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Abstract

This dissertation concerns the design of circuits and systems for an emerging technology
known as three-dimensional integration. By stacking individual components, dice, or whole
wafers using a high-density electromechanical interconnect, three-dimensional integration
can achieve scalability and performance exceeding that of conventional fabrication technolo-
gies.

There are two main contributions of this thesis. The first is a computer-aided design
flow for the digital components of a three-dimensional integrated circuit (3-D IC). This
flow primarily consists of two software tools: PR3D, a placement and routing tool for
custom 3-D ICs based on standard cells, and 3-D Magic, a tool for designing, editing, and
testing physical layout characteristics of 3-D ICs. The second contribution of this thesis
is a performance analysis of the digital components of 3-D ICs. We use the above tools
to determine the extent to which 3-D integration can improve timing, energy, and thermal
performance. In doing so, we verify the estimates of stochastic computational models for
3-D IC interconnects and find that the models predict the optimal 3-D wire length to within
20% accuracy. We expand upon this analysis by examining how 3-D technology factors affect
the optimal wire length that can be obtained. Our ultimate analysis extends this work by
directly considering timing and energy in 3-D ICs. In all cases we find that significant
performance improvements are possible. In contrast, thermal performance is expected to
worsen with the use of 3-D integration. We examine precisely how thermal behavior scales
in 3-D integration and determine quantitatively how the temperature may be controlled
during the circuit placement process. We also show how advanced packaging technologies
may be leveraged to maintain acceptable die temperatures in 3-D ICs.

Finally, we explore two issues for the future of 3-D integration. We determine how
technology scaling impacts the effect of 3-D integration on circuit performance. We also
consider how to improve the performance of digital components in a mixed-signal 3-D
integrated circuit. We conclude with a look towards future 3-D IC design tools.

Thesis Supervisor: Rafael Reif
Title: Associate Department Head and Professor of Electrical Engineering and Computer
Science

Thesis Supervisor: Anantha P. Chandrakasan
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

1.1 Motivation of this Work

1.1.1 Scaling Limitations of Conventional Integration Technology

For several decades, integrated circuits have profoundly impacted our everyday lives. In

order to sustain this impact, it is widely expected that the decades-long trend of exponential

growth in circuit performance and functionality must be sustained as well. However, the

path to continued growth contains many obstacles.

The International Technology Roadmap for Semiconductors (ITRS) provides a detailed

plan for achieving this growth [5]. In Table 1.1, we see specifically what is desired of circuit

designers and manufacturers. The performance demands listed in the table must be met

both by increasing transistor device capabilities and by improving the performance of the

wires that connect these devices.

While device scaling is by no means a solved problem, the performance of scaled devices

is at least understood to increase as desired. In contrast, the performance of scaled wires

does not increase similarly. Table 1.2 shows the degree to which interconnect must be

shrunk merely to meet functionality demands. However, at this level of scaling, worst-case

and even average-case interconnect performance decreases with each generation.

Figure 1-1 illustrates the problem. A fan-out-of-four (F04) inverter (i.e. an inverter that

is used to drive four identical inverters) scales with increasing technology generations, such

that the signal delay through an F04 inverter is roughly proportional to the node length.

However, the delay through a representative 1 mm wire increases exponentially from gen-
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technology node (nm) 180 130 90 65 45 35
microprocessor
transistors/chip 21 76 226 453 773 1,227
(millions)
on-chip local clock
frequency (GHz) 1.25 2.1 4.171 9.285 15.079 20.065
chip-to-board clock
frequency (GHz) 1.2 1.6 2.5 4.883 9.536 14.901
power supply (V) 1.8 1.5 1.2 1.1 1.0 0.9
CPU power (W) 90 130 158 189 218 240
chip size (mm 2 )

at introduction 280 280 280 280 280 280
in production 140 140 140 140 140 140

Table 1.1: ITRS predictions for circuit performance.

technology node (nm) 180 130 90 65 45 35
number of metal layers 6-7 7-9 10-14 11-15 12-16 12-16
minimum metal pitch (nm) 360 300 214 152 108 84
effective resistivity (RQ -cm) 2.2 2.2 2.2 2.2 2.2 2.2
effective inter-layer
dielectric constant 3.5-4.0 3.3-3.6 3.1-3.6 2.7-3.0 2.3-2.6 2.3-2.6

Table 1.2: ITRS predictions for wires in integrated circuits.

Gate and Interconnect Delays by Generation
Annfl
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Figure 1-1: Projected inverter F04 and 1-mm interconnect delays for

nodes.

various technology
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device layer 3

inter-layer interconnects

device layer 2

device layer I

Figure 1-2: Schematic of a 3-D integrated circuit with interleaved device layers and inter-
layer interconnects.

eration to generation, due to the increased resistance from scaling down the cross-sectional

area of the wire. More importantly, since we expect the size of maximum-functionality

circuits to hold steady or even increase, we cannot even improve performance by scaling

down the length of our representative 1 mm wire as we increase the technology generation.

1.1.2 The Potential of Three-Dimensional Integration

Three-dimensional integration aims to alleviate the above scalability issues. A three-

dimensional integrated circuit (3-D IC) is any circuit in which the active devices are

not confined to a single plane. We may consider such a circuit to be a collection of distinct

2-D (conventional) ICs, each of which individually is called a "device layer" [6], "tier" [7],

"stratum" [8], or simply a "wafer" (although the latter term does not strictly apply in some

technologies). These conventional layers, together with a means of interconnecting devices

on separate layers, make up a three-dimensional integrated circuit. A schematic rendition

of such a circuit is given in Figure 1-2.

At first glance, it is clear that 3-D integration offers greater device density for a given

footprint area. What is not clear is how 3-D integration may affect other circuit metrics

such as speed and energy consumption. The first indication of what may be achieved in a

technologically-feasible 3-D IC lies in the work of A. Rahman et al. [8,9]. This work analyzes
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number of device

the distribution of wires in a general circuit according to their length; it finds that in a wide

class of 3-D integration technologies, the wire-length distribution shifts in response to an

increase in the number of device layers as shown in Figure 1-3. The leftward shift in wire-

length distribution is the mechanism by which three-dimensional integration aims to improve

circuit performance since the longer wires in any such distribution disproportionately affect

cycle time, energy consumption, and routability.

While the general behavior exhibited in Figure 1-3 may be characteristic of 3-D in-

tegration, the precise scale and separation of the distributions are what result in specific

performance improvements. These particular aspects are highly dependent on the choice

of technology itself. For this reason, we must first seek to understand what characterizes a

potential three-dimensional integration technology.

1.2 Three-Dimensional Integration Technology

There are many technologies that can be described, however loosely, as three-dimensional.

The fundamental traits underlying these technologies are that active devices may be stacked

in multiple layers and that the scalability of circuit dimensions along all three axes is not

inherently limited. These various technologies may be classified as either packaging tech-

nologies, by which three-dimensionality is achieved after the individual 2-D chip components
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Figure 1-4: (a) Vertical multi-chip module (MCM-V) schematic. (b) Schematic of flip-chip

bonded circuit.

have been fabricated, or monolithic technologies, by which the full 3-D structure is formed

prior to packaging. In all cases, understanding how the 3-D technology parameters will

affect circuit performance is the ultimate goal.

1.2.1 Packaging Methods

The first packaging technology capable of forming three-dimensional circuits is the vertical

multi-chip module (MCM-V) [10, 11]. In an MCM-V package, individual dice are fabri-

cated and bonded to printed-circuit-board (PCB) backplanes. The input and output pads

are wire-bonded to connections on the surface of the PCB. The separate PCBs are then

connected to a high-bandwidth interconnect backplane that serves as the communication

infrastructure between the dice. Figure 1-4(a) gives a schematic view of the structure of a

generic MCM-V package, and Figure 1-5 shows a candidate MCM-V technology [1, 12,13].

The principal trade-off associated with this type of package is that while its manufacturing

does not involve any unusually complicated processing steps, the resulting inter-layer inter-

connect is neither high-performance nor low-latency compared with wires on the individual

chips.

Two approaches that attempt to overcome this performance limitation to some degree

are ultra-thin chip stacking [14,15] and multilayer thin-film packaging (MCM-D) [16]. In

these technologies, individual dice are prepared, stacked, and bonded using a benzocy-

clobutene (BCB) polymer spin-on. The preparation stage involves whole-wafer thinning

(down to 10-15 pm) before die cut; stacking is performed with an alignment accuracy of
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Figure 1-5: Vertical multi-chip module (MCM-V) showing inter-layer interconnect back-

plane. Left: schematic; right: package photo (reprinted from [1]).

+10 im. Once the dice are bonded, they are wired to a surrounding ring of routing tracks

for inter-layer interconnection.

These technologies offer better performance than MCM-V due to their somewhat lower-

latency inter-layer interconnect. At the same time, they simultaneously offer a degree of

design simplicity since the inter-layer interconnect is at the periphery. However, as with

MCM-V, the inter-layer communication occurs through the periphery. This interconnect

thus exhibits lower performance compared to within-die wires.

An alternative approach that potentially can be used to create 3-D ICs with higher-

performance inter-layer interconnect is known as flip-chip bonding or chip-scale packaging

[17]. Typically used for direct mounting of circuit substrates onto PCBs, the flip-chip

method is nonetheless capable of being used as a 3-D integration technology. In flip-chip

bonding, the upper surface of a die is patterned with a solder-bump interconnect. The

mating surface on the PCB is patterned with pads. The die is then "flipped" onto the PCB

and bonded using the solder bumps. Figure 1-4(b) shows a schematic, and Figure 1-6 shows

a sample solder-bump array.

Since no fundamental constraint exists requiring the use of a PCB as the mating surface,

the flip-chip approach can be used to bond two dice together. Furthermore, a platform

has been suggested by which several small, customized, high-performance dice are flip-chip

bonded to a larger moderate-performance die in order to integrate various high performance

technologies without significant fabrication cost or compromised performance. Of course,

this technique is not immediately scalable to stacks more than two dice thick; some form

of through-die interconnect must be developed for such cases. Furthermore, while the

solder-bump interconnect performance exceeds that of bond wires (and thus the MCM-V

interconnect backplane), it still lags behind the performance of on-chip interconnect.
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Figure 1-6: Flip-chip package with solder-bump interconnect (reprinted from [2]).

1.2.2 Monolithic Approaches

The goal of monolithic 3-D integration is to overcome the scalability and performance

limitations of the aforementioned packaging methods. Thus, all such integration approaches

attempt to use wafer-level fabrication techniques to build device and interconnect layers

directly on top of the existing conventional plane of transistors.

The first two such techniques are epitaxy and solid-phase recrystallization. In an epi-

taxial 3-D integration process, silicon seed openings are fabricated alongside transistors in

a conventional single-plane process. These seeds are then used to grow transistors on top

of the existing devices and metallization [18]. While significant density improvements have

been shown by fabricating actual circuits using this technique, it is not clear how to scale the

process to more than two active layers. In a solid-phase recrystallization process, amorphous

silicon is deposited on an existing integrated circuit; this silicon is then recrystallized using a

laser. The resulting silicon islands may be used to produce polysilicon thin-film transistors.

Thus, while this technique is highly scalable, it does not yield high-performance devices on

the upper device layers, and its use is restricted to high-density memories [19,20].

The remainder of the monolithic approaches may be classified under the term "wafer

bonding." The individual wafers in such a 3-D IC are fabricated using conventional means

and fused together with an inter-wafer electrical and mechanical interconnect. Wafer-

bonding methods differ in terms of the bonding material and the order of fabrication oper-
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Figure 1-7: Wafer-bonded structure with two device layers and copper interconnect inter-

face. (Figure courtesy A. Fan, MIT.)

ations. The bonding interface may be either metal or dielectric; the individual wafers may

be fabricated in parallel or sequentially.

The MIT method, for example, is a copper-bonded parallel approach [21]. Front-end and

back-end processing are done separately on the individual wafers that make up a given 3-D

IC. The bottom-most wafer is typically a bulk silicon wafer, 500-700 Lrm thick, in order to

provide structural rigidity; subsequent wafers are silicon-on-insulator (SOI), 1-2 im thick,

to provide scalability and high-performance interconnect. A diagram of a copper-bonded

two-wafer structure is shown in Figure 1-7.

In contrast, the MIT Lincoln Laboratory method uses oxide bonding in its parallel

approach [7]. The individual wafers are processed (front end and almost all back end)

before bonding. Formation of inter-wafer interconnects is the remaining back-end step. This

occurs after bonding since the use of oxide as a bonding material prevents the formation of

ohmic contacts as a result of the bond (although capacitive, i.e. AC-coupled, inter-wafer

communication has been proposed, as in [22]). Inter-wafer interconnects are formed as

vias that are etched through the the entire metallization stack of the top wafer. Thus, a

greater routing-area penalty is incurred; additionally, there are more stringent alignment

requirements due to the nature of the via formation. Figure 1-8 shows a multiple-wafer

structure using this bonding methodology.

Researchers at Rensselaer Polytechnic Institute have developed a similar process [23].

In this method, a dielectric polymer glue, e.g. BCB, is used in place of oxide bonding. The

remaining process steps are essentially the same.

The Cornell University process, on the other hand, is sequential [24]. Specifically, after a

30



Figure 1-8: Multiple-wafer structure using oxide as the bonding interface. The inter-wafer

interconnects are formed after bonding. (Figure courtesy MIT Lincoln Laboratory.)
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1. Cu patterning on SOI 2. Bond to handle wafer 3. Thin back SOI wafer,
device wafer stop on buried oxide

Oman*****mimu

4. Etch vias 5. Via filling 6. Cu patterning

Figure 1-9: Handle-wafer attachment, grindback, via formation, and copper patterning

steps of the wafer bonding process. (Figure courtesy A. Fan.)

given wafer has been processed, a blank wafer is bonded to it. The inter-wafer interconnects

are fabricated together with first-level metal. Since the bonding wafer is blank, there

are no alignment concerns during bonding, which results in potentially smaller inter-wafer

interconnects when compared with any of the previous process technologies. However, the

trade-off is that the finished bottom wafer must now endure the processing steps required

to fabricate devices and wires on the blank wafer that has already been bonded to it.

1.2.3 Sample Process Flow: Copper Wafer Bonding

In order to understand the design trade-offs that arise from 3-D integration technology, it is

useful to examine a sample process flow. We outline here the copper wafer bonding process

of A. Fan et al. [21].

Figure 1-9 shows the pre-bonding process steps. This process starts with an existing

wafer or stack of already-bonded wafers. To this stack we wish to bond another wafer, for

which we use a typical SOI substrate (100 nm silicon with 400 nm buried oxide). This sub-
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Figure 1-10: Thermocompression and handle release steps of the wafer bonding process.

(Figure courtesy A. Fan.)

strate is essentially a finished circuit, as it contains all the desired devices and interconnect.

If this wafer is to be bonded again (i.e. to a third wafer), it is first metallized to produce

its half of the required inter-wafer connections (step 1). The wafer is then attached to a

handle that is used for mechanical manipulation (step 2). The bulk silicon is then removed

from the wafer (step 3); this involves a combination of mechanical grindback and chemical

etching. Inter-wafer connections to the existing stack are then formed (steps 4-6). Via

formation in these steps is a conventional process technique; thus, the resulting vias can be

as narrow as 0.25-0.5 .±m with an aspect ratio of 2:1.

In Figure 1-10, we show the bonding and handle-wafer release steps. The bonding

process itself (steps 7a and 7b) is done at 350*C and 4000 mbar for 30 minutes. After

bonding, the stack is annealed in nitrogen ambient for an additional 30-60 minutes. Wafer

alignment is the critical process step. Both wafer-to-wafer alignment and bonding are

performed in an Electronic Vision EV 450 Aligner and AB1-PV Bonder. The system has

an inherent t3 Lm alignment tolerance, resulting in a copper-bonding pad pitch of at least

6 Rm. Thus, wafer-to-wafer alignment is the ultimate factor in determining the inter-layer

via density. With better optical alignment systems, it is possible to decrease the copper

pad size down to approximately 0.5 to 1 ptm, which corresponds to a substantial increase

in via density. For the remainder of this dissertation, we will assume that this via density

can be achieved.

The process flow iteration is completed by releasing the handle wafer (step 8). The

resulting stack is ready for either packaging or subsequent bonding of additional wafers.
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1.3 Design Tradeoffs Associated with the 3-D Integration

Process Flow

Having illustrated the process flow, let us now consider the circuit-design trade-offs that

arise. The copper-wafer bonding process previously outlined introduces distinct opportuni-

ties and challenges for both digital and mixed-signal 3-D integration.

1.3.1 Digital ICs

In a multi-layer digital system, the system components must be partitioned among the

various layers. Thus, performance of the inter-layer interconnect is the process characteristic

of primary interest.

In some of the packaging approaches described above, such as MCM-V or ultra-thin

chip stacking, inter-layer wires must be routed to the periphery of individual layers before

the wires may cross from layer to layer. As a result, the bandwidth and density of these

wires are limited.

In contrast, some packaging technologies and all monolithic approaches offer a higher-

density interconnect that may be fabricated at the local level. The trade-off between these

technologies lies in the specific parasitic values associated with the interconnect; these may

range over several orders of magnitude from copper-bonded approaches to solder-bump-

interconnect technologies.

In addition, the choice of integration technology may affect signal-coupling issues. The

adjacency of two substrates to a given set of metal layers reduces the amount of charge

sharing between adjacent metal lines [25]. The extent to which this coupling is reduced

depends on the effective capacitance between the given metal lines and the second sub-

strate (introduced by 3-D integration). Higher substrate capacitance reduces inter-symbol

interference at the expense of increasing overall capacitive energy dissipation.

1.3.2 Analog/Mixed-Signal ICs

Three-dimensional integration also provides benefits and challenges for mixed-signal and

mixed-technology circuits. In analog circuits, the inter-wafer interface may be used to

isolate functional units [25]. Depending on the choice of technology, or even the use of

metal vs. dielectric in a specific wafer-bonding technology, the degree of isolation may be

33



affected significantly.

3-D integration also allows for the incorporation of multiple fabrication technologies

within a single circuit or package. For example, silicon CMOS may be integrated with

SiGe or InP analog, or logic-optimized CMOS may be integrated with CMOS optimized for

SRAM, DRAM, or high-voltage non-volatile memories. This type of integration presents

unique opportunities for circuit design; however, the integration of a small number of rel-

atively large, discrete macro blocks in a single circuit also presents some unique design

partitioning and optimization issues.

1.4 Overview of Previous Work

1.4.1 Stochastic Modeling of 3-D ICs

The bulk of prior work on 3-D integrated circuits has been in system-level stochastic mod-

eling. Numerical models have been derived that estimate the wire-length distribution in

circuits implemented in various forms of 3-D integration technology [8,26-29]. The bulk of

this form of analysis has resulted in plots of the form shown in Figure 1-3.

Extensions to these models have considered specific 3-D IC technology optimizations

such as variable inter-wafer distance [30]. Other ventures in the area of numerical modeling

concern specific performance issues such as heat generation [31, 32]. The remaining work

along these lines has been in numerical modeling of specific circuit architectures in 3-D.

1.4.2 Architectural Investigation

In addition to numerical analysis of general-purpose circuits targeted for 3-D integration,

several specific circuit architectures have been ported to candidate 3-D IC technologies.

The prime candidates for 3-D integration explored thus far have been imagers and sensors,

microprocessors, and field-programmable gate arrays (FPGAs).

Imager circuits consist of a two-dimensional array of optical sensors together with cir-

cuitry to process and deliver the sensed images off-chip. In circuits such as [33], benefit

from 3-D integration is due to the fact that in conventional implementations, there is a

per-pixel overhead for the processing and delivery circuitry. In a 3-D implementation, the

additional wafers can be dedicated for the non-sensing components. As a result, a greater

pixel density can be achieved.
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A similar density impact is to be gained in FPGAs [9,34]. Like imagers, FPGAs consist

of a regular array of elements. In this case, the elements are programmable functional units

(typically a logic function with four to six inputs and one or two outputs, together with

optional registers or tri-state drivers) and the overhead consists of wires and programmable

switchboxes used to interconnect the functional units. However, with FPGAs the intercon-

nect may consume as much as 90% of the total circuit area. The benefit of 3-D integration

is that the extra routing resources in the third dimension can be used to reduce the number

of conventional routing tracks required, thus increasing the density of functional units as

well as shortening the wires used to connect them.

In microprocessors, a number of architectural improvements have been proposed to

exploit 3-D integration [35,36]. In general, the microprocessor has been analyzed as a logic-

memory system; performance enhancement is achieved either by (1) partitioning both logic

and memory subsystems to reduce the logic latency as well as the memory latency, or (2)

increasing the memory capacity of the system. In [35] it was determined that microprocessor

instructions-per-cycle (IPC) could be increased by 20% to 30% using two-wafer integration.

Furthermore, at current technology nodes, long-wire delay in microprocessors could be

reduced by a factor of 2.5 to 5. Finally, it was predicted that in future technology nodes,

opportunities for increased memory subsystem performance due to 3-D integration would

significantly increase performance as measured by IPC.

1.4.3 Unresolved Problems

The above avenues of prior research still leave open a number of problems. First, in the

area of stochastic modeling, is the question of validity: without any analysis of placed and

routed circuits, it is impossible to verify that the models' predictions are correct. In fact,

the models themselves vary greatly in terms of their analyses of 3-D IC performance - due

in part to varied technology assumptions and to intrinsic issues of model accuracy. Of more

direct importance along this line of investigation is actual circuit performance. Without

having vetted predictive models for 3-D circuit wire length, it is very difficult to make

reasonable predictions for circuit timing and energy consumption in three dimensions.

Second, in the area of architectural investigation, the opposite problem arises. In this

area, specific opportunities for 3-D integration have been identified. However, it is not

known to what extent the improvements in these circuits can be leveraged in general.
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Third, in either of the above cases, it is desirable to make further circuit-based analyses

of 3-D ICs. Issues such as thermal performance and technology scaling have yet to be

addressed completely.

It is clear that what is needed is the ability to analyze actual circuits in a variety of

3-D implementations. Furthermore, this analysis must be carried out in a general-purpose

manner, independent of architecture.

1.5 Contributions of this Dissertation

This dissertation makes two overall contributions to the understanding of 3-D integration.

The first is a computer-aided design flow for 3-D ICs; the second is the performance analysis

of digital 3-D ICs and IC components.

We present our design flow and algorithmic details of the tools in this flow in Chapter 2.

Our analysis of circuit performance begins with an adaptation of the stochastic models

mentioned in Section 1.4.1 for a set of benchmark circuits used throughout the dissertation.

We analyze the wire-length performance of these circuits through the use of the models and

compare this data with measurements from placements generated by our tools (Chapter 3).

We proceed to expand upon the predictions of the models by utilizing specific placement-

based analyses. Having established the wire-length behavior of 3-D ICs, we develop a

placement-based characterization of circuit timing and energy performance (Chapter 4).

We bring our design tools to bear on a significant problem in 3-D ICs: heat genera-

tion and removal (Chapter 5). With the use of placement-based analyses, we verify prior

numerical simulations of thermal effects in 3-D ICs. Furthermore, we characterize ther-

mal behavior in two placement contexts by demonstrating how placement-based thermal

optimization can be utilized to obtain more acceptable behavior in exchange for reduced

performance in other metrics. We also consider in detail the use of advanced heat-removal

technologies and develop design models and guides for the implementation of such tech-

nologies within a 3-D system.

We also examine some speculative issues regarding the future of 3-D IC design (Chap-

ter 6). First, we consider how the performance improvements due to 3-D integration might

scale in conjunction with conventional technology scaling. Second, we explore how to ex-

pand the design flow to include mixed-signal integration. In the context of mixed-signal
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integration, we examine how digital performance may be improved, and we also evaluate

some methods for reducing the noise impact of these digital circuits in mixed-signal 3-D

ICs. Finally, we propose a design-flow architecture for mixed-signal 3-D integrated circuits.
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Chapter 2

Design Tools for

Three-Dimensional Integrated

Circuits

2.1 Overview

The design of a digital integrated circuit typically proceeds from a high-level specification

of what the circuit is supposed to do by successively refining this specification down to the

function of each individual transistor. Refining from specification to transistor layout may

be done all at once; however, for all but the smallest circuits, this is intractable for both

humans and computers. Thus, the design process is divided into steps such as those shown

in the left half of Figure 2-1. Our goal is to identify which components of this design flow

must be replaced or altered to design three-dimensional integrated circuits.

As seen in Figure 2-1, several steps are taken to produce fabrication data from a high-

level specification. We take this specification to mean a behavioral or functional description

in a hardware description language such as VHDL or Verilog. Thus, the first step is typ-

ically logic synthesis, whereby a gate-level circuit net list is determined. A floorplan

is developed, and given the net list and physical parameters of the individual logic gates,

the circuit gates are placed in an optimal location on the die. The resulting placement

is wired or routed. The placed-and-routed circuit layout is analyzed to ensure that if

fabricated according to the design, it will function according to the specification. These
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Figure 2-1: Simplified flowchart for the automated design of 2-D and 3-D digital integrated

circuits.

three components - synthesis, placement, and routing - constitute the front end of physical

design of digital circuits. 1

As indicated in the right half of Figure 2-1, at several stages of the flow it is required

or desired to modify the tools to design for three-dimensional integration. In the next

several sections, we will address when conventional tools may be used, what changes may

be required for such tools, and what tools we have developed to enable 3-D IC design.

2.2 Logic Synthesis

Logic synthesis remains for the most part a technology-independent phase of the design

flow. The output of logic synthesis is a gate-level description of a circuit; the functionality

provided by the gates themselves is independent of how these gates are fabricated. Thus,

it is not strictly necessary to modify this stage of the design flow to create 3-D ICs.

However, some optimizations exist that take advantage of technology-dependent infor-

mation. For example, gate vendors may offer various speed and power options for individual

gates [37]. Additionally, these gates perform differently under varying input and output con-

'For the purposes of proper scoping, the back end of design, including components such as reliability,

yield, and other such post-layout analyses, will not be addressed in this thesis.
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Figure 2-2: Wire length as a function of fan-out for a benchmark circuit.

ditions; an optimizing logic synthesizer may choose gates that have sufficient drive strength

so as to meet design constraints. The effect of interconnect on the performance of the cells

is typically captured through the use of wire-load models.

In the context of logic synthesis, wire-load models predict the capacitance of a given

wire based on the number of terminals [38]. The synthesis tool uses this information to

size and/or duplicate logic cells to meet specified timing or energy constraints. In 3-D

ICs, we expect that the wire-length distribution will be shifted; therefore, we may capture

this information in a wire-load model. Figure 2-2 shows how the wire-length-vs.-fan-out

behavior changes for a benchmark circuit as we increase the number of wafers. In Figure 2-

3 we see specific behavior for low-fan-out cases; it is typical to restrict logic synthesis to

the generation of low-fan-out nets only. In both figures we see that there may be a use for

customized wire-load models for 3-D ICs.

For two reasons, however, we choose not to implement wire-load modeling for 3-D in-

tegration. The first is that the effectiveness of wire-load modeling in deep-submicrometer

designs is hotly debated [38]. More fundamentally, our ultimate goal is to explore the im-

pact of 3-D integration on circuit performance metrics such as cycle time. If we choose

to incorporate 3-D awareness at the logic-synthesis stage, we are in effect trading off pri-

mary performance improvements for improvements in circuit topology or secondary circuit

metrics.
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Figure 2-3: Wire length as a function of fan-out (low fan-out cases only).

For example, consider a circuit with a cycle-time constraint of 3 ns. In a conventional

design flow, we would synthesize logic for a single-wafer implementation using this con-

straint. We could then place and route this logic using two or more wafers to obtain further

improvement in cycle time or energy consumption (or both). If instead we utilize a wire-

load model for, say, three-wafer integrated circuits, we would then obtain a synthesized

design that meets the 3-ns constraint using three wafers. Relative to the synthesized logic

for the single-wafer implementation, this logic would either occupy less area or require less

intra-cell energy dissipation, depending on the optimization priority schedule given to the

synthesis tool. However, we cannot subsequently improve the cycle time using multi-wafer

placement and routing.

For this reason, as well as in consideration of the fact that placement algorithms have

different levels of effectiveness on different topologies, we will utilize the same synthesized

logic for single-wafer and multi-wafer implementations.

2.3 Floorplanning

In the design of large circuits, the hierarchical nature of the synthesis methodology results

in a top-level architecture comprising a small number of large functional blocks. Circuits

incorporating memories, for example, are usually partitioned into logic and memory subsys-

tems rather than distributing the memory throughout the chip. As a result, it is sometimes
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necessary to devise a floorplan for the chip in which locations for these few large blocks

are determined prior to placement and routing of the logic subsystems.

Prior work on 3-D IC design has included automated floorplanning [39]. While the

circuits considered (part of the MCNC benchmark suite [40]) are small by modern standards,

this floorplanner was able to exhibit significant performance improvement in terms of total

length of global wires and the length of the longest wire. However, a full determination

of circuit performance requires the placement optimization of flat (i.e. non-hierarchical)

circuit topologies. Flat placement optimization requires the use of different CAD tools;

thus, it is on these tools that we will focus our efforts.

2.4 Placement

To simplify some of the computational aspects of the placement process, many custom

circuit designers adopt the standard-cell paradigm. In this paradigm, the individual logic

gates, registers, and other components are synthesized as cells of fixed height and variable

width. Since the cells are of fixed height, the placement area may be defined as a number

of fixed-height rows, and the placement process therefore becomes the discrete (integer)

problem of assigning a row and site (location within the row) to each of the cells.

Historically, the placement process would be followed by a row-spacing determination;

specifically, empty space between the rows would be allocated for routing wires, and the

quantity of this space would be determined once the associated routing problem was well-

defined. The spacing requirement that results could yield a sub-optimal placement, such

that multiple iterations would be needed to obtain the best performance. This variable-die

placement context has given way to a more common fixed-die context in modern deep-

submicrometer design. In the modern context, since a large number of metal layers is

available, the row spacings are fixed a priori (often to zero), and the routing is done over

the cells.

The growing size of standard-cell circuits has motivated the development of hierarchical

(top-down) placement tools. In top-down placement, the design first undergoes a global

placement stage, during which the locations of individual cells are refined to a modest

number of partitions of the entire die area. Each partition is small enough that it can be

placed in a tractable manner. Detailed placement is then used to determine the final
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locations of cells within each partition.

During both the global and detailed placement stages, it is possible to introduce aware-

ness of three dimensions to the algorithms.

2.4.1 Global Placement

The global placement stage is devoted to refining the placement of cells to some localized

area. A final location for any cells at this stage is not desired. Global placement is thus

reserved for cases in which the number of cells makes direct solution intractable.

Several algorithms, described below, are suitable for global placement, since discrete

locations will not be determined. In considering a global algorithm for 3-D integration,

however, the relatively small number of device layers provides direction for the choice of

algorithm. As will be discussed in the following sections, we will need to choose an algorithm

that allows us to localize cells to any given wafer, even during the earliest stages of global

placement.

2.4.2 Detailed Placement

Once global placement is complete, cells in the individual circuit partitions must then be

fixed to specific locations. This is the task of detailed placement. The algorithms described

in the following sections are suitable to varying degrees. In the case of 3-D IC placement,

it is necessary for the algorithm to be able to localize cells to specific device layers.

2.4.3 Placement Algorithm: Simulated Annealing

Simulated annealing [41] is a method of global and detailed placement that is based on the

physical process of annealing. As an algorithm for objective-function minimization, it is

an extension of a generalized Monte Carlo method for simulating the states of an n-body

system [42].

In this scheme, the state variables S = {sili = 1... n} are the positions of the n cells

in the circuit, and the objective E(S) is typically the total wire length of the circuit, but

may be some other metric to be minimized. This objective is analogous to the energy of

the n-body system. A free variable called the temperature, T, is used to dictate how the

state evolves. Specifically, the system is started in an initial configuration S(T = To) at a

high temperature To. A number of randomized state changes are then attempted. Each of
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Figure 2-4: Typical simulated-annealing sequence for a simple network at initial, interme-

diate, and final stages.

these changes is accepted in turn if the change of state reduces the energy E. If the energy

is increased due to a state change, the change is still accepted with probability e-AE/kT,

where AE is the increase in energy and k is a constant. At the end of this sequence of state

changes, the temperature is reduced and the process is repeated.

For placement in particular, the choice annealing schedule, or sequence of temperatures

T = TO,1,2,..., strongly affects the quality of the final placement. Furthermore, no general

algorithmic way of choosing a good schedule is known. Development of a useful placement

tool based on simulated annealing thus rests on the determination of an acceptable schedule.

Figure 2-4 shows three temperature slices in a typical simulated-annealing sequence. Fast

convergence to a neighborhood of the optimal solution is exhibited here as a characteristic

of a useful schedule. In contrast, schedules that do not approach a good solution before the

temperature falls too low typically exhibit "lattice cracks" or "quenching," similar to the

physical annealing process.

As for the state change, it typically consists of the movement a cell to a new location

or the swapping of a pair of cells. Since it is intractable to consider all possible moves or

swaps, practical implementations restrict choices to those moves that have a high likelihood

of acceptance [41].

In considering simulated annealing as a placement algorithm, it is important to note

that the algorithm is more effective for smaller placement sizes. Thus, simulated annealing

is usually considered as a detailed placement tool or, in hierarchical placement strategies,

as a means of incrementally improving placement quality between steps of the hierarchy.

For 3-D placement, one strength of simulated annealing is its adaptibility to many kinds

of objective functions. An existing 2-D placement algorithm using simulated annealing

thus may easily be adapted to three dimensions. Furthermore, the run time for a multiple-
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wafer placement of a given circuit is not expected to be longer than that for a single-wafer

placement. Conversely, the only direct control that can be exerted on the placement is

through the modification of the energy function E. As a result, it is difficult to examine

different 3-D placement strategies, such as minimum-via-count vs. minimum overall wire

length, using simulated annealing. 2 In addition, the desire to implement a 3-D placer for use

in large circuits imposes a requirement for a more scalable algorithm for global placement.

2.4.4 Placement Algorithm: Quadratic Placement

Quadratic placement methods are characterized by the minimization of the squared wire

length of the placement. While this is not usually the desired metric for optimization,

this choice of metric is made because there exist well-understood methods for obtaining

a provably-optimal (though invalid) solution. The placement algorithm thus combines a

quadratic solver with a legalization method.

The placement problem is formulated as follows: for n cells at locations (xi, yi) with

i = 1, ... , n, the total squared wire length may be written as

n 2
L = 2Z cij [(Xi - Xj)2 + (y, - yj)2 , (2.1)

i=1 j=1

where cij is the weight associated with the connection between nodes i and j, if this con-

nection exists, and zero otherwise. We may reformulate this as

L = xT Bx + YTBy, (2.2)

where x and y are n-element cell-position vectors and B = D - C, where C = [cij] and

D is a diagonal matrix with dei related to the weighted degree of node i. Subject to an

appropriate constraint, this equation may be solved for x and y, thus yielding a placement.

Several constraint methodologies exist. In the absence of fixed terminals, we may use a

Lagrangian formulation [44]: we set

XTX = YTy = 1, (2.3)

to produce a placement over the square [0, 1] x [0, 1]. As a result, L is minimized when x
2 However, multiple-objective formulations do exist [43].
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and y are eigenvectors of B. We choose the second and third smallest eigenvalues and their

corresponding eigenvectors for the placement. 3

This formulation easily extends to three dimensions by taking the next smallest eigen-

value and corresponding eigenvector for the z axis. However, not only does this require

additional computation, but the z-axis solution is also difficult to legalize, as we will ad-

dress shortly.

In the more relevant case in which fixed terminals are present, a useful formulation is

implemented in the GORDIAN placement tool [45]. Here, the matrix C is defined as before,

except that we restrict the formulation to movable cells. Considering for now only the x

dimension (since the problem is separable), we add a vector term d and a scalar f to account

for the diagonal D and the connections to fixed terminals:

Lx = xTCX + dx + f. (2.4)

We then apply a constraint

Ax = u, (2.5)

which specifies that the n cells are to be placed over q partitions of the placement area,

and that in each partition, the center of gravity of the cells in that partition should be the

geometric center of the partition. This constraint formulation reduces the dimensionality

of the problem from n to n - q since the location of one cell in each of the q regions is fixed

by the locations of the remaining cells. The resulting objective may be written as

L' = x TZTCZxf + cTXf, (2.6)

where Z represents the dimensional reduction using A, c is the reduction of d, and xf is the

position vector of the n - q free cells.

Since ZTCZ is symmetric and positive definite, this objective is minimized when

- ZTCZXf + c = 0. (2.7)
2

The locations of the movable cells may then be determined using an iterative technique

3 The smallest eigenvalue is zero and corresponds to the solution where all cells are placed at (0.5,0.5),

since the problem is underconstrained.
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such as the conjugate gradient method.

A popular modification of this technique is force-directed placement. The name arises

from the solution to the unconstrained wire-length minimization:

1
ICx + d = 0. (2.8)

If we imagine that the nets connecting cells are springs, such that the force pulling cells

together is proportional to the distance separating them, then Equation 2.8 represents the

spring equilibrium, where the net x component of the spring forces on each cell is zero. Under

this interpretation, it is straightforward to introduce additional forces of the form eTX to

the system [46]. Such forces may be used to incorporate additional system constraints, such

as the requirement that cells not overlap.

Two drawbacks to these formulations are that since they are quadratic programming

problems, the solution is (1) in a continuous space, whereas the desired solution is in a

discrete space, and (2) minimal for the quadratic objective, whereas a minimum linear wire

length is desired. The former is especially problematic for 3-D placement, since in the third

dimension, a highly-discrete placement is required. In particular, these algorithms tend to

produce a high degree of cell overlap in the center of the placement area, which must then

be resolved by iterative-improvement techniques. For this reason, quadratic placements are

often used as initial solutions for a partitioning algorithm, which we describe in the next

section.

2.4.5 Placement Algorithm: Partitioning

One methodology used for placement is recursive min-cut partitioning [47]. In min-cut

partitioning, a circuit or sub-circuit is divided into two parts of roughly equal area such

that the number of wires crossing from one part to the other is minimized.

Formally, the circuit or sub-circuit is represented as a hypergraph H = (V, E), where V

is a set of vertices representing the standard cells and E C 2V is a set of hyperedges with

a one-to-one mapping of hyperedges to nets in the circuit. Each vertex v E V is assigned

a weight w(v) equal to the width of the cell, and each hyperedge e E E may be assigned a

weight w(e) (though this is typically taken to be w(e) = 1). A two-way partitioning is then
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defined to be a map

p: V - {0, 1}. (2.9)

The partitions themselves are called 0 and 1; p(v) for some v may be fixed to 0 or 1 if v

is an I/O pin or immovable cell (or in the case of sub-circuits, if the cell is external to the

sub-circuit [48]). The partitioning is called valid if it satisfies a balance criterion on the

sums-of-weights

Wi= 2 w(v) (2.10)

p(v)=i

such as IWo - Wi < T(Wo + W 1 ), where r is called the tolerance.

We define

C(e) w(e) 3vi, V2 E elp(vi) = 0 A P(V2) = 1 (2.11)
0 otherwise

as the cut weight of edge e. In other words, c(e) is the weight w(e) if e contains vertices in

both partitions, and zero otherwise. The cut of partitioning p is defined as

c(p) = 7 c(e). (2.12)

eEE

A min-cut partitioning of H is thus a valid partitioning p with the least cut c(p).

The problem of determining a two-way min-cut partitioning is NP-complete [49]; there

are several heuristic algorithms. The vast majority of these are based on the Fiduccia-

Mattheyses (FM) algorithm [50], which is itself an efficient variation of the Kernighan-Lin

algorithm [51]. In FM partitioning, an initial (possibly invalid) partitioning po is chosen. A

number of iterations of the outer FM loop generate partitionings p", n = 0, 1, 2, . . ., where

pi-1 is improved to pi in the ith pass of the loop. A single loop iteration consists of the

formation of a list of the vertices in V. The list is ordered by the gain g(v); g(v) is the net

improvement in cut if vertex v is moved to the opposite partition. The list is traversed in

order, with the gains updated after each move. At the end of the traversal, the point in the

list at which the minimum cut was reached is determined, and the moves after that point

are reversed. The remaining moves constitute the improvement of pi-1 to pi; if the cuts

c(pi) and c(pil1) are equal, then there is no improvement, and FM stops.

FM is thus an iterative-improvement-based heuristic method; it is known that the quality

of FM partitionings degrades somewhat with an increase in hypergraph size, mainly due to
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the inability of the FM algorithm to reach a large part of the solution space [52]. Thus,

multi-level FM techniques have been proposed that are themselves recursive [52-54].

Alternatives to FM partitioning, such as partitioning by iterative deletion, have also

been proposed [55]. In this algorithm, a redundant partitioning is formulated in which each

vertex is initially assigned to both partitions. From alternating partitions, a vertex is then

successively selected and deleted. The choice of vertex is again motivated by a desire to

minimize the cut while maintaining balance constraints. Iterative deletion stops when each

vertex is assigned to exactly one partition.

Hierarchical placement proceeds by partitioning the design over the available placement

area. For each partitioning, the available area is allocated to the partitions according to the

weights W. The total cell area, represented as a rectangular block of cell rows, may thus

be split in two ways: horizontally or vertically (three ways are possible in three dimensions,

as we will address in Section 2.7.1). The choice of direction is typically motivated by the

aspect ratio of the block. The result of a block partitioning is thus two sub-blocks with

portions of the block's cells allocated to each of the sub-blocks. Each of these sub-blocks

then also undergoes partitioning.

2.4.6 Detailed Placement Algorithms

If the size of the sub-blocks (in terms of cell count) falls below a certain threshold, it

may become more effective to use optimal partitioning codes [56]. The use of techniques

such as dynamic programming allows for an efficient exploration of the entire solution space.

Similarly, for the end case, when the precise placement of the individual cells must be deter-

mined, optimal placement may be considered if the case size is sufficiently small. However,

exhaustive search must be ordered using techniques such as Gray-code enumeration and

pruned using methods such as branch-and-bound since the solution space is of size 0(2n)

for partitioning and O(n!) for placement.

A typical placement implementation may use multi-level FM partitioning as a global

placement algorithm together with optimal partitioners and placers for the detailed stage

[47]. Alternatively, the detailed stage may use the above simulated-annealing or quadratic

algorithms combined with a slot-assignment legalization step.

In detailed placement for 3-D ICs, the opportunity exists to explore routing trade-offs

involving the inter-wafer vias. Depending on the routing strategy, modifications to the
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wire-length estimation technique can be made.

2.5 Routing

The task of routing, much like placement, is typically divided into global and detailed stages.

The key issue is one of concurrency: while it is possible to route all the wires sequentially,

routing a given wire completely before proceeding to the next, this strategy is suboptimal

since the routing of any given net affects the available options for routing of subsequent

nets. Thus, the global stage is utilized for route planning, with a view toward optimizing

various metrics such as congestion or cycle time. The detailed stage is used for determining

the specific paths for the nets using the guidance of the global routes [57].

To first order, routing for three-dimensional integrated circuits may be seen as an ex-

tension of traditional multi-level routing techniques. Specifically, current algorithms can

perform over-the-cell (OTC) routing using six or more metal levels, of which two are re-

served for intra-cell routing and the remainder for inter-cell routing. In a 3-D integration

technology with six metal levels for each of n device layers, the problem may be thought of

to some extent as a 4n-level OTC routing.

However, the use of inter-layer vias imposes additional constraints. Since inter-layer vias

pass through the device layer, these vias can be permitted in a limited number of regions.

Furthermore, as shown in Chapter 1, in some technologies the vias are formed after bonding,

which implies that they pass not only through the device layer, but also through all 2-D

metallization layers. Thus, these vias present obstacles to within-wafer routing as well.

It is clear, then, that inter-wafer vias must be handled at the earliest possible stage of

the physical design process. In our 3-D placer, we detail strategies for allocating routing

area for these vias. In routing, we must tackle this problem during the global stage. If

solved then, detailed routing may be performed by conventional means.

Since inter-wafer vias present a unique obstacle, it is beneficial to consider routing

strategies that allow us to minimize their use. The hierarchical method of Burstein and

Pelavin [58] is one such method. The trade-off for utilizing a hierarchical method is that it

is more difficult to optimize the performance of critical wires. Thus, we also consider the

more traditional sequential approach of maze running.
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Figure 2-5: Single-net example of the hierarchical routing procedure. Routing proceeds
from stage (a) to (f) by recursive partitioning.

2.5.1 Hierarchical Approach

In a hierarchical global router, the routing substrate (which consists of the wiring surface

above the placed cells) is recursively bisected into routing subregions. Each side of each

region has an associated capacity, which limits the number of wires that may enter the

region through that side. Wires within a region may either be fully contained by the region

or terminate at a pin on one or more sides of the region; initially, all wires are contained

within the routing region. At each partitioning step, the existing pins on the sides of the

routing region must be allocated to one of the two subregions. Those wires that are fully

contained within the region must be allocated to one or both subregions. The remaining

wires connect cells on both sides of the partition line; these are cut by the partition, and for

each, a pin is inserted into the side between subregions. The manner in which existing pins

are allocated to subregions dictates the quality of the overall routing. When complete, the

resulting regions may be fed to a detailed router as formulations of channel or switchbox

routing problems. Figure 2-5 shows a sample routing for a single net.

For the purpose of allocating inter-layer vias, we may proceed in two directions. If, as

is likely the case, inter-layer vias are an expensive commodity, we may choose to use the

first partitioning step to split the routing substrate into separate device layers. On the

other hand, if optimal wire length is desired, it is best to use an aspect-ratio based sequence

similar to what we will detail for 3-D placement in Section 2.7.1.
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2.5.2 Global Maze Router

The maze routing approach, in constrast, considers the nets sequentially [59-61]. That is,

the routing substrate is first divided into regions. Each region in this global routing grid is

then pre-assigned a routing capacity - indicating the number of wires that it may contain -

and a congestion value - a measure of how many pre-routed wires and other routing obstacles

occupy the region. The unrouted nets are ordered according to any of several criteria (e.g.

longest first or shortest first, as determined by half-perimeter length estimation). Each net

in the list is routed by connecting the terminals on the net in sequence. A pair of terminals

is connected by starting at one terminal and using a graph-based search to find an optimal

path from that terminal to the other, where the optimization considers both the routed

wire length and the congestion values for the regions along the chosen path.

These algorithms vary in time and search-space complexity depending on the imple-

mentation. Initial versions used breadth-first search [59]; improvements include the use of

a detour number [60] or general A* search. As before, when global routing is complete, the

regions may be fed to a detailed router.

For routing of 3-D ICs, the primary algorithmic choice is in the ordering of nets. In 3-D

ICs, it is likely to be most efficient to route multi-wafer nets first, as the required inter-

wafer vias will present obstacles to routing other nets and will be more difficult to route in

congested areas.

2.6 Layout

When the routing stage is complete, the resulting design is said to be laid out. A designer

who chooses to forgo automated placement and routing may lay out the design by hand. In

either case, a layout editor that permits manual entry of 3-D IC designs, as well as analysis

and simulation of those designs, is needed.

The required functionality may be delineated as follows:

* design management - the layout information must be captured so that it is clear that

the various device layers of a 3-D integrated circuit are associated. Concurrently, the

individual device-layer designs should also be reuseable as single-layer (i.e. conven-

tional) designs.
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" user interface - the design methodology must not differ substantially from what is

typical for conventional ICs. The extra dimensionality must be handled in a way that

does not require an unwieldy use of the computer display.

" layout vs. schematic (LVS) - the interface must be able to provide the designer

with topology information (i.e. connectivity and hierarchy) that spans all the device

layers of the design, such that the functional accuracy of the circuit may be visually

inspected.

" design-rule checking (DR C) - in addition to conventional design rules, the editor

must support the implementation of tests for 3-D-specifc rules such as those involving

alignment.

" extraction - the editor must be able to obtain topological information for the 3-D

circuit, including parasitic components, from the layout.

Prior work on the development of transistor-level layouts for 3-D ICs has focused on

methodology. For example, the method of S. Alam [62] includes the novel use of conventional

features in the popular open-source layout editor Magic [63]. By combining a scheme for the

association of design files in directories, a file-interchange system for the communication of

inter-wafer interconnect information between device layers, and an augmented technology

definition file that includes inter-wafer vias, this methodology makes good use of existing

tools. However, it does not provide all of the functionality desired above.

Having identified the design flow, tools, and algorithms necessary for the development

of three-dimensional integrated circuits, we describe our implementation of these tools in

Sections 2.7 and 2.8.

2.7 PR3D: The Placement and Routing Tool

PR3D is the first major design tool we have developed to address the above issues and

gaps in the flow for 3-D integrated circuits. It is a CAD tool for standard-cell circuits that

covers the placement and global routing stages. In the following sections, we will describe

the design of PR3D and the algorithmic choices underlying this design; a discussion of the

use of PR3D for analysis of 3-D integrated circuits takes place in the next several chapters.
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Algorithm 3DPLACE

calls PARTITIONING

calls PLACESINGLEROW

begin

blocklist <- top level block

newblocklist <- new list

finishedblocks <- new list

while (blocklist is not empty)

while (blocklist is not empty)

begin

remove first block from blocklist

if (block is a single row of six or fewer cells)

PLACESINGLEROW

add row to finishedblocks

else

choose partition direction for block

if (direction is vertical)

do a rough (20% tolerance) PARTITIONING to find the midpoint

else if (direction is horizontal)

do a rough (20% tolerance) PARTITIONING to find the middle row

else (direction is parallel to wafers)

set tolerance to make even split of wafers

(e.g. 33% for 3 wafers, 20% for eight wafers)

do a rough PARTITIONING to find the middle wafer

endif

do a refined (2% tolerance) partitioning around the mid point

split block into two child blocks with area ratio equal to

the area ratio of the cell partitioning

add child blocks to newblocklist

endif

end while

blocklist <- newblocklist

newblocklist <- new list

end while

end 3DPLACE

Table 2.1: Algorithm 3DPLACE for multi-wafer placement using min-cut partitioning.
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Figure 2-6: Partitioning strategy where plane assignment is done first in order to minimize
the number of inter-plane vias.

Figure 2-7: Partitioning strategy where plane assignment is done by considering aspect
ratio in order to minimize total wire length.

2.7.1 3-D Standard-Cell Placement Algorithm

For the reasons outlined in Section 2.4, we have implemented PR3D as a partitioning-driven

placement tool. Thus, our placement framework consists of the embedding of a hypergraph

representation of a netlist into a rectangular block that represents the available die area.

We assume that the dimensions of the block (number of rows, width of each row) are fixed

a priori (i.e. a fixed-die context). For 3-D integration, given a set number of device layers

(specified at run-time by the user), we adjust the number of rows and widths of each row

(prior to execution) such that the total area available for placement remains the same as in

2-D and the aspect ratio for each device layer is the same as in 2-D.

We proceed by recursively partitioning the block roughly into halves, assigning nodes

to each partition such that the capacity of each partition is not exceeded and the number

of hyperedges spanning both partitions is minimized. Each partitioning step is permitted

a tolerance varying from 2% to 20% depending on the discreteness of the partition. Parti-

tioning into wafers or parallel to rows, for example, must be done very precisely since the

resulting partition sizes must be integral numbers of rows or wafers, but when partitioning

perpendicular to rows, a higher tolerance will yield a better partitioning.

We note that min-cut partitioning along the 3rd dimension is equivalent to minimizing

the number of inter-layer vias. Thus, in cases where such vias are costly (due to capacitance,

pitch, or fabrication expense), we may trade off increased total wire length for fewer inter-

plane vias by varying the point at which the design is partitioned into planes. For example,

we may choose to partition into planes first (as shown in Figure 2-6), or we may leave plane
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Figure 2-8: For small inter-wafer via sizes, we permit same-row interconnects to be split

among multiple wafers. For large inter-wafer via sizes, we partition into wafers before

reaching the single-row block size.

assignment until the detailed placement stage (Figure 2-7). We find that the optimal wire

length is obtained by using aspect ratio to determine the cut sequence - that is, a given

partition is bisected perpendicular to the longest dimension of the partition. (For purposes

of comparison, the length of the third dimension is scaled by the cost of inter-layer vias.)

The user specifies at run-time whether to minimize total wire length or number of inter-layer

vias, as well as the cost of these vias.

Figure 2-8 shows qualitatively how the partitioning scheme should vary with the inter-

layer via size. Copper wafer-bonding technologies [21, 24] are reflected in the left half of

the figure, whereas dielectric-bonding technologies [7, 23] may be represented by the right

half. In the former, same-row wiring in 2-D layouts may potentially be implemented more

effectively by partitioning the cells on that wire over adjacent wafers. In the latter, this is

less likely to be true; thus, partitioning into wafers should be done before the single-row

block size is reached. (It should be noted that both figures are considered to be exhibiting

a high-density interconnect - the spectrum of inter-wafer feature sizes is large enough that

some technologies offer inter-wafer interconnects an order of magnitude larger than those

in the right half of Figure 2-8.)

In partitioning a given block, we account for the presence of external nets by using a

terminal propagation scheme based on that of Dunlop and Kernighan [48]. We extend this

scheme to 3-D by expanding the dummy terminals used for propagation to include nodes

locked to planes above or below the partitioning point. At very detailed levels, we use
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branch-and-bound partitioning and placement [56]. Finally, wire lengths are determined

using the half-perimeter metric, which in 3-D ICs is the sum of the length, width, and

height of the bounding box containing all terminals of a given net.

Pseudocode for the 3-D placement algorithm is given in Table 2.1.

2.7.2 3-D Global Routing

Global-routing algorithms may generally be categorized as sequential approaches (such as

maze routing) or concurrent approaches [57]. We have chosen to implement two global

routers for 3-D integration: a concurrent (hierarchical) router [58] and a traditional maze

router based on the A* algorithm.

Since modern technologies offer many levels of metal interconnect, we adopt an over-

the-cell routing strategy. We assume that inter-cell wires may be routed without restriction

on the upper levels of metal. The lower levels are reserved for intra-cell wiring, as well as

power, ground, and other critical wires such as the clock tree. This uniformity in the routing

substrate permits us to investigate hierarchical approaches based on concurrent methods.

Our 3-D global router considers a routing region to be a set of aligned, congruent 2-D

routing regions on one or more adjacent wafers. Wires may enter or exit the region through

any of the sides of the 2-D regions, as well as the top and bottom of the set. The 3-D

router must therefore determine the location and quantity of inter-wafer vias in addition to

routing the wires on each wafer. In 2-D ICs, it was assumed that cells would not interfere

with the routing area; with inter-wafer vias this may not be the case, since these vias must

punch through the device layer to contact metal. However, given a strategy for placing the

inter-wafer vias, the remaining wire routing is a conventional problem.

There are three candidate strategies for placing these inter-wafer vias. The first is to

allocate 3-D feed-through cells within the rows. For each wire to be routed between two

wafers, a pair of matching cells is inserted, one in each wafer. This problem is not unlike that

of inserting repeaters in long wires. However, relative to the repeater-insertion problem,

a far greater number of wires will require 3-D via insertion. Furthermore, unlike repeater

insertion, it is harder to predict in advance the number of wires that will require inter-wafer

vias (as we will discuss in Chapter 3). As a result, by the time this information is known,

it is not possible to allocate enough area for the vias without disturbing the quality of the

placement.
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Another strategy for inter-wafer via routing is to route wires directly to the source or

drain of a driver transistor on the upper wafer. This avoids the area penalty associated

with having to punch through the device layer on the upper wafer. However, there exist

difficulties with this approach. First is that the technology for direct source or drain backside

contact must be developed. Second, this approach does not cover situations where the upper

wafer contains only loads (i.e. transistor gates) or where the wire connects cells on non-

adjacent wafers (e.g. a cell on wafer 1 and a cell on wafer 3).

We therefore consider a third strategy: inter-row via placement. By separating the cell

rows, we may create a pre-allocated space for 3-D vias. If the separation is small, the impact

on placement quality is minimal. We thus limit the total capacity for inter-wafer vias to

a single row's worth of vias per row of cells on a wafer (e.g. if a given wafer has ten rows

of cells, and 50 vias can fit side-by-side within the width of a row, then the wafer has a

inter-wafer via capacity of 500). With this capacity computed, 3-D global routing proceeds

using either of the above algorithms.

Once completed, the results of global routing are computed as the sum over all routing

regions of the half-perimeter wire lengths of the wires contained within each region. This

measurement should more closely reflect the final aggregate wire length.

2.7.3 Comparison of PR3D with Other Tools

Having described our implementation of placement and routing tools for three-dimensional

integration, we must justify this effort in light of the existence of similar tools. Specifically,

the effort may be wasted if performance analyses can be made with existing tools.

Certain prior works are largely theoretical in nature and therefore not feasible for use

in considering large circuits. The placement engine due to T. Tanprasert [64], for example,

uses a nonlinear-programming formulation that does not scale well and has only been tested

on circuits with a small number of modules (e.g. 15).

Other, more scalable competing placement tools exist. Y. Deng et al. has developed an

extension to the open-source 2-D placement tool Capo [39]. This tool produces two-wafer

implementations only and considers the wafer-partitioning-first approach outlined above in

Figure 2-6, without regard for optimal-wire-length approaches.

In contrast, the 3-D VLSI tool Gravity, developed by S. Obenaus et al. [65,66], analyzes

placements in a substrate of dimension 2+e (i.e. where cells may be localized to an n x n x n'
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grid). The fundamental technology assumption (which is different but not invalid) is that

the number of wafers used will scale with the size of the circuit. For this reason, both direct

comparison with the performance of Gravity and use of Gravity for wafer-by-wafer analysis

of performance improvements using 3-D integration are made difficult.

Additionally, in all three cases, the tools have been designed strictly for use with bench-

mark circuits. In keeping with our stated goal of being able to analyze actual circuit

performance and the desire to produce tape-out quality layout for eventual fabrication, we

have designed PR3D with capabilities that exceed those of the other 3-D place-and-route

tools in existence. Specific usage information for PR3D is given in Appendix A.

2.8 3-D Magic: The Layout Editor

To achieve the desired functionality stated in Sections 2.6 and 2.7, it is necessary to develop

an actual layout editor for 3-D ICs rather than a methodology that can be used with an

existing conventional tool. However, rather than develop a layout editor from scratch, we

find it useful to add functionality to an existing editor. This has the dual benefits of being

a less complex undertaking and producing a final product whose use is familiar to existing

users.

The conventional layout editor Magic [63] is a versatile tool that is popular in academia

as well as industry since both the binary executable and source code are free and readily

available. We therefore implement our layout editor for 3-D ICs as an extension to this tool

and call it 3-D Magic. 4

In the following sections, we detail considerations regarding the design of the inter-

face, internal data representations, and technology-specific modules such as LVS and DRC

verification and parasitic extraction.

2.8.1 User Interface Design

The conventional tool Magic is a paint-based design tool; the user draws the transistor

geometry much as one would in a painting program, and Magic converts this geometry to

mask layout.

4 The methodology of S. Alam et al. has also been named 3-D Magic. Our work is distinct from theirs
and consists of software that can be used to implement that methodology, as well as others, in a more
automated fashion. While the methodology predates our work, both are unfortunately called 3-D Magic in
the literature.
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In 3-D Magic, we adopt a previously-developed user interface design in which several key

issues were delineated for a technology-specific circuit editor [671. We must also consider

these issues for the technology-flexible design tool we wish to produce. For example, it is

desired that the tool be able to handle an arbitrary number of device layers in a single 3-D

design. This may be addressed in one of two ways: the entire design may be managed as

a single unit with some number of co-dependent views, or the design may be handled as a

collection of individual device layers with their corresponding traditional views. Since the

easiest transition for a designer is to use conventional 2-D circuit views, it is only natural

that the design and user interface be partitioned into individual wafers.

Thus, we seek to implement a 3-D IC layout as a collection of designs for the individual

wafers. The wafer designs are associated within 3-D Magic by the issuing of a command to

the interface that tells the tool which other design is mated to the actively-edited design,

and to which side the bond occurs. Once bonded, the 3-D IC's inter-wafer interconnects are

represented in the interface as conventional vias; however, we extend Magic to automate

the display of the designed via connectivity over all wafers spanned by the via.

Figure 2-9 shows two windows in which a two-wafer design is being laid out. The row-

aligned square pads represent inter-wafer vias.5 In 3-D Magic, once two wafers are bonded

into a 3-D IC design, the user interface automates the display of inter-wafer vias across

all relevant wafers. Each design window shares a global coordinate system used to align

inter-wafer vias across the design. When a designer places an inter-wafer via on a wafer of

a bonded pair, the interface indicates a hint on the corresponding wafer. The designer then

paints the corresponding metallization on that wafer.

2.8.2 Circuit Issues

In addition to determining how to visualize and manage design information for a 3-D IC, we

must also provide specific circuit functionalities. We will address LVS, DRC, and parasitic

extraction issues here.

Layout-versus-schematic information is provided to the designer through an extension

to the Magic "selection" feature. In Magic, the user may select portions of the layout and

ask the interface to identify the electrical node (i.e. all connected layout) to which the

5 The alignment is a product of the standard-cell design methodology; in general custom circuits, these

vias may be placed arbitrarily.
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Figure 2-9: Screen shot of 3-D Magic exhibiting a two-wafer circuit layout.
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selected portion belongs. If empty space is selected, the interface will identify the hierarchy

of cells containing the selected point. For 3-D IC design, the ability to select electrical

nodes that span multiple wafers is critical since these nodes are separated over multiple

design windows. This feature is not available in methodology-only design flows that use

conventional design tools. In Figure 2-9, the wire outlined in white is a selected electrical

node that spans two wafers.

Three-dimensional integration also presents unique design-rule issues. The primary issue

is one of alignment: as our system separates design information according to device layer,

it is important to provide immediate feedback, should a designer place inter-layer contacts

that do not align exactly.

Two features that are not handled by methodology-only flows are circuit connectivity

and parasitic extraction. For parasitic analysis, one desired aspect is the capability for

whole-circuit extraction: it is useful for the layout editor to be able to produce this with-

out user intervention, rather than requiring the user to ensure that all inter-layer contact

points carry the same electrical labels. Another aspect is the ability to determine parasitic

interactions between the inter-layer interconnects and other structures in the circuit. In 3-D

Magic we provide both parallel-plate capacitance extraction data (e.g. for cases in which

the contact is formed by bonding of two copper pads) and a lumped-parameter interface.

This lumped parameter interface allows the designer to substitute a parameterizable model

for the inter-layer interconnect, so complicated structures such as solder-bump bonds can

be laid out using via-type paint layers.

In the next section, we detail the extensions we make to Magic's internal data represen-

tation to support the above functionality.

2.8.3 Data Representation

In Magic, the internal representation of a single-wafer circuit is stored in a data structure

called a CellDef. To extend a CellDef for integration of multiple wafers, we incorporate

bonding information. Specifically, for each CellDef, we define a pointer up that links to

the CellDef bonded to the front side (i.e. metallization side) and a pointer down that

links to the back side (i.e. substrate). We also define two pointers, prev and next, with the

condition that in a stack of bonded wafers, all next pointers point in the same direction and

all prev pointers point in the reverse direction. The prev and next pointers thus may be
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Figure 2-10: Bonded stack of CellDef structures with up and down pointers for front-side

and back-side bonding contacts and prev and next pointers for stack traversal.

used to traverse the entire stack, while the up and down pointers are used for bond-specific

actions such as the graphical rendering of inter-wafer vias. Figure 2-10 depicts the CellDef

setup.

Two CellDef structures are bonded by issuing a :bond instruction to 3-D Magic's

command module. The command-line arguments specify whether the bond is flipped (i.e.

face-to-face) or notflipped (i.e. face-to-back). The up and down pointers are set accordingly.

If either or both structures is part of a pre-existing 3-D stack, the prev and next pointers

are aligned such that they point in the same physical direction for both stacks. In case of

user error or reconsideration, the :unbond command is also provided.

Specific information concerning the 3-D integration technology is provided via extensions

to Magic's technology file format. This information is supplied in three sections. The first

two are the extract and drc sections. In the extract section, parasitic coupling informa-

tion for 3-D interconnects is provided in the same manner as for conventional metallization.

The drc section incorporates a new rule, exact overlap_3D, which specifies that the listed

contacts must overlap exactly if any overlap exists. The third section, contact3D, is new:

it specifies the inter-wafer contacts and the side (e.g. front side or back side) to which these

contacts connect.

Electrical-node selection has been implemented by redesigning the architecture of Magic's

select module. Conventional Magic implements a buffer called SelectDef into which the

edit cell can be copied and manipulated. In 3-D Magic, a tree of SelectDef cells, indexed by

cell name, is managed. The selection operations have been modified to traverse 3-D-bonded

CellDef trees.

Similarly, the extract module has been re-architected to incorporate the spanning of
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Figure 2-11: Bottom wafer of a two-wafer class-E amplifier designed by Wei-Han Huang
and Vivian Lei.

CellDef trees. The extraction of a 3-D bonded stack, as opposed to the extraction of a

single wafer in the stack, may be executed by issuing the :extract stack command.

2.8.4 Sample Layouts Using 3-D Magic

3-D Magic has been used to design a number of circuits. We present two of them here

to illustrate the capabilities of the software. Complete usage information for 3-D Magic is

provided in Appendix A.

Class-E Amplifier

Students Wei-Han Huang and Vivian Lei designed a CMOS class-E power amplifier with

multiple tuning frequencies [68]. This design was laid out in a hypothetical 0.25 pLm 3-D

process with five metal layers. Figure 2-11 shows the layout of the bottom wafer, containing

the analog amplifier circuitry for 13.5 MHz and 1.9 GHz implementations. The top-wafer

layout, shown in Figure 2-12, contains digital and analog control circuitry. The per-wafer

chip size is 377 pLm x 444 [Lm.

The power efficiency for the two layouts was evaluated. Figure 2-13 shows that a two-

wafer implementation improves the efficiency of the 1.9 GHz amplifier from 20% to 30%.
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Figure 2-12: Top wafer of a two-wafer class-E amplifier designed by Wei-Han Huang and

Vivian Lei.

Additionally, crosstalk on the long control lines in the digital selector subcircuit on the top

wafer was evaluated. Figure 2-14 shows that this crosstalk can be reduced significantly.

Four-Bit Analog-to-Digital Converter

Students Elizabeth Basha, Katie Butler, and Patrick Griffin designed a four-bit analog-to-

digital converter (ADC) [69]. This ADC was designed and laid out in a hypothetical 0.25

m 3-D process with three metal layers. Figure 2-15 shows the block architecture for this

ADC, and Figure 2-16 exhibits the final layout of the two-wafer design. The per-wafer chip

size is 144 xm x 180 Rm.

The design was compared to a reference single-wafer design to determine the substrate

noise characteristics. A heavily-doped substrate model was used; the students computed

the ratio of signal to noise and distortion (SNDR) and thus the effective number of bits

(ENOB) for the ADC. Figure 2-17 shows the SNDR for both layouts, and Table 2.2 gives

the ENOB.
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Figure 2-13: Power efficiency of the 1.9 GHz amplifier in 2-D (o) and 3-D (*) implementa-

tions. Total power is given in third curve (A).
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Figure 2-14: Crosstalk on adjacent multiplexer lines in the selector subcircuit of the 1.9

GHz amplifier, in 2-D (A) and 3-D (*) cases, as a function of separation distance.

signal range

0.25 V 0.5V 1 V 2 V
2-D 2.7290 3.5512 3.8737 3.8950
3-D 2.9634 3.7797 3.9652 3.9599

Table 2.2: Effective number of bits (ENOB) for 2-D and 3-D implementations of the ADC.
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Figure 2-15: Block diagram for a four-bit ADC designed by Elizabeth Basha, Katie Butler,

and Patrick Griffin.

Figure 2-16: Top wafer (left) and bottom wafer (right) of the two-wafer ADC designed by

Elizabeth Basha, Katie Butler, and Patrick Griffin.
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Figure 2-17: Signal-to-noise-and-distortion ratio (SNDR) for 2-D and 3-D implementations

of the ADC.

2.9 Summary

In this chapter, we described our design flow for 3-D integrated circuits. The design of this

flow and the tools used therein was motivated by a consideration of all stages of the conven-

tional 2-D design flow. In our review of these stages, we determined when both awareness

of 3-D integration technology was beneficial or necessary and when the requirement for 3-D

integration might motivate algorithmic choices.

As a result, we have developed two CAD tools. PR3D is a design tool for the placement

and global routing of 3-D standard-cell circuits. It is the first tool for such circuits that has

been developed from scratch and can produce tape-out information suitable for fabrication.

3-D Magic is a layout editor for 3-D ICs. It is the first tool usable for mask design and

verification for 3-D ICs of arbitrary technology. With 3-D Magic, it is possible to utilize

the features of a 3-D integration technology by means that are familiar to designers of

conventional circuits. Tools such as LVS, DRC, and parasitic extraction have been extended

to treat 3-D ICs in the same manner that conventional ICs are treated. In particular, the

versatility and usefulness of this tool was demonstrated by two layout-based case studies of

circuit performance in 2-D and 3-D integration.

In the following chapters, we put these tools to use. By placing and routing various

circuits using PR3D, we determine the extent to which three-dimensional integration can

be beneficial.
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Chapter 3

Wire-Length Performance of 3-D

Integrated Circuits

3.1 Previous Work on 3-D IC Analysis

In anticipation of the development of functional three-dimensional integration technologies,

several research endeavors were undertaken to predict the utility of 3-D integration for

various types of circuits [8,30, 70-75]. The underlying approach in all such endeavors has

been the same: Given some basic technology assumptions, a mathematical model of a class

of circuit networks is formed that can be used to compare the performance of 2-D and 3-D

layouts of the various circuits. For example, a digital circuit consisting of a set of logic

gates and associated wires may be modeled as a graph, in which graph nodes correspond to

gates and graph edges correspond to interconnects. 1 A mapping of the graph into a circuit

substrate is then determined. The graph nodes are assigned unit dimensions, from which

area and wire-length estimations can be made.

Initial research focused on the embedding of classes of circuits into general graph topolo-

gies, which could be optimized for 2-D or 3-D integration [70,72,73]. For example, N-node

2-D grids, 3-D grids, binary trees, and fat trees were considered (Figure 3.1 shows a typ-

ical fat-tree). The substrate was modeled as a planar grid (for 2-D) or a 3-D grid with

infinite extent in all dimensions. Optimal embeddings of the above networks into these

two substate models were then determined. Using this methodology, several regular circuit

'Multi-terminal interconnects are typically modeled using collections of two-terminal edges (such as

completely-connected or star-graph models), the details of which are not directly relevant to this discussion.
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Figure 3-1: N-leaf planar fat-tree network exhibiting O(VK) bisection bandwidth.

topologies were shown to be improvable using 3-D integration. For example, an N-point

Fast Fourier Transform (modeling a single element of the butterfly network as a graph

node) can be implemented in area O(N 3 / 2 ) with the longest wire of length O(N 1 / 2 ) in

the above 3-D technology. The same circuit requires Q(N 2 ) area with the longest wire of

length Q(N/ log N) in two dimensions. A general N-node circuit requiring A area in two

dimensions may be implemented in area nA1 / 2 using three.

Obvious limitations exist in the modeling aspects of this approach. First, the 3-D

technology is modeled as an infinite grid. However, many otherwise useful 3-D integration

technologies are not arbitrarily scalable in the third dimension. This method does not have

the capability to model a technology with a fixed number of device layers; specifically, since

the model studies order-of-magnitude performance as a function of circuit size, it predicts

zero improvement in cases in which the number of layers is fixed. The relevant performance

increases due to 3-D integration are obtained in the constants hidden by order-of-magnitude

analysis.

Second, the graph representation of circuits does not permit an accurate modeling of

interconnect. Circuit wires are not specifically modeled in the mapping of a graph into

a substrate; instead, a planar graph superset (such as the fat tree in Figure 3.1) is used,

in which dummy nodes represent non-adjacent logic-gate connections. From a technology

perspective, this model may be used to represent technologies with one or two metal routing

layers (prevalent at the time that the model was introduced). Furthermore, in the case most

favorable to interconnect, in which only leaf nodes are used for logic gates, the available
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bisection bandwidth (number of wires or graph edges that intersect a bisection of a subgraph

or subcircuit) grows as O(N1/ 2 ), where N is the number of logic gates in the subcircuit.

However, Landman and Russo observed that in general, an empirical relationship exists

between the number of logic components in a subcircuit and the number of I/O terminals

needed to connect to the subcircuit that may be expressed as

T = kNP. (3.1)

This is known as Rent's rule [76], and the parameters k and p, known as the Rent coefficient

and Rent exponent respectively, are properties unique to a given circuit. In a typical circuit,

1/2 < p < 1, such that even the fat-tree topology is not sufficiently scalable. (This can in

fact be seen as a condemnation of 2-D technologies with a fixed number of metal layers, since

the scalability of such technologies is also O(V/-N). The interconnect bottleneck associated

with large circuits in a 2-D technology is a consequence of this phenomenon.)

Thus, a large class of analytical models is based on Rent's rule [8, 30, 74, 751. Rather

than attempt to determine a physical mapping of a graph topology into a substrate, these

models use stochastic (statistical or probabilistic) methods of determining the locations of

logic gates and the distribution of wires. Given a circuit with a distribution of N logic gates

over an area A, the number of wires of length 1 in the circuit is predicted by

f (l) = q(l)D(l), (3.2)

where D(l) is the number of valid two-terminal wire locations (a wire location is specified by

the locations of the terminals) and q(l) is the occupancy distribution (the probability that a

location is occupied by a wire) [77]. For technology independence, values of I are typically

given in units of gate pitches, where one gate pitch is the width of a (hypothetically square)

single logic gate. The models cited above differ in the means used to determine q(l) and

D(l), but all of them utilize Rent's rule in the derivation of q(l). These models may be

categorized as either hierarchical (where the algebraic form of q(l) is dependent on 1) or

non-hierarchical.

Our goal is to determine the extent to which circuit performance can be improved by

three-dimensional integration with as little a priori information as possible. Therefore, we

seek to use as generic a model as is available; in particular, we avoid some hierarchical

73



t z N

2 5

t X 
<

Figure 3-2: Schematic representation of the derivation of occupancy distribution: Na = 1

is the logic gate in question, N, is the number of target logic gates at Manhattan distance

1 gate pitches, and Nb is the number of logic gates in between. tX, tv, and t, are the gate

width, height, and inter-layer thickness, respectively, in micrometers. (Figure courtesy A.

Rahman.)

approaches tailored for modeling the specific top-down algorithm used for actual circuit

placement. In other words, while models may exist that more accurately predict the result

of our 3-D placement engine, we do not wish to confine our analysis to the determination

of what is possible within our placement tool.

Therefore, in the following sections, we examine a specific type of non-hierarchical model:

the Rahman model for 2-D and 3-D integrated circuits. We adapt this model for use with

standard-cell circuits, with the primary purpose of comparing the predictions of the model

with measurements from circuits placed and routed using PR3D.

3.2 The Rahman Model

3.2.1 Derivation

The model of A. Rahman for three-dimensional integrated circuits [8] of which we give a

derivation here is based on the model of J. Davis for conventional integrated circuits [78].

In this model, the wire-length distribution is given by

f3D (1) = q3D(1)M3D () - (3.3)
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The occupancy distribution, q3D (l), is computed from an interconnect distribution

1 1) T aek

I3D(l) Ta-*c - [(N + Nb)P + (Nb + Nc)P - NbP - (Na + Nb + Nc)P], (3.4)

where '3D is the estimated number of interconnects between a pair of gates separated by

distance 1. This is determined by computing the total number Ta-c of length-i interconnects

from a given gate a (i.e. Na = 1) and dividing by the number of gates Nc at distance l from

gate a. Ta-c is computed using Rent's rule, where Nb is the number of gates separating

gate a from the N, gates at distance 1, and k, p, Na, and Nc are defined as before; a, equal

to 'o where f.o. is the average fan-out, is used to avoid multiple-counting. Figure 3.2.1

shows how Na, Nb, and Nc are enumerated.

Given the total number of interconnects in a circuit, Itot, the occupancy distribution

may be computed as

q3D(l) = FI3D(1), (3-5)

where F is a normalization constant such that

lmax,3D

hot =I7 1 I3D(1)- (3.6)
l=0

In the Rahman model, the number of pairs M3D(l) of gates separated by distance l is

calculated as a summation of the Davis-model M2D(l) over the various device layers. For

conventional integrated circuits, the Davis model specifies that

13 - limax 2ma
M2D (1) = ,max + (3.ax) 1 1 < max/2

S(lmax - 1) 3  imax/2 l < imax

where imax is the maximum length of a 2-D (single-layer) wire in gate pitches. Given

M2D(l), we may compute

N;-1

M3D(l) MD(l - itz)u(l - itz), (3-8)
i=0

where u is the unit step function, Nz is the number of device layers, tz is the inter-layer

thickness (expressed here in units of gate pitches), and fi are constants that depend on the

number of device layers and the range of inter-layer interconnects [8]. (For the purposes of
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this analysis, we assume that there is no restriction on the number of device layers that an

inter-layer interconnect may span.)

The wire-length distribution for a given circuit may thus be computed as

f3D(1) = I3D(l)M3D(1). (3.9)

3.2.2 Adaptations for Standard-Cell Circuits

For a given circuit, f3D(l) (1 in gate pitches) depends on the fan-out, Rent parameters k and

p, number of layers N, and the physical extent of the circuit 1 max. The value of 'max in gate

pitches may be expressed as the square root of the number of gates on a single layer. Also,

the normalization constant IF depends on the total number of interconnects, Itot. Finally, in

order to express the distribution as a function of 1 in meters or micrometers, the dimensions

of the individual gates must be known, as well as the thickness tz of individual layers.

Rent Parameters

Rent parameters for a given circuit are traditionally determined by recursive partitioning of

the circuit netlist. However, it has been shown that a similar version of the Rent parameters

can be derived from placement. Furthermore, Rent parameters from placement are believed

to reflect more accurately the distribution of wires and the quality of placement. Indeed,

wire-length estimation for 2-D circuit placements using placement-based Rent parameters

is more accurate [79].

There are two generally-accepted methods of computing the Rent parameters. In both,

gate and terminal counts are computed for sub-modules of the circuit at various levels

of hierarchy [76]. The Rent coefficient and Rent exponent that provide the best fit to

the data may then be found simultaneously [79]. This method typically produces a Rent

coefficient that differs from the average number of terminals per gate. Alternatively, the

Rent coefficient may be computed through the use of its definition as the average number

of terminals per gate; the Rent exponent that best fits the data is found using this Rent

coefficient. We use the latter method, as the predictive model assumes this value for the

Rent coefficient.

It is expected that the greater number of nearest neighbors available to transistors in

3-D integrated circuits will lead to a shift in the wire-length distribution towards local wires
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and a reduced need for inter-partition interconnects at any fixed partition size. In other

words, the Rent exponent derived from a 3-D placement of a given circuit is expected to be

less than that derived from a 2-D placement: For a given circuit,

Ppartition < Pn+1 < Pn <P1, (3.10)

for modest values of n. (Ppartition denotes the Rent exponent derived from partitioning, and

pi is the Rent exponent derived from a placement using i device layers.)

As our goal is to evaluate the Rahman model as an a priori estimation tool for circuits

for 3-D integration, we utilize the Rent parameters extracted from partitioning and 2-D

placement.

Circuit Dimensions

In standard-cell circuits, the gates and low-level modules are synthesized as rectangular cells

of a fixed height and variable width. The die area is specified a priori as a fixed number

of rows with a fixed height and width and fixed inter-row spacing (i.e. a fixed-die context).

For 3-D ICs, we preserve the fixed-die context by scaling the number and width of rows by

the square root of the number of device layers to maintain constant area for cell placement.

To determine the gate count and gate pitch, we use the size of the narrowest cell as the

unit gate. The gate count is equal to the total cell width divided by the width of the unit

gate. The horizontal and vertical gate pitches are given by the width of the unit gate and

the row-to-row pitch respectively.

The layer-to-layer thickness t, is given by the technology. In a wafer-bonded circuit, for

example, t, may be as low as a few micrometers. If a solder-bump interconnect interface

is used, the thickness may not increase appreciably, but the capacitance of inter-wafer

interconnects may increase by as much as an order of magnitude. For MCM-V packages, the

average die-to-die interconnect length scales with the die size. Thus, tz may be determined

as a function of electrical parameters (or other parameters) of the inter-layer interconnect,

rather than strictly as the distance between device layers.
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QPlace Dragon Capo our placer

ibm0l-easy 0.59 0.58 0.56 0.56
ibm0l-hard 0.59 0.56 0.56 0.55
ibm02-easy 1.59 1.54 1.55 1.56
ibm02-hard 1.57 1.44 1.52 1.59
ibm07-easy 3.79 3.55 3.73 3.63
ibm07-hard 3.66 3.32 3.60 3.59
ibm08-easy 3.97 3.66 3.94 3.96
ibm08-hard 3.78 3.41 3.77 3.83
ibm09-easy 3.45 3.10 3.18 3.20
ibm09-hard 3.25 3.07 3.23 3.16
ibml0-easy 6.47 6.00 6.26 6.16
ibml0-hard 6.28 5.97 6.35 6.12
ibml-easy 5.15 4.78 4.99 4.96
ibml-hard 4.97 4.55 4.99 4.81
ibm12-easy 9.31 8.54 8.65 8.85
ibm12-hard 8.53 8.46 8.35 8.30
dev. from avg. +3.2% -3.5% +0.4% -0.1%

Table 3.1: Performance of our placer and other state-of-the-art
2.0 circuit benchmark set. Wire lengths are in meters.

placers on the IBM-PLACE

3.3 Analysis of 3-D ICs: Model vs. PR3D

3.3.1 Calibration

Having described the Rahman system-level interconnect model and adapted it for standard-

cell circuits, we now evaluate our candidate 3-D technology using both the model and our

3-D IC placement and routing tool, PR3D. We first calibrate PR3D against some leading-

edge placement tools for conventional ICs: Cadence® QPlace@, Dragon [80], and Capo

MetaPlacer [47]. Table 3.1 shows the placement results for the four tools on the IBM-

PLACE 2.0 benchmark set. The benchmark circuits and placement data for the external

tools were obtained from Yang et al. [81]. We observe that PR3D is competitive with

state-of-the-art placement tools for conventional standard-cell circuits.

3.3.2 Verification of the Rahman Model

The most straightforward way to ascertain the accuracy of the Rahman model is to make

predictions for a set of circuits and then compare them to actual layout data. Using PR3D,

we have placed and routed the eight largest circuits from the ISPD '98 benchmark suite [82]

using one through five device layers for each circuit. Table 3.2 gives the relevant data for
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Rent Rent Rent Rent
circuit # cells # nets k p (1) p (2) p (3)
ibml 68119 67016 3.48 0.662 0.753 0.692
ibm12 69026 67739 4.26 0.685 0.755 0.715
ibm13 81018 83806 3.67 0.677 0.764 0.665
ibm14 145492 143202 3.51 0.689 0.787 0.719
ibm15 157861 161196 3.99 0.669 0.766 0.667
ibm16 181633 181188 4.16 0.675 0.765 0.705
ibm17 182359 180684 4.55 0.694 0.759 0.725
ibm18 210051 200565 3.89 0.671 0.741 0.707

Table 3.2: Cells of the ISPD '98 benchmark suite used in this study.
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Figure 3-3: Predicted wire-length distribution for the ibm14 benchmark

layer pitch t, of 1 micrometer.
circuit with inter-

these benchmark circuits. We provide the Rent exponent from partitioning and calculations

using both placement-based methods described above. The value (1) is the Rent exponent

from partitioning, value (2) is used in the model, and value (3) is computed using the same

method as Yang et al. [79].

Figures 3-3 and 3-4 show that the basic mechanism underlying the Rahman wire-length

predictions is sound: the predicted wire-length distribution as a function of number of device

layers (Figure 3-3) matches well with the data from placement (Figure 3-4). Increasing the

number of device layers does shift the distribution leftward, yielding more local wires and

fewer global and semi-global wires. There are some discrepancies, however, that will be

discussed.
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Figure 3-4: Placed wire-length distribution for the ibm14 benchmark circuit with inter-layer

pitch tz of 1 micrometer.

Figures 3-5 through 3-8 show data from the benchmark circuits. Figures 3-5 and 3-6

compare the total wire length of these circuits as predicted by the Rahman model and the

total wire length of the circuits obtained by placement and routing, assuming an inter-layer

pitch of 1 (i.e. assuming that an inter-layer via is equivalent to 1 micrometer of metal wire).

In Figure 3-5, the wire lengths are normalized to the 2-D placement case and averaged

over all eight circuits. Figure 3-6 shows the same data in which all wire-length curves

are normalized to their 2-D cases, to demonstrate how the model predicts the percentage

reduction in total circuit wire length as a function of number of device layers.

Similarly, Figures 3-7 and 3-8 compare the prediction of the Rahman model to the

placement and routing outcomes for the same circuits, but where an inter-layer pitch of 250

is used (i.e. where an inter-layer via is equivalent to 250 micrometers of metal wire).

It can be seen that the Rahman model is fairly accurate in predicting how 3-D integration

affects the wire lengths of circuits. We observe in Tables 3.3 and 3.4 that the wire-length

predictions using the 2-D placement Rent exponent are within approximately 20% of the

wire lengths obtained from placement as well as global routing. As expected, we find

that the Rent exponents from 2-D placement more accurately reflect the character of the

3-D placements than the Rent exponents from partitioning, because of the use of terminal

propagation in both 2-D and 3-D placement algorithms. The model and the placement and

routing data thus show that 3-D integration provides useful benefits for digital circuits: a
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Figure 3-5: Predicted vs. placed and routed wire lengths of the average benchmark cir-

cuit. Wire length is given relative to the 2-D placed wire length. Inter-layer pitch t, is 1
micrometer.
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Figure 3-6: Predicted vs. placed and routed wire lengths of the average benchmark circuit.

Wire length is normalized to exhibit the percentage reduction due to 3-D integration. Inter-

layer pitch t, is 1 micrometer.
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3
number of device layers

Figure 3-7: Predicted vs. placed and routed wire lengths of the average benchmark circuit.

Wire length is given relative to the 2-D placed wire length. Inter-layer pitch t, is 250

micrometers.

3
number of device layers

Figure 3-8: Predicted vs. placed and routed wire lengths of the average benchmark circuit.

Wire length is normalized to exhibit the percentage reduction due to 3-D integration. Inter-

layer pitch tz is 250 micrometers.
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one two three four five

tz = 1 21.2% 19.1% 21.3% 20.0% 18.6%

tz = 250 21.2% 20.9% 20.1% 19.1% 20.1%

Table 3.3: Absolute prediction error relative to placed wire length as a function of number

of device layers and inter-layer thickness.

one two

tz = 1 17.4% 17.0%

tz = 250 18.2% 18.1%

three four five

17.8% 18.1% 17.9%
20.1% 22.5% 21.8%
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Table 3.4: Absolute prediction error relative to routed wire length as a function of number

of device layers and inter-layer thickness.

reduction in total wire length of up to 28% using two device layers to 51% using five is

possible.

However, there are discrepancies. Figures 3-3 and 3-4 show that the model tends to

underestimate the number of medium-length wires while overestimating the number of

global wires. It is believed that this discrepancy arises from the assumption within the

model that the gates are laid out in a square array, whereas in actual placements, the aspect

ratio may deviate from unity. Additionally, the use of a constant fan-out, independent of

wire length, may affect the predicted distribution.

Another small discrepancy shows itself in the prediction of percentage reduction in wire

length (Figures 3-6 and 3-8). It is not clear, however, whether the error lies in strictly

two-dimensional aspects of the model, the extension to 3-D or both.

Therefore, we examine the percentage of interconnects that span multiple device layers.

Figure 3-9 shows that placements with a high inter-layer pitch use less of the available inter-

layer bandwidth. However, within the Rahman model, the division of interconnects into 2-D

(10M2D(l)) and 3-D (Z g-1 IiM 2 D(-itz)u(l-itz)) components is less strongly dependent

on the number of wafers. This error may possibly be explained by the computation of

M3D(l)-

We conjecture that Oi should be a function of tz. In practice, the coefficients Oi are set

discretely, based on the range of inter-layer interconnects. Specifically, for 0 < i < rmax,

,i = 2(Nz - i), where a third-dimension wire is permitted to span at most rmax device

layers; for all other i > 0, 3i = 0. (We have assumed that rmax = Nz - 1, i.e. that an

inter-layer interconnect may range over all device layers.) 3 i is thus independent of tz. In

contrast, our placement tool adjusts the point of partitioning into device layers (and thus
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Figure 3-9: Predicted percentage of interconnects that span multiple device layers, compared

with placement and routing data for tz = 1 and t, = 250.

the density of inter-layer interconnects) based on t, to minimize wire length. It is not clear,

however, how one may determine a priori the dependence of fi on t,.

Nevertheless, Figures 3-5 through 3-8 show that the Rahman model is a valid extension

of the Davis model to 3-D integrated circuits. It proves useful for determining system-level

performance characteristics of circuits that are targeted for 3-D integration.

3.3.3 Further Analyses via PR3D

Having a placement and routing tool for three-dimensional integrated circuits immediately

makes two studies possible. First, we may make wire-length predictions as described in

Section 3.3.2, but with inherently greater accuracy than is available with computational

models. Second, we may make analyses in the areas in which the above models are less

reliable.

In the first study, we analyze the placement and routing of benchmark circuits. As

before, the two independent variables of interest are the number of device layers and the

parasitic capacitance associated with the inter-layer interconnect. Figure 3-10 shows the

total wire length, determined from placement, of the average circuit as a function of the

number of device layers. Figure 3-11 shows the results of the same study done for routing.

We observe that for a conventional, 2-D placement, a 27% to 51% reduction in total wire

length is possible by using two to five device layers, respectively. Furthermore, the four
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Figure 3-10: Total wire length (as a function of number of device layers) for various inter-

layer via capacitances, obtained from placement. Total wire length is minimized by the

placement tool. Via cost is the via capacitance expressed relative to the capacitance of one

micrometer of metal wire.

curves in each figure show quantitatively how the benefit of 3-D integration decreases as the

inter-layer via capacitance is increased. This result dictates the degree to which performance

tuning of the technology is required.

For the purpose of comparison with future CAD tools for 3-D ICs, we provide the full

placement and routing data for this analysis in Table 3.5.

Our second analysis concerns the study in which we minimize the number of inter-layer

vias. This analysis cannot be done accurately with current models, as the use of inter-layer

vias by placement and routing is not yet well-understood from a theoretical standpoint

(see Figure 3-9). However, using PR3D, we may ascertain what performance improvements

can be obtained if we desire to avoid the use of inter-layer vias whenever possible. This

situation may arise if, for example, alignment tolerances necessitate large via-to-via pitch

for an otherwise low-parasitic via, or if larger interconnects such as solder bumps are used.

Figures 3-12 and 3-13 demonstrate that this approach is not substantially beneficial.

Total wire length may be reduced by only 7% to 17% using two to five device layers. How-

ever, when compared with Figures 3-10 and 3-11, performance improvement in Figures 3-12

and 3-13 is more immune to inter-layer capacitance variation.

Figures 3-14 and 3-15 show the length of the longest wire from the same two analyses.

We observe that this wire may be reduced by up to 31% to 56% in length. Additionally,
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Figure 3-11: Total wire length (as a function of number

layer via capacitances, obtained from routing. Total wire

tool. Via cost is the via capacitance expressed relative to

of metal wire.
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one wafer two wafers three wafers

placed routed placed routed placed routed

ibm0l 5.70e6 7.13e6 4.12e6 28% 4.89e6 31% 3.62e6 36% 4.23e6 41%

ibm02 1.49e7 1.93e7 1.11e7 25% 1.41e7 27% 9.22e6 38% 1.13e7 41%
ibm03 1.43e7 1.78e7 1.01e7 29% 1.23e7 31% 8.77e6 39% 1.02e7 43%

ibm04 1.82e7 2.29e7 1.32e7 27% 1.56e7 32% 1.10e7 39% 1.29e7 44%

ibm05 4.00e7 5.34e7 3.11e7 22% 3.95e7 26% 2.79e7 30% 3.47e7 35%
ibm06 2.23e7 3.00e7 1.63e7 27% 2.12e7 29% 1.35e7 40% 1.68e7 44%
ibm07 3.57e7 4.48e7 2.59e7 27% 3.02e7 33% 2.10e7 41% 2.43e7 46%
ibm08 3.89e7 5.06e7 2.85e7 27% 3.58e7 29% 2.32e7 40% 2.86e7 43%
ibm09 3.15e7 3.90e7 2.25e7 29% 2.63e7 32% 1.89e7 40% 2.21e7 43%
ibml0 7.05e7 8.38e7 5.03e7 29% 5.91e7 30% 4.20e7 40% 4.91e7 41%
ibmIl 4.87e7 5.89e7 3.60e7 26% 4.21e7 29% 3.05e7 37% 3.54e7 40%
ibm12 8.15e7 1.01e8 5.97e7 27% 7.22e7 29% 5.30e7 35% 6.67e7 34%
ibm13 5.93e7 7.34e7 4.28e7 28% 5.23e7 29% 3.62e7 39% 4.33e7 41%
ibm14 1.38e8 1.69e8 9.90e7 28% 1.19e8 30% 8.12e7 41% 9.70e7 43%
ibm15 1.50e8 1.85e8 1.11e8 26% 1.35e8 27% 9.03e7 40% 1.09e8 41%
ibm16 1.97e8 2.51e8 1.46e8 26% 1.80e8 28% 1.19e8 40% 1.45e8 42%
ibm17 3.00e8 3.73e8 2.09e8 30% 2.54e8 32% 1.79e8 40% 2.18e8 42%
ibm18 2.16e8 2.70e8 1.54e8 29% 1.86e8 31% 1.30e8 40% 1.53e8 43%
avg. 27% 30% 39% 41%

four wafers five wafers

placed routed placed routed

ibm0l 3.16e6 45% 3.66e6 49% 2.96e6 48% 3.24e6 55%
ibm02 8.41e6 43% 1.03e7 47% 7.18e6 52% 8.72e6 55%
ibm03 7.37e6 48% 8.85e6 50% 6.93e6 52% 8.32e6 53%

ibm04 9.86e6 46% 1.18e7 48% 8.88e6 51% 1.05e7 54%
ibm05 2.50e7 38% 3.07e7 42% 2.31e7 42% 2.78e7 48%
ibm06 1.15e7 49% 1.44e7 52% 1.04e7 54% 1.24e7 59%
ibm07 1.88e7 47% 2.20e7 51% 1.68e7 53% 1.95e7 56%
ibm08 2.06e7 47% 2.51e7 50% 1.82e7 53% 2.22e7 56%
ibm09 1.68e7 47% 2.00e7 49% 1.51e7 52% 1.73e7 56%

ibmIG 3.83e7 46% 4.41e7 47% 3.34e7 53% 3.85e7 54%

ibmIl 2.66e7 45% 3.06e7 48% 2.50e7 49% 2.96e7 50%

ibm12 4.63e7 43% 5.56e7 45% 4.09e7 50% 4.83e7 52%

ibm13 3.22e7 46% 3.78e7 48% 2.92e7 51% 3.39e7 54%

ibm14 7.11e7 49% 8.41e7 50% 6.72e7 51% 7.99e7 53%

ibm15 8.02e7 47% 9.71e7 47% 7.22e7 52% 8.21e7 56%

ibm16 1.07e8 46% 1.33e8 47% 9.56e7 52% 1.16e8 54%

ibm17 1.57e8 48% 1.93e8 48% 1.42e8 52% 1.75e8 53%

ibm18 1.09e8 50% 1.31e8 51% 1.02e8 53% 1.21e8 55%

avg. 46% 48% 51% 54%

Table 3.5: Placement and routing data for the ISPD '98 benchmark suite. Wire lengths are

in tm. Percentages are reductions relative to the one-wafer case.
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Figure 3-16: Total wire length (as a function of number of device layers) of the ibm03 bench-

mark circuit, using vias vs. using flip-chip solder bumps for the inter-layer interconnect.

wire-length behavior.

However, since actual circuit layout is ultimately the most reliable source of data for

3-D IC performance, we used our design tools to conduct further analyses of 3-D ICs. We

found that total wire length may be improved by up to 27% to 51% using two to five

device layers, but that this improvement may be attenuated if the inter-layer parasitic is

increased. Similarly, we determined that the length of the longest wire in a given circuit may

be reduced by up to 31% to 56% using two to five device layers, and that this performance

increase is largely independent of inter-layer parasitic values.

In the following chapter, we analyze how these wire-length improvements affect more

directly relevant circuit metrics such as delay and energy. In addition, we examine other

important metrics such as thermal performance in 3-D ICs.
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Figure 3-14: Length of the longest wire (as a function of number of device layers) for various
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is the via capacitance expressed relative to the capacitance of one micrometer of metal wire.
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Figure 3-15: Length of the longest wire (as a function of number of device layers) for various
inter-layer via capacitances. The number of inter-layer vias is minimized by the placement
tool. Via cost is the via capacitance expressed relative to the capacitance of one micrometer
of metal wire.
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mark circuit, using vias vs. using flip-chip solder bumps for the inter-layer interconnect.

wire-length behavior.

However, since actual circuit layout is ultimately the most reliable source of data for

3-D IC performance, we used our design tools to conduct further analyses of 3-D ICs. We

found that total wire length may be improved by up to 27% to 51% using two to five

device layers, but that this improvement may be attenuated if the inter-layer parasitic is

increased. Similarly, we determined that the length of the longest wire in a given circuit may

be reduced by up to 31% to 56% using two to five device layers, and that this performance

increase is largely independent of inter-layer parasitic values.

In the following chapter, we analyze how these wire-length improvements affect more

directly relevant circuit metrics such as delay and energy. In addition, we examine other

important metrics such as thermal performance in 3-D ICs.
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Chapter 4

Performance Characteristics of 3-D

ICs

4.1 Overview

As stated in Chapter 1, interconnect performance in current and future technology gen-

erations is an increasingly dominant component of total circuit performance. Figure 1-1

shows that the delay of a medium-length wire is already beginning to exceed the delay of

a typical gate. This indicates that current architectures, organized around logic gates and

their devices, will not scale as required for future generations.

Similarly, Table 1.1 exhibits data for desired power consumption in future-generation

microprocessors. Using ITRS data for microprocessor clock frequency, power supply voltage,

total wiring per chip, and individual-wire feature sizes, and assuming an average zero-to-

one transition probability of 5% for each wire, we can estimate the total interconnect power

dissipation in a microprocessor at each generation. Figure 4-1 compares this estimate with

the desired total power consumption. Clearly, current design techniques will not produce

adequate solutions, and improvements in architecture and design methodology must be

brought to bear.

We have seen that three-dimensional integration offers significant improvement in circuit

wire-length metrics. For example, total wire length may be reduced by up to 27% to 51%

using two to five device layers, and the length of the longest wire may be reduced similarly by

up to 31% to 56%. However, timing and energy consumption are of more direct importance
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Figure 4-1: Power consumption for a high-performance microprocessor at various technology

generations.

in circuit design.

The cycle time of a custom circuit may be optimized at the logic synthesis, placement,

and routing stages of design. Topological optimizations can be performed during technology-

independent logic synthesis [83], as well as technology mapping [84]. After mapping, the

real work of timing optimization begins, as routing information becomes available to design

tools [85,86].

Similarly, the energy consumption of a custom circuit may be influenced at several stages

of the design process [87,88]. High-level architectural choices, such as block duplication and

the use of sleep signals, standard-cell selection involving various drive strengths, and the

use of specialized cells with multiple threshold and power-supply voltages all have been

proposed to tackle various aspects of the energy consumption problem. Energy must be

managed at every stage.

During placement, one of two priorities is typically seen: the best possible timing perfor-

mance is desired, or some minimum timing criterion must be satisfied. Energy optimization,

which may be the overall design goal, is usually performed secondarily since in most cases

there is no restrictive maximum-energy constraint.1

One expects that 3-D integration will provide benefits in both timing-driven and energy-

'This is not necessarily true in future technology generations, even for timing-optimized circuits, as

thermal considerations may result in global and local power constraints.

92



driven cases. In the timing-driven case, wires contribute to delay according to their resis-

tance and capacitance, both functions of length. Thus, wires along the most critical timing

paths must be shortened in order to enhance cycle time. In the energy-driven case, all wires

contribute to energy consumption through their capacitance and the rate at which they are

switched by the logic. Therefore, wires must be shortened in prioritized order according to

their switching rates.

In this chapter, we show how the above percentage reductions in total wire length and

length of the longest wire translate into reductions in cycle time and energy consumption. 2

We describe additional capabilities that we have added to PR3D, our placement and routing

tool, for optimization and constraint of delay and energy, and we use PR3D to analyze the

timing and energy performance of a set of sample circuits.

4.2 Tool Adaptations for Performance-Driven Design

We focus on the interconnect-related components of delay and energy consumption that

can be affected by placement-based optimization. At current technology nodes, switched

capacitance dominates the energy consumption of digital ICs. Furthermore, this capaci-

tance comes increasingly from wires. Since 3-D integration achieves a fundamental shift in

the distribution of wire lengths, an energy strategy that focuses on minimizing switched

capacitance will be useful for evaluating 3-D ICs. Placement is a natural stage at which to

perform this type of wire-length optimization. 3 Concurrently, timing optimization can be

performed using conventional methods [85,86,91-93].

Thus, we have implemented four modes of operation in PR3D:

" wire-length driven mode - this is the conventional mode of Chapter 2;

* timing-driven mode - placement is optimized for least cycle time;

* energy-driven mode - placement is optimized for least interconnect energy consump-

tion;

2 Prior works on the topic of energy consumption in 3-D ICs do exist [89,90]. However, these contain

several fundamental assumptions that have proved incorrect, such as (1) a restriction in 3-D ICs to two metal

layers per device layer, (2) the use of aluminum interconnect, and (3) only a minimal (25%) contribution

of interconnect energy to total energy dissipation. For these reasons, we believe that the topic of 3-D IC
performance characterization is an open issue.

3 Overviews of CAD techniques for energy optimization are presented by Devadas and Malik [88] and

Pedram [87].
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* timing-constrained mode - some metric (such as energy consumption) is optimized

under a supplied timing constraint.

As Chapter 2 describes, the core placement algorithm is refinement by recursive bisection

of the net list. Specifically, the circuit net list is represented by a hypergraph, with standard

cells becoming nodes and wires becoming hyperedges. The die area is partitioned recursively

into halves such that the number of nets crossing any partition is minimized [48].

To optimize energy performance, we extend the placement algorithm to include switching

activity. Specifically, the energy consumption of a net i is given by

E ( = N C1S + MJCJ VJD, (4.1)

where Ni is the number of 0-to-1 transitions, Ci, is the capacitance of the net to the

substrate, Cij is the coupling capacitance to net j, Mij is a Miller factor that accounts for

signal correlations between nets i and j, and VDD is the supply voltage. The switching

activity is given by the average number of transitions per unit time or per cycle.

Since the capacitance Ci, essentially follows the net length, the energy consumption

may be reduced by weighting each net according to its activity. We augment our placement

tool to minimize the weighted sum of the nets crossing a partition. Thus, nets with high

activity are less likely to be cut by a partition. This leads to high-activity nets being

very localized and therefore shorter and less capacitive. (The coupling capacitance Cij,

while important in computing energy consumption, is difficult to determine before routing

is complete. However, it is generally valid to assume that reducing the lengths of highly-

active wires will not lead to an increase in coupling-capacitance energy dissipation.)

At the same time, we also extend PR3D to manage timing performance during place-

ment. We utilize a combination of net-based and path-based approaches [91,92]. Separate

approaches are employed for timing optimization and for timing constraint.

For timing optimization, we use a standard path-based counting technique: We seek to

minimize both net cut and path cut during recursive bisection. Nets are weighted according

to the number of critical paths on which they lie. If a given path exceeds a fixed number of

path cuts, the nets on that path are prohibited from being cut further. 4

4 There exist further placement-based optimizations that may enhance interconnect-dominated circuit
timing characteristics. For example, repeaters may be inserted in long wires in order to reduce wire delay.
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Figure 4-2: Delay model for gates and wires.

Conversely, for timing-constrained optimization, delay is not a component of the cost

function. We therefore seek to minimize net cut weighted as in wire-length or energy-

optimized modes (i.e. unweighted net-cut or net-cut weighted by switching activity). How-

ever, we insert a timing-analysis step between partitionings; if any critical path exceeds

95% of its allotted delay, the nets on that path are prohibited from further cuts.

For delay calculation, we use an Elmore delay model as depicted in Figure 4-2 for a

two-point net. RO is the cell output resistance and R, is the wire resistance; C, is the cell

output capacitance, Cw is the wire capacitance, and CL is the load capacitance. Under this

model, the total delay is

rd = Ro (CS + CW +CL) + Rw + CL (4.2)

The RO component and output and load capacitances are determined using table data from

the cell vendor [37]. The wire resistance and capacitance are calculated with a scaled half-

perimeter metric. Specifically, the 3-D bounding box is utilized as in Chapter 2 to estimate

the total wire length of a net, but here the lateral dimensions are scaled by a resistance

or capacitance per-unit-length factor and the third dimension is scaled by the inter-wafer

interconnect resistance or capacitance.

4.3 Methodology and Circuits Under Test

To evaluate the effectiveness of our optimization methodologies, we placed and routed three

circuits. For each circuit, we obtained four layouts that correspond to the four operational

modes described in Section 4.2. The circuits were supplied in Verilog format, which we

Furthermore, the optimal number of repeaters for a given circuit decreases substantially if more than one
wafer is used [94]. However, at the current technology node, repeater insertion is necessary only for the
largest chips, and is not required for the circuits we study here. We will take into account repeater insertion
in Chapter 6, where we analyze 3-D integration in future technology nodes.
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number of cells number of nets layout area (2-D case)

FFT 7181 7969 442.86 km x 441.84 Jtm
DES 19673 20563 722.70 txm x 721.84 tm
MAC 26844 27246 978.78 pm x 978.32 km

Table 4.1: Relevant parameters for the circuits in this study.
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Figure 4-3: Cycle time of an FFT datapath using various placement modes.

compiled to cells with Synopsys Design Compiler. During this synthesis, we supplied De-

sign Compiler with the timing constraint that we subsequently used for energy optimization

by PR3D. We also assessed the activity factors of the nets in the design with Design Com-

piler by using a number of representative test inputs in gate-level simulation. The activity

factors were produced in SAIF format and imported into PR3D. Once layout was gener-

ated, extraction was performed on the layout, and the resulting transistor-level net list was

simulated using Synopsys NanoSim.

The three circuits tested are a Fast-Fourier-Transform (FFT) datapath circuit provided

by Alice Wang of MIT [95], a Data Encryption Standard (DES) cryptographic core obtained

from opencores .org [96], and a 64-bit multiplier-accumulator (MAC) from the ISPD '01

benchmark suite [93]. Table 4.1 provides relevant data for the circuits.

4.4 Timing Characteristics of 3-D ICs

Figures 4-3 through 4-5 exhibit the nature of cycle-time improvement with 3-D integration.

The impact of additional device layers on cycle time is dependent on the optimization
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Figure 4-4: Cycle time of a DES implementation using various placement modes.
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Figure 4-5: Cycle time of a 64-bit MAC using various placement modes.
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Figure 4-6: Energy consumption of an FFT datapath in timing-optimized vs. timing-

constrained placement.

mode. For example, while 50% of interconnect delay can be eliminated in energy-driven

cases using up to five wafers, with as much as a factor-of-three reduction in the MAC circuit,

the improvement can be as little as 30% in the timing-optimized case. This is due to the

fact that in a timing-optimized 2-D circuit, long wires are relegated to non-critical paths;

therefore, the impact of 3-D wire-length reduction on critical paths is less profound.

However, we can make two general observations. First, the improvement of secondary

metrics by 3-D integration is not to be ignored. We will show in Section 4.5 that similar

results are achieved for energy consumption in timing-optimized designs. This leads us to

conclude that in overall figure-of-merit measurements such as energy-delay product, 3-D

integration will yield significant benefits. Second, we observe that in the larger circuits,

the impact of 3-D integration on cycle time, even in timing-optimized designs, is greater.

It is likely that the larger interconnect structures in these circuits result in greater overall

performance improvements in 3-D.

4.5 Energy Characteristics of 3-D ICs

4.5.1 Energy Performance of the Conventional Circuits Under Test

To understand the impact of 3-D integration on circuit energy consumption, we must con-

sider the role of interconnect energy as a part of total energy dissipation. We must also

take into account the ability of timing-constrained energy optimization to improve the in-

terconnect energy consumption in conventional (2-D) circuits.

Figure 4-6 shows the energy consumption of the 32-bit Fast-Fourier-Transform (FFT)

datapath. In the graph on the left, switched-capacitance energy dissipation accounts for
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cycle time optimized (4.15 ns) (actual cycle time: 4.87 ns)
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Figure 4-7: Energy consumption of a DES chip in timing-optimized vs. timing-constrained
placement.

approximately 87% of total energy consumption, and cell internal energy makes up the re-

mainder. The switching energy consists of two parts. An estimated 43% is due to switching

at the cell inputs and outputs (i.e. gate and source/drain capacitances), and the remaining

44% is due to wires. This layout is optimized for cycle time.

The graph on the right shows the same circuit, but here the cycle time is constrained

to 12 ns, and energy is optimized by the placement tool. Although the cycle time is ap-

proximately 0.6 ns slower, it still meets the constraint. Furthermore, the wire component

of energy dissipation is reduced by 18%, thereby leading to an overall reduction of 8%.5

Figure 4-7 shows the energy consumption of the second circuit, an implementation of

the cryptographic Data Encryption Standard (DES). For this circuit, 76% of the total

energy dissipation of the timing-optimized layout (as seen in the graph on the left) is due

to switched capacitance. This 76% consists of 21% cell I/O switching energy and 55% wire

switching energy. The graph on the right shows that while the cycle time has increased by

approximately 0.7 ns (while still meeting the constraint), the interconnect energy dissipation

has been reduced by 26%, thereby leading to an overall reduction in energy consumption

by 15%.

Figure 4-8 exhibits the energy consumption of the third circuit, a multiplier-accumulator

(MAC). For this circuit, 88% of the total energy dissipation of the timing-optimized layout is

due to switching activity, where 21% represents cell I/O switching energy and 67% represents

5We have stated that the switching energy dissipation due to I/O FET capacitance is the same in both
graphs. The astute reader will observe that signal glitching should be different in the two circuits due to
differing path delays. As a result, the FET-capacitance switching energy and cell-internal energy should also
differ by a small amount. However, within the simulation framework, it is difficult to isolate the cell input and
output energy components from other components within the cell. Thus, we estimate the FET-capacitance
switching energy using glitch-free activity factors from behavioral simulation.
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wires. In contrast, in timing-constrained, energy-optimized mode, 18% of total energy is

saved with a minor amount of loss in cycle time. This savings represents 27% of the

interconnect energy dissipation of the timing-optimized case.

Circuit energy dissipation therefore consists largely of interconnect switching energy.

Furthermore, we can trade off cycle-time optimization for energy optimization even in 2-D

circuits. We now examine how these trade-offs scale as we add additional wafers.

4.5.2 Energy Optimization in 3-D

Figure 4-9 shows the manner in which the interconnect energy dissipation of the FFT

datapath circuit scales with the number of wafers. Four cases that correspond to the four

operational modes described in Section 4.2 are shown. In the timing-constrained, energy-
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Figure 4-10: Energy consumption of the DES chip vs. number of wafers used for placement.
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Figure 4-11: Energy consumption of the 64-bit MAC vs. number of wafers used for place-

ment.
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Figure 4-12: Energy-delay product for the FFT datapath vs. number of wafers used for

placement.

driven mode, the FFT datapath cycle time is constrained to 12 ns. We observe that in

this mode, we are able to reduce interconnect energy consumption 24% to 39% using two

to five wafers respectively. This is in addition to the savings that can be realized relative

to timing-driven mode. We can reduce the interconnect energy consumption of a timing-

driven 2-D design by 48% by performing timing-constrained energy optimization and using

five wafers.

Similarly, Figure 4-10 shows that for the DES chip, 24% to 45% of the interconnect

energy consumption of a 2-D layout can be eliminated by targeting two to five wafers

respectively. In comparison to a single-wafer timing-optimized design, we can reduce inter-

connect energy consumption by 60% by employing timing-constrained energy optimization

and using five wafers.

Figure 4-11 shows that for the 64-bit MAC, 29% to 54% of the interconnect energy can

be saved by using two to five wafers respectively. 65% of the interconnect energy dissipation

of the single-wafer timing-optimized MAC can be eliminated with the use of five wafers and

timing-constrained energy optimization.
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Figure 4-13: Energy-delay product for the DES chip vs. number of wafers used for place-

ment.
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Figure 4-14: Energy-delay product for the 64-bit MAC vs. number of wafers used for

placement.
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Figure 4-15: Wire energy-delay product for the FFT datapath vs. number of wafers used

for placement.

4.6 Energy-Delay Product

Figures 4-12 through 4-14 show the energy-delay product for the three circuits. This product

can be reduced by 20% for the FFT, 32% for the DES chip, and 41% for the MAC, using

five wafers. In view of the fact that we are considering total energy and total delay, not

simply the components associated with wires, this result is quite striking.

Figures 4-15 through 4-17 show the component of energy-delay product that is associated

with interconnect. The impact of 3-D integration is clearly quite substantial. For the

FFT, up to 58% of wire energy-delay product can be eliminated by using five wafers for

integration. Similarly, 75% and 66% of wire energy-delay product can be eliminated for the

DES chip and MAC, respectively. This result demonstrates that 3-D integration can have

a tremendous impact on circuit performance.

4.7 Summary

The wire-length results of the previous chapter do indeed translate into similar results for

circuit performance. In this chapter, we analyzed the behavior of three designs: (1) a 32-bit

Fast-Fourier-Transform (FFT) datapath, (2) an implementation of the DES cryptographic

algorithm, and (3) a 64-bit multiplier-accumulator (MAC) chip. We found that the impact

of 3-D integration increases with larger chip sizes, and that this impact amounts to up to
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Figure 4-16: Wire energy-delay product for the DES chip vs. number of wafers used for

placement.
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Figure 4-17: Wire energy-delay product for the 64-bit MAC chip vs. number of wafers used

for placement.
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a 54% reduction in wire delay, 54% reduction in interconnect energy dissipation, and 75%

reduction in wire energy-delay product, all using up to five wafers.

Naturally, no improvement comes without cost. We have been concerned with perfor-

mance trade-offs that might ensue from our optimization of delay and energy. While the

energy profiles of these 3-D ICs may improve drastically, one potential issue is that they do

not scale as well as the die footprint. Heat removal is therefore critical. The next chapter

considers precisely this problem.
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Chapter 5

3-D IC Thermal Management and

Optimization

5.1 Motivation

It is anticipated that power requirements for high-performance microprocessors will increase

exponentially with each foreseeable technology generation [5]. Conversely, it is desired to

maintain zero or modest growth in the maximum die size over the same period. There-

fore, without innovations in the design of circuits, integration materials, and/or packaging

components, die temperatures will escalate quickly beyond any acceptable limit.

Using the ITRS-projected power requirements [5], we can determine the extent to which

conventional packaging technology must be improved for future device technology gener-

ations. Figure 5-1 shows the required heat sink thermal resistance for a state-of-the-art

microprocessor at each generation. Given that in late 2003, the best mass-market heat-

sink technology available achieved a thermal resistance of 0.7 cm 2 K/W [97], it is clear that

industry is narrowly outpacing design requirements.

In addition to concerns regarding aggregate thermal behavior, circuit-level issues exist

that must be considered. For example, as die temperatures increase, device performance

necessarily suffers. The absolute threshold voltage of both NMOS and PMOS devices

decreases by 1.0 mV/K for submicrometer devices [98]. This results in an increase in

leakage power dissipation; specifically, for a chip operating at 100'C, the leakage power is

ten times higher than the corresponding dissipation at room temperature [99]. Additionally,
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Figure 5-1: Minimum required heat sink thermal resistance by technology generation, based
on ITRS projections for microprocessor size and power dissipation. The desired maximum
die temperature is 100'C.

both electron and hole mobilities are reduced by increasing temperature. This dependence

is of order T-3 /2 [100]; despite the decrease in threshold voltage, devices are actually slower

at higher temperatures. Transistor g, also decreases, thereby reducing gain. Moreover,

reliability issues associated with die heating are also present. For example, time-dependent

dielectric breakdown (TDDB) time-to-failure is exponentially dependent on 1/T, such that

at 100 0 C, the lifetime is reduced by four to five orders of magnitude over room temperature

operation [101].1

Increases in die temperature also affect the performance of interconnect in a number

of ways [102, 103]. First, resistance (and to a far lesser extent, capacitance) varies with

temperature; interconnect delay therefore increases with temperature. Second, reliability is

impacted by die heating: both interconnect lifetime, which is exponentially dependent on

1/T [104], and immunity to spontaneous thermally-induced open-circuit metal failure [105]

require limits on the extent to which transistors and interconnects may generate heat. Third,

interconnect self-heating in and of itself constrains the maximum allowable RMS current

density through any given wire.

Thermal gradients, or variations in temperature along the surface of a chip, can also

1 TDDB with or without die heating is not significant at current technology nodes. However, as gate-oxide
thicknesses are scaled down in future nodes, die heating can result in a reduction of lifetime from years to
mere seconds.
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impact system performance. For example, under a 60'C gradient over a 1000 tm clock-tree

line, clock skew can be degraded by over 5% of clock-driver-to-load delay [106], which is

an amount comparable with the nominal skew [107]. Since processors such as the Alpha

21064 have exhibited 30'C differentials due to high-power clock drivers [108], the problem

of thermal-gradient-induced skew is quite serious in practice.

For 3-D ICs, the complications brought on by temperature are expected to be even worse,

to the extent that temperature is often considered a major hindrance for 3-D integration

[31, 32]. However, apart from first-order models, little has been known about the precise

role of temperature in 3-D ICs. Prior work in this area has focused on obtaining estimates

of total power consumption from which average temperature estimates have been computed

[35]. As we have obtained actual power data in Chapter 4, we may make a more accurate

determination. Furthermore, through the use of our placement tool to control thermal

interactions at a local level, we examine the extent to which it is possible to mitigate the

adverse effects of 3-D integration, with respect to both global and local die temperatures.

We also analyze the use of advanced cooling technologies that interact with the electrical

substrate at the micrometer scale.

In the following sections, we illustrate our advances in all three of these areas. We review

a first-order model for die temperature in 3-D ICs. We then describe modifications to our

CAD tool PR3D for use in optimizing the thermal profile of a 3-D placement. Employing

this augmented PR3D, we analyze local and global die temperatures for a Fast-Fourier

Transform (FFT) circuit under a variety of 2-D and 3-D placement conditions with and

without thermal optimization. Finally, we consider the impact of a candidate advanced

cooling technology on 3-D ICs; we will show that this technology can entirely alleviate the

negative thermal effects introduced by 3-D integration.

5.2 First-Order Model for Die Temperature in 3-D ICs

Assuming a 3-D stack of n device layers in which the bottom-most layer is connected

to a conventional package and heat sink, a first-order analytical model shows that the

layer-to-layer temperature rise is proportional to the power dissipation per unit area of the

chip [31,32]. Let T be the average temperature of the ith device layer (To is ambient) and

Pi be the total power dissipation of the ith layer. We assume a layout area of Al for a
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two-dimensional placement and that with n device layers, the area of each layer is Ai/n.

The one-dimensional heat diffusion equation states that

Ti - Ti1= Ri P (5.1)
k=i

where Ri is the effective thermal transfer resistance from device layer i to layer i - 1, and

RI = Rh, is the heat sink thermal resistance. Thus, the temperature of the uppermost die

is
n (P k

T( = TOi+i R . (5.2)
k=1 Alnm=1

Considering that in most conventional packages, Rh, > R 2,...,n, we may further simplify:

Tn = To + Rhs = To + nRh Pto, (5.3)
k=1

where Ptot is the total power dissipation of the chip [31].

From this, we can see that in 3-D ICs, the top-layer die temperature above ambient will

rise linearly with the number of device layers, when absent any reduction in power dissipa-

tion due to 3-D integration. Combining Equation 5.3 with the power-reduction results from

Chapter 4 allows us to predict thermal performance for 3-D ICs. For example, we postulate

a 2-D circuit that dissipates 50 W over a die area of 2 sq. cm. in an ambient temperature

of 25 C. If the interconnect power consumption of this chip (which we assume to be 65%

of the total 2-D power) decreases in a 3-D implementation as observed in Chapter 4, and if

the die area scales inversely with the number of device layers, then the temperature of the

top-most device layer increases as shown in Figure 5-2.

Thermal management of 3-D ICs is therefore critical. However, in this first-order anal-

ysis, several assumptions are made that provide directions in which to alleviate thermal

problems. For example, it is assumed that power dissipation is uniform among all device

layers. However, cell placement can be driven such that more active cells and wires are

constrained to lower device layers. Techniques for the constraint of power distribution for

2-D placement (to minimize within-die temperature variation) exist [109-111], as well as

prior work on thermal-driven placement for 3-D ICs in particular [112]. However, the prior

work does not consider the effect of 3-D integration on the thermal characteristics of the

placement (its circuit data is confined to four-device-layer placements only), nor does it use
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Figure 5-2: Temperature of the uppermost die in a 3-D stack, assuming 50 W power dissi-
pation, 2 sq. cm. total circuit area, and 25'C ambient temperature.

measurement-calibrated energy data for the individual cells and wires in the placement. We

examine the role of multiple-wafer integration on circuit thermal characteristics using an

accurate energy model for the circuit components and packaging.

Additionally, the development of novel packaging technologies such as micro-channels for

fluidic cooling [113] has been proposed for 3-D integration. We evaluate the improvement

in thermal profile that can be obtained with such technologies by using our thermal-driven

tools.

5.3 Placement-Based Optimization of Thermal Characteris-

tics

We extend the methodology of Tsai and Kang [109] to optimize 3-D IC placements. Specif-

ically, energy consumption at any given physical location in a circuit translates into a rise

in temperature at that location as the energy is dissipated into the substrate as heat. The

temperature distribution within any material component of a chip may be computed by the

steady-state heat diffusion equation

k -V 2T + g(x, y, z) = 0, (5.4)
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where T is the temperature distribution, g is the power density distribution, and k is the

thermal conductivity of the material. This equation may be solved by the finite-difference

method and discretizing the 3-D IC into an m-by-m-by-p grid of n = m 2p nodes. (We

take m = 50 for lateral temperature resolution and p equal to the total number of distinct

material layers over all wafers; extra layers are allocated for bulk materials such as the

bottom substrate.) The result is a matrix equation

GT = P, (5.5)

where G is an n-by-n matrix of thermal conductances connecting adjacent nodes, T is the

temperature at each node, and P is the power dissipation at each node.

Given a circuit layout and operating frequency, the power dissipation Pk is known, and

the temperature Tk = G\Pk may be computed (by the preconditioned conjugate gradient

method, for example). More importantly, given a desired thermal distribution Td, a power

constraint Pd = GTd may be computed. Placement optimization of 2-D ICs using this

power constraint is carried out by Tsai and Kang [109].

For 3-D ICs, we assume a conventional package in which the bottom substrate is attached

to a heat spreader and heat sink. Numbering the wafers consecutively from 1 to n with

wafer 1 adjacent to the sink, the average temperature of wafer i must exceed that of wafer

i - 1, because the heat from the ith wafer must flow through wafers i - 1 through 1 before

being dissipated into the sink. Therefore, if a uniform thermal distribution Td is desired,

the resulting power constraint is zero for wafers 2 through n. Thus, rather than attempt to

obtain a uniform thermal distribution for the entire circuit, we focus on the within-wafer

variation for each wafer. To manage wafer-to-wafer thermal gradients, we strive to place

most of the energy dissipation close to the heat sink. Specifically, when partitioning a sub-

circuit placement into wafers i and i + 1, energy consumption on wafer i + 1 is minimized

subject to the constraint that equal areas of standard cells are placed on each wafer.

5.4 Thermal Characteristics of 3-D ICs

Figures 5-3 and 5-4 illustrate the mechanism of our thermal optimization. Figure 5-3

shows the temperature of the uppermost die of a three-wafer FFT placement. In the

energy-optimized case, a hot spot results from the shortening of the highly-active wires.
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top wafer of a three-wafer placement of the FFT

As Figure 5-4 demonstrates, the origin of the hot spot is clear from the energy distribu-

tion. Thermal optimization spreads the energy consumption over the entire die; the hot

spot is thereby reduced or eliminated. We assume a conventional package with a heat

sink extraction capability of Rh, = lcm2K/W, which is achievable with currently-available

technology [97]. In all analyses, the circuit is run at 80 MHz in an ambient temperature of

25 0C.

Figures 5-5 through 5-10 show the thermal performance of the FFT datapath when

using one to five wafers. In the first set of figures, we assume that the overall footprint of

the die is unchanged as we scale the number of wafers (as may be the case in an I/O-limited

situation). Figure 5-5 shows the temperature of each die for both placements. In Figure 5-

6, we plot the absolute temperature difference (maximum temperature minus minimum

temperature over the entire circuit) against the number of wafers used. Figure 5-7 shows

the wafer-to-wafer average temperature differential (i.e. average temperature of the hottest

wafer minus average temperature of the coolest wafer). Figures 5-8 through 5-10 provide

the temperature differential when the overall footprint of the die scales inversely with the
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Figure 5-5: Die temperature of the FFT datapath vs. number of wafers (fixed-die case).
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Die Average Temperature Z-Axis Differential vs. Number of Device Layers
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Figure 5-7: Average-temperature z-axis differential of the FFT datapath vs. number of

wafers (fixed-die case).
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Figure 5-8: Die temperature of the FFT datapath vs. number of wafers (scaled-die case).
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Figure 5-10: Average-temperature z-axis differential of the FFT datapath vs. number of

wafers (scaled-die case).
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Interconnect Energy Consumption vs. Number of Device Layers
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Figure 5-11: Interconnect energy dissipation of the FFT datapath vs. number of wafers in

energy-optimized and gradient-optimized cases.

number of wafers used, which may be expected for general-purpose 3-D ICs.

In both fixed-footprint and scaled-footprint scenarios, we see that there is a trade-off

between energy and thermal performance (which we currently construe as the most uniform

thermal distribution). Specifically, we observe that the absolute temperature differential

can be improved by a factor of six through the use of thermal optimization. However,

the mean temperature of the thermally-optimized case is higher than that in which energy

is optimized. To distribute the energy consumption uniformly, some highly-active wires

must be made longer, thereby increasing energy consumption. Figure 5-11 shows that the

overhead in interconnect energy dissipation when the best thermal performance is targeted

is approximately 60%. Also, the graphs demonstrate that the improvement in thermal

performance obtained by thermal optimization for 3-D ICs diminishes as more wafers are

used and asymptotic limits are reached. Thus, the design choice of energy optimization or

thermal optimization is dictated by the necessity of a smooth thermal profile (which may

be the case for mixed-signal circuits or digital circuits with a severe hot-spot problem) or a

lower mean temperature.

Furthermore, by comparing the fixed-die and scaled-die cases, we see that it is possible

to control the die temperature through the use of extra silicon. As the energy consumption

improves as the number of wafers is increased, the die area can be scaled proportionally to

maintain a constant average temperature. However, if the sacrifice of silicon for thermal
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Figure 5-12: Minimum required heat sink thermal resistance by technology genera-

tion, based on ITRS projections for microprocessor size and power dissipation and 3-D

performance-scaling data from this work. The desired maximum uppermost-die tempera-

ture is 100*C.

purposes is undesirable, the catastrophic thermal behavior shown in Figure 5-8 must be

controlled by advanced packaging and cooling techniques.

Conversely, by using the temperature and energy performance data shown in Figures 5-

5 through 5-10, we can predict the heat-sink requirements of a 3-D microprocessor with a

maximum uppermost-die temperature of 100'C. Figure 5-12 shows the required heat sink

thermal resistance for a microprocessor implemented in one to five wafers, for which the die

area is scaled inversely with the number of wafers and the projected power dissipation scales

according to the observations in Figure 5-11 and in Chapter 4. Significant improvements

in conventional heat sinking or advanced cooling techniques will be required to achieve the

desired scaling in circuit performance.

In the next section, we discuss one such class of advanced cooling techniques and analyze

its effectiveness in allowing maximum performance scaling in three dimensions.

5.5 Active Cooling Using Microchannels

Forced fluid-flow convective transfer is a highly effective means of heat removal [114-116].

The use of microchannel fluid flow for integrated-circuit thermal management [113,117-119]

has been proposed for 3-D integration in several forms [27-29]. The common goal is to
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prevent the catastrophic thermal behavior shown in Figure 5-2 by providing a mechanism

for lateral heat extraction.

In a microchannel scheme, a unique type of heat spreader is attached to (or fabricated

on) the integrated circuit. This spreader contains embedded conduits of width 1-1000 Im

through which fluid (typically water) is forced to flow. The fluid absorbs the electrical

energy dissipated by the circuit as heat and carries this energy to a heat exchanger, where

the energy is transferred outside the system. The fluid returns to its ambient temperature

and is recirculated through the system.

Such systems may be categorized as single-phase (i.e. liquid or gas), in which heat is

transferred principally by convection [113,118,119], or two-phase, in which both convection

and evaporation are responsible for heat removal [117]. The combination of a heat sink and

fan is an example of a conventional (macro-scale) gas-phase forced convection system. For

reasons elucidated in Section 5.5.2, we consider liquid-phase microchannel systems only.

Several possible strategies exist for incorporating microchannels into a 3-D integrated

circuit. Most critically, 3-D electrical interconnects and fluid-flow microchannels must be

accommodated simultaneously. As stated in Chapter 2, we choose to orient the inter-wafer

vias in rows parallel to the rows of standard cells; inter-wafer routing can therefore be

performed without the need to allocate feed-through locations within the cell rows. This

routing strategy also permits a convenient arrangement of microchannels: they may be

imbedded underneath the cell rows, between the top-level metallization of a given bottom

wafer and the buried oxide of the matching top wafer. The fluid flows parallel to the cell

rows.

Figure 5-13 shows a cross section of a wafer-bonded structure that incorporates mi-

crochannels. Compared with Figure 1-7, this depiction is rotated 90' so that the mi-

crochannel layout can be seen. The microchannels are not depicted to scale; as Section 5.5.3

demonstrates, the actual dimensions must be engineered on a per-circuit basis. However,

one evident feature in this diagram that is generally valid for all microchannel implemen-

tations is that the height of the inter-wafer vias is significantly greater with microchannels

than without. This increase in height decreases the performance improvement that can be

obtained and introduces another optimization trade-off for 3-D ICs.

In our analysis of microchannel cooling for 3-D ICs, we begin by developing a first-order

model for die temperature that incorporates microchannels. We compare the predictions of
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Figure 5-13: Wafer-bonded structure with the addition of fluid microchannels for cooling

(c.f. Figure 1-7).

this model with a placement-based analysis of a microchannel-cooled FFT datapath. Fi-

nally, we show that microchannel implementations introduce an additional degree of freedom

in designing for a desired thermal behavior. Using our model, we quantify how microchan-

nel heat-sink design and 3-D integration combine to determine global die temperatures for

a high-performance microprocessor.

5.5.1 First-Order Model

The average die temperature may be determined from first principles through the assump-

tion that a uniform steady-state temperature Tdie is achieved throughout the chip. We

posit that in the cooling system design, N fluid-flow channels shall be distributed uniformly

throughout the chip (i.e., if N, is the number of device layers, each layer receives a cooling

layer of N/N, channels).

Figure 5-14 shows a channel model. Fluid flows in the positive x direction, and dissipated

power flows into the channel according to the profile P(x) (i.e. fP(x)dx over the channel

length is the total power dissipated into the channel). The temperature surrounding the

channel is assumed to be Tdie, and the fluid temperature profile is given by Tch(x). The

ambient temperature is assumed to be Tamb and the fluid inlet temperature is Tn. We

assume that a change of phase does not occur; this can be verified by the examination of

the resulting temperature profile. All units are assumed to be base SI units unless otherwise

stated.
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Figure 5-14: Microchannel with fluid flow in the positive x direction, power flow profile
P(x), and fluid temperature Tch(x), in an ambient solid temperature Tdie.

Conservation of energy requires that

P(x)dx = A,,vpCp (Tch(x + dx) - Teh(x)), (5.6)

where A,, is the channel cross-sectional area, v is the fluid velocity, p is the fluid density,

and Cp is the fluid specific heat capacity. An additional constraint on P(x), Tdie, and Tch(x)

is given by the convective heat transfer relationship

P(x)dx = Uopdx (Tdie - Teh(x)), (5.7)

where UO is the film transfer coefficient (determined by the fluid velocity, fluid properties,

and channel dimensions) and pdx is the channel sidewall area [114]. Given a square channel

of cross-sectional side length s, we may combine Equations 5.6 and 5.7 into the differential

equation
dTeh 4Uo

d = SVPUp (Tdie - Tch(x)) , (5.8)dx svpCp

from which we determine that

-4Un

Tch(x) = Tdie + (Tin - Tdie) esvPcpx. (5.9)

To find Tdie, we compute the total power dissipation into a single channel:

fXI / 4UOX 1 '

Pch = ] P(x)dx = (Tdie - Tin) s 2 vpC, 1 - e e ) , (5.10)

where xj is the channel length. The total power dissipation is given by the sum of the
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dissipations over all channels plus a residual, which we assume will exit the substrate pref-

erentially through the bulk surface (where it is attached to the package). If Ptot is the total

power dissipation, then

Tdie = Tamb + Rhs (Pot - NPch), (5.11)

where Rh, is the thermal transfer resistance from the die through the die attachment to the

package. Combining these equations yields

-4UOxlTdie = Tamb + Rhs [Pot + NTins 2v pCP 1 - e Vc(512)

T =- 4UOx .

1+ RhsN s 2vpCp (1 - e sVPCp

5.5.2 Modifications to the Thermal Algorithms

As stated in Section 5.3, the thermal-analysis engine within PR3D consists of a mesh repre-

sentation of the solid substrate together with a finite-difference solver. The passive nature

of thermal conduction within an ordinary IC gives rise to a finite-difference matrix that

is symmetric and positive definite (SPD), which results in a matrix equation that can be

solved by the conjugate-gradient method (Equation 5.5).

Conversely, the non-zero flow rate of microchannel cooling results in asymmetric heat

conduction. Consider a node n inside a fluid microchannel. According to Equation 5.6, the

temperature T, of node n is determined by the temperature of the next upstream node,

Tn_1, as well as the power flow into node n - 1:

Tn = Tn-1 -+ Pup(n-1) + Pdown(n-1) - Ptop(n-l) ± Pbot(n-1) (5.13)
AevpC(

where for an arbitrary channel node i, P is the power flow from node i into node n - 1,

and up(i), down(i), top(i), and bot(i) are the solid-substrate nodes surrounding node i. The

Pi values are determined via Equation 5.7. In other words, the dissipation of heat into a

volume of fluid in a microchannel increases the steady-state temperature of the downstream

fluid. More importantly, the same heat dissipation into the downstream node does not affect

the upstream fluid in a symmetric manner.

The resulting finite-difference matrix is asymmetric and indefinite. As a result, the

conjugate-gradient method is no longer suitable. We instead use the generalized minimum
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residual method (GMRES) with ILU(0) preconditioning [120]. This method results in a

longer runtime than methods suitable for non-microchannel circuit implementations with a

similar number of finite-difference mesh nodes.

Accuracy and numerical stability of the solution are also of concern when microchannels

are introduced. Specifically, Equations 5.6 through 5.12 are valid only in the limit as dx -+ 0.

For a microchannel modeled as a line of mesh nodes, the finite-difference approximation is

invalid if the temperature increase from node to node exceeds the temperature difference

between the channel fluid nodes and the surrounding solid nodes. In other words, a temper-

ature difference AT between the die and the fluid results in a energy flow into the fluid and

a concomitant heating of the adjacent downstream fluid in steady-state operation. However,

the temperature of the adjacent downstream node is thermodynamically prohibited from

rising more than AT. Therefore, through Equations 5.6 and 5.7, for a square channel of

side length s, we find that that the separation distance 1 between finite-difference nodes in

the channel must satisfy

1 svpCP (5.14)
4Uo

Within PR3D, we increase the resolution of the thermal grid along the length of the channel

to satisfy this requirement.

Finally, since a die temperature consistently less than 100 C is desired, it is reasonable

to simplify the model through the assumption of liquid-phase flow only. The introduction

of phase change requires a piece-wise linear model that is computationally expensive. We

may validate this assumption simply by checking that the maximum fluid temperature is

below the boiling point.

5.5.3 Placement-Based Analysis

To assess the impact of microchannel heat-sink cooling on temperature in 3-D ICs, we

analyze placements of the FFT datapath in a microchannel-equipped package. First, we

design the heat-sinking system that will be used. The relevant parameters are the number

of microchannels, the microchannel dimensions, and the fluid flow rate.

Choosing reasonable values for these parameters, we determine the total heat removal

capacity of a given design. Our choices for the parameters are dictated by a pair of con-

straints. To avoid physical interference with the inter-wafer routing regions, the channel
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FFT Celsius Die Temperature vs. Channel Dimension and Fluid Velocity
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Figure 5-15: Celsius die temperature prediction for the 2-D FFT, with microchannel heat
sink, as a function of channel cross-sectional dimension and fluid velocity.

effective diameter must be less than or equal to the cell height. As the standard cells used

in our circuit are 5.04 [im in height, we impose an upper bound of 5 Lm on the side length

of our square cross-section channels. Another fundamental constraint is that friction losses

in the channel result in a pressure drop along the channel length; this pressure must be

supplied by the fluid source and should be as low as possible for system design simplicity.

At this size scale the fluid flow is laminar for any reasonable velocity [114]; therefore, the

head loss in the channel in p.s.i. is given by

h = 4.64 x 10- 3 lcha eiv , (5.15)

where 1channel is the length of the microchannel, v is the fluid velocity, p is the fluid viscosity,

and Di is the effective channel diameter (which for a square channel is the side length s).

Figures 5-15 and 5-16 show the trade-off analysis for a 2-D FFT placement. Since our

original analysis uses a mesh with 50 x 50 lateral dimensions, we choose to implement

24 channels in our heat sink. We also seek to minimize the cross-sectional area of the

microchannels, thereby minimizing the inter-wafer via height. However, as we reduce the

channel cross section, both the die temperature and the head loss increase. To achieve

a reasonable head loss, we exchange cross-sectional area for decreased fluid velocity along
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FF1 Microchannel Head Loss (p.s.i.)
vs. Channel Dimension and Fluid Velocity
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Figure 5-16: Head loss in p.s.i. for the FFT microchannels as a function of channel cross-
sectional dimension and fluid velocity.

a constant-temperature curve. For the FFT circuit in particular, we opt for a 5 pLm x

5 pm channel cross section with a fluid velocity of 10 cm/s. To simplify, we utilize 24

microchannels per device layer in the 3-D placements.

Figures 5-17 through 5-19 illustrate how the FFT thermal behavior changes when the

number of device layers is increased. Figure 5-17 shows that the average die temperature

actually decreases. As we shall explore later in this section, this is due to the linear increase

in the total number of microchannels. The data indicate again that energy optimization

yields the best overall die temperature. The solid lines of Figure 5-17 are the predictions of

the first-order model. The model is clearly useful for predicting global thermal behavior in

microchannel-cooled 3-D ICs.

Figure 5-18 shows the absolute temperature differential (maximum temperature minus

minimum temperature over the entire circuit) for microchannel-cooled placements. Thermal

optimization results in an approximately two-fold reduction in this differential. Figure 5-19

shows the die-to-die average temperature differential as a function of the number of wafers

used. As a general trend, with a growing number of device layers, thermal optimization

produces an increasingly smoother thermal profile relative to that of energy optimization.
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Die Temperature With Microchannels
vs. Number of Device Layers

X Thermai 0 timi7tinr
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Figure 5-17: Die temperature of the FFT datapath vs. number of wafers (microchannel
case).

Die Temperature (With Microchannels)
Absolute Differential vs. Number of Device Layers

2 3
Number of Device Layers

4

Figure 5-18: Absolute temperature differential of the FFT datapath vs. number of wafers
(microchannel case).
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Die Average Temperature (With Microchannels)
Z-Axis Differential vs. Number of Device Layers
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Figure 5-19: Average-temperature z-axis differential of the FFT datapath vs. number of
wafers (microchannel case).

The decrease in die temperature shown in Figure 5-17 demonstrates that microchannel

cooling is a powerful technology. Furthermore, the use of microchannels introduces an

additional degree of freedom since the number of channels may be tuned to achieve a desired

thermal performance. In Figure 5-20, we consider a high-performance microprocessor. We

assume that in a conventional placement, this CPU dissipates 50 W average power over an

area of 2.25 sq. cm. Using the methodology of Section 5.5.1, we design the microchannels to

be 50 ptm x 50 ptm with a fluid velocity of 25 cm/s. Figure 5-20, generated through the use

of the above model, shows how the die temperature changes as the number of microchannels

and number of wafers are both varied while taking into account the 3-D power reduction

data from Chapter 4. Using microchannel cooling, our choice of operating temperature is

roughly independent of the choice of desired performance that we make through the number

of wafers we use for integration. Microchannel heat-sink technology clearly has the potential

to enable performance scaling with 3-D integration while controlling or even reversing any

negative thermal side effects.

5.6 Summary

Power trends indicate that the dissipation and removal of heat will be significant issues for

the design of integrated circuits. These problems are exacerbated in the context of 3-D
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Celsius Die Temperature vs. Number of Wafers and Number of Microchannels
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Figure 5-20: Celsius die temperature as a function of the number of wafers and the number
of microchannels used. The 2-D version of this chip dissipates 50 W and has dimensions
1.5 cm x 1.5 cm. The microchannels are 50 urm in effective diameter and the water flow is
25 cm/s at 25'C at the inlet.

integration to the extent that many designers question its feasibility.

In this chapter, we presented a placement-based thermal analysis of 3-D ICs. We exam-

ined the die temperature distribution of the energy-optimized FFT datapath of Chapter 4

in two versions, one in which the die footprint is fixed (thereby sacrificing silicon for thermal

purposes) and the other in which it is scaled to match the scaling of core cell area due to

3-D integration. We found that extra silicon may be used for its heat-spreading effects as

one possible means of controlling the temperature of 3-D ICs. In the scaled-die form, which

is considered to be more realistic from a cost-per-die perspective, we confirmed the findings

of numerical models that predicted a near-linear rise in die temperature above ambient as

more wafers are used for integration.

Concurrently, we examined the use of placement-based thermal optimization to control

the variation of temperature within the circuit; such optimization may be needed if the

overall die temperature is acceptable but the signal skew must be controlled. We found that

the absolute temperature differential can be improved by a factor of six through the use of

thermal optimization. However, we observed that this improvement comes at the expense

of additional interconnect energy consumption, and that as more wafers are integrated into

a 3-D circuit, this improvement is diminished.
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Due to the catastrophic thermal behavior exhibited by the scaled-die case, we also

examined the use in 3-D ICs of an advanced cooling technology known as microchannel heat

sinking. We determined a first-order model for die temperature in microchannel-cooled 3-D

ICs, and by utilizing the model together with placement-based analyses, we showed that

overall die temperature can be regulated and even improved by employing microchannels

in a 3-D IC package. At the same time, the relative improvement due to placement-based

thermal optimization is preserved. Finally, we demonstrated how the cooling system and

number of wafers can be selected simultaneously to obtain a desired performance level at an

acceptable die temperature. With advanced cooling technologies, the performance benefits

of 3-D integration can be achieved without detrimental thermal effects.
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Chapter 6

Future Considerations for 3-D

Integration

6.1 Overview

Previous chapters of this dissertation provided a detailed look at what can be improved in

digital-system performance for circuits fabricated in current technologies. In this chapter,

we explore some avenues for future work on three-dimensional integrated circuits. We look

at two areas: digital 3-D IC performance in future technology generations and incorporation

of digital components into mixed-signal 3-D ICs.

6.2 Predictive Technology Models: Impact of 3-D Integra-

tion in Future Technology Generations

6.2.1 Motivation

As Chapter 1 outlined, the scaling down of technology feature sizes with each genera-

tion has caused an increase in dependence upon interconnect optimization to meet system

performance goals. This dependence on interconnect motivates our investigation of 3-D

integration. Additionally, in the context of scaling, we desire to know how 3-D integration

might improve performance in future generations.

A number of works have assessed the impact of technology scaling [4,121-124]. Table 6.1

shows device and interconnect performance for the 180 nm generation and a projected 35
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node 180 nm 35 nm

VDD 1.8 V 0.9 V

IVT1 0.45 V 0.3 V
Rwire (mQ/iim) 107 1760

Cwire (fF/[tm) 0.333 0.348
wiring pitch 640 nm 120 nm

Table 6.1: Properties of devices and mid-level interconnect in 180 nm and 35 nm technologies

[4].

nm node, where interconnect capacitance data was determined using typical wire-substrate

and wire-wire scenarios. With this data, we can predict how 3-D ICs will perform in the 35

nm generation.

Specifically, current-generation models for the standard cells in our circuits may be

scaled using the above data. For example, variations in supply and threshold voltages

affect device delay as follows [125]:

VDD
To( . (6.1)

(VDD - VT

By combining this effect with the scaling of transistor input and output capacitances, it

has been determined that inverter fan-out-of-four (F04) delay is roughly proportional to

the drawn gate length [123]. Interconnect performance may be modeled using the same

Elmore-delay methodology used in Chapter 4, if the scaling data in Table 6.1 is taken into

account.

With these scaling adjustments, library files and design constraints may be produced

that are appropriate for the 35 nm node. We may then obtain placements for our circuits

in this projected technology.

6.2.2 Fixed-Chip Scaling

Technology scaling affords designers two benefits: more functionality may be included in

chips for designers of the highest-performance circuits, and existing chips may be shrunk

for an improvement in performance.

Naturally, it is difficult to obtain circuits that utilize the full functionality available

at the 35 nm node. To some extent, the amount and type of desired functionality are

themselves unknown. However, we can readily examine our existing circuits to see how

132



MAC Delay, 35nm, Via Scaling
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Figure 6-1: Cycle time of the 64-bit MAC implemented in a 35 nm 3-D technology with via

scaling.

their performance scales. Moreover, we may also explore different scaling criteria for the

strictly-3-D aspects of the technology.

Figures 6-1 through 6-4 show the performance of the 64-bit multiplier-accumulator

(MAC) detailed in Chapter 4. We observe that relative to Figure 4-5 (which gives the

MAC performance at the 180 nm node), gate delay scales as expected. We also note, how-

ever, that interconnect delay actually improves with scaling. The driver resistance improves

as the transistor gate length decreases, and at roughly constant capacitance per unit length,

the decreasing lengths due to die shrinkage result in lower wiring capacitance. Conversely,

the improvement of interconnect energy dissipation at the 35 nm node behaves similarly to

that shown in Figure 4-11 at the 180 nm node.

In the above analysis, we assume that the dimensions and capacitance of the inter-

wafer vias scale as the gate length. For example, a five-fold improvement in wafer-bonding

alignment capability is assumed. Since this capability is not a prerequisite for performance

scaling in 2-D ICs, we must also consider what would happen in the absence of such scaling.

Figures 6-5 through 6-8 show this analysis. We observe a performance hit of 5%-10% over

the scaled-via case. Relative to overall performance gains, this is likely to be acceptable in

the event that further scaling of alignment capability cannot be achieved.
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MAC Energy, 35nm, Via Scaling
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Figure 6-2: Energy consumption of the 64-bit MAC implemented in a 35 nm 3-D technology

with via scaling.
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Figure 6-3: Energy-delay product of the 64-bit MAC implemented in a 35 nm 3-D technology

with via scaling.
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MAC Wire Energy*Delay Product, 35nm, Via Scaling
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Figure 6-5: Cycle time of the 64-bit MAC implemented in a 35 nm 3-D technology without

via scaling.
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MAC Energy, 35nm, No Via Scaling
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Figure 6-6: Energy consumption of the 64-bit MAC implemented in a 35 nm 3-D technology

without via scaling.
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Figure 6-7: Energy-delay product of the 64-bit MAC implemented in a 35 nm 3-D technology

without via scaling.

136



MAC Wire Energy* Delay Product, 35nm, No Via Scaling
40

--- wire-length-driveu
-e- energy-driven

35- -V- timing-driven
--- timinq-constrained

30

>10

5 --

0
2 3 4 5

number of device layers

Figure 6-8: Interconnect energy-delay product of the 64-bit MAC implemented in a 35 nm
3-D technology without via scaling.

6.2.3 3-D Integration of the Projected "Largest Chip"

We note that for a given chip of fixed functionality, three-dimensional integration in fu-

ture technology generations offers the same relative performance improvement, at least for

energy dissipation. Thus, for these chips, 3-D integration may be considered to have an

impact equivalent to some number of additional technology generations, where this number

increases as the number of wafers is increased.

However, technology scaling is not truly motivated by the desire to increase performance

in fixed-functionality chips. What drives performance scaling is the desire to obtain a

heightened level of performance and functionality in the highest-end achievable circuits.

Traditionally, these circuits are microprocessors.

What we actually seek to determine, therefore, is how 3-D integration might impact high-

end microprocessor performance in future technology generations. Since it is infeasible to

devise a new hypothetical architecture for each technology, we must satisfy ourselves with

a numerical analysis. However, using the circuit data in this dissertation, we can make this

analysis well-informed.

According to ITRS data [5], as well as manufacturers' stated intentions [126], the cycle

time or stage delay of a modern processor such as the Pentium@ 4 in terms of number of F04

delays is decreasing from the current value of approximately 16 F04 to an eventual minimum
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CPU Frequency vs. Technology Generation
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Figure 6-9: Predicted CPU frequency for several technology generations using one to five

device layers for implementation.

of about 10 F04. Concurrently, the length of the 90th-percentile wire is decreasing, due to

architectural improvements, from its current value of 2 mm in the P4 (an order of magnitude

less than the chip-edge length) [127].

The clock frequency of a 2-D processor implementation may be calculated for various

technology nodes using this F04 scaling data. We assume that the dominant interconnect

delay component of a stage is due to driving a 90th-percentile wire in an optimally-buffered

fashion. We also assume that the length of this wire scales according to the pitch scaling

in Table 6.1.1 Using these assumptions, we can predict how the interconnect delay will be

affected by 3-D integration at each technology node, and thus how the clock frequency will

scale correspondingly.

Figure 6-9 shows the results of this analysis. At the 180 nm node, CPU frequency can

be improved by 7% to 15% by using two to five wafers. Given that modern microprocessors

are carefully designed to avoid global signalling as much as possible, this is quite consistent

with the results of Chapter 4. More importantly, we see that at the 35 nm node, the

improvement increases to 33% by using two wafers to 88% by using five. We conclude that

due to the large size scale of these circuits and the increase in dependence of total delay

on interconnect delay, 3-D integration will have a significant impact in future technology

'This is a conservative estimate since a lesser degree of scaling results in a longer wire, resulting in a

larger interconnect delay component and thus a greater overall impact for 3-D integration.
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generations. Furthermore, the rate of growth of this impact exceeds that which can be

achieved by conventional (2-D) technology scaling.2

6.3 Opportunities for Mixed-Signal 3-D Integration

6.3.1 Overview

Mixed-signal integration presents unique opportunities and challenges for circuit and system

design. For memory-inclusive systems such as microprocessors, the use of additional real

estate for local cache has the potential to increase performance [35]. More broadly, storage-

and-processing circuits such as imagers [33] may be integrated with higher density and

better performance in three dimensions than can be achieved in their 2-D counterparts.

The integration of analog circuitry with digital introduces a specific set of challenges.

Digital crosstalk onto analog signals through the substrate, power and ground lines is the

primary difficulty in design [128,129]. In particular, the incorporation of high-performance

digital logic with radio-frequency (RF) analog systems presents a significant problem since

the digital clock or its low-order harmonics may lie in the RF tuning range.

Figure 6-10 shows the substrate noise spectrum for a 1 GHz, 1.5 V Pentium® 4 mi-

croprocessor operating under moderate load and dissipating 15 Watts. The noise induced

by this level of digital activity measures 100 mV(RMS). At a peak operating power of 55

Watts, this noise increases to 190 mV(RMS). Furthermore, it has been observed that the

noise voltage level increases linearly with the supply voltage and as the square root of the

clock frequency [130]. This indicates that substrate noise power, like digital interconnect

power, is proportional to V23f

Three-dimensional integration aids in the solution of these problems. For example, the

bonding layer in wafer-bonding technologies, whether metal or dielectric, produces a degree

of isolation [25]. Thus, as shown in Figure 6-11(a), a mixed-signal 3-D IC may be formed by

designing separate wafers for the individual subsystems and bonding these wafers together.

Many of the primary issues of mixed-signal design for 3-D integration remain open. In

several respects, mixed-signal monolithic-system design is the future of both 2-D and 3-D

2It is important to note that we have only considered the impact of 3-D integration through layout
improvements to fixed architectures. It is also possible to achieve performance increases with 3-D integration
by extending the architecture in ways such as by increasing the cache size and thereby reducing memory
latency.
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Figure 6-10: Substrate noise spectrum for a 1 GHz Pentium®
at 1.5 V supply and dissipating 15 Watts (reprinted from [3]).
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Figure 6-11: Placement of a 3-D mixed-signal system. In (a) each module is targeted for
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integration. To this end, in the next sections we investigate how best to optimize the digital

subsystems of mixed-signal 3-D ICs.

6.3.2 Optimization for Digital Performance in Mixed-Signal Systems

Figure 6-11(a) shows the most direct method for creating a mixed-signal 3-D circuit archi-

tecture. We have already delineated some of the system advantages that this architecture

achieves over a conventional system-on-a-chip (SoC). We consider the digital subsystem

performance here. For example, in a single-wafer implementation of the 3-D IC in Figure 6-

11(a), the digital area must be bent around the analog and memory blocks, thus increasing

the corner-to-corner wire length. We expect that in addition to any analog performance

improvements we obtain by using the system in Figure 6-11(a), the digital circuit can also

be improved through consolidation.

However, the clear problem with this method is that the subsystem sizes will most likely

be mismatched, thereby leading to the waste of silicon in 3-D implementations. Further-

more, as we showed in Chapter 4, the digital subsystem itself can be improved by using

more than one wafer for integration. We therefore analyze systems such as those in Fig-

ure 6-11(b), in which suitable digital components are placed on the non-logic wafers to

produce uniformity in die area.

Specifically, we examine three implementations of the 32-bit Fast-Fourier-Transform

datapath and the MAC chip from Chapter 4. The first implementation is a single-chip

placement in which 25% of the chip area is dedicated for a macro block (e.g. an analog

subsystem) and the remainder is used for digital placement. In the second implementation,

a two-wafer placement, the top wafer is dedicated for the macro block and the bottom wafer

for the digital components. The third implementation is a two-wafer equal-area placement;

we partition the digital subsystem so that enough of it rests alongside the macro block to

produce an equal split of the whole system. Figure 6-12 shows sample layouts for these

three implementations. 3

Figures 6-13 and 6-14 show the behavior of the FFT datapath in the three implemen-

tations. We consider the third implementation twice: with small inter-wafer vias (corre-

sponding to a via cost of 1) and with larger inter-wafer vias (corresponding to a via cost

3 The most straightforward implementation actually is to use three wafers for the digital components

and one for the macro block. However, we cannot effectively conduct any trade-off analysis with this

implementation.
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Figure 6-12: Three implementations of a mixed-signal circuit. Top left: single wafer; top

right: two wafers with digital circuitry isolated to bottom wafer; bottom: two wafers with

equal footprint.
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Figure 6-13: Cycle time of the FFT datapath in a mixed-signal circuit in four placement

modes: (1) single-die, (2) two dice with separation of analog and digital systems, (3) two

dice of equal area with excess digital on the analog die, (4) same as (3) but with larger vias.
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Interconnect Energy Dissipation of the FFT Datapath
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Figure 6-14: Interconnect energy dissipation of the FFT datapath in a mixed-signal circuit
in four placement modes: (1) single-die, (2) two dice with separation of analog and digital
systems, (3) two dice of equal area with excess digital on the analog die, (4) same as (3)
but with larger vias.

of 10). We observe no essential difference in cycle time across all four implementations.

However, interconnect energy performance improves if the additional wafer is used for both

digital and non-digital components (case 3). This improvement is somewhat reduced if the

inter-wafer vias have larger capacitance - a trade-off since case 3 is the only instance in

which these vias would be heavily used.

Figures 6-15 and 6-16 show the behavior of the MAC. Distinguishable (though not

significant) cycle-time improvement is shown. However, using both wafers for digital com-

ponentry again produces a significant impact on the interconnect energy consumption.

One concern with these implementations is that they circumvent isolation, one of the

main motivations for mixed-signal integration. By reintroducing digital components to the

non-digital wafer, it is possible that the isolation benefit may be eliminated. The next

section discusses our strategy for resolving this problem.

6.3.3 Optimization of the Digital Noise Impact on Analog/RF Subsys-

tems

While Figure 6-10 shows that the noise floor is dictated by digital signal activity, the figure

also shows that the primary source of digital noise injection is the clock signal and its
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Figure 6-15: Cycle time of the 64-bit MAC in a mixed-signal circuit in four placement
modes: (1) single-die, (2) two dice with separation of analog and digital systems, (3) two

dice of equal area with excess digital on the analog die, (4) same as (3) but with larger vias.
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Figure 6-16: Interconnect energy dissipation of
in four placement modes: (1) single-die, (2) two
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but with larger vias.
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Figure 6-17: Cycle time of the 64-bit MAC two-wafer, equal-area, mixed-signal implemen-

tation. (1) and (3) are cases where the clock is distributed over both wafers; (2) and (4)

are cases where the clock is restricted to the bottom wafer. (1) and (2) are cases where the

inter-wafer vias are small; (3) and (4) represent larger inter-wafer vias.

harmonics. Since the clock is by definition a distributed signal, it is unlikely that digital

placement-based optimization efforts will have significant impact on the amount of injected

substrate noise in an RF subsystem. Furthermore, the noise introduced by signal switching

typically lies outside the analog band, due to the characteristically low average switching

activity [3]. However, it is possible to take advantage of these observations by restricting

clock signals and their associated circuits (e.g. registers) to the digital wafer while placing

some combinational logic in the excess area of the analog wafer.

Figures 6-17 and 6-18 demonstrate that essentially no reduction in digital performance

exists due to restricting clock signals to one wafer. Both the interconnect energy and the

cycle time remain effectively constant over the two implementations. This is reflected in

the large-via case especially, as any critical paths that occupy both wafers must necessarily

use two inter-wafer vias. Thus, a workable strategy for mixed-signal 3-D integration is to

use non-critical digital components as fill on wafers that would otherwise waste silicon area,

while simultaneously restricting the clock signals to the digital-only wafer.

As these mixed-signal systems become even increasingly complex, however, it is likely

that more sophisticated CAD tools and placement strategies will be required. In the follow-

ing section, we outline a possible architecture for future 3-D mixed-signal design automation.
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Figure 6-18: Interconnect energy dissipation of the 64-bit MAC two-wafer, equal-area,

mixed-signal implementation. (1) and (3) are cases where the clock is distributed over both

wafers; (2) and (4) are cases where the clock is restricted to the bottom wafer. (1) and (2)

are cases where the inter-wafer vias are small; (3) and (4) represent larger inter-wafer vias.
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Figure 6-19: Digital vs. proposed mixed-signal design flow paradigms.

6.4 Architecture for a Design Flow for Mixed-Signal 3-D ICs

Clearly, there are many opportunities for mixed-signal circuit design for 3-D integration.

Focusing solely on the digital components of such systems, we find there to be avenues for

increasing performance relative to multiple-chip or even single-chip implementations.

The evident next step is to explore the automated design, synthesis, and optimization of

whole mixed-signal systems. To a large extent, this remains an open problem for 2-D ICs.

However, since 3-D integration is expected to enable system architectures that would be

impossible in single-chip integration, a truly comprehensive 3-D design methodology cannot

be developed as an extension to conventional tools (as we have done for digital circuits).

Instead, a new software architecture that considers 3-D integration at all levels must be

devised.

Figure 6-19 shows the paradigm shift that we envision. Instead of the linear flow ap-
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Figure 6-20: Outline of a candidate mixed-signal design flow.

propriate for digital circuits, we propose a distributed, modular tool set in which each tool

has a parallel view of the entire design as it evolves. In digital-system design, it is pos-

sible to perform functional synthesis first and technology-based optimization second; the

choice of function is independent of technology. However, in mixed-signal design, choices

must be motivated by the options available in the technology, even at the highest levels of

architecture.

For example, a system design tool may act to partition the high-level system architecture

over several heterogeneous wafers. Thus, wafer-based simulation capability is required at

the level of behavioral simulation. This same capability will also be required at the detailed

optimization level. Due to the higher degree of redundancy when compared with digital-

system design, organizing the simulation module as a cross-cutting tool that interfaces with

other parts of the flow in parallel is likely to be more efficient.

Figure 6-20 proposes a candidate design flow architecture; it includes components that

will be required for 3-D mixed-signal design. Again, we expect there to be some components

that are unnecessary for 2-D design, as well as several for both 2-D and 3-D design that

we have not anticipated. We envision three phases similar to those in the digital flow:

synthesis, optimization, and layout generation and analysis. However, we expect that these

phases will be far more inter-related.

Synthesis The digital paradigm will work to a limited extent for mixed-signal systems.

Even in digital systems we see the unification of synthesis with technology-driven placement
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and routing [131]. In mixed-signal design, we expect to perform some kind of synthesis at

every level of the flow. For example, the initial design stage will require the development of a

block architecture from a high-level specification in a language such as VHDL-AMS [132] or

Verilog-AMS [133]; this block architecture may be expressed in the same language. However,

at some point the blocks must be synthesized using a separate design module such as an

analog/RF cell generator. The unification of top-down and bottom-up synthesis is far

more likely to be required on a per-design basis than is the case with digital design. For

3-D integration in particular, different block implementations may be desired for use on

different wafers.

Optimization It is less likely that one will be able to partition mixed-signal design into

technology-independent and technology-dependent optimization steps (e.g. logic optimiza-

tion and placement optimization, as is done with digital-system design). For example, at a

high level of mixed-signal architectural specification, it may be necessary to know that the

power dissipation and resulting heating of a digital subsystem will rule out some architec-

tural options for an analog-to-digital converter (ADC). (We hypothesize that the system

architecture requires some number of bits, which for a given temperature may be provided

only by certain ADC architectures.) Similarly, system-level sensitivity requirements may

require noise-based optimization during the high-level partitioning of a mixed-signal system,

while a concurrent, low-level, noise-based optimization of the locations of individual regis-

ters and logic must also be performed. Thus, we envision a set of modules that are topical

masters, such as noise-based and thermal optimizers, rather than a sequence of modules

that are flow masters, such as a logic synthesizer followed by a placement engine.

Layout Generation and Analysis In mixed-signal design, as with digital design, the

final goal is also fully-developed layout. The generation of layout must include digitally-

motivated optimization techniques (such as performance-driven routing) and mixed-signal

considerations (such as digital-to-analog coupling). Other issues such as the impact of

lower-wafer wire self-heating on upper-wafer substrate temperature must be considered.

Additionally, in keeping with the task-master paradigm we espouse for mixed-signal design

automation, the layout engine should provide detailed feedback to other engines such as

simulation and performance modules.
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To develop this architecture into a usable flow of tools, it is clear that several innovations

will be necessary. However, the need for such a design flow is undisputed. Existing tools

do not even begin to approach the level of functionality required for such design.

6.5 Summary

Our work in this dissertation illuminates how three-dimensional integration can be used to

improve system performance in digital ICs. In this chapter, we have examined how these

improvements can be sustained over the entire lifetime of 3-D integration technology and

VLSI technology in general.

We began with a study of 3-D integration in the context of technology scaling. We

found that for circuits of fixed functionality, 3-D integration has equal impact on energy

dissipation across all technology generations. Furthermore, for small circuits, the impact

on cycle time is diminished due to the simultaneous decrease in both driver resistance and

wire capacitance. This would suggest that at best, 3-D integration will keep pace with

technology scaling, and that we might even think of 3-D integration as equivalent to some

number of additional generations.

However, by extending this analysis to microprocessors, we found that 3-D integra-

tion could enable performance increases at a rate above and beyond that achievable with

technology scaling. In these circuits, increases in wire delays due to technology scaling

result in cycle times exceedingly dominated by these delays. Thus, when integrated using

multiple device layers, the performance of these circuits improves more drastically in future

technology nodes than in current nodes. For example, a CPU fabricated at the 180 nm node

exhibits a modest 15% clock-frequency increase when integrated in five wafers, whereas a

CPU at 35 nm could be accelerated by 88% by using five wafers.

Having examined this aspect of the future of 3-D integration, we turned to mixed-signal

design. We considered some methods for the 3-D integration of logic circuitry with non-logic

macro blocks such as analog, memory, and MEMS technologies. While the most straight-

forward approach for such integration is simply to fabricate these subcircuits on separate

wafers and then bond them together, we determined that digital circuitry can be placed in

unused areas on the non-logic wafers without detriment to the non-logic components. In

particular, we tested strategies for restricting digital clock signals such that analog and dig-
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ital components could rest side-by-side without introducing unwanted noise into the analog

components.

Finally, we devised a hypothetical path for extending our design-tool framework to

incorporate mixed-signal automation for 3-D ICs. We conjectured that the most difficult

challenge to mixed-signal design automation lies in developing the ability to integrate differ-

ent performance aspects such as delay, energy, noise, and temperature across all components

and stages of design. Furthermore, with 3-D integration, the performance analysis of mixed-

signal circuits is not algorithmically the same as in conventional mixed-signal circuits, due

to the lack of useful abstractions. Thus, new techniques and paradigms must be created to

solve this important problem.
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Chapter 7

Conclusion

7.1 Summary of Research Results

In this dissertation, we have examined an emerging technology called three-dimensional

integration, which we have defined to be any technology in which multiple planes of active

devices can be wired together by an electromechanical interconnect. We have made two

fundamental contributions: a set of computer-aided design tools for the construction of 3-D

ICs and the performance analysis of these circuits.

The tool set consists of two programs. The first is PR3D, a placement and global rout-

ing tool we have developed for 3-D ICs. Given the number of device layers and parasitic

cost associated with an inter-layer wire, PR3D can perform a placement-based optimiza-

tion of circuit performance. It considers metrics such as wire length, energy, timing, and

thermal characteristics. The second tool is 3-D Magic, a layout editor. Through its user

interface, 3-D Magic features design-management additions that could not be obtained in

prior methodology-based design flows. 3-D Magic also provides layout-versus-schematic,

design-rule checking, and parasitic-extraction capabilities for 3-D ICs.

Concerning performance improvement in 3-D ICs, the body of prior work had revealed

an enormous potential. Our work has quantified this potential through the use of actual

circuit placement and simulation. We have verified the wire-length predictions of previous

work and shown that this predictive capability is accurate to within 20% of placement and

routing. We have found, using 3-D placement and routing, that the total wire length of

a given standard-cell circuit may be reduced by 27% to 51% by using two to five device

layers. We have determined that the length of the longest wire in a circuit may be reduced
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by 31% to 56%, again by using two to five wafers. We have also extended this analysis to

consider the impact of inter-layer via dimensions on these wire-length figures, and found

that while the total wire length is strongly affected by these dimensions, the longest wire is

not similarly affected.

With the use of circuit-based analyses, we have been able to make the first specific

determinations regarding more important metrics such as energy dissipation and cycle time.

By considering three circuits, we have found that with the use of five wafers, we could obtain

up to a 54% reduction in wire delay, 54% reduction in interconnect energy dissipation, and

75% reduction in wire energy-delay product. Furthermore, we observed greater performance

improvements in the larger chips.

These discussions of performance motivated an additional analysis of heat dissipation, a

potentially problematic circuit issue in 3-D ICs. Building on numerical analyses of thermal

performance, we have carried out a placement-based thermal analysis of 3-D ICs. In so

doing, we were able to quantify the trade-offs associated with optimizing for best thermal

performance versus best energy performance in a 3-D circuit. We found that, for example,

up to a factor of six improvement in thermal gradient could be obtained, but at a cost of

up to a 60% increase in interconnect energy consumption. Furthermore, we determined

that while the percentage energy overhead remained relatively constant as we increased the

number of wafers, the benefit of thermal optimization tended to decline.

We have also confirmed that the overall thermal outlook for 3-D integration is bleak

with conventional packaging approaches. However, we have analyzed two solutions for this

problem. By considering a fixed-die approach, in which the 2-D form factor is held constant

while the number of wafers is scaled, we have shown that excess silicon could be used for

heat-spreading purposes, thus maintaining an acceptable die temperature. This comes at an

additional manufacturing cost, so we have also explored the use of microchannel fluid flow for

cooling 3-D ICs. We have devised a numerical model for die temperature in a microchannel-

cooled circuit and confirmed the behavior of this model using placement-based simulation.

With the use of advanced packaging solutions, we have shown that temperature in 3-D ICs

can in fact be controlled.

Our final results in 3-D integration examined the role of 3-D integration in future

technologies. We considered how 3-D integration would improve performance in future

technology generations. For chips of fixed functionality, we have found that the improve-
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ment due to 3-D integration is preserved across generations. We have determined, however,

that for high-end circuits such as microprocessors, the impact of 3-D integration will be

even greater in future technologies than it is currently. A modest 15% improvement gained

by using five wafers at the 180 nm node becomes an 88% increase at 35 nm. We have also

examined ways of extending our work into the mixed-signal domain. We have considered a

few different approaches for optimizing the digital subcomponents of a mixed-signal circuit,

and found that it is possible to restrict sources of noise (such as the clock) from analog

subcomponents while still maintaining the digital-system performance.

7.2 Directions for Future Work

The results summarized in the previous section provide several avenues for further research.

We discuss these in the categories of technology, CAD, and circuit design.

7.2.1 Technology Research

Our work in Chapters 3 and 4 has made it clear that the performance of inter-layer in-

terconnect is critical to digital 3-D system performance. Two important aspects to this

interconnect exist: feature size and parasitic performance.

It is critical both for the performance of current architectures and invention of new

ones that a high-density interconnect be available. Specifically, we postulate that for new

architectures to be devised, the inter-layer interconnect pitch must be within an order of

magnitude of the minimum feature size. This will allow the use of inter-wafer wires for local

or semi-local interconnect. Similarly, the capacitance (and in future technology generations,

inductance) of these interconnects must be controlled, such that future 3-D performance

improvements are not ameliorated.

Thus, continual research into bonding alignment strategies is a necessity. Alternatively,

we can find suitable bonding approaches that avoid the need for high-precision wafer align-

ment.

In addition, our research into the thermal properties of 3-D ICs has shown that ad-

vanced cooling technologies will be highly beneficial, if not absolutely required. Further

research into useful ways for integrating this technology into the wafer-bonding process

is merited. Furthermore, the potential for integrating micro-electromechanical (MEMS)
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technology with circuits in a 3-D fashion includes the possibility of incorporating other

MEMS-style heat-removal mechanisms into the 3-D structure. This general area repre-

sents one of the highest priorities for continued research into three-dimensional integration

technology.

Finally, yield analysis and optimization is also an important problem for several kinds

of 3-D integration. In a wafer-bonding technology, for example, there are two issues. First,

the commercial viability of the technology is dependent on a reliable bonding mechanism.

If 3-D integration becomes the primary yield bottleneck, its use will at best be confined

to expensive, high-performance flagship components. Second, if a reliable, high-quality

bonding procedure cannot be achieved, new verification and test procedures will have to be

developed to ensure that all the inter-wafer interconnects are formed correctly.

7.2.2 CAD Tools

As we have described in Chapter 6, we envision that future design tools will be built on

architectures quite different from those in use today. In the digital domain, the linear flow

of tools is already being reorganized into tool sets in which early stages such as synthesis

are merged with global-routing-driven predictors of final layout.

Several second-order digital optimization problems in 3-D integration have yet to be

solved. Optimizations in the space of 3-D detailed routing likely exist that are not covered

by our present approach. Furthermore, the simultaneous consideration of electrical and

thermal performance during routing is a potential opportunity. Inter-layer interconnects

may be introduced, for example, that serve not to carry signals, but to carry heat.

Another area for further study is in design for testability. If, as discussed in Section 7.2.1,

3-D integration technology becomes a major yield bottleneck, a mechanism for testing

individual device layers before bonding must be devised. Alternatively, the entire existing

stack of a partial 3-D IC may be tested prior to integration of the next layer of the stack.

In a conventional IC, a scan chain is designed into the circuit whereby a test pattern may

be loaded into the registers. The circuit is then allowed to operate for one or more cycles,

and the resulting register values are scanned out of the circuit. In an unfinished 3-D IC,

some bypass mechanism might be devised so that only the inter-wafer interconnects are

tested; logic functionality may be verified using the full scan chain when the circuit has

been completed.

154



We also posit that computer-aided design for mixed-signal circuits, both 2-D and 3-D,

will be an important field of research. There continues to be growth in the demand for

system complexity in a way that can only be satisfied by system-on-a-chip integration. At

the same time, many integration constraints can only be met by new technologies such as

3-D integration. Furthermore, the capabilities of design tools for this sort of mixed-signal

system design lag well behind those of digital design tools. Analog design has long been

considered an art impervious to the kind of systematization required for computer-based

automation and optimization.

Several specific problems require addressing. For example, the development of a flexible

cell-based analog synthesis tool is an ongoing task of key importance. Also, a fast substrate-

noise prediction or analysis tool for use in iterative placement methods will be required.

7.2.3 Circuit Design

The results we have produced regarding the performance of digital ICs present a strong case

for continued research into 3-D integration technology. However, one facet that we have not

explored is the use of 3-D integration for improving or replacing specific circuit architectures.

The volumetric scalability of integration in three dimensions may be exploited by various

forms of communication-centric chips.

Field-programmable gate arrays (FPGAs) have already been investigated as a candi-

date architecture for scaling in three dimensions. However, much more investigation is

warranted. Moreover, the availability of mixed-signal integration leads us to conjecture

that some form of programmable mixed-signal fabric may be possible. Other computa-

tional fabrics such as distributed multiprocessor-memory systems will likely also scale in

performance if implemented in a 3-D IC.

Other architectures certainly exist, some as yet unconceived, that will leverage 3-D inte-

gration for even greater performance gains than have been demonstrated in this dissertation.

The full extent of such gains can only be determined by further research. We therefore ex-

pect that with innovative thinking, three-dimensional integration will truly flourish.
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Appendix A

Usage Information for the 3-D

Design Tools

A.1 PR3D: The Placement and Routing Tool

A.1.1 Platform Support

PR3D is written in C with the intent to be portable to any platform supported by the

GNU C compiler (gcc) and associated build environment. PR3D has been built and tested

successfully on i386 and Alpha Linux platforms as well as the Sun Solaris environment.

A.1.2 Usage

Overview

PR3D is invoked as a batch-processing tool. The relevant input files and output options

are passed via the command line. The main input is an auxiliary (.aux) file that specifies

the floorplanning or placement data:

PR3D -f input.aux

The auxiliary file uses an extension of the GSRC format, and thus contains a single line:

<problemtype> : file_1 file_2 ... filen

where <problemtype> is one of RowBasedPlacement, Routing, LEFDEF, or LEFDEFrouting.

The file list for the GSRC placement and routing problems contains the .nodes, .nets,
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.wts, .scl, and .pl files, while the LEF/DEF problems require the library .LEF, design

. DEF (for placement) or .3DDEF (for routing - more on this in the section on output formats),

and optionally the design switching activity .SAIF, timing constraint information . SDF, and

cell timing library .TLF.

A typical invocation thus might be:

PR3D -f input.aux -n 3 -z 10 -c -y -s output.def

Specific optimization and output modes are covered in the next section.

Command-Line Arguments

Here are the command-line options for PR3D.

option argument default argument/action

-fi--auxFile

-il--partitioner

-n l --numStrata
-p l --part3DFirst
-zl--zAxisScale

-r I --saveRentData
-s l --savePlacement
-tI--savePlacementStats

-w 1 --saveWLdist

-c l -- c onstrainTiming

-o l --opt imizeTiming
-y l --useSwitchingActivity

-g l --thermalGrid
-k l --constrainThermal

-hI--help

<f ilename>
HMETISIPATOH

int >= 1

[no argument]

int >= 1

<filename>

<filename>

<filename>

<filename>

[no argument]

[no argument]

[no argument]

<filename>

[no argument]

[no argument]

[no default]

[built-in partitioner]

[1]
[disabled]

[1]

[no default]

[no default]

[no default]

[no default]

[disabled]

[disabled]

[disabled]

[no default]

[disabled]

[prints help message]

Here is a description of the various options.

Global options:

" -f -- auxFile: see above.

" -i I -- partitioner: PR3D can utilize a built-in multi-level partitioning code or use
the the hMetis [52] or PaToH [54] libraries available from the WWW.
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* -h I -- help: provides a help message.

3-D optimization options:

" -n I -- numStrata: (e.g. -n 5) specifies the number of device layers.

" -p I -- part3DFirst: if specified, tells PR3D to partition into device layers before any
other partitioning.

* -z I -- zAxisScale: specifies the inter-layer via cost, as defined in Chapter 3.

Output options:

" -r I -- saveRentData: saves pin-versus-block data to the specified filename.

" -s I -- savePlacement: saves the placement to the specified filename, using the format

corresponding to the input data.

" -t I -- savePlacementStats: saves the wire lengths of the individual wires to the

specified filename.

" -w I -- saveWLdist: saves the wire-length distribution, in histogram format, to the

specified filename.

Optimization options:

0 -c I -- constrainTiming: constrains the timing of the placement to the delay specified

in the . SDF input.

0 -o 1 -- optimizeTiming: optimizes the cycle time of the placement.

* -y I -- useSwitchingActivity: optimize the placed wire lengths according to the

switching activity in the . SAIF input.

Thermal options:

* -g I -- thermalGrid: compute the substrate temperature based on a thermal grid anal-

ysis using material properties specified in f ilename.

* -k I -- constrainThermal: optimize the placement for smoothest thermal distribution

using the preceding grid (must be specified with -g).

A.1.3 File Formats

PR3D is designed to be a drop-in replacement for a conventional place-and-route tool such

as Cadence® Silicon Ensemble®. As such, it supports the LEF and DEF file formats [134]

as well as the GSRC bookshelf format [135].
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Output Formats

Conventional placement formats are quite clearly not suited for 3-D placement. The GSRC

.pl placement format is, however, easily extended to three dimensions. The format consists

of lines of the form

<cell name> x y <orientation> [: optional extensions]

The device layer is merely included in the optional extension list.

The more industrial .DEF format requires some additional token support for 3-D IC

placement. In what we have named the .3DDEF file format, the global keyword STRATA is

used to indicate the number of device layers in the placement. In the COMPONENTS and NETS

sections, the + STRATUM modifier fixes layout components to specific device layers.

Configuration File Formats

The main configuration files are the .aux file, described above, and the thermal configu-

ration associated with the -- thermalGrid option. A sample configuration is given here.

Essentially, the solid material properties are given in the first section and the breakdown of

material layers for each device layer is given in the second. scaling scaled indicates that

in 3-D the die size is to be scaled inversely with the number of device layers; the alterna-

tive is scaling f ixed, for which the 2-D die footprint is used in all cases. In the layers

section, the materials for the repeatable layers are given as mixtures, where x represents

a homogeneous mixture, as opposed to I and -, which represent vertical and horizontal

interleaved stripes, respectively.

begin solids

# material thermal conductivities in W / m K
# material x y vertical(z)

Cu 392 392 392
Si 145.7 145.7 145.7
SOISi 70 70 70
SiO2 0.6 0.6 0.6

end solids

begin layers

scaling scaled

begin fixed
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# fixed layers
# name

#
heatsink

substrate

end fixed

are given in W / m K

conductance (W / m K)

x y z
0.002 0.002 0.002

145.7 145.7 145.7

thickness (nm)

1000

499000

# the rest are repeatable layers, i.e.
# that belong to a stratum, in order.
begin stratum

# name material

substrate SOISi:0.25xSiO2:0.75

dielectric Cu:0.01xSi02:0.99

metall Cu:0.3-SiO2:0.7

dielectric Cu:0.01xSiO2:0.99

metal2 Cu:0.3ISiO2:0.7

dielectric Cu:0.01xSi02:0.99

metal3 Cu:0.2-SiO2:0.8

dielectric Cu:0.01xSiO2:0.99

bonding Cu:0.5xSiO2:0.5

BOX Cu:0.01xSiO2:0.99

end stratum

end layers

list here all the layers

thickness (nm)

1000

1000

1000

1000

1000

1000

1000

1000
600

1000

A.2 3-D Magic: The Layout Editor

A.2.1 Platform Support

3-D Magic, as an extension of Magic, is supported on all platforms on which Magic is

supported. 3-D Magic is based on Magic release 7.1.

A.2.2 Usage

3-D Magic is invoked from the command line by using a 3-D-augmented technology file, e.g.

magic -T tech_3D.tech27

Once started, 3-D Magic will open a layout window and provide a command-line interface

for user input. In 3-D Magic, the title bars of the windows are augmented to give some

information about the 3-D stack. Each window title tells which device layer is being edited

and what device layers are bonded to it (if any). If the bond is face-to-face, the title will

say "flipped."
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3-D vias (i.e. those named in the contact3D section described below) may be painted

in the same way as traditional vias. However, if the design in which the 3-D via is painted

is bonded to another design, 3-D Magic will automatically paint a hint region on the corre-

sponding wafer.

A.2.3 Commands

We have added several commands and subcommands to 3-D Magic.

" :bond bonds the edit cell to another cell. If the other cell does not exist, it is created.

Syntax:

:bond cellname topibottom [flipped]

top signifies the edit cell's metallization; bottom signifies its substrate. If flipped is

specified, the bond is face-to-face or back-to-back. Otherwise, it is face-to-back.

:bond show topibottom

tells 3-D Magic to name the cell bonded to the top or bottom of the edit cell.

" :unbond removes the bond from the specified side. Syntax:

:unbond topibottom

* : select works precisely as in Magic; however, in 3-D Magic, if a wire spans multiple

wafers, all electrically-connected material on all wafers is selected. Similarly, if a

subcell is bonded to another subcell within another design, selecting the cell will also

select bonded cells.

* extract has been extended to incorporate the subcommand

:extract stack

which extracts the entire 3-D stack to a single .ext file. For example, if three designs,

waf er1, waf er2, and waf er3, are bonded together, then : extract stack will produce

waferl+wafer2+wafer3.ext.
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A.2.4 Extensions to the Magic Technology File Format

To support 3-D IC design, two extensions to the Magic technology file format have been

made. First, we have added a section akin to contact called contact3D. In this section,

any types in the types section may be designated as inter-wafer contacts. For example, if

cutop is defined as the bonding metallization, then the line

cutop top

indicates that for cells that have other cells bonded top-side, any painted cutop should be

hinted on the bonded cell.

Second, we have added a design rule, exact overlap-3D, to the drc section. This rule

has the syntax

exactoverlap_3D paint1,paint2,paint3,...

The listed paints must be in the contact3D section; if this design rule is invoked, any such

paint in a bonded cell must be exactly aligned with an identical region of appropriate paint

on the matching bonded cell.
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