void models, (d) three-dimensional multi-void models.
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is subjected to macroscopic plane strain tension, it is reasonable to expect local plastic

deformation also in the direction of macroscopic constraint. In order to successfully

model any three-dimensional loading conditions, such as macroscopic plane strain

tension, a fully three-dimensional micromechanical model is required. Three different

micromechanical models of three-dimensional, random, distributions of voids (Fig. 3-

1d) will be presented in this chapter, in addition to the single-void 3D V-BCC model.

For each of the four micromechanical models, different macroscopic loading histories

will be studied on micromechanical and macromechanical scales. The relative merits

of the micromechanical models will be discussed.

3.1 Periodic boundary conditions and macroscopic

response

Each representative volume element to be discussed in this chapter is space-filling and

spatially periodic. When such an RVE is subjected to a macroscopic loading and/or

deformation history, periodic boundary conditions must be applied to the surface of

the RVE. This ensures that the RVE deforms in a periodically repeating manner, and

that no overlaps or cavities form. Figure (3-2) shows a schematic of a periodically

repeating RVE. Although in Fig. (3-2) the undeformed RVE geometry is schematically

taken to be a unit cube, the following discussion is general and applicable to any space-

filling, spatially periodic RVE. The RVE is subjected to a macroscopic deformation

gradient, F. The two points A and B (Fig. 3-2) are periodically located on the RVE

surface, and the requirement that no overlaps or cavities may form poses a constraint

on the relative displacement of A with respect to B. The displacement of point

A relative to point B is determined by the macroscopically applied displacement

gradient, H = F - 1, through

u(B) - u(A) = (F - 1) {X(B) - X(A)} = H {X(B) - X(A)}, (3.1)
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A X(B)-X(A) B

(a)

3

2

(b)

Figure 3-2: A spatially periodic RVE: (a) the undeformed RVE, (b) the deformed
RVE with three of its periodic neighbors.

where u ( ... ) denotes displacement, and X (...) denotes position in the reference

configuration 1 . Every periodic surface point pair on the RVE must be constrained

using Eq. (3.1). The macroscopic RVE deformation can then be imposed by prescrib-

ing the nine components of F. The macroscopic Cauchy stress, T, corresponding to

the macroscopically applied deformation gradient F, can be extracted through vir-

tual work considerations (Danielsson, et al. [21]). The procedure for obtaining the

macroscopic Cauchy stress, T, is reviewed here for completeness.

The principle of virtual work states that the internal virtual work has to be equal

to the external virtual work,

6Wint = Wext (3.2)

1Note that a frequently used constraint equation is u(A) = (P - 1) X(A) applied to all bound-
ary points of the RVE. This constraint equation satisfies the requirement that the RVE deforms
in a compatible manner, with no overlaps or cavities forming, but it imposes an over-constraint
on the local deformation fields, and limits the deformation patterns through which the RVE can
accommodate the macroscopically-applied P. Moreover, traction periodicity will not be satisfied on
the surface of the RVE.
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The external virtual work may be written as

6W = j Sno -6u(C)dSo = j s -6u(C)dSo, (3.3)

where S is the (pointwise) first Piola-Kirchhoff stress tensor, no is the outward unit

normal to the surface of the RVE, So, in the reference configuration. 6u(C) is the

virtual displacement of a point C in the reference configuration, and s is the surface

traction in the reference configuration2 . The macroscopic (RVE average) first Piola-

Kirchhoff stress, S, is given by

5= +I dVo, (3.4)
Vo v0

where V is the volume of the RVE in the reference configuration, including con-

tained voids where S = 0. The first Piola-Kirchhoff stress is work-conjugate to the

deformation gradient. Hence, the internal virtual work can be written as

6Wint = V - F. (3.5)

By using Eqs. (3.2), (3.3) and (3.5), we obtain

Vo - 6F= s -6u(C)dSo. (3.6)

Hence, the macroscopic first Piola-Kirchhoff stress tensor, S, is expressed in terms

of the local surface tractions, s. The components of the macroscopic deformation

gradient, F, are the quantities that drive the deformation of the RVE (Eqs. 3.15

and 3.18) in a finite element analysis of the corresponding boundary value problem.

Operationally, the components of F are provided to the RVE by introducing nine

2 Note: The reference surface So includes the internal void surfaces. However, these are traction-
free, and do not contribute to the external virtual work.
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generalized degrees of freedom, i,

21) P 12  F 13

4 = 2 1  (F 22 - 1) F 23  . (3.7)

7 F 31  F 3 2  (F33 1)

These i are assigned to be the displacement components of three 'dummy' nodes in

the finite element model, thus giving F in Eq. (3.1). Virtual work is then used to

determine the work-conjugate stress, S. The external virtual work (Eq. 3.3) may be

re-stated in terms of the generalized degrees of freedom, i, and their work conjugate

generalized forces, Ei,

9

6We t = ( 6o. (3.8)
i=1

Therefore, the Ei are the "reaction forces" corresponding to the assigned "dis-

placement components", 'i of the 'dummy' nodes. By using Eqs. (3.5) and (3.8), the

components of the macroscopic first Piola-Kirchhoff stress tensor, S, are identified as

S11 S12 S13  i 22 3F - - 1 39
S21 S22 S23 = - 4 -_5 -_ .6(.9)

S31 S 32 S 33  z7 z8  =9

The macroscopic Cauchy stress tensor, T, is calculated from S and F as

- VO 'T 1FT
T = F =(3.10)

VJ

where V is the volume of the RVE in the current (deformed) configuration, and

J = det F. The macroscopic deformation of the RVE can be characterized in terms

of the macroscopic logarithmic strain tensor, E, given by

E = lnV, (3.11)
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13

Figure 3-3: The 3D V-BCC cell.

where V is the (macroscopic) left stretch tensor based on a polar decomposition of

the macroscopic deformation gradient, F = V .

3.2 The 3D V-BCC model

In the 3D V-BCC cell model, the random void distribution is idealized by arranging

the particles on a body-centered cubic (BCC) lattice. The cell model is constructed

through a three-dimensional Voronoi tessellation procedure, which results in a space-

filling arrangement of tetrakaidecahedra (Fig. 3-3). The tessellation can be carried

out in three elementary steps (Dib and Rodin [23]). First, the center of a reference

cube is connected by lines to its eight corners and to the six nearest corresponding

cube centers. Second, each of these lines is bisected by a plane. Third, the 3D V-BCC

cell is given as the volume bounded by the planes. This 3D V-BCC cell, also known

as the Wigner-Seitz cell (Wigner and Seitz [76]), is a highly symmetric polyhedron

which possesses nine symmetry planes.
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3.2.1 Boundary conditions

General periodic boundary conditions for the 3D V-BCC cell model are developed for

three specific macroscopic loading cases: (1) axial deformation with imposed lateral

stress; (2) plane strain deformation with imposed lateral stress; (3) simple shear de-

formation. The boundary conditions are then expressed in terms of the macroscopic

deformation gradient, F (Eq. 3.1). The different macroscopic load cases in this study

allow for the cell model to be reduced, due to reflective symmetries. This reduction of

the geometry is desired to lessen the computational requirement of the finite element

analyses. The Cartesian reference system used in this study is shown in Fig. (3-3);

Cartesian base vectors are {ei}. For the cases of principal stress states coaxial with

the Cartesian reference system, 1/8 of the 3D V-BCC cell is considered, whereas the

case of simple shear deformation requires 1/4 of the cell to be considered 3 . The prin-

cipal direction of uniaxial tension is taken to be the 3-direction, which is a direction

perpendicular to a pair of square facets (Fig. 3-3). In the case of simple shear defor-

mation, the principal shearing planes are taken along a pair of square facets of the

cell.

General case

The surface of the 3D V-BCC RVE consists of eight hexagonal and six square facets.

The RVE is space-filling (Fig. 3-4), and periodically located surface points are related

through the macroscopic deformation gradient (Eq. 3.1),

u(B) - u(A) = (F - 1) {X(B) - X(A)} = H {X(B) - X(A)}. (3.12)

For certain load cases, the geometry of the RVE can be reduced due to reflective

symmetries. If two points, A and B, are reflectively symmetric with respect to a

3For the case of uniaxial tension and tension with equal lateral stresses, only 1/16 of the 3D V-

BCC cell model is needed. However, to facilitate the use of hexahedral meshes, 1/8 of the cell model

is used instead.
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Figure 3-4: Two neighboring 3D V-BCC cells.

n

u(A) u(B)

A B

Figure 3-5: Two points, A and B, that are reflectively symmetric with respect to a

plane with unit normal n.

plane with unit normal n (Fig. 3-5), then their displacements are related through

u(A) = (1 - 2n 0 n)u(B) = Q(n)u(B), (3.13)

where u(A) and u(B) are the displacements of A and B, 1 is the second-order identity

tensor, the symbol a denotes the tensor (dyadic) product, and Q(n) is the reflection

operator of the symmetry plane with normal direction n. The reflection operator

Q(n) is an orthogonal tensor, thus Q(n)T Q(n) = 1.
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Plane strain deformation and principal stress states

The cases of plane strain deformation and principal stress states coincident with the

coordinate directions perpendicular to the square facets of the cell, require 1/8 (Fig. 3-

6) of the 3D V-BCC cell to be modeled. The coordinate planes are symmetry planes,

and the general periodic boundary conditions (Eq. 3.1), together with appropriate

reflections (Eq. 3.13) give rise to the following boundary conditions (Eqs. 3.14 and

3.15),

u(S6 ) + Q(e3 )u(S5 ) = 2u(Pi)

u(Si) + Q(el)u(S2) = 2u(P2 )

e3 -u(S7 ) = e 3 -u(P 3 ) (3.14)

u(S3 ) + Q(e 2 )u(S 4 ) = 2u(P 4 )

(F - 1)X(P) = u(P), i = 1..4 (3.15)

where Si-S7 are points on the facets of the 3D V-BCC cell (Fig. 3-6). The macroscopic

deformation gradient, F, corresponding to a macroscopic principal deformation state

is given by

3

-A= i (t) ej (3 ej, (3.16)

where the time-dependent macroscopic principal stretches, Ai (t), can be prescribed.

In the case of macroscopic uniaxial tension in the three-direction, A3 (t) is prescribed

to produce a constant macroscopic axial true strain-rate, and A1 (t) and A2 (t) are

left un-prescribed. In the case of macroscopic plane strain deformation, A3 (t) is

prescribed to produce a constant macroscopic axial true strain-rate, 1 (t) = 1, and

A2 (t) is left un-prescribed.
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Figure 3-6: The (undeformed) 3D V-BCC cell model used for plane strain deformation
and principal stress states.

Simple shear deformation

For the case of simple shear deformation in the 23-plane, 1/4 of the 3D V-BCC cell is

modeled (Fig. 3-7). The 23-plane is here a plane of symmetry, and the 12-plane is a

plane of antisymmetry. The boundary conditions for this case are summarized below

(Eqs. 3.17 and 3.18),

u(S 6 ) - Q(ej)u(Su) = 2u(Pi)

u(Si) + Q(ei)u(S2 ) = 2u(P2)

u(S 7 ) + Q(el)u(Ss) = 2u(P 3 )

u(S4 ) + u(Sg) - 2u(P 4 ) (3.17)

u(S3) + u(Sio) = 2u(P 4 )

u(S 1 2 ) - Q(el)u(S5 ) = 2u(P5 )

u(S15 ) + Q(e 1 )u(S 6 ) = 2u(P6 )

u(S13 ) + Q(ej)u(S 14) = 0

(F - 1)X(P) = u(P), i = 1..6 (3.18)
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Figure 3-7: The (undeformed) 3D V-BCC cell model used for simple shear deforma-
tion: (a) 12-orthographic view; (b) 13-orthographic view; (c) 3D view.

where S1-S16 are points on the facets of the 3D V-BCC cell (Fig. 3-7). The macro-

scopic deformation gradient, F, corresponding to macroscopic simple shear deforma-

tion is given by

P = 1 + rt e2 0 e3, (3.19)

where r is the imposed nominal shear strain-rate.

3.2.2 Results for the 3D V-BCC model

The simulations in this section were performed using twenty-node hexahedral finite

elements with reduced integration. The benefit of using reduced integration is that the

computational cost is significantly reduced compared to the fully-integrated elements,
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but more importantly, that numerical problems pertaining to hydrostatic modes of

deformation are relieved; reduced integration is suitable for nearly-incompressible

analyses.

Uniaxial tension

The 3D V-BCC model was subjected to uniaxial tension for three levels of initial

void volume fraction fo = {0.05, 0.10, 0.15}. The macroscopic axial-stress / axial-

strain curves are shown in Fig. (3-9a), and the evolution of volumetric strain, E, =

tr E, with axial strain is shown in Fig. (3-9b). The macroscopic yield of the porous

material is defined as the point on the axial-stress / axial-strain curve where the stress

experiences a peak, with subsequent softening. The microscopic response, in terms

of contour plots of plastic shear strain-rate, -i, is shown for the case of fo = 0.15

in Fig. (3-8). The contour plots (Fig. 3-8) indicate that plastic flow initiates in the

equatorial region of the void surface (a). At this point in the deformation, most of

the surrounding material is still in the elastic regime. A close examination of the

stress-strain curves (Fig. 3-9a) shows that, prior to macroscopic yield, the curves

deviate slightly from linearity. This is due to the initial local plastic deformation in

the equatorial region of the void, which begins to soften the porous material. As the

flowing material strain-hardens due to molecular orientation, surrounding material

starts to flow. Eventually, shear bands form across inter-void ligaments. This "net

section" flow corresponds to macroscopic yield of the porous material. The stress-

strain curves show a decrease in the macroscopic "yield stress" of the porous material

with increasing initial void volume fraction. The stress-strain curves also show that

the post-yield softening, appreciable in the homopolymer, is reduced through the

introduction of voids, and that this reduction is more substantial with an increasing

volume fraction of voids.

The hardening behavior is consistent over the studied range of initial void volume

fractions. As the shear bands strain-harden, surrounding matrix material begins to

flow plastically. This flow propagates up and down the ligaments in a manner similar

to the stable necking and drawing of a tensile bar. As the plastic flow propagates, a

58



greater volume of matrix material is encompassed by the flow. This increases the total

plastic flow resistance of the porous material, since more matrix material is forced

to undergo plastic deformation simultaneously. For low void volume fractions, the

increase in fraction of matrix material encompassed by the flow occurs more rapidly

with applied macroscopic axial strain (Fig. 3-8c, Appendix A), which results in a

higher hardening rate than for higher void volume fractions. The predictions of the

evolution of macroscopic volumetric strain with axial deformation, shown in Fig. (3-

9b), reflect the initial Poisson effect of the porous material, followed by plastic void

growth due to plastic shearing of the matrix material. The predicted magnitude and

evolution of volumetric strain are in good agreement with the axisymmetric version

of the V-BCC cell model (Socrate and Boyce [63]); small differences are due to the

axisymmetric vs. fully three-dimensional formulation.

Plane strain tension

The case of plane strain tension was studied for three levels of initial void volume

fractions, fo = {0.05, 0.10, 0.15}. The main macroscopic loading direction is the

3-direction, and the macroscopically constrained direction is the 1-direction. The

macroscopic 2-direction is left unconstrained. The macroscopic stress vs. macro-

scopic strain in the 3-direction is shown in Fig. (3-11a) for the range of initial void

volume fractions, and Fig. (3-11b) shows the corresponding predictions of macro-

scopic volumetric strain. The underlying microscopic behavior is characterized by

plotting contours of plastic shear strain-rate at different levels of macroscopic axial

strain (Fig. 3-10). The macroscopic yield stress for the material is defined as the point

where the stress-strain response exhibits a peak in axial stress, followed by softening.

Figure (3-11a) shows that, prior to macroscopic yield, the stress-strain curves deviate

slightly from linearity. Similar to the case of uniaxial tension, where local plastic flow

in the equatorial region of the void gave rise to this non-linearity, the contours of plas-

tic shear strain-rate also show this initial local plastic flow in the matrix (Fig. 3-10a,

Appendix A).
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Figure 3-8: Contours of -P under macroscopic uniaxial tension for an initial void
volume fraction, fo = 0.15. The development of plastic shear localization is shown
for increasing levels of macroscopic axial strain: (a) E33 ~ 0.034, (b) E 33 ~ 0.05, (c)

E33 ~ 0.23 and (d) E33 ~ 0.40.
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Figure 3-9: Macroscopic response of the 3D V-BCC model under macroscopic uniaxial
tension at different initial void volume fractions: (a) evolution of macroscopic axial
stress with macroscopic axial strain, (b) evolution of macroscopic volumetric strain
with macroscopic axial strain.
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For the case of fo = 0.15, shown in Fig. (3-10), the contours of plastic shear

strain-rate reveal that plastic flow of the matrix initiates in the equatorial region of

the void, and then successively spreads and grows across the inter-void ligament in

the constrained direction. At this point, the inter-void ligament in the unconstrained

direction is not encompassed by plastic flow. The plastic flow in the constrained direc-

tion is a feature which could not have been captured in a traditional two-dimensional

plane-strain analysis in which the spherical voids are approximated as cylindrical. As

the macroscopic axial strain continues to increase, the plastic flow spreads across the

inter-void ligament in the (unconstrained) 2-direction. At this point, macroscopic

yield of the porous material is reached. Interestingly, the interaction of the plastic

flow in the constrained direction with that in the unconstrained direction results in

the formation of two shear bands (Figs. (3-10d), Appendix A). The distributed plas-

tic flow in the matrix reduces the post-yield strain softening as compared to that of

the homopolymer, a feature which was also observed in the case of uniaxial tension.

As the deformation progresses, all of the shear bands strain-harden and propagate

up and down the inter-void ligaments as previously discussed for the case of uniaxial

tension. This propagation coincides with macroscopic strain-hardening.

Simple shear deformation

The 3D V-BCC model was subjected to macroscopic simple shear deformation in the

23-plane. The macroscopic deformation gradient is given by

F = 1 + Ft e 2 ® e 3 , (3.20)

where F = 0.0173s- 1 is the imposed nominal shear strain-rate. Three different initial

void volume fractions were studied, fo = {0.05, 0.10, 0.15}, and the deformation was

taken in each case to a final nominal shear strain IF = Ft = 0.35. The macroscopic
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Figure 3-10: Contours of yP under macroscopic plane strain tension for an initial void

volume fraction, fo = 0.15. The development of plastic shear localization is shown

for increasing levels of macroscopic axial strain: (a) E33 ~ 0.035, (b) E33 0.045,

(c) E33 ~ 0.069 and (d) E33 ~ 0.127.
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Figure 3-11: Macroscopic response of the 3D V-BCC model under macroscopic plane
strain tension at different initial void volume fractions: (a) evolution of macroscopic
axial stress with macroscopic axial strain, (b) evolution of macroscopic volumetric
strain with macroscopic axial strain.
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response of the porous material is computed in terms of the macroscopic nominal shear

stress, S2 3 , as a function of the macroscopically-applied nominal shear strain IF (Fig. 3-

13). Contours of plastic shear strain-rate are shown in Fig. (3-12) for the case of fo =

0.15. The plastic flow initiates at two locations on the void equator (Fig. 3-12a). At

this point in the deformation, the onset of macroscopic yield has not yet been reached;

the matrix is still predominantly in the elastic regime. As the deformation progresses,

the plastic flow spreads in a Y-pattern until it penetrates the ligament thickness

(Fig. 3-12a). As discussed previously, the local plastic flow prior to macroscopic yield

appears in the stress-strain response as a slight non-linearity. The plastic flow then

spreads across the inter-void ligament in the vertical direction. This "net section

yield" corresponds to macroscopic yield of the porous material. Immediately after

macroscopic yield (Fig. 3-13), the stress exhibits a sharp drop. The drop corresponds

to the localization of yield and strain softening to a thin vertical shear band which

penetrates the entire ligament thickness. The sudden drop is thought to be an artifact

of the specific choice of macroscopic shearing direction, relative to the BCC lattice,

and of the assumption of local (single-void) periodicity of the array. For the case of

fo = 0.05, the macroscopic nominal shear stress, S23, exceeds that of the homopolymer

around F = 0.2 and at F = 0.27 and beyond. Again, this is believed to be an artifact

of the direction of shear relative to the underlying BCC void lattice. Macroscopic

shearing of the porous material in a different direction would alter the predicted

macroscopic response, as the 3D V-BCC model is not initially isotropic due to the

underlying BCC lattice.

3.3 The lattice-based multi-void models

In the previous section, the 3D V-BCC cell model was introduced. The 3D V-BCC

model assumes that voids are periodically located on a three-dimensional BCC lat-

tice. In a single-void model, deformation events, such as shear-localization between

voids, are forced to occur in a periodically repeating (void-to-void) manner. In a

random porous microstructure, deformation events will, in general, occur in a se-
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Figure 3-12: Contours of P under simple shear deformation for an initial void volume
fraction, fo = 0.15. The development of plastic shear localization is shown for in-
creasing levels of macroscopic nominal shear strain, IF: (a) r ~ 0.048, (b) I ~ 0.068,
(c) IF 0.085 and (d) F ~ 0.122.
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Figure 3-13: Macroscopic response of the 3D V-BCC model under simple shear de-
formation at different initial void volume fractions: evolution of macroscopic nominal
shear stress with macroscopic nominal shear strain.

quential, percolating, manner. This type of deformation cannot be captured using a

single-void model such as the 3D V-BCC model. In this section, two simplified ide-

alizations (RVEs) of a random porous microstructure are introduced. Both models

consider randomly distributed voids on a cubic lattice. The first model assumes, for

sake of meshing simplicity, that the voids are cubic (Fig. 3-15). The second model is

a refinement of the first model as it more accurately represents void shapes, by con-

sidering them to be spherical (Fig. 3-18). In the following discussion, these two RVEs

are examined and compared. Macroscopic hydrostatic deformation and macroscopic

simple shear deformation are used to establish a suitable number of voids for each

RVE, and a suitable finite element mesh density, as well as to compare the relative

merits of the two models.
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Figure 3-14: Periodically located points on the surface of the lattice-based multi -void
models.

3.3.1 Boundary conditions

The lattice-based multi-void models (RVEs) consist of cubes which contain cubic or

spherical voids, The RVEs are space-filling and spatially periodic (Fig.3-2). Periodic

boundary conditions are applied to each RVE. Each pair of surface points is related

through the macroscopic deformation gradient (Eq. 3.1) as,

u(B) - u(A) = (F - 1) {X(B) - X(A)} = H {X(B) - X(A)}. (3.21)

3.3.2 The LC model (cubic voids on a lattice)

The LC model assumes that the voids are cubic and randomly dispersed on a cubic

lattice of unit volume (Fig. 3-15). The initial void volume fraction, fo, is determined

as

M
A = N, (3.22)

where M is the number of voids, and N is the number of lattice positions along each

edge of the RVE. In order to avoid unrealistic, worm-like, cavities in the matrix,

no voids are allowed to be located face-to-face in the matrix. The M voids can

be arranged on any of the N 3 sites as long as this constraint is satisfied. Thus,
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Figure 3-15: The lattice-based multi-void RVE with cubic voids. N = 6.

N M (number of voids) fo

4 10 0.156
6 32 0.148
8 77 0.15

Table 3.1: Resulting initial void volume fraction, fo, as a function of RVE size (N)
and number of voids (M) for the RVE with cubic voids.

a number of possible void distributions in the RVE can be selected to represent

the actual porous microstructure. For very large RVE sizes and a large number of

randomly distributed voids, the RVE response should become independent of the

particular void distribution, and different initial void topologies should give rise to

the same macroscopic and microscopic features. However, if an insufficient number

of voids is considered, the RVE response will display a dependence on the topology

of the initial void distribution and will deviate from the isotropic response of a truly

random porous microstructure. In order to find the minimal number of voids required

to represent the microstructure, the cases of macroscopic hydrostatic deformation

and macroscopic simple shear deformation are considered for an initial void volume

fraction fo = 0.15. Three RVE 'sizes' are considered: N = {4, 6, 8}. Since M and N

are integers, the initial void volume fraction is restricted to certain values (Eq. 3.22).

The RVE size, N, and the desired initial void volume fraction result in certain values

of M, and corresponding values of fo which are the best attainable approximations for

the desired level of porosity of the RVE (Table 3.1). Twenty-node hexahedral finite

elements with reduced integration were used to discretize the RVE. As discussed in the

case of the 3D V-BCC model, reduced integration is suitable for nearly-incompressible
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analyses. Figures (3-16a,c,e) show the macroscopic hydrostatic stress (Tm = tr T/3)

vs. macroscopic volumetric change (J = det F), averaged over ten different initial void

distributions, for the three values of N, and Figs. (3-16b,d,f) show the corresponding

average macroscopic nominal shear stress (S 23) vs. macroscopic nominal shear strain

(r) for the case of macroscopic simple shear deformation. The standard deviation

in the predicted response is shown in each case as vertical error bars at discrete

strain levels. The figures show that as the number of voids is increased, the standard

deviation of the predicted average response decreases. For the case of N = 4 and

hydrostatic deformation, there is a significant scatter in the predicted macroscopic

response of the RVE. Macroscopic plastic volume change is accommodated through

local plastic shearing of the matrix material. In the case of macroscopic hydrostatic

deformation, there is no preferential orientation for the percolation of plastic flow, and

the possible shearing directions in the matrix are governed by the spatial distribution

of the voids. When few voids are considered, there are only a few available shearing

directions, and these are a strong function of the void distribution. This explains

the large standard deviation in the predicted average response under hydrostatic

deformation, compared to simple shear deformation. Moreover, the corners of the

cubic voids introduce artificial stress and deformation concentrations in the matrix.

The effects of a certain distribution of voids on the macroscopic stress-strain response

are accentuated by these stress concentrations. The sharp corners resulting from the

cubic voids also imply that the localized nature of plastic flow in the glassy polymer

matrix cannot be accurately resolved. Any interpretation of local field quantities,

such as stress, strain and strain-rate, is therefore meaningless.

Predictions using the medium-sized RVE (N = 6) provide a reasonably low stan-

dard deviation in the macroscopic response under both hydrostatic deformation and

simple shear deformation (Fig. 3-16). Thus, an RVE of this size can be used to ob-

tain a fairly adequate representation of the macroscopic stress-strain response. The

average response of the ten simulations at N = 6 is similar to the average response

of the ten simulations at N = 8 (Fig. 3-17). This suggests that the dependence of

the macroscopic response on the specific void distribution, which is reflected by the
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magnitude of the error bars in the curves, can be circumvented by considering the

average of several simulations with N = 6 and different void topologies.

It is expected that the number of simulations required for a given RVE size to

obtain accurate results is a strong function of the matrix material under consideration.

For example, hyperelastic materials, which undergo large deformation in absence of

the localized plastic flow in glassy polymers, are likely to exhibit much lower void

topology dependence, and therefore require fewer simulations. For these materials,

the LC model constitutes an effective, computationally inexpensive model of the

porous microstructure.

The simulations used to find the minimal number of voids in the RVE were per-

formed on relatively coarse finite element meshes. In order to find a suitable finite

element mesh density, a thorough mesh refinement study is required. As the LC

model is not suitable for the study of porous glassy polymers, in view of the stress

concentrations resulting from the cubic voids, such a study will not be pursued here.

In the following section, an extension of the LC model will be presented (the LS

model), where the voids are modeled as spherical. The LS model is more suitable

for the study of porous glassy polymers, and a finite element mesh density study was

then performed for this improved model.

3.3.3 The LS model (spherical voids on a lattice)

The model with initially spherical voids is an extension of the model with cubic voids:

the voids are also randomly dispersed on a cubic lattice, and the RVE 'size' is given by

the number of lattice units, N, along the edge of the RVE. Figure (3-18) shows that

each lattice unit in the cube is either solid, or contains a void. The voids are restricted

to the fixed lattice positions, but the relative size of each void can be varied. In this

study, a uniform initial void size is considered. The initial void volume fraction, fo,
is then given by

fo = N 3 , (3.23)
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Figure 3-16: The LC model: Influence of the number of voids, M, on the predicted

macroscopic stress-strain response (fo = 0.15).
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Figure 3-17: The LC model: Superposition of the mean response at N = {4, 6, 8} and
fo = 0.15 for (a) macroscopic hydrostatic deformation and (b) macroscopic simple
shear deformation.

where floCa is the volume fraction occupied by a void in a voided lattice site unit

(Fig. 3-18a), and M and N are defined in Eq. (3.22). The local void volume frac-

tion fjocal is an upper bound on the macroscopically-attainable initial void volume

fraction, fo for this type of RVE. In the limit M -- N 3 , where every lattice site in

the RVE contains a void, the macroscopic void volume fraction approaches the local

void volume fraction fo - fol"I. In this limit, there is no purpose in considering

multiple voids, as a single-void periodic RVE can model this distribution. It is there-

fore desirable to choose a large local void volume fraction. In the present simulations

fooal = 0.45 is used. This value results in voids that are large compared to the voided

unit, while maintaining a reasonable inter-void ligament thickness (Fig. 3-18b).

As in the case of the LC model, it is important to determine the minimal RVE

size, N, required to represent a random porous microstructure with sufficient approx-

imation. For this purpose, the case of fo = 0.15 is studied for the case of macroscopic

hydrostatic deformation and macroscopic simple shear deformation. Three RVE sizes

are considered: N = {4, 6, 8} with k = 1. The choice of the local void volume

fraction, together with the integers M and N, restrict the initial macroscopic void
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Figure 3-18: The LS model: Example topology for the case of N = 6, fo = 0.15 and
a mesh density given by k = 2 (number of divisions in each direction of the lattice
units).

N M (number of voids) fo

4 21 0.147
6 72 0.15
8 171 0.15

Table 3.2: Resulting initial void volume fraction, fo, as a function of RVE size (N)
and number of voids (M) for the RVE with spherical voids, using f "caI = 0.45.

volume fraction to certain values. The desired initial void volume fraction together

with the RVE size N result in certain values of M, and corresponding values of fo

(Table 3.2). In the simulations, twenty-node hexahedral finite elements with reduced

integration are used. As discussed in preceding sections, this element type is suitable

for nearly-incompressible analyses. Figures (3-19a,c,e) show the macroscopic hydro-

static tension (Tm = tr T/3) vs. macroscopic volumetric change (J = det F) averaged

over ten different initial void distributions for the three values of N, and Figs. (3-

19b,d,f) show the average macroscopic nominal shear stress (S 2 3) vs. macroscopic

nominal shear strain (I) for the case of macroscopic simple shear deformation. The

standard deviation in the predicted response in each case is shown as vertical error

bars. It is seen that as the RVE size, and therefore the number of voids, increases,
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the standard deviation in the predicted macroscopic response decreases. As in the

case of the LC model, macroscopic volume change is accommodated through local

plastic shearing of the matrix material. In the case of macroscopic hydrostatic de-

formation, there is no preferential orientation for the plastic flow, and the possible

shearing directions are governed by the spatial distribution of voids. When a small

number of voids is considered, there are only few shearing directions, and these are a

strong function of the spatial distribution of voids. This explains the comparatively

large standard deviations for the cases of hydrostatic deformation compared to simple

shear deformation. In the LS model, the volume of each spherical void is smaller than

the volume of the cubic voids in the LC model, and therefore a larger number of voids

is considered for the same RVE size and void volume fraction. The larger number

of voids in the LS model produces a larger number of possible shearing directions in

the material, and the spherical shape of the voids removes the stress concentrations

associated with the cubic voids in the LC model. As discussed previously, both these

features significantly affect the macroscopic response of the RVE under macroscopic

hydrostatic deformation, and Figs.(3-16b,d,e) and (3-19b,d,e) show that the standard

deviation in the macroscopic response is overall lower in the LS model.

Predictions using the medium-sized RVE (N = 6) provide a reasonably low stan-

dard deviation in the macroscopic response under both hydrostatic deformation and

simple shear deformation (Fig. 3-19). Thus, an RVE of this size can be used to obtain

a fairly adequate representation of the macroscopic stress-strain response. The aver-

age response of the ten simulations at N = 6 is similar to the average response of the

ten simulations at N = 8; small discrepancies are seen in the simple shear response

(Fig. 3-20). This suggests that the dependence of the macroscopic response on the

specific void distribution can be circumvented by considering the average of several

simulations with N = 6 and different void topologies.

Each of the simulations used to determine an appropriate number of voids for

the LS model were performed using a single finite element mesh density (k = 1). In

order to investigate the effects of successive finite element mesh refinements on the

macroscopic response, a small RVE with N = 3 (M = 3 voids) and fo = 0.15, and a
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Figure 3-19: The LS model: Influence of the number of voids, M, on the predicted

macroscopic stress-strain response (fo = 0.15).
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Figure 3-20: The LS model: Superposition of the response at N = {4, 6, 8} and
fo = 0.15 for (a) macroscopic hydrostatic deformation and (b) macroscopic simple
shear deformation.

given void topology is considered. The RVE is subjected to macroscopic hydrostatic

deformation, and the change in the stress-strain response upon mesh refinements is

studied. The mesh density in the LS model is controlled by the parameter k (Fig. 3-

21a). The parameter k controls the number of edge divisions of each lattice unit in the

mesh. For example, if k = 2, the total number of finite elements along the side of the

RVE is 2N. In the case of a void-containing lattice unit, the parameter k also controls

the number of elements in the radial direction of the void (Fig. 3-21c). Figure (3-21)

shows that the predicted macroscopic stress decreases as the finite element mesh is

refined. The figure also shows that the predicted stress level appears to converge for an

increasing value of k. The computational expense involved in solving the boundary

value problem associated with the mesh density k = 3 is considerable. Although

the stress-strain response for k = 2 has not converged, this mesh density is used in

the following discussion, as it provides a reasonable balance between computational

expense and numerical accuracy.
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Figure 3-21: The LS model: Influence of mesh refinements on the predicted macro-
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3.3.4 Lattice-based multi-void models: Summary

Two multi-void RVEs have been introduced to model a random porous microstructure

by placing voids on a cubic lattice. The LC model considered cube-shaped voids, and

the LS model considered spherical voids. Both models were used in conjunction with

a glassy polymer matrix. The relative macromechanical and micromechanical merits

of the models are discussed below.

In general, the number of voids necessary in each RVE to accurately capture the

macroscopic response of a porous microstructure is a strong function of the consti-

tutive behavior of the matrix material. When the RVE does not contain a sufficient

number of voids, the predicted macroscopic response displays a dependence on the

specific topology of the void distribution in the RVE. For both the LC and the LS

models, it was found that the standard deviation in the predicted stress-strain re-

sponse decreased with an increasing number of voids. For the present application to

glassy polycarbonate, predictions obtained using RVEs with N = 6 provided a suffi-
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ciently low standard deviation for the macroscopic response '. Any RVE of this size

can then be used to obtain a fairly adequate representation of the macroscopic mate-

rial response. The dependence of the predicted macroscopic response on the specific

location of voids in the RVE can be further reduced by considering the average of

ten simulations with different void topologies. The average response for ten simula-

tions with medium size (N = 6) RVEs was found to closely resemble the macroscopic

response predicted by larger (N = 8) RVEs. Topology-independent predictions can

thus be obtained either by relying on a single large RVE or by averaging out the

predictions over a number of smaller RVEs. Note that the RVE size studies for the

two models were carried out on finite element meshes of different densities. In order

to directly compare the macroscopic predictions of the two models, a thorough mesh

refinement study is required.

In the LC model, the corners of the cube-shaped voids result in artificial stress

concentrations in the material. This means that local field quantities, such as stress

and strain, are not realistically represented in the matrix. In the application of mi-

cromechanical models to investigate the brittle to ductile transition in porous, or

rubber-toughened glassy polymers, it is of critical importance to be able to continu-

ously and accurately monitor the local deformation history and the local stress state

of the matrix material. From this point of view, the LC model is an inadequate rep-

resentation of the porous microstructure. However, for the purpose of studying the

macroscopic stress-strain response of materials that do not exhibit a ductile-to-brittle

transition under the loading situations of interest, the LC model is an inexpensive

alternative to more elaborate and computationally expensive models.

The LS model, in which the voids are modeled as spherical, is an improvement

over the LC model, as the stress concentrations associated with the corners of the

cube-shaped voids in the LC model are alleviated 5. The LS model more accurately

represents local field quantities in the matrix material. As mentioned previously, mi-

4In the LC model, this corresponds to M = 32 voids, and in the LS model, it corresponds to 72
voids.

'Spurious stress concentrations are not entirely eliminated due to the coarseness of the finite
element representation of the spherical void surface for the selected level of mesh refinement.
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croscopic field information is important in understanding the ductile-to-brittle tran-

sition in porous glassy polymers, and the ability to provide such information is a

considerable advantage of the LS model.

In the LS model, the diameter of each void is restricted by the lattice spacing

1/N. This poses a constraint on the maximum-attainable macroscopic void volume

fraction in the LS model. In the limit where every lattice site is occupied by a void, the

purpose of considering multiple voids is defeated, and the ability of the LS model to

represent the spatial randomness of voids, at high macroscopic voids volume fractions,

is therefore limited.

In summary, the two models presented in this section display topological similar-

ities; they both consider voids that are randomly distributed on a cubic lattice. The

focus of the present work is the study of porous glassy polymers on a macroscopic

and microscopic level. The LC model is inadequate to study these types of matrix

materials, as the cube-shaped voids in the model misrepresent local field quantities in

the matrix material. In view of the similarities of the two models, and the limitations

of the LC model, the LC model is abandoned in the following discussion. The LS

model is instead used to study the two cases of macroscopic uniaxial tension and

macroscopic simple shear deformation on a microscopic and macroscopic level.

3.3.5 Results

Uniaxial tension

The LS model was subjected to macroscopic uniaxial tension for different initial void

volume fractions, fo = {0.05, 0.10, 0.15}. The macroscopic axial-stress / axial-strain

response is given in Fig. (3-22a), and the evolution of volumetric strain with axial

deformation is shown in Fig. (3-22b). Each curve in (a), and the corresponding curve

in (b), is the average of the response of ten different RVEs. In the curves in (a),

macroscopic yield is defined as the point where the macroscopic axial stress exhibits

a peak, followed by softening. The microscopic response of the porous material is

characterized by plotting the evolution of plastic shear strain-rate, P, with axial de-
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initial void volume fractions (N = 6, k = 2): (a) evolution of macroscopic axial stress
with macroscopic axial strain, (b) evolution of macroscopic volumetric strain with
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formation, for an RVE with fo = 0.15. Figure (3-23a) shows that plastic flow initiates

in the equatorial region of the voids. The figure shows that voids that have side-to-

side neighbors, with respect to the macroscopic principal loading direction, deform

more rapidly than voids that do not. Due to the nature of the void arrangement in the

LS model, voids that are located side-to-side are separated by a very thin inter-void

ligament. The thin ligament carries only a limited load, and the voids essentially act

as a single, large void. At the point in macroscopic deformation corresponding to

Fig. (3-23a), macroscopic yield has not been reached; the plastic flow in the RVE is

confined to the vicinity of the voids, and the matrix is predominantly in the elastic

regime. As the macroscopic deformation progresses, macroscopic yield of the blend

is reached (Fig. 3-22a). This corresponds to the development of local shear bands

between voids, and coalescence of these shear bands into macroscopic shear bands

which span the entire RVE (Fig. 3-23b). The matrix material in the macroscopic
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shear bands begins to strain-harden as the deformation progresses, and the plastic

flow spreads to neighboring matrix material; existing shear bands between voids be-

come broader (less sharp), and previously undeformed inter-void ligaments begin to

flow plastically (Fig. 3-23c). This corresponds to the strain-softening regime of the

stress-strain response (Fig. 3-22a). At higher levels of macroscopic axial strain, the

plastic flow in the matrix becomes more homogeneous, and the blend displays macro-

scopic strain-hardening. Figure (3-23d) shows the RVE at E33 ~ 0.5. Figure (3-23)

shows the anisotropic growth of voids in the blend; the voids are stretched in the main

loading direction, and contracted in the lateral direction (the void shapes are outlined

in red for clarity). Figure (3-23d) also illustrates the necessity of imposing periodic

boundary conditions on the RVE. The highly localized nature of plastic flow in the

matrix causes the RVE surfaces to deform at every point markedly different from the

macroscopically-imposed deformation gradient. As discussed previously, boundary

conditions of the type u(A) = (F - 1) X(A), applied to all boundary points, A, of

the RVE are overconstraining the RVE and are therefore highly unsuitable, whereas

boundary conditions based on Eq. (3.1) are appropriate for this type of analysis.

The evolution of macroscopic volumetric strain is shown in Fig. (3-22b) for the

studied levels of initial void volume fraction. As in the case of the 3D V-BCC model,

the evolution of macroscopic volumetric strain with axial deformation reflects the

initial elastic Poisson effect, followed by volumetric straining associated with the

plastic growth of voids in the matrix. However, compared to the 3D V-BCC model,

the LS model predicts notably higher levels of macroscopic volumetric strain. In

the LS model, the voids are arranged randomly on a cubic lattice. In effect, the

voids are located along certain planes in the matrix, separated by a solid layer of

matrix material. When macroscopic uniaxial tension is imposed along the principal

cube directions, these solid matrix layers introduce an artificial lateral stiffness to

the RVE, which reduces lateral constraction of the RVE, as inter-void ligaments are

prevented from deforming through shearing and rotation. Socrate and Boyce [63]

report a similar finding for a single-void model based on a stacked hexagonal array of

voids (the axisymmetric SHA model) (Fig. 3-la), where a stiff matrix layer resulted
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Figure 3-23: Contours of yP under uniaxial tension for an initial void volume fraction,

fo = 0.15. The development of plastic shear localization is shown for increasing levels

of macroscopic axial strain: (a) E33 ~ 0.040, (b) E33 ~ 0.075, (c) E33 ~ 0.11 and (d)

E33 ~ 0.50.
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in unrealistically high levels of volumetric strain.

Since macroscopic uniaxial tension was imposed along the principal cube direc-

tions, it would indeed be interesting to investigate how the micromechanical and

macromechanical material response would change if the RVE was deformed along

different axes. This has not been carried out in the present work, but we note that

if the macroscopic deformation gradient, F, is imposed using Eq. (3.1), macroscopic

uniaxial tension along different coordinate axes can be readily studied by applying a

rotation to F.

Simple shear deformation

The LS model with N = 6 and k = 2 is subjected to macroscopic simple shear

deformation for three different initial void volume fractions, fo = {0.05, 0.10, 0.15}.

Simple shear is taken to occur perpendicular to the 23-plane, and the macroscopic

deformation gradient is given by

F= 1+ Fte2 0 e3 , (3.24)

where the imposed nominal shear strain-rate is taken to be r = 0.0173s-1. The

macroscopic nominal shear stress, S23, vs. macroscopic nominal shear strain, P, is

shown in Fig. (3-24) for the three levels of void volume fraction. Each curve in the

figure corresponds to an average of the stress-strain response for ten different RVEs.

In the curves, macroscopic yield is defined as the point in the deformation where the

macroscopic nominal shear stress exhibits an initial peak, followed by a drop. The

microscopic response is characterized by plotting contours of plastic shear strain-rate,

,P, at various stages of the deformation, for one of the RVEs at fo = 0.15 (Fig. 3-25).

In the present case of fo = 0.15 and N = 6, there are 72 voids in the RVE. Relative

to the cubic directions of the RVE, the void centers are located on six distinct planes.

When the RVE is subjected to macroscopic simple shear deformation according to

Eq. (3.24), a "weakest" plane can be identified as the plane with unit normal e 3 on

which the largest number of voids is located. In the particular RVE used here, the
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Figure 3-24: Macroscopic response of the LS model under simple shear deformation at
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with macroscopic nominal shear strain.
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number of voids on the weakest plane is 16 (out of the total 72). Figure (3-24a)

shows that plastic flow in the RVE develops on this weakest plane. At this point

in the deformation, the plastic flow has not yet developed into a macroscopic shear

band; there are still regions on the weak plane that are in the elastic regime, and

macroscopic yield of the blend has not been reached (Fig. 3-24a). As the macroscopic

deformation progresses, the plastic flow along the weakest plane forms a macroscopic

shear band, and macroscopic yield of the blend is reached. Figure (3-25b) shows, at

a later stage of macroscopic deformation, that the plastic flow is still confined to the

weakest plane, and that the localized deformation in the shear band causes voids to

deform and rotate to accommodate the macroscopic deformation (the void shapes are

outlined in red in the figure for clarity). As the matrix material in the shear band

continues to deform plastically, it begins to strain-harden, and deformation ceases.

Instead, plastic flow develops on another plane in the RVE (Fig. 3-25c). Similar to the

location for initial plastic flow in the RVE, this plane contains the largest number of

voids, compared to the four other "undeformed" planes, and a shear band forms along

this plane. As before, the localized deformation in the layer causes voids to deform and

rotate to accommodate continued macroscopic deformation, and the matrix material

in the shear band subsequently strain-hardens. This successive activation of "weak"

planes in the RVE continues with macroscopic deformation, and Fig. (3-25d) shows,

at a later stage, how a shear band has formed along a third plane which is deforming

plastically while the plastic flow on the previous plane has ceased. The figure also

shows the deformed and rotated voids on the previously-deformed void planes.

The successive deformation along specific planes in the RVE is an artifact of the

underlying cubic lattice for the void locations in the RVE, in combination with the

direction of macroscopically-applied shear. It would be interesting to subject the LS

model to macroscopic simple shear deformation in a rotated coordinate system in

order to investigate the effects of the orientation of the lattice with respect to the

macroscopic loading direction. However, this has not been carried out in the present

work, but we note, similar to the case of macroscopic uniaxial tension, that if the

macroscopic deformation gradient, F, is imposed using Eq. (3.1), macroscopic simple
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Figure 3-25: Contours of -P under simple shear deformation for an initial void vol-
ume fraction, fo = 0.15. The development of plastic shear localization is shown for
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(c) P ~ 0.15 and (d) F ~ 0.25.
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shear deformation along different coordinate axes can be readily studied by applying

a rotation to F.

3.4 The multi-void Voronoi model

The lattice-based multi-void models considered aggregates of cube-shaped voids (the

LC model) or spherical voids (LS model) arranged on a cubic lattice. The voids

were distributed randomly on the lattice in order to capture the major topological

features of a random porous microstructure. The underlying cubic lattice in these two

models raises some doubts as to how well the models mimic a truly random porous

microstructure. The modeling assumption of an underlying lattice limits the number

of available void locations in the RVE, as the voids are restricted to the fixed lattice

positions. Neighboring voids are always mutually located at distances and directions

corresponding to the lattice spacing 1/N. This means that deformation mechanisms

between voids, such as shear localization, are forced to occur in preset directions and

over preset distances. In this section, we consider an aggregate of M voids whose

centers are randomly located within a unit cube, in the absence of an underlying

lattice.

A space-filling, periodic RVE is generated through a Voronoi tessellation of the M

void centers. The steps involved in generating the RVE geometry and corresponding

finite element discretization are described below.

3.4.1 Geometry

The following procedure for generating a space-filling, periodic RVE based on a

Voronoi tessellation is general. It can be applied to different material classes, such

as particle-filled or voided glassy polymers or metals, where the particles or voids are

nearly spherical, as well as to polycrystalline materials. In two dimensions, porous

media have been studied using Voronoi-tessellation-based representative volume el-

ements (Cruz and Patera [20]), and polycrystalline materials have been studied in

both two and three dimensions (Nygirds and Gudmundson [52],[53), and Besdo [49]).
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In the present case of a porous glassy polymer, the M spherical voids occupy a

volume fraction, fo, of the unit cube. Although this is not a requirement of the general

procedure, the voids are taken to be uniform in size. The procedure for generating

the RVE is summarized below, and the two-dimensional analogy, using ten voids, of

the procedure is shown in Fig. (3-26).

1. The M void centers are sequentially located within a reference unit box. As

a "primary" void is added to the reference box, its 26 (eight, in the two-

dimensional case) periodic "image" voids are also added to the 26 unit boxes

surrounding the reference box (Fig. 3-26a). The 26 image voids are those that

are offset from the primary void by a linear unit combination of the Cartesian

base vectors. A new void is added to the reference box only if it does not conflict

with an existing primary or image void. In order to ensure a reasonable finite

element mesh between the voids, a spatial constraint of 2.5r on the separation

of voids is enforced, where r is the void radius. At the end of this step, there

are 27M (primary+image) voids (9M in the two-dimensional case).

2. A Voronoi tessellation of the 27M void centers is performed (Fig. 3-26b). The

resulting 27M Voronoi cells are of two types: The Voronoi cells on the surface

of the tessellation are unbounded (and extend to infinity), while the interior

Voronoi cells are bounded. In the two-dimensional analogous case depicted in

Fig. (3-26b), the unbounded cells are not shown.

3. The final step is to only consider the M Voronoi cells corresponding to primary

voids, and discard the other 26M (8M in the two-dimensional case) Voronoi

cells (Fig. 3-26c). The resulting aggregate of Voronoi cells constitutes a space-

filling, periodic volume element. Figure (3-26d) illustrates the compatibility

of the volume element with its periodic neighbors. Figure (3-27a) shows a

three-dimensional example RVE with three void-containing Voronoi cells. A

neighboring RVE that fits periodically with the original RVE is also shown

(Fig. 3-27b).
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(a) (b)

Figure 3-27: The multi-void Voronoi model with three void-containing cells: (a) three
pairs of periodic surface segments, (b) two three-void RVEs, fitting together.

3.4.2 Finite element discretization

In Section 3.1, periodic boundary conditions were developed for a space-filling, peri-

odic RVE, and an expression for the corresponding macroscopic state of stress was

obtained. The periodic boundary conditions were applied to periodic pairs of points

on the surface of the RVE (Fig. 3-2a). In the context of finite elements, this means

that the topology of the finite element mesh on the surface of the RVE must be pe-

riodically repeated, so as to provide periodic node pairs. Here, we describe how to

generate a periodic surface node topology for the present RVE, which enables the

direct application of the periodic boundary conditions (Eq. 3.1).

The developed RVE consists of four distinctly different geometrical entities: con-

vex polyhedra (the Voronoi cells), convex polygons (the Voronoi cell facets), lines

(the edges bounding each Voronoi cell facet), and vertices (bounding the edges). By

breaking down the geometry into these different entities, it is possible to create a

structured database which greatly facilitates the task of creating a periodic surface

node topology. The procedure for generating a periodic topology of surface nodes can

be summarized as follows:

1. The edges in the RVE are identified. There are external edges that lie on the
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surface of the RVE, and edges that are internal to the RVE. Each external edge

has at least one periodic "image" edge, offset by a linear unit combination of

the Cartesian base vectors. (For example, each of the edges of a unit cube

possesses three edges that are its periodic images.) The edges in the RVE are

seeded with nodes for the finite element discretization. The external edges are

assigned node seeds that are themselves periodic. This means that every node

on an external edge in the mesh will have at least one other periodic image node

to which the periodic boundary condition (Eq. 3.1) can be applied.

2. The facets of the Voronoi cells in the RVE are identified. There are facets

that are internal to the RVE, and facets that are external. The internal facets

are shared by exactly two Voronoi cells in the RVE. Each external facet has

exactly one identical periodic image facet. The external facets are shared by

one Voronoi cell in the RVE and exactly one of its 26 periodic images. Each

facet is discretized using, for example, triangular elements. When the external

facets are discretized, an identical triangulation is enforced on its periodic image

facet (Fig. 3-28a).

When each cell contains a spherical void, the interior of the cells can be discretized

by taking advantage of the convexity of the Voronoi cells. It is then possible to

project the surface triangulation of the cell facets onto the surface of the spherical

void. Triangular prismatic finite elements can be used to fill the volume between

the Voronoi cell surface and the void surface (Fig. 3-28b). In the present study,

we consider triangular prismatic elements with linear interpolation functions. These

elements are computationally inexpensive, compared to the [quadratic] hexahedral

elements used for the LS model. However, the linear element formulation in the pris-

matic elements can cause spurious integration point pressures under volumetrically

constrained modes of deformation. As will be discussed below, this indicates that

a hybrid (constant-pressure) formulation of the element should be used in order to

accurately resolve the distribution of pressure in the matrix.
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(a) (b)

Figure 3-28: The multi-void Voronoi model: (a) two periodically located external
surfaces with the same node and element topology, (b) finite element topology for a
Voronoi cell containing a spherical void.

3.4.3 Evaluation of the multi-void Voronoi model

As in the case of the lattice-based multi-void models, issues related to the minimal

number of voids required to represent a random microstructure with sufficient ac-

curacy must be addressed. The LS model represents an improvement over the LC

model as it can model spherical voids, thus providing access to local microstructural

information, such as matrix stress and strain levels around the voids. Compared to

the LS model, the random Voronoi model resolves fields in the matrix in even greater

detail, as the density of the finite element mesh can be refined between voids. How-

ever, this added detail of local fields by virtue of a finer finite element mesh also

increases the computational size of the associated boundary value problem. As a con-

sequence, fewer voids can be considered as compared to the LS model. The cases of

hydrostatic deformation and simple shear deformation are used to study the influence

of the number of voids, and the distribution of voids, on the macroscopic response

of the porous material. For the purpose of studying these effects, we use a constant,

low mesh density consisting of regular [non-hybrid] finite elements. Thus, the ob-

tained macroscopic stress-strain responses only represent the mechanical response of
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the porous material in a relative sense. Figure (3-29) shows the hydrostatic and sim-

ple shear response for a fixed initial macroscopic void volume fraction of fo = 0.15

and three sizes of the RVE with P = {5, 10, 15} voids. Each stress-strain curve shows

the average of ten simulations for different void distributions, and the standard de-

viation of the response is shown as error bars in the curves. As the number of voids

increases, the standard deviation of the response is expected to decrease. However,

Figs. (3-29a-f) show that, in contrast with the results for the LS model, the standard

deviation does not decrease with an increasing number of voids. This suggests that

in the case of the multi-void Voronoi model, the low number of voids that can be

considered in view of computational constraints is not sufficient to reach the regime

where the RVE responses begin to mimic a random porous microstructure.

As mentioned above, considering a larger number of voids is computationally

prohibitive, and a limited number of voids must be used instead. In view of this re-

striction, it is intriguing to consider the notion of a methodology that would, among

different void distributions, distinguish those that more closely mimic a random mi-

crostructure from those that show significant anisotropy. It is thus relevant to try to

characterize the level of randomness of a given ensemble of voids.

In order to try to establish correlations between the void topology and results from

micromechanical modeling, ten simulations of RVEs with 15 voids were carried out

under macroscopic hydrostatic deformation. The responses of four of these ten simu-

lations are shown in Fig. (3-30). In each of the plots (Figs. 3-30a-d), three orthogonal

normal stress curves resulting from the imposed hydrostatic deformation are shown,

together with the mean hydrostatic stress, Tm, averaged over all ten simulations. For

a sufficiently large, random, isotropic RVE, the three normal stress curves should

collapse onto the mean hydrostatic stress curve. For the four plots in Fig. (3-30) the

three stresses deviate from the mean stress, which is symptomatic of an anisotropic

behavior for the corresponding RVEs. Depending on the spatial distribution of the

6The voids in the multi-void Voronoi model are not restricted to fixed lattice sites, as in the

LS model; distributions of voids in the former are thus allowed an even greater spatial variation,
suggesting that a larger number of voids should be considered.
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(fo = 0.15): Three normal stresses
of hydrostatic deformation.

voids, the amount of deviation will differ, reflecting different degrees of anisotropy.

For example, Fig. (3-30b) suggests that the corresponding void distribution cannot

be used to represent an isotropic microstructure, as the stresses deviate significantly

from the mean hydrostatic stress. While this is an adequate measure to evaluate

the performance of a specific RVE a posteriori, it does not provide any guidance to

select an optimal RVE from a large number of alternative void distributions. This

task would requires the ability to evaluate a specific RVE a priori, simply based on

the RVE void topology. Several methods for characterizing porous and particulate
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Simulation 01 a a Idev (I) 11 61 6122 6133
fo fo fo 1-fo 1-fo 1-fo

(a) 0.2313 0.3560 0.4273 0.0023 0.9988 1.008 0.9960
(b) 0.3033 0.3247 0.2247 0.0096 0.9967 0.9791 0.9882

(c) 0.2687 0.3220 0.2280 0.0054 0.9699 0.9861 0.9769
(d) 0.2133 0.2267 0.2133 0.0037 0.9861 0.9875 0.9847

Table 3.3: Microstructural information for the four simulations using 15 voids (fo
0.15).

microstructures exist in the literature (see, for example, Torquato [67]). Here, two

measures are used: First, the moments of inertia of a given void distribution are

used to measure initial isotropy. Second, the local distribution of voids in the matrix

is examined by monitoring the spatial fluctuation of void area fraction through the

material.

Segurado and Llorca [61] have used moments of inertia to characterize the ran-

domness of particle-reinforced composites. The authors calculated the moments of

inertia in three perpendicular directions, {I11, I22, 133} of a given ensemble of thirty

particles, and compared them to the moments of inertia of a unit cube of the same

effective density as the ensemble of particles, (1 - fo) /6. The authors used this in-

formation to identify a sufficiently isotropic distribution of particles, and calculated

effective small-strain elastic constants for different composites, at different particle

volume fractions. Here, the moment of inertia tensor, I, is calculated for a given

distribution of voids. The norm of the deviator of the inertia tensor, I Idev (I)11, is

taken as a measure of isotropy. For an isotropic material, this norm should vanish, in-

dicating that there are no preferred orientations in the material. Table 3.3 shows this

norm for the four simulations in Figs. (3-30a-d). Table 3.3 also shows the moments

of inertia in three perpendicular directions, normalized by the moment of inertia for

a truly random distribution of voids. Unfortunately, it is not possible to establish a

strong correlation between the values of the inertia tensor deviator and the relative

isotropy of the corresponding macroscopic response of the RVE. The inadequacy of

this topological parameter to serve as a predictor of RVE performance is illustrated
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by the cases (a) and (c), where a lower value of the deviator corresponds to a higher

degree of anisotropy in the macroscopic response. Yet, this same topological measure

of isotropy was found to be adequate in the Segurado and Llorca study, where an

elastic matrix material was considered. The underlying cause of this discrepancy is

to be found in the different deformation mechanisms through which the dilatation of

the RVE is accomplished. For a glassy polymer matrix, the macroscopic dilatancy

is associated with the creation of localized shear bands which percolate through the

RVE, connecting voids along the weaker planes of resistance. The orientation and

inherent shear resistance of these planes are a direct consequence of the RVE topology

and relative location of the voids. The moment of inertia tensor of a given ensemble of

voids can provide information about the degree of anisotropy of the entire ensemble,

but it does not provide local information about the porous microstructure, such as

void-to-void distances, void-to-void orientations, and clustering of voids in the ma-

trix. Therefore, we conclude that I|dev (I)II is not a sufficient measure of isotropy

for a [small] system whose macroscopic response is controlled by shear localization

events.

In a random porous material with an initial void volume fraction fo, a topological

feature is that any cross section of the porous material shows a void area fraction

equal to the void volume fraction fo. For a finite number of voids, the area fraction

of voids at different cross sections of the RVE will, in general, not be equal to the

macroscopic void volume fraction, but it will fluctuate about this value. Socrate and

Boyce [63] used the concept of local void area fraction to compare the performance of

the axisymmetric SHA (stacked hexagonal array) and V-BCC (Voronoi body centered

cubic) models (Fig. 3-la) applied to glassy polycarbonate. The authors found that

the variation in local void area fraction was much higher in the SHA model, compared

to the V-BCC model, and that the existence of planes of very high and very low void

area fraction in the SHA model resulted in unrealistic shear localization in the cross

sections of high void area fraction.

In the present case of multiple-void RVEs, the distribution of local void area frac-

tion is calculated for three sets of planes scanning the RVE along three perpendicular
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directions. The mean value of each distribution is the macroscopic void volume frac-

tion, fo, and the standard deviation of the distribution, oa, i = 1..3, is a measure

of the spread about the mean. The standard deviation in the three perpendicular

directions is shown in Table 3.3, for the four simulations in Fig. (3-30). Standard

deviations close to zero indicate that the voids are well distributed in the matrix,

whereas larger standard deviations imply higher degrees of void clustering or void

alignment along preferential planes. High values for this topological measure were

expected to correlate with a higher propensity of the RVE to display preferential

shear localization along specific planes, and therefore a higher degree of anisotropy in

its macroscopic response. However, a comparison of the area fraction standard devi-

ations in Table 3.3 and the corresponding macroscopic response curves in Fig. (3-30)

fails to demonstrate a clear correlation. The inadequacy of area fraction standard

deviations to serve as predictors of RVE performance is illustrated by the cases (b)

and (c), where almost identical levels of area fraction deviations are associated with

substantial differences in the macroscopic response. Also, the case with the lowest

area deviations among the ones considered in this study, (d), exhibited a higher degree

of anisotropy in its macroscopic response than RVEs with higher area deviations (c).

Therefore we conclude that the standard deviations of the area fraction distributions

are not a sufficient measure to determine a priori the relative merit of different void

distributions.

The reasons for this lack of success are probably to be found in the very limited

size of RVEs that can be considered within the current computational constraints.

With only 15 voids in the RVE, most of the critical shear deformation is localized

along one or two planes. If such a model is used to represent a sample of a porous

material undergoing homogeneous hydrostatic deformation, the periodic boundary

conditions on the RVE are essentially enforcing a repetition of this simple RVE shear

pattern over the entire sample. This is clearly a crude approximation for the complex

pattern of percolating shear localization that will occur in the actual material sample

over a multiplicity of randomly oriented planes. It is unrealistic to expect that this

complex shear pattern could be reproduced over an RVE with only 15 voids (note
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that a 3x3x3 void array corresponds to 27 voids!).

These considerations lead to the conclusion that it is impossible to construct a

single 15-void RVE which can be considered representative for the behavior of the

actual random microstructure under all deformation states. Instead, we will consider

an alternative approach to obtain macroscopic and microscopic information for the

behavior of porous glassy polymers from micromechanical modeling.

Figure (3-29) displayed the macroscopic predictions in hydrostatic and simple

shear deformation for increasing RVE sizes. While the individual predictions of each

RVE display a degree of void topology dependence (hence the error bars), the average

stresses from the ten simulations for each RVE size are remarkably similar. These

average curves are superposed in Fig. (3-31) for direct comparison. It is remarkable

that RVEs with 5, 10 and 15 voids give rise to the same average macroscopic response.

From a physical standpoint, these results for hydrostatic and simple shear deformation

can be discussed in the context of a Taylor model interpretation. Each simulation

is sampling a "material point" with a specific local void topology. By sampling a

number of "material points", subjecting them to the same macroscopic deformation

history7 , and taking the average stress response, we are obtaining a fairly accurate,

repeatable representation of the actual material behavior. These considerations apply

to the macroscopic response as well as to local field quantities.

In view of the results in Fig. (3-31), the average macroscopic response over ten

simulations for five-void RVEs will be considered representative of the porous glassy

polymer macroscopic response under all modes of deformation This simulated ma-

terial response will constitute the basis to develop and validate a continuum level

constitutive model for glassy polymers as further discussed in Chapter 4.

The approach of using several RVEs can be also employed to probe the evolution

of local field quantities under specific macroscopic deformation histories. Thus several

RVEs of different void topologies can be subjected to the same loading histories and

7Under macroscopic loading conditions where not every component of F is prescribed, the Taylor
model interpretation is formally not correct. For example, under uniaxial tension, the macroscopic
lateral stretches are unprescribed, and in general different for different RVEs.
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Figure 3-31: The multi-void Voronoi model (fo = 0.15): Superposition of the re-
sponses at 5, 10 and 15 voids for (a) macroscopic hydrostatic deformation and (b)
macroscopic simple shear deformation.

local stress and strain levels over all the simulations can be monitored and correlated

to observed failure mechanisms, as further discussed in Chapter 5.

The simulations to study the effects of the number of voids on the macroscopic

stress-strain response were performed using constant-density, coarse, finite element

meshes of regular [non-hybrid] elements. In order to investigate the effects of finite

element mesh refinements on the macroscopic stress-strain response, an RVE with P =

3 voids, an initial void volume fraction fo = 0.15, and a fixed topology is subjected

to macroscopic hydrostatic deformation. As discussed previously, the linear element

formulation may cause spurious pressure modes in the matrix. It is important to

resolve local fields in the matrix, in addition to the macroscopic stress-strain behavior

of the porous material. We therefore carry out the mesh refinement study using hybrid

(constant-pressure) finite elements.

The mesh refinements in the case of the LS model were controlled by the parameter

k (Fig. 3-32). We first constructed a coarse hexahedral finite element mesh (k = 1)

and then considered two levels of mesh refinement (k = 2, k = 3). This corresponded

to dividing each hexahedral finite element into eight and 27 elements, respectively.

In the present case of a triangular prismatic finite element mesh for the multi void
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Voronoi RVE, the mesh is refined in a consistent manner. A first coarse mesh is created

(k = 1) for a selected RVE topology. The mesh density corresponding to k = 1 was

chosen as to provide the coarsest mesh possible, while maintaining reasonably-shaped

element facets on the surfaces of the Voronoi cells. The first refinement level (k = 2)

corresponds to dividing each surface triangle on the coarsely meshed Voronoi facets

into four triangles, and increasing the number of prisms by a factor of two in the

radial direction. The second mesh refinement level (k = 3), corresponds to dividing

each coarse surface triangle on the facets of the Voronoi cells into nine triangles, and

increasing the original number of prismatic elements radially by a factor of three.

The finite element mesh is successively refined according to the refinement scheme

above (k = {1, 2, 3}), and the macroscopic hydrostatic response is shown in Fig. (3-

32). The macroscopic RVE responses show that the stress decreases with an in-

creasingly fine mesh, and the response appears to converge as the mesh is refined.

However, the computational expense involved in solving the boundary value problem

associated with the highest mesh density (k = 3) is considerable. As in the case of

the LS model, the intermediate mesh density (k = 2) provides a reasonable balance

between computational expense and numerical accuracy. This mesh density is used

in the following.

3.4.4 Results

Uniaxial tension

Ten RVEs with P = 5 voids are subjected to macroscopic uniaxial tension for three

different initial void volume fractions, fo = {0.05, 0.10, 0.15}. Macroscopic uniaxial

tension in the 3-direction corresponds to a macroscopic deformation gradient given

by

F = A, (t) el ® el +A2 (t) e 2 0 e2 +A3 (t) e3 0e 3 , (3.25)

where A1 (t) and A2 (t) are un-prescribed, and a constant macroscopic axial strain-rate

E33 = 0.01s-1 is imposed by prescribing A3 (t) = exp E 33t. The average macroscopic
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Figure 3-32: The multi-void Voronoi model: effects of finite element mesh refinements
on the macroscopic hydrostatic response.

axial-stress / axial-strain response of the simulations is given in Fig. (3-33a) for each

of the initial void volume fractions, and the corresponding evolution of volumetric

strain with axial deformation is shown in Fig. (3-33b). In order to better illustrate

the microscopic features of deformation of the porous material, contours of plastic

shear strain-rate, P, are shown for a larger RVE (P = 10). The case of fo = 0.15 is

shown in Fig. (3-34) for different levels of macroscopic axial strain.

As in the previously discussed 3D V-BCC and LS models, the plastic flow in the

matrix initiates in the equatorial region of the voids. Macroscopic yield, defined as

the point in the deformation where the macroscopic stress-strain response exhibits a

peak, has not yet been reached; the matrix material is still predominantly in the elastic

regime. Similar to the previous models, the axial-stress/axial-strain curves display

a slight non-linearity prior to macroscopic yield of the material. This is explained

by the local plastic flow in the matrix, which increases the overall compliance of

the porous material. As the macroscopic deformation progresses, the plastic flow in

the equatorial regions of the voids spreads from void to void as local shear bands

(Fig. 3-34a). Macroscopic yield of the porous material is reached when these local

shear bands, that run from void to void, span the entire RVE to form a macroscopic

103



90 0.07

,80
800.05 -0 fo30.06

S70 fo

60 0.15-
U,

50 0.04 .

> 0 0 1010 0.03
-0.15 

00

30

0 ' ' ' ' ' '0 -
0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5

Macroscopic axial strain Macroscopic axial strain

(a) (b)

Figure 3-33: Macroscopic uniaxial tension: (a) axial stress-strain response, (b) evo-
lution of volumetric strain with axial deformation.

shear band (Fig. 3-34b). The porous material subsequently strain-softens as the shear

bands continue to flow. As the matrix material in the shear bands continues to deform,

the molecular chains become oriented, and the resistance to continued plastic flow

increases. The plastic flow then spreads to neighboring matrix material which then

yields and strain-softens. This progression of plastic flow in the matrix encompasses

an increasing amount of matrix material, as the flow spreads away from the voids. As

this happens, the flow stabilizes, and the macroscopic stress-strain response for the

porous material eventually enters the hardening regime.

Figure (3-33b) shows the evolution of macroscopic volumetric strain, Eva = ln J,

of the porous material. The evolution of macroscopic volumetric strain with axial

strain reflects the initial Poisson effect, followed by volumetric straining associated

with the plastic growth of voids in the matrix. In the LS model, neighboring voids

are placed side by side, with respect to the macroscopic loading direction, and this

particular void arrangement has been shown to unrealistically prevent lateral con-

traction of the RVE, thus over-predicting the macroscopic volumetric response of the

porous material (Socrate and Boyce [63]). In the 3D V-BCC model, neighboring voids

are diagonally offest, with respect to the macroscopic loading direction, and this void
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arrangement enables significant lateral contraction of the RVE (Socrate and Boyce

[63], Danielsson, et al. [21]). In the present multi-void Voronoi RVE, the voids are

not confined to these "lattice extremes", and the prediction of volumetric strain lies

in between the predictions of the LS and 3D V-BCC models.

Plane strain tension

The case of plane strain tension is studied for three levels of initial void volume

fraction, fo = {0.05, 0.10, 0.15}. The main macroscopic loading direction is the

3-direction, and the macroscopically constrained direction is the 1-direction. The

macroscopic 2-direction is left un-constrained. Macroscopic plane strain tension in

the 3-direction is then given by a macroscopic deformation gradient corresponding to

F = e 0 el +A2 (t) e 2 0 e 2 +A3 (t) e3 ® e3 , (3.26)

where A2 (t) is un-prescribed, and a constant macroscopic axial strain-rate E 33 =

0.01s- 1 is imposed by prescribing A3 (t) = exp E 3 3t.

The macroscopic axial stress vs. macroscopic axial strain in the 3-direction, aver-

aged over ten simulations using P = 5 voids, is shown in Fig. (3-35a) for the studied

initial void volume fractions. Figure (3-35b) shows the corresponding predictions of

macroscopic volumetric strain, E,01 = ln J. As in the case of macroscopic uniaxial

tension, the underlying microscopic behavior is characterized by plotting contours of

plastic shear strain-rate, 7, for a larger RVE (P = 10) at different levels of macro-

scopic axial strain (Fig. 3-36). Macroscopic yield stress for the porous material is

defined as the point where the stress-strain response exhibits a peak in axial stress,

followed by softening. Figure (3-35a) shows that, prior to macroscopic yield, the

stress-strain curves deviate slightly from linearity. Similar to the case of uniaxial

tension, where local plastic flow in the equatorial region of the voids gave rise to

this non-linearity, the contours of plastic shear strain-rate also show this initial local

plastic flow in the matrix (Fig. 3-36a).

Macroscopic yield of the porous material is reached when the local plastic flow
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Figure 3-35: Macroscopic plane strain tension: (a) axial stress-strain response, (b)
evolution of volumetric strain with axial deformation.

near the voids spreads from void to void, and forms macroscopically running shear

bands (Fig. 3-36b-c). Recall that in the V-BCC model, a shear band first developed

in the direction of macroscopic plane-strain constraint, followed by shear banding in

the un-constrained direction. This type of deformation sequence is a consequence

of the biaxial stress state resulting from the macroscopic axial stress and the stress

due to the macroscopically-imposed constraint. It is expected that the formation

of macroscopically running shear bands in the present RVE should follow the same

sequence of events. However, initial macroscopic shear bands do not form only in the

direction of macroscopic constraint, but also in the macroscopically unconstrained

direction (Fig. 3-36b-c); the deformation patterns in the matrix look very similar to

those of the previous case of macroscopic uniaxial tension. When a limited number

of voids is considered, the shearing directions in the material are strongly affected by

the mutual orientations of neighboring voids. In the present ten-void example, the

void distribution does not promote the shearing directions observed in the 3D V-BCC

model. However, it is likely that other void distributions would display macroscopic

shear banding in the direction of macroscopic constraint, and that several simulations
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Figure 3-36: Contours of plastic shear strain-rate, 7, for the case of macroscopic plane
strain tension and fo = 0.15, using P = 10 voids: (a) E33 = 0.033, (b) E 33 = 0.043,
(c) E33 = 0.053, (d) E33 = 0.18. The macroscopic plane-strain constraint is imposed
in the 1-direction.
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using ten voids would display this deformation pattern "on average".

The plastic flow of the material in the shear bands causes strain-softening in the

macroscopic stress-strain response. As the deformation progresses, the plastic flow

in the shear bands orients the associated matrix material, which increases the plastic

resistance in these regions. The increase in plastic resistance causes the plastic flow

to spread to neighboring matrix material. As an increasing amount of matrix mate-

rial is encompassed by the flow, the overall plastic resistance of the porous material

increases, and the macroscopic stress-strain curves exhibit strain-hardening.

Compared to the case of macroscopic uniaxial tension, the predicted levels of

macroscopic volumetric strain with axial deformation are significantly higher. The

imposed macroscopic constraint prevents the RVE from contracting, and this results

in higher macroscopic volumetric straining with axial deformation. The contour plots

of plastic shear strain-rate (Fig. 3-36) reveal, in addition to shear localization events,

that with increasing macroscopic axial strain, the voids do not contract, on aver-

age, in the direction of macroscopic constraint. However, in the macroscopically un-

constrained direction, the voids do contract. This illustrates the evolving anisotropy

of the porous material, resulting from anisotropic void growth. A continuum-level

constitutive model should include the effects of evolving anisotropy due to anisotropic

void growth.

Simple shear deformation

The case of macroscopic simple shear deformation is studied for three cases of initial

void volume fraction, fo = {0.05, 0.10, 0.15}. As in the previous cases of macroscopic

uniaxial and plane strain tension, the macroscopic response of the material is taken

as the average of ten simulations using P = 5 voids. In the simulations, simple shear

was taken to occur perpendicular to the 23-plane, thus, the macroscopic deformation

gradient is given by

F=1 + Fte2 0 e 3 , (3.27)
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Figure 3-37: Macroscopic simple shear deformation.

where the imposed nominal shear rate was taken to be F = 0.0173s-'. The macro-

scopic nominal shear stress, S 23, is shown in Fig. (3-37b) for the three values of initial

void volume fraction, fo. Macroscopic yield of the blend is defined as the point where

the macroscopic nominal shear stress exhibits a peak, followed by softening. The

microscopic response of the material was characterized by plotting contours of plastic

shear strain-rate at various stages of the deformation, for the case of fo = 0.15 (Fig. 3-

38). As in the previous load cases, an RVE with P = 10 voids is shown in order to

better illustrate micromechanical features of deformation. Figure (3-37b) shows that

the elastic shear stiffness of the different blends decreases with an increasing initial

void volume fraction fo, as expected. The slight non-linearity prior to macroscopic

yield, seen in Fig. (3-37b), results from initial plastic flow in the matrix (Fig. 3-38a).

At this point in the macroscopic deformation, the plastic flow in the matrix is local,

and does not completely bridge the ligaments between the voids. As the macroscopic

deformation progresses, the local plastic flow forms a macroscopic shear band which

is oriented in the 12-plane (Fig. 3-38b). The plastic flow of this 'net section' results in
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macroscopic yield of the blend (Fig. 3-37). Recall that in the case of the 3D V-BCC

model subjected to macroscopic simple shear deformation according to Eq. (3.27), a

distinct shear band developed in the 13-plane (Fig. 3-12a-c). This response to the

macroscopically-applied deformation is believed to be an artifact of the assumed BCC

arrangement of the voids. As the deformation progresses, the macroscopic shear band

broadens, as an increasing amount of matrix material is encompassed by the plastic

flow. Similar to the previous cases, the matrix material in the shear band becomes

oriented, and its resistance to continued plastic flow increases. The plastic flow then

spreads to neighboring matrix material, and the shear band moves upward in the

RVE (Fig. 3-38c-d).

At higher levels of macroscopic deformation, the voids in the matrix begin to rotate

and elongate as a result of the macroscopic state of deformation (Fig. 3-38d). This

indicates that a continuum-level constitutive model for the porous glassy polymer

should take into account the shape change and change in orientation of voids with

macroscopically-applied deformation.

Hydrostatic deformation

The case of macroscopic hydrostatic deformation was studied for the three initial void

volume fractions, fo = {0.05, 0.10, 0.15}. As previously, the macroscopic response

is obtained by averaging over ten simulations using P = 5 voids. The macroscopic

deformation gradient corresponding to hydrostatic deformation is given by

F = J(t)1 / 3 1, (3.28)

where a macroscopic dilatational strain-rate E,,, = 0.03s- is imposed through

J (t) = det F = exp Evt. The macroscopic stress-strain response is characterized

by plotting the macroscopic hydrostatic stress, Tm = (T1 + T 22 + T 33)/3, against

macroscopic volume change, J. The microscopic response is characterized by plotting

contours of plastic shear strain-rate, yP, at different stages of the deformation for a

ten-void RVE with fo = 0.15 (Fig. 3-40).
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Figure 3-39: Macroscopic hydrostatic deformation.

The stress-strain curves (Fig. 3-39) show that the elastic bulk stiffness of the

porous material decreases with increasing initial void volume fraction. Local plas-

tic flow in the matrix initiates on the void surfaces (Fig. 3-40a). This local plas-

tic flow results in a pre-peak non-linearity in the predicted macroscopic hydrostatic

stress (Fig. 3-39). The plastic flow on the void surfaces successively spreads through

the matrix as local shear bands, which bridge the ligaments between neighboring

voids (Fig. 3-40b). As the macroscopic deformation progresses, macroscopically run-

ning shear bands develop, and macroscopic yield of the porous material is reached

(Fig. 3-40c). In the case of the homogeneous glassy polymer, the plastic flow is

volume-preserving, and no plastic flow would be predicted under purely hydrostatic

deformation. Thus, the 'macroscopic yielding' of the porous material results from

local [volume-preserving] plastic shearing of the matrix material, which in turn gives

rise to plastic void growth, and macroscopic plastic dilatation of the material.

3.5 Summary of the developed RVEs

In the preceding discussion, four micromechanical models (RVEs) of a porous mi-

crostructure were introduced. Three of the models (the 3D V-BCC, LS and multi-void
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Voronoi models) were used to study the micromechanical and macromechanical be-

havior of porous glassy polycarbonate under various macroscopic loading situations.

The loading conditions included simple shear deformation, uniaxial tension, plane

strain tension and hydrostatic tension, and for each studied load case, a range of

initial void volume fractions was studied. In this concluding section, we highlight the

merits and drawbacks of each of the three RVEs mentioned above. The suitability of

each RVE for interpreting local stresses and strains is discussed, and the predictions

of the macroscopic stress-strain behavior of each RVE are compared and discussed.

3.5.1 Micromechanics

Toughness of rubber-toughened polycarbonate is intrinsically connected to the dis-

tribution of stress and strain in the polycarbonate matrix. The RVEs developed in

the preceding discussion can be used to study such distributions, and provide im-

portant information that might aid in understanding the deformation and eventual

fracture processes in the material. However, in order for such a study to be relevant,

the employed RVE should represent as realistically as possible the void distribution

[cavitated rubber particles] of the real porous microstructure, as the local fields are

strongly affected by void-to-void distances and orientations. In the 3D V-BCC model,

there are only two characteristic void-to-void distances at two corresponding orien-

tations, and the 3D V-BCC model therefore does not provide a sufficient basis for

interpreting local stress and strain fields in the matrix. For example, the issue of

ductile-to-brittle transition in the presence of rubber particle clusters in the real ma-

terial cannot be addressed. The LS model is an improvement from this point of view.

In the LS model, there is a larger variation in void-to-void interactions since the voids

are randomly placed on a cubic lattice. However, the local void volume fraction in the

LS model (Eq. 3.23) was assigned a relatively large value (flocal = 0.45) as to prevent

the void distribution from resembling that of a single-void model. The large value

on floc"l produces unrealistically thin inter-void ligaments between adjacent voids,

and any interpretation of local fields in these regions therefore has to be made with

caution. In the multi-void Voronoi model, there is no underlying lattice that decides
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admissible positions of the voids in the matrix. Thus, for a given ensemble of voids,

there is a greater variation in the void-to-void distances and orientations, compared

to the LS model. Using the multi-void Voronoi model, it is also possible to study

the effects of particle (or void) clustering. In view of this discussion, we conclude

that when addressing issues of toughening through the monitoring of matrix field

quantities, the multi-void Voronoi model constitutes the most appropriate tool.

3.5.2 Macromechanics

As discussed previously, the different void distributions in each of the three stud-

ied RVEs give rise to different predictions of local [matrix-level] stress and strain

fields. Similarly, the different void distributions give rise to different predictions of

macroscopic stress and strain fields. Here, we compare the predictions of macroscopic

response of the three models in order to elucidate the effects of void distribution on

the macroscopic response. Figure (3-41) shows the case of macroscopic uniaxial ten-

sion for fo = 0.15 for the 3D V-BCC, LS and multi-void Voronoi models, respectively;

the uniaxial stress-strain response is shown in (a), and the evolution of volumetric

strain, Ea = In J, is shown in (b). Figure (3-42) shows the macroscopic response

to simple shear deformation for the 3D V-BCC, LS and Multi-void Voronoi models,

respectively.

We first consider the case of macroscopic uniaxial tension. Figure (3-41a) shows

that the predictions by the three models are in close agreement in the elastic region

and in the strain-hardening region. In the region around macroscopic yield, and in

the strain-softening region, the multi-void Voronoi model prediction of stress is higher

than those of the LS and 3D V-BCC models. As discussed previously, the presence

of an underlying lattice in the case of the 3D V-BCC and LS models enables the

formation of local shear bands between voids in a few, pre-determined directions,

whereas in the multi-void Voronoi model, the random void distribution provides a

greater variation in possible shearing directions. Onset of macroscopic yield is reached

when local void-to-void shear bands coalesce into a macroscopic shear band spanning

the entire RVE. The formation of a macroscopic shear band in the LS model is
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Figure 3-41: Comparison of the micromechanical models under macroscopic uniaxial
tension (fo = 0.15): (a) macroscopic axial stress vs. macroscopic axial strain, (b)
macroscopic volumetric strain vs. macroscopic axial strain.

facilitated by the presence of an underlying lattice; the formation of a local shear

band between two voids promotes the formation of subsequent shear bands in the

same direction, to a neighboring void on the lattice (Fig. 3-23b-c). It is important to

emphasize that the macroscopic stress response of the two models with an underlying

lattice is likely to be different for a different choice of macroscopic loading direction.

For example, the 3D V-BCC model could be subjected to macroscopic uniaxial tension

with the principal loading direction bisecting a hexagonal facet (Fig. 3-3), and the

LS model could be subjected to macroscopic uniaxial tension along an RVE diagonal

(Fig. 3-18).

Figure (3-41b) shows the evolution of macroscopic volumetric strain corresponding

to the case of macroscopic uniaxial tension. Here, the response of the LS model

differs markedly from those of the 3D V-BCC and multi-void Voronoi models. In the

LS model, the voids are arranged randomly on a cubic lattice. In effect, the voids

are located along certain planes in the matrix, separated by a solid layer of matrix

117

S

C)

0.1 0.2 0.3 0.

0.1 0.*2 0 *3 0.4
Macroscopic axial strain

(b)

0.5

-

-

0



material. When macroscopic uniaxial tension is imposed along the principal cube

directions, these solid matrix layers introduce an artificial lateral stiffness to the RVE,

which prevents the RVE from contracting upon axial loading. Socrate and Boyce [63]

report a similar finding for a single-void model based on a stacked hexagonal array of

voids (the axisymmetric SHA model) (Fig. 3-la), where a stiff matrix layer resulted

in unrealistically high levels of volumetric strain. Socrate and Boyce also showed that

by staggering the voids in the matrix, these laterally-stiff matrix layers were avoided,

and the RVE was able to deform laterally through inter-void ligament shearing and

rotation. The present 3D V-BCC model, in which the voids are staggered rather than

stacked, displays volumetric strain levels that are similar to those of the axisymmetric

V-BCC model, but significantly lower than those of the LS model. The volumetric

strain response of the 3D V-BCC model is very close to that of the multi-void Voronoi

model. This suggests that when voids are staggered in space, the volumetric response

resembles that of a truly random distribution, whereas a "stacked" void arrangement

is not suitable from this point of view. As discussed previously, the higher levels of

volumetric strain in the LS model are associated with the existence of laterally stiff

layers of matrix material in the RVE. The volumetric response of the RVE is therefore

likely to change if the LS model was deformed along a diagonal.

Lastly, we compare predictions of the three RVEs for the case of macroscopic

simple shear deformation. The three models give identical predictions of the initial

elastic response. However, initial yield, and the predictions of the stress-strain re-

sponse beyond initial yield, differ markedly between the models. The 3D V-BCC

model displays an abrupt drop in stress immediately after yield. The abrupt drop

in stress corresponds to the formation of a sharp vertical shear band (Fig. 3-12a-b).

The formation and progression of this shear band through the RVE, described in

Section 3.2.2, gives rise to an unrealistically fluctuating stress-strain response. Recall

that for the case of fo = 0.05 (Fig. 3-13), the macroscopic shear stress even ex-

ceeded that of the homopolymer for certain strain levels. The stress-strain response

in Fig. (3-13) is an artifact of the modeling simplification of the void distribution into

a single void, and the chosen shearing direction with respect to the staggered BCC
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void arrangement. The LS model displays a more realistic stress-strain response than

the 3D V-BCC model; the inital macroscopic yield is followed by a less abrupt drop

in stress and a less fluctuating post-yield stress. Rather than forming a vertical shear

band through the RVE, macroscopic yield of the RVE corresponds to plastic shearing

of a "weak" layer of voids, with unit normal e3 , containing the largest number of

voids. In the multi-void Voronoi model, such a layer of voids is not present, and

Fig. (3-42) shows that the macroscopic stress required to cause macroscopic yield of

the material is higher, and the post-yield drop in stress is less abrupt.

As discussed for the previous case of macroscopic uniaxial tension, it is likely

that the predicted stress-strain response of the 3D V-BCC and LS models would

be different if the macroscopic simple shear deformation was imposed in a different

direction with respect to the underlying lattices. In particular, the cubic lattice in

the LS model resulted in "weak" void layers along which shear bands readily formed.

A different shearing direction is therefore expected to alter the prediction of initial

yield stress, and the post-yield stress-strain response.

In conclusion, any stress-strain predictions by lattice-based models of the porous

microstructure will be affected by lattice symmetries and spacings. In order to avoid

issues pertaining to the particular choice of loading direction with respect to the

lattice symmetries of the RVE, any load case should be averaged over a wide range

of directions, as to reduce the lattice effects. As this is computationally prohibitive,

it becomes necessary to use an RVE absent an underlying lattice. We therefore

conclude that the multi-void Voronoi model, which lacks an underlying lattice, is

superior to any lattice-based [single-void or multi-void] models of a random, porous

microstructure.
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Chapter 4

Constitutive Modeling of Porous

Glassy Polymers

As discussed in Chapter 2, the constitutive behavior of glassy polymers has been

successfully described within a continuum mechanics framework by Boyce, et al. [12],

and Arruda and Boyce [7]. Their model captures the effects of strain, strain rate and

temperature on the elastic-viscoplastic behavior of glassy polymers, and it has been

applied to various glassy polymers, such as poly(methyl methacrylate) (PMMA) and

polycarbonate (PC), the latter being the focus of this work.

As evidenced by the micromechanical modeling results of Chapter 3, the addition

of rubber particles, modeled as voids, to polycarbonate alters its mechanical behavior.

Under tensile loading conditions, where the rubber particles may be approximated as

voids, in view of their deformation-induced cavitation, the rubber-toughened polycar-

bonate displays the following macroscopic features, when compared to the homopoly-

mer (Fig. 4a,b):

" reduced elastic stiffness,

* decreased yield stress,

" reduced post-yield softening,

" reduced strain-hardening,
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Figure 4-1: The porous glassy polymer: (a,b) features of macroscopic deformation,
(c) schematic of the proposed model.

9 plastic dilatation through plastic void growth.

These features of the mechanical behavior of the material need to be addressed and in-

cluded in a continuum-level constitutive model for the mechanical behavior of rubber-

toughened polycarbonate. Several constitutive models have been proposed over the

past decades within the context of rate-independent porous metal plasticity; see for

example McClintock [47] and Gurson [31]. The Gurson model was developed for the

small-strain behavior of rigid, perfectly-plastic materials (metals) with dilute concen-

trations of spherical voids, subjected to highly triaxial stress states. This suggests

that a mere application of the Gurson model to rubber-toughened polycarbonate

would not be successful. The Gurson model has been modified to account for some

of the intrinsic constitutive differences between metals and polymers. For example,

large elastic strains in polymers have been accounted for by Steenbrink, et al. [65],

and Lazzeri and Bucknall [43] modeled the matrix pressure dependence on the on-

set of macroscopic yield of a porous glassy polymer containing spherical voids. These

modifications might make a "Gurson-type" model more suitable for the application to

rubber-toughened polycarbonate. However, the intrinsic rate-dependence observed in

glassy polymers raises some doubts about the validity of the "Gurson-type" models.

Furthermore, previous work has mostly focused on macroscopic yield of the material,

and the porosity-dependence of the observed back-stress at large macroscopic strain

levels has not been addressed.
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Zavaliangos and Anand [78] developed a constitutive modeling framework for rate-

dependent porous materials. Their work showed applicability to a broad range of

matrix strain-rate sensitivities, from nearly rate-independent materials at low ho-

mologous temperatures, to strongly rate-dependent materials at high homologous

temperatures. However, their work did not include (kinematic) strain-hardening of

the porous matrix material, which is characteristic of glassy polymers. In conclusion,

there is no constitutive model in the literature able to fully account for the major

features of deformation of porous glassy polymers.

We propose to model the constitutive behavior of rubber-toughened glassy poly-

mers (here porous polycarbonate) by modifying the components of the Arruda-Boyce

"spring-dashpot" structure to account for porosity. The porosity will be modeled

using one scalar parameter, f, which evolves with macroscopic deformation. The

initial value of f represents the initial volume fraction of rubber particles in the

rubber-polycarbonate blend, and is denoted fo. The introduction of the void volume

fraction, f, should modify the glassy polymer model as follows (Figs. 3-33, 3-35, 3-37

and 3-39):

" The initial elastic response should include effects of porosity, as there is an

observed decrease in stiffness with increasing porosity.

* The flow rule should include a dilatational component, as the porous material

deforms volumetrically through plastic void growth.

" The back-stress (from orientation hardening of the polycarbonate matrix) should

include a porosity-dependent hydrostatic term, as the porous material strain-

hardens under macroscopic volumetric deformation.

* A requirement for the proposed approach, where the porous model is defined by

modifying the Arruda-Boyce model, is that in the limit of zero initial porosity,

fo -+ 0, the original Arruda-Boyce model (Chapter 2) should be recovered.
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Figure 4-2: Finite strain kinematics of the porous glassy polymer.

4.1 Kinematics

The total deformation gradient, F, of the porous material is multiplicatively decom-

posed into elastic and plastic parts according to Lee [44],

V = pe Fp , (4.1)

where the superscripts e and p denote the elastic and plastic (relaxed) configurations,

respectively'. The plastic deformation gradient, PP, is obtained in the relaxed config-

uration by elastically unloading to a stress-free state via Fe-1 (Fig. 4.1). The elastic

deformation gradient, fe, can be polar-decomposed as

Fe = ~Ve (4.2)

'In order to distinguish between the macroscopic behavior of the porous glassy polymer, and the
behavior of the homogeneous glassy polymer matrix, tensor quantities pertaining to the former are
indicated by a bar, e.g. F and F for macroscopic vs. pointwise (matrix-level) deformation gradients,
respectively.
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where V is the left elastic stretch tensor, and the elastic rotation ie is a proper

orthogonal tensor. The velocity gradient, L, can be expressed as the sum of a (sym-

metric) stretching tensor, D, and a (skew) spin tensor W, and it is given as follows:

L =F F =D+W = Fe e1+FeL PF e1= L+rP (4.3)

where Le and E7 are the elastic and plastic velocity gradients in the current con-

figuration, respectively, and L = F F is the plastic velocity gradient in the

relaxed configuration. The plastic velocity gradient in the current configuration can

be decomposed into symmetric and skew parts as,

EP = up + W'. (4.4)

In this formulation, we prescribe the skew part of the plastic velocity gradient in the

current configuration to be zero, WP = 0. The evolution of the plastic deformation

gradient (the flow rule) is then given by

F -=L Pp=F DFFpep (4.5)

where I' is prescribed as discussed in the following sections. The void volume frac-

tion, f, is defined in the relaxed configuration. From plastic incompressibility of

the matrix material, and balance of mass, a relation between the initial void volume

fraction, fo, and current void volume fraction, f, is given by

1-fodet' _ = fo . (4.6)
1-f~

4.2 Stress

The macroscopic (Cauchy) stress, T, acting on the material is the sum of the contribu-

tions from the viscoplastic dashpot and the non-linear hardening spring (macroscopic
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back-stress):

T = T*+ f eT (47)

where Jf = det Fe The macroscopic stress acting on the dashpot, T*, is defined in
-B

the current configuration. The macroscopic back-stress, TB, is defined in the relaxed

configuration, and pushed forward to the current configuration via Fe.

4.3 Linear elastic behavior

The elastic response of the porous glassy polymer is assumed to be isotropic and

therefore characterized by two effective elastic moduli. The elastic stiffness of the

porous glassy polymer is described by the fourth-order elasticity tensor, CE,

Ce = 291+ {- - 2/3ft}1 1, (4.8)

where A and 9 are the effective shear and bulk moduli, respectively, and 1 and I are

the second and fourth-order identity tensors, respectively. The effective elastic shear

and bulk moduli, A and R, are functions of the matrix elastic moduli and the void

volume fraction f. The effective elastic moduli of a void-containing matrix has been

studied extensively in the literature (e.g. Budiansky [17], Hill [34], Mori and Tanaka

[50]). Here, we use the Mori and Tanaka estimates, as expressed by Benveniste [10],

to describe the porosity dependence on the effective elastic moduli,

S(f) (4.9)
S1+ 6f 9+g

4(1 - f) (4.10)

K =
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Using an elastic logarithmic strain measure, Ee = InV, the total (Cauchy) stress is

then given by

T = C (). (4.11)

4.4 Back-stress

The orientation hardening of glassy polymers is attributed to the alignment of molec-

ular chains with deformation. As the molecular chains approach their limiting ex-

tensibility, the resulting back-stress in the glassy polymer increases rapidly, and the

material 'locks'. In the case of homogeneous glassy polymers, this orientation hard-

ening and terminal locking has been successfully described using the (incompressible)

eight-chain model for rubber elasticity (Arruda and Boyce [8]). The strain energy

density function T for the eight-chain model is given by

X = T(If; CR, N) = CRJN(/3 rL-+ lnj - c, (4.12)
V3 smnh, ) , (.2

where, in the application to the orientation hardening of glassy polymers, the parame-

ters CR, v'N and c are the initial hardening modulus, the limiting plastic stretch (lock-

ing stretch) of the molecular network, and a temperature-dependent constant, respec-

tively. The first invariant of plastic stretch, Ij, is defined as If= tr BP = tr(FPFPT),

and the inverse Langevin function, 3, is given by

=L-i JP ; L (3) = coth/3 - . (4.13)\~3N/

The back-stress in the plastically incompressible (JP = detFP = 1) homogeneous

glassy polymer can be determined, to within an arbitrary pressure p B, as

TB = 2 BP = CR - 3 N>c -1  ) dev BP - pB (4.14)
(9BP / T FN
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where dev BP = dev (FPFPT) and \A = [tr BP /3]1/2

In the case of a porous glassy polymer, the void-containing material is not plas-

tically incompressible (7' = detF' $ 1), as it can accommodate macroscopically

dilatant deformations through plastic void growth. In order to accurately describe

the orientation hardening behavior of porous glassy polymers we therefore use a

recently-proposed framework for constitutive modeling of porous hyperelastic ma-

terials (Danielsson, et al. [22], Appendix B). The macroscopic strain energy density

function for a given (pointwise incompressible) hyperelastic matrix material, and a

prescribed macroscopic state of deformation, was expressed by Danielsson, et al. [22],

using a spherical (hollow) volume element, of initial outer radius B, to represent the

porous material. For the present application to the orientation hardening of porous

glassy polymers, this expression becomes

= -jB fr j '(I; CR, N) R2 sine de d(D dR, (4.15)

where 'I the local strain energy density function of the incompressible hyperelastic

matrix material is integrated over the reference volume V = 47rB 3 /3 of the spherical

volume element. The pointwise first invariant of plastic stretch, If, is expressed in

the sphere in terms of the macroscopically-applied plastic deformation, as

(2)= / { p2 + X2 + ( X + X ( -22,2)

(4.16)

where \j are the macroscopic principal plastic stretches, J" = trB = tr(Vp )

= (R) = (I+ (7 - 1) (B/R)3 , , and Xi are the Cartesian reference coordi-

nates of a point in the sphere. This expression is based on an approximate form

for the deformation field in the volume element (Danielsson, et al. [22], Hou and

Abeyaratne [35]).

The macroscopic back-stress tensor is obtained by differentiation of the macro-

scopic strain energy density function, I, with respect to the plastic left Cauchy-Green
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strain tensor, ",

-B 2 0'1-V
TB _ _ (4.17)

The differentiation of I' with respect to B is not straightforward, as the expression

for the pointwise first invariant of plastic stretch (Eq. 4.16) has explicit occurences of

the macroscopic principal plastic stretches, X. Since the principal directions of the

macroscopic back-stress tensor, T , and the macroscopic plastic left Cauchy-Green

strain tensor, B, coincide, the evaluation of TB can be readily carried out in the

principal frame of B.

The macroscopic plastic left Cauchy-Green strain tensor, BP, can be decomposed

into an orthogonal rotation tensor, Q and a diagonal tensor U, as

B = Qub Q , (4.18)

where b is the macroscopic plastic left Cauchy-Green strain tensor rotated into

its principal frame. The diagonal components of bp are expressed in terms of the

macroscopically-applied plastic stretches, A', as

[p]i = . (4.19)

Since the principal directions of the macroscopic back-stress tensor, T , and the

macroscopic plastic left Cauchy-Green strain tensor, T, coincide, the latter may be

decomposed as,

T B= QtBQT (4.20)

-B

where t is the macroscopic back-stress tensor, expressed in its principal frame. By

combining Eqs. (4.17), (4.18) and (4.20), the macroscopic principal back-stress tensor
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can be expressed as

-B _ T T2 a -

J B5 Q.PA (4.21)

Using Eq. (4.21), the diagonal components of the macroscopic principal back-stress

tensor, iB, are then expressed as

B [ a2p] 2 8_VN
2=) 4(no sum on i). (4.22)

By using Eq. (4.22) and (4.15), the diagonal components of the macroscopic back-

stress tensor can be expressed as

E P B 27r 7r aVjP2

[t' Bi =--R2 sine dE d<D dR. (4.23)
-JV 0 ]Bf o o 1

The integral in Eq. (4.23) can be evaluated numerically using an appropriate nu-

merical quadrature rule, such as Gauss-Legendre quadrature (see, for example Stroud
-B

and Secrest [66]). The macroscopic back-stress tensor, T , can then be readily ob-

tained through the rotation of tB by Q (Eq. 4.20).

A back-stress tensor based on the preceding discussion accounts for the evolving

plastic anisotropy of the porous material, which arises from evolving molecular align-

ment in the matrix material with plastic deformation, and the anisotropic growth

of voids. However, it does not fully take into account possible effects of [strong]

void-to-void interactions on the back-stress in the real material. Danielsson, et al.

[22] compared predictions of their model, using a Neo-Hookean matrix material, to

results obtained from micromechanical modeling. The authors found that while the

stress-strain response was well-predicted over the range of studied load cases and void

volume fractions, the predictions of volumetric straining under plane strain tension

showed differences. As will be discussed below, some of the possible shortcomings

of the present [eight-chain Langevin statistics-based] back-stress model can be com-

pensated for by the specific choice of functional form for the macroscopic plastic
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stretching, P.

4.5 Viscoplastic flow

The visco-plastic flow in the Arruda-Boyce model is modeled as purely deviatoric, and

thus volume-preserving. The plastic stretching tensor, DP is aligned with the deviator

of the driving stress, dev (T*). The micromechanical modeling results of Chapter 3

indicate that the visco-plastic flow of the porous glassy polymer is different from that

of the homopolymer. The functional form of the plastic stretching tensor, Bp, of the

porous material should include the following major features:

" The "yield stress" of the porous material decreases with increasing volume frac-

tion of voids.

* The post-yield softening decreases with increasing volume fraction of voids.

* The presence of voids in the plastically-incompressible glassy polymer matrix

enables plastic dilatation of the porous material through void growth.

The objective of this section is to develop functional forms for the macroscopic plastic

stretching tensor, Dp, for the porous glassy polymer. In Chapter 2, two functions for

the effective plastic shear strain-rate were presented: the exponential expression by

Argon (Eq. 2.11) and the power-law expression (Eq. 2.12). The power-law expression

will be used in the following discussion, as its simple form provides [convexity and

homogeneity] information about admissible forms for Dp. The subject of porous,

rate-sensitive, materials has been studied in the past by various researchers. This

work has mainly focused on materials that do not possess a significant back-stress.

The previous work is reviewed in the following section, and the application to porous

glassy polymers in the presence of a back-stress is subsequently presented.

4.5.1 Porous viscoplasticity

The flow in visco-plastic solids is often characterized by a plastic strain-rate potential,

<b. The plastic stretching, DP, is defined as the gradient with respect to stress of this
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plastic strain-rate potential,

DP =a. (4.24)
aT

The (scalar) plastic strain-rate potential, 1, for an incompressible power-law material

is given by

'OS /T\ 1/m+1
__ O _______ eq(-= (T1, M) = "+ , (4.25)

= (Tq~ll -1/rn+1\sJ

where m is a strain-rate sensitivity parameter. This plastic strain-rate potential is a

function only of Tq, the second invariant of the stress deviator dev (T). The plastic

stretching, DP, in a constitutive formulation based on Eq. (4.24), is therefore devia-

toric. Equations (4.24) and (4.25) give the plastic stretching for the homopolymer,

dev (T)DP = P-de T (4.26)
|Idev (T)I(

which is consistent with Eq. (2.13). The macroscopic strain-rate potential, I, of a

porous material should be a function of porosity, and it should reduce to the plastic

strain-rate potential of the matrix material in the limit of zero porosity. Duva and

Hutchinson [25] proposed a plastic strain-rate potential for the macroscopic plastic

stretching of a power-law matrix containing a dilute concentration of spherical voids

on the form

T=@ (T) + f v (T) ,(4.27)

where 4' is the strain-rate potential for the power-law matrix material (Eq. 4.25),

evaluated at Teq, and 'v is an appropriately defined change in potential caused

by the introduction of an isolated spherical void in an infinite block of the matrix

material which is subjected to the macroscopic stress T. This proposition of the

macroscopic plastic strain-rate potential is only applicable to dilute volume fractions

of voids, where void-to-void interactions can be neglected. For the present application
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to porous glassy polymers, where void volume fractions are typically in the order of

5 - 15%, the interactions between voids are significant and cannot be neglected,

and the dilute assumption breaks down. Cocks [19] presented (one-sided) bounds

on the macroscopic plastic strain-rate potential for porous materials of non-dilute

concentrations of voids. Cocks extended the formalism of Duva and Hutchinson by

using a macroscopic plastic strain-rate potential on the form

4D= (Teqim, f, m) = F (X, f, m) <D (Teq, m), (4.28)

where Teq and Tm are the macroscopic Mises and mean stresses, respectively, X =

Tm/Teq is the triaxiality of macroscopic stress, and F is an elliptical interpolation of

the predicted behavior at purely deviatoric and purely hydrostatic macroscopic states

of stress. As pointed out by Hutchinson [36], the convexity and homogeneity of the

power-law strain-rate potential must be preserved in the transition to a macroscopic

strain-rate potential for the porous material. By differentiating Eq. (4.28) with respect

to the macroscopic stress T, the expression for the macroscopic plastic stretching

becomes

-- , 3 F'X dev T F' ~ Teq) 1/M
B2 (F 1/m+ I) Te)d + 3(1/m+T1)e l (4.29)

where (...)' denotes differention with respect to X, and s here represents an effec-

tive shear strength of the matrix material. Convexity of the macroscopic strain-rate

potential, T, is satisfied if the following inequality holds (Rodin and Parks [59]):

F F" - 1 F'2 > 0, (4.30)
m + 1

where .... )" denotes the second derivative with respect to X. The required homogene-

ity of the macroscopic strain-rate potential is satisfied if the following requirements

are met (Zavaliangos [79]):

* In the limit of zero-porosity, the plastic strain-rate potential of the homogeneous
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material should be recovered:

lim F (X, f, m) = 1. (4.31)
f--o

9 Under purely hydrostatic tension, the requirement that tr B" # 0 from Eq. (4.29)

requires

lim F (X, f, m) oc X/m+. (4.32)
X-.oo

Several investigators, for example Haghi and Anand [32], Sofronis and McMeeking

[64] and Michel and Suquet [48], have proposed models for rate-dependent porous

power-law materials using a macroscopic strain-rate-potential based on Eq. (4.27),

with F given by

1/rn+ 1

F = A1 + (A2 X2 + A3) 2 (4.33)

where Ai = Ai (f, m). The function A 2 governs the plastic flow of the material under

purely hydrostatic states of stress (X -- oc). The models by Haghi and Anand, Sofro-

nis and McMeeking, and Michel and Suquet all have in common an A2 selected to

reproduce the analytical solution for the dilatational behavior of a thick-walled sphere

made from an isotropic, pointwise incompressible, power-law viscoplastic matrix ma-

terial, subjected to external hydrostatic stress. The functions A1 and A3 influence

the plastic flow of the porous material under purely deviatoric, and under mixed [de-

viatoric + hydrostatic] states of stress. Several approaches can be followed to select

appropriate forms for these functions. For example, Michel and Suquet set A1 = 0,

and estimated A3 from lower bounds (Ponte-Castafieda and Willis [57]). Sofronis

and McMeeking also set A1 = 0, and estimated A3 through comparisons with finite

element results for a sphere subjected to purely deviatoric (X = 0) states of stress.

Zavaliangos and Anand noted that for linear viscous (m = 1) matrix materials of

constant strength (s = so), any proposed potential for the porous material should

agree with the known dilute-limit potential of Duva and Hutchinson [25]. Based
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on this, Zavaliangos and Anand adopted the functional forms of Haghi and Anand,

where A1 = 1, and A 3 was obtained by fitting the model to numerical results from

axisymmetric finite element simulations. The particular choice of the functions Ai

will, in general, have certain ranges of applicability. For example, choices of A2 to

match known solutions for thick-walled spheres under hydrostatic tension, are only

valid for low to moderate void volume fractions, as these "sphere solutions" imply

that the voids do not interact significantly.

For a general [deviatoric + hydrostatic] state of macroscopic stress, T, the exact

distribution of stress and [evolved] shear strength in the matrix is unknown. In

Eq. (4.29), the matrix shear strength is defined by an effective value, s. In order to

relate this effective shear strength to the macroscopic stress state, an effective matrix

shear stress, T, is defined through plastic dissipation arguments. The external plastic

dissipation of the porous material is equal to the internal plastic dissipation, which

arises from plastic shearing of the matrix:

T -DP = -v2r P (1 - f) (4.34)

where yP is a plastic shear strain-rate. By combining Eqs. (4.29) and (4.34), the

effective shear stress in the matrix can be expressed as

1/F1/+1 -
T = r3 Teq. (4.35)

The effective shear strength, s, in the matrix (Eq. 4.29) is taken to evolve according

to

t = h 1 - (4.36)

where h is a [hardening or softening] parameter, and $P is here given by the power-law

expression

P = 1>0 (T)l/M (4.37)
s
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where T is the effective matrix shear stress, given by Eq. (4.34).

4.5.2 Application to glassy polymers

In the presence of an orientation-induced back-stress, the stress that drives the visco-

plastic flow is given by the tensorial difference between the macroscopic Cauchy stress,

T, and the back-stress, TB (Eq. 4.7). The macroscopic plastic strain-rate potential,

1, (Eq. 4.28) is therefore expressed in terms of the invariants of the macroscopic

driving stress for plastic flow, T*, rather than the total stress, T. As discussed

previously, the model for the back-stress does not take into account possible effects

of void-to-void interactions. In order to compensate for possible shortcomings of the

back-stress model pertaining to its volumetric response, the form for the functions

Ai is altered to include macroscopic plastic volumetric strain. Moreover, the primary

objective of the present work is to develop a continuum-level constitutive model using

a specific matrix material, namely glassy polycarbonate. The general dependence on

the strain-rate sensitivity m of the functions Ai is therefore removed. The [matrix-

specific] functional forms for Ai become

Ai = Ai (f, fo), (4.38)

where the dependence of macroscopic plastic volumetric strain on the macroscopic

plastic stretching is taken into account by including the initial void volume fraction,

fo, in addition to the current void volume fraction, f. The expression for the macro-

scopic plastic stretching, DY, becomes

-p 3 F'X* dev T F' T /
3 =1/rn-+F1- _ (+q i/m (4.39)BP VO2 (F 1/m + 1 T* + 3 (1/mn + 1) seq

where X* =T* T* here represents the triaxiality of macroscopic driving stress

for plastic flow, and ( ... )' implies differentiation with respect to X*. The plastic

dissipation in the matrix can, as in Section 4.5.1, be used to define an effective driving
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shear stress in the matrix, T*,

T*F = V2* (1 -f). (4.40)

This effective shear stress can then be used to evolve the effective matrix shear

strength, s, in Eq. (4.39), using Eqs. (4.36) and (4.37). The matrix shear stress

and shear strength fields are thus represented by two single, scalar, quantities s and

T*. Clearly, in a porous material, there is a distribution of matrix shear stress and

[evolved] shear strength, and, as pointed out by Zavaliangos [79], it is not obvious

that these fields can be successfully related through Eq. (4.37). The effects of the

distributed nature of these fields may be important in the case of a softening glassy

polymer matrix. The micromechanical modeling results of Chapter 3 suggest that

the stress state in the porous glassy polymer is non-uniform as a result of shear-

localization. The attractive but minimalist approach of representing the matrix shear

stress and matrix shear strength by two effective quantities may therefore warrant

additional consideration / modeling.

4.6 Calibration of constitutive model parameters

The function F modifies the plastic strain-rate potential of the homogeneous glassy

polymer to account for porosity through the three functions A1 , A 2 and A3 (Eq. 4.33).

As discussed previously, these functions generally depend on the matrix strain-rate

sensitivity parameter m. However, for a given matrix material, the parameter m can

be omitted, making the three functions Ai matrix-specific. In order to compensate for

possible shortcomings of the employed back-stress model in its volumetric response,

the effect of plastic volumetric strain was included in the functional forms for Ai

(Eq. 4.38). In this section, we determine suitable forms for these functions Ai =

Ai (f, fo) for a glassy polycarbonate matrix material, containing 5 - 15% voids. The

functional forms for Ai are obtained by comparing the resulting constitutive model

predictions to micromechanical modeling results from the previous chapter.
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4.6.1 Calibration of the functions A1 , A 2 and A 3

Under macroscopic hydrostatic tension, the macroscopic driving stress for plastic flow

is also hydrostatic. The macroscopic plastic stretching for this state of driving stress

is not dependent on the functions A1 and A3 , and a suitable form for A2 can be easily

obtained by direct comparisons to micromechanical modeling results. The expression

A2 = (9.8f - 30f 2 + 95f 3) _ (4.41)
f

provides a good fit under this mode of deformation and under the range of initial

void volume fractions of interest (Fig. 4-3f). The functions A1 and A3 influence the

plastic flow of the material under macroscopic deviatoric and mixed [deviatoric +

hydrostatic] states of driving stress. It is noted that in the presence of an evolving

back-stress in the porous material, it is difficult to use micromechanical models and

impose a constant triaxiality of macroscopic driving stress, X* = T* /T*q, as the

back-stress is, in general, not co-axial with the total Cauchy stress acting on the ma-

terial. It is therefore difficult to carry out a systematic parametric study over a range

of driving stress triaxialities. Functional forms for A1 and A3 were therefore sought

that, given the assumed elastic and orientation-hardening behavior of the porous

material, provide good total-stress/total-strain predictions against corresponding mi-

cromechanical modeling results. Studied load cases were simple shear deformation,

uniaxial tension, plane strain tension and hydrostatic deformation. Given the results

from Chapter 3, and the already established form for A2 , the following choices for A1

and A3 give good fits to the macroscopic stress-strain curves of Chapter 3:

A, (I + 6f 1 1) 91 (1/m+l)/2 1 _ (f )92(1/m+1)/2 (4.42)

with m = 0.033, and

g1 = -0.2 + 11.5fo - 30fO2 (4.43)

92 = 0.5 + 4fo. (4.44)
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9 1+92

A3 = (1 + 6f 1 ) - (4.45)

The functional forms for A1, A 2 and A 3 give rise to the stress-strain predictions shown

in Fig. (4-3). The cases of simple shear deformation, uniaxial tension, plane strain

tension and hydrostatic deformation are shown. The cases of uniaxial tension and

plane strain tension are the most relevant load cases from an engineering standpoint;

it is unlikely that material points in a component will experience either simple shear

deformation or pure hydrostatic deformation. Figures (4-3a-d) show the cases of

uniaxial tension and plane strain tension. The constitutive model predictions of axial

stress are in excellent agreement with the micromechanical model predictions, over

the studied levels of initial porosity (Fig. 4-3a,c). In the case of plane strain tension

(Fig. 4-3c), the predicted constraint stress, arising from the imposed plane strain

constraint, is also in good agreement with the micromechanical model results. The

evolution of volumetric strain (Fig. 4-3b,d) is well-predicted in both cases.

Under simple shear deformation (Fig. 4-3e), the constitutive model predictions

are in reasonable agreement with the micromechanical model predictions: The initial

elastic response and initial "yield" are well-predicted, but the constitutive model

does not accurately predict the post-yield response of the porous glassy polymer.

The micromechanical models respond to macroscopic simple shear deformation by

forming a macroscopic shear band. This mode of highly localized deformation causes

the macroscopic shear stress to decrease rapidly before the deformation stabilizes,

and the shear band begins to propagate through the porous material. The highly

localized deformation produces a large distribution in [evolved] shear strength in the

polycarbonate matrix. As discussed previously, this is not captured in the constitutive

model; the shear strength is represented using a single, scalar value (See Section 4.5.2

for a discussion).

The case of macroscopic hydrostatic deformation is shown in Fig. (4-3f). The

macroscopic hydrostatic tensile stress is well-predicted for the two highest levels of

initial porosity (fo = {0.10, 0.15}). The prediction for the lowest initial porosity

(fo = 0.05) differs markedly from the micromechanical modeling results: the ini-
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tial "yield" stress is over-predicted, and the predicted strain-hardening is too strong.

An explanation for the former is, again, the [insufficient] modeling simplification of

the distribution of evolved matrix shear strength into a single, scalar value (see Sec-

tion 4.5.2 for a discussion). At higher levels of macroscopic dilatation, the constitutive

model with fo = 0.05 over-predicts the macroscopic hydrostatic tensile stress. Under

pure dilatation, the back-stress in the constitutive model is given by the expansion

of a hollow sphere. For low levels of initial porosity, the inner surface of the hollow

sphere reaches its limiting extensibility early during macroscopic deformation, which

produces the strong upturn in stress. In the micromechanical models, the macro-

scopic hydrostatic deformation can, in addition to purely spherical void growth, be

accommodated by inter-void ligament bending and rotation.

4.6.2 Comments on the choices of Ai

The choice of the functions Ai in the preceding discussion was found to give good

predictions for the macroscopic stress-strain and volumetric strain response under

different macroscopic loading conditions. It is important to realize, however, that the

functions Ai = A (f, fo) are matrix-specific. Their functional dependence of fo and

f is likely to be different if the orientation-hardening properties CR and VW of the

matrix change. Even for a given matrix material, the particular choice of functions

is not unique. Moreover, it is important to emphasize that the chosen functions Ai

were only calibrated over a narrow range of void volume fractions (5 - 15%), and that

the study of materials of higher (or lower) void volume fractions is likely to require

additional numerical fitting.

4.7 Conclusions

A continuum-level constitutive model has been developed to describe the large-strain

elasto-viscoplastic deformation of rubber-toughened [here porous] glassy polymers.
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The model was used in conjunction with a glassy polycarbonate matrix at ambient

temperature, where the [porosity and matrix-dependent] functions Ai in the model

were calibrated against micromechanical modeling results from Chapter 3. Using

these functions, the constitutive model predicted well the macroscopic stress-strain

and volumetric strain response across a range of load cases and initial void volume

fractions.

The developed constitutive model is an essential tool for analyzing boundary value

problems involving porous, or rubber-toughened [pre-cavitated] glassy polymers. In

the following chapter, the constitutive model will be utilized in a finite element frame-

work to study the tensile behavior of round notched bars of different notch radii, as

a function of deformation rate, porosity, etc. By comparing the obtained results to

existing experimental data on the tensile behavior of such tensile bars (Johnson [38]),

it is possible to identify the critical local deformation / stress histories which give rise

to brittle fracture, and which do not.
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Chapter 5

Fracture Processes in

Rubber-Toughened Polycarbonate

In the previous chapter, a continuum-level constitutive model for rubber-toughened

glassy polymers was developed. The model treats the rubber particles as voids, in

view of their deformation-induced cavitation, which occurs at early stages of defor-

mation. The constitutive model was calibrated against micromechanical simulations

of the deformation of porous glassy polycarbonate at room temperature. Predic-

tions by the constitutive model were found to be in good overall agreement with the

micromechanical modeling results of Chapter 3 over a range of porosity levels, and

loading cases ranging from simple shear to hydrostatic deformation. As discussed in

Chapter 2, the purpose of blending rubber particles into glassy polymers is to at-

tain an improvement of the ductility of the material under severe loading situations,

by preventing or delaying the brittle fracture processes that are observed in the ho-

mopolymer. The developed constitutive model for porous glassy polymers does not

include fracture criteria; ductility is implicit in the model formulation, and [brittle

or ductile] fracture events cannot be predicted using the model alone. In order to

predict occurrences of fracture in the porous material, suitable fracture criteria must

be incorporated into the constitutive model.

Failure events in glassy polymers can be interpreted within the framework of

thermally activated processes (Zhurkov [80]). Zhurkov and Korsukov [81] introduced
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a kinetic theory for stress-assisted damage evolution in polymers, where the time

to failure, t, is expressed in terms of three kinetic parameters, to, UO, -y, reflecting

fundamental material properties:

UO - -Yo-
t = to exp O (5.1)

Here, to coincides with the reciprocal of the natural oscillation frequency of atoms in

solids; the magnitude of the energy barrier, Uo, determines the probability of bond

breakage and was found to be closely related to the energy of chemical bonds along

the backbone; the stress-assisted nature of the fracture process is reflected in the ya

term, where o- is a measure of the applied stress, and the activation volume, -y, is

found to be strongly influenced by the molecular orientation of the polymer chains

(see, for example, Kausch [39]). The parameter -y is taken to account for the effects

of bond overstress, based on the supposition of a non-uniform distribution of stresses

over the chain bond orientations (Zhurkov [80]). The activation volume y is found to

decrease sharply with molecular network orientation (Kausch [39], Rosen [60]), which

implies that highly drawn polymer domains can sustain large tensile stresses before

failure. In more pragmatic approaches to establishing fracture criteria for amorphous

polymers, this kinetic treatment is often simplified. The time-dependent nature of

the failure process is neglected, and the effects of a continuum spectrum of molecular

orientation on the failure stress is often reduced to consider only two extreme cases:

* A brittle failure mode associated with cavitation events in the unoriented, hy-

drostatically loaded material.

" A ductile failure mode due to chain scission and disentanglement events in the

highly aligned, plastically deformed material.

While macroscopic fracture is ultimately governed by extrinsic factors (defects, notches,

etc.) that give rise to local stress concentrations, the failure process must be under-

stood in terms of the flaw-free response of the polymer (Argon and Cohen [5]). In

homogeneous polycarbonate, brittle failure modes are controlled by intrinsic cavita-
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tion phenomena. Although the complex interactions controlling fracture initiation in

polycarbonate have not yet been entirely resolved, there is a general consensus in the

literature that brittle fracture in glassy polycarbonate occurs when the local elastic

volumetric strain reaches a critical value prior to the onset of plastic shearing. In this

regime, the polymer network is in its isotropic (unoriented) state, and a volumetric

strain criterion can be equivalently expressed in terms of a critical negative pressure

for intrinsic cavitation.

Under deformation histories dominated by deviatoric stress states, high levels of

plastic deformation can develop in the material prior to the onset of ductile failure

processes. The alignment of molecular chains in the polymer results in a significant

increase of the material strength along the extension direction [a reflection of the

decreased activation volume -y]. However, strain-hardening also increases the plas-

tic deformation resistance, resulting in ductile fracture at a critical level of plastic

stretching, due to chain scission and disentanglement events. These two extreme

cases of failure mechanisms in homogeneous polycarbonate can be expressed as the

following two fracture criteria (see, for example, Gearing and Anand [28]):

* Brittle fracture is taken to occur when a local elastic volumetric strain, Ev01,

reaches a failure value E , in the absence of molecular orientation:

E'01 = Ef. (5.2)

" Ductile fracture is taken to occur when the effective plastic stretch, AP, reaches

a critical value AP:

AP = A. (5.3)

It is not obvious how [ductile or brittle] fracture criteria, based on critical levels of

field quantities defined for the homogeneous polycarbonate should be extended to

predict fracture in a rubber-toughened polymer blend. Although the underlying rea-

sons for fracture in rubber-toughened polycarbonate are likely to be found in the
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polycarbonate matrix, fracture criteria based on stress and/or strain levels in the

homopolymer cannot be directly applied to the homogenized fields of the blend. Ho-

mogenized [continuum-level] fields can provide an indication of the severity of the

loading conditions, but they provide very limited insight into the criticality of local

fields. The polycarbonate matrix can fail in a ductile manner, subsequent to exten-

sive local plastic shearing, or it can fail due to cavitation events associated with large

elastic volumetric strains in unoriented domains. Due to the statistical nature of the

particle distribution, and the stress-concentration effect of the particles themselves,

there is a significant variation in stress and strain levels throughout the matrix ma-

terial. The gradients of stress and strain fields in the matrix are likely to produce

progressive degradation of the blend through local accumulation of submicrocracks. If

the matrix fails locally, the blend might be able to accommodate this local fracture by

shedding load to surrounding matrix material without resulting macroscopic failure,

thus allowing large macroscopic plastic strains and dissipation before final fracture.

The successive degradation of the matrix material will eventually lead to coalescence

of voids, as entire inter-void ligaments fracture. As voids coalesce, larger cavities of

higher aspect ratio form. These high-aspect ratio cavities are more effective stress

concentrators and ultimately lead to macroscopic fracture of the blend.

The progression of local fracture in the polycarbonate matrix can be studied us-

ing the micromechanical models (RVEs) developed in Chapter 3. If fracture criteria,

such as those described above for homogeneous polycarbonate, are applied to the

polycarbonate matrix, the progression of local fracture in the matrix of the RVE can

be studied using a finite element removal technique. When either of the two fracture

criteria is met at an integration point in the mesh, the corresponding finite element

is removed, and the load carried by that element is redistributed to neighboring ele-

ments. Finite element removal will eventually lead to fracture of inter-void ligaments

and void coalescence. When the local fracture has extended to a significant portion of

the matrix, further damage cannot be accommodated by the blend, and macroscopic

fracture occurs. This detailed multi-level study of damage progression in the blend

is beyond the scope of this work and is proposed for future study.
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Here, we simply assess the propensity to macroscopic fracture at a [macroscopic]

material point in the homogenized blend, subjected to a prescribed deformation his-

tory. We perform RVE micromechanical studies, and monitor, in the polycarbonate

matrix, [microscopic] material points experiencing field levels in excess of the critical

failure levels for homogeneous polycarbonate (Eqs. 5.2 and 5.3).

It is important to emphasize that, since failure of the polycarbonate matrix is

not modeled in the RVE studies, the progressive degradation of the blend leading

to macroscopic fracture cannot be captured. In particular, the rapid increase of

void volume fraction associated with void coalescence is not modeled. Similarly,

the continuum-level constitutive model for porous polycarbonate, which was fitted

to micromechanical modeling results, does not account for rapid increases in void

volume fraction associated with void coalescence1 .

5.1 Multiscale studies of failure processes

The modeling tools introduced in Chapter 3 and Chapter 4 are ideally suited to

investigate the relationship between macroscopic fracture in the blend and failure

conditions in the [porous] polycarbonate matrix. Finite element simulations of me-

chanical tests on rubber-toughened specimens can be performed using the continuum

constitutive model for the blend, and local deformation histories in critical regions can

be extracted. The micromechanical models developed in Chapter 3 can then be used

to study local field quantities in the matrix (Fig. 5-1c). The [continuum-level] defor-

mation history leading to fracture in the blend can be imposed as a macroscopic state

of deformation on an RVE, and correlations between fracture of the porous material,

and local stress and strain distributions in the matrix can be analyzed (Fig. 5-1d).

For example, the hypothesis that critical negative pressure levels in the matrix con-

trol the onset of brittle fracture of the porous material can be tested in this fashion.

'At the continuum-level, effects of rapid void coalescence have been modeled by Tvergaard and

Needleman [71] in the context of porous metal plasticity. Tvergaard and Needleman modified the

void volume fraction, f, in the Gurson model by introducing a critical void volume fraction, fc,
associated with the onset of rapid void coalescence, and a failure void fraction, ff. As f -+ ff, the

material loses all stress-carrying capacity. (See Gurson [31] for a review of the constitutive model.)
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Figure 5-1: Correlation between experiments and simulations: (a) experimentally
observed fracture, (b) simulation of notched conditions using the developed consti-
tutive model, (c) simulation of material point behavior by means of an RVE, (d)
development of fracture criteria.

Similarly, events leading to macroscopic ductile fracture can be investigated.

In order to establish robust fracture criteria for rubber-toughened polycarbonate

based on comparisons between constitutive modeling predictions and results of me-

chanical tests, an extensive experimental study is required. In such a study, several

aspects need to be carefully investigated, both at the microscopic and at the macro-

scopic levels. For example, at the microscopic level, it is important to characterize

the nature of the particle dispersion in the matrix, as well as the particle size distri-

bution, as these are likely to affect local stress and strain quantities. For example,

well-dispersed particles have been observed to increase the toughness of the blend,

whereas poorly dispersed particles can actually increase the brittleness of the blend

(Cheng, et al. [18], Kim, et al. [40]). It is also important to determine the specific

modes of local fracture under a given mode of applied deformation; whether the poly-

carbonate matrix displayed brittle crack propagation, or if the onset of macroscopic
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fracture was associated with large levels of plastic stretches leading to localized ma-

trix ligament drawing and subsequent chain scission events. On a macroscopic scale,

it is important to obtain results that are repeatable, and statistically representative.

Factors such as specimen surface roughness, or the possible existence of flaws in the

material need careful evaluation. Mechanical tests can be designed so as to favor

either brittle or ductile fracture. As an example, notched tensile bars with different

notch radii can be used to favor one fracture mode over the other.

Johnson [38] performed tensile experiments on homogeneous and rubber-toughened

polycarbonate using un-notched and [stress triaxiality enhancing] notched bars. The

effects of temperature, deformation rate, and stress triaxiality on the material re-

sponse were investigated. The rubber-toughened polycarbonate used in the study

had core-shell rubber particles with a methyl-methacrylate / styrene shell. Johnson

measured the size distribution of the particles using scanning electron microscopy, and

found that the sizes ranged from 0.3pm to 0.8pm, with an average of 0.52pm. How-

ever, the spatial distribution of the rubber particles in the matrix was not measured.

Due to the possible existence of internal flaws associated with the injection molding of

the specimens, or surface flaws resulting from machining, several experiments need to

be performed for each loading case, in order for the results to be statistically represen-

tative. Unfortunately, the results from the tensile tests on rubber-toughened polycar-

bonate were obtained using a very limited number of experiments for each considered

case, and some degree of uncertainty is associated with the reported experimental

findings. Furthermore, the geometry and loading conditions for the specimens tested

by Johnson are conducive to loading histories in the notch region where high levels of

triaxial stresses are accompanied by large plastic stretches. Under these conditions,

brittle and ductile fracture mechanisms compete, and indeed many of the specimens

display fracture surfaces with mixed characteristics.

In this chapter, we use the experimental data collected by Johnson as a basis

for comparison to simulations of un-notched and notched tensile bars. Simulations

of rubber-toughened polycarbonate tensile bars are performed using the developed

constitutive model for porous polycarbonate described in Chapter 4; simulations of
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neat polycarbonate tensile bars are performed using the constitutive model for poly-

carbonate outlined in Chapter 2. It is expected that the simulations will follow the

same trends as the experiments; however, in view of the previous discussion, we rec-

ognize that the results obtained in the simulations may not yield a close quantitative

agreement with the experimental data.

Results of the tensile tests simulations are analyzed to extract local homogenized

stress and deformation histories for the blend across the neck of the specimens. Lo-

cal deformation histories are then imposed as a macroscopic state of deformation

on porous RVEs to investigate the local stress and strain distribution in the poly-

carbonate matrix using the micromechanical modeling tools of Chapter 3. These

micromechanical studies allow us to investigate the connections between local field

quantities in the matrix, corresponding homogenized stress and strain levels, and the

[experimentally-obtained] onset of fracture.

5.2 Macroscopic response

The deformation of homogeneous and rubber-toughened (here porous) polycarbonate

is simulated using two-dimensional axisymmetric tensile bars. Three different speci-

men geometries are modeled, as shown in Fig. (5-2). Figure (5-2a) shows a bar with a

homogeneous gage section, and Figs. (5-2b,c) show notched bars with different notch

radii reflecting two of the geometries tested by Johnson. The mildest notch (c) has

a radius of 1.905 mm, and the most severe notch (b) has a radius of 0.76 mm. The

two-dimensional axisymmetric finite element meshes corresponding to the geometries

shown in Fig. (5-2), are shown in Fig. (5-3).

Figure (5-4a) shows the experimental force-displacement responses obtained by

Johnson for different void volume fractions (fo = {0, 0.05, 0.10}) for the case of the

un-notched bar, deformed at 5 mm/min, at room temperature. The experimental

results obtained for the neat polycarbonate displays an initial elastic response, fol-

lowed by a peak in applied force. The applied force drops abruptly after this peak,

and a plateau is subsequently reached. The plateau corresponds to stable neck prop-
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Figure 5-2: Geometries of the axisymmetric tension bars: (a) unnotched bar, (b)
R = 0.76 mm notched bar, (c) R = 1.905 mm notched bar.
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Figure 5-3: The finite element meshes of the notched axisymmetric bars: (a) R =

0.76 mm notched bar, and (b) R = 1.905 mm notched bar.
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agation in the specimen, and it progresses until the grip section of the specimen is

reached, after which the force again increases and the specimen eventually breaks.

The experimental case of 5% rubber volume fraction displays the same trend as the

homogeneous material, with the expected decrease in elastic stiffness, peak force and

level of force for stable neck propagation. However, the experimental case for 10%

particle volume fraction displays the opposite trend. The exact reason for this unex-

pected behavior is not clear, but it emphasizes the need for several tests for each case

in order to obtain a representative and repeatable experimental behavior.

In Fig. (5-4a), simulated force-displacement responses for the unnotched bar con-

figuration are also shown. Simulations results were obtained using the developed

constitutive model for porous polycarbonate to simulate the rubber-toughened poly-

carbonate at different rubber volume fractions. The simulations are in qualitative

agreement with the experimental results: the initial response is elastic, and the ap-

plied force experiences a peak with a subsequent drop and stable neck propagation.

In order to promote localized necking on the midplane of the simulated specimen, the

specimen geometry was tapered slightly, leading to a moderate rise in the predicted

level of axial force necessary to stably propagate the neck. The simulation results dis-

play a consistent trend for the three cases: with an increasing level of initial porosity,

the elastic stiffness decreases, the peak in applied force decreases, and the force level

at which the specimen undergoes stable neck propagation decreases.

Figures (5-4b,c) show comparisons between experimental and simulated force-

displacement responses for the two notched bar geometries. As pointed out previously,

the constitutive model formulation does not include a fracture initiation criterion, and

therefore no fracture events occur in the simulations. Figures (5-4b,c) display the

same qualitative trends for the simulations and for the experimental data of Johnson:

The initial force-displacement response is elastic, and the applied force experiences

a peak followed by a "softening" regime. As the deformation progresses, the force

gradually increases as the plastic deformation propagates axially from the root of the

notch.

The simulations of notched and un-notched tensile bars are overall in good quali-
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(a) (b)

Figure 5-5: Fracture surfaces: (a) 0.76mm notched specimen of homogeneous poly-
carbonate, (b) 1.905mm notched specimen of homogenous polycarbonate, (c) 0.76mm
notched specimen of 5% rubber-toughened polycarbonate (Johnson [38]).

tative agreement with experimental observations of Johnson. However, quantitative

differences are present; the predicted peak in applied force differs from the exper-

imental results, and the predicted increases in the axial force in notched bars are

more pronounced than the experimentally recorded levels. There are several possible

reasons for these differences. First, it is important to recognize that the glassy poly-

carbonate material parameters, to which the homogeneous and porous glassy polymer

models of Chapters 2 and 4 were fitted, differ from those obtained by Johnson from

uniaxial compression experiments. For example, the polycarbonate used by Johnson

[38] displayed a higher plastic locking stretch (v'N = 1.52, compared to the present

v/rN = 1.47). This difference in material parameters can be a contributing factor

leading to the variation in "hardening rate" at high levels of deformation. Second,

it is important to realize that the data of Johnson was obtained using a very lim-

ited number of specimens for each load case. Statistical variations due to flaws in

the interior of the specimen, or on the specimen surface cannot be quantified from

such a small set of data. Nevertheless, we will use the obtained results from the

simulations to attempt to develop a qualitative understanding of the local conditions

corresponding to the onset of fracture in the blend.
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5.3 Microscopic response

As discussed previously, brittle fracture in the homogeneous polymer is associated

with reaching a critical elastic volumetric strain2 . The homopolymer tensile bar with

the sharpest notch (R = 0.76 mm) fails in a brittle manner while the macroscopic

response is still in the "elastic" regime, and the critical elastic volumetric strain for

brittle fracture can therefore equivalently be expressed in terms of a critical nega-

tive pressure. Simulation results for this notch geometry are thus used to investigate

brittle fracture mechanisms by studying the local variation and evolution of negative

pressure in the material with axial deformation. As seen in Fig. (5-4b), Johnson's

experimental data for the homopolymer show that the specimen experienced brittle

fracture at an axial deformation of 0.3 mm, which is immediately prior to the peak

in applied force as predicted by the numerical simulation. The fracture surface cor-

responding to this event is shown in Fig. (5-5a). Brittle fracture appears to have

initiated internally, at a short distance from the notch outer surface on the midplane

of the specimen. If we want to explore the hypothesis that brittle fracture initiated

at a point where a critical negative pressure was reached, it is relevant to follow the

evolution of negative pressure levels in the specimen, along the specimen midplane at

the root of the notch, where fracture is observed to initiate. The evolution of negative

pressure is obtained at every numerical integration point along the midplane of the

simulated specimen, and plotted against macroscopic imposed axial elongation. The

resulting set of negative-pressure/displacement curves, together with an indication of

peak negative pressure locations in the specimen at various stages of the deforma-

tion history, are shown in Fig. (5-6a-c). By constructing the envelope of maximum

negative pressure about this set of curves, it is possible to determine the location

and magnitude of maximum negative pressure in the specimen, at a given level of

macroscopic specimen deformation. Figure (5-6b) shows that the maximum negative

pressure corresponding to the level of macroscopic deformation where the real speci-

2Note that the plastic flow of the homogeneous polymer is isochoric, and that the elastic volu-

metric strain is equal to the total volumetric strain.
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men failed, is about 70MPa, and that it is located just below the outer surface of the

notch. The location is in reasonable agreement with the initial fracture site identifi-

able on the fractured surface of the specimen. This value for the negative pressure

is similar to what was reported by Johnson, who used a similar approach. However,

estimates of a critical negative pressure for brittle fracture initiation reported else-

where for PC tend to be higher. Data in the literature range between 80 to 100 MPa

(Lai and van der Giessen [42]; Nimmer and Woods [51]; Socrate and Boyce [63];

Parvin and Williams [55]; Gearing [27]). This difference can be explained in terms

of statistical variations in brittle fracture initiation, as this is significantly affected

by stress concentrations introduced by impurities and specimen flaws. Notched ho-

mopolymer specimens with milder notch radii deform plastically before failure. The

mildest notch specimen (R = 1.905 mm) experiences ductile fracture at an axial

specimen elongation of 2 mm. The fracture surface corresponding to this event is

shown in Fig. (5-5b). Johnson describes the fracture surface as exhibiting the same

tearing and yielding observed for the ductile failure of the un-notched tensile bar.

The failure initiated at the notch surface in the region of highest plastic strain. If

we want to explore the hypothesis that ductile fracture initiated at a point where a

critical level of local plastic stretch was reached, it is relevant to follow the evolution

of plastic stretch levels, expressed in terms of the first invariant of plastic stretch, Ip,

along the specimen midplane at the root of the notch, where fracture is observed to

initiate. The evolution of If is obtained at every numerical integration point along

the midplane of the simulated specimen, and plotted against macroscopic imposed

axial elongation. The resulting set of If-displacement curves are shown in Fig. (5-7).

The figure shows that the maximum If corresponding to the level of macroscopic

deformation where the real specimen failed, is If ~ 5.2 on the notch surface. This

corresponds to an effective plastic stretch AP = 1.3 which is 88% of the limiting ex-

tensibility of the molecular network, v'N = 1.47. Gearing [27] reported a similar

value (82%) for the fraction of the limiting extensibility leading to ductile fracture in

polycarbonate.

We now examine fracture events in the rubber-toughened polymer blends. Due
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fo = 0 and R = 0.76 mm: (a) evolution of negative pressure on the specimen midplane
as a function of axial specimen deformation, (b) indication of peak negative pressure
locations along the specimen midplane as a function of axial specimen deformation.
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to the qualitative nature of the agreement between experimental data and model

predictions, we can expect to attain only a qualitative understanding of the connec-

tions between microscopic and macroscopic parameters. Here our aim is mainly to

demonstrate the use of the developed tools to gain an understanding of the fracture

conditions, rather than to obtain quantitative estimates of fracture parameters. In

this light, we limit our discussion to the case of fo = 0.05 and 0.10 for the sharpest

notch geometry (R = 0.76 mm). All the rubber-toughened specimens tested by John-

son failed in a ductile manner following substantial amounts of macroscopic plastic

deformation. In our analysis of toughened blends we therefore focus on ductile failure

processes.

The macroscopic plastic deformation in the porous material includes a volu-

metric contribution from plastic void growth; we therefore monitor its evolution in

terms of the two macroscopic invariants of macroscopic plastic stretch, IT and I.

The sharpest-notched specimens experienced ductile fracture at axial elongations of

1.2 mm (for the 5% particle volume fraction) and 1.5 mm (for the 10% particle vol-

ume fraction). The fracture surface corresponding to the case of 5% particle volume

fraction is shown in Fig. (5-5c). Again, ductile fracture initiated at the surface of

the notch in the region of highest plastic strain. Similar to the approach followed
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for the study of failure in the homopolymer, we follow the evolution of macroscopic

plastic stretch, expressed in terms of 7 and 71, along the specimen midplane at

the root of the notch, where fracture is observed to initiate. The resulting set of

i,-displacement, and Y'-displacement curves are shown in Fig. (5-8a-d) for the two

volume fractions. Similar to the parallel findings for the [milder] notched homopoly-

mer bar, Figure (5-8a,c) shows that the maximum Ip corresponding to the level of

macroscopic deformation where the real specimen failed, are to be found on the notch

surface. Coincidentally, the critical levels of Y1 are found to be similar to the corre-

sponding critical If levels in the homopolymer: 1, ~ 5.2 for both volume fractions.

Conversely, 72 displays maximum values at the center of the specimens.

When the porous polymer is subjected to a specific loading or deformation his-

tory, there is a distribution of stress and strain in the matrix as the voids act as

stress and strain concentrators. At the surface of the notch, where the real specimen

failed, the porous material has undergone a specific deformation history, given by the

deformation gradient F (t). This deformation history is extracted from the simulation

and imposed as a macroscopic deformation history, F (t), on five different five-void

multi-void Voronoi RVEs (Fig. 5-9).

As discussed previously, the underlying reasons for fracture in rubber-toughened

polycarbonate are likely to be found in the polycarbonate matrix itself. The multi-

void Voronoi model (fo = 0.10), when subjected to the deformation history F (t),

provides a connection between the macroscopic plastic deformation and local field

quantities in the matrix. Figure (5-10) shows, at various stages of the specimen

elongation, contour plots of negative pressure and effective plastic stretch in the

matrix. The figure shows that much prior to macroscopic ductile fracture of the blend,

regions around the voids experience negative pressures in excess of 100 MPa. However,

the matrix material in these regions has undergone substantial plastic shearing, and

a brittle fracture criterion based on Eq. (5.2) is no longer valid. The high effective

plastic stretch levels in the regions around the voids (Fig. 5-10) seem to support the

notion of a successive [macroscopically non-critical] degradation of the blend through

local fracture events. It is possible that the voids prevent formed micro-cracks from
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Figure 5-9: Extraction of the deformation gradient at a point in the specimen, and
the subsequent application of the deformation to the multi-void Voronoi model.

propagating through the material, thereby keeping the fracture events local. At

high levels of specimen deformation, a successive degradation of the material would

be reflected in the macroscopic force-displacement response; for example, it would

explain the lower "hardening" rate seen in experiments compared to simulations. The

possibility of local fracture events has implications on the micromechanical modeling

tools developed in Chapter 3, and on the constitutive modeling of Chapter 4. In

the micromechanical models, local fracture criteria can be included by using finite

element removal techniques. In the constitutive model for porous glassy polymers,

the evolution of void volume fraction should allow for a nucleation term, corresponding

to the formation and growth of cavities in the matrix.

5.4 Quality of the constitutive model calibration

The constitutive model for porous glassy polymers, developed in Chapter 4, was cali-

brated against micromechanical modeling results from Chapter 3. Different load cases

and porosity levels were used in the calibration process; the load cases were simple

shear deformation, uniaxial tension, plane strain tension and hydrostatic deforma-

tion, and three [industrially relevant] porosity levels, fo = {0.05, 0.10, 0.15}, were

used for each of the load cases. A limitation of a calibration process involving the

fundamental load cases above is that in a numerical boundary value problem asso-

ciated with, for example, the design of a consumer product, certain material points

will inevitably experience a more complicated load or deformation history; a material
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Figure 5-11: Deformation history of the monitored material point: (a) Components
of the deformation gradient, (b) true normal strain rates.

point may experience larger strain levels than those of the fundamental load cases,

and the rate at which a material point deforms may vary markedly throughout the

deformation history. To illustrate this, we consider the simulated case of an axisym-

metric notched bar (R = 0.76 mm) using the developed and calibrated constitutive

model for the case of an initial porosity of fo = 0.1. The deformation history of a

material point near the surface of the notch is monitored, and the components of the

deformation gradient, expressed in Cartesian coordinates, are shown in Fig. (5-11a).

The radial direction corresponds to the 1-direction, the axial direction corresponds

to the 2-direction, and the out-of-plane direction corresponds to the 3-direction. Fig-

ure (5-11a) shows that the deformation state near the root of the notch corresponds

to a deformation gradient with the off-diagonal terms close to zero. The diagonal

terms show that the material point is highly stretched in the 2-direction, whereas

it experiences compressive deformation in the two other directions. Figure (5-11b)

shows the three true normal strain rates, E1 , P922 and E33. The figure shows that

the material point deforms most rapidly in the 2-direction (axial direction), with the

strain rate shifting markedly throughout the deformation history.

As the constitutive model was calibrated against deformation histories noticeably

different from that of the material point near the root of the notch in the specimen,

it is unclear whether the predictions of material response in this region are indeed re-
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Figure 5-12: Self-consistency scheme to ascertain the quality of the consitutive model
calibration.

liable. In this section, we employ a self-consistency scheme to ascertain the quality of

the calibration of the constitutive model. A description of the scheme (Fig. 5-12) is as

follows: The deformation history F (t) of the monitored material point is imposed as

a macroscopic deformation gradient, F (t), on ten five-void RVEs. The average stress

history, T (t), of the ten simulations is calculated. This stress history is then com-

pared to the stress history, T (t), of the monitored material point in the specimen, as

predicted by the previously-calibrated constitutive model. A close agreement between

the two stress histories would indicate that the constitutive model was properly cali-

brated to characterize the stress and strain state near the root of the notch, whereas

poor agreement would indicate the opposite. Figure (5-13a) shows the three normal

stresses, as predicted by the constitutive model, and the three corresponding normal

stresses obtained as ten-simulation RVE averages. The figure shows that the stresses

are in reasonable agreement for the two cases; each stress component experiences an

initial elastic response, followed by "yield" and [large-strain] plastic deformation. The

present differences between the constitutive model predictions and the ten-simulation

RVE averages can be explained by examining the specific nature of the predicted

and simulated states of stress ahead of the notch. Figure (5-13b) shows the stress

triaxiality, X, defined as the ratio between hydrostatic stress and Mises stress, cor-

responding to the respective stress histories. The two stress triaxiality curves are in

general agreement; the RVE simulations predict a slightly higher peak stress triaxi-
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Figure 5-13: Stress history of the monitored material point: (a) Components of
Cauchy stress, (b) stress triaxiality.

ality (X ~ 1.26) than the constitutive model (X ~ 1.18). As discussed previously,

four load cases were used to calibrate the constitutive model. With the exception of

hydrostatic deformation3 , the most triaxial load case used in the calibration process

was plane strain tension (Fig. 4-3c-d). For the present case of fo = 0.1, the highest

stress triaxiality for this case is X ~ 0.55. This level of stress triaxiality is consider-

ably lower than the highest level predicted by the RVE simulations (X ~ 1.26). The

differences in stress triaxiality suggest that, in addition to the four load cases used

in the calibration process for the constitutive model, higher stress triaxialities should

be considered as well. This would require additional micromechanical simulations of

the porous material. However, for the present purposes, the current calibration of the

constitutive model, as summarized in Section 4.6.1, is deemed sufficient.

5.5 Conclusions

There is insufficient experimental data at this point to explicitly express ductile frac-

ture criteria for the rubber-toughened polycarbonate blends. Our qualitative findings

indicate that the onset of ductile fracture in the porous material can be expressed

3The case of pure hydrostatic deformation is an extreme case corresponding to an infinite stress

triaxiality, and it is not expected to be encountered in real boundary value problems.
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in terms of the macroscopic first invariant of plastic stretch, 7. This invariant of

macroscopic plastic stretch is, in turn, a function of local stress and strain fields in

the matrix. Micromechanical modeling was used to provide a connection between

the macroscopic plastic deformation, and local field quantities. Simulations of the

conditions at a notch tip seem to indicate that local fracture events occur even prior

to macroscopic ductile fracture of the blend. As discussed previously, the possibil-

ity of local fracture events has implications on the micromechanical modeling tools

developed in Chapter 3, and on the constitutive modeling of Chapter 4. In the mi-

cromechanical models, local fracture criteria can be included by using finite element

removal techniques. In the constitutive model for porous glassy polymers, the void

volume fraction should allow for a nucleation term, corresponding to the formation

and growth of cavities in the matrix.
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Chapter 6

Summary and Future Work

As discussed previously, common engineering polymers, such as polystyrene, poly-

carbonate and poly(methyl methacrylate), display brittleness under certain loading

conditions. The ductile-to-brittle transition in these materials depends on the rate of

loading, temperature and level of stress triaxiality (see, for example, Johnson [38]). A

technique for reducing the proneness for brittle fracture in these materials is to blend

a small (5-20%) volume fraction of second-phase rubber particles with the polymer.

To date, the effects of the rubber particles on the mechanical response of the arising

blend have been qualitatively well understood, but a quantitative understanding of

the mechanical response of rubber-toughened polymers has been lacking.

The purpose of this thesis was to develop numerical tools to investigate the me-

chanical behavior of rubber-toughened glassy polymers, with emphasis on rubber-

toughened polycarbonate. To this end, several numerical tools were developed. Three-

dimensional micromechanical models of the heterogeneous microstructure were de-

veloped to study the effects of rubber particle volume fraction on the underlying

elasto-viscoplastic deformation mechanisms in the matrix material, and how these

mechanisms influenced the macroscopic [continuum-level] multiaxial stress-strain re-

sponse of the blend. In these developed models, the rubber particles were modeled as

voids, in view of their deformation-induced cavitation early during deformation. A

continuum-level constitutive model was developed for the homogenized large-strain

elastic-viscoplastic behavior of the material, and it was calibrated against microme-
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chanical modeling results for rubber-toughened (porous) polycarbonate. A multi-scale

modeling approach was then used to assess proneness of fracture due to local stress

and strain levels in the material.

In this chapter, we summarize the work that was accomplished in the preced-

ing chapters in the areas of numerical tool development and multi-scale modeling.

Directions for future work in the field of numerical modeling of rubber-toughened

glassy polymers are provided in light of the current state of numerical tool develop-

ment. Applications of the developed numerical tools to other material systems are

also discussed.

6.1 Micromechanical modeling

Micromechanical models of a porous microstructure were developed to study the ef-

fects of void volume fraction on the mechanical behavior of porous polycarbonate. The

developed micromechanical models differ in their respective assumptions concerning

spatial void distributions and void shapes. Each micromechanical model (RVE) of

the porous microstructure developed in the thesis is space-filling and spatially peri-

odic. As discussed in Chapter 3, when such an RVE is subjected to a macroscopic

loading and/or deformation history, periodic boundary conditions must be applied to

the RVE. In Chapter 3, periodic boundary conditions were therefore developed for

a general, periodic, space-filling RVE. A methodology was developed for extracting

the macroscopic stress, corresponding to an arbitrary macroscopically-applied defor-

mation history, based on virtual work considerations. The micromechanical models

developed in the thesis can be broadly categorized into single-void and multi-void

models.

The 3D V-BCC model is based on the assumption that spherical voids are arranged

on a BCC lattice. This assumption enables the reduction of the micromechanical

model to a single void (Danielsson, et al. [21]). The 3D V-BCC model displays

significant improvements over traditional single-void models; it can be used to study

arbitrary three-dimensional deformation histories, and it was shown to realistically
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capture the dilatational response of the material at high porosity levels. A limitation

of any single-void model, however, is that any deformation event that occurs in the

matrix material around the void occurs simultaneously throughout the material by

virtue of the assumed periodic void arrangement. In order to capture the successive

percolation of deformation mechanisms in the matrix material, three micromechanical

multiple-void models were constructed.

The LS and LC models consider multiple spherical or cubic voids, respectively,

distributed "randomly" on an underlying cubic lattice. It was found that the LC

model is not well suited for the application to porous glassy polymers. The corners

associated with the cubic voids introduce artificial stress concentrations, which alter

the character of local stress fields and introduce spurious modes of deformation. The

LS model overcomes this specific limitation by considering spherical voids. However,

both the LS and LC models are based on the assumption that the voids are arranged

on a cubic lattice. This spatial constraint for the voids introduces a significant lim-

itation on the number of available inter-void ligament directions and distances. In

the porous microstructure, local deformation mechanisms are governed by inter-void

shearing events, and the limitations, imposed by the cubic lattice, prevent the model

from realistically mimicking a random porous microstructure. This limitation was

overcome with the development of a multi-void model which does not rely on the

existence of an underlying lattice.

The multi-void Voronoi model considers multiple randomly-distributed [but non-

overlapping] spherical voids. Contrary to the LS and LC multi-void models, the void

locations are not restricted by an underlying lattice. The only spatial constraint on

the void locations is a minimum-separation constraint, employed to facilitate finite

element meshing of the regions in between voids. The micromechanical model ge-

ometry is obtained through a Voronoi tessellation of the void centers, resulting in a

space-filling, periodic RVE (see Chapter 3 for a complete description).

Similar to previous micromechanical models, the multi-void Voronoi model was

used to study porous polycarbonate of various void volume fractions, under a range of

macroscopic loading conditions, including simple shear, uniaxial tension, plane strain
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tension and hydrostatic deformation. The main deformation mechanism in the void-

containing polycarbonate matrix was identified as shear banding between voids upon

macroscopic loading. The shear bands were, in every load case, observed to initiate

on the surfaces of voids, where stress concentrations introduced by the voids were

strong. The shear banding was observed to control the onset of macroscopic yield of

the blend; as shear bands between voids developed to span the RVE, a macroscopic

yield point was reached. Continued macroscopic deformation was enabled through

percolation of plastic flow through the polycarbonate matrix. For load cases with a

hydrostatic tensile stress component, the blends displayed volumetric plastic straining

resulting from plastic volumetric straining of the voids.

In summary, the absence of an underlying lattice controlling the void locations

makes the multi-void Voronoi model superior to its lattice-based predecessors. The

former models all displayed unrealistic aspects of both microscopic and macroscopic

deformation under certain load cases. For example, the underlying cubic lattice in

the LS model, and the underlying BCC lattice in the 3D V-BCC model, resulted in

unrealistic macroscopic stress predictions under macroscopic simple shear deforma-

tion. The random distribution of voids in the multi-void Voronoi model produces

a greater variation in local field quantities. Contrary to the previous models, the

multi-void Voronoi model is therefore a more reliable tool when studying the effects

of macroscopic loading histories on local fields in the matrix. See Chapter 3 for a more

extensive discussion on the differences and similarities of the developed micromechan-

ical models.

6.2 Constitutive modeling

Previous constitutive models in the literature for the macroscopic response of porous

glassy polymers have been predominantly extensions of the Gurson model [31]. As the

Gurson model was developed for the small-strain deformation of dilute concentrations

of voids in a rigid-perfectly plastic matrix, its applicability to porous glassy polymers

is limited. Several models have been proposed (see Chapter 4 for a review) to account
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for some inherent differences between the fundamental assumptions of the Gurson

model and the observed features of deformation of porous glassy polymers. However,

these studies have been restricted to the region around the "yield" condition of the

material, and none of the proposed models is able to capture the large-strain response

of the material. In this thesis, a homogenized description of the large-strain elastic-

viscoplastic behavior of porous glassy polymers was developed. The constitutive

model captures the following major features of deformation:

* Porosity-dependent elastic response.

" Rate and porosity-dependent plastic flow.

" A description of an evolving back-stress arising from molecular orientation of

the matrix and the anisotropic growth of voids.

The model was calibrated against micromechanical modeling results using the multi-

void Voronoi model, and it was found to be predictive of the large-strain mechanical

response of the material under a range of load cases and porosity levels. To our knowl-

edge, it is the first and only large-strain constitutive model for porous glassy polymers

that includes rate-dependence, and a back-stress arising from molecular orientation of

the matrix material and the anisotropic growth of voids. The constitutive model can

be used in the finite element design process of consumer products, thereby reducing

the costs associated with mechanical testing and evaluation.

6.3 Multi-scale modeling

As discussed above, the constitutive model for porous polycarbonate can be used in

the design process of various consumer products. However, it cannot be used to pre-

dict final fracture of the blend which occurs under certain unfavorable combinations

of loading and loading histories. The constitutive model for porous polycarbonate was

therefore used to study tensile loading of notched bars. The results were compared

to results from experimental studies in the literature, to establish preliminary corre-

lations between the continuum-level response of the material, and observed fracture
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events in the tensile bars. As discussed in Chapter 5, fracture initiates locally in the

polycarbonate matrix, and the successive fracture of inter-void ligaments eventually

results in macroscopic fracture of the blend. To this date, quantitative criteria for

the fracture process in homogeneous polycarbonate have only begun to emerge. The

fracture process in porous polycarbonate is far more complicated, and a multi-scale

modeling approach to ascertain the proneness to macroscopic fracture was employed.

Using the constitutive model, the calculated history of deformation corresponding to

experimentally-observed fracture at a specific point in a notched bar was imposed as

a macroscopic deformation history on the multi-void Voronoi model. This multi-scale

modeling approach enabled a preliminary study of the evolution of local stress and

strain fields in the polycarbonate matrix for a macroscopically-critical deformation

history. However, the lack of fracture criteria for the polycarbonate matrix prevented

any study of the progression of fracture within the polycarbonate matrix. Given

this present limitation, we were only able to make preliminary assessments of the

fracture process in porous polycarbonate. However, the multi-scale modeling tech-

nique introduced in Chapter 5 seems to be a promising avenue for future work aimed

at understanding the connections between local fracture events in the matrix, and

macroscopic fracture of the blend.

6.4 Future work

Numerical tools have been developed to investigate the mechanical behavior of rubber-

toughened glassy polymers, with emphasis on rubber-toughened polycarbonate. In

this section, we provide suggestions and directions for future work on this topic.

Suggestions as to the application of the models to other classes of materials are also

discussed.

6.4.1 Micromechanical modeling

The multi-void Voronoi model was used to simulate the mechanical response of

rubber-toughened polycarbonate, where the rubber particles were modeled as voids.
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Under highly deviatoric loading conditions, the modeling assumption that the rubber

particles can be treated as voids is adequate, as the shear modulus of the rubber is

considerably lower than the elastic moduli of the glassy polycarbonate matrix. Un-

der loading conditions with a hydrostatic tensile component, the particles cavitate,

and the model is again adequate. However, under macroscopic compressive loading

conditions, the assumption that the rubber particles can be treated as voids breaks

down. The multi-void Voronoi model can be modified to become a multi-particle

Voronoi model, where rubber particles are present at the center of each Voronoi cell.

The model can then be used to investigate the effects of variations in particle proper-

ties. Alternatively, a cavitating, shear-compliant particle can be modeled in a finite

element code using a fluid pressure cavity instead of a void (Baumann [9]). This

modeling approach provides a means of prescribing a pressure-dependent cavitation

criterion for the particles without explicitly introducing detailed volumetric finite el-

ement meshing of particles in the model. A critical negative pressure for particle

cavitation is likely to depend on the particle size, as larger particles are likely to con-

tain more flaws than smaller particles. By using fluid pressure cavities to represent

the particles, it is thus possible to study the effects of particle size on the response of

the material. The micromechanical modeling thus far considered randomly dispersed

voids of uniform size. In rubber-toughened polycarbonate, there is typically a dis-

tribution of particle sizes with variations about the mean; Johnson [38] reports, for

polycarbonate toughened with core-shell rubber particles, sizes ranging from 0.3 Pm

to 0.8 pm, with a mean of 0.52 pm. The multi-void Voronoi model can be easily

modified to incorporate a given statistical distribution of void sizes. Similarly, the

spatial distribution of the rubber particles can be controlled and altered to reflect the

microstructure of the actual material. It has been experimentally observed that the

existence of particle clusters in the polycarbonate matrix strongly affects the ductility

of the blend (Cheng, et al. [18]). The ability to control the spatial distribution of

voids in the multi-void Voronoi model can be exploited in future studies to investigate

the effects of particle clustering. From a numerical standpoint, a number of possible

improvements to the model can be considered. For example, the separation constraint
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between voids in the matrix could be relaxed if the finite element mesh in the inter-

void regions were refined to a sufficient level. Currently, the structured finite element

discretization in the radial direction of the Voronoi cells does not permit this kind

of mesh refinement control. An un-structured finite element discretization scheme of

the Voronoi cell interiors using tetrahedral elements could be employed to attain this

objective. The multi-void Voronoi model can be also be used to study other classes of

particle-modified materials. For example, ceramic matrix composites, metal matrix

composites, filled elastomers, and [rubber or hard mineral] particle-toughened semi-

crystalline polymers can be studied. In the latter case, [stiff] mineral particles would

need to be introduced in a multi-particle Voronoi model at the center of each cell.

The current structured finite element topology in the radial direction of the particles

provides for a convenient means of modeling crystallites extending radially from the

particles. The ductility of particle-toughened semicrystalline materials, using stiff

filler particles, hinges on the debonding of the particles from the matrix. Debonding

criteria can be developed and imposed on the particle-matrix interface to study these

effects on the ductile-to-brittle transition in the material. These classes of problems

have been studied in the context of two-dimensional, axisymmetric analyses (see, for

example, Parsons, et al. [24]), and in three dimensions by van Dommelen [73] and van

Dommelen, et al. [74] using a simplistic multi-particle model of the microstructure.

However, to our knowledge, a full three-dimensional micromechanical analysis, using

correctly implemented periodic boundary conditions according to Eq. (3.1), has not

been performed at present. The developed methodology to generate a space-filling,

periodic multi-void Voronoi model, can also be applied to studies in crystal plasticity.

The developed finite element meshing algorithms can be modified to fill completely

every Voronoi cell, to resemble a homogeneous solid crystal grain. Pole figure mea-

surements can be used to obtain the texture of a polycrystalline material (Anand

and Kothari [3]), and this texture can then be approximated using a finite number of

grains, where each grain with a given crystal orientation is represented by a Voronoi

cell. The concept of Voronoi diagrams to represent a crystalline microstructure is

not new. It has been performed in both two-dimensional plane strain analyses (see,
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for example, Ghosh, et al. [29]), and in three-dimensional analyses (see, for example,

Quilici and Cailletaud [58], Besdo [49], and Nygirds and Gudmundson [53]). How-

ever, periodic boundary conditions have either been implemented incorrectly, or in a

manner suitable only for small-strain analyses. As discussed previously, the current

algorithm triangulates the surfaces of the grains prior to discretizing the grain interi-

ors. The resulting nodal compatibility between periodic points on the surface of the

RVE enables the imposition of periodic boundary conditions according to Eq. (3.1).

This enables large-strain analyses of polycrystalline aggregates subjected to arbitrary

deformation histories.

6.4.2 Constitutive modeling

The developed constitutive model for porous glassy polymers can be improved /
extended in a number of ways.

1. The matrix shear stress and shear strength fields were represented by two single,

scalar quantities. The effects of the distributed nature of these fields in the ac-

tual porous material (as observed in the micromechanical studies) is significant

in the case of a softening glassy polymer matrix. The micromechanical models

display a succession of plastic deformation events through the matrix, and the

attractive but minimalist approach of representing the matrix shear stress and

shear strength by two "effective" quantities may therefore warrant additional

consideration / modeling.

2. The developed constitutive model for porous glassy polymers was based on

an isothermal formulation for the matrix material. This is usually an adequate

modeling assumption under loading conditions characterized by low strain rates.

However, the micromechanical modeling results of Chapter 3 show that the

inter-void ligaments in the porous glassy polymer can experience local strain

rates that are an order of magnitude higher than the macroscopic strain rates.

It is therefore not clear whether an isothermal formulation for the matrix mate-

rial is adequate / sufficient, and how possible local heating of the glassy polymer
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matrix affects the macroscopic [continuum-level] response of the porous glassy

polymer. Boyce et al. [11] extended the glassy polymer model of Boyce et al

[12] to account for deformation-induced heating in glassy polymers. A similar

extension can be made to the constitutive model for the homogeneous glassy

polymer described in Chapter 2, and the effects of local heating of the glassy

polymer matrix on the macroscopic response can be studied, and quantified,

using the micromechanical models of Chapter 3. The [continuum-level] consti-

tutive model for porous glassy polymers can then be modified to account for

these effects.

3. Ductile and brittle fracture criteria should be developed and implemented. This

step requires substantial work in the areas of experiments and multi-scale finite

element modeling. Fracture criteria can be developed if correlations between

experimental results and multi-scale finite element results are found (see below).

6.4.3 Multi-scale modeling

The multi-scale modeling approach, described in Chapter 5, can provide information

about local stresses and strains in the polycarbonate matrix, given a macroscopic

loading history corresponding to macroscopic fracture. However, the absence of local

fracture criteria prevents the study of local progression of fracture in the matrix.

The development of macroscopic fracture criteria for porous polycarbonate therefore

requires the development of local fracture criteria.

6.4.4 Experiments

In Chapter 5, we considered two possible causes for matrix-initiated failure of the

material: a brittle failure mechanism, triggered by critical negative pressure levels in

the matrix, and a ductile failure mechanism triggered at high levels of plastic stretch in

the matrix. At present, there is not a sufficient experimental basis to firmly establish

quantitative failure criteria for the rubber-toughened polycarbonate. An experimental

program should be designed to carefully study the effects of temperature, deformation
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rate and deformation history and deformation state (stress triaxiality level) on the

failure of rubber-toughened polycarbonate. Experiments should be designed so as to

enable a separation of possible failure mechanisms by controlling the geometry of the

specimens and the loading conditions.
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Appendix A

Paper I

Reprinted from J. Mech. Phys. Solids, Vol 50, M. Danielsson, D.M. Parks and

M.C. Boyce, "Three-dimensional micromechanical modeling of voided polymeric ma-

terials", pp 351-379, 2002, with permission from Elsevier.
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THREE-DIMENSIONAL MICROMECHANICAL MODELING OF

VOIDED POLYMERIC MATERIALS

M. Danielsson, D.M. Parks and M.C. Boyce*

Department of Mechanical Engineering,

Center for Materials Science and Engineering,

Massachusetts Institute of Technology,

Cambridge, USA,

March 2001.

Abstract

A three-dimensional micromechanical unit cell model for particle-filled materials is

presented. The cell model is based on a Voronoi tessellation of particles arranged

on a Body-Centered Cubic (BCC) array. The three-dimensionality of the present

cell model enables the study of several deformation modes, including uniaxial, plane

strain and simple shear deformations, as well as arbitrary principal stress states.

The unit cell model is applied to studies on the micromechanical and macrome-

chanical behavior of rubber-toughened polycarbonate. Different load cases are ex-

amined, including plane strain deformation, simple shear deformation and principal

stress states. For a constant macroscopic strain rate, the different load cases show that

the macroscopic flow strength of the blend decreases with an increase in void volume

fraction, as expected. The main mechanism for plastic deformation is broad shear

banding across inter-particle ligaments. The distributed nature of plastic straining

acts to reduce the amount of macroscopic strain softening in the blend as the ini-

tial void volume fraction is increased. In the case of plane strain deformation, the

plastic flow is observed to initiate across inter-particle ligaments in the direction of

constraint. This particular mode of deformation could not have been captured using

a two-dimensional, plane strain idealization of cylindrical voids in a matrix.

*Corresponding author. Tel: +1-617-253-2342; facsimile: +1-617-258-8742; e-mail:

mcboycedmit.edu.
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The potential for localized crazing and/or cavitation in the matrix is addressed.

It is observed that the introduction of voids acts to relieve hydrostatic stress in the

matrix material, compared to the homopolymer. It is also seen that the predicted

peak hydrostatic stress in the matrix is higher under plane strain deformation than

under triaxial tension (with equal lateral stresses), for the same macroscopic stress

triaxiality.

The effect of void volume fraction on the macroscopic uniaxial tension behavior of

the different blends is examined using a Considere construction for dilatant materials.

The natural draw ratio was predicted to decrease with an increase in void volume

fraction.

Keywords: A. voids and inclusions, B. constitutive behavior, B. polymeric materials,

B. porous material, C. finite elements.

182



1 Introduction

Micromechanical modeling has become an increasingly important tool for understand-

ing deformation mechanisms in particle-modified materials. The particle distribution

in such materials is typically random. Many micromechanical models have idealized

the microstructure as a stacked hexagonal array (SHA) of particles or voids in a

matrix (see for example Tvergaard (1982), Koplik and Needleman (1988) and Steen-

brink, et al. (1997)). The SHA particle distribution enables the simplification of the

composite material to a periodic "unit cell", which is solved numerically as a two-

dimensional axisymmetric boundary value problem. The SHA model gives realistic

predictions of the macroscopic stress-strain behavior as long as the particle volume

fraction is low; that is, when the particles are essentially isolated (Socrate and Boyce

(2000)). At large particle volume fractions, when particles can no longer be treated

as isolated entities, the periodicity of the SHA model forces matrix deformation to

localize through a thin inter-particle ligament at the particle equator, and this yields

unrealistic predictions of the micromechanical and macromechanial behavior. A more

suitable representation of the particle distribution is obtained if the particles are stag-

gered, rather than stacked. Socrate and Boyce (2000) introduced two axisymmetric

cell models which capture three-dimensional staggered distributions of particles; one

cell model considers a body-centered tetragonal (BCT) array of particles, and the

second is based on a Voronoi tessellation of a body-centered cubic (BCC) array of

particles (the axisymmetric V-BCC cell model). These cell models capture features

of the three-dimensional microstructure of the composite aggregate, while retaining

axisymmetry. The models have been found to provide more realistic predictions of

the macroscopic behavior than that predicted by the SHA model on various material

systems (Socrate and Boyce (2000), Socrate, et al. (2001), Ishikawa, et al. (2000)).

This paper extends the axisymmetric V-BCC model of Socrate and Boyce to in-

troduce a fully three-dimensional Voronoi cell model (the 3D V-BCC model). The

new model enables simulation of plane strain and simple shear loading conditions

in addition to the uniaxial and the axisymmetric triaxial conditions that have been
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captured with the axisymmetric V-BCC model. The ability to simulate the effects

of the plane strain constraint on these 3D microstructures is of particular relevance

in these material systems since it is under plane strain, notch-like conditions that

many homopolymers (that are ductile in uniaxial tension) are found to be brittle.

Polycarbonate is an example of such a polymer. The high triaxiality ahead of a notch

is observed to initiate crazing and/or cavitation in polycarbonate and that results

in brittle behavior under plane strain notch conditions (Nimmer and Woods (1992)).

The controlled introduction of elastomeric particles into the polycarbonate matrix

has been effective in restoring toughness (Yee (1977)). The particles are thought to

promote diffuse plastic flow in the matrix material, with extensive distortional plas-

ticity (shear yielding) being the most prominent mode of deformation. In order to

explore the underlying micromechanics of deformation in rubber-filled polycarbon-

ate, the proposed three-dimensional unit cell model is used to study different loading

conditions including uniaxial, plane strain and simple shear loading. Implications of

the results on toughening mechanisms in filled polymers are then discussed.

2 Description of the 3D V-BCC cell model

In order to understand the underlying mechanisms that govern the toughness of

rubber-modified polycarbonate, micromechanical cell models of the composite mate-

rial are constructed and deformed under various conditions. The particle distribution

is typically random in the filled polymers. To fully simulate the actual microstructure,

a three-dimensional model of a random distribution of particles is required. However,

a model of this size is computationally intensive. The basic features of the structure

and its behavior can be approximated by an idealized, staggered array of particles

in which the staggered nature of the particle arrangement captures the major effects

of particle-particle interactions. In this study, the random particle distribution is

idealized by arranging the particles on a body-centered cubic (BCC) lattice. The

cell model is then constructed through a three-dimensional Voronoi tessellation pro-

cedure, which results in a space-filling arrangement of tetrakaidecahedra (Figure 1).
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2

Figure 1: The 3D V-BCC cell.

The tessellation procedure can be carried out in three elementary steps (Dib and

Rodin (1993); Socrate and Boyce (2000)). First, the center of a reference cube is

connected by lines to its eight corners and to the six nearest corresponding cube cen-

ters. Second, each of these lines is bisected by a plane. Third, the 3D V-BCC cell is

given as the volume bounded by the planes. This 3D V-BCC cell, also known as the

Wigner-Seitz cell (Wigner and Seitz (1933)), is a highly symmetric polyhedron which

possesses nine symmetry planes.

2.1 Boundary conditions

General periodic boundary conditions for the 3D V-BCC cell model are developed

for three specific loading cases: (1) axial deformation with imposed lateral stress; (2)

plane strain deformation with imposed lateral stress; (3) simple shear deformation.

The boundary conditions are then expressed in terms of the macroscopic deformation

gradient, F. The different load cases in this study allow for the cell model to be

reduced, due to reflective symmetries. This reduction of the geometry is necessary

because of the substantial computational requirement of the finite element analyses.

The Cartesian reference system used in this study is shown in Figure 1; Cartesian base

vectors are {ei}. For the cases of plane strain deformation and principal stress states,
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1/8 of the 3D V-BCC cell is considered, whereas the case of simple shear deformation

requires 1/4 to be considered1 . The principal direction of uniaxial tension is taken

to be the 3-direction, which is a direction perpendicular to a pair of square facets

(Figure 1). In the case of simple shear deformation, the principal shearing planes are

taken along a pair of square facets of the cell.

2.1.1 General case

The surface of the 3D V-BCC cell consists of eight hexagonal and six square facets.

Figure 2 shows a pair of hexagonal facets, where Sj is the facet diagonally opposite

facet S1 . The center point of cell I is denoted 01, and the center point of the adjacent

cell, J, is denoted Oj. The (non-displacing) origin is taken to be 01, and consequently

u(O) = 0. The two cells I and J have the facet Sj as a common boundary. The

periodicity and symmetry of the microstructure force diametrically opposite points

with respect to 01 to have equal and opposite displacements. The displacements of

the points I1 and J3 (Figure 2) are thus related through

U(Ii) = -u(J 3 ). (1)

The displacements of the points J3 and 13, relative to the respective cell centers Oj

and 01, are given by

u(J 3 ) - u(OJ) = U(13) - u(O). (2)

By combining (1) and (2), we obtain

u(I1) + u(13) = -U(Oj). (3)

'For the case of uniaxial tension and tension with equal lateral stresses, only 1/16 of the 3D V-
BCC cell model is needed. However, due to topological difficulties with meshing, 1/8 of the cell
model is used instead.
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Figure 2: The 3D V-BCC cell: (a) characteristic points on
facets; (b) two adjacent 3D V-BCC cells.

diametrically opposite

The displacement of the point Oj can be related to the macroscopic deformation

gradient through

u(Oj) = (F - 1)p(Oj), (4)

where F is the macroscopic deformation gradient, 1 is the second-order identity tensor,

and p(Oj) is the coordinate of Oj in the reference configuration. The displacement

of the centroidal point of the facet, Pj, is given by

1
u(Pi) = 1u(OJ) = -u(P).

2

Hence, the displacements of the points I1, I3, and P, are related through

u(1) + u(I3 ) = 2u(P) = 2(F - 1)p(PI),

(5)

(6)

where p(P) is the coordinate of P in the reference configuration.

If two points, A and B, are reflectively symmetric with respect to a plane with

unit normal n (Figure 3), then their displacements are related through
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u(A) u(B)

A B

Figure 3: Two points, A and B, that are reflectively symmetric with respect to a

plane with unit normal n.

u(A) = (1 - 2n 0 n)u(B) = Q(n)u(B), (7)

where u(A) and u(B) are the displacements of A and B, 1 is the second-order identity

tensor, the symbol 0 denotes the tensor (dyadic) product, and Q(n) is the reflection

operator of the symmetry plane with normal direction n. The reflection operator

Q(n) is an orthogonal tensor, thus Q(n)T Q(n) = 1.

2.1.2 Plane strain deformation and principal stress states

The cases of plane strain deformation and principal stress states coincident with

the coordinate directions perpendicular to the square facets of the cell, require 1/8

(Figure 4) of the 3D V-BCC cell to be modeled. The coordinate planes are symmetry

planes, and the general periodic boundary conditions (6), together with appropriate

reflections (7) give rise to the following boundary conditions (8), (9),
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Figure 4: The (undeformed) 3D V-BCC cell model used for plane strain deformation
and principal stress states.

u(S6 ) + Q(e3)u(S5 ) = 2u(P1)

u(Si) + Q(el)u(S2) = 2u(P 2)

e3* u(S 7 ) = e3 -u(P) (8)

u(S3) + Q(e 2)u(S 4) = 2u(P 4 )

(F - 1)p(P) u(P), i = 1..4 (9)

where Si-S7 are points on the facets of the 3D V-BCC cell (Figure 4).

2.1.3 Simple shear deformation

For the case of simple shear deformation in the 23-plane, 1/4 of the 3D V-BCC cell

is modeled (Figure 5). The 23-plane is here a plane of symmetry, and the 12-plane

is a plane of antisymmetry. The boundary conditions for this case are summarized

below (10), (11),
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u(S6 ) - Q(ei)u(Sii)

u(Si) + Q(e 1 )u(S2)

u(S7) + Q(e 1 )u(Ss)

u(S 4) + u(S9 )

u(S 3 ) + u(Sio)

u(S 12) - Q(el)u(S5)

u(S 15 ) + Q(e 1 )u(S16 )

u(S 13 ) + Q(e 1 )u(S 14 )

(F - 1)p(Pi)

- 2u(Pi)

- 2u(P2)

- 2u(P3)

- 2u(P4 )

- 2u(P4)

- 2u(P5 )

- 2u(P6 )

- 0

i = 1..6

(10)

(11)

where Sl-S16 are points on the facets of the 3D V-BCC cell (Figure 5).

2.2 Macroscopic cell response

To calculate the overall mechanical response of the cell model under loading, we use

the principle of virtual work,

(12)6 Wint = 6 Wext.

The external virtual work may be written as

6 Wext = Sno .6u(p)dSo =
'So

s - 6u(p)dSo, (13)

where S is the (local) first Piola-Kirchhoff stress tensor, no is the outward unit normal

to the surface area, So, in the reference configuration. 6u(p) is the virtual displace-

ment of a point p in the reference configuration, and s is the surface traction in the

190

= U(Pi),



*Os1

----------- e

S16

2 I 12 .

(b)3 S5
P

S 3 .

2 -S4, .

. S 6 ' ' . * S 1 2

(c)

Figure 5: The (undeformed) 3D V-BCC cell model used for simple shear deformation:
(a) 12-orthographic view; (b) 13-orthographic view; (c) 3D view.
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reference configuration. The macroscopic (average) first Piola-Kirchhoff stress, S, is

given by

S= +J 5dV, (14)

where Vo is the volume in the reference configuration. The first Piola-Kirchhoff stress

is work conjugate to the deformation gradient. Hence, the internal virtual work can

be written as

6Wi"l = VS -6F. (15)

By using equations (12), (13) and (15), we get

VoS -6F = js -6u(p)dSo. (16)

Hence, the macroscopic first Piola-Kirchhoff stress tensor, S, is expressed in terms of

the surface tractions, s. The components of the macroscopic deformation gradient,

F, are the quantities that drive the cell deformation (equations (9) and (11)) in the

finite element analysis. Operationally, the components of F are provided to the cell

model by introducing nine generalized degrees of freedom, i,

[ ( 2 (3 (F1 - 1) F 12  F 13

4 (5 d F21  (F22 - 1) F23  - (17)

&y 's ( F31  F3 2  (F33 - 1)

These i are assigned to be the displacement components of three fictitious nodes in

the finite element model, thus giving the F in equations (9) and (11). Virtual work is

then used to determine the stress. The external virtual work (equation (13)) may be

restated in terms of the generalized degrees of freedom, i, and their work conjugate
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generalized forces, Ei,

9

6We t = S B (18)
i:=1

Therefore, the Ei are the "reaction forces" corresponding to the assigned "displace-

ment components", j of the fictitious nodes. By using equations (15) and (18), the

components of the macroscopic first Piola-Kirchhoff stress tensor, S, are identified as

S11 S12 S13 21 2 23] ~ I(19)S21 S 2 2 S23 = [4 =5 -6

S31 S32 S33 _Z7  8 -9_

The macroscopic Cauchy stress tensor, T, is calculated from S and F as

T= -SFT, (20)
V

where V is the volume in the current (deformed) configuration.

Finally, the macroscopic logarithmic strain tensor, E, can be calculated from

E = InU, (21)

where U is the (macroscopic) right stretch tensor based on a polar decomposition of

the macroscopic deformation gradient, F = R U.

2.3 Loading conditions

2.3.1 Triaxial equi-lateral loading

The triaxiality of macroscopic stress is defined as

TE - Tkk (22)
3Teq'
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where Tkk/ 3 = (T 1 + T2 2 + T 33 )/3 is the macroscopic hydrostatic stress, and Tq

is the macroscopic equivalent tensile (Mises) stress. The case of uniaxial tension

corresponds to a macroscopic stress triaxiality of TE = 1/3. A principal stress state

for which T11 = T22 results in a macroscopic stress triaxiality given by

E = 2T 11  (23)
31T 33 -T 11  (

During triaxial loading, the 3D V-BCC cell model is subjected to a constant macro-

scopic axial strain rate, E33 = 0.01s-1, and the triaxiality of macroscopic stress, TE,

is kept constant throughout the deformation history. This is done by utilizing a tech-

nique similar to that used by Tzika, et al. (2000), where a user-defined element is

introduced to monitor the axial macroscopic stress level, and apply lateral tractions

accordingly.

2.3.2 Plane strain deformation

During plane strain deformation, the 3D V-BCC cell model is subjected to a constant

macroscopic axial strain rate, E33 = 0.01s1, and the 1-direction is confined, El = 0.

The stress acting in the constrained direction, T11, is given by the solution itself, and

cannot be imposed. The in-plane lateral stress, T22, is controlled through a stress

biaxiality parameter BE defined as

BE = T22. (24)
T 33

The purpose of introducing a stress biaxiality parameter is to study the macroscopic

stress triaxiality in the vicinity of a plane strain notch or a crack tip at different levels

of in-plane stress biaxiality.
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2.3.3 Simple shear deformation

Simple shear (plane strain) deformation in the 23-plane corresponds to a time-dependent

macroscopic deformation gradient according to

F = 1+ F -e 2 ® e3  (25)

where dF/dt = 0.0173s- 1 is the nominal shear strain rate. The macroscopic defor-

mation gradient is imposed through the method described in Section 2.2.

2.4 Matrix constitutive behavior

The large-strain elastic-viscoplastic behavior of glassy polymers has been found to

be well-described by the constitutive model of Boyce, et al. (1988), later modified

by Arruda and Boyce (1993). Material constants for annealed polycarbonate are, for

comparative reasons, in correspondence with those used by Socrate and Boyce (2000).

3 Results

3.1 Uniaxial (tensile) loading

The 3D V-BCC cell model was subjected to uniaxial tension for a range of initial void

volume fractions, fo = Void/V l; values studied were fo = {0.05, 0.10, 0.15, 0.20, 0.25}2.

The macroscopic stress-strain response is represented by plotting macroscopic axial

stress-axial strain curves (Figure 6a). The macroscopic volumetric strain, Ekk =

Ell + E 22 + E33 , plotted as a function of macroscopic axial strain, is shown in Fig-

ure 6b. The macroscopic yield stress for the different blends is defined as the point

where the stress-strain response exhibits a peak in axial stress, followed by softening.

The microscopic response, in terms of contours of plastic shear strain rate, yP (Arruda

2A1 cases were analyzed using the same mesh density. The case of fo = 0.25 was analyzed using
a mesh four times denser than the original mesh. The macroscopic response of the refined mesh
solution was identical to that of the original mesh, and the microscopic response was nearly identical.
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and Boyce (1993)), is shown in Figure 7 for fo = 0.05. Figures 8 and 9 show the cor-

responding contours for fo = 0.25. Figures 7 and 8 depict the microscopic behavior

at strain levels near macroscopic yield of the blends for fo = 0.05 and fo = 0.25,

respectively, whereas Figure 9 shows the microscopic response at higher macroscopic

axial strains for fo = 0.25.

The contour plots (Figures 7 and 8) show that plastic flow initiates in the equato-

rial region (a), as expected. At this point in the deformation, most of the surrounding

matrix material is still in the elastic region. A close examination of the stress-strain

curves (Figure 6) shows that, even prior to macroscopic yield, the curves deviate

slightly from linearity3 . This is due to the initial local plastic deformation in the equa-

torial region of the void, which begins to soften the voided material. As the yielded

material strain-hardens due to molecular orientation, surrounding matrix material

starts to flow. Eventually, shear bands develop across inter-particle ligaments. This

"net section" yielding corresponds to macroscopic yield of the blend. Figure 6 shows

that the macroscopic axial strain at yield for the blend with fo = 0.05 is E33 ~ 0.038,

and that of the blend with fo 0.25 is E33 ~ 0.041. It is seen in Figure 6a, that the

macroscopic yield stress of the voided material decreases with increasing void volume

fraction, as expected, due to the reduction in matrix net section. The macroscopic

stress-strain response also shows that the post-yield softening, which is apparent in

the homopolymer, is reduced through the introduction of voids, and that it decreases

with increasing void volume fraction.

The contours of plastic shear strain rate for fo = 0.25 explain the reduction

in post-yield softening compared to the homopolymer. The difference in deformation

pattern between the voided polymer and the homopolymer is that the voided material

undergoes plastic deformation through a succession of events, rather than undergoing

plastic deformation uniformly. In other words, the intrinsic softening is not reached

simultaneously everywhere in the matrix, as it would be in a homogeneous material.

3The homopolymer also exhibits slight pre-peak nonlinearity that is not captured in the Arruda-
Boyce model for fo = 0; the cell model results indicate that enhanced pre-peak nonlinearity is to be

expected in the voided blends.
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Macroscopic softening is observed to occur between E 33 = 0.04 and E 33 = 0.13,

approximately. At macroscopic yield (E33 ~ 0.04), a shear band has fully developed

across an inter-particle ligament. However, the development of the shear band was

progressive and, at macroscopic yield, regions of the material in the shear band are

already strain-hardening. Therefore, the macroscopic composite response exhibits

less softening than the homopolymer since the entire net section is not softening

homogeneously. For fo = 0.05, the net section plastic flow is more homogeneous,

which results in an increased post-yield softening of the blend.

The hardening behavior of the different blends is consistent over the studied range

of initial void volume fractions. As the shear bands strain-harden, surrounding mate-

rial yields. The plastic flow then propagates up and down the ligaments in a manner

similar to the stable necking of a tensile bar (Figure 9). As the plastic flow propagates

up and down the inter-particle ligaments, an increasing volume of matrix material is

being encompassed by the flow. This increases the total plastic flow resistance of the

blend, which results in macroscopic strain-hardening, since more matrix material is

forced to undergo plastic deformation simultaneously. For low void volume fractions,

the increase in fraction of matrix material encompassed by the plastic flow occurs

more rapidly with applied macroscopic axial strain (Figure 7), which results in a

higher hardening rate than for the blends with high initial void volume fractions.

The predictions of the evolution of macroscopic volumetric strain with macro-

scopic axial strain, shown in Figure 6b, reflect the initial elastic Poisson effect of the

porous material, followed by the plastic expansion of the void due to plastic deforma-

tion of the matrix. The predicted magnitude and evolution of volumetric strain, are

in good agreement with the predictions by Socrate and Boyce (2000) for the axisym-

metric V-BCC cell model; small discrepancies (10 - 15%) are due to the axisymmetric

formulation vs. the fully three-dimensional formulation.4 The predicted evolution of

volumetric strain is consistent with measurements of van der Sanden, et al. (1994).

4Note that a stacked hexagonal array (SHA) model has been found to provide unrealistic dramatic
increases in dilatation when fo > 0.1. For an initial void volume fraction fo = 0.20, the prediction
of the SHA model is about twice that of the present 3D V-BCC cell model.
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Figure 6: Macroscopic responses of the cell models under uniaxial tensile loading at
different initial void volume fractions fo: (a) evolution of macroscopic axial stress, T33 ,
with macroscopic axial strain, E33, (b) evolution of macroscopic volumetric strain,
Ekk, with macroscopic axial strain, E 33.

The predicted stress-strain curves for uniaxial tension of the 3D V-BCC cell model

are in good agreement with those of the axisymmetric V-BCC cell model by Socrate

and Boyce (2000). This shows that, for uniaxial tension and states of triaxial loading

with equal lateral stresses, the modeling simplification to an axisymmetric version of

the three-dimensional cell model can be done satisfactorily. A similar conclusion was

drawn by Hom (1992), who modeled whisker-reinforced metal matrix composites. The

author concluded that axisymmetric models of the three-dimensional microstructure

are reasonable alternatives to three-dimensional micromechanical models, in axisym-

metric loading situations.
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Figure 7: Contours of P under uniaxial loading, for an initial void volume fraction

fo = 0.05. The development of shear bands is shown for increasing levels of macro-
scopic axial strain: (a) E33 ~ 0.02, (b) E33 ~ 0.03, (c) E 33 ~ 0.033, (d) E 33 ~ 0.06.
The macroscopic axial strain at yield was found to be E 33 ~ 0.038.
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Figure 8: Contours of gP under uniaxial loading, for an initial void volume fraction
fo = 0.25. The development of plastic shear strain localization is shown for increasing
levels of macroscopic axial strain: (a) E 33 ~ 0.02, (b) E 33 ~ 0.035, (c) E33 ~ 0.039,
(d) E 33 ~ 0.059. The macroscopic axial strain at yield was found to be E33 ~ 0.041.
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Figure 9: Contours of P under uniaxial loading, for an initial void volume fraction
fo = 0.25. The development of plastic shear strain localization is shown for increasing
levels of macroscopic axial strain: (a) E33 ~ 0.039, (b) E 33 ~ 0.14, (c) E 33 ~- 0.23,
(d) E33 c 0.41.
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3.2 Plane strain deformation

In order to investigate how the blend responds to plane strain loading conditions, the

3D V-BCC cell model (fo = 0.25) was subjected to plane strain tension for a range

of macroscopic stress biaxialities: BE = {0, 0.25, 0.5}. The main loading direction is

the 3-direction, and the constrained direction is the 1-direction (Figure 4). The stress

in the 2-direction is controlled through the macroscopic stress biaxiality parameter

BE (24). The macroscopic equivalent tensile (Mises) stress vs. axial strain response

is shown in Figure 10a for a range of stress biaxialities. The underlying microscopic

behavior for two different stress biaxialities, BE = 0 and BE = 0.5, is characterized

by plotting the contours of plastic shear strain rate at different levels of macroscopic

axial strain (Figures 11 and 12). The macroscopic yield stress for the material is

defined as the point where the stress-strain response exhibits a peak in equivalent

tensile (Mises) stress, followed by softening.

Figure 10a shows that, prior to macroscopic yield, the stress-strain curves deviate

slightly from linearity. Similar to the case of uniaxial tension, where local yielding of

the matrix material in the equatorial region of the void gave rise to the non-linearity,

the contours of plastic shear strain rate for the cases of BE = 0 and BE = 0.5 also

show this initial local yielding of the matrix.

For the case of BE = 0 (Figure 11), the contours of plastic shear strain rate reveal

that plastic flow of the matrix initiates in the equatorial region of the void, and then

successively spreads and grows across the inter-particle ligament in the constrained

direction (Figure 11a). At this point the inter-particle ligament in the unconstrained

direction is still in the elastic region. (This is a feature of the deformation pattern

which could not have been captured in a traditional two-dimensional plane strain

analysis in which the filler particles are approximated as cylindrical voids.) As the

macroscopic axial strain continues to increase, the plastic flow spreads across the

inter-particle ligament in the (unconstrained) 2-direction (Figure 11a,b). At this

point, macroscopic yield of the blend is reached (Figure 10a). Interestingly, the inter-

action of the plastic flow in the constrained direction with that in the unconstrained
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direction results in the formation of two separate shear bands across the ligament

in the unconstrained direction (Figure 11c). This distributed yielding reduces the

amount of strain softening as compared to that of the homopolymer, as was also ob-

served in the case of uniaxial tension. As the deformation progresses, all of the shear

bands strain-harden and then propagate up and down the ligament in a manner anal-

ogous to stable neck propagation during cold drawing of polymers. This propagation

coincides with the macroscopic strain-hardening (Figure 10a).

For a higher macroscopic stress biaxiality, BE = 0.5, the contours of plastic shear

strain rate qualitatively resemble the contours for uniaxial tension (Figure 9). The

deformation initiates at four distinct points of the equator of the void (Figure 12).

The plastic flow then spreads across the two inter-particle ligaments simultaneously,

which corresponds to macroscopic yield of the blend. Both shear bands then strain-

harden and propagate up and down the ligaments.

The stress-strain curves shown in Figure 10a show that the post-yield softening of

the blend increases with increasing imposed stress biaxiality. A close examination of

the contour plots for BE = 0 and BE = 0.5 shows that in the case of BE = 0.5, both

ligaments (in the constrained and unconstrained directions) yield at approximately

the same macroscopic axial strain and thus soften together, producing the greater

strain softening with increased BE.

The macroscopic hardening rate decreases with an increase in imposed stress bi-

axiality, BE (Figure 10a). The higher stress biaxiality increases the dilatation of the

blend (Figure 10b). The dilatation increases the macroscopic cross-section area of

the cell, tending to decrease the macroscopically applied stress, T33. The contours of

plastic shear strain rate (Figures 11 and 12) show that in the case of the higher stress

biaxiality, distinct shear bands propagate up and down the inter-particle ligaments.

This 'drawing', which is more pronounced in the case of BE = 0.5 than in the case of

BE = 0, thins the ligaments (Figure 12c,d).

The prediction of volumetric strain in the case of plane strain tension (Figure 10b)

is higher than in the case of uniaxial tension, and, as expected, it is seen to increase

with increasing stress biaxiality. In the case of By = 0, the plane strain constraint
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Figure 10: Macroscopic responses of the cell models under plane strain deformation:
(a) evolution of macroscopic equivalent tensile (Mises) stress, Teq, with macroscopic
axial strain, E33 , (b) evolution of macroscopic volumetric strain, Ekk, with macro-
scopic axial strain.

restricts the lateral contraction of the cell upon (tensile) loading, which results in

a higher dilatation of the cell. When positive stress biaxialities are imposed, the

dilatation of the cell increases significantly (Figure 10b). The resulting triaxiality of

the applied stress state increases (Figure 13) with increasing stress biaxialities, and

this promotes dilatation of the blend. Note that a significant level of stress biaxiality

(BE = 0.5) in the voided polymer produces only modest levels of plane strain stress

triaxiality, TE ~ 1.5; in a solid incompressible matrix material, the corresponding

stress triaxiality would be TE = V3. The internal traction-free surfaces limit the

maximum achievable macroscopic stress triaxiality and promote macroscopic inelastic

dilatation.
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Figure 11: Contours of yP under plane strain deformation (BE = 0), for an initial
void volume fraction fo = 0.25. The development of plastic shear strain localization
is shown for increasing levels of macroscopic axial strain: (a) E 33 ~ 0.04, (b) E33 ~
0.057, (c) E33 ~ 0.11, (d) E33 ~ 0.23. The macroscopic axial strain at yield was
found to be E33 - 0.039.

205



0 0

1.41E-01

F71~

(a)

(b)

(C)

(17

(12

(d)

Figure 12: Contours of -yP under plane strain deformation (BE = 0.5), for an initial
void volume fraction fo = 0.25. The development of plastic shear strain localization is

shown for increasing levels of macroscopic axial strain: (a) E33  0 04, (b) E 33 ~ 0.14,
(c) E3 3 ~ 0.23, (d) E33 ~ 0.42. The macroscopic axial strain at yield was found to

be E 33 ~ 0.037.
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Figure 13: Macroscopic responses of the cell models under plane strain deformation
(fo = 0.25): evolution of macroscopic stress triaxiality, TE, with macroscopic axial
strain.
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3.3 Simple shear deformation

The cell models were subjected to simple shear deformation in the 23-plane, with

the 1-direction constrained, to a final nominal shear strain F = 0.5. Cell models

of two different initial void volume fractions, fo = {0.15, 0.25}, were analyzed. The

composite response is computed in terms of the macroscopic nominal shear stress, S2 3 ,

as a function of the macroscopic nominal shear strain, F (Figure 14). Contours of

plastic shear strain rate for the case of fo = 0.25 are shown in Figure 15. The plastic

flow initiates at two locations of the particle equator (Figure 15a). At this point in the

deformation, the onset of macroscopic yield of the blend has not yet been reached; the

matrix is still predominantly in the elastic region. As the deformation progresses, the

plastic flow spreads in a Y-shaped manner until it penetrates the ligament thickness

(Figure 15b). As discussed above, the local plastic flow prior to macroscopic yield of

the blend appears in the slight non-linearity in the stress strain response. The plastic

flow then spreads across the inter-particle ligament in the vertical direction. This net

section yield corresponds to macroscopic yield of the blend. The stress-strain response

reveals that in the case of fo = 0.25, the macroscopic nominal shear strain at yield

was F ~ 0.051, and in the case of fo = 0.15, the corresponding value was F ~ 0.05.

Immediately after macroscopic yield, the stress-strain curves display an abrupt drop

(Figure 14). This drop corresponds to the localization of yield (and strain softening)

to a thin vertical band (Figure 15c) which penetrates the entire ligament thickness.

The sudden drop in the stress-strain response immediately after yield is thought to be

an artifact of the specific choice of loading direction relative to the BCC arrangement

of voids. Once the vertical shear band strain-hardens, plastic deformation propagates

left and right in the form of two shear bands.
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Figure 14: Macroscopic responses of the cell models under simple shear (plane strain)
deformation: evolution of macroscopic nominal shear stress, S23, with macroscopic
nominal shear strain. The macroscopic nominal shear strain at yield was found to be
S~ 0.05 1 for the voided polymers.
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Figure 15: Contours of yP under simple shear (plane strain) deformation, for an
initial void volume fraction fo = 0.25. The development of shear bands is shown for
increasing levels of macroscopic nominal shear strain: (a) F ~ 0.033, (b) F ~ 0.047,
(c) F - 0.066, (d) F ~ 0.16, (e) F ~ 0.36. The macroscopic nominal shear strain at
yield was found to be IF ~ 0.051.
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4 Discussion

4.1 Implications for tensile loading

In order to investigate how the initial void volume fraction affects the macroscopic

behavior of the blend, we use a modified Considere construction to predict the macro-

scopic neck propagation behavior of the blend. The Considere construction is modified

to account for the volumetric strains associated with the growth of voids and with

dilatation of the matrix material. This construction provides information for how

the void volume fraction affects the natural draw ratio of the blend. The standard

Considere construction, for rigid/plastic, incompressible, pressure-insensitive behav-

ior, gives the following expression for the point at which a macroscopic neck initiates

(Figure 16):

T33  dT33  , (26)
initiation dE 3 3 initiation

where T33 is the macroscopic axial stress and E33 is the macroscopic axial strain.

Deformation then localizes within the necked region until the strain-hardening slope,

dT33/dE 33, increases to the level of the stress, T33, at which point the neck will

stabilize and begin to propagate (Figure 16),

dT33  (27)
stabilization dE 33 stabilization

For compressible materials, equations (26) and (27) must both be modified to account

for the volume change, which gives

T dT33 1 (28)
dE 33 (1- dEkk)

dE33

where Ekk is the macroscopic volumetric strain.

Figure 16 plots both the left and right hand sides of (28) versus macroscopic axial

211



strain, and the respective intersections of these curves determine the axial strains

at which the macroscopic neck will initiate, and at which it will begin to propagate

stably. Curves are shown for the case of uniaxial tension and a range of initial void

volume fractions. The levels of macroscopic axial strain at neck stabilization are used

to calculate the natural draw ratio of the blends,

Adraw - eE (29)

where E( is the macroscopic axial strain at which the neck amplitude stabilizes and

instead the neck begins to propagate stably. The predicted natural draw ratios are

tabulated in Table 1. Figure 16 shows there to be a decrease in natural draw ratio

with an increase in fo, with fo = 0.05 being an exception. A close examination

of the different stress-strain curves (Figures 6 and 16) reveals that at the point in

the deformation where stable macroscopic neck propagation begins, the macroscopic

hardening rate differs between the blends. In the case of the homopolymer, the

strain-hardening is stronger than in the blend with fo = 0.05; therefore macroscopic

neck stabilization occurs sooner, and the natural draw ratio of the material is slightly

lower. For the cases of fo > 0.05, the natural draw ratio decreases with increasing

fo, and we note that the stabilized strain-hardening slope of the voided materials

is close to that of the homopolymer, but both the drop in macroscopic stress and

the increase in volumetric strain with increasing initial porosity produce macroscopic

neck stabilization at a lower macroscopic strain. While this effect is not large for

polycarbonate, due to the low natural draw ratio of the homopolymer, it is notable

and would be more significant in polymers with higher natural draw ratios. For

example, Bartczak, et al. (1999) measured significantly lower natural draw ratios in

rubber-filled high-density polyethylene (HDPE), than in the homopolymer.

A lower natural draw ratio indicates that the introduction of voids promotes the

propagation of plastic flow through the matrix at lower macroscopic strains than in the

homopolymer under uniaxial and plane strain tension. The controlled introduction
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Figure 16: Considere construction for the case of uniaxial tension at different initial
void volume fractions.
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Table 1: Summary of the calculated natural draw ratios, Adraw, for the case of uniaxial
tension.

fo Uniaxial tension

0 1.35
0.05 1.38
0.15 1.32
0.25 1.27

of voids to the matrix may act to alter the distribution and propagation of plastic

deformation under more complicated loading conditions such as occur at notch tips.

To further understand the role of the altered macroscopic response on improving

toughness under notch-like conditions, a three-dimensional constitutive model of the

blend is required, as discussed further in Section 4.3.

4.2 Implications for toughening

The macroscopic behavior of the blend results in different stress and strain fields

at a notch or a crack tip than what would be observed in the homopolymer. This

requires the development of a continuum-level constitutive model (see Section 4.3 be-

low) for these materials. The different macroscopic stress-strain response (i.e. lower

yield point, reduced strain softening, volumetric straining, lower natural draw ra-

tio) is likely to result in less severe stress conditions at a notch or a crack tip. To

further address the potential of brittle failure due to crazing and/or cavitation in

the matrix material, we monitored peak values of hydrostatic stress for a macro-

scopic stress triaxiality TE = 1.25 (Figure 13), using both the plane strain cell model

(BE = 0.5) and the cell model with imposed (and equal) lateral stresses. We note that

specific quantitative craze criteria are available in the literature for polystyrene and

poly(methyl methacrylate), but these criteria have not been applied to polycarbon-

ate. Therefore, the level of hydrostatic stress is used here to indicate the potential

of brittle failure. The plane strain simulation resulted in a peak local hydrostatic
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stress t( )/3 = 64 MPa at macroscopic yield, while the corresponding simulation

using the cell with equal imposed lateral stresses resulted in a peak local hydrostatic

stress -(triax) /3 = 39 MPa at macroscopic yield, where Tkk/ 3 denotes local matrix

hydrostatic (Cauchy) stress. In both cases, the peak local hydrostatic stress in the

matrix is observed at four locations in the equatorial region of the void, just below the

surface. It is interesting to note that the plane strain cell model nonetheless predicts

a significantly higher peak hydrostatic stress than the cell model with equal imposed

lateral stresses. Socrate and Boyce obtained, for the axisymmetric V-BCC cell model

under triaxial loading (Tr = 1.3), a peak local hydrostatic stress Ta)/3 ~ 70 MPa

at macroscopic yield. The 3D V-BCC cell model predicts a significantly lower peak

local hydrostatic stress, when compared to the axisymmetric V-BCC cell, for the

same macroscopic loading conditions.

4.3 Implications for constitutive modeling

Several studies on the mechanical behavior of materials containing internal cavities

have been carried out over the past few decades within the context of metal plasticity:

McClintock (1968) studied the behavior of a cylindrical cavity in an infinite matrix,

and found an exponential dependence of the void growth rate on bi-axial stress. Rice

and Tracey (1969) considered a spherical void in an infinite matrix, and found a

similar dependence of void growth rate on triaxial stress. Gurson (1977) proposed

a constitutive model for a rigid, perfectly-plastic matrix containing spherical voids5,

which has been widely used in the field of porous metal plasticity. The Gurson model

assumes (1) small void volume fractions, (2) rigid, perfectly-plastic matrix, and that

(3) spherical voids remain spherical throughout the deformation. Tvergaard (1981)

used micromechanical modeling to study the interaction between neighboring voids

in a porous material, and proposed a modification to the original Gurson model. The

mechanical behavior of particle-filled polymers is characterized by large elastic and

plastic strains, large void volume fractions of the second phase (so that voids interact

5Gurson also developed a constitutive model for a matrix containing cylindrical voids. The most
frequently used, though, is the model based on a periodic array of spherical voids.
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strongly), non-spherical void growth, and evolving matrix anisotropy. These major

differences suggest that mere fitting of the Gurson model to the study of voided poly-

meric materials is very problematic. Authors have modified the original Gurson model

to eliminate some of the differences: high elastic yield strains have been accounted

for by Steenbrink, et al. (1997), and the pressure dependence of yield has been ac-

counted for by Lazzeri and Bucknall (1993). These modifications might make the

Gurson model more suitable for the application to particle-filled polymers. However,

there is no 'Gurson-like' model that fully accounts for all of the differences between

the original Gurson model and the characteristics of particle-filled polymers. In order

to develop a more fundamental understanding of the mechanics of deformation of

particle-filled polymers, we presented a cell model which appears to give realistic pre-

dictions of the micromechanical and macromechanical behavior of rubber-filled poly-

carbonate. The results constitute a first, and important, step towards establishing a

constitutive model for particle-filled polymers, and in particular, voided polycarbon-

ate. The different load cases in this study allow for a preliminary macroscopic "yield

locus" to be constructed. While we note that the rate-dependent material does not

possess a yield locus, it is instructional to view a surface in order to demonstrate the

strong hydrostatic stress dependence on plastic flow. Each macroscopic yield point

(for fo = 0.25) is plotted in macroscopic hydrostatic-deviatoric stress space (Fig-

ure 17). We note that the norm of [deviatoric plus dilatational] macroscopic strain

rate varies over the studied range of macroscopic stress triaxialities, but we expect

that effects of deformation rate on flow strength will be small. For the case of hy-

drostatic tension, the applied macroscopic dilatational strain rate was Ekk = 0.03s.

When this rate was decreased by a factor of 3, the macroscopic yield stress of the

material decreased by less than 3%. Apart from the studied loading cases, the case

of macroscopic hydrostatic tension (TE -+ oc) and the cases of principal loading with

TE = 2 and TE = 5, were also studied in order to obtain points for the yield locus at

higher stress triaxialities. The yield locus shows a strong dependence on hydrostatic

stress, where the deviatoric stress required to reach macroscopic yield of the blend

decreases with increasing hydrostatic tension. Indeed, the blend will yield under the
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Figure 17: Different yield loci for voided polycarbonate having an initial void volume
fraction fo = 0.25.

action of hydrostatic stress alone. This general shape of yield locus was also found

by Gurson (1977) and by Steenbrink, et al. (1997). As one would expect, the Gurson

model shows poor agreement with the cell model predictions, because of its inherent

limitations. The model by Steenbrink, et al. shows considerable improvement over

the Gurson model in predicting initial yield of the blend. However, under hydrostatic

tension, the 3D V-BCC cell model predicts a higher yield stress than the model by

Steenbrink, et al. (Figure 17). The yield loci for the models by Gurson and Steen-

brink, et al. are briefly summarized in Appendix A. The improvement of the model

by Steenbrink, et. al over that of Gurson is due to (1) the Tvergaard parameter qg,

which lowers the yield strength of the material, and (2) the fact that elasticity is

accounted for through the parameter e (see Appendix A).
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4.4 Anisotropy of the 3D V-BCC cell model

The 3D V-BCC cell is intrinsically anisotropic because of the cubic symmetry of

the underlying BCC-arrangement of particles. The choice of coordinate directions

should thus influence the predicted response of the voided material upon macroscopic

loading. In the present study, the coordinates (which were taken as the principal

loading directions) in Figure 1 were employed. Other coordinate directions could

have been used to investigate the response of the voided material. This would have

required additional finite element modeling, and has not been carried out in the

present study.

4.5 Implications of a periodic cell model

Smit, et al. (1999) presented a two-dimensional plane-strain cell model based on

a random distribution of cylindrical voids in a polycarbonate matrix. They argued

that the post-yield softening predicted by one-particle simple cubic cell models is an

artifact of the assumed periodicity of the structure. Deformation events in a peri-

odic structure will be periodic; i.e., they will occur at the same position in however

many cells comprise the body. Smit, et al. argued that it is only through the in-

troduction of a spatially random distribution of second-phase particles that a model

can capture the stable macroscopic blend behavior which results from the successive

percolation of plastic flow through the matrix. From a computational standpoint,

two-dimensional models of the spatially random structure are feasible. However, a

detailed three-dimensional large-strain model of the voided elastic-plastic matrix ma-

terial introduces considerable computational requirements, and solving such problems

would prove a cumbersome task. While the two-dimensional multi-particle model

captures the successive percolation of plastic flow through the matrix, it significantly

over-predicts the evolution of volumetric strain of the blend due to its two-dimensional

assumption vs. the three-dimensional reality. Two-dimensional models also cannot

capture important trends in the constrained direction which may be important in

understanding toughness. The present "one-particle" model captures the evolution
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of volumetric strain well, and since the high levels of hydrostatic stress in the ma-

trix ahead of notches and crack tips produce dilatation of the blend, a good model

of the voided material should be able to predict this. Future work could address

the further implications of the randomness of the particle distribution on the mi-

cromechanical and macromechanical behavior, through multi-particle models and/or

multi-level modeling schemes.

5 Concluding Remarks

A three-dimensional cell model based on a BCC arrangement of particles was intro-

duced. The cell model realistically predicts patterns of matrix deformation and the

macroscopic response of rubber-filled polycarbonate (where the rubber phase is taken

to be cavitated). It shows good agreement with the macroscopic behavior predicted

by the two-dimensional axisymmetric V-BCC cell model introduced by Socrate and

Boyce (2000). However, on a microscopic level, details of the deformation are resolved

that cannot be captured using an axisymmetric cell model. The three-dimensional

cell model also shows improvement over the two-dimensional cell model in that it

allows for modes of deformation beyond that of axisymmetric modes, such as plane

strain and simple shear deformation. The 3D V-BCC cell model is applicable not

only to rubber-filled polycarbonate, but to other particulate materials with similar

morphology, such as semi-crystalline polymer blends and metal matrix composites of

high second-phase fractions.
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A Yield loci of existing constitutive models

Gurson (1977) proposed a constitutive model for a rigid, perfectly plastic matrix

containing low fractions of either spherical or cylindrical voids. The yield locus for

the model with spherical voids is given by

<DG = ) 2 + 2fcosh Tkk _( +f 2 ) = 0, (A. 1)
T) 2Ty

where Ty is the yield strength of the matrix material and f is the void volume

fraction. The locus is bounded in the direction of hydrostatic stress by the second

term in (A. 1). If the void volume fraction, f, is set to zero, this term vanishes, and

the pressure-independent Mises yield locus is retained.

The modification of the Gurson model to account for large elastic strains associ-

ated with the deformation of polymeric materials (Steenbrink, et al. (1997)) gave rise

to the (initial) yield locus

<DS = (q)2 + 2qifcosh eln I + I T) -(1 + (qi f)2 ) = 0, (A. 2)
Ty e 2Ty)

where Teq is the equivalent tensile (Mises) stress and f is the void volume fraction. The

parameter qi was originally introduced by Tvergaard (1981). Tvergaard compared

predictions of the Gurson model to results of finite element analyses, and suggested

qi = 1.5, which is also used in this study. The term e in A. 2, which accounts for the

elasticity, is defined as

e = ln Ty (A. 3)
( /3E*

where E* is the effective Young's modulus of the blend, based on a self-consistent

estimate (see Steenbrink, et al. (1997)):

E* = 2E(7 - 5v)(1 - f)
2(7 - 5v) + (1 + v)(13 - 15v)f 4)

Using this estimate together with the Young's modulus E = 2.3 GPa and the Pois-
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son's ratio v = 0.33 of the homopolymer, the effective (initial) Young's modulus is

calculated as E* = 1.38 GPa, which agrees well with the value 1.35 GPa given by the

slope of the stress-strain curve for uniaxial tension with fo = 0.25 (Figure 6a). For

qi = 1 and when elasticity is neglected, E* --+ oc, the original Gurson model (A. 1)

is recovered.

In the present application of (A. 1) and (A. 2) to voided polycarbonate (fo = 0.25),

the yield strength, Ty, is taken to be the stress at initial yield of the homopolymer

subjected to uniaxial tension at a macroscopic strain rate E33 = 0.01S-1 (Figure 6a).
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A micromechanics framework for the development of continuum-level constitutive

models for the large-strain deformation of porous hyperelastic materials is presented.

A kinematically admissible deformation field is assumed which enables the derivation

of a strain energy density function for the porous material. The strain energy density

function depends on the properties of the incompressible hyperelastic matrix mate-

rial, the initial level of porosity, and the macroscopic deformation. Differentiation

of the strain energy density function, with respect to deformation, provides an ex-

pression for the stress-strain behavior of the porous hyperelastic material. Example

calculations are carried out for porous hyperelastic materials with a Neo-Hookean

matrix. The constitutive model is used to predict the stress-strain behavior of the

pore-containing matrix as a function of initial porosity and macroscopic loading con-

ditions. Predictions of the dependence of the small-strain elastic response on porosity

are compared to various estimates of effective elastic moduli for porous materials

found in the literature. Constitutive model predictions of the small to large-strain

deformation behavior compare well with results from numerical three-dimensional

micromechanical multi-void cell models.
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1 Introduction

Although the mechanics of low-density elastomeric foams has been widely investigated

(e.g., Gibson and Ashby (1997)), the effects of low levels of porosity on the mechani-

cal behavior of elastomeric materials is a subject that has been poorly covered in the

literature. Low levels of porosity in elastomers may arise due to defects, from process-

ing, or may have been deliberately introduced as part of the manufacturing process

to create high-density foams. It is well-recognized that the introduction of even low

levels of porosity alters the mechanical properties of the material, when compared to

the homogeneous elastomer. When porosity is introduced, the elastic moduli of the

material change: the shear and bulk moduli decrease, the latter markedly, and the

common assumption of incompressibility breaks down. There is considerable qualita-

tive understanding of these effects of porosity on the mechanical behavior of porous

elastomers, but a quantitative understanding is largely lacking; very little informa-

tion and very few models exist in the literature. Many models of porous elastomeric

materials have been geared toward practical engineering situations, such as vibration

dampers. The models typically try to predict the effective compression and shear

moduli of rubber blocks between metal platens (see Kasner and Meinecke (1996)

for a review of these models). These models are hence very specific, and can only

be applied to a limited number of loading situations. Attempts have been made,

with a continuum mechanics approach, to model the constitutive behavior of porous

elastomers (see, for example, Blatz and Ko (1962), Kakavas (2002)). These models

are more general than the "engineering-type" models, since they model the material

behavior rather than the structural component behavior. They can therefore be im-

plemented directly into finite element software packages where they can be used to

simulate arbitrary component geometries under various loading conditions. However,

the models often require empirical fitting of material parameters, which limits their

usefulness (see, for example, Blatz and Ko (1962)).

In this work, we develop a general micromechanics framework for the development

of constitutive models of the large-strain deformation of porous elastomeric materi-
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als. The framework is applicable to any type of isotropic hyperelastic matrix material

which obeys pointwise incompressibility, such as the Neo-Hookean, Mooney-Rivlin,

Ogden, and eight-chain models for rubber elasticity (see Boyce and Arruda (2000) for

a review). A strain energy density function for the porous material is derived from an

assumed kinematically admissible deformation field in a model of the pore-containing

matrix. The strain energy density function enables the calculation of a stress-strain

relationship for the porous elastomer, using virtual work. As an example, a constitu-

tive model is analytically developed for a porous Neo-Hookean material. The stress

is observed to depend on the material properties of the elastomer matrix, the initial

void volume fraction (porosity), and the applied state of strain. Constitutive model

predictions compare well with those obtained from a numerical three-dimensional mi-

cromechanical cell model for a range of initial void volume fractions and tensile load

cases. We discuss the applicability of the model to compressive loading situations,

such as uniaxial compression.

2 The representative volume element

In order to study the deformation of a porous hyperelastic solid, we take a thick-

walled sphere to represent the undeformed porous material. This type of spherical

volume element has been used frequently in the literature to represent a porous solid

subjected to external pressure (see for example Gurson (1977), Haghi and Anand

(1991), Kakavas (2002)). Under radial external traction, the spherically-symmetric

deformation field in an incompressible hollow sphere is known, and the stress state

in the sphere can be evaluated exactly. The spherical volume element is used in

this work as well, but a more general state of deformation is allowed. The sphere is

subjected to a macroscopic state of deformation given by three principal (generally

un-equal) macroscopic stretches, {A1, A2,A3 }. This principal macroscopic stretch state

corresponds to a macroscopic deformation gradient, F, whose Cartesian components
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Figure 1: The spherical volume element: (a) undeformed configuration, (b-c) de-
formed configuration.

are given by

[F]ij = Ai6 2, (no sum on i), (1)

where 62, is the Kronecker delta. The initial material, whose matrix is taken to be

pointwise incompressible, is characterized by an initial void volume fraction fo, given

by fo = (A/B)3 (Fig. la), where A and B are, respectively, the inner and outer radii

of the sphere. When subjected to the principal macroscopic stretch state, the outer

surface of the sphere transforms into an ellipsoid with its three principal axes given

by these stretches (Fig. lb-c).

2.1 Deformation fields

The displacement field for a purely hydrostatic expansion of a sphere is known; every

material point in the sphere moves radially because of the spherical symmetry. When

the surface of the sphere transforms into an ellipsoid, material point displacements

will, in general, not be only radial. However, finding an exact solution of the displace-

ment of every point in the deformed sphere is very difficult. In a study of cavitation

in hyperelastic solids, Hou and Abeyaratne (1992) proposed a set of kinematically
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admissible radial deformation fields for the growth of a cavity in a solid, of the form

Xi = Oj Xi = Sj(R) Xi (no sum on i), (2)

where xi = x-ej is the ith Cartesian component of the deformed position x, Xi = X-ej

is the ith Cartesian component of the reference position X, and R = V'X -. X is the

radial distance from the origin in the reference configuration. The components Xi are

given in a spherical coordinate system by

X, = R sine sin'1, (3)

X2 = R sine cos@, (4)

X3 = R cose, (5)

where 0 < E < 7r and 0 < (D < 27r are standard spherical angles, measured in the

reference configuration. Cartesian components of the local deformation gradient are

then given by

[F]i =1 - = Of + Oi j (no sum on i), (6)
8Xy R

where (...)' denotes differentiation with respect to R. The deformation is said to be

locally isochoric (volume-preserving) if

J = det F = A = 1, (7)

where {A, A2, A3 } are principal stretches. The principal stretches are the eigenvalues

of the stretch tensors V and U, which can be obtained through a polar decomposition

of F,

F = VR = RU, (8)
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where R is a proper orthogonal tensor. By combining Eqs. (6) and (7), a system of

differential equations is obtained (Hou and Abeyaratne (1992)):

12 V)3+R12 03= 1,

O'1'03 - 103 = 0, (9)

3 - 2 0 = 0.

The solution of these differential equations renders three unknown integration con-

stants. These constants can be determined from boundary conditions. When the

sphere is subjected to a macroscopic state of deformation 2, given by three principal

stretches, {0 1, A2, A3}, the following boundary conditions are identified (Fig. lb-c),

Ai = g4(B). (10)

The solution of the system of differential equations (Eq. 9), together with the bound-

ary conditions (Eq. 10) is given by

i-= 1 + +3 ) Xi (no sum onli, (11)
J \I3LR

where J = det F = A1 A2A3. By using Eqs. (6) and (11), the components of the

deformation gradient, F, at every point in the matrix, can then be expressed as

[F~ij Ai 1 -_ 03 i +0i[F, = 2 V)2R2X (no sum on i), (12)

where V) = /(R) = (1 + (J - 1) (B/R)3 ) 13. The expression for the deformation

gradient at every material point in the matrix (Eq. 12) can be used to calculate any

measure of strain for use in constitutive model development, including expressions

for the stretch invariants and the principal stretches.

2 Notation: Throughout, macroscopic (cell-average) quantities will be distinguished from local

quantities by a bar, e.g. ki and J denote "macroscopic principal stretch in the ith principal direction"

and "macroscopic volume change", etc.
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The stretch invariants I1 and I2 are defined as

I, = trB =A + A2+ A , (13)

1 (j3
I2 2 ( - tr(B2)) = A 2A3 ± + A , (14)

where B = F FT = V 2 is the left Cauchy-Green strain tensor. Using Eqs. (6) and

(11), the first and second invariants of stretch can be expressed at every point, X, in

the reference sphere, by

I1 = R2+ X2 + X + X2 - , (15)

-23 2 I X2 X2 X2 4
I2 - J + + + , (16)

12 2 ( 23

where I, = tr B = 1 + + is the first invariant of macroscopic stretch, 72

- tr(1 2 )) = + + is the second invariant of macroscopic stretch,

and B FF is the macroscopic left Cauchy-Green strain tensor.

The principal stretches, A , can be determined as the square-roots of the eigen-

values of B. The principal stretches, Aj, are then expressed as functions of position

in the reference sphere, X, and the macroscopically-applied deformation. Any other

strain measure may be similarly obtained at every point in the matrix for use in the

development of the constitutive model for the porous material if the matrix consti-

tutive model is formulated in terms of that particular strain measure. We present

the general framework next for the case where the matrix strain energy density is

expressed in terms of the stretch invariants.
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3 Constitutive models for porous hyperelastic ma-

terials

In the previous section, a class of deformation fields was adopted to describe the lo-

cally isochoric motion of every material point as the sphere undergoes a macroscopic

state of stretch given by {A 1 , '2, A3 }. In this section, we describe how to obtain the

macroscopic state of stress corresponding to the macroscopically-applied stretches.

The methodology outlined below can be applied to any incompressible isotropic ma-

trix material, such as the stretch-invariant based Neo-Hookean, Mooney-Rivlin and

eight-chain material models, and the principal-stretch based Ogden material model.

As an example, we study a specific material model for the sphere, the Neo-Hookean

material model. Using this matrix material model, we obtain an explicit expression

for the stress as a function of macroscopic deformation, matrix material properties

and initial level of porosity.

3.1 General case

The pointwise strain energy density function for an incompressible isotropic hypere-

lastic material can be expressed in terms of the stretch invariants Ii and 12 as

W = W(II, 12 ; P), (17)

or, alternatively, in terms of the principal stretches, as

W = W(Ai, A2 , A3 ; P), (18)

where, in either case, P represents a general list of scalar material properties, and

in Eq. (18), and subsequently, the three principal stretches are subject to the incom-

pressibility constraint given by Eq. (7).

In the case of a stretch-invariant based matrix material model, Eqs. (17), (15)
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and (16) can be combined to determine the strain energy density, W, at every point

in the sphere. The homogenized strain energy density of the sphere, W, is obtained

by integrating the pointwise strain energy density function, W, over the reference

volume, and dividing by the reference volume,

1 B 2,7r 7r

W = W(1 1, 2; P) R2 sine de d<D dR, (19)
V B /3 0 fo

where the reference volume is given by V = 47rB 3/3, and I, and 12 are given by

Eqs. (15) and (16), respectively. The macroscopic Cauchy stress, T, corresponding

to the applied macroscopic deformation can be readily obtained (see, for example,

Malvern (1969)) by evaluating:

2 9W- 2 9W - 2 _W - R -2 +W
T = J B =B += IB-B +_1 (20)

J 68 J 6I1 J a12 01

where 1 is the second-order identity tensor.

3.2 Example case: Neo-Hookean matrix material

The strain energy density for a Neo-Hookean material is a linear function of the first

invariant of stretch,

WNH = A (1 -3), (21)
2

where p is the infinitesimal shear modulus. Upon integrating the pointwise strain

energy density function given by Eq. (21) over the reference volume according to

Eq. (19), the strain energy density, WNH, of the hollow Neo-Hookean sphere subjected

to a macroscopic state of stretch can be evaluated as

-- y - 1 f + 2 ( - 1)
WNH 2-- -2/3 3 (1-fo), (22)

2 J J { (1/3 /
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where = (1 + (J - 1)/fo). The explicit occurrences of AX found in Eq. (15) vanish,

and the strain energy density WNH becomes a function only of the matrix properties

(here p), the initial void volume fraction, fo, and the macroscopic stretch invariants

J and 71. The macroscopic Cauchy stress tensor, T, can then be readily obtained by

evaluating

- 2 OWNH - +WNH
T-=B+ -- 1.(23)

J oi ai

The derivatives of the strain energy density in Eq. (23) are given by

aWNH 1 f fo+2(J- 1)
= - 2 - (24)

ai 2 j 72/3 1/3

09WNH P- 1 J 1 (4 - fo) + (1 - fo) (25)
2J 2 2 3 J /3 ql/3 f0772 + (1 - fo),q

Upon combining Eqs. (23), (24) and (25), the macroscopic Cauchy stress tensor, T,

is given by

- p 4 2 fo+2(J-1) -
T= = - 2 j53B+

2 (J f71 1/3

- 1 1 (4 - fo)7 + (1 - fo)
2 2 37/3 1/3 foq 2 + (1 - fo)(

For the case of a purely deviatoric state of macroscopic deformation, J = 1,

Eq. (26) reduces to

dev(T) = p (1 - fo)dev(B), (27)

where dev(...) denotes the deviatoric part of the argument. In the limit of zero

porosity, fo = 0, the deviatoric Cauchy stress becomes dev(T) = p dev(B). The total

Cauchy stress in an incompressible elastic material can be determined only to within

an arbitrary (workless) hydrostatic stress, -P1. In the limit of zero porosity, the

total Cauchy stress is therefore given by the well-known constitutive equation for a
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Neo-Hookean material,

T = p dev(B) - P1. (28)

4 Results using a Neo-Hookean matrix material

In this section, the proposed constitutive model (Eq. 26) is used to study the porous

elastomer stress-strain response under different types of loading conditions, and the

dependence of this behavior on the level of porosity. First, constitutive model predic-

tions of the infinitesimal shear and bulk moduli, as functions of porosity, are compared

to the estimates of Budiansky, Hill and Mori-Tanaka. The large-strain behavior of

the porous elastomer is then studied under hydrostatic tension and under plane strain

tension. Constitutive model predictions of the large-strain behavior are compared to

results from a numerical three-dimensional micromechanical multi-void cell model.

The multi-void cell model is shown in Fig. (2). It consists of an assembly of cubes

that are either fully dense or contain a void. The number of voids, and the void

size relative to the cube that contains it, determine the macroscopic initial void vol-

ume fraction fo. Periodic boundary conditions are applied to the surfaces of the cell

model. The deformation of the cell model can then be solved numerically as a bound-

ary value problem, and the macroscopic stress-strain response can be extracted. For

details on the cell model, boundary conditions and the calculation of the macroscopic

stress-strain response, see Danielsson (2003) and Danielsson et al. (2003a).

4.1 Infinitesimal elastic moduli

The constitutive model (Eq. 26) provides a stress-strain relationship for a porous

hyperelastic material in the context of large-strain kinematics. The voids are assumed

to be initially spherical, rendering the porous material initially isotropic. In the limit

of small strains, the elastic response can therefore be characterized by two infinitesimal

elastic moduli. From an engineering standpoint, it is instructive to determine these

elastic moduli, and compare them to estimates of elastic moduli for porous materials
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Figure 2: The micromechanical cell model: (a) the whole model, (b) a quarter of a
void-containing cube.

reported in the literature.

The self-consistent estimates by Budiansky (1965) and Hill (1965), for an incom-

pressible matrix material containing a volume fraction, fo, of spherical voids, are

given by

/ABH = 3 (1 - 2fo) (29)
3 - fo

_H 4 (1 - 2fo)(1 - fo)
(3 - fo)fo

where /BH and 79BH are the effective shear and bulk moduli, respectively. The

Budiansky-Hill estimates predict both moduli to decrease with an increase in fo,

with the bulk modulus exhibiting a precipitous drop upon the introduction of voids

(Fig. 3). However, in the self-consistent scheme, the elastic moduli approach zero as

fo approaches 1/2, and the stiffness of the material is lost. This limits the range of

porosities that can be studied using the self-consistent scheme by Budiansky and Hill.

The work of Mori and Tanaka (1973) concerned the calculation of the average

internal stress in the matrix of a material containing misfitting inclusions. The Mori-

Tanaka theory has been applied to the calculation of the effective elastic properties of

composites (Benveniste (1987)). Using the Mori-Tanaka approach, the elastic moduli
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for the case of spherical voids in an incompressible matrix are given by

1 - fo (31)
A1MT A= 2o

4 1
1 MT - (32)

3 fo

where IMT and 7 MT are the effective shear and bulk moduli, respectively. Fig. (3)

shows that the Mori-Tanaka estimates predict monotonically decreasing bulk and

shear moduli, with increasing initial level of porosity. The Mori-Tanaka theory covers

the full range of porosities, as the predicted moduli approach zero only when fo

approaches zero.

The infinitesimal shear and bulk moduli as predicted by the constitutive model

are denoted j7 and :, respectively. They are obtained by differentiation of stress

(Eq. 23) with respect to strain, evaluated in the small strain limit. The infinitesimal

macroscopic shear modulus can be calculated, for example, as

d(T12)
d(=A - = , (1 - fo), (33)
d(B 12) 7=1

I1 =3

and the infinitesimal bulk modulus can be calculated as

d(tr T) 4 1 (34)
d(ln J) 7=1 3 fo

I1 =3

The constitutive model predicts the monotonic decrease in shear and bulk moduli

with an increase in fo, and also shows the precipitous drop in bulk modulus upon the

introduction of voids. The infinitesimal bulk modulus, -, approaches infinity as the

initial void volume fraction approaches zero, thus recovering the incompressibility of

the matrix material. The expression for the infinitesimal shear modulus, A, shows

that for zero void content, the matrix shear stiffness is recovered. As the void volume

fraction approaches one, the infinitesimal bulk and shear moduli approach zero, and

the stiffness of the porous elastomer is lost. Eq. (15) shows that under a macroscopic

pure deviatoric state of deformation, where J = 1, the pointwise first invariant of
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Figure 3: Infinitesimal elastic moduli: (a) shear modulus, (b) bulk modulus

stretch becomes independent of position in the sphere, and equal to the macroscopic

first invariant of stretch; i.e., I, = 71. This state of constant strain in the matrix

results in an upper bound on the infinitesimal shear modulus, and Eq. (33) is indeed

equal to the Voigt upper bound, iy = p(l - fo). The infinitesimal bulk modulus

predicted by the constitutive model, -9, is identical to the Mori-Tanaka bulk modulus,

RMT. The explanation for this is that the latter was obtained by solving the problem

of a particle, surrounded by a matrix shell, embedded in an effective medium under

external pressure. In the limit of zero particle stiffness and an incompressible matrix

material, this reduces to the cell model in the present study, subjected to an external

pressure (Fig. 1).

4.2 Large-strain volumetric expansion

The constitutive model is used to study the large-strain macroscopic volumetric ex-

pansion for materials with initial void volume fractions fo = {0.05, 0.15, 0.25}. The

results are compared to results from the numerical micromechanical cell model. The

response of the two models is characterized by plotting the normalized negative pres-
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sure, -p/p = tr T/3p, versus logarithmic volumetric strain, In J, (Fig. 4). The

constitutive model is deformed up to a volumetric strain J = 2, but excessive finite

element distortions in the cell models at high levels of volumetric strain prevent the

analyses of fo = 0.05 and fo = 0.15 from reaching J = 2. At these levels of volumetric

strain, the finite element analyses would require re-meshing, and this is not addressed

in the present work. Fig. (4) shows the nonlinear relationship between negative pres-

sure and volumetric strain predicted by the constitutive model. The initial slopes of

the curves in Fig. (4) correspond to the infinitesimal bulk moduli of the porous ma-

terial at the different levels of porosity. An analytical expression for the infinitesimal

bulk modulus, k, as a function of void volume fraction and matrix shear modulus was

determined (Eq. 34), and this agrees with the initial slopes in Fig. (4), as expected.

As the deformation progresses, the predicted tangent bulk modulus of the constitutive

model decreases with increasing volumetric strain, and the negative pressure reaches

a limit point beyond which it decreases with increasing volumetric strain. A parallel

can be drawn to the instability associated with the inflation of a balloon3 . The same

3 This behavior depends on the constitutive behavior of the matrix material. As the porous

material expands hydrostatically, the most highly deformed matrix material (on the pore surface)
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basic features in the negative-pressure/volumetric-strain curves are observed for all

studied levels of initial porosity, fo. Fig. (4) shows that the predictions of the consti-

tutive model are in very good agreement with the predictions of the cell model, over

the studied range of porosities, for volumetric strains up to J = 0.3. Beyond this

strain, the predictions of the constitutive model and the cell model begin to deviate,

but basic features of deformation are retained, and the agreement is reasonable.

4.3 Plane strain tension

The constitutive model (Eq. 26) accounts for the anisotropic growth of voids with

macroscopic deformation. In the previous case of volumetric expansion, where the

voids grow spherically, this feature of the constitutive model is not apparent. In order

to elucidate this feature, we study the case of macroscopic plane strain tension, and

compare predictions of the constitutive model to cell model predictions. Plane strain

deformation is kinematically enforced by driving the deformation in one direction (the

axial direction; AA), and prescribing the strain in one of the lateral directions to be

identically zero (the constraint direction; Ac = 1). The remaining lateral direction

(the free direction; AL) is left unprescribed. Fig. (5a) shows the true-stress/true-strain

response of the constitutive model and of the cell model for the three different initial

void volume fractions, fo = {0.05, 0.15, 0.25}. The plane strain constraint results in a

tensile stress in the constraint direction, in addition to the stress in the axial direction

(Fig. 5a). The stress in the axial and constraint directions both decrease, with an

increasing level of initial porosity, as the elastic compliance of the porous elastomer

increases. Fig. (5b) shows that the dilatation of the porous elastomer increases with

increasing initial porosity, as the porous elastomer is able to accommodate larger

volumetric strains through void growth. The stress-strain response (Fig. 5a) of the

constitutive model is in excellent agreement with the cell model results, both in the

may approach a limiting extensibility and "lock". Since the matrix material itself is incompressible,
this would cause an upturn in the predicted macroscopic hydrostatic stress. If the volumetric strain
level associated with such a "macroscopic locking" precedes the limit point observed in the case
of a non-locking material, such as the present Neo-Hookean matrix, the latter limit point may be
eliminated altogether.
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axial and constraint directions, for all studied values of initial porosity, fo. The lowest

initial void volume fraction, fo = 0.05, provides the best agreement.

Fig. (5b) shows the evolution of volumetric strain with applied deformation. As

the material extends in the axial direction, it contracts in the free direction, which

corresponds to a negative strain. The volumetric strain, in the case of plane strain

tension (Fig. 5b), is the sum of the axial strain and the strain associated with the

lateral contraction,

lnJ = EA +EL, (35)

where EA = In AA and EL = ln AL. The dilatational response of the constitutive

model is in reasonable agreement with the cell model predictions over the studied

range of void volume fractions and deformations. The evolution of lateral strain

in the free direction (Fig. 5b) is predicted well for the lowest initial void volume

fraction, fo = 0.05, but there is an increasing discrepancy between the constitutive

model predictions and the cell model predictions as the initial void volume fraction

increases. The largest discrepancy occurs at the highest level of macroscopic axial

strain, EA = 1.1, in the case of fo = 0.25, where the difference between the lateral
-cell

strain prediction of the constitutive model and that of the cell model is EL - EL -

0.1.

As mentioned previously, the constitutive model accounts for the pore-shape

anisotropy accompanying void growth. Under a non-hydrostatic state of deforma-

tion, the voids assume the shapes of ellipsoids. Eq. (11), evaluated on the inside of

the sphere where Xi = A = Bfd' 3 , shows that the ratios between the principal axes of

the ellipsoidal voids, {ai, a 2, a3 }, are identical to the ratios between the macroscopic

principal stretches,

-a - ,j (36)
a, A

where ai and ay are any two of the principal axes of the ellipsoidal void. By using

the fact that the matrix material is incompressible, the current size and shape of the
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void can be expressed in terms of the macroscopic state of deformation,

() 1/3
Tii - Ai (37)

where di = ai/fd' 3 is a measure of stretch of the ellipsoidal void in the ith principal

direction. Eq. (37) shows that in the case of plane strain tension, discussed previously,

the void expands also in the direction of constraint in order to accommodate the

macroscopic (positive) volumetric strain, ln J > 0.

5 Conclusions

A large-strain continuum mechanics framework for the development of constitutive

models for porous hyperelastic materials was presented. The framework is applicable

to any type of stretch-invariant based, or principal-stretch based isotropic hyperelastic

matrix material which obeys pointwise incompressibility, such as the Neo-Hookean,

Mooney-Rivlin, Ogden and eight-chain material models for rubber elasticity. An ini-
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tially spherical unit cell was taken to represent the initial porous material, and the

strain energy density function for the unit cell was derived and expressed in terms of

the matrix properties, the initial porosity and the applied macroscopic deformation.

The example case of a Neo-Hookean matrix material was studied, and a constitutive

model using this matrix material was derived using virtual work arguments. The

model accounts for the finite straining of the matrix, and the non-spherical growth

of voids in the matrix which is expected under deviatoric states of deformation.

Predictions of the constitutive model were compared to predictions of a numerical

three-dimensional micromechanical cell model using the same matrix properties. The

agreement between the models was good for a range of void volume fractions and load

cases. The constitutive model successfully predicted the non-spherical void growth

accompanying the evolving matrix anisotropy.

The studied load cases were all tensile in nature. Under small to moderate com-

pressive deformations, the model will also be applicable. However, deformation events

such as local buckling of matrix ligaments would be anticipated to occur as compres-

sive deformations become large, especially in the case of high levels of porosity. Such

phenomena are not accounted for in the present model. It is therefore doubtful that

the application of the developed framework to large compressive deformations, at

high levels of porosity, will be successful.

The example case concerned a specific matrix material model, the Neo-Hookean

material model. The strain energy density in this model is a simple linear function of

the first invariant of stretch, I, (Eq. 21). By using this matrix material model, it was

possible to derive an analytical expression for the strain energy density in the spherical

unit cell (Eq. 22). An analytical stress-strain relationship was then extracted through

straight-forward differentiation of the strain energy density function with respect to

the macroscopically-applied deformation (Eq. 26). In cases where the functional form

of the pointwise strain energy density function is more complicated, such as in the

eight-chain model, numerical quadrature may be required to obtain a stress-strain

relationship for the porous material. Details on the numerical quadrature in such

cases are outlined in Appendix A.
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The developed framework can be extended to other classes of materials. For ex-

ample, constitutive modeling of large-strain deformation of porous glassy polymers

requires a constitutive description of the orientation hardening associated with plastic

flow. For non-voided glassy polymers, the orientation hardening has been successfully

treated within the context of rubber elasticity (e.g., Arruda and Boyce (1993)). The

present framework therefore provides a means of approximating the average orien-

tation hardening of porous glassy polymers, in which the behavior of the matrix is

given, albeit neglecting specifics regarding the localized and propagating aspects of

plastic deformation in the matrix. Such investigations are underway, and the results

will be reported elsewhere (Danielsson et al. (2003b)).
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A Numerical integration of the stress-strain rela-

tionship

In cases where the expression for the pointwise strain energy function is complicated 4 ,

it may be necessary to integrate the stress-strain relationship for the porous material

numerically. In this appendix, we outline the steps involved in this procedure.

The macroscopic left Cauchy-Green strain tensor, B, can be decomposed into an

orthogonal rotation tensor, Q and a diagonal tensor B, as

B = QBQ, (38)

where B is the macroscopic principal left Cauchy-Green strain tensor. The diagonal

components of B are expressed in terms of the macroscopically-applied stretches, Xj,

as

[B]i = A. (39)

Since the principal directions of the macroscopic Cauchy stress tensor, T, and the

macroscopic left Cauchy-Green strain tensor, B, coincide, the latter may be decom-

posed as,

T = QTQ, (40)

where T is the macroscopic principal Cauchy stress tensor. By combining Eqs. (20),

(38) and (40), the macroscopic principal Cauchy stress tensor can be expressed as

2 -- T W -T -- 2 W -
T = = Q _ Q Q BQ = _ B. (41)

J aB J aB

4For example, if the strain energy density of the matrix material is expressed in terms of higher

order terms and/or exponential terms of either stretch invariants (Eq. 17) or principal stretches

(Eq. 18), the closed-form integration of the matrix strain energy density over the spherical domain

may be cumbersome.
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Using Eq. (41), the diagonal components, [T]i, of the macroscopic principal Cauchy

stress tensor, T, are then expressed as

20W=~ 2 0W -2 Ai aW
[T]i = =-B = =A - (no sum on i). (42)

1J 4 3_ B J a(if) J aAj

By using Eqs. (42) and (19), the components of the macroscopic principal Cauchy

stress tensor can, in the case of a stretch-invariant based matrix material, be expressed

as

.. B f2r hr OW a a 2[T]i = -- ]---- + "- R2 sine de d(D dR. (43)
VO Bf O3 0 0 al i 1I2 OaA

In the case of a principal-stretch based matrix material, this integral becomes

A [B 27r 7 2r3
[T]i = -- --- + - + aW o / R 2 sine de dID dR.

jV0 fBf /3 J J0A 1 oAX aA2 oi 0A 3 OAi

(44)

The integrals in Eqs. (43) and (44) can be evaluated numerically using an appropriate

numerical quadrature rule, such as Gauss-Legendre quadrature (Stroud and Secrest

(1966)). Details on the choice of a suitable quadrature rule, as well as suitable order of

quadrature for each of the variables {E, <D, R} will be reported elsewhere (Danielsson

et al. (2003b)). The macroscopic Cauchy stress tensor, T, can be readily obtained

through the rotation of T by Q (Eq. 40).
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