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Doctor of Philosophy

Abstract
We develop a framework for interpreting geodetic measurements of interseismic

deformation and geologic slip rate estimates in terms of block motions. This method
accounts for the effects of block rotations and interseismic strain accumulation from
active faults. We find that the San Andreas Fault slips close to its Holocene rate in the

Carrizo Plain (35.6 ± 0.5 mm/yr) but is five times slower near San Bernadino (6.6 ± 2.7
mm/yr). Thrust faults underneath Los Angeles, the Ventura Basin, and the San Gabriel
range front all exhibit active shortening from 0.5 to 13.5 mm/yr. We suggest that
differences between paleoseismic and block model slip rate estimates may be explained
by changes in fault slip rates through the Holocene.

The viscoelastic rheology of the non-brittle upper lithosphere may give rise to
time dependent surface deformation though the seismic cycle. We extend a classic theory
from periodic to temporally clustered earthquakes by superposing several out of phase
earthquake cycles. This new model displays a much wider range of behaviors than does
the periodic earthquake cycle model and provides a mechanism to explain apparent
discrepancies between geologic and geodetic slip rate estimates.

The potential for large earthquakes in an active fault system is determined by the
balance between coseismic moment release and interseismic moment accumulation. We
identify regions of local moment deficit in Southern California by comparing historical
earthquake catalogs with the fault slip rate catalogs derived from both geologic and
geodetic data. Large moment release deficits are localized in the northern Mojave
Desert, San Jacinto fault, San Andreas fault, and the greater Los Angeles area. We
estimate the minimum size earthquake sources (M > 7) required to relieve these deficits.

Thesis supervisor: Bradford H. Hager
Title: Cecil and Ida Green Professor of Earth Science
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Introduction

The goal of this work is a quantitative description of the distribution of

deformation across the Southern California fault system in order to estimate present day

slip rates that are compatible with GPS observations of interseismic deformation. If most

deformation occurs along faults, then slip rates provide a kinematic description of plate

boundary zone deformation and provide the basis for both earthquake cycle and tectonic

models. Slip rates estimated from geodetic measurements are not necessarily the same as

long-term geologically determined slip rates. By comparing geodetic and geologic slip

rate estimates, we can assess whether or not a fault system is at steady state and, if not,

estimate the time scale over which slip rates evolve.

Over the last two decades, geodetic monitoring techniques, especially using the

Global Positioning System (GPS), have matured to allow the measurement of

interseismic deformation with a precision better than 1 mm/yr. In addition to increased

precision, the number of campaign and continuous stations in regional networks has

grown from 10's to 100's. With these rich data sets, we can pursue geometrically and

temporally complex models of fault slip rates, seismic hazard potential and crust/upper

mantle rheology.



The Southern California Earthquake Center (SCEC) Crustal Motion Map (CMM)

version 3.01 is the largest source of interseismic velocity estimates (-800) in Southern

California. We augment this data set with velocities in the Eastern California Shear Zone

from McClusky et al. (2001), the Pacific Plate from Steblov et al. (2003), and the northern

Sierra Block (BARD network2). Figure 1 shows the combined velocity field in a mean

Southern California reference frame. The most striking feature of the GPS velocity field

is the -50 mm/yr of relative motion between the North American (top) and Pacific Plates

(bottom).

n*r

Figure 1. Interseismic GPS velocities in Southern California.

'http://epicenter.usc.edu/cmm3
2 http://quake.geo.berkeley.edu/bard/bard.html



The velocity transition between the two plates is not a simple step function across

a single transform structure, but instead varies smoothly across the -200 km wide fault

system. The largest velocity gradients are associated with the San Andreas fault, which

strikes from northwest to southeast, and accommodates approximately 60% of the

relative plate motion. Interseismic deformation reflects the effects of both plate (block)

motion and seismic cycle processes. Fault creep, viscoelastic relaxation of seismically

induced stresses and interseismic strain accumulation are the primary near-fault

processes. Elastic dislocation theory is typically used to describe steady state

interseismic strain accumulation and can be considered a high viscosity approximation of

a viscoelastic seismic cycle model. Because the width of an interseismic velocity

gradient is a function not only of the slip rate, but also of the fault geometry, we can

estimate apparent locking depths. These may represent true locking depths, proxies for

complex elastic structure in the upper crust, or long-term postseismic viscoelastic effects.

Any model of interseismic deformation in an active plate boundary zone must account for

these effects.

In addition to contributing to interseismic GPS velocities, elastic strain

accumulation stores the energy that is later released by earthquakes. The potential for

large earthquakes is typically quantified by one of three methods: 1) estimating the area

of potential rupture sources, 2) extrapolating Gutenberg-Richter statistics to large

magnitude events, and 3) comparing the rates of moment accumulation and release. This

last method is an approximate statement of conservation of energy for seismic cycle

processes. An accurate fault slip rate catalog compatible with geodetic observations of
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interseismic deformation provides the basis for calculating the rate at which moment is

accumulating over the last 5-15 years. In contrast, geologic slip rate catalogs tend to

estimate slip rates over 5000 to 5 million year intervals. For the purposes of seismic

hazard assessment, a geodetic slip rate catalog is preferable to a geologic catalog in the

sense that it constraints information about the strain we can observe accumulating today.

Moment release rates can be estimated using epicenter and magnitude information from

historical earthquake catalogs. If coseismic deformation has not kept up with

interseismic strain accumulation, there is a moment deficit that may be relieved by future

earthquakes. With a moment accumulation model that is consistent with fault system

geometry and reasonably accurate historical epicenter estimates, we can localize moment

deficits along specific fault zones.

Previous attempts to integrate geodetic data into seismic hazard assessment have

been based on simplified models of regional strain that do not reflect the geometry of

potential earthquake sources or seismic cycle processes. The observed surface strain is

not necessarily an indicator of interseismic strain accumulation. For example, high strain

rates are observed around the creeping section of the San Andreas Fault north of

Parkfield. However, this section is not a potential source of large earthquakes as there is

no significant interseismic strain accumulation. This highlights the necessity of modeling

observed interseismic velocities with a model that reflects the geometry of the fault

system and accounts for interseismic strain accumulation.

This thesis is organized into three chapters and an appendix. Chapter 1 presents

the block-modeling framework and applies it to Southern California using interseismic
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GPS measurements as constraints. This study focuses on estimating slip rates of major

faults and includes a comparative analysis of geodetically and geologically determined

slip rates, with an emphasis on the branching aspects of the southern San Andreas fault

system. We find that the strike-slip rate on the San Andreas fault varies by a factor of

four. This result requires us to reconsider the long-term tectonic role of, and the seismic

hazard potential associated with the southern SAF. In chapter 2, we develop a new

model for interseismic deformation through a clustered earthquake cycle by extending the

viscoelastic models of Savage and Prescott (1978) and Savage (2000). A clustered

earthquake cycle is defined and interseismic velocities are predicted. Using previous

paleoseismic and geodetic studies, we consider applications in Southern California and

the Wasatch Range, Utah. Chapter 3 is devoted to assessing seismic hazard potential in

Southern California using moment balance principles. This work reexamines the basic

and critical question: To what extent is the moment release associated with large

earthquakes balanced by the moment accumulation due to interseismic strain

accumulation? We find that there is substantial evidence for a 50% moment deficit at the

regional scale and that it is localized in three regions: the southern San Andreas fault

system, the northern Mojave Desert and the greater Los Angeles area. The Appendix

provides an overview of the philosophy and design principles that were used to guide the

creation of software necessary to perform the calculations detailed in Chapter 1. We also

review some of the more interesting geometry management algorithms that allow for the

efficient handling of three-dimensional fault geometry on a sphere.
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Chapter 1

Block Models of the Present Day Deformation of Southern
California Constrained by Geodetic Measurements 3

Abstract. We estimate present-day slip rates on major active structures in Southern
California using block models of the interseismic velocities based on geodetic data,
primarily the SCEC 3.0 Crustal Motion Map. The block model approach accounts for
elastic coupling between blocks and yields kinematically consistent slip rates.
Approximately 69% of the residual velocity magnitudes are smaller than their estimated
1-c- values. Formal fault slip rate uncertainties calculated by covariance propagation
range from 0.4 to 3.1 mm/yr. The string of faults from Oak Ridge and San Cayetano in
the west, running toward the Sierra Madre fault, along the San Gabriel range front to the
Cucamonga fault near the San Andreas Fault (SAF), all show high dip slip rates up to
13.5 mm/yr. Just to the southeast of these faults, the Puente Hills Thrust shows -2
mm/yr of shortening. The San Bernadino segment of the SAF has a surprisingly low
right lateral slip rate of 6.6 ± 0.9 mm/yr. This low slip rate may account for the long
recurrence interval observed in the paleoseismic record there and may act as an
impediment to large SAF earthquakes rupturing all the way through the Big Bend. We
find a 25 km locking depth for the portion of the SAF that broke during the 1857 Ft.
Tejon earthquake. We propose that the Eastern California Shear Zone may be rapidly
evolving and that geodetically estimated slip rates indicate that the Owens Valley and
Blackwater faults are currently more active than they have been in the recent geologic
past. The success of our model seems to support the steady-state model as a valuable tool
to determine fault system kinematics. Its success may support the validity of the

assumption of a high viscosity lower crust/upper mantle (q > 1019 Pa-s), or simply
averaging across earthquakes in different parts of the seismic cycle.

' This work is being prepared for publication with Brad Hager
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1. Introduction

Southern California lies at the active plate boundary between the Pacific and

North American Plates, where these plates move past each other at approximately 50

mm/yr (e.g., DeMets et al. 1990, DeMets and Dixon, 1999). The relative motion between

the two plates manifests itself primarily through strike slip faulting (Atwater, 1970). At

the latitude of the Carrizo plain, approximately 70% of the relative motion between the

two plates is localized as right lateral motion on the San Andreas Fault (SAF) (e.g.,

Minster and Jordan, 1987, Sieh and Jahns, 1984, Argus and Gordon, 2001). However,

the Southern California fault system (SCFS) consists of a large number of interconnected

faults with a wide range of deformation styles (e.g., Jennings et al., 1994). In addition to

the significant right lateral motion on the SAF system, the geologic record provides

ample evidence for left lateral motion along the Garlock (e.g., McGill and Sieh, 1993,

McGill and Rockwell, 1998), Pinto Mountain (Jennings, 1994, Petersen and Wesnousky,

1994), and Raymond Hill faults (Weaver and Dolan, 2000). The SAF system itself

becomes complicated south of the Mojave segment, where the SAF splits away from, and

then rejoins the active San Jacinto Fault (SJF) to the west. The Eastern California Shear

Zone (ECSZ) splays to the east from the SAF at about the same latitude and

accommodates at least 12 mm/yr of right lateral motion (e.g., Sauber et al., 1994). In

short, the relative motion between the Pacific and North American Plates is

accommodated across the entire SCFS through various faulting styles.
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1872 Owens Valley

14~

Figure 1. Focal mechanisms for large earthquakes (Kagan, 2002) in Southern California
overlaid on topography (GTOPO30) and fault traces (Jennings, 1994). The area of each
focal mechanism is proportional to its scalar seismic moment. The darker quadrants are
compressional. Focal mechanisms with gray compressional quadrants are those from
1807-1900 and those with black compressional quadrants are from 1900-present. The
largest focal mechanism is associated with 1857 Ft. Tejon earthquake along the San
Andreas Fault.

Earthquake focal mechanism estimates show a similar variation in orientation and

sense of slip (Figure 1.) Some of the largest events (summarized by Ellsworth, 1990,

Stein and Hanks, 1998, Kagan, 2002) are consistent with right lateral rupture along the

SAF and sub-parallel structures (e.g., 1857 Ft. Tejon and 1872 Owens Valley

earthquakes). Other focal mechanisms from the instrumental era show significant thrust

components (1952 Kern County, 1994 Northridge) associated with compression across

the Big Bend of the SAF and shortening in the Ventura Basin. The earthquake focal
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mechanisms complement the geologic slip rate data and provide ample evidence that the

SCFS is more complicated than a simple strike slip zone.

How is deformation partitioned across the SCFS? If we assume that all

deformation on major fault structures is elastic and that earthquakes relieve all of the

accumulated strain, then fault slip rates will completely describe the kinematics of the

plate boundary zone. Fault slip rates can be estimated from both geologic and geodetic

data. Geologic data (offset marker units and initiation dates) provide average slip rates

over thousands to millions of years. In contrast, high quality geodetic data (velocities and

strain rates) typically only provide information about the last 10-20 years of crustal

deformation. Thus, slip rate estimates from geologic and geodetic data are comparable

only in the case where the two data sets represent the same time averaged behavior.

There has been great interest in determining the distribution of present day

deformation in Southern California in order to provide an estimate of where strain is

accumulating most rapidly and, thus, where earthquakes will most likely occur. At the

regional scale, Minster and Jordan (1987) quantified the "San Andreas deficit" using an

early plate motion model. Bird and Rosenstock (1984) developed a detailed, hand fit

block model of the region in an effort to combine geologically estimated slip rates in a

kinematically consistent manner. Weldon and Humphreys (1986) carried out a related

study, summing the slip rates from a small set of faults and looking for deviations from a

path integral constraint to assess slip rate compatibility.

With the development of high quality Very Long Baseline Interferometry (VLBI)

and Global Positioning System (GPS) measurements in the late 1980's (combined with
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older EDM data), it became clear that the effects of interseismic strain accumulation

should be modeled and that fault slip rates and locking depths could be estimated directly

from geodetic data. Using trilateration data, Cheng et al. (1987) developed a block

model of the northern Transverse Ranges and found a low slip rate on the SAF. Saucier

and Humphreys (1993) combined geologic slip rate estimates with VLBI velocity

estimates to estimate the horizontal velocity field using a thin elastic sheet finite element

model. Feigl et al. (1993) used an a priori deep dislocation model that included the San

Andreas, San Jacinto, Elsinore, and Garlock Faults in an attempt to explain early GPS

observations. Bird and Kong (1994) revisited the block model geometry presented by

Bird and Rosenstock (1984) and used it to minimize the difference between strains from a

thin elastic sheet finite element model and the strains estimated from EDM and VLBI

data. A block model approach was used again by Souter (1998) to assess the

compatibility of geologic estimates of fault slip rates with each other and with observed

GPS velocities

Geodetic data have also been used in an attempt to resolve slip rates on a more

local scale. Bennett et al. (1996) and Johnson et al. (1994) estimated the strike slip rate

on the southern SAF near the Salton Sea. Savage and Lisowski (1998) used a 2D

viscoelastic model to estimate not only the slip rate but also the time within the

earthquake cycle for the Mojave SAF. The central SAF was studied by Argus and

Gordon (2001), who attempted to resolve the fault normal and fault parallel components

of motion. Segall (2002) used a Bayesian framework to combine geologic and geodetic
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data to estimate the slip rate, locking depth and recurrence intervals for the Carrizo

segment of the SAF.

Sauber et al. (1986) and Savage et al. (1990) drew attention to the Mojave portion

of the ECSZ, a substantial step toward resolving the San Andreas deficit problem

(Minster and Jordan, 1987). More recently, Savage et al. (2001) and Peltzer et al. (2001)

have provided revised estimates of the slip distribution in the Mojave Desert. The ECSZ

north of the Garlock fault has also attracted considerable attention, as authors have

attempted to estimate the partitioning of slip across the Owens Valley, Panamint Valley,

and Death Valley fault zones (e.g., Bennett et al., 1997, Hearn et al., 1998, Dixon et al.,

2000, Gan et al., 2000, Miller et al., 2001, McClusky et al., 2001, Dixon et al., 2003).

Thrust faulting in and around the Transverse Ranges represents a potential source

of earthquake hazard near large population centers. Feigl et al. (1990) made an effort to

quantify the shortening rate in the Santa Maria fold and thrust belt and Walls et al. (1998)

carried out a similar effort for the Los Angeles basin. Neither of these efforts

incorporated modeling of interseismic strain accumulation. Donnellan et al. (1993a,

1993b) and Hager et al. (1999) used 2D models to estimate shortening rates and seismic

hazard across the Ventura Basin. For the LA Basin, both Argus et al. (1999) and Bawden

et al. (2001) reached substantially different conclusions than Walls et al. (1998) by

including a priori models for the strain accumulation associated with the SAF.

The block model approach we present provides a unified framework for

combining geologic and geodetic data into a model that includes the effects of block

rotation and interseismic strain accumulation. The block model formulation implicitly
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enforces a path integral constraint that ensures that the relative plate motion is

accommodated everywhere along the length of the plate boundary zone. By estimating

slip rates of all faults simultaneously, we arrive at a slip model for the faults affecting the

Los Angeles Basin that is free of most of the a priori assumptions that have been

necessary in previous studies (e.g., Argus et al., 1999, Bawden et al., 2001).

2. Relative deformation due to small and large earthquakes

During the time that the geodetic measurements were being made, thousands of

earthquakes were recorded. We demonstrate that, except for the effects of a few large

earthquakes, most surface deformation is associated with interseismic strain

accumulation, not the coseismic strain release associated with small earthquakes. The

displacements associated with the Landers (1992), Northridge (1994) and Hector Mine

(1999) earthquakes were extensively studied (e.g., Hudnut et al., 1994, Hudnut et al.,

1996, Kaverina et al., 2002), but the displacements and moment release from the vast

number of smaller earthquakes have received little attention. We show that if strain

accumulation is balanced by strain release in great earthquakes, then small earthquakes

(e.g., those less than three magnitude units smaller than the maximum size event) do no

contribute significantly to an observed interseismic deformation field.

The Gutenberg - Richter magnitude - frequency distribution is given by

log10 N = a - bMw, where N is the cumulative number of earthquakes in a year with

magnitude greater than Mw, the moment magnitude, and both a and b are constants.

The scalar moment release from each earthquake is given by
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M0 =10 a(M +,6) (1)

where a = 0.67, p = 10.7 (cgs units), p is the shear modulus, and A is the area of the

coseismic rupture (Hanks and Kanamori, 1979). The total yearly moment release, A,

due to all earthquakes up to magnitude Mw is given by the summation over all

magnitudes multiplied by the magnitude frequency

Mw

A(Mw)= J M0 (M,)N(Mw)dMw

We can compare the moment release due to small events (still in the geodetically

observed the velocity field) with the moment accumulation for larger events. All of the

earthquakes less than or equal to Mw account for the fraction of total moment release

given by

max - A(MW) 10CM
-(M ,M(m)= ax= _0 cm c

A(MW ) -A(M,) 10" -1I04"*

where Mgax is the largest event size in the region. Other than the size of the largest

earthquake, the fraction of deformation, A, depends only on the constant, c, which is a

function of the slope coefficients from the moment - magnitude (a), Gutenberg-Richter

(2)
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(b), and the size of the largest earthquake. For Southern California, we take the

maximum size earthquake to be MaX = 8.0, a little larger than the 1857 Ft. Tejon event.

If the largest "little" earthquake remaining in the velocity field is Mw = 5.0, then this

contributes about A(5.0, 8.0)=0.003 or 3% of the total moment balance. If moment

release is balanced by moment accumulation, then all of the faults that are locked and

accumulating strain account for 97% of the present day observed deformation. This

means that, over the last ten years, there have been a huge number of small earthquake

whose effects we have not accounted for, they have not contributed significantly much

more moment has been accumulated than has been released. Ward (1998) reached much

the same conclusion through a similar analysis.

3. Simple models of the earthquake cycle

The two components of a simple model of the seismic cycle are the interseismic

strain accumulation and the coseismic strain release (e.g., Reid, 1910). Interseismic

deformation accumulates between large earthquakes; the fault is locked and deformation

is driven either from below or from the sides. The basic concepts of interseismic

deformation are well illustrated by 2D models that allow us to isolate the effects of

rheology.
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Figure 2. Vertical cross sections showing simple layered crustal rheology models. The
upper gray layer is elastic (spring element). The dark vertical line in this region is the
seismogenic part of the fault zone. A) The elastic rheology was used by Savage and
Burford (1973) and is used for the block model presented in this paper. During the
interseismic part of the seismic cycle, the down-dip extension of the fault (dark vertical
line below the seismogenic layer) creeps at a steady rate equal to the geologic rate. B)
An elastic layer over a Maxwell viscoelastic layer (spring and dashpot elements in
series). This layered rheology was used for the time-dependent seismic cycle models
presented in Savage and Prescott (1978) and Savage (2000).

Savage and Burford (1973) proposed an interseismic deformation model for a

homogeneous elastic halfspace. In their model, the coseismic layer is locked and a down-

dip extension of the fault zone creeps at a steady slip rate equal to the geologic rate

(figure 2).

11 W-i
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0.5 Slip deficit velocity

-5

0.5 Interseismic velocity

-0.5

||
0 5

x/D

0
x/D

0.5 Block velocity

-0.5

0 5
x/D

Figure 3. Three velocity profiles across an infinitely long fault, after Savage and
Burford (1973). The upper panel shows the slip deficit. This is the elastic contribution to
the long-term velocity field. The sum of the slip deficit velocity and the interseismic
velocity is the long-term block velocity. The striped line in each panel is the fault trace.
The shaded areas indicate the areas swept through by the respective velocities. This is
the simple case where the blocks on either side of the fault are translating past each other
with only strike slip motion on the fault. In this case, the interseismic velocity profile is
given by v = vyrc- tan-'(x/D).

In this model, there is no dependence of the deformation on the shear modulus and the

fault parallel velocity profile is given (for a screw dislocation) by v = vor-1 tan-'(x/D),

where vo is the deep steady slip rate, x is the distance from the fault trace, and D is the
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elastic locking depth. The velocity profile is characterized by a smooth transition across

the fault zone, in contrast to the coseismic and long-term geologic profiles, both of which

are discontinuous at the fault (figure 3). This model has been the basis for many

interpretations of geodetically determined velocities and strain rates (e.g., Savage and

Burford, 1973, Bennett et al., 1997).

A model with a more complex layered rheology is shown in figure 2b. Here a

Maxwell viscoelastic layer lies underneath an elastic layer that ruptures coseismically.

Nur and Mavko (1974) initially developed an approximate solution for a dip slip fault in

order to model time dependent velocities in Japan. Savage and Prescott (1978)

developed an analytic model for an infinitely long, vertical, strike slip fault and Savage

(2000) restated their solution in a more concise form. In contrast to the steady elastic

model, the viscoelastic model depends on the material properties (shear modulus,

dynamic viscosity) and the time through the earthquake cycle. The parameter that

governs the time evolution is ro = pT / 2 q, where p is the shear modulus, T is the length

of the earthquake cycle (recurrence interval) and q is the dynamic viscosity of the

viscoelastic layer. Though the explicit description of the time dependence is rather

complex, it is straightforward to characterize the velocity profile evolution on the basis of

ro. For large values of ro (ro > 1) there are significant variations in the velocity profile

through the seismic cycle (figure 4). Immediately after an earthquake, the near field

velocities are fast relative to the elastic halfspace (steady state) values; just prior to an

earthquake, the near field velocities are slower than the steady state value. In all cases,

the far field velocity is the same for the elastic and viscoelastic cases. The time
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dependent profiles nearly collapse onto the steady state profiles approximately 2 /5ths of

the way through an earthquake cycle. Recently, Savage and Lisowski (1998), Segall

(2002) and Dixon et al. (2003) have used this model to interpret measurements of

interseismic deformation in Southern California.

1.0 -
- average

early
late0.5

-0.5

-1.0--
-10 -5 0 5

x/D

Figure 4. Fault parallel velocities at different times in the seismic cycle following
Savage and Prescott (1978). The shaded region indicates the area swept out through the
seismic cycle. The light dashed green, solid blue and finely dashed red curves are the
velocity profiles immediately after a model earthquake, an average over the interseismic
period, and immediately prior to the next event. The time variation of these curves
depends on the parameter ro = pT/2r~ 5.

Large values of ro may be due to either long repeat times or relatively low

viscosities. However, for short repeat times (T < 300 years) and large viscosities (r7 >

3x10 20) ro is small (r- <0.5). In this case, there is very little variation through the

seismic cycle and the Maxwell viscoelastic model is indistinguishable from the elastic

model (figure 4). We invoke this high viscosity (low ro) limit implicitly, assuming that
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the deformation of the viscoelastic Earth is adequately approximated by that of an elastic

halfspace model. We evaluate the applicability of this assumption later in this paper.

Savage (2000) developed a related model for an elastic layer overlaying a

Maxwell viscoelastic channel. The results were qualitatively similar to the semi-infinite

viscoelastic halfspace case, although the time-dependant variation becomes more

localized around the fault zone, with smaller deviations from steady state.

If viscoelastic effects do contribute to an observed velocity field, they may be

mapped into an elastic model as variations in slip rate and locking depth. Early in the

earthquake cycle, near-fault velocities are relatively high and map into an elastic model

as a fast slip rate and a shallow locking depth. Conversely, late in the earthquake cycle,

the elastic interpretation would include a slower slip rate and a deeper locking depth (see

appendix A for details). If far-field velocities were available early in the earthquake

cycle, then the viscoelastic effect would be quite evident, as the velocity gradient would

reverse near the fault zone.

4. Block modeling

We divide our study region (Southern California) into blocks bounded by faults.

To relate block motions and fault slip rates to geodetic observations of interseismic

deformation we start with the approach first detailed by Savage and Burford (1973).

We extend and generalize this formulation to allow for the effects of block rotation on a
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sphere, dipping faults, finite length faults, and multiple blocks. For the two-dimensional

case, the total block displacement over an earthquake cycle of length T is defined as the

sum of integrated interseismic displacement, TV,, and coseismic deformation

contributions (figure 3),

TVB =ThI S()+f(d,iS,iF) (4)

where d is the coseismic slip vector, Ts specifies station coordinates, and 5cF contains

the fault geometry. For an infinitely long strike-slip fault, the coseismic term is given by

an arctangent function that depends on the distance from the fault and the elastic locking

depth (figure 3). If we divide equation 4 by T and assume that f is linear in d, then we

can pull the earthquake displacement out of the function f. We can then write

interseismic velocity as the difference between the block velocity and the yearly

coseismic slip deficit (CSD) velocity,

v'=vB S S F B S CSD S IF (5)

The geodetic data set we are modeling can be considered to represent interseismic

deformation, primarily showing strain accumulation, with negligible coseismic strain

release.
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Several studies have extended this argument from a single infinitely long fault to

multiple finite faults in a planar formulation (e.g., Matsu'ura and Jackson, 1986,

McCaffrey et al. 1996, Souter, 1998). We move to a spherical framework where we can

directly estimate rotation vectors Q = (Q , , 2) for each block. Murray and Segall

(2001) used a similar approach, but ignoring fault-normal motion, for Northern California

and the Basin and Range province. Equation 5 gives a general representation of

interseismic deformation. We can write both i B and FCSD in terms of rotation vectors

C2. The block motion contribution to the interseismic velocity field is straightforward

and is given by

ViBs()=G xA S = RB(is)Q (6)

where RB (S,) is a linear cross product operator that is a function of station coordinates,

is . One of the great advantages of the block motion formulation over the traditional

deep slip model is immediately clear from equations 5 and 6. That is, the effects of block

rotations on the interseismic velocity field can be included. Even in two dimensions, this

may significantly modify the traditional arctangent profile such that the total far field

velocity is less than the fault slip rate (e.g., Meade et al., 2001).

To calculate the elastic (or coseismic slip deficit) contribution to the velocity

field, we use the dislocation solutions presented by Okada (1985) for the surface

deformation due to an arbitrarily inclined dislocation in a uniform elastic half space. In
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order to use these formulas, we project the fault geometry and station positions from

spherical to planar geometry. While the spatial distortion due a reasonable conformal

projection over an area the size of southern California is <1%, our desire to incorporate

far-field velocities (e.g. in the interiors of the Pacific and North American plates)

motivated us to take a different approach to the "flattening" problem. Every fault

segment is divided into small pieces no longer than 10 km. For each small segment, we

want to model the elastic deformation accurately in the immediate vicinity of the fault,

where the velocity gradients are largest. To do this we use a local projection for each

small fault segment, compute the elastic contribution, and then rotate all of the velocities

back into an east, north, up frame. A locally tangent oblique Mercator projection allows

us to flatten the geometry in such a way that the fault trace is approximated as a great

circle path between its two endpoints. Combining these transformations, we can write

the slip deficit velocity as,

VCSD = RX-E (S )RP (S IF)RO(xs'xF)g (7)

where RX-E transforms XYZ velocities to an ENU (east, north, up) frame, R, projects

the station and fault positions into planar space from their spherical coordinates and Ro

contains the partial derivatives of Okada's (1985) elastic Green's functions with respect to

slip rate. Most of the matrices (R) are written to emphasize that they are functions of

station (is ) and/or fault ('F) coordinates. The fault slip rates are linearly related to the

rotation vectors as well,
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i=RF (F)R,(QF (8)

where Rv projects the rotation vectors into a relative velocity at the fault midpoint.

Thus, for a given set of rotation vectors, RAn gives the two components of the relative

velocity vector Ai; = (Av, Av1). R F projects the relative velocity onto the fault plane.

While a dislocation (fault) can have three components of slip (strike, dip, and tensile,

alternatively s,, S9 and si), we only allow two components of slip for each fault. The

strike slip component of all faults is equal to the projection of the relative velocity vector

along the fault azimuth. In addition, vertical faults have a tensile slip component equal to

the convergence rate. Faults with dips other than 900 have no tensile slip (opening or

closing) but instead, have a non - zero dip slip component that depends on the dip of the

fault. For a given convergence rate, the dip slip rate on a non - vertical fault increases

with dip. The relationship between the fault-normal components of the relative block

velocity vector to the non-strike slip rates is

s if3=9o

'=scos d if S w 90(
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As the fault slip rates are just projections of relative block motion vectors, the fault slip

rates are internally consistent and the surface velocity field implicitly satisfies the path

integral constraint on both geodetic and geologic time scales:

v (E,)dl =0 (10)

where (E, N) indicates either the east or north components of the velocity field and dl is a

differential line element along the integration path. The subscripts (B, C, 1) indicate the

block, coseismic slip deficit, and interseismic field respectively. In other words, the path

integral constraint states that the relative motion between any two points does not depend

on the path between them. This constraint is an implicit feature of the block model and

ensures that we generate internally consistent slip rate estimates.

We substitute equations (6), (7) and (8) into (5) to write the interseismic velocities

in terms a single multiplication, i , = (RB- R( C)Q where R. is a combination of all of

the other R matrices in equations (7) and (8). While our study is primarily concerned

with inverting geodetic data for block motions, the method presented above also affords

the possibility to include both a priori slip rate and plate motion estimates into the same

inversion. We can write the forward problem as a system of equations as follows:

S RB (R1
i =RFR, (1
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We are interested in the inverse problem where we have to estimate est. If we write

(11) as RQ = d (where d represents all of the data and R is a compilation of all of the

R's ) then we can estimate a set of rotation vectors by minimization of the sum of

weighted least squares

nest = (R T WR)- R T Wd (12)

where W is the combined weighting matrix. This matrix contains the weights for each

of the data sets (observed velocities, slip rates, a priori block motions),

W 0 ,W, 0 (13)
S0 0 p8nWn,

where each of the W's on the right hand side of (13) is the inverse of the covariance

matrix associated with each data set. We treat covariance matrices as diagonal, with the

exception of the east - north velocity correlations at each station. We do not currently use

the full covariance for the geodetic data. Each of the p's in equation (13) is a coefficient

that sets the relative weights for each data set. These parameters are useful when there is

an imbalance between the number of equations representing geodetic data and the

number of a priori slip rate estimates. In addition to the estimated rotation vectors, we
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can obtain the estimated slip rates, les, by substituting C,, into equation (8). Formal

slip rate uncertainties are calculated by propagating the estimated rotation vector

uncertainties through equation (8). The Euler pole location and rotation rate uncertainties

are calculated by Monte Carlo propagation so that we do not have to linearize the

conversion from rotation vector to Euler pole space.

As previously discussed, we can also include a priori plate motion or slip rate

estimates into the inversion. Although this provides us with a convenient framework for

performing joint inversions of geologic and geodetic data, we decided to focus on the

geodetic data in this paper. However, we have used some kinematic constraints to

eliminate "checker board" deformation. This behavior consists of an alternating pattern

of large amounts of convergence and divergence along what are thought to be

predominantly strike slip faults. While the magnitude of normal motion may be large on

any one of these faults, the sum across the system is small. We find that "checker

boarding" occurs along the faults bounding a series of long, thin blocks, such as those

south of Los Angeles and in the Eastern California Shear Zone. To minimize this artifact

of the inversion, we have added several constraints that limit the normal motion on faults

that would otherwise show "checker board" behavior. In the common deep-slip approach

to modelling interseismic deformation (e.g., Hubert-Ferrari et al., 2000, Segall, 2002)

there is a strong covariance between locking depth and slip rate. The block model

approach reduces this covariance by reducing the number of correlated model parameters

(faults vs. blocks) and thus reduces fault slip rate uncertainties (Meade et al., 2002).
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5. Geodetic data

The SCEC3.0 Crustal Motion Map4 provides the best published estimate of

interseismic deformation at the regional scale in Southern California. Included in the

velocity field are data from both survey mode and continuous Global Positioning System

(GPS), from Very Long Baseline Interferometry (VLBI), and from Electronic Distance

Measurement (EDM) measurements. Most of the data are survey-mode GPS, with some

of the older stations having time series that span nearly ten years. During the period of

GPS observations, there have been three large earthquakes in Southern California: the

1992 Landers earthquake (Mw = 7.3) in the southern Mojave Desert, the Mw = 6.7

Northridge (1994) event on a previously unrecognized blind thrust fault in the Ventura

Basin, and the M = 7.1 Hector Mine (1999) earthquake, which ruptured about 100 km

to the east-northeast of the Landers rupture. Coseismic and postseismic deformation

from these earthquakes has made it more difficult to evaluate some of the longer time

series for interseismic deformation. An effort was made in the development of the

SCEC3.0 CMM to cut out both the coseismic signal and the < 1.5-year postseismic

signals associated with these events5 . There may be additional long-term relaxation

effects in the geodetic data. We discuss this possibility later in the context of the block

model results.

4 http://epicenter.usc.edu/cmm3
' http://epicenter.usc.edu/cmm3/summan.html
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Figure 5. Here we show the observed velocity field in Southern California that
we used to estimate block motions. No confidence ellipses are shown in order to reduce
clutter. The velocities are a combination of the SCEC3.0 field and an update of
McClusky et al. (2001). The map projection is a locally tangent oblique Mercator with
the azimuth oriented approximately parallel to the SAF. The Pacific Ocean is at the
bottom of the figure and North America is at the top. (This projection is used for many
of the other geographic figures in this paper.) The velocities are in a mean Southern
California reference frame to highlight the dynamic range of the data. The shaded swaths
indicate the areas over which stations are included in the profiles shown in figure 6. The
light gray lines are fault traces from Jennings et al. (1994).

The SCEC3.0 Crustal Motion Map contains estimated velocities for more than

840 stations with observations through 2001. To ensure that we model the Pacific Plate

motion adequately, we combined the SCEC velocities with the far-field velocities

reported by Steblov et al. (2003). We added four stations from the BARD network that lie

7



CHAPTER 1: BLOCK MODELS

on the northern extension of the Sierra Block (UCD1, SUTB, QUIN, and ORVB)6; this

was required to produce a robust estimate of the Sierra Block motion and thus the San

Andreas Fault slip rate. To increase data coverage in the Eastern California Shear Zone

(ECSZ), we used an update of the station velocities of McClusky et al. (2001). The

combination was done by solving for the rotation vector that minimized the difference in

velocities at common stations. McClusky's analysis (including longer time series) yields

smaller uncertainties than most of the campaign-mode data in the SCEC3.0 velocity field.

To put the velocity fields on an equal footing we increased the McClusky uncertainty

estimates by ~0.4 mm/yr so that these two data sets shared the same median uncertainty.

For the small number of far field stations we use the reported velocities uncertainty

estimates.

We also removed a large number of sites. First, we discarded all velocities with

uncertainties larger than 1.5 mm/yr in the east or north component. Such large

uncertainties complicate the evaluation of the models without contributing substantially

to providing constraints in the weighted least squares inversion. The 1992 Landers

earthquake interrupts some of the longer time series and is the source of many challenges.

For many stations installed after Landers, rapid postseismic deformation is evident for at

least two years following the event; such sites were eliminated. We chose not to use the

EDM velocities in the SCEC3.0 field because the network tie relationships were not

readily available; the EDM residual velocities in preliminary models showed coherent

patterns relative to nearby GPS sites that are probably related to network tie problems but

6 http://quake.geo.berkeley.edu/bard/bard.html
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were easy to confuse with block motions. Some of the older VLBI sites have small

formal uncertainties, but their velocities often depart significantly from collocated GPS

stations, leading us to eliminate all VLBI sites in favor of a uniform data set. Many

velocities are also affected by non-tectonic signals, such as anthropogenic subsidence

(e.g., Bawden et al. 2001). Bawden's web site7 provides a map of regions and station

names identified as having complicated time series. Stations in the immediate vicinity of

Parkfield were eliminated as the fault behavior there is dominated by complex partially

creeping behavior (e.g., Murray and Segall, 2002). We also eliminated stations in

complicated regions that were outside of our study area, such as those in the San

Francisco area and the Basin and Range Province. In the ECSZ, we eliminated stations

near the COSO geothermal field and stations that we suspected of demonstrating

significant postseismic motion from the Landers and Hector Mine earthquakes. We also

eliminated stations that are commonly thought to have local site effects (AGUE, 0501).

The last step in the reducing the velocity field was an iterative cleaning procedure. This

involved looking at the residuals from the block model and identifying stations that had

residual velocities that were anomalous compared with their immediate neighbors. After

this procedure, our combined velocity field has 447 stations.

Figure 5 shows the resulting velocity field in a Southern California reference

frame. Stations in the top half move toward the southeast while those at the bottom move

toward the northwest at about half of the Pacific plate velocity. The velocity vectors near

the San Andreas and San Jacinto Faults are the smallest and mark the major boundary

7 http://quake.wr.usgs.gov/research/deformation/modeling/socal/la/index.html
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between the Pacific and North American plates. Across the Southern California fault

system the observed velocities do not jump abruptly across the SAF, but instead vary

smoothly. The fault parallel velocities in figure 6 show this more clearly. The fault

parallel velocities and uncertainties (from the two shaded swaths in figure 5) are shown in

figure 6. The gradual transitions across the fault zones are similar to the simple

interseismic velocity model shown in figure 3. In the southernmost profile it is difficult

to separate the effects of the SAF and SJF. Note that while each of the profiles shows

approximately the same velocity change (-40 mm/yr) from the Pacific to the North

American plates, the distributions are different. In the north, the fault-parallel velocity

drops by about -30 mm/yr across the SAF. Further to the east, the velocity gradient

flattens out before dropping -12 mm/yr across the Eastern California Shear Zone. In

contrast, the southern profile shows no intermediate flattening and the total velocity drop

occurs across a distance that is about 50% that in the northern profile. This reflects the

difference in the fault system geometry from north to south. The flat portion of the

northern profile reflects the relative stability of the -200 km wide Sierra Block, with the

actively deforming central SAF to the west and ECSZ to the east. In contrast,

approximately 80% of the relative plate motion is accommodated across the SAF and

SJF, separated by only -40 km.
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Figure 6. Fault parallel velocities from the northern and southern swaths, respectively
shown in figure 5. The vertical lines give the 1o- fault parallel velocity uncertainty
estimates. The heavy shaded areas show the locations of various fault zones (SAF: San
Andreas Fault, ECSZ: Eastern California Shear Zone, SJF: San Jacinto Fault.) The total
change in velocity across both profiles is about 40 mm/yr but the transition occurs over a
distance about half as wide in the south. This is due to the close spacing of the SJF and
SAF in the compared to the distance between the SAF and ECSZ in the north. The Sierra
block separates these two zones of deformation. Notice the similarities between these
profiles and the simple theoretical one shown in the middle panel of figure 3.

6. Southern California block geometry

The number of faults in Southern California results in a geometrically complex

block model compared with other major continental transform boundaries such as the

North Anatolian Fault zone (e.g., Meade et al., 2002). We adopt a model with twenty-

two blocks (figure 7).

40
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1.Cucamonga 8.Santa Susana 15. Mojave East i BA. Baja LA. Los Angeles SB. Sierra Block
2.Sierra Madre 9.San Cayetano 16. Hunter Mountain 88. Blackwater M..Mojave SD.San Diego
3. Raymond Hill 10.Oakridge 17. Saline Valley BP. Big Pine NA. North America SG. San Gabriel
4. Hollywood Hills 11.San Gabriel 18.VerdugoWest Cl. Coastal Islands NV.Nevada SL.Salton
5. Santa Monica 12. Eureak Peak 19. Coast Ranges Split CR. Coastal Ranges OB.Oakridge VB.Ventura
6.Chino 13.Oceanside DV. Death Valley OV.Owens Valley VG.Verdugo
7. Puente Hills Thrust 14. Mojave East I EL. Elsinore PA. Pacific

EM. Eastern Mojave PV. Palos Verdes

Figure 7. Topography (GTOPO30), fault traces (Jennings, 1994, thin black lines)
and model block boundaries (thick lines) in and around Southern California. The map
projection allows the San Andreas Fault to run left to right outside of the Big Bend.
North is towards the upper left corner. The 22 blocks in our preferred model are labeled
(rectangles): Baja (BA), Blackwater (BB), Big Pine (BP), Coast Islands (CI), Coastal
Ranges (CR), Death Valley (DV), Elsinore (EL), Eastern Mojave (EM), Los Angeles
(LA), Mojave (MJ), North America (NA), Oakridge (OB), Owens Valley (OV), Nevada
(NV), Pacific (PA), Palos Verdes (PV), Sierra (SB), San Diego (SD), San Gabriel (SG),
Salton (SL), Ventura Basin (VB), Verdugo (VG). The block labels are given the box in
the lower right corner. Selected fault names are labeled either directly on the fault or by
reference. Circled numbers refer to faults and their names are given in the box in the
lower left corner.
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These blocks range in size from very large (i.e., the plate-scale Pacific and North

American blocks) to blocks like the Ventura block (figure 8), which have an area of only

a couple of hundred square kilometers. Our block boundaries often represent coarsely

structures that are much more complicated in the real world. In these cases, the model

faults are idealizations. We arrived at this preferred model by an iterative procedure,

starting with the Jennings (1994) fault map and the work of previous authors (e.g., Bird

and Rosenstock, 1984, Bird and Kong, 1994, Bennett et al., 1996, and Souter, 1998). We

then modified the fault system geometry to accommodate the observed velocities and

some of our geologic prejudices. This allowed us to develop a model that is compatible

with much of the mapped fault system geometry and the observations of interseismic

deformation. However, we were forced to introduce some features that have no direct

geologic analog (e.g., the split between the Coastal Ranges and Big Pine block, as well as

the split between the Oakridge and Verdugo blocks). Without the division between the

Coastal Ranges and Big Pine block, the residual velocity field north of the Ventura basin

and west of the central San Andreas fault have a coherent southerly and northerly

velocities respectively. With the structure that separates the Coastal Ranges and Big Pine

blocks (figure 7, structure 19) the residuals are minimized and we can recover both

substantial shortening along the northern edge of the Ventura Basin and a right lateral

strike slip rate greater than 30 mm/yr on the Central San Andreas fault. We included the

north south trending structure that runs from the Northridge rupture to the northern edge

of the Los Angeles basin (figure 7, structure 18) to allow model residual velocities

around the Northridge rupture zone.
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The number of blocks was limited not by computational concerns but by our

ability to invert for a reasonable model. As the blocks became smaller, the correlations

between model parameters increase and "checker boarding" becomes more problematic.

We are unable to separate the compound effects of faults that are very close to each other

(e.g., San Jose and Sierra Madre fault zones near the San Gabriel range front). However,

St. Venant's principle (e.g., Malvern, 1969) assures that the elastic effects further away

from the fault zone are not sensitive to the details of the locked geometry. For this

reason, our block boundaries are smoother than the corresponding faults on the Jennings

(1994) map. The residual velocities and GPS uncertainty estimates suggest that our block

model has a reasonable number of parameters from a statistical point of view.

Our preferred model includes the following twenty two blocks: Baja (BA),

Blackwater (BB), Big Pine (BP), Coast Islands (CI), Coast Ranges (CR), Death Valley

(DV), Elsinore (EL), Eastern Mojave (EM), Los Angeles (LA), Mojave (MJ), Nevada

(NV), North America (NA), Oak Ridge (OB), Owens Valley (OV), Pacific (PA), Palos

Verdes (PV), Sierra Block (SB), San Diego (SD), San Gabriel (SG), Salton (SL), Ventura

(VB) and Verdugo (VG).
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Figure 8. A three dimensional view, with topography (GTOPO30), of the fault geometry
of our preferred model focused on the Los Angeles region. The view is from the west -
northwest. The Mojave segment of the SAF is difficult so see as it is almost aligned with
the look direction. The same is true for the Oakridge and Puente Hills Thrust fault
systems, which appear nearly edge on. All of the non-vertical faults dip at 45".

7. Results and Interpretation

7.1. Locking depth variations

The third dimension of the fault system geometry is the fault locking

depth. With elastic dislocation models, deeper locking depths lead to wider zones of

strain accumulation. In general, the locking depths of faults are unknown. Recent work

detailing precise micro-earthquake locations provides information regarding the location

of asperities (e.g., Shaff et al. 2002) and, possibly, the depth of the brittle ductile

transition. As this technique is applied at a larger scale, it may become a valuable

resource to help constrain down-dip fault geometry and be a useful proxy for locking
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depth. Given that we don't know the locking depths a priori, and that our rheologic

assumptions (i.e., purely elastic) may be too crude to incorporate them properly, we

decided to estimate the locking depths of some critical fault segments. This also allows

us to interpret locking depths in terms of a viscoelastic earthquake cycle (see appendix

A).

Our preferred model has substantial locking depth variations, from 0-25 km. For those

faults where slip rates are high enough and coverage is dense enough, we estimated

locking depths. For the remainder, we used results of previous studies, where available,

or a default value of 15 km. Peltzer et al., (2001) estimated a very shallow locking depth

(-5 km) for the Blackwater fault, and we use the same value for consistency. For the rest

of the ECSZ we use a 10 km locking depth as suggested by McClusky et al. (2001). We

allow the Imperial Fault (southern SAF) to creep. We also recognized that in the Ventura

basin the Northridge earthquake ruptured to a depth of 16 km, thus providing us with an

objective estimate for the local locking depth. However, Donnellan et al. (1993a, b)

found that a 5 km locking depth could best fit two-dimensional profiles of fault normal

velocities in this same region. Hager et al. (1999) demonstrated that this shallow locking

depth mimics the effects of the lateral shear modulus variations in the Ventura Basin. We

use a 5 km locking depth in our model, but interpret it as a deep locking depth in the

Earth.

To estimate locking depths, we used a grid search, as the model velocities are

non-linear with respect to these parameters. In contrast to Lyons and Sandwell (2003),

we find that the SAF just to the east of the Salton Sea is fit best by a 15 km locking depth.
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This may reflect a bias in the data, for example, the inclusion of velocities affected by

transient postseismic deformation following the Landers and/or Hector Mine earthquakes.

The fault locking depths that bear most directly on both the fit to the data and the

estimated fault slip rates are those of the Mojave and Carrizo segments of the SAF. This

is the same section that ruptured in the 1857 Ft. Tejon earthquake (e.g., Sieh, 1978).

Figure 9 shows how the geodetic data fit the model for FTSAF locking depths ranging

from 0 to 40 km. These statistics were calculated by doing separate inversions for each

locking depth. The fit is best at approximately 25 km, with shallower locking depths

fitting the data very poorly (X 2 (d = 0) = 2.1 2 (d = 25)). The dashed curve in figure 9

shows how the strike slip rate along the Carrizo segment of the SAF varies with locking

depth. For the best-fit locking depth, the SAF slips at 35.7 ± 0.6 mm/yr. Shallower

locking depths severely underestimate the fault slip rate. The formal slip rate

uncertainties grow as a function of locking depth. This is because the relative block

motions become more coupled as the locking depth increases. In the end member case,

where all the faults have zero locking depth, there is no coupling between the blocks, and

the only contribution to the slip rate uncertainties is from the data uncertainties.
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Figure 9. The fit to the data and slip rate on the Carrizo segment of the SAF are shown
as a function of the locking depth of the segment of the SAF that ruptured in the 1857 Ft.
Tejon earthquake (FTSAF). The solid black line shows the fit (Z2) as a function of
FTSAF locking depth, with a minimum at 25 km. The monotonically increasing dashed-
dot curved shows the Carrizo plain strike slip rate as a function of FTSAF locking depth.
Surrounding this curve, the shaded region indicates the slip rate uncertainty at each
locking depth. The uncertainties become larger with increasing locking depths because
the elastic deformation zone broadens around the fault and the correlation between the
estimated model parameters (rotation vectors) increases. Our preferred slip rate for the
Carrizo segment of the SAF is the slip rate at the locking depth that minimizes the X .

This corresponds to 35.7 ± 0.6 mm/yr at a FTSAF locking depth of 25 km.

We discuss possible interpretations of this locking depth in a later section. Experiments

with synthetic data and 2D models show that the asymmetry in the X2 (d) curve is due to

the decrease in the sensitivity to locking depth (8v/8d) with depth. Thus, our locking

depth estimate is consistent with what we would expect from an optimal estimate.
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Figure 10. Residual (observed - model) velocities. The gray lines show the block model
geometry, focal mechanisms are those since 1940 (Kagan, 2002) and the small circles
indicate the base of each velocity vector. Note that the velocity vectors on this figure are
drawn at a scale that is three times larger than the observed velocity vectors shown in

figure 5 . The 5 mm/yr scale vector in the lower right hand corner has I mm/yr
uncertainties and is shown with a 95% confidence ellipse. This uncertainty is just smaller
than the mean of the combined observations. 69% of the residuals are typically smaller
than their associated I1-a-uncertainty estimates.

7.2. Fit to data

Our preferred model is able to account for most of the features in the observed

velocity field, with a mean residual magnitude of 1.3 mm/yr. The an /DOF = 1.2, and

69% of the residual velocity components are smaller than their -a uncertainty estimates.
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Figure 10 shows the residual velocities. The relationship between -residual velocity

magnitudes and the misfit contribution is shown in figure 11.
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~j100
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Residual magnitude (mm/yr)

Figure 11. The relationship between the magnitude of the residual velocity vectors and
their contribution to the minimization criteria. To calculate the contribution to the fit
criteria we sum the weighted squared magnitude at each station and then normalize by the
total number of stations. The thick dark lines indicate a zoomed in region where we
highlight the station names that contribute most. This figure aids in the interpretation of
figure 10 by highlighting the fact that while the residual velocity magnitudes are
positively correlated with their contribution to the fit criteria, the estimated uncertainties
can lead to complications. Specifically, one station may contribute more than another to
the overall misfit because it's uncertainty is smaller, not because its magnitude is larger.

The scatter from the main diagonal band in figure 11 highlights the fact that a

station with a smaller residual velocity may contribute more to the overall minimization

criteria than a station with a larger residual due to the differences in the estimated

uncertainties. For example, OJAI (northern edge of the Ventura Basin) has a smaller

residual velocity than GOUD (Sierra southwestern Sierra block), but contributes more to
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the minimization criterion. The correlation between elastic contribution and residual

velocity is 0.18 ± 0.04 at the 67% confidence level.

Some coherent residuals may be explained by co- or postseismic motions. Given

that coseismic displacement models are generally not accurate to the cm level within a

few rupture depths of the epicenter, we have reason to be suspect of coherent residuals in

the immediate vicinity of an earthquake with station time series that span the event.

Rapid postseismic deformation following large earthquakes may persist at the mm/yr

level for more than two years after the coseismic rupture (e.g., Pollitz et al., 2000). The

SCEC3.0 CMM only eliminates about 1.5 years of data following the Landers

earthquake, and this from only about 30 near-field stations. For both Landers and

Northridge, the velocities in the immediate vicinity of the fault are based on the fits to the

time series after the events. There is currently no correction for postseismic deformation

at Northridge. Either of these explanations may account for the small systematic

residuals near the Landers and Northridge earthquakes. It is interesting to note that the

residual velocities in both of these regions share the same sense of motion as the

coseismic displacements (figures 10, 14). Given the sensitivity to coseismic models and

the length of the excluded time series, we abstain from speculating on coherent residual

velocities that are in the immediate vicinity of the either the Landers or Northridge

rupture zones.
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7.3. Pacific-North America Euler Pole

The most basic measure of the deformation between the Pacific and North

American plates is the relative Euler pole between them (table 1). Our Euler pole

location is east of some recent estimates. This is likely due to the inclusion of many more

stations on the North American Plate compared with previous studies (e.g., Sella et al.,

2002). The difference in Euler Pole location and rotation rate can account for ~3 mm/yr

of differential motion across the Southern California Fault System. We also estimated

the PA-NA Euler pole using a traditional plate model with no elastic deformation and

only those stations in the centers of the Pacific and North American Plates. With no

elastic deformation and fewer stations, the Euler pole longitude shifts 3' eastward; closer

to previous estimates (e.g., DeMets and Dixon, 1999, Sella et al., 2001)

Source Longitude (deg) Latitude (deg) Rotation rate (deg/Myr)
NUVEL-1A -78.2± 1.3 48.7± 1.2 0.750 ±0.010

DeMets and Dixon (1999) -73.7 ±2.0 51.5± 1.0 0.765 ±0.016

Sella et al. (2001) -72.1 ± 0.6 50.4 ± 0.4 0.755 ± 0.004

This paper (block model) -78.6 ± 0.4 50.7 ± 0.3 0.783 ± 0.003
This paper (plate) -75.5 ± 0.3 50.4 ± 0.2 0.791 ± 0.003

Table 1. A compilation of estimated Pacific-North America Euler pole locations and
rotation rates, including the estimate from our block model. Our uncertainty estimates
were calculated using a Monte Carlo method to convert from rotation vector covariance
(directly estimated in the inversion) to a set of Euler Pole locations and rotation rates.
This approach tends to reduce the rotation rate uncertainty and increase the pole location
uncertainties compared with the linear propagation. The block model estimate includes
many stations on the North American Plate in Southern California that are affected by the
elastic strain accumulation model. In contrast, the plate motion estimate from this paper
includes no elastic deformation and only those stations far from the boundaries of the
Pacific and North American Plates.
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7.4. Estimated slip rates

In our block model formulation, slip rates are derived parameters, linearly related

to the estimated rotation vectors. Figures 12 and 13 show the strike-slip and "fault-

normal" slip rates respectively. The "fault-normal" components are tensile if the fault is

vertical and dip slip otherwise, with negative values indicating opening or normal

faulting. In all cases, the reported slip rates have been calculated at the nearest segment

midpoint. Formal uncertainties range from 0.4 to 3.1 mm/yr (table 2). Faults bounded by

large blocks tend to have smaller uncertainties (e.g., central SAF). The uncertainties

have been calculated after rescaling the model covariance matrix by the mean squared

error. This has the effect of increasing uncertainties by a factor of about 1.5. However,

experience with a range of models has shown that the uncertainties due to variations in

fault system geometry are larger than those associated with the velocity uncertainties. In

practice, the reported slip rate uncertainties should be scaled upwards to reflect the effects

of different fault system geometries. Empirical evidence suggests that ± 3 mm/yr is an

appropriate uncertainty for most individual faults.
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Figure 12. The estimated strike slip rates from our preferred block model. Red and green
lines indicate right and left lateral motion respectively. Wider lines indicate faster slip
rates. The thickest lines represent the San Andreas - San Jacinto Fault system where
more than 50% of the relative plate motion is accommodated.
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Figure 13. The estimated dip and tensile slip rates from our preferred block model. Red
and green lines indicate closing and opening respectively. Wider lines indicate faster slip
rates. Slip rates are tensile for vertical faults and dip slip for dipping faults. The only
faults that dip are those around the Los Angeles area (see figure 8 and table 2). Dip slip
faults along the San Gabriel range front and those at the northern edge of the Ventura
basin range between 0.5 and 13.5 mm/yr.

4
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Fault name Strike sli rate Dip slip rate Tensile slip rate
SAF (Parkfield) 35.8 ± 0.4 -- -0.9 0.4
SAF (Carrizo) 35.7 + 0.6 -- 2.0 0.4
SAF (Mojave) 24.4 ± 1.0 -- 2.3 1.4

SAF (San Bernadino) 6.6 0.9 -- 3.7 0.6
SAF (Salton Sea) 24.5 0.4 -- -5.6 0.4
SAF (Imperial) 24.7 0.8 -- -2.2 0.5

SAF (Cerro Prieto) 41.0 1.5 -- -2.2 0.4
Eureka Peak 16.3 0.4 -- -5.9 0.5

Pinto Mountain -9.3 0.6 -- -9.7 1.0
San Jacinto 14.5 1.0 -- 0.0 0.6

Elsinore 2.0 1.9 -- -2.2 + 0.7
Rose Canyon 0.2 1.9 -- 1.1 1.4

Oceanside 5.4 2.7 -- 1.7 3.1
Coronado Bank 4.6 3.1 -- 0.6 1.9
San Clemente 4.0 1.9 -- -2.0 1.0

Hosgri 4.0 0.0 -- 0.9 0.6
Agua Blanca 7.7 2.5 -- 2.3 1.4

Newport - Inglewood 3.5 2.3 -- 4.9 1.4
Palos Verdes 0.4 1.9 -- 1.9 1.6
Raymond Hill 3.6 1.6 -- -1.3 2.4

Whittier 0.9 1.0 2.2 1.3 --

Chino -0.8 1.3 -- -5.2 0.9
Puente Hills Thrust 1.5 1.0 2.5 0.9 --

Cucamonga -7.1 1.2 4.7 1.3 --

Hollywood Hills 3.6 1.7 3.9+ 2.4 --

Santa Monica Mountains -3.1 1.7 -0.5 2.2 --

Verdugo West 8.8 2.5 -- -2.2 1.5
Sierra Madre (north) -2.5 1.7 6.6 2.7 --

Sierra Madre (south) -1.9± 1.2 0.5 2.0 --

Santa Susana -3.2± 1.6 3.0 2.7 --

San Cayetano 2.8 1.3 6.0 2.1 --

Oakridge -1.6 1.4 4.7 2.8 -

Coastal Ranges Split 6.1 1.4 -- -1.1 1.0
San Gabriel -1.7 2.2 --- 2.9 1.5

Western Garlock -1.2 ± 0.4 -- 5.8 0.7
Central Garlock (Searle's Lake) -1.8 ± 1.2 - 6.3 0.9

Eastern Garlock -1.7 ± 1.7 -- -4.8 1.3
Blackwater-Landers 4.0 0.8 -- 0.0 0.8
Eastern Mojave (1) 13.7 0.8 -- 0.0 1.4

Eastern Mojave (2) -0.5 0.6 -- -1.7 0.7
Nevada Split -0.5 0.6 -- -2.4 0.6
Airport Lake 3.8 0.6 -- -0.5 0.5

Owens Valley 3.8 + 0.8 -- -0.6 0.7

Panamint Valley 3.0 1.3 -- -3.2 1.2

Death Valley 2.3 1.2 -- -0.8 0.9
Fish Lake 5.8 + 2.0 -- -1.1 1.0
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Table 2. Selected fault slip rates from our preferred block model. All rates are given in
mm/yr. Positive and negative strike slip rates give right and left lateral motion
respectively. Positive and negative dip slip rates give thrust and normal motion
respectively. Positive and negative tensile rates give closing and opening motion
respectively. In all cases the slip rate is evaluated at the middle of the segment. SAF is
used an abbreviation for the San Andreas Fault.

7.5. The San Andreas Fault system

The SAF shows up clearly in figure 12, with the northernmost (Parkfield) and

southernmost (Cerro Prieto) sections moving at 35.7 ± 0.6 and 41.0 ± 1.5 mm/yr,

respectively. The SAF transfers 2 mm/yr of strike slip motion to the Elsinore fault and

14.5 ± 1.0 mm/yr to the San Jacinto fault to the south of the Salton Sea. To the

northwest, the SAF slows as it feeds 16.3 ± 0.4 mm/yr of strike slip motion into the

ECSZ through the Hidden Spring and Eureka Valley faults. This series of fault

intersections along the southern SAF leaves only 6.6 ± 0.9 mm/yr of right lateral motion

at the San Bernadino segment near the San Gorgonio Pass. The implications of this low

slip rate for the evolution of the fault system and seismic hazard are discussed below.

Shortening (3.7 ± 0.6 mm/yr) along the San Bernadino segment of the San Andreas Fault

is a consequence of the Salton block impinging upon the southern edge of the Mojave

block. Along the Mojave segment, the SAF slips at 24.4 ± 1.0 mm/yr, due to rejoining

with the SJF. As the SAF hooks to the north and emerges out of the Big Bend, a 25

mm/yr right lateral strike slip rate is complemented by -5 mm/yr of shortening. This is

due to Big Pine block impinging on the southern boundary of the Sierra Block. The
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White Wolf Fault may accommodate some of this shortening. At the northern edge of

our model the SAF has straightened out and runs through Parkfield at 35.8 ± 0.4 mm/yr.

7.6. Shortening across Transverse Ranges and Los Angeles Basin

Our model shows substantial shortening across the Transverse Ranges. The string

of thrust faults that runs from the Cucamonga in the east, through the Sierra Madre, Santa

Susana, San Cayetano, to Oak Ridge in the west, accommodates between 0.5 and 13.5

mm/yr of dip slip motion. The lowest slip rates are on the southern Sierra Madre Fault

and the highest slip rates are found just to the north of the Northridge rupture between the

Big Pine and Oakridge blocks. Shortening rates vary along the San Gabriel Range front

decreasing southward from the San Gabriel Fault to the Sierra Madre Fault (2.9 ± 1.5 -

6.6 ± 2.7 mm/yr).

We find between 1 and 6 mm/yr on both the northern and southern edges of the

Ventura basin. These rates are comparable to the convergence rates estimated by

Donnellan et al. (1993a, b) and Hager et al. (1999). Convergence rates on the northern

boundary decrease to the west, consistent with counterclockwise rotation relative to the

Big Pine block. We are unable to constrain the seaward extent of the active Ventura

basin due to the lack of offshore geodetic observations.

Counter clockwise rotation of the Oakridge block leads to a small amount of

normal motion (0.5 ± 2.2 mm/yr) on the model Santa Monica Mountains fault. The same

rotation drives shortening at the boundary with the Big Pine Fault, shortening on the
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Malibu Hills fault, and 5 mm/yr right lateral strike slip motion on the structure separating

the Verdugo and Oakridge blocks. In contrast to geologic estimates of left lateral motion

(e.g., Weaver and Dolan, 2000), we find 3.6 ± 1.6 mm/yr of right lateral motion on the

model Raymond Hill fault.

In the Los Angeles Basin, we find both shortening and right lateral motion on the

Puente Hills Thrust (2 mm/yr dip slip) and the Newport-Inglewood Fault (4 mm/yr

shortening) in addition to right lateral motion. In contrast to Bawden et al. (2001), our

experiments suggest that there is no significant shortening across the Elysian Park Thrust

(EPT). Residual velocities from models with an EPT structure replacing the PHT clearly

indicate the need for shortening across the PHT. The residual velocities in figure. 14

show no indication of unmodeled deformation normal to the EPT. We agree with both

Bawden et al. (2001) and Argus et al. (1999) that the regional geodetic data are most

compatible with active shortening in the Los Angeles Basin. Like Bawden et al. (2001)

and Argus et al. (1999), we disagree with the Walls et al. (1998) interpretation of GPS

velocities. They argued for escape tectonics, where conjugate strike slip faulting

accommodates the north-south shortening of the basin. Our model shows little evidence

for the left lateral slip that the Walls et al. (1998) model requires. This difference is not

unexpected, as Walls et al. (1998) did not account for any interseismic strain

accumulation. Our model treats the PHT as a blind thrust, with the upper end of the

locked portion terminating at 5 kilometers depth. (Shaw et al., 2002). Dolan et al. (2003)

suggested that the PHT related folds above the blind thrust likely grow coseismically,
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however, in our model the fit is improved if they are allowed to creep and grow

interseismically.

Further to the south, the counterclockwise rotation of the Palos Verdes block

relative to the San Diego block leads to shortening across the Oceanside structure. This

is an interesting kinematic result, as a right step in a right lateral fault system would

necessarily be extensional if there were no rotation.

Figure 14. Residual velocities in a region centered on the Los Angeles basin. The block
boundaries are shown in gray while the fault traces from Jennings (1994) are thin black
lines.
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7.7. Eastern California Shear Zone

In the ECSZ, north of the Garlock Fault (GF), our results are similar to those of

McClusky et al. (2001). The Airport Lake - Owens Valley fault system carries about 4

mm/yr of right lateral motion, and the Panamint Valley - Hunter fault system, to the east,

carries -3 mm/yr. The Owens Valley Fault zone to the north of the Airport Lake fault

moves at 3.8 ± 0.8 mm/yr in a right lateral sense. This slip rate agrees with McClusky et

al. (2001) within the stated uncertainties but it is higher than the Holocene geologic

estimate by Beanland and Clark (1994).

Dixon et al. (2003) presented a 2D viscoelastic model for the Owens, Panamint,

and Death Valley faults. They argued that the apparently high slip rate on the Owens

Valley Fault was due to postseismic relaxation following the 1872 Owens Valley

earthquake. Their model also required that the Death Valley fault zone slips at a geologic

rate more than 8 mm/yr, but is very late in its earthquake cycle. Our block model shows

that the high Owens Valley slip rate is not localized along the 1872 rupture zone.

Instead, it extends along the entire Sierra Nevada range front. In order for postseismic

relaxation to be responsible for this fast slip rate, there would have to be some 3D

postseismic relaxation phenomena that can cause velocity gradients to localize along

strike several fault lengths away from the coseismic rupture zone. An alternate

explanation is that the present day slip rate is faster than the Holocene average.
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Our slip rate estimate for the Calico - Blackwater - Landers structure is 4.0 ± 0.8

mm/yr. This is not significantly lower than Peltzer et al.'s (2001) estimate of 7 ± 3

mm/yr, and far above Oskin's (2002) estimate based on the offset of Pliocene lava flows.

Thus, two different studies using different types of geodetic data and modelling

approaches both suggest that the present day slip rate is greater than the 2 Myr average.

It is hard to argue that postseismic deformation following the 1992 Landers earthquake is

responsible for the apparently fast slip rate, as Sauber et al. (1994) found roughly the

same total slip budget prior the coseismic rupture. Rockwell et al. (2000) estimated

Holocene slip rates on the major structures near the Landers rupture and estimated that no

single fault had a slip rate in excess of 1 mm/yr. However, many parallel geologic

structures in the Mojave Desert may accommodate a small amount of deformation (e.g.,

Petersen and Wesnousky, 1994). While the InSAR data set used by Peltzer et al. (2001)

is spatially dense enough to rule out this possibility, GPS data in the region are

insufficient to do so.

In contrast to Peltzer et al. (2001), we find a very high slip rate on the Goldstone

Fault to the east of the Blackwater (13.7 ± 0.8 mm/yr). GPS coverage in this area is

exceedingly sparse and likely influenced by postseismic deformation following the 1999

Hector Mine earthquake. However, these caveats do not eliminate the need to

accommodate more than 12 mm/yr of deformation across the Mojave. In our model, we

chose to recognize the limits of the data coverage and simplify the geometry in this

region by using three north-south trending vertical structures to accommodate all

deformation.
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The southern end of the ECSZ is defined by the Pinto Mountain fault. Our model

shows left lateral slip and opening across most of its width. The 9.7 ± 1.0 mm/yr opening

rate is a result of the fast motion of the Goldstone fault to the north. It might be possible

to minimize the amount of opening here by introducing a new connection from the ECSZ

to the southern San Andreas Fault along a structure like the Hidden Springs Fault.

8. Discussion

For the segment of the SAF that ruptured during the 1857 Ft. Tejon earthquake

(FTSAF), we find not only a variation in slip rate from 25 to 35 mm/yr but also a 25 km

locking depth. The constraints on the locking depth are weak as FTSAF locking depths

from 15-40 km fit the data well (figure 9). However, experiments with 2D models and

synthetic data show that our FTSAF result is consistent with estimates from idealized

experiments. There are three obvious interpretations of this rather deep locking depth.

First is that it represents the actual seismogenic depth. This is consistent with the locking

depths estimated by solving for the rupture depth necessary to yield the correct moment

given the mapped surface slip distribution (Sieh, 1978). However, 25 km is well below

the predicted depth of the brittle ductile transition (8 - 15 km) for a typical geotherm

(e.g., Kohlstedt et al., 1995) and below the bottom of the seismogenic region inferred

from seismicity for this fault (Hauksson, 2000). A second explanation would be that the

locking depth is actually much shallower, but that variation in the elastic structure

broadens the strain accumulation signal (e.g., Hager et al., 1999). For this to be the case
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the shear modulus would have decrease with depth, the opposite of the behavior predicted

by pressure effects and seismic observations. The third hypothesis is that this deep

locking depth is indicative of viscoelastic deformation through the earthquake cycle (see

appendix A). Specifically, the broad zone of deformation late in the earthquake cycle is

manifest as a deep locking depth in our block model formulation, which implicitly

assumes purely elastic strain accumulation driven by creep on down-dip extensions of the

faults. Savage and Lisowski (1998) estimated a similarly deep locking depth on the

Mojave segment of the SAF in a study of trilateration data. However, they also estimated

that the slip rate across the SAF was in excess of 30 mm/yr. We find that the Mojave

segment of the SAF is at least 5 mm/yr slower. These two results may be reconciled by

noting that Savage and Lisowski (1998) only considered the SAF, and ignored the effects

of deformation along the San Gabriel range front to the southwest. We estimate -5

mm/yr on this structure and suggest that both this study and Savage and Lisowski (1998)

found the correct total amount of relative motion across the San Gabriel transect. Though

there are differences in the slip rate magnitudes, both studies agree that the inferred deep

locking depth on the SAF suggests that it is late in its earthquake cycle. Sieh et al.,

(1989) estimated mean recurrence intervals of 200-300 years. Approximately 150 years

have passed since the last major FTSAF earthquake so, in the absence of clustering, we

are likely in the latter half of the FTSAF earthquake cycle. Our results suggest that the

entire FTSAF is fit best by a 25 km locking depth, not just the Mojave segment.

Despite the fact that there is some indication of postseismic deformation, the

success with which we have modeled the GPS velocities with an elastic model suggests
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that the high viscosity (low ro ) assumption may be appropriate. If the mean recurrence

time for the SAF is 200-300 years (e.g., Sieh et al., 1989), then for ro= 0.5 we would

estimate that the viscosity of the lower crust/upper mantle should be greater than

2-3 x 1019 Pa-s. It is possible that the Southern California velocity field looks like a

steady state velocity field not because of the absence of viscoelastic deformation but

because we seeing the effects of averaging across all of the different rupture areas. This

is not inconsistent with the observation that the viscoelastic seismic cycle model (e.g.,

Savage, 2000) looks very similar to steady state profiles approximately 40% of the way

between events (figure 4). If this were the case, it would support the interpretation of our

preferred 25 km locking depth, as physically realistic and not representative of

viscoelastic deformation. Thus, we cannot reject the steady state assumption. It may be

the case that only great earthquakes (e.g. Ft. Tejon) rupture to sufficient depths to

generate a postseismic response (e.g., Savage and Prescott, 1978).

Our slip rate model for the Los Angeles and Ventura Basins differs from previous

estimates for three reasons: data, geometry, and assumptions. First, we use a far larger

data set than any previous study of the Transverse Ranges. However, we have also tried

to follow Bawden et al. (2001) by being selective about what velocities are included near

areas of known subsidence or uplift8 . The three dimensional aspects of fault system

geometry are also important. We include aspects of the three-dimensional fault system

geometry, such as the effects of multiple dipping and interacting fault zones. In addition,

the blocks rotate, introducing a component of motion absent from previous studies.

8 http://quake.wr.usgs.gov/research/deformation/modeling/socal/la.html
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Further, the block model uses both far and near field velocities to estimate fault slip rates.

This is necessary near Los Angeles where so many blocks abut each other, making it

difficult to deconvolve the overlapping effects of strain accumulation without a model.

The far field velocities can help to sort out the superposition of strain rates and allow us

to estimate fault slip rates more reliably. The most important reason that our results

differ from previous studies is that we do not make a priori assumptions about the

behavior of the rest of the Southern California Fault System. We estimate the slip rates

on all of the structures in Southern California simultaneously. This allows us to produce

an internally consistent slip rate model where the same type of data has been used to

estimate the fault slip rates everywhere. In summary, our models of the Los Angeles and

Ventura Basins differ from previous efforts by virtue of more accurate data, the addition

of 3D fault system structure, and a reduction in a priori assumptions regarding slip rates.

Both the Owens Valley and Blackwater Faults have geodetically determined slip

rates that are higher than previous geologic estimates. While some authors have

suggested post seismic relaxation to explain the fast slip rate north of the Garlock (e.g.,

Dixon et al., 2003) others have suggested that the Mojave Desert may currently be

rapidly evolving (Nur et al. 1993a, b). The fact that present day slip rates appear

relatively fast along the entire line of faults suggests that this fault system reorganization

has not been localized to the Mojave but has propagated north through Owens Valley.

To the east of the Blackwater and Airport Lake Faults, we find that the Garlock

moves left laterally at -2 mm/yr. Part of this segment cuts past Searle's Lake where

McGill and Sieh (1993) estimated a slip rate of 7 ± 2 mm/yr over the last 60,000 years.
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It may be somewhat fortuitous that we recover left lateral motion on these segments of

the Garlock. While the blocks to the north are well constrained by dense station

coverage, there are far fewer stations to the south. Not only is the station density lower

but there is also the possibility that a nontrivial amount of rapid postseismic deformation

has been included in the station velocity estimates due to their proximity to the Landers

and Hector Mine rupture zones. Our models suggest, like Peltzer et al. (2001), that the

Blackwater and Garlock faults are more and less active, respectively, than they have been

in the recent past.

The low slip rate estimate on the San Bernadino segment of the SAF (SBSAF, 6.6

0.9 mm/yr.) is one of the more interesting block model results. Again, we're not the

first to see this feature in geodetic data. Bird and Rosenstock (1994) as well as Bird and

Kong (1984) found a low rate, though they preferred a rather high upper bound. Potter

(1997) suggested that geologic slip rate estimates were too high to accurately model the

geodetic data there.

Our low slip rate estimate differs from the geologic estimate of 25 ± 4 mm/yr at

the 3-a level (Weldon and Sieh, 1985). This remarkable difference is worth exploring.

There are four possible arguments regarding the compatibility of these two slip rate

estimates. Two of these question the validity of either slip rate estimate, while the other

two entertain the possibility that both of the estimates are compatible with each other.

The first and second arguments are that either the block model or the geologic slip

rate estimates are wrong. By testing the block model with higher slip rates forced on the

San Bernadino segment, we can demonstrate that a high slip rate is grossly incompatible
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with the geodetic data (figure 15). The residual velocities are larger with a resulting

increase in the misfit criteria by 86%, even after minimizing the residual velocities as

before. Further, the forced motion of the Mojave block leads to a Mojave SAF slip rate

in excess of 45 mm/yr. Thus, a fast SBSAF is incompatible with the geodetic

observations. The proximity of this area to the location of the 1992 Landers earthquake

raises the question of whether or not the data in this area may not represent steady

interseismic velocities. For this to be the effect controlling the slip rate results, the rapid

postseismic decay would have to extend across the Mojave and Salton blocks, a distance

of more than 150 km from the rupture zone. In total, the possibility of seismic cycle

variations causing this result seems remote. Weldon and Sieh's (1985) slip rate estimate

is robust, which leads us to the arguments for the compatibility of the two slip rate

estimates.

The most obvious way in which the two rates could be compatible is if they are in

different places. Weldon and Sieh's (1985) study area is Cajon Creek. We have chosen

not to elongate the northern part of the Salton block into a small sliver that runs between

the Mojave Desert and the San Gabriel Mountains. If the San Jacinto Fault reconnects

with the SAF to the south of Cajon Creek then we get about the same slip rate as Weldon

and Sieh (1985) but on the Mojave SAF. This would not eliminate the low slip rate area

between the northern intersection of the SJF and SAF and the westernmost connection

between the ECSZ and the SAF through the Eureka Peak fault
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Figure 15. Residual velocities and fault system geometry along the San Bernadino
segment of the San Andreas (SBSAF). The gray arrows are the residuals for our
preferred model where there are no constraints on the SBSAF and the estimated right
lateral slip rate is 6.6 ± 0.9 mm/yr. The black arrows are the residuals when the SBSAF
is forced to slip at 25 mm/yr. In the immediate vicinity of the fault, station density is
low, and it is hard to evaluate the difference between the two models. Beyond the
immediate vicinity of the SBSAF, the residual velocities near bordering segments are
much larger (factor of 1-4) for the higher slip rate. The white and gray stars are the study
areas from Weldon and Sieh (1985) and Yule and Sieh (2000).

The other possibility that would permit the two geologic and geodetic estimates to

be compatible with each other is that the slip rates in this area are changing rapidly

enough to be different over the time scales that we are comparing. That is, the slip rate

for the ten years that geodetic data have been gathered may be different from 14,000 year

geologic rate. This would require that the SBSAF has decelerated over the last 5000

years. If the"'S-BSAF were slowing down, it would require that another structure

accelerate to accommodate the total slip budget across the SCFS. Sharp (1980)
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suggested that the San Jacinto fault showed evidence not only for a 12 mm/yr slip rate

through the latter half of the Quaternary, but also for acceleration in the latter half of the

Holocene. If the both the SJF to the west and the faults in the ECSZ to the east were

accelerating over the last 5000 years, then this could balance the deceleration of the

SBSAF.

If the San Bernadino segment of the San Andreas Fault is moving at less than 10

mm/yr, there are direct implications for seismic hazard potential. The slower a fault

slips, the longer it will take to accumulate a given amount of elastic strain. If earthquakes

occur quasi-periodically, this would imply a longer recurrence interval. Yule and Sieh

(2000) reported ~330 year long interevent times here, and suggested that this may be

evidence for very large earthquakes. We suggest that the low slip rate provides an

alternate explanation for the long interevent times. Using a simple characteristic

earthquake model, we can estimate the size of a typical earthquake that might occur here.

Using the empirical earthquake scaling relations from Wells and Coppersmith (1994), we

can relate event size to characteristic slip without assuming a value for the rupture area.

Further, if we assume that an earthquake will occur whenever enough strain has

accumulated to generate a characteristic event, then we can relate slip rate and recurrence

interval to moment magnitude, Mw. In figure 17 we see that for a 6.6 ± 0.9 mm/yr slip

rate and a mean recurrence interval of -330 years (Yule and Sieh, 2000) a typical

earthquake is about Mw = 7.40+ 001 With an empirical slip rate uncertainty of ± 3 mm/yr

w i l o mn005 raneM

we find a larger moment magnitude range Mw = 7.40 +023 These calculations ignore the
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uncertainties is the empirical scaling relations. With both the slope and offset

uncertainties the moment magnitude ranges from below 6 to greater than 8.

50
40
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Characteristic recurrence times

5

(0o
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W

Figure 16. Relationship between moment magnitude, MW, slip rate and earthquake
recurrence time for an ideal earthquake cycle. The recurrence time multiplied by the slip
rate gives the coseismic slip. The relationship between coseismic slip and moment
magnitude was taken from Wells and Coppersmith (1994).

9. Conclusions

The distribution of slip across the Southern California fault system is one of the

most basic pieces of information required to understand both regional tectonics and

seismic hazard potential. Block modeling provides a framework that allows us to

combine both plate motion (Euler pole rotation) and near-fault deformation (elastic strain

-Y -
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accumulation) effects. With the block model formulation presented in this paper, we

have simultaneously estimated motions of 22 blocks, which gives slip rate estimates on

about 40 major structures bounding these blocks. The residual velocity field (figure 10)

shows how successfully this approach can reproduce the first order features of the

observed velocity field (figure 5). The residual velocity field is interesting not only for

demonstrating how successful the block model has been but also for localizing regions

where more sophisticated models may be appropriate.

We find that the San Andreas Fault has an along-strike variation in slip rate of

nearly a factor of five (table 1), from -35 mm/yr at the Parkfield to less than 7 mm/yr

along the SBSAF. This enormous variation in slip rate forces us to reconsider seismic

hazard, the relationship between paleoseismology and geodesy, and fault system

evolution. We infer a 25 km locking depth for the Ft. Tejon segment of the SAF. While

the interpretation of the deep locking depth is ambiguous, it may be an indicator that the

SAF is late in its seismic cycle.

While the SBSAF is relatively slow, the SJF and the faults in the ECSZ make up

for the bulk of the "missing" slip between the Pacific and North American Plates (PA-

NA). Geodetic data constrain the SJF slip rate at -14 mm/yr. As it is even closer to

metropolitan Los Angeles than is the SAF, the SJF may represent an even greater seismic

hazard than the SBSAF. Of the faults in the ECSZ that make up the rest of the PA-NA

plate motion, we find that the Blackwater and Goldstone faults are the most active. This

result may be skewed by the presence of short-term postseismic relaxation data in the

SCEC3.0 CMM. The observation that the fault slip rates inferred from the block model
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along the Owens Valley - Blackwater system are systematically high lead support to the

hypothesis that we are currently observing ongoing, or very recent, evolution of the

ECSZ, if not the entire SCFS. The slip rates on the SBSAF and the SJF also support this

model and provide time constraints pointing toward fault system reorganization in the

latter half of the Holocene.

The distribution of deformation in and around the Los Angeles basin has been the

subject of much interest due to the possibility of high seismic hazard. We find evidence

for shortening along the southern San Gabriel range front and the northern Ventura basin,

ranging from 0.5 to 13.5 mm/yr. We also find evidence for -2 mm/yr of shortening on

the Puente Hills Thrust underneath metropolitan Los Angeles. The offshore fault system

also accommodates at least 5 mm/yr of strike slip motion but it is difficult to constrain

rigorously due to the lack of offshore geodesy.

Our results differ from previous studies not only because of better data and but,

more importantly, because we are able to estimate the slip rates on all of these structures

simultaneously. The block model slip rate catalog is consistent with geodetic

observations of interseismic deformation, a simple model of the earthquake cycle, and is

kinematically compatible to plate motions. We can compare this catalog with that

derived from geologic data, to more quantitatively evaluate both the regional seismic

hazard and the evolution of the Southern California Fault System.
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Appendix A. Elastic models of viscoelastic data

To explore how viscoelastic deformation might be mapped into slip rate and

locking depth estimates in a purely elastic model, we study the behavior of simple two-

dimensional system. We evaluate the fault parallel velocities predicted by Savage's

(2000) viscoelastic model at various times through the earthquake cycle, then use these

velocity profiles to estimate slip rates and locking depths in a purely elastic model. The

elastic model we use is, v = vr-1 tan-1(x / D), where v is the fault parallel velocity at a

distance x from the fault, vo is the long-term slip rate, and D is the locking depth.

Using a nonlinear estimator, we find the apparent elastic slip rate vE and locking depth

DE given v = vs(x,D,t /T,r o) , where vs is the velocity from Savage's (2000) model.

Figure 17 shows time series predicted from the Savage and Prescott (1978) and Savage

(2000) model with ro ~ 5. The time dependent variation is greatest near the fault. All of

the velocities slow as the next earthquake approaches.
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x/D= 0.5
x/D = 1.0
x/D = 1.5
x/D = 2.0
x/D = 2.5
x/D = 3.0
x/D = 4.0
x/D = 5.0

0.4 0.6 0.8
t/T

Figure 17. Synthetic velocity time series from the Savage and Prescott (1978) and
Savage (2000) model. All of the velocities are normalized by the steady state values.

We'll consider the slip rates for both fixed and free locking depths, DE. The

viscoelastic model we employ is sensitive to the parameter ro (e.g., Savage, 2000). We

set ro ~ 5, corresponding to an earthquake repeat time of T = 1000 years and a dynamic

viscosity r = 1020 Pa-s. We'll carry out two different inversions. First, we estimate both

the slip rate and the locking depth, and second where we fix the locking depth at the true

value and estimate the slip rate. The difference between the two estimates highlights the

ambiguity involved in interpreting fault locking depths based on geodesy alone.

3.5 e

2

1.5,

0.5
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== v free, D free
- v free, D fixed

j *~~?
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0 0.2 0.4 0.6 0.8 1
t/T

0
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0 0.2 0.4 0.6 0.8
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Figure 18. Estimated elastic parameters. The upper panel shows the slip rates estimated
from an elastic model while the lower panel gives the fault locking depth estimates. The
solid, dashed, and gray lines represent the free locking depth, fixed locking depth and
reference lines respectively. The time through the earthquake cycle is parameterized as
t/T and ranges from zero to one. In general, apparent slip rates decrease through the
earthquake cycle and locking depths increase. Deeper locking depths appear late in the
earthquake cycle.

The upper panel of figure 18 shows the estimated slip rates. Early in the

earthquake cycle, we find high estimated elastic slip rates relative to the long-term value.

Approximately 40% of the way through the cycle the apparent rate drops below the long-

term rate. For the case where the locking depth is the estimated slip rate can drop well

below the long-term value (-30%). The lower panel (figure 18) shows the estimated

locking depths. Early in the earthquake cycle, we find locking depths approximately
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50% of the true value while late in the cycle we see much deeper locking depths - up to

three times the actual locking depth. These experiments provide a quantitative

foundation for the argument that apparently deep estimated locking depths (from an

elastic model) may be an indication that we are currently observing activity late in the

seismic cycle.
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Appendix B: Observed velocities

The merged and cleaned observed GPS velocities are shown in the table below.

Longitude Latitude East vel. North vel. East sig. North sig. Correlation Name

(degrees) (degrees) (mm/yr) (mm/yr) (mm/yr) (mm/yr)

31.257

31.045

31.871

31.354

31.988

32.914

32.927

33.232

33.248

33.407

33.472

33.446

33.951

33.995

34.029

33.747

33.713

33.720

33.779

33.774

33.797

33.798

33.824

33.887

33.868

33.958

33.928

33.930

33.951

34.120

34.157

34.033

34.086

34.059

34.060

34.063

-30.90

-31.25

-28.69

-1.51

-24.01

-30.71

-29.64

-30.20

-31.16

-28.54

-30.53

-28.96

-30.23

-29.18

-30.17

-25.04

-27.79

-28.10

-27 .02

-28.57

-27.20

-27.80

-25.95

-26.75

-25.89

-27.14

-27.71

-27.37

-26.13

-28.34

-28.53

-27 .69

-28.94

-27.88

-27.69

-27.27

31.42

30.00

30.50

1.73

26.93

33.12

34.88

35.05

34.61

33.34

34.67

32 .61

35.58

33.91

35.10

33.06

30.31

29.93

29.30

29.29

33.40

29.94

28.86

28.99

29.00

27.85

26.46

28.08

27.75

32.98

29.84

31.60

30.27

29.42

29.83

30.86

243.839

244.534

243.333

246.480

244.757

241.512

241.481

240.521

240.476

241.595

240.959

241.517

239.894

240.247

240.216

241.664

241.706

241.727

241.628

241.679

241.647

241.669

241.727

241.671

241.784

241.572

241.693

241.825

241.820

240.846

241.170

241.298

241.214

241.354

241.486

241.405

0.92

1.04

0.98

0.83

1.21

0.97

0.88

0.89

0.91

0.86

0.93

0.88

0.94

0.92

1.04

1.08

1.02

1.07

1.12

1.08

1.02

0.91

1.12

1.09

1.18

1.16

1.01

0.97

1.43

1.03

0.86

1.30

1.21

0.87

1.08

0.96

1 09

0.91

1.05

0.99

0.81

1.12

0.99

0.91

0.91

0.94

0.92

0.98

0.91

0.93

0.92

1.01

1.22

1.05

1.12

1.14

1.12

1.02

0.94

1.14

1.12

1.19

1.18

1.03

1.01

1.47

0.98

0.89

1.38

1.04

0.90

1.17

0.99

1 .16

-0.065

-0.050

-0.056

-0.077

0.093

-0.054

-0.071

-0.072

-0.062

-0.061

-0.061

-0.063

-0.039

-0.057

-0.003

-0.024

-0.044

-0.039

-0.037

-0.042

-0.042

-0.055

-0.034

-0.039

-0.091

-0.042

-0.045

-0.069

-0.043

-0.032

-0.061

-0.067

-0.082

-0.059

-0.056

-0.049

LLCOGPS

SPMXGPS

CICEGPS

PENAGPS

MAYRGPS

SCIPGPS

BLUFGPS

TWINGPS

SNIl GPS

BRSH_GPS

SBISGPS

CAT1_GPS

SNRI_GPS

CENT GPS

DEVLGPS

PVOO GPS

VTIS_GPS

TID8_GPS

PVHSGPS

PVRSGPS

SPJ1 GPS

TORPGPS

CRHSGPS

ECCOGPS

56_Z GPS

WRHSGPS

LASCGPS

HOLYGPS

07CIGPS

COTRGPS

AOA1_GPS

6022_GPS

CATO_GPS

SPK1 GPS

WIRO_GPS

TUNAGPS

0.015 MAND GPS34 090f -28 35r 29 90
24 .5 2 . . .)0n - C 9 9 91 1
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241.581 33.972 -28.20 31.80 1.27 1.33 -0.012 VENIGPS

241.597 33.996 -27.94 30.77 1.49 1.08 -0.009 0701_GPS

241.558 34.069 -26.58 27.32 0.86 0.89 -0.060 UCLP_GPS

241.829 34.063 -25.96 23.95 1.50 1.45 0.040 07DI_GPS

241.797 34.085 -24.88 25.77 1.16 1.07 -0.034 JEFFGPS

241.239 34.146 -27.52 32.40 1.22 1.28 -0.041 0094_GPS

241.446 34.102 -26.83 32.21 1.11 1.13 -0.030 DIVI_GPS

241.354 34.140 -27.42 32.82 0.96 0.98 -0.054 CALA_GPS

241.370 34.139 -27.50 28.69 1.06 1.08 -0.040 CBHS_GPS

241.440 34.130 -26.03 32.50 1.31 1.25 -0.028 MULH_GPS

241.487 34.129 -26.61 30.11 1.07 1.08 -0.043 NIKEGPS

241.425 34.182 -26.37 28.08 1.13 1.15 -0.033 LAPC_GPS

241.438 34.179 -26.14 30.42 0.99 1.00 -0.044 OXCOGPS

241.457 34.202 -25.85 30.02 0.99 1.00 -0.043 MCDSGPS

241.587 34.095 -28.26 25.89 1.08 1.11 -0.040 LFRSGPS

241.678 34.135 -26.88 25.44 0.86 0.89 -0.059 LEEP GPS

241.717 34.161 -27.09 26.06 1.17 1.16 -0.015 GLENGPS

241.793 34.129 -26.55 24.07 1.15 1.17 -0.034 OXYCGPS

241.873 34.137 -25.38 24.20 0.84 0.87 -0.061 CITlGPS

241.627 34.222 -26.18 25.81 1.30 1.33 -0.042 Z786_GPS

241.723 34.185 -26.50 24.11 0.86 0.89 -0.060 BRAN_GPS

241.720 34.215 -25.05 25.82 1.31 1.26 0.000 VDGOGPS

241.827 34.205 -25.51 23.66 0.84 0.87 -0.061 JPLM GJP

243.017 32.569 -27.07 29.72 1.05 1.19 -0.064 1101_GPS

243.159 32.601 -25.69 28.82 1.48 1.21 -0.068 OTAY_GPS

243.442 32.245 -27.39 29.05 1.08 1.10 -0.040 VA01_GPS

243.523 32.607 -26.96 28.66 1.03 1.12 -0.061 1102_GPS

244.657 32.356 -18.65 27.00 0.89 0.89 -0.058 LPUR_GPS

242.852 32.818 -28.20 28.82 1.20 1.50 -0.031 SD17_GPS

242.747 32.840 -27.26 29.75 1.11 1.09 -0.044 SOLJGPS

242.750 32.865 -27.40 28.21 0.73 0.76 -0.093 SI03_GPS

243.198 32.844 -27.01 28.20 0.96 1.04 -0.075 1106_GPS

243.069 32.912 -27.24 29.47 1.03 1.14 -0.043 SD18_GPS

242.723 33.130 -28.16 29.78 1.01 1.11 -0.088 1107_GPS

243.381 32.824 -26.27 28.05 0.95 1.03 -0.057 SD21 GPS

243.998 32.734 -27.04 28.00 0.97 0.96 -0.061 OCTIGPS

244.494 32.664 -20.11 26.01 1.09 1.07 -0.025 BORDGPS

244.500 32.738 -20.11 20.38 0.92 0.93 -0.060 T124_GPS

244.204 32.790 -23.78 26.77 0.91 0.91 -0.052 OCOTGPS

244.406 32.800 -16.10 21.76 1.32 1.16 -0.007 E122 GPS

244.498 32.827 -13.39 19.53 0.97 0.94 -0.059 COLLGPS

243.429 32.914 -28.61 28.40 1.08 1.18 -0.071 SD35_GPS

243.578 32.892 -26.92 27.57 0.79 0.81 -0.077 MONPGPS

243.915 33.030 -22.06 23.89 1.10 1.12 -0.038 USGC_GPS

244.594 32.917 -2.27 4.20 0.95 0.91 -0.063 ORIE GES
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244.265 33.070

245.086

244.925

244.938

244.968

244.753

245.797

242.435

242.841

243.140

242.365

242.291

242.320

242.270

242.284

242.197

242.855

242.811

243.068

243.164

243.265

242.645

242.914

243.152

243.475

243.307

243.753

243.297

244.112

244.593

244.481

244.212

244.248

243.299

243.283

243.411

243.387

243.426

243.574

243.939

243.311

243.338

243.369

243.397

243.404

32.251

32.559

32.709

32.706

32.840

32.939

33.375

33.332

33.357

33.444

33.464

33.469

33.514

33.554

33.618

33.430

33.505

33.468

33.484

33.545

33.620

33.636

33.630

33.211

33.234

33.160

33.382

33.177

33.196

33.231

33.390

33.412

33.543

33.550

33.527

33.550

33.553

33.524

33.441

33.555

33.556

33.558

33.565

33.568

13.31 17.69

-7.70

-5.49

-2.92

-2.10

-3.46

-0.56

-26.59

-25.67

-24.62

-27.89

-27.29

-26.95

-27.07

-27.44

-25.33

-26.31

-24.77

-23.48

-23.17

-21.04

-24.69

-22.71

-21.42

-23.95

-25.82

-22.53

-24.22

-14.21

-2.19

-4.10

-10.88

-9.60

-20.86

-21.00

-19.38

-18.30

-18.15

-17.09

-11.42

-20.13

-19.95

-19.11

-18.93

-17 .91

7.38

1.17

2.23

0.99

-0.65

2.67

29.55

28.90

26.65

30.64

30.50

29.42

30.69

30.24

29.01

27.20

27.83

26.68

26.85

25.43

27.92

26.88

26.04

26.15

26.98

23.99

26.90

15.92

2.76

1.06

9.55

7.85

24.57

25.50

23.58

23.26

21.78

18.76

16.57

25.14

24.51

23.66

23.11

22.57

1.02

1.12

1.10

1.05

1.10

0.92

1.04

0.97

1.26

1.00

1.02

0.95

0.94

0.86

1.08

0.85

0.98

1.16

1.16

1.08

1.01

1.15

1.03

1.05

1.08

1.01

0.94

0.96

0.94

1.05

1.04

0.86

1.19

0.97

0.98

1.01

1.04

0.90

0.91

1.05

1.15

0.89

1.01

1.16

1.05

1.03

1.13

1.12

0.99

1.12

0.88

0.96

1.02

1.44

1.02

1.04

0.98

0.96

0.87

0.99

0.88

1.04

1.15

1.25

1.14

1.06

1.24

1.07

1.12

1.10

1.10

1.03

1.00

0.97

0.98

1.03

0.88

1.22

0.99

1.02

1.05

1.08

0.93

0.94

1.05

1.18

0.91

1.03

1.20

1.08

-0.045

-0.018

-0.020

-0.052

-0.038

-0.067

-0.044

-0.059

-0.054

-0.047
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PMOBGPS

SCMSGPS

DANAGPS

1202_GPS

NIGUGPS

KITEGPS

TRAKGPS

YUNGGPS

ROSAGLA

RDECGPS

A586_GPS

CARY GPS

LAKEGPS

DASHGPS

R293_GPS

MVFDGPS

1108_GPS
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SDG6_GPS

1110_GPS

COACGPS

1111_GPS

DHLGGPS

07NEGPS

CRAVGPS
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243.442 33.562 -16.29 22.26 1.25 1.33 -0.017 G128_GPS

243.417 33.565 -19.34 22.07 1.18 1.22 -0.024 G124_GPS

243.320 33.619 -18.25 22.91 0.99 1.06 -0.070 TOMEGLA

243.390 33.611 -17.45 22.27 0.81 0.83 -0.067 ROCH GLA

243.483 33.571 -17.16 21.89 1.01 1.05 -0.035 PMCNGPS

243.502 33.571 -15.80 19.52 1.17 1.21 -0.028 D138_GPS

243.516 33.581 -15.88 19.02 1.02 1.07 -0.051 PF6 GLA

243.553 33.574 -15.73 18.06 1.12 1.14 -0.060 GRENGPS

243.570 33.584 -14.79 19.11 0.96 1.00 -0.061 PF1 GPS

243.523 33.603 -15.51 20.23 1.18 1.15 -0.022 PF5CGPS

243.542 33.612 -15.57 19.16 0.80 0.82 -0.068 PIN1_GLA

243.538 33.620 -14.88 18.13 0.94 1.00 -0.066 ASBS_GPS

243.562 33.599 -15.94 20.71 1.17 1.18 -0.037 BNDYGPS

243.410 33.646 -16.59 20.62 0.94 0.95 -0.055 JOESGPS

243.589 33.623 -17.25 19.49 1.43 1.41 -0.029 L587_GPS

243.528 33.684 -14.19 19.29 0.97 0.97 -0.053 WHAYGPS

243.609 33.688 -12.25 17.21 0.97 1.00 -0.057 RSRT GPS

243.726 33.639 -11.86 15.53 1.05 1.08 -0.054 CAHU GPS

243.840 33.628 -11.29 12.88 1.28 1.19 -0.012 VORO_GPS

244.167 33.429 -10.56 9.10 0.97 0.98 -0.038 TRANGPS

244.230 33.427 -7.74 7.99 1.30 1.27 0.008 S_31_GPS

244.217 33.441 -9.64 8.33 1.07 1.12 -0.047 25SEGPS

244.322 33.427 -6.11 3.14 0.92 0.94 -0.046 SIPHGPS

244.086 33.503 -11.45 7.55 1.06 1.02 -0.049 VARN GPS

243.992 33.612 -8.16 7.30 1.05 1.07 -0.035 PAINGPS

244.036 33.677 -6.26 4.24 1.18 1.38 -0.065 1113_GPS

244.280 33.664 -3.35 1.47 0.86 0.88 -0.059 BLACGLA

241.912 33.737 -25.39 30.00 1.31 1.00 -0.024 1201_GPS

242.091 33.748 -26.14 29.52 1.09 1.23 -0.056 FIFTGPS

241.957 33.774 -26.67 29.05 0.94 1.00 -0.054 FLOOGPS

242.058 33.793 -26.99 28.09 1.00 1.02 -0.058 LASE_GPS

242.135 33.863 -25.58 25.35 1.04 1.07 -0.042 CCCSGPS

241.945 33.917 -25.66 25.71 0.94 0.96 -0.054 LANWGPS

242.347 33.849 -24.44 27.10 0.94 0.95 -0.064 SIER_GPS

242.402 33.847 -24.54 26.37 0.92 0.96 -0.058 OAKDGPS

242.563 33.857 -23.12 25.54 0.82 0.85 -0.066 MATHGPS

242.453 33.884 -23.89 26.09 0.93 0.96 -0.056 0819_GPS

242.262 33.914 -24.91 25.91 0.86 0.88 -0.061 SJUA_GPS

242.768 33.796 -22.27 25.46 1.17 1.12 -0.042 METZGLA

243.223 33.794 -14.13 23.02 1.03 1.06 -0.052 INDOGLA

242.691 33.837 -22.67 25.85 0.97 1.07 -0.063 LASTGLA

242.818 33.836 -21.21 23.99 1.02 1.04 -0.042 PPBFGPS

241.997 33.992 -24.39 24.84 0.94 1.03 -0.043 WORK GPS

242.151 33.993 -24.54 25.92 0.99 1.01 -0.046 SPMS_GPS

241.891 34.089 -23.59 24.04 1.19 1.21 -0.030 SGHS GPS
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242.000 34.078 -27.69 24.55 1.06 1.06 -0.026 0702_GPS

242.117 34.042 -25.83 23.34 1.08 1.11 -0.048 SNTOGPS

242.451 33.975 -23.54 25.59 1.11 1.14 -0.102 LIMP_GPS

242.487 34.018 -22.05 24.14 1.02 1.05 -0.063 SANOGPS

242.557 34.032 -22.44 24.27 0.92 0.93 -0.061 JUR3 GPS

242.470 34.077 -22.68 25.27 1.17 1.20 -0.065 STEEGPS

242.104 34.126 -25.79 23.45 0.90 0.93 -0.057 AZU1GPS

241.945 34.225 -25.09 22.51 0.96 0.96 -0.072 ECRKGPS

242.311 34.121 -23.31 22.19 1.07 1.11 -0.049 PSEBGPS

242.246 34.133 -23.95 22.89 1.10 1.12 -0.035 LORSGPS

242.274 34.137 -23.72 21.07 1.21 1.20 -0.015 VERNGPS

242.395 34.172 -22.00 22.74 1.21 1.24 -0.117 ANGAGPS

242.234 34.222 -23.80 19.59 1.32 1.31 -0.014 CAMPGPS

242.496 34.212 -20.14 20.15 1.08 1.09 -0.035 SANSGPS

242.861 34.014 -16.36 20.81 0.94 0.99 -0.058 BRI2_GLA

242.896 34.022 -16.99 20.17 1.08 1.11 -0.054 0818_GPS

242.647 34.089 -21.40 21.84 0.96 0.99 -0.046 RTHSGPS

242.900 34.039 -18.20 19.60 0.83 0.86 -0.062 CRFPGPS

243.048 34.003 -14.23 20.32 1.09 1.10 -0.025 CHERGLA

243.288 33.714 -17.45 22.00 0.96 1.00 -0.066 WD91_GLA

243.467 33.776 -13.16 18.48 1.11 1.15 -0.007 BOTRGPS

243.701 33.714 -11.93 15.42 0.93 0.94 -0.059 PTHPGPS

243.719 33.750 -10.36 13.64 1.06 1.05 -0.048 DUNPGPS

243.842 33.740 -8.59 9.19 0.99 1.02 -0.047 COCHGLA

243.829 33.749 -7.98 9.96 0.97 0.99 -0.047 GAPPGLA

243.669 33.817 -9.30 15.09 1.36 1.36 -0.015 RMRDGLA

243.825 33.810 -6.67 7.80 1.05 1.05 -0.034 BERDGPS

243.511 33.839 -10.26 17.87 1.14 1.18 0.001 PSARGPS

243.569 33.870 -9.50 17.72 0.92 0.94 -0.052 EDOMGLA

243.358 33.925 -13.17 19.17 1.17 1.25 -0.060 TOM2_GLA

243.594 33.931 -9.70 16.01 1.19 1.21 -0.014 WIDEGLA

243.608 33.935 -9.81 17.53 0.93 0.95 -0.049 WIDCGPS

243.827 33.952 -3.92 9.17 1.28 1.35 -0.002 PBB4_GPS

244.600 33.715 -1.26 0.81 1.03 0.96 -0.044 DESOGPS

244.236 33.834 -1.12 2.52 1.13 1.13 -0.006 JTREGPS

244.757 33.681 -2.74 1.35 1.24 1.06 -0.051 1114_GPS

245.285 33.610 -2.00 1.11 0.80 0.81 -0.066 BLYTGPS

244.855 34.158 -0.66 -0.68 1.09 1.11 -0.032 IMPSGPS

245.519 34.044 -0.15 0.92 1.21 0.99 -0.031 ENDDGPS

239.318 34.469 -32.26 33.62 0.85 0.90 -0.062 HARVGPS

240.286 34.494 -30.20 29.96 0.96 0.96 -0.047 LACUGPS

240.280 34.500 -29.22 30.94 1.02 1.05 -0.045 RCAGGPS

239.384 34.556 -31.28 34.43 0.84 0.89 -0.063 VNDPGPS

239.373 34.571 -29.25 36.17 1.32 1.23 -0.031 RUS1_GPS

239.383 34.593 -30.61 34.94 1.35 1.23 -0.037 ALVA GPS
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239.721 34.739 -31.45 33.06 1.13 1.16 -0.033 ORES_GPS

239.801 34.502 -29.35 32.66 1.03 0.98 -0.031 GAVIGPS

240.657 34.298 -30.13 28.63 0.96 0.93 -0.033 SOLI_GPS

240.669 34.301 -28.76 27.84 1.10 0.99 -0.009 CHAFGPS

241.163 34.248 -28.30 28.76 1.10 1.13 -0.035 TOSTGPS

241.122 34.295 -28.41 28.80 1.11 1.13 -0.035 MPWD_GPS

240.877 34.306 -27.20 29.06 1.13 1.09 -0.035 W304_GPS

240.858 34.327 -28.17 29.20 1.12 1.14 -0.041 OVLS_GPS

240.961 34.326 -29.62 30.16 0.99 0.94 -0.079 SCLA_GPS

241.123 34.328 -30.44 29.70 1.07 1.11 -0.038 HAP2_GPS

241.150 34.358 -30.21 29.95 1.28 1.11 -0.070 HAPYGPS

240.798 34.440 -33.26 29.03 1.05 1.06 -0.041 OJAIGPS

241.001 34.388 -27.86 26.91 0.92 0.93 -0.060 SNPA_GPS

241.060 34.394 -32.20 27.08 1.32 1.23 0.016 0706_GPS

240.990 34.440 -28.81 25.82 1.26 1.28 -0.051 SNP2_GPS

241.101 34.433 -28.35 24.96 1.08 1.10 -0.036 RCKSGPS

241.134 34.478 -24.77 24.12 0.99 0.94 -0.064 HOPPGPS

241.324 34.236 -26.89 29.88 0.88 0.91 -0.056 ROCKGPS

241.330 34.279 -29.16 29.14 1.12 1.11 -0.011 CHRNGPS

241.359 34.257 -27.22 29.48 0.84 0.87 -0.062 CHT3_GPS

241.445 34.233 -26.08 29.21 0.94 0.96 -0.051 NORT_GPS

241.476 34.254 -26.41 25.94 0.90 0.93 -0.054 CSN1_GPS

241.489 34.258 -24.40 26.06 1.11 1.16 -0.019 DELOGPS

241.512 34.292 -23.94 24.23 0.91 0.93 -0.053 RESEGPS

241.399 34.331 -27.45 25.74 0.81 0.84 -0.065 PICOGNR

241.592 34.264 -24.77 26.10 0.99 1.01 -0.048 PACO_GPS

241.846 34.286 -20.73 22.71 1.16 1.16 -0.027 JSPH_GPS

241.589 34.353 -25.71 24.04 0.87 0.90 -0.057 CMP9_GPS

241.307 34.406 -28.33 26.77 1.09 1.19 -0.074 U145_GPS

241.460 34.407 -25.32 22.18 0.93 0.93 -0.050 0704_GPS

241.331 34.496 -24.03 21.22 1.00 0.96 -0.067 LOVE_GPS

241.682 34.386 -24.86 22.57 1.23 1.27 0.011 MAGIGPS

241.815 34.387 -23.76 22.49 0.97 0.99 -0.027 GLSN_GPS

240.736 34.566 -29.01 24.84 1.29 1.17 0.052 0102 GPS

240.700 34.636 -27.18 23.99 0.97 0.95 -0.046 MUNSGPS

240.645 34.683 -28.98 23.77 1.36 1.31 -0.041 OZNAGPS

240.900 34.641 -24.88 22.36 1.05 1.07 -0.061 TWST_GPS

240.896 34.734 -24.24 20.55 1.14 1.17 -0.032 LVMSGPS

241.390 34.515 -26.26 20.28 1.17 1.19 -0.035 FHFF_GPS

241.348 34.544 -23.05 19.80 1.47 1.46 -0.155 Z370_GPS

241.745 34.503 -23.44 22.89 1.10 1.14 -0.019 0048_GPS

241.755 34.629 -18.63 18.91 1.15 1.17 -0.029 QHTP GPS

241.210 34.688 -22.64 20.24 1.31 1.36 -0.104 WARNGPS

241.257 34.751 -21.38 18.17 1.09 1.15 -0.038 AIRRGPS

241.854 34.754 -13.44 16.51 1.20 1.10 0.045 0027 GEE
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239.394 34.894 -30.32 34.75 0.97 0.96 -0.042 LOSPGPS

239.743 34.798 -30.63 34.29 1.26 1.16 -0.036 LAMOGPS

240.286 34.823 -28.00 29.22 0.89 0.92 -0.057 SALIGPS

240.162 35.003 -26.94 28.24 0.98 1.00 -0.049 0504_GPS

240.240 35.036 -25.45 25.40 0.89 0.92 -0.044 LGO7_GPS

239.933 35.076 -27.07 30.18 0.94 0.93 -0.052 MADC GPS

240.516 34.852 -24.83 24.61 1.04 0.98 -0.046 YAM2 GPS

241.107 34.800 -20.47 19.53 1.01 1.03 -0.040 FZHS GPS

241.132 34.825 -20.02 18.50 1.00 1.09 -0.063 0618 GPS

240.511 34.928 -23.23 22.88 1.20 1.14 -0.116 CUYAGPS

240.568 34.960 -20.77 20.70 0.90 0.91 -0.054 PATW GPS

240.821 35.002 -14.98 17.15 1.07 1.10 -0.051 J976_GPS

241.447 34.818 -13.89 17.64 0.97 1.02 -0.026 BUTJGPS

241.513 35.033 -13.81 14.42 1.11 1.20 -0.027 DBL1_GPS

241.811 34.983 -10.86 15.15 0.91 0.96 -0.075 SOLEGPS

240.773 35.267 -12.48 11.32 0.97 0.99 -0.062 0616_GPS

241.068 35.223 -12.53 10.77 1.16 1.25 -0.054 WEEDGPS

241.340 35.089 -13.22 14.24 1.22 1.31 -0.033 JACKGPS

241.492 35.086 -11.56 14.72 0.94 0.96 -0.043 DEERGPS

241.330 35.138 -13.60 12.98 0.99 1.08 -0.043 RSPGGPS

241.843 35.087 -10.24 13.96 0.97 1.00 -0.043 PORTGPS

241.591 35.134 -9.84 13.10 1.08 1.21 -0.023 SUMTGPS

241.705 35.121 -10.97 13.58 1.21 1.32 -0.020 PAJA GPS

241.375 35.274 -11.98 12.32 0.96 1.02 -0.052 0617 GPS

238.716 35.665 -29.26 37.01 1.00 1.01 -0.033 BLANGPS

238.516 35.992 -29.50 35.80 1.04 1.03 -0.025 0509_GPS

239.168 35.359 -28.58 35.56 0.82 0.86 -0.062 BLHLGPS

239.302 35.386 -27.22 34.40 0.92 0.96 -0.045 TESSGPS

239.701 35.346 -25.49 30.03 1.14 1.08 -0.035 POZOGPS

239.427 35.456 -27.22 33.17 0.87 0.91 -0.059 BARRGPS

239.547 35.552 -25.23 31.55 0.84 0.87 -0.055 ALMOGPS

239.707 35.583 -23.97 29.00 1.42 1.03 -0.037 L623_GPS

240.234 35.414 -13.51 16.18 1.39 1.19 -0.058 GOUD_GPS

239.887 35.520 -20.62 24.96 0.95 0.92 -0.038 POSOGPS

239.999 35.575 -16.17 18.79 0.96 0.92 -0.052 C616_GPS

239.654 35.607 -24.67 30.05 1.09 1.01 -0.037 H623_GPS

239.739 35.605 -23.23 26.87 0.83 0.86 -0.057 REDHGPS

240.146 35.603 -12.44 15.01 0.92 0.89 -0.049 P807_GPS

240.606 35.398 -13.33 12.57 0.88 0.88 -0.049 FIBRGPS

241.526 35.662 -11.56 9.70 1.11 1.14 -0.029 ISLKGPS

241.412 35.745 -11.67 9.87 0.88 0.91 -0.048 0614_GPS

239.953 35.889 -8.58 15.50 0.94 0.93 -0.047 TAROGPS

241.864 36.023 -9.81 9.51 0.86 0.89 -0.046 KMEDGPS

240.712 36.289 -10.82 11.33 1.00 1.02 -0.032 0609_GPS

241.974 34.333 -23.82 22.25 0.84 0.88 -0.058 CHIL GPS
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242.801 35.615 -7.13 7.45 0.94 0.97 -0.039 GS14_GPS

242.599 35.769 -7.35 7.70 0.94 0.96 -0.041 GS20_GPS

242.673 35.813 -6.51 6.28 0.92 0.95 -0.039 TRN1_GPS

243.700 35.867 -3.32 2.19 1.05 1.09 -0.116 0915_GPS

242.518 35.925 -8.31 6.44 0.94 0.97 -0.038 GS24_GPS

242.711 35.913 -6.47 6.27 0.93 0.95 -0.040 GS25_GPS

242.671 35.978 -6.12 5.37 0.94 0.92 -0.041 0914_GPS

242.821 36.035 -6.25 4.67 0.92 0.95 -0.039 GSO7_GPS

242.093 36.203 -8.94 7.44 0.91 0.94 -0.042 GS04_GPS

242.359 36.307 -6.50 5.11 0.83 0.84 -0.047 P166_GPS

242.826 36.294 -4.32 3.48 0.83 0.87 -0.046 PANAGPS

242.720 36.402 -5.51 4.18 0.95 0.95 -0.022 0911_GPS

243.350 36.316 -3.36 0.83 1.02 1.03 -0.029 RYANGPS

243.584 36.304 -2.51 1.65 0.93 1.03 -0.014 0912_GPS

243.525 36.397 -3.09 1.05 0.82 0.87 -0.044 FUNEGPS

239.646 36.501 -7.70 9.95 1.24 1.05 0.042 0607_GPS

240.882 36.738 -9.48 11.12 1.10 1.03 -0.058 0605 GPS

241.815 36.781 -6.70 8.15 1.22 1.01 -0.033 INDEGPS

241.706 37.233 -7.70 6.64 0.78 0.80 -0.051 OVROGPS

241.848 37.271 -7.16 4.90 0.89 0.92 -0.036 WSTGGPS

241.764 37.572 -5.13 4.80 0.87 0.90 -0.036 WMTN_GPS

242.213 36.538 -8.87 5.55 1.03 1.12 -0.021 CERRGPS

241.881 36.603 -8.47 7.91 0.92 0.95 -0.041 BAMAGPS

241.899 36.914 -8.14 6.05 0.90 0.94 -0.035 RITAGPS

243.022 36.724 -3.11 2.13 0.95 0.99 -0.002 0909_GPS

243.254 36.828 -3.75 2.84 1.05 1.12 -0.003 P16X_GPS

243.837 36.690 -1.72 0.96 0.90 0.93 -0.040 1PDI_GPS

243.531 36.838 -3.18 1.09 0.91 0.92 -0.042 MILEGPS

243.739 36.943 -1.80 1.52 0.92 0.94 -0.031 SHSNGPS

243.851 36.994 -1.78 0.09 1.04 1.03 -0.026 MN71_GPS

279.616 25.614 0.52 -0.30 0.77 0.75 0.009 RICMGPS

255.985 30.680 -0.16 0.38 0.64 0.62 -0.046 MDOlGPS

251.881 34.301 -0.26 -0.27 0.61 0.61 -0.054 PIEl_GPS

268.425 41.772 0.56 0.54 0.51 0.49 -0.005 NLIBGPS

283.173 39.022 0.08 0.38 0.53 0.52 0.004 GODEGPS

288.507 42.613 -0.32 -0.17 0.50 0.49 0.002 WES2_GPS

281.929 45.956 0.41 -0.69 0.46 0.45 0.001 ALGO_GPS

293.167 54.832 0.08 1.02 1.00 0.99 0.000 SCH2_GPS

210.394 -17.577 -68.77 52.60 1.04 0.97 0.007 THTIGPS

200.335 22.126 -60.73 55.61 0.76 0.75 0.002 KOKBGPS

183.434 -43.956 -40.93 55.81 0.69 0.67 0.002 CHATGPS

167.730 8.722 -71.25 50.14 0.79 0.77 -0.002 KWJ1_GPS

153.979 24.290 -75.82 41.67 1.03 0.97 -0.004 MARC GPS

151.887 7.447 -72.74 41.88 0.91 0.85 -0.004 TRUK_GPS

243.709 35.397 -5.41 -0.02 1.32 1.30 0.048 SILV GHT
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243.448 35.426 -4.85 1.60 1.42 1.37 0.018 P_42_GHT

243.425 36.809 -3.31 1.58 1.37 1.37 -0.011 BLAKGPS

243.319 36.889 -4.41 1.17 1.37 1.38 -0.013 CLAIGPS

243.138 36.858 -3.68 2.15 1.10 1.10 0.009 F23XGPS

243.071 36.792 -3.55 3.04 1.11 1.11 0.011 M093_GPS

242.973 36.638 -3.78 2.73 1.09 1.08 0.010 HOLDGPS

242.958 35.168 -10.15 10.21 1.35 1.36 0.034 GS36_GPS

242.863 37.218 -3.24 1.64 1.04 1.02 -0.014 SCTYGPS

242.853 36.606 -4.11 3.23 1.10 1.09 0.022 STOVGPS

242.837 35.375 -6.89 11.15 1.30 1.29 0.008 GS49_GHT

242.788 36.543 -4.56 3.49 1.10 1.09 0.022 G165 GPS

242.714 37.061 -3.38 2.31 1.01 0.99 -0.025 NEV1GPS

242.700 36.349 -5.35 5.18 1.10 1.09 0.034 M137_GPS

242.683 35.214 -9.40 11.79 1.32 1.32 0.022 GS47_GHT

242.640 36.992 -3.77 2.10 1.03 1.01 -0.023 GRAPGPS

242.576 36.340 -6.44 4.93 1.06 1.06 -0.011 13DDGPS

242.551 37.019 -3.94 3.07 1.03 1.01 -0.024 SAND GPS

242.546 36.053 -6.66 5.95 1.05 1.03 -0.022 GS27_GPS

242.541 35.584 -8.74 10.31 1.34 1.36 0.041 GS48_GPS

242.521 36.572 -5.28 3.76 1.06 1.05 -0.020 HUNTGPS

242.500 36.865 -3.96 3.49 1.02 1.01 -0.025 TINPGPS

242.495 35.213 -9.94 11.86 1.32 1.32 0.014 FMTHGPS

242.460 36.532 -5.74 4.05 1.06 1.05 -0.022 JACKGPS

242.454 36.067 -7.89 6.36 1.28 1.28 0.003 GS43 GPS

242.454 36.759 -4.59 3.39 1.04 1.01 -0.018 TEAKGPS

242.450 36.279 -6.94 4.97 1.15 1.18 -0.001 L166_GPS

242.443 36.002 -7.57 7.13 1.28 1.29 0.001 GS45_GPS

242.439 36.519 -5.47 3.57 1.06 1.06 -0.014 FLATGPS

242.417 36.232 -6.82 5.34 1.09 1.09 -0.016 T19SGPS

242.415 35.429 -9.01 11.58 1.07 1.05 -0.016 GS11_GPS

242.409 35.083 -10.79 13.60 1.33 1.32 0.014 GS50GPS

242.388 36.497 -5.99 5.17 1.06 1.07 -0.015 LEEFGPS

242.368 36.107 -8.18 5.59 1.29 1.30 0.003 GS42_GPS

242.328 36.094 -9.94 5.67 1.14 1.12 -0.011 GS34_GPS

242.325 36.150 -8.57 5.00 1.05 1.04 -0.020 6813 GPS

242.244 36.217 -7.43 6.40 1.15 1.13 -0.009 GS35_GPS

242.116 36.062 -7.71 7.96 1.10 1.11 -0.017 FORKGGE

242.056 36.045 -9.10 10.01 1.09 1.09 -0.012 BM25_GPS

242.031 35.845 -9.73 10.93 1.05 1.04 -0.018 GS22_GPS

242.013 37.092 -6.82 6.27 1.34 1.34 -0.011 WAUC GPS

241.965 35.668 -10.53 11.33 1.05 1.04 -0.016 GSO3 GPS

241.954 37.737 -4.68 4.90 1.17 1.17 -0.032 FISHGPS

241.868 36.466 -9.41 8.94 1.01 0.98 -0.031 3188_GPS

241.794 34.992 -12.15 14.48 1.15 1.13 0.008 TROPGPS

241.712 36.979 -8.63 7.29 1.05 1.03 -0.034 ABER GPS
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241.273 36.185 -10.80 9.04 1.07 1.04 -0.018 SPRNGPS

238.249 38.536 -10.91 7.37 0.38 0.37 0.012 UCD1GPS

238.179 39.206 -10.79 6.89 0.40 0.40 0.010 SUTBGPS

239.056 39.975 -9.89 6.77 0.31 0.30 0.049 QUIN GPS

238.500 39.555 -10.10 6.52 0.39 0.38 0.004 ORVB GPS
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Appendix C. Southern California block geometry

The fault system geometry of our preferred block model is shown in the table

below. All segments come to the surface with the exception of the Puente Hills Thrust

(PHT), which is buried to a depth of 5 km.

Segment Name longitude 1 latitude 1 longitude 2 latitude 2 dip locking depth
(deg) (deg) (deg) (deg) (deg) (km)

Avawatz 244.000 34.140 244.000 34.140 90 10

Avawatz 243.637 35.500 243.934 35.083 90 10

Avawatz 243.934 35.083 244.000 34.980 90 10

Calico Blackwater 242.575 35.500 243.251 34.816 90 5

Calico Blackwater 243.251 34.816 243.431 34.564 90 5

Calico Blackwater 243.431 34.564 243.637 34.161 90 5

Chino 242.174 34.139 242.481 33.794 90 10

Closure (east) 216.760 55.690 325.661 58.239 90 15

Closure (east) 274.413 -13.347 325.661 58.239 90 15

Closure (east) 260.639 5.079 274.413 -13.347 90 15

Closure (north) 191.871 57.592 216.760 55.690 90 15

Closure (west) 190.538 57.203 191.871 57.592 90 15

Closure (west) 259.341 1.742 260.639 5.079 90 15

Closure (west) 162.912 55.592 190.538 57.203 90 15

Closure (west) 145.025 41.058 162.912 55.592 90 15

Closure (west) 142.758 34.025 145.025 41.058 90 15

Closure (west) 131.169 29.806 142.758 34.025 90 15

Closure (west) 124.115 3.316 131.169 29.806 90 15

Closure (west) 124.115 3.316 164.764 -7.061 90 15

Closure (west) 164.764 -7.061 180.290 -36.871 90 15

Closure (west) 252.514 -42.884 259.341 1.742 90 15

Closure (west) 204.097 -69.387 252.514 -42.884 90 15

Closure (west) 162.871 -57.774 180.290 -36.871 90 15

Closure (west) 162.871 -57.774 204.097 -69.387 90 15

Closure (west) 230.593 47.950 235.278 40.845 90 15

Coastal Ranges Split 240.410 35.061 240.583 34.422 90 10

Cucamonga 241.995 34.147 242.174 34.139 135 15

Cucamonga 242.174 34.139 242.265 34.108 135 15

Cucamonga 242.265 34.108 242.324 34.129 135 15

Cucamonga 242.324 34.129 242.371 34.145 135 15

Cucamonga 242.371 34.145 242.605 34.178 135 15

Cucamonga 242.605 34.178 242.670 34.200 135 15



92 CHAPTER 1: BLOCK MODELS

Death Valley 243.300 35.910 243.572 35.591 90 10

Death Valley 243.120 36.560 243.300 35.910 90 10

Death Valley 242.060 37.483 243.120 36.560 90 10

Death Valley 240.580 39.000 242.060 37.483 90 10

Deep Springs Valley 241.946 37.150 242.060 37.483 90 10

Elsinore 244.255 32.614 244.985 32.175 90 15

Elsinore 242.634 33.660 243.657 33.000 90 15

Elsinore 242.481 33.794 242.567 33.714 90 15

Elsinore 242.567 33.714 242.634 33.660 90 15

Eureaka Peak 243.637 34.161 243.751 33.804 90 5

Garlock 241.072 34.818 241.530 35.000 90 15

Garlock 241.530 35.000 242.066 35.318 90 15

Garlock 242.066 35.318 242.240 35.420 90 15

Garlock 242.240 35.420 242.529 35.500 90 15

Garlock 242.565 35.510 243.045 35.578 90 10

Garlock 243.045 35.578 243.572 35.591 90 15

Goldstone Lake 243.091 35.500 243.292 35.156 90 10

Goldstone Lake 243.292 35.156 244.000 34.140 90 10

Hunter Mountain 242.196 36.664 242.583 36.456 90 10

Nevada 243.934 35.083 244.000 35.152 90 10

Nevada 246.603 41.890 246.689 37.971 90 10

Nevada 235.958 43.583 246.603 41.890 90 10

Newport 241.888 33.756 242.070 33.618 90 15

Newport 241.644 33.977 241.716 33.897 90 15

Newport 241.716 33.897 241.802 33.827 90 15

Newport 241.802 33.827 241.888 33.756 90 15

Newport 242.070 33.618 242.503 33.164 90 15

Newport 242.503 33.164 242.658 33.000 90 15

Newport Inglewood 241.587 34.051 241.644 33.977 90 15

Oak Ridge 240.670 34.216 241.135 34.409 45 15

Oceanside 242.503 33.164 242.520 33.000 90 15

Owens Valley 241.949 36.570 242,.017 36.143 90 10

Owens Valley 240.580 39.000 241.521 37.633 90 10

Owens Valley 241.521 37.633 241.949 36.570 90 10

Owens Valley 216.760 55.690 230.593 47.950 90 15

Owens Valley 230.593 47.950 235.958 43.583 90 15

Owens Valley 235.958 43.583 240.580 39.000 90 15

Pacfic 239.935 34.156 241.350 33.119 90 15

Pacific 241.350 33.119 241.488 33.000 90 15

Pacific 243.141 31.575 244.239 31.325 90 15

Pacific 244.239 31.325 245.328 29.522 90 15

Pacific 245.328 29.522 259.341 1.742 90 15

Pacific 238.131 36.359 238.976 35.415 90 15

Pacific 238.976 35.415 239.196 34.971 90 15
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Pacific 239.196 34.971 239.335 34.565 90 15

Pacific 239.500 34.477 239.563 34.443 90 15

Pacific 239.563 34.443 239.756 34.309 90 15

Pacific 239.756 34.309 239.935 34.156 90 15

Palos Verdes 241.360 34.014 241.706 33.757 90 15

Palos Verdes 241.706 33.757 242.369 33.000 90 15

Palos Verdes 242.541 32.803 243.141 31.575 90 15

Panamint Valley 242.583 36.456 243.045 35.578 90 10

Pinto Mountian 243.637 34.161 244.000 34.140 90 15

Puente Hills 242.009 33.820 242.301 33.774 135 15

Puente Hills 242.301 33.774 242.481 33.794 135 15

Puente Hills 241.740 34.099 242.009 33.820 135 15

Raymond Hill 241.587 34.051 241.740 34.099 135 15

Raymond Hill 241.740 34.099 241.829 34.117 90 15

Raymond Hill 241.829 34.117 241.995 34.147 90 15

Saline Valley 241.946 37.150 242.196 36.664 90 10

San Andreas 240.255 35.191 240.410 35.061 90 25

San Andreas 240.410 35.061 240.615 34.929 90 25

San Andreas 240.615 34.929 240.750 34.873 90 25

San Andreas 240.999 34.821 241.072 34.818 90 25

San Andreas 241.548 34.677 242.195 34.428 90 25

San Andreas 241.072 34.818 241.548 34.677 90 25

San Andreas 242.195 34.428 242.378 34.347 90 25

San Andreas 242.378 34.347 242.670 34.200 90 25

San Andreas 242.670 34.200 242.879 34.110 90 15

San Andreas 242.879 34.110 243.106 34.031 90 15

San Andreas 243.106 34.031 243.751 33.804 90 15

San Andreas 243.751 33.804 244.000 33.592 90 15

San Andreas 244.278 33.356 244.494 32.908 90 10

San Andreas 244.494 32.908 244.985 32.175 90 0

San Andreas 244.985 32.175 247.749 29.024 90 15

San Andreas 247.749 29.024 260.639 5.079 90 15

San Andreas 237.416 37.772 239.157 36.265 90 0

San Andreas 239.717 35.743 239.922 35.525 90 25

San Andreas 239.947 35.500 240.255 35.191 90 25

San Andreas 239.157 36.265 239.378 36.066 90 10

San Andreas 239.378 36.066 239.717 35.743 90 10

San Andreas 240.750 34.873 240.999 34.821 90 25

San Andreas 235.278 40.845 237.416 37.772 90 15

San Cayetano 240.800 34.465 241.135 34.409 135 5

San Cayetano 240.583 34.422 240.800 34.465 135 5

San Cayetano 241.135 34.409 241.377 34.463 135 5

San Gabriel 241.072 34.818 241.124 34.699 90 15

San Gabriel 241.124 34.699 241.377 34.463 90 15
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San Gabriel 241.377 34.463 241.527 34.392 135 15

San Gabriel 241.527 34.392 241.676 34.320 135 15

San Gregorio 237.416 37.772 238.131 36.359 90 15

San Jacinto 242.978 33.862 244.000 33.068 90 l'O

San Jacinto (south) 242.670 34.200 242.978 33.862 90 10

San Jacinto (south) 244.028 33.046 244.985 32.175 90 10

Santa Monica 241.034 34.028 241.360 34.014 135 15

Santa Monica 241.360 34.014 241.498 34.023 135 15

Santa Monica 241.498 34.023 241.587 34.051 135 15

Santa Monica (west) 240.670 34.216 240.748 34.064 135 15

Santa Monica (west) 240.748 34.064 241.034 34.028 135 15

Sierra Madre 241.767 34.282 241.905 34.182 135 15

Sierra Madre 241.676 34.320 241.767 34.282 135 15

Sierra Madre 241.905 34.182 241.995 34.147 135 15

Sierra Madre 242.017 36.143 242.565 35.510 90 10

Ventura (west) 239.756 34.309 240.670 34.216 45 15

Ventura Split 241.377 34.463 241.482 34.210 90 10

Ventura Split 240.583 34.422 240.670 34.216 90 10

Ventura Split 241.482 34.210 241.587 34.051 90 10
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Chapter 2

Viscoelastic Deformation for a Clustered Earthquake Cycle9

Abstract. The clustering of earthquakes in time on the same fault affects the rate and
pattern of interseismic deformation. We develop a model of the surface velocity field
through a clustered earthquake cycle by superposing the velocities of individual
viscoelastic earthquake cycles of constant period but varying phase. Velocity profiles
prior to and after an earthquake show a much wider range of behavior than they do
through a single earthquake cycle. These new types of behavior provide possible
explanations for discrepancies between geologic estimates of long-term fault slip rates
and slip rate estimates from geodetic data.

1. Introduction

Characterizations of the temporal pattern of earthquakes range from periodic

(Reid, 1910, Savage and Prescott, 1978) to chaotic (Scholtz, 1992). Periodically spaced

events have been recognized in the rupture history revealed by paleoseismic data in New

Zealand (Bull, 1996). Other ancient large earthquake catalogs reveal complicated

behavior that appears more regular than chaotic, and is described as clustered in time

(e.g., Wallace, 1987, Swan, 1988; Sieh et al., 1989, Grant and Seih, 1994, Marco et al.,

9 This work is being prepared for publication with Brad Hager
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1996, Rockwell et al., 2000, Friedrich et al., 2003). The clustered events consist of a

small number of earthquakes, typically 2-6, occurring in rapid succession on the same

fault segment. This active period is followed by a period largely devoid of major seismic

events (figure 1). The reported time spans covered by single clustered cycles range

widely, from several hundred years for the Carrizo segment of the San Andreas Fault

(Sieh et al., 1989), to 20,000 - 30,000 yrs for the Wasatch fault in Utah (Friederich et al.,

2003), the Dead Sea fault (Marco et al., 1996), and the Xiaojiang fault in China (Xu and

Deng, 1996).

Several theoretical investigations have-addressed the possible causes of clustering.

For example, Ben-Zion et al. (1999) and Lyakovsky et al. (2001) showed that fault

healing and damage rheology could lead to clustering. Lynch et al. (2003) showed that

communication between nearby fault segments via viscoelastic coupling could result in

clustering. Kenner and Simons (2003) used a simple analog spring-dashpot-slider system

to show that low viscosities and low loading rates tend to promote clustering.

The question that we address in this paper is how earthquake clustering influences

the geodetically observable velocity field measured near a fault. For example, Friederich

et al. (2003) addressed observations of deformation across the Wasatch fault zone in

eastern Utah on both geologic and geodetic time scales. They demonstrated that

earthquakes in this region are clustered; four large earthquakes have occurred there in the

past 10,000 yrs, following a period of relative inactivity for ~ 20,000 yrs. The geologic

slip rate estimated over the more recent active period is three times that estimated for the

inactive period. They provided a number of hypotheses about how the geodetic rate
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might compare to the geologic rate averaged over 10,000 yr (intra-cluster) and 30,000 yr

(inter-cluster) time scales. Pe'eri et al. (2002) have used geodetic measurements of

interseismic deformation to estimate the strike slip rate on the Dead Sea fault, a structure

that is one of the type locales for clustering (Marco et al., 1996). Our model provides a

new framework for interpreting these observations.

2. An idealized clustered earthquake cycle

Consider the simple idealized description of a clustered earthquake cycle shown

in Figure 1. Each clustered cycle of inter-cluster period T is made up of an active period,

with n earthquakes repeating with offsets AT, and a quiet period of duration T-(n-1)AT.

If s is the characteristic coseismic slip per event and vo is the long-term geologic slip

rate of the fault, the balance between coseismic slip and long-term geologic slip is given

by ns = v0T. For the model shown in figure 1, n = 4 and AT T/10. We also define the

average recurrence interval, Tav = Tin, which gives the relation s = voTav.

The time evolution of the surface velocity field during the earthquake cycle

depends on the rheology of the system. Here we present a simple model of the

deformation associated with an infinitely long strike slip fault in an elastic layer of

thickness H overlying a half space consisting of a Maxwell viscoelastic material. We

assume that each earthquake breaks the entire elastic layer. Savage and Prescott (1978)

and Savage (2000) described the time evolution of the surface velocity field through an

earthquake cycle for this model, assuming that earthquakes are strictly periodic with

period, T. The resulting velocity field is a function of two additional times: the time since
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the last earthquake, t, and the Maxwell relaxation time of the viscoelastic halfspace, rM -

q/p, where p is the shear modulus and q is the dynamic viscosity. Because of the wide

range in T observed, it is useful to combine these three times into dimensionless

parameters, only two of which are independent. Since we are investigating repeating

earthquakes, we follow Savage and Prescott (1978) in using the dimensionless

parameters ro = T/2 rm, and t' = t/T. (In the limit T goes to infinity, this formulation can

also be used to describe the response of a single earthquake.)

Active period Quiet period Single cycle 4

Clustered cycle T Single cycle 3

TSingle cycle 2

Single cycle I

AT Single cycle 4

Single cycle 3

Single cycle 2 Clustered cycle 2

Single cycle 1 Accumulated fault displacement

Time -+

Figure 1. A schematic diagram of a clustered earthquake cycle. Each single earthquake
cycle is represented by a thin rectangle. These are offset and stacked on top of each other
to emphasize the overlapping nature of the earthquake cycles. The length of the single
earthquake cycles is the same as the clustered earthquake cycle. The heavy dark line
shows what the temporal pattern of deformation at the fault trace.

Despite the more complex temporal pattern of earthquakes, some of the important

models for a single earthquake cycle can be extended to the clustered case. Both the
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single and clustered earthquake cycles must balance interseismic strain accumulation and

coseismic strain release. Our clustered earthquake cycle model can be taken to the limit

of a periodic earthquake model with long-term geologic slip rate in two ways. If n and s

are held constant, and AT = Tin = Tav, the model becomes periodic with period Tin.

Alternatively, in the limit AT goes to zero the model becomes periodic with period T, but

the slip in the composite event must be increased proportionally, to ns, to balance the

geologic rate. In comparing our results to those for periodic earthquakes, both limits are

of interest and it is important to specify which is used.

It is straightforward to generalize the Savage and Prescott (1978) model to the

simple clustered earthquake cycle shown in figure 1. A clustered earthquake cycle begins

with the onset of one active period and ends at the start of the next. The clustered

earthquake cycle can be thought of as the superposition of n individual earthquake cycles,

each with period T. (Note that, for each of these individual earthquake cycles, ro is

defined in terms of T, not in terms Tav for the entire cluster.) We calculate velocity

profiles for a given relaxation parameter by summing the contributions from the

individual earthquake cycles

n

vC (t',r0 , AT,n) = vs(I AT(t'- k -1) I, ro) (1)
k=1

where, vC is the velocity due to the event clustering, t is the time since the onset of the

active period, n is the number of earthquakes in the active period, vs is the velocity from
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Savage's (2000) model and AT is the time lag between earthquakes. For the plots shown

here, we model the behavior of a clustered earthquake cycle with n = 4 earthquakes

separated by T / 10 each and a relaxation parameter ro = 5. For example, for a choice of

T = 500 year (as might be appropriate for the SAF, corresponding to r7~ 5x 1019 Pa-s for

p= 30 GPa), the active and quiet periods are 150 and 350 years long respectively; for T =

25,000 yrs (as might be appropriate for the Wasatch fault, corresponding to 77q 2.5x 1021

Pa-s) the active and quiet periods are 7,500 and 17,500 years long respectively.

In an elastic half space the steady state interseismic velocity profile parallel to an

infinitely long vertical strike slip fault is given by v = vorc-' tan-'(x / H) where x is the

distance from the fault trace, H is the locking depth and vo is the slip rate (e.g., Savage

and Burford, 1973). This model provides a useful reference for the effects of

viscoelasticity.

Figure 2 shows velocity profiles at various times for a clustered earthquake cycle.

For reference, we show the results for the two limiting cases of periodic earthquakes - the

case AT= 0, with slip 4s (Figure 2a) and the case AT= T / 4 (Figure 2b). For large ro, (To

= 5 in Figure 2a) there are large variations through the earthquake cycle. Immediately

after an earthquake, the fault parallel velocity is greater than the steady state velocity and

peaks near the fault. Late in the cycle, as the next earthquake approaches, the surface

velocities decay to values lower than the steady state and the maximum velocity is found

far away from the fault. This pattern can be succinctly summarized as "slow before, fast

after". In Figure 2b, since the recurrence interval is a factor of 4 smaller than that in
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Figure 2a, the effective ro is a factor of 4 smaller, ro = 1.25. For lower values of ro, (i.e.

shorter repeat time or higher viscosity) (Figure 2b) there is less variation through the

earthquake cycle due to viscoelastic relaxation.

ab

0 r
0 20

x/H

Figure 2. Interseismic velocity profiles. Each of these figures shows half of a fault
parallel velocity profile at various times through the earthquake cycle. In all cases the
finely dashed line is the steady state profile, the solid black line is the profile immediately
following an event and the coarsely dashed line shows the velocity profile immediately
prior to the event. The axes are the same for all figures but are shown only on the lower
left figure for clarity. a) Profiles for a single earthquake cycle with r'' . b) Profiles for a

single earthquake cycle with r' / 4. c) Profiles for the first event in a clustered

earthquake cycle with rf*. d) Profiles for the second event in a clustered earthquake

cycle with r'f. e) Profiles for the third event in a clustered earthquake cycle with r'.

f) Profiles for the fourth, and last, event in a clustered earthquake cycle with r'.
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Immediately after the first earthquake in the clustered cycle, the velocity is slower

than the steady state profile (figure 2c). This is because the three other out of phase

earthquake sequences that are late in their cycles contribute very little and effectively

reduce the total velocity. Thus in a clustered earthquake cycle the velocity immediately

after an earthquake need not be greater than the steady state value even in the case of

large -r. This is a case of "slow before, slow after" and is different from the single

earthquake cycle model where the velocity following an earthquake is always greater

than the steady state value (Figures 2a, b).

After additional active period earthquakes (figure 2d), the pre-event velocity is

slow and the postseismic is fast, just as in the single earthquake cycle. Late in the active

period the pre-event velocity may be greater than the steady state due to the influence of

the high velocities generated by the previous earthquakes ("fast before, fast after", see

figure 2f). Again, this is different from the prediction for a single earthquake cycle where

the velocity preceding an earthquake is always less then the steady state value. Of

course, at the end of a long enough quiet period the velocities are much lower than the

steady state as all of the earthquakes are late in their cycles. In total, the pattern of

deformation immediately before and after earthquakes in the presence of clustering

shows a range of behavior including "slow before, slow after" for the first event in the

sequence "slow before, fast after" for the second, and "fast before, fast after" for the

fourth. The interseismic velocity profiles between the third and fourth events in the

active period are particularly notable as they are remarkably similar to steady state

profiles with a shallower locking depth and a slightly lower slip rate.
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Earthquake clustering also tends to reduce the total amount of variation through

the seismic cycle. The area swept through by the velocity profile in the single earthquake

cycle (shaded area in figure 2b) is greater than that swept through in any event in the

clustered earthquake cycle (shaded area in figures 2b-d). The after profiles are never as

"fast" and the before profiles are never as "slow". Thus, the steady state assumption may

be more appropriate for a clustered earthquake cycle than for a single earthquake cycle.

3. Variations with ro and AT/ T

Thus far we've only presented the results for what might be termed a typical

clustered earthquake cycle. Two interesting parameters to vary are the active period

interevent time AT / T and the relaxation parameter ro. This is similar to the single

earthquake cycle; smaller values of ro give smaller variations through the seismic cycle,

though the magnitude of variation is smaller in a clustered earthquake cycle (figure 3).

However, there is more variation than for the case of overlapping periodic earthquakes

where T / AT = n.

Values of ro > 5 show greater deviations from the steady state and preserve the

same sense of behavior. An exception is the velocity immediately following the first

active period event which does significantly exceed the steady state profile within a few

locking depths of the fault trace. Longer interevent times tend to reduce variability by

averaging over a greater portion of the earthquake cycle. Conversely, shorter interevent

times increase variability while preserving the sense of pre- and post-earthquake behavior
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discussed in the previous section. Thus, we always see less total variability in a clustered

earthquake cycle than for a single event case.

2/20 3/20
AT/ T

5/20

Figure 3. Variations with ro and interevent time, AT. The shaded circle shows the
values of ro and AT that we use for our example clustered earthquake cycle. The
contours show deviations in the peak velocity from a reference model. As AT decreases
the total amount of variation through the clustered earthquake cycle increases.
Conversely, the contours grow sparser as AT increases as the different earthquake cycles
overlap on one another and tend to average to the reference earthquake cycle. The
shaded circle triangle, square and circle represent the cases shown in figures (2a), (2b),
and (2c, d, e, f) respectively.
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4. Discussion

The parameter ro can be shown to be the same as the parameter that Kenner and

Simons (2003) named the Wallace number and used to describe their models; systems

with large ro tended to show clustered earthquakes, suggesting that their model could be

tested by geodetic data if the Savage and Prescott (1978) model were extended to

earthquakes that are clustered. Modern geodetic techniques, including GPS and InSAR,

allow for precise measurements of crustal velocities with uncertainties on the order of

millimeters per year. Fault slip rates can be estimated by fitting the observed velocities to

models of interseismic deformation. Using steady state models to interpret a viscoelastic

velocity field, "fast" profiles yield "fast" slip rates and "slow" profiles yield "slow" slip

rates in the absence of significant far field data (e.g., Meade and Hager, 2004a). This

somewhat crude mapping allows us to study variations through the seismic cycle by

comparing present day slip rates with long term slip rates obtained with paleoseismic and

geomorphic methods. Several notable examples are more readily interpreted with a

clustered rather than a single earthquake cycle model.

The model immediately suggests an explanation for why the geodetic slip rate

estimates across the Wasatch fault are substantially higher than the 26,000 yr geologic

average (Friedrich et al., 2003). Several clustered events have recently occurred so the

situation is comparable to that shown in figure 2f. As can be seen from figure 2f, rates

may appear faster than the long term geologic rate even if it has been a long time since

the last earthquake. If we can extrapolate the results for our strike-slip model to an
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extensional environment, for T = 26,000 yrs, ro = 5, corresponds to a viscosity of r~

2.5x102 Pa-s - a relatively high value.

The most widely recognized fault in the Southern California Fault System (SCFS)

the San Andreas (SAF). As it emerges from the Big Bend, south of Cajon Pass, the main

fault trace is ill defined until the partially creeping segment south of the Salton Sea

(Lyons and Sandwell, 2003). Sieh et al. (1989) estimated that the southern SAF (i.e.,

Indio segment) most likely last ruptured in a large event in 1688 ± 13 CE with two prior

events in the preceding 400 years. If we consider the past 400 years as the quiescent

period then it is as least as long as the active period, thus T > 800 years and AT ~130

years. The length of the quiet period is unknown but slip rate estimates based on

geodetic data (e.g., Meade and Hager, 2004a) may reflect behavior late in the quiet

period of a clustered earthquake cycle, and thus be less than the long-term average.

Paralleling the SAF, about 40 km to the west, is the San Jacinto Fault (SJF) with a

long-term (half-Quaternary) strike slip rate of 12 mm/yr (Sharp, 1981). Present day slip

rate estimates based on models of interseismic geodetic observations find a slip rate of

14.3 ± 0.4 mm/yr (Meade and Hager, 2004a). As it has been ~250 years since the last

major earthquake on the San Jacinto and typical recurrence intervals are expected to be

on the order of no more than 400 years, the fault must be considered to be late in a single

earthquake cycle. However, this fails to help explain the apparent discrepancy between

the geologic and geodetic slip rate estimates. The reason this single earthquake model

fails is that late in the earthquake cycle the apparent slip rate (geodetic estimate) should

be lower than the long term average (geologic estimate). Again, this is the opposite of
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the situation we observe today where the San Jacinto Fault is relatively fast compared

with the long term geologic rate (Sharp, 1981).

However, the San Jacinto rupture history as revealed in the paleoseismic record

(Rockwell, 2003) provides evidence for the temporal clustering of earthquakes.

Specifically, the fault has experienced approximately five ruptures over the last 1100

years, while there is a record of only one substantial fault displacement for at least the

previous millennium (900-0 CE). This suggests that prior to 900 CE the SJF had been

quiet for nearly a thousand years, and that the last thousand years are an active period in

terms of the clustered earthquake model. Thus, the SJF may still be in an active period of

a clustered earthquake cycle. Unfortunately, the SJF paleoseismic record is currently

insufficient to determine either the quiet period length or the number of active period

earthquakes. However, we suggest that the present situation may be similar to that

presented in the idealized clustered earthquake model. If there are still earthquakes left to

occur in the current active period then although it has been a long time since the last

event (and presumably less time until the next) we currently may be observing a situation

analogous to that shown in figure 2f. In this case, immediately prior to the last active

period earthquake and for a long time after, the fault parallel velocity is greater than the

long-term value.

For the SJF case, this model would require that the quiet period is longer than the

the active period by at least a factor of two, and to = 5 -10 for AT ~ 250 years. If ro

were higher, the relaxation would be too fast for us to observe today. Conversely if To

were much lower, there would be negligible variation from the steady state expectation.
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For typical shear modulus values this range of r,'s suggest a range of dynamic

viscosities 7 ~1020 -10" Pa-s. These values are higher by at least an order of

magnitude than those estimated by Pollitz et al. (2001) based on InSAR observations of

postseismic deformation following the 1992 Landers earthquake to the north-northeast of

the SJF.

In the Eastern California Shear Zone (ECSZ), south of the Garlock Fault, geodetic

estimates of slip rates (McClusky et al., 2001, Peltzer et al., 2001) have tended to be

higher than geologic estimates (e.g., Rockwell et al., 2000, Oskin, 2002) by a factor of

two. While both McClusky et al. (2001) and Peltzer et al. (2001) determined slip rates

after the 1992 Landers earthquake, their models are consistent with the high strain rate

estimates made prior to the event (Sauber et al., 1994). Fast rates before and after the

Landers earthquake are incompatible with the variation in surface deformation predicted

by the single earthquake cycle model. However, the clustered earthquake model does

show this "fast before, fast after" behavior near the last earthquake in the active period

(figure 2f). To double the apparent slip rate prior to the last earthquake in the cycle

would require ro > 5. This is likely reasonable for the ECSZ, where the repeat time is

believed to be quite long (e.g., Rockwell et al., 2000).

The pre-earthquake velocity profile in figure 2d is quite similar to the profile that

would be expected from the same fault slip rate but with a shallow locking depth. Peltzer

et al. (2001) estimated a shallow locking depth for the Blackwater fault in California's

Mojave Desert using radar interferometry. The alternative explanation is that the fault is
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not locked to some shallow depth, but is instead near to the last earthquake in an active

period of a clustered earthquake cycle.

5. Conclusions

A clustered earthquake cycle model shows a wider variety of pre- and post-

seismic behavior with respect to the steady state model than does the single earthquake

cycle. At the same time, there is less total variability through the clustered cycle due to

the overlapping of individual earthquake cycles. These observations highlight the

challenge of interpreting geodetic measurements of crustal deformation in the context of

viscoelastic relaxation. Despite this difficulty, the clustered earthquake model provides

both the motivation and a mechanism for integrating paleoseismic rupture histories with

present day estimates of interseismic surface velocities to determine the dynamics of

actively deforming zones. This model may help to reconcile apparent differences

between short and long-term fault slip rates as well as provide an alternative explanation

for estimates of apparently shallow fault locking depths in some places.
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Chapter 3

Spatial Localization of Moment Deficits in Southern
California'0

Abstract. The balance between elastic strain accumulation and release defines the extent
to which a fault system suffers from a surplus or deficit of large earthquakes. We present
an estimate of the regional moment accumulation rate in Southern California based on a
new slip rate catalog estimated from a block model constrained by geodetic data. The
moment accumulation rate calculated from this catalog (-21.2 ± 4.2 x 1018 N-m/yr) is
nearly twice as large as previous estimates. We also introduce a new method for
localizing areas of high moment deficit. In Southern California we find three major areas
of moment deficit: 1) the Southern San Andreas and San Jacinto Faults, 2) the northern
Mojave Desert, and 3) the greater Los Angeles area. We calculate the minimum
magnitude earthquake sources that could eliminate these deficits. For the Southern San
Andreas and San Jacinto Faults we find that an equivalent Mw = 7.8 earthquake is
required to balance the deformation accumulated over the last two centuries.

1. Introduction

The potential for large earthquakes is typically characterized by one of three

approaches. The first is the estimation of moment magnitudes based on the geometries of

faults (e.g., Dolan et al., 1995, Shaw and Shearer, 1998, Meade et al., 2002). A second

method is to estimate Gutenberg Richter b-values from earthquake catalogs and

extrapolate these values to larger magnitudes and other locations (e.g., Working Group on

'0 This work is being prepared for publication with Brad Hager
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California Earthquake Probabilities (WGCEP), 1995, Stein and Hanks, 1998). The third

approach is based on assessing the balance between interseismic moment accumulation

and coseismic moment release rates (e.g., WGCEP, 1995, Stein and Hanks, 1998, Ward,

1998). We extend this third method to allow us to localize regions of seismic moment

deficit. This is feasible because we have a moment accumulation (slip rate) model that is

consistent with geodetic data, fault system geometry, and plate motion constraints. In

addition to identifying regions of local moment release deficit, we estimate the sources of

the smallest coseismic events that could alleviate these deficits. The identification of

localized areas of moment deficit presents clear targets for paleoseismic work.

2. Moment accumulation, release and balance

The potency, or geometric moment, of an earthquake is the product of the average

slip over the rupture area, P = 3A (e.g., Ben-Zion, 2001). Geodetic studies of earthquake

sizes typically assume an elastic Poisson body and therefore directly estimate the potency

of a coseismic rupture. Earthquake sizes are more commonly expressed as scalar

moments. Potency is typically converted to moment by multiplying P by the shear

modulus p = 3 x 1010 Pa. For the sake of continuity with the literature, we use moment

throughout the rest of this paper.

The total coseismic moment release, MR, in a given region is the sum over all

earthquakes.
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M R -earthquakes 
earthquakes

Mi= L MI =,pu s, A,1
o 0

The shear modulus, p, is treated as a constant. This is certainly not the case in Southern

California where there are large vertical and lateral variations in lithology that have an

impact on deformation from faulting (e.g., Ventura Basin, Hager et al., 1999). The mean

annual moment release rate, M R, is calculated by dividing the total moment release,

M , by the time span of the earthquake catalog from which it was derived, Teq.

We define the regional moment accumulation rate, 0 , in terms of fault slip

rates on rectangular fault patches as

faults

0= p I Z v,|1A, (2)

Here ||9|| is the magnitude of the slip rate vector. If fault slip rates are constant in time

then the total moment accumulation is given by the moment accumulation rate multiplied

by the time over which it has been accumulating MA = M Te.

Other authors have used alternative definitions of moment accumulation rate

based entirely on geodetic data. Ward (1994, 1998) calculated an interseismic moment

accumulation rate following Kostrov's (1974) method as M = 2uaH, where H is the

seismogenic thickness and t is the strain rate determined from geodesy, a is the surface

area not of the faults, but of the deforming region. This interpretation of geodetic data
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does not include any information regarding the fault system geometry where moment is

actually released, so provides only a lower bound. In addition, this method may suffer

from the strain rate paradox, where high strain rates are correlated with shallow fault

locking depths and anti-correlated with strain release in large earthquakes. The creeping

segment of the San Andreas Fault northwest of Parkfield is the type example.

Regardless of the method employed, the question is the same: Has the rate of

coseismic moment release, 1 , kept up with the rate of moment accumulation, 10,

over the time span of the earthquake catalog, Teq? If the moment release rate is greater

than the accumulation rate, M > M, then there is a moment surplus. Conversely more

moment accumulation than release, M10 > M , defines a moment deficit. In order to

calculate these quantities we should first understand the data that constitute the fault slip

rate and historical earthquake catalogs.

3. Earthquake catalogs

The length of the historical earthquake catalog in Southern California is less than

200 years. As Stein and Hanks (1998) have pointed out, the record prior to 1850 should

be viewed with skepticism. The biggest reason for this is that there are not the type of

shaking and damage reports required to reliably estimate the locations and magnitudes of

earthquakes; we have a very short history of earthquake activity in Southern California.

In the second half of the 19 th century the population of the southern half of the state

increased and newspapers followed (Stein and Hanks, 1998). Media reports describing

the 1857 Ft. Tejon earthquake are extremely valuable for characterizing its magnitude.
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Paleoseismic studies also allow us to date the time of pre-historic events, but with less

control on the slip magnitude and event size. As more paleoseismic studies are

completed, it may be possible to build estimated rupture models for events that pre-date

the recorded history of Southern California.

What are the contents of the earthquake catalogs that are currently available?

Ellsworth (1990) compiled an extensive list of all of the major earthquakes in Southern

California since 1800. Stein and Hanks (1998) supplemented this list by adding six

earthquakes with Mw ~ 6 to the south of the U.S.-Mexico border. Kagan (2002)

compiled a catalog that contains not only these estimates, but also the Harvard CMT

focal mechanism estimates for more recent events (figure 1). For calculations in the

following sections, we use a slightly modified version of the Kagan (2002) catalog. The

only change we have made is the magnitude estimate for the 1872 Owens Valley

earthquake. Kagan (2002) reports this as Mw = 7.2, a value significantly smaller than

estimates that put the magnitude close to Mw = 7.8. In the context of our moment deficit

calculations, the larger magnitude estimate, which we adopt, is conservative.
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I CT 11
72 Owens Valley 199 Lndrs

Figure 1. Focal mechanisms for large earthquakes (Kagan, 2002) in Southern California
overlaid on topography (GTOPO30) and fault traces (Jennings, 1994). The area of each
focal mechanism is proportional to its scalar seismic moment. The darker quadrants are
compressional. Focal mechanisms with gray compressional quadrants are those from
1807-1900, and those with black compressional quadrants are from 1900-present. The
largest focal mechanism is associated with 1857 Ft. Tejon earthquake along the San
Andreas Fault.

Of all the parameters in the Southern California catalog, the magnitude of the Ft.

Tejon is the greatest unknown. Sieh (1978) estimated that it was a Mw = 7.9, based on

the mapped surface slip distribution. However, the slip distribution at depth is unknown.

For this reason we assign the Ft. Tejon event an uncertainty of om = 0.1 magnitude

units. This equates to a difference in moment release of 40%.

16

~2
11
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4. Fault slip rate catalogs

Fault slip rate catalogs are the essential components for computing moment

accumulation rates. We use two different catalogs and compare their results. The

standard catalog of fault slip rates for Southern California has been compiled by the

California Division of Mines and Geology (CDMG", Petersen et al., 1996). This catalog

is largely based on the Petersen and Wesnousky (1994) review paper. Meade and Hager

(2004a) present an alternative slip rate catalog derived from their block model

constrained by geodetically estimated interseismic velocities. The block model (BM) slip

rate catalog has two features that distinguish it from the Petersen et al. (1996) catalog.

First, it satisfies the path integral constraint, as discussed in Meade and Hager (2004a).

This ensures that fault slip rates are internally consistent. Second, the block-model-

derived slip rate catalog combines the fault system geometry information with

geophysical information into a unified framework. The slip rate estimates vary

substantially even for the most well known structure in Southern California: the San

Andreas Fault. The Petersen et al. (1996) catalog reports Holocene estimates of 25 - 35

mm/yr for the SAF from San Bernadino (Weldon and Sieh, 1985) to the Carrizo Plain

(Sieh and Jahns, 1984). In contrast, the block model estimates that the San Bernadino

segment of the SAF is roughly 5 times slower than the Carrizo Plain (Meade and Hager,

2004a). This is a consequence of the geometric constraints implicit in the block model

approach. Thus, the two catalogs present substantially different results: one based on

" Now known as the California Geological Survey (CGS).
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geologic data (Petersen et al., 1996) and the other based on geodetic data (Meade and

Hager, 2004a).

Despite all geologic and geophysical data that goes into both catalogs, we still

haven't quantified what we don't know about slip rates. That is, how much deformation

is occurring on other structures such as folds and unrecognized structures. The geologic

catalog places no constraints on the amount of deformation that is occurring on

unrecognized structures. While not explicitly recognizing the thousands of small faults

that populate the crust, the block modeling method (Meade and Hager, 2004a) ensures

that all active slip is accounted for on some structure, in the absence of extreme local

rotations. This is not the case for the Petersen et al. (1996) catalog, which, on the other

hand, has the advantage of precise long-term rates, determined at specific locations.

Scholz and Cowie (1990) suggested that only a small percentage of the active

deformation occurs off of "large" structures, based on an analysis of displacement -

length scaling relationships. Marrett and Allmendinger (1992) argued that the fault

displacement - length relationship derived from a detailed study of the Viking graben

(North Sea) is inconsistent with the Scholz and Cowie (1990) result. Both of these

studies rely on the definition of fault length, which may not be meaningful in the context

of fault systems where all major faults are connected in branching networks. The path

integral constraint (e.g., Weldon and Humphries, 1986, Minster and Jordan, 1987, Meade

and Hager, 2004a) suggests that all fault networks should be fully connected if there is to

be a long-term balance between plate motion and plate boundary zone deformation.
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5. Regional moment balance

The regional moment balance in Southern California has been debated extensively

over the last decade (e.g., WGCEP, 1995, Stein and Hanks, 1998, Ward, 1998). Previous

results are summarized in Table 1. All of these authors offered estimates for the average

regional moment accumulation and release rates. The length and content of the historical

earthquake catalog require some interpretation. Of all the faults in Southern California,

only the San Andreas has a recurrence interval comparable to the length of the historical

earthquake catalog (Sieh et al., 1989). For a characteristic rupture event with slip, s, a

fault will have an average recurrence time inversely proportional to its slip rate. Thus,

the length of the historical earthquake catalog is shorter than the average recurrence

interval for maximum size events on all faults in Southern California other than the SAF.

The clustering of earthquakes in time (e.g., Sieh et al., 1989, Friedrich et al., 2003) can

further increase the time interval over which moment accumulation and release will

balance. A clustered earthquake cycle has both an active and quiescent period. The

active period is characterized by 2-5 large earthquakes (Chapter 2). The time between

earthquakes within the active phase of a cluster is not sufficient for the fault to

accumulate the strain released in the next event. However, excess strain accumulates

during the quiescent part of the clustered earthquake.

The short length of the historical earthquake catalog precludes us from rigorously

determining the regional moment balance over a quasi-periodic or clustered earthquake

cycle. However, we can still assess whether or not moment release and accumulation
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balance over the last 200 years. This calculation can be thought of as the deviation from

some reference quasi-periodic earthquake cycle.

Ekstrom and England (1989) demonstrated that short duration earthquake

catalogs without large events and sparse fault catalogs are insufficient to assess moment

balance. WGCEP (1995) reported an approximate release rate of 8.3x10 18 N-m/yr based

on a limited seismic catalog that included a low magnitude for the 1857 Ft. Tejon event,

Mw = 7.8, and did not include the 1873 Owens Valley (Mw = 7.2-7.8) earthquake. (It

should be noted that WGCEP (1995) used a moment-moment magnitude relationship that

gives moments approximately 12-25% less than the widely used Hanks and Kanamori

(1979) relationships.) This value is balanced by an approximately identical moment

accumulation rate (table 1) based on the average strain rate across Southern California.

Despite this apparent agreement, consistent with no moment deficit, WGCEP

acknowledge that they have arbitrarily set the locking depth to 11 km to ensure balance

between accumulation and release rates. In addition, they acknowledge that they ignore

the fault system geometry that accommodates their regional strain rate. The arbitrary

locking depth and lack of fault system geometry limit the applicability of the WGCEP

moment accumulation estimate.

While WGCEP (1995) achieved agreement between moment accumulation and

release, their study focused more on probabilistic models and b-value methods that

favored large earthquake deficits. Stein and Hanks (1998) responded to the WGCEP

(1995) study and included a significant discussion of regional moment balance. Using a

modified earthquake catalog they suggested 10.15±2.25x10 18 N-m/yr for the mean
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moment release rate over the last ~100 years. Stein and Hanks (1998) also argued that

there was no moment deficit in Southern California based on the moment accumulation

associated with widely recognized faults (San Andreas, San Jacinto, Elsinore and

Garlock). Wald (1998) considered similar moment balance arguments and included a

release rate similar to that of Stein and Hanks. Like previous authors, he suggested that

there is an approximate balance between accumulation and release rate. However,

Wald's (1998) moment accumulation rate based on the Petersen et al. (1996) slip rate

catalog is -40% greater than the moment release rate (table 1).

The uncertainty for the moment release rate depends on an uncertainty in the

magnitude of the Mw = 7.9 ± 0.1 Ft. Tejon event. Due to the fact that the moment-

moment magnitude relationship is nonlinear, the moment confidence interval is

asymmetric. In the case of the moment accumulation rate uncertainties, the asymmetric

confidence intervals are the result of the fact that reported slip rate uncertainties are

sometimes larger than their magnitudes (e.g., 1 ± 2 mm/yr). The maximum slip rate that

contributes to moment accumulation rate is 3 mm/yr, while the minimum is 0 mm/yr, not

-1 mm/yr.

Our moment accumulation rates are about twice as large as previous estimates by

WGCEP (1995), Stein and Hanks, (1998), and Wald, (1998), but in rough agreement with

the strain rate based calculation of Shen-Tu et al., (1999). The simplest interpretation of

this moment imbalance is that Southern California has had a substantial deficit of large

earthquakes over the last two centuries.
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Reference Rate (101 N-m/yr) Type Source
Ekstom and England (1989) 2.2 Release 10 year earthquake catalog
WGCEP (1995) 8.3 Release Earthquake catalog
WGCEP (1995) 8.3 Accumulation Plate motion (11km)

Stein and Hanks (1998) 10.15 2.25 Release Earthquake catalog
Stein and Hanks (1998) 9.75 1.75 Accumulation Selected faults

Ward (1998) 10.6 Release Earthquake catalog
Ward (1998) 12.30 ± 1.70 Accumulation Geodesy (11km)
Ward(1998) 14.20 ± 2.00 Accumulation Geodesy
Ward (1998) 10.2 Accumulation Selected faults (11 km)
Ward (1998) 11.8 Accumulation Selected faults
Shen-Tu et al. (1998) 13.6 ± 5 Release Earthquake catalog
Shen-Tu et al. (1999) 19.9 Accumulation Strain rate

This study 10.40 Release Kagan catalog

This study 18.97 Accumulation Petersen et al. (1996) catalog

This study 21.25 Accumulation Block model

This study 17.90 +1 Accumulation Block model (1km)

This study 18.48 36 Accumulation Block model (1lkm*)

Table 1. Summary of regional moment balance parameters for Southern California. The
Source column indicates the data used for the calculation. Sources followed by "(11km)"
indicate values estimates that have an arbitrary 11 km locking depth for all of Southern
California. The last two rows indicate two different slip rate models both with 11 km
locking depths. The lower accumulation rate value is obtained by taking the slip rates
from our preferred block model (with variable locking depth) and imposing an 11 km
locking depth. The last row (11 km*) uses the slip rates from a model where the slip rates
were determined using a uniform 11 km locking depth. This model results in a 30%
increase in the fit criteria over our preferred model. The moment accumulation rate is
higher due the increase in estimated fault slip rates.

5.1. Moment balance challenges

Our regional moment deficit calculation suffers from the same problems as

previous studies: defining the geographic extent of Southern California is problematic

and the uncertainty in the size of the 1857 Ft. Tejon event leads to a large uncertainty in
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the moment release rate. These are not problems specific to the Ft. Tejon earthquake or

to Southern California. In fact, the same trouble would be faced anywhere due to the

nature of the Gutenberg-Richter (G-R) frequency distribution and the definition of the

moment-magnitude relationship. The G-R frequency distribution, log,, (N) = a - bMw,

is an empirical relationship that gives the number of earthquakes per year, N, larger than

a given magnitude, Mw,. Typically b ~ 1. However, despite the fact that the largest

earthquakes are quite rare, they account of for most of the deformation in the fault

system. The other important moment-magnitude relationship is given by

M, = 0.67log10 M0 -10.7, where Mo is in cgs units (Hanks and Kanamori, 1979). This

means that a Mw = 8 event releases 30 times more moment than does a Mw = 7 event. In

short, regional moment balances will always be severely limited by even a small

uncertainty in the magnitude of the maximum size events. Some authors (WGCEP, 1995,

Field et al., 1999) have suggested that G-R distribution may be truncated with a

maximum size event Mm"". If this were to be the case, the paleoseismic record may

provide important information about these events and allow us to better constrain their

magnitudes. The short length of the earthquake record in Southern California is

insufficient for these purposes.

Another challenge in regional moment balance estimates is the recognition of

different geographic boundaries. While all authors agree that the San Andreas Fault

System south of Parkfield and north of the Mexican border is part of Southern California,

there is disagreement on whether or not to continue south of the international border into
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the Gulf of Mexico and Baja California. The inclusion of the ECSZ is also inconsistent.

WGCEP (1995), Wald (1998), and Stein and Hanks (1998) all largely ignore the effects

of strain accumulation in this region while counting the moment release from the 1872

Owens Valley earthquake in the same area.

A third obstacle for the regional analysis of moment deficit for seismic hazard

assessment is the assumption of a uniform elastic locking depth. Both WGCEP (1995)

and Stein and Hanks (1998) achieve a balance between strain accumulation and release

by using a relatively shallow elastic locking depth of 11 km. This has the effect of

reducing the moment accumulation rates relative to deeper locking depths. As a rationale

for this approach, they appeal to rock mechanics models that suggest that the transition

from brittle to ductile behavior should occur at this depth. Presumably, the ductile region

is not capable of rupturing coseismically. However, an 11 km locking depth is in direct

conflict with the maximum depths observed in recent earthquakes and that estimated for

historic earthquakes. Hudnut et al. (1996) estimated that the Mw = 6.8 1994 Northridge

earthquake ruptured to a depth of at least 16.5 km. Empirical scaling relations (Wells and

Coppersmith, 1994) suggest that the maximum rupture depth should scale with

magnitude as well. Bawden (2001) used leveling data to estimate that the 1952 Kern

County earthquake ruptured to a depth of 27 km. Further, shallow locking depths are

inconsistent with models of interseismic strain accumulation constrained by geodetic

observations (Savage and Lisowski, 1998, Meade and Hager 2004a). Thus, we have at

least three geophysical constraints that should preclude us from arbitrarily setting a
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regional locking depth in Southern California to ensure a balance between moment

accumulation and release.

In summary, there are three parameters that must be known to determine whether

the moment accumulation and release rates balance: 1) the size of the 1857 Ft. Tejon

earthquake 2) the geographic extent of Southern California, and 3) the regional locking

depth. A more rigorous estimate of seismic hazard should not be dependant on the

"tuning" of these parameters.

6. Spatial localization of moment deficit

Both the historical earthquake catalogs and the fault slip rate catalogs contain

spatial information that we can use to localize regions of moment deficit. We have

developed a new method for localizing moment deficits spatially based on comparing

historical earthquake catalogs with fault slip rate catalogs. We determine the moment

balance throughout Southern California locally in order to identify those faults that have

accumulated more strain then they are known to have released over the length of the

historical earthquake catalog. It is an appropriate method to search for moment deficits

along faults with high slip rates where the recurrence time is comparable to or a few

times longer than the span of the historical earthquake catalog.

By looking at the moment balance locally, we can assess not only whether or not

there is a deficit but also determine where. Instead of directly estimating the slip deficit

we compare the total amount of elastic deformation accumulated by interseismic strain

and released by coseismic events. This method's simplicity and flexibility make it a
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powerful new tool for examining both seismic hazard potential and the temporal

evolution of fault systems.

In some ways, our spatial localization method is less sensitive to limitations that

the regional moment balance analysis suffers from. Specifically it is not sensitive to the

geographic definition of Southern California, nor is it as sensitive to the determination of

the magnitude of the maximum size events. The reason for this is that while the

uncertainty in the magnitude of the Ft. Tejon earthquake is large, the uncertainty in its

rupture length is not. Sieh (1978) documented the rupture length from the partially

creeping segment of the San Andreas Fault near Parkfield in the north to the junction of

the San Andreas and San Jacinto Faults in the south. We know that this event did not

rupture the southernmost San Andreas. In fact, we have epicenter estimates for all of the

major earthquakes since 1807 (Ellsworth, 1989, Kagan, 2002). This is the spatial

information in the earthquake catalog. The fault system geometry provides the same type

of spatial information for the fault slip rate catalogs.

To compare the moment release and accumulation information in the earthquake

and slip rate catalogs we convert them both to deformation fields, D. This intermediary

step allows us easily visualize the spatial pattern of moment release and accumulation.

earthquakes

DR A 0) = :i 1k OggA,0) (3)
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where i is the coseismic slip vector, k describes the fault system geometry, A is

longitude, and 0 is latitude. The function, O(...), is the analytic solution for an arbitrarily

inclined dislocation in an elastic half space (Okada, 1985). We sum over all of the

earthquakes included in Kagan's (2002) compilation (figure 2).
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Figure 2. Deformation from large earthquakes. The colors show the logarithm of the
deformation field. The color map is linear and clipped so that regions with less than 1000
mm of deformation are white. The circles show the location and magnitude of the
earthquakes. The area of each circle is proportional to the scalar moment release. The
thick dark lines are the coast and state borders for California. The same color map is
used for all deformation field figures.

For each earthquake, we convert the focal mechanism estimate to rupture

geometry and mean slip using the empirical scaling relations estimated by Wells and

Coppersmith (1994). The sole exception is the 1857 Ft. Tejon event, for which we use the
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geometry and slip distribution detailed by Sieh (1978). As the elastic deformation falls

off rapidly with distance from the fault (d ~ r-3) deformation appears localized around

the coseismic events. We plot the base ten logarithm of the deformation in order to show

more of a dynamic range. Figure 2 shows the results for our modified version of Kagan's

(2002) catalog. The areas around the 1812 and 1857 events along the Carrizo and

Mojave segments of the SAF have the greatest amount of coseismic deformation. There

is a notable lack of deformation along the southern SAF and between the 1872 Owens

Valley and the more recent Landers (1992) and Hector Mine (1999) events in the Eastern

California Shear Zone.

The total deformation accumulated over the interseismic period is calculated in

much the same way as the deformation release.

faults

D,(A,O) = O(Tv,, g,, A,0) (4)

The difference between equations 3 and 4 is that in the latter the mean earthquake slip, s,

has been replaced by the total amount of accumulated slip, Tv . The deformation field

calculated using the geologically estimated slip rate inventory, D DMG (Petersen et al.

(1996, CDMG), is shown in figure 3. Figure 4 shows the accumulated deformation field,

calculated using the slip rates from the Meade and Hager (2004a) block model, D bock.
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Figure 3. Deformation from Petersen et al. (1996, CDMG) slip rate catalog. The thin
gray lines are the fault traces from Jennings (1994). Right lateral shear in the Eastern
California Shear Zone is underrepresented compared with the block model slip rate
catalog (figure 4).

While deformation is localized along the SAF and SJF in both models, the

similarities stop there. D b"4k shows large amounts of deformation in the ECSZ and

along the offshore faults while D DMG is devoid any deformation in these regions other

than along the Garlock fault at the northern edge of the Mojave Desert. We discuss the

differences between the slip rate catalogs in the sections that follow. DA is a minimum

value, in that we have used a uniform T that is given by the length of the historical

earthquake catalog. Each individual fault segment has been accumulating strain since the

time of its last rupture. In certain cases, available paleoseismic data can constrain the
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date of the last large event and we discuss the implication of using these refined models

where appropriate.

.50

32.00

Figure 4. Deformation from block model slip rates. The gray lines show the block
boundaries from Meade and Hager (2004a). Deformation is localized along the San
Andreas Fault, but is non-uniform due to changes in slip rate and locking depth.

Once the deformation release and accumulation fields have been calculated, we

difference them to determine those zones that are in balance and those that are not. The

difference between the accumulated and released elastic deformation is given by

AD(A,6) = DA (A, )- DR (A, 6). AD(A, 0) < 0 and AD(A, 0) > 0 correspond to

deformation surplus and deficits respectively. We focus on the areas where deformation

deficits, AD(A, 0) > 0, are present, as these areas deserved the most attention in terms of

our moment balance arguments.
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Figure 5. Residual deformation (Petersen et al. (1996, CDMG) slip rates - Earthquakes).
The Southern San Andreas and San Jacinto Faults is the only area of major deformation
deficit.

The difference between the Petersen et al. (1996) and earthquake deformation

fields, ADCDMG -earthquakes, (figure 5) is similar with respect to the southern San Andreas

Fault System, showing a massive deformation deficit. In fact, the ADCDMG -earthquakes shows

a larger deformation deficit along the San Bernadino segment of the SAF (SBSAF) due to

the fact that the geologically estimated slip rate is four times larger there than that

estimated from geodesy (e.g., Weldon and Sieh, 1985, Meade and Hager, 2004a). The

difference in deficit between the block model and earthquake catalogs, ADbocksearthuakes

is shown in figure 6. Three major regions show significant deformation deficits: 1) the
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greater Los Angeles area, 2) the Southern San Andreas and San Jacinto Faults and 3) the

Northern Mojave Desert. Neither the Mojave nor Carrizo plain segments show any

significant moment deficit, as the strain released by the 1812 and 1857 earthquakes

outweigh the strain accumulated over the last 200 years. The most important difference

between ADCDMG -earthquakes and Jjblocks- eathquakes is lack of deformation deficits in the

former around Los Angeles and in the Mojave. The Petersen et al. (1996) catalog has

much less localized slip in both of these areas than does the block model derived slip rate

catalog.

6.50

4

33

Figure 6. Residual deformation (Block model slip rates - Earthquakes). There are three
major areas of deformation deficit: Northern Mojave, Los Angeles, and the Southern San
Andreas and San Jacinto Faults. The gray shaded regions show the limits of each region
as defined for the source estimation procedure.
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The deformation field approach to localizing moment deficit has several distinct

advantages. First, it allows for a degree of spatial smoothing. That is, we do not have to

exactly align the earthquake rupture and fault system geometries. For example the 1952

Mw = 7.5 Kern County Earthquake occurred on the south dipping While Wolf fault. This

fault is not present in the Meade and Hager (2004a) block model, but the shortening

associated with it is accommodated on the nearby SAF and Garlock faults to the south.

Our deformation field method consists of displacement fields where the effects of

neighboring structures may overlap.

We also calculate regions of significant deformation surplus (figure 7). These are

regions where the amount of coseismic deformation significantly exceeds the amount of

accumulated interseismic deformation. The fraction of Southern California that has a

deformation surplus (figure 6) is smaller than the fraction that has a deformation deficit

(figure 7). The three largest areas of deformation surplus are the confluence of the 1857

and 1952 rupture zones to the north of the Big Bend, the area around the 1872 earthquake

in Owens Valley, and the Mojave SAF, where the 1812 and 1857 events overlap. The

deformation surplus around the FTSAF is not surprising as the recurrence interval (e.g.,

Sieh et al., 1989) is comparable the length of the historical earthquake catalog. The

Owens Valley fault slip rate is an order of magnitude lower and has a much longer

recurrence interval (e.g., Beanland and Clark, 1994). It would take roughly two thousand

years to eliminate this deformation deficit. The White Wolf fault (location of the 1952
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Kern County earthquake) provides another example of a fault with a long recurrence

interval that has ruptured recently (e.g., Stein and Thatcher, 1981).

4

13
32.00

Figure 7. Regions of deformation surplus. There three major areas of deformation
surplus are localized around the 1812 SAF event, the 1872 Owens Valley epicenter and
the high slip regions of the 1857 Ft. Tejon and 1952 Kern County earthquakes.

7. Minimum earthquake source estimates

7.1. Source estimation method

The regions of deformation deficit in figure 6 show where earthquake activity

falls substantially below the estimated interseismic deformation over the last 200 years.

If strain has been accumulating regularly, and if there were no moment deficits prior to

1800, then we could interpret the deformation deficit map (figure 6) as the amount of

deformation that has not been balanced coseismically. If any of these fault segments
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experienced large (Mw > 7.5) earthquakes immediately prior to 1800, then they could still

be in a state of coseismic deformation surplus. Some of these fault segments may be

early in the quiescent period of a clustered seismic cycle. With this type of strain

accumulation and release model, moment is balanced over a longer clustered earthquake

cycle, not in a single earthquake cycle (e.g., Meade and Hager, 2004b).

6.50
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Figure 8. Estimated source locations and deformation. There are 14 sources in three
regions (Northern Mojave, Los Angeles, and Southern San Andreas and San Jacinto
Faults). The source magnitudes are summarized in table 2.

The simplest interpretation of the deformation deficit field is that it is the amount

of accumulated deformation that has not been released coseismically. In order to

interpret this information in terms of the potential for future earthquakes we must convert
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from deformation deficit to moment deficit. To do this we estimate the minimum

earthquake sources that could relieve the estimated deformation deficit. This potential

source forecast is consistent with the location of known faults, the historical earthquake

catalog, modem geodetic data, and simple models of interseismic strain accumulation.

We can readily convert the estimated earthquake source parameters into scalar moments

and moment magnitudes. The results are summarized in table 2 and figure 8.

Shen-Tu et al., (1999) estimated a set of sources using a moment accumulation

model based on integrating strain rate models derived from geologic slip rate estimates.

This approach lacks a realistic physical mechanism for strain accumulation and forces the

comparison between Quaternary slip rate estimates and seismicity to be done over the last

150 years. This comparison may be inappropriate, as fault slip rates may change

substantially over times scales less than a million years long, and possibly as short as the

Holocene (e.g., Sharp, 1981, Friedrich et al., 2003). Further, the geologically

determined slip rate catalog used by Shen-Tu et al. (1999) does not satisfy path integral

constraints and severely under-represents the amount of active fault system in the Los

Angeles region. An additional problem with the Shen-Tu et al. (1999) approach is that it

suffers from an error in logic concerning strain rate. They equate high strain rates with

high moment accumulation rates. This is not necessarily the case, as the highest strain

rates are observed around creeping faults where there is a large velocity jump over a very

short distance. In fact, there is little or no moment accumulation associated with these

creeping sections. As a result, Shen-Tu et al. (1999) estimate one of their large potential

earthquake sources along the creeping section of the San Andreas Fault north of

146



147 CHAPTER 3: MOMENT DEFICITS

Parkfield. Despite these problems, the Shen-Tu et al. (1999) source estimates for the

Southern San Andreas Fault are somewhat similar to ours, as they also recognize the

dearth of coseismic moment release over the last two centuries.

3

U 0"

Figure 9. Residual deformation (Block model accumulation - (Historical earthquakes +
estimated sources). Note that the Ventura deficit disappears despite the fact that we did
not model a source there.

In general, we'are able to imodel the deformation deficits quite well with sources

that lie on or near the traces of major faults. We use a nonlinear gradient-based search

technique (e.g., Gill et al., 1981) that allows the source position, length, orientation and

slip to vary from an initial set of parameters closely aligned to the major fault zones. The
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resulting residual field, D'(A, 0), is calculated by differencing both the historical

earthquake catalog and the estimated sources from the fault slip rate catalog (figure 8)

D'= D ockmodel -(arthquakes + Destimatedsources) (5)

The residual deformation field is shown in figure 9. Typical residual deformation

magnitudes are less than 2 mm/yr over the last two centuries.

Source Magnitude Moment (100 N-m)

Oceanside 7.3 0.92
Newport - Inglewood 7.2 0.59
PHT (east) 7.0 0.38
PHT (west) 7.0 0.31
Sierra Madre (south) 7.0 0.41

M~rlt~ M~we(toal)- 1.4 1.17
Goldstone 7.2 0.71
Garlock 7.2 0.66

S~i~uu~zres&SAO!cnoFuts(oa) 7 5.20-
San Bernadino SAF 7.0 0.39
Salton (Indio) SAF 7.4 1.50
Brawley SAF 7.2 0.78
Eureka Peak 7.2 0.66
San Jacinto (north) 7.2 0.81
San Jacinto (central) 7.2 0.69
San Jacinto (south) 7.0 0.32

Table 2. Minimum source estimates. The shaded rows give the cumulative magnitude
and moment for each of the three major source areas. The source magnitudes and
moments are for the source locations shown in figure 8.

We estimate the sources for the three regions identified in figure 6. Each region is

defined by a relatively contiguous deformation deficit map. The three regions are: 1) Los

Angeles area including the offshore faults 2) the Northern Mojave Desert and Eastern
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Garlock, and 3) the Southern San Andreas and San Jacinto Faults. Summing the moment

contribution from each of these regions we find M'ous"* = 9.2x102 0 N-m. If these

hypothetical sources had occurred over the time span covered by the earthquake catalog,

they would increase the mean annual moment release rate by 4.8 x1018 N-m/yr, bringing

the total to 15.2 x10 18 N m/yr. This value overlaps with the moment accumulation

estimates within their 1-- uncertainties. Additional sources in the Southern Ventura

Basin and along the offshore fault system (e.g., San Clemente) could account for the rest

of the deficit. Due to poor knowledge of the fault system geometry and earthquake

record (especially offshore), we do not explicitly estimate sources for these structures.

The Southern San Andreas and San Jacinto Faults are clearly the largest sources of

moment deficit using both the block model and CMDG slip rate catalogs.

7.2. Southern San Andreas and San Jacinto Faults

For the region defined as the Southern San Andreas and San Jacinto Faults, we

find a massive moment deficit of 5.20x 1020 N-m, corresponding to an equivalent moment

magnitude of 7.8. The ADCDMG-earthquakes field shows an even larger deformation deficit

than the ADblocks-earthquakes used for the source estimation. Note that the moment deficit we

estimate is nearly as large as the moment accumulation and release rates reported by

WGCEP (1995), Stein and Hanks (1998), and Wald (1998). Our source model includes 7

segments (San Bernadino SAF (Mw = 7.0), Salton SAF (Mw = 7.4), Brawley SAF (Mw =

7.2), Eureka Peak-Pinto Mountain Fault (Mw = 7.2), Northern SJF (Mw = 7.2), Central
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SJF (Mw = 7.2), and Southern SJF (Mw = 7.0)). Each of the potential sources lies close

to a mapped fault trace. It is not clear that any individual segment that we have defined

should define the limits of a given rupture. It may be the case that any of our segments

will not rupture in a single large earthquake, but instead will accommodate the same

deformation through several smaller events. Conversely, very large ruptures might

rupture across the segments in cascades (e.g., WGCEP 1995, Field et al., 1999)

The largest estimated individual source is the Salton SAF, which we estimate to

have Mw = 7.5, with a mean slip of 5.8 meters. Just to the north, our Eureka Peak source

lies near the epicenter of the 1992 Joshua Tree earthquake (Mw = 6.1) and is responsible

for transferring deformation from the SAF to the ECSZ. We estimate a potential Mw =

7.1 source for the San Bernadino SAF. This is smaller than the Mw = 7.4 estimate from

Meade and Hager (2004a), who used a 330 year mean recurrence interval for the last two

millennia and a deeper locking depth.

With this massive potential moment release, we should consider alternative

explanations. What about the possibility that the Southern San Andreas and San Jacinto

Faults are not presently accumulating strain, but are instead creeping? Recent studies

have documented active fault creep on both segments using radar interferometry (e.g.,

Lyons and Sandwell, 2003, Vincent, 2000). Meade and Hager (2004a) argued that the

Lyons and Sandwell (2003) partial creep model is incompatible with the GPS-determined

velocities north of the Salton Sea. Even if this were not the case, the Lyons and Sandwell

(2003) model still requires at least 5 km of locked fault that would reduce our moment

accumulation estimate by a third on a small segment of the SAF. Vincent (2000)
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presented interferometric evidence for quiet earthquakes on the southern SJF

(Superstition Hills segment), but only enough to account for a few Mw = 5.3-5.6 size

events. Extension and elevated heat flow suggest an elevated geotherm south of the

Salton Sea (e.g., Doser and Kanamori, 1986). One possible consequence of an elevated

geotherm would be to raise the depth of the brittle-ductile transition and yield a smaller

effective locking depth. While this may be the case, Doser and Kanamori (1986)

demonstrated that microseismicity is present down to at least 15 km.

Modern GPS data also allow us to constrain how deeply a fault system appears to

be locked. Meade and Hager (2004a) presented a preferred slip rate and locking depth

model for Southern California that included locking depths for the Southern SAF-SJF

system that ranged from 10-15 km. We reconsider the possibility of shallower locking

depths on these faults by redoing the same calculation over a range of different locking

depths. Figure 10 shows the residual fit criteria, X2, and total moment accumulation rate

as a function of the locking depth on the Southern San Andreas and San Jacinto Faults. A

12 km locking depth fits the data best and is in agreement with the mean locking depth

used by Meade and Hager (2004a) (10 km for the San Jacinto, 15 km for the San

Andreas). The case where both the southern SAF and SAF are creeping has the effect of

increasing the misfit criteria, X 2, by 120% (1.223 vs. 2.697) and still fails to alleviate the

moment deficit imbalance at the regional scale (table 1). Thus, we find that shallow

locking depths and large amounts of aseismic creep are highly incompatible with most

geodetic observations of interseismic deformation. Paleoseismic evidence also suggests

that the Southern SAF has generated large earthquakes over the last two thousand years
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(Sieh, 1986, Sieh and Williams, 1987, Yule and Sieh, 2000). Our estimated magnitudes

are almost certainly underestimates, in the sense that the estimated time of the last known

rupture of the Salton (Indio) segment is nearly 350 years ago (Sieh and Williams, 1990).
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Figure 10. Moment accumulation rate variation with locking depth. The locking depths
that we vary here are for the San Jacinto and San Andreas Faults. The dashed line shows
the moment accumulation rate as a function of locking depth. We calculate the
uncertainty interval (shaded region) by propagating the formal slip uncertainty estimates.
The Imperial Fault is creeping in all models. The percentage increase in the misfit
criteria is shown on the right hand side axis. The minimum mean locking depth for both
the San Jacinto and San Andreas Faults is 12 km.

7.3. Northern Mojave

The northern Mojave moment deficit region corresponds to the coseismic gap

between the 1872 Owens Valley earthquake and the more recent 1992 Landers and 1999

Hector Mine events. Our preferred source estimation also includes two sources: an
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eastern Garlock source (Mw = 7.2) and a Goldstone Lake Fault source (Mw = 7.2).

However, it is difficult to deconvolve the right lateral ECSZ shear strain from the left

lateral Garlock shear strain, which are oriented nearly normal to each other. Meade and

Hager's (2004a) slip rate model localizes right lateral deformation on the Blackwater and

Goldstone faults with 4 and 13 mm/yr respectively. The strike slip rate for both faults is

likely influenced by the suspected presence of postseismic deformation at nearby sites.

Note, however, that Sauber et al. (1994) analyzed triangulation and VLBI data and found

high strain rates in the Mojave Desert prior to the Landers earthquake, suggesting that the

more recent deformation rate estimates cannot be explained by postseismic relaxation

alone. Meade and Hager's (2004a) model ensures that the total slip budget across the

eastern Mojave is compatible with the relative motion between the western Mojave block

and the North American Plate. Peltzer et al.'s (2001) InSAR study of the ECSZ also

provides evidence for 7 ± 3 mm/yr of deformation along the Blackwater Fault. In

summary, both radar interferometry and block models of GPS determined velocities in

the northern Mojave Desert suggest that there is more than 10 mm/yr of deformation that

may be localized on either the Blackwater or Goldstone faults. The simplified geometry

used in the Meade and Hager (2004a) block model may have artificially localized

deformation on the Blackstone and Goldstone faults however the region of moment

deficit may be larger.
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7.4. Los Angeles

We model the differential deformation field, ADbIocks-earthquakes, in the Los Angeles

area using five sources (figure 6): Oceanside (Mw = 7.3), Southern Sierra Madre (Mw =

7.0), Newport - Inglewood (Mw = 7.2), Eastern Puente Hills Thrust (Mw = 7.0), and

Western Puente Hills Thrust (Mw = 7.0). All faults dip to the east - northeast. The

modeled differential deformation (figure 8) shows relatively little localization, thus the

location of the potential sources is not unique. However, this set of sources is able to

account for the moment imbalance with slip on known structures. The magnitudes for

the two PHT sources may be over estimated by as much as a third, as the coseismic

model assumes that the faults propagate to the surface in contrast to both the geologic

evidence (Shaw et al., 2002) and the moment accumulation model (Meade and Hager,

2004a). The offshore Oceanside source may have been partially relieved by an

earthquake just prior to start of the historical earthquake catalog (Grant et al., 2002,

Grant and Rockwell, 2002).

Dolan et al. (1995) highlighted the seismic hazard potential in the greater Los

Angeles area by summarizing the available faults with surface area sufficient to generate

large earthquakes. We agree with the Dolan et al. (1995) assessment that there has been

a lack of earthquakes over the last century, and estimate that the total moment deficit is as

large as 2.60x1020 N-m (equivalent moment magnitude, Mw = 7.6). Paleoseismic work

along the Sierra Madre Fault (Rubin et al., 1998) provides evidence for two Mw = 7.2 -

7.6 events over the last two 15,000 years. Our short Sierra Madre-like source is south of

the Rubin et al. (1998) study area, but our slip estimate is compatible with that observed.
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However, we suggest that it slips much more quickly than the paleoseismic slip and

recurrence intervals would suggest. The fault may behave differently north of its juncture

with the Raymond Hill fault at the northern edge of the Los Angeles Basin. The Meade

and Hager (2004a) block model vastly simplifies the complex geometry of the Sierra

Madre fault zone. In reality, there may be several low slip rate faults, each with

sufficient surface area to accommodate large, yet infrequent earthquakes. Regardless, our

results demonstrate that there are at least four faults with sufficient surface area and

accumulated strain to presently accommodate Mw > 7 earthquakes underneath

metropolitan Los Angeles.

8. Discussion

The potential earthquake sources estimated in the previous sections are minimum

values in the sense that we have only integrated the moment accumulation rates over only

two centuries. Individual fault segments (such as the SBSAF) may have been

accumulating strain even longer. A more direct calculation of moment deficit would

involve the use of the time since the last known rupture on each fault zone. Paleoseismic

investigations often produce these results, as well as mean recurrence intervals (e.g., Sieh

et al., 1989, Rubin et al., 1998, Yule and Sieh, 2000). However, the magnitudes, extent,

and slip distributions of prehistoric events are not well determined.

It may be the case that the present day strain accumulation is relieved by slow or

silent earthquakes. That is, events that slip too slowly to radiate energy dynamically as

structurally damaging seismic waves. Large, Mw = 7, oceanic events have been studied
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and documented using continuous GPS time series (e.g., McGuire and Segall, 2003).

Comparable large events have not been discovered in the continental lithosphere. Linde

et al. (1996) described a Mw = 4.8 event observed in strain meter data along the San

Andreas Fault south of San Francisco and Vincent (1998, 2000) detailed a Mw = 5.3 - 5.6

creep episode on the southern most portion of the San Jacinto Fault (Superstition Hills).

If there are large silent earthquakes, then how many should we expect to have

seen over the last 15 years of high precision GPS measurements capable of recognizing

these events? Assuming silent earthquakes follow a G-R style frequency distribution, we

would anticipate approximately 2-3 detectable Mw = 6.0 events over the past 15 years (a

= 5.5/2, b = 1, Mw = 8.0 recurs every 315 years whether silent or not). We use an

atypically small a value to account for the fact that perhaps only half of the seismic

activity is accommodated through silent earthquakes. We know of no observational

evidence for the these earthquakes, and we doubt that these events could have passed

unnoticed in GPS time series in densely instrumented Southern California. However, if

these faults only have large (Mw > 7) characteristic events (e.g., Sieh, 1996) there is a

smaller probability that they have occurred during the instrumented period. The lack of

recognized observations of silent continental earthquakes worldwide suggests that this is

not a likely mechanism to balance the moment accumulation and release rates. Further,

the bulk of the upper crust is thought to be conditionally stable (velocity strengthening) in

terms of the temperature dependant rate-state friction models (e.g., Scholz, 1998) unlike

the conditions inferred for deep silent earthquakes in subduction zones (e.g., Dragert et

al., 2001, McGuire and Segall, 2003). Thus, the most physically consistent mechanism
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for alleviating localized moment deficits in Southern California is through a series Mw >

7 coseismic events.

Meade and Hager (2004b; Chapter 2) presented a model for viscoelastic

deformation through a clustered earthquake cycle. They showed that during the long

quiescent period of a clustered earthquake cycle, the velocity profile across a fault may

be faster than the steady state prediction, even a long time after the last active-period

earthquake. This might seem to suggest an alternative explanation for high moment

accumulation rates predicted from the block model: the slip rates are overestimated due

to the effects of viscoelastic relaxation in a clustered earthquake cycle. If the southern

San Andreas Fault system and the faults surrounding the Los Angeles basin have all been

dormant for a long time, they might be in a quiescent period. However, the block model

approach employed by Meade and Hager (2004a) enforces a path integral constraint that

minimizes chances of this effect being significant. The path integral constraint ensures

that if a slip rate on one fault is high (due to relaxation) then some other fault must be

slow to offset this difference. Thus, the slip rate on an individual fault may be affected

by long-term relaxation, but the total slip budget will be approximately constant.

9. Conclusions

We have shown substantial evidence supporting the hypothesis that there has been

a coseismic moment release deficit in Southern California over the last two centuries.

Previous estimates have shown ways in which regional moment balance may be achieved

at the cost of contradicting geologic and geophysical observations. It seems that this is an

inevitable consequence of the lack of large earthquakes along the Southern San Andreas
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Fault system and through the Transverse Ranges. We developed a new method for

localizing regions of moment deficit by differencing spatial maps of deformation

accumulation and release. These deformation maps can be used to estimate the source

parameters for future earthquakes that would alleviate the deficit. We find that the

Northern Mojave Desert, the greater Los Angeles Area, and the southern San Andreas

and San Jacinto Faults show composite moment deficits equivalent to moment magnitude

7.4, 7.6, and 7.8 events, respectively.

Massive amounts of fault creep and large silent earthquakes could balance to

moment budget without the need for coseismic deformation. The search for these

phenomena will require an abundance of new geodetic data with far greater spatial and

temporal density than is currently available.
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Appendix A

Software philosophy, design and some interesting algorithms

1. Introduction

The block modeling results (Chapter 1) rely heavily on a rather elaborate

collection of codes. The purpose of this appendix is to provide some documentation of

the critical geometry management algorithms. There is only the briefest mention of most

of these algorithms in the block modeling section. Despite such short shrift in the main

section these problems and algorithms are extremely interesting. In total, the geometry

management issue can be boiled down to one declarative statement; "Make a block

model". The obvious first step is to draw some set of block boundaries. We also need to

identify the blocks on either side of each fault segment. Simple as it sounds there are

some wonderful challenges involved. Hopefully there's enough information here to

clarify some of the more complicated algorithms that lie at the heart of the block

modeling code. A user need not know how any of this works in order to successfully run

the code. Most current users are unaware that these calculations even exist!
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2. Lineage and early work

At least two MIT Ph. D. theses prior to this one included work on aspects related

to block modeling. Bennett (1995) estimated strike slip rates on the San Andreas, San

Jacinto and Elsinore faults from geodetic data with a block model that did not satisfy path

integral constraints, as fault normal motion (e.g., shortening) was ignored. Souter (1998)

built a southern California model that obeyed path integral constraints and used it to

predict an interseismic velocity field from a priori fault slip rate estimates estimated from

an inversion of select geologic slip rate estimates for block motions.

Souter's code was primarily GUI driven with external calls to executables for the

elastic dislocation (Okada, 1985) calculations. I inherited this code when I came to MIT.

Using the code as written proved untenable, as the GUI required more graphics power

than was readily available. So I set about rewriting the code without this front end. Well

of course in MATLAB a GUI is not so much a front end as the heart of your program.

Data are stored not in the workspace but in figure handles. In this case flow control ran

through the same functions that generated the GUI. Thus rewriting the code GUI-free

was somewhat more involved then just ripping out some plotting calls. Eventually the

whole code was rewritten to work from the command line with only the I/O routines and

dislocation calculation remaining from Souter's (1998) work. Once this had been done I

added the ability to invert geodetic data for block motions. Previously the code had

estimated block motions from a priori fault slip rate estimates, generated a forward

model of interseismic deformation and then compared that with the observations. Further

functionality was added to allow for the batch processing of different models in order to
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map out parameter space as a function of the nonlinear parameters (i.e., locking depths).

Three papers emerged using some form of this code (McClusky et al., 2001, Meade and

Hager, 2001, Meade et al., 2002). At this point, the real work began.

As it was, the block modeling code worked just fine, but not well. Setting up a

model was incredibly time intensive and difficult. Specifically, fault segments had to be

hand labeled according to the internal names of their bounding blocks. All fault and

station locations were specified in a projected coordinate system. This proved extremely

unnatural, especially when working at large scales. Further, all of the stations had to be

hand assigned to blocks. This was a time consuming and error prone procedure. All of

this meant that things worked just fine if you had just one velocity field, one fault

geometry, and a small study area, but this was a severe limitation.

However, these were all critical failings in terms of the Southern California

project that I intended to pursue. This project would require us to test hundreds of

different fault system geometry configurations with a large number of velocity fields.

While it may have been possible to rework my version of the block modeling code, this

seemed to be a poor choice given the design limitations that I had built in previously. I

wasn't exactly sure of how I wanted to put it all together so I decided to just give myself

a ton of options. I followed a MATLAB tradition and started building a toolbox.

3. Philosophy

When I set about writing a toolbox, I had two things in mind: natural formulations

and generality. The latter is a great goal, yet I fell into the trap that so many do. The first
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iteration of the code was too closed and the one that followed was too general. This

means that, while the current version is quite general, there is also an awful lot of

baggage that is not necessary for the majority of common applications.

By natural formulations, I mean that a function or script is written in such a way

that the user (mostly me) can work with data in its natural form. For GPS data, this

meant specifying station coordinates in longitude and latitude, as well as velocities in

east, north and up (ENU). For fault segments, this meant specifying endpoints in

longitude and latitude. This may seem trivial yet it was quite a conceptual leap at the

time and I know of no other implementation of Okada's (1985) dislocation equations

with this ease of use. Another example of natural use, more specific to block modeling,

is the model geometry specification. Stations must be assigned to the appropriate block,

but there is no reason for a user to ever have to do this. Fault labeling is another example

of a process that is best left to a clever algorithm.

In the end I hoped that I would be able to build a toolbox for modeling crustal

deformation that would allow me to build my block model application by just stringing

together a series of function calls. While it wasn't exactly that simple in practice, it

turned out to be remarkably close. Thus the current version of the block modeling

software is very readable and extensible from the top on down. It also eliminates many

complications that most modelers presumably are uninterested in, as they do not bear

directly on the physics of the problem. This toolbox and the block model code could be a

useful addition to the corpus of crustal deformation modeling software.
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4. Block model software structure

The rather unglamorous name of the block modeling software is blocksspi.

This is really just the base name for a number scripts that link together calls to the crustal

deformation toolbox. blockssp_WL2 does the weighted least squares estimate

(WL2) of block motions and fault slip rates and blocks sp1 apriori estimates

velocities from a given set of block motion Euler poles. Both scripts use the same set of

input files with different parameters. The flow control for the inverse problem

(blocks sp1 WL2) is linear (shown schematically in Figure A.1). For the a priori

case the structure is quite similar. Both of the blocksspi scripts are easy to read

once one has a general idea of the structure.

5. Some interesting algorithms

All right, so that sounds great but how do you do it? I'll leave out the most of the

detail but I will address a few of the concepts behind the some of the more interesting

algorithms. Most of these fall into the category of bookkeeping. I'll detail three such

algorithms. The block closure algorithm calculates closed block polygons from

collections of fault segments. The blocks labeling algorithm determines which blocks are

to the east and west of each fault segment in a consistent manner. A station assignment

algorithm takes labeled fault information and uses it to determine which stations are on

which blocks. Finally, I present the details of an interesting front end to Okada's (1985)

dislocation calculation. The significant advance here is that the user can work in

longitude and latitude space without having to consider the details of the necessary map
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projections. This process is automated in a manner that minimizes the spatial distortion

due to the map projection.

5.1. Block closure and labeling

Without a doubt, the most interesting and obscure part of this effort was the block

geometry management. That is, how do we relate the faults to the blocks that they

bound? One way would be to hand label each fault segment with the block names on

either side. With lots of faults, this was at best a complicated, tiresome, time consuming

and error prone procedure. We proved this after managing to write three papers

(McClusky et al., 2001, Meade and Hager 2001, Meade et al., 2002). In fact, this was the

time limiting factor that minimized the number fault system geometry variations we

could study.

The key to automating this process is the separation of block information from

fault system geometry information. In practical terms, this means that a user should be

able to specify the fault system geometry without indicating what blocks bound each

fault. However, we still need that information. We refer to this as the "block closure

problem". The first step in this procedure is to ensure that that are no "hanging

segments". These fault segments have endpoints that do not meet up with any other fault

segment. This algorithm also must produce two things. First it must determine how

many blocks there are and second it must determine the unique labels for the blocks next

to each fault. The basic block closure algorithm is outlined in figure A.2. This algorithm
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results in the calculation of the total number of blocks, a list of the faults that bound each

block and the labels of the blocks on either side of each fault.

5.2. Fault labeling and east - west determination

Now that we know which blocks bound each fault segment we now have to

determine which blocks are on the east and west sides of each segments. This is

necessary to insure sign consistency through the elastic dislocation calculations. As

written, the block closure algorithm does not give us this information. It tells us which

blocks bound each fault segment but not which side they are on. To do this we use a very

simple algorithm shown in figure A.3. From each fault midpoint, we introduce a

perturbed location just to the east. We then use an inpolygon test to determine if the

perturbed point is in one of the bounding blocks. The block labels are known at this point

from the block closure algorithm. If the perturbed point is in the block we are testing

then that block is to the east of the segment, if not to the west.

5.3. Station labeling

Once all of the blocks have been identified, we must also determine which GPS

station is on which block. This is necessary for the rotation calculation. This algorithm

is straightforward (figure A.4) and relies mostly on a call to MATLAB's inpolygon

routine. This function takes polygon vertices and returns logicals that indicate whether or

not a point is inside, outside or on the polygon boundaries. The only complication is that

we are working on a sphere. This means that for long fault segments there is substantial
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difference between the rhumb line and great circle path (GCP) between the two

endpoints. In order to best represent the implied paths between two points we've had to

add an extra step where we chop long segments into smaller pieces along the great circle

path. The rest of the algorithm is a straightforward loop over all of the blocks. For each

block we test to see which stations are on it. Once we loop over all blocks, any stations

that have not yet been labeled are assigned to the exterior block. This is very convenient

for large problems where one might want to have a block that represents the "rest of the

world".

5.4. Okada with an automatic optimal map projection

The purpose of this algorithm is to allow the user to carry out a dislocation

calculation (Okada, 1985) using geodetic data in ENU coordinates with fault and station

coordinates specified in longitude and latitude. Okada's (1985) formulation is only for a

planar elastic halfspace. We know of no equivalent formulation for the deformation

associated with an arbitrarily inclined finite source on a sphere. Thus, one typically

chooses a map projection for a study area and then projects both the fault geometry and

the station coordinates. Over large areas, this is problematic as either the areal or angular

distortion grows and the projection ceases to be accurate. Over an area the size of

Southern California the distortion is less than 1% in distance. Larger areas present a

substantial difficulty because the distortion due to any map projection is significant. It is

important to minimize any spatial distortion around faults to ensure the accuracy of the

elastic dislocation contribution. In order to deal with this challenge we decided to avoid
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trying to determine the best projection for a given study area and instead use multiple

map projections. Elastic deformation is only localized around fault zones; therefore these

are the areas that require the most accurate projections. For each fault zone, we divide

the fault, if necessary, into even smaller sections (e.g., 10 - 100 km). The elastic

calculation is done for each sub-fault, and then all of the velocity contributions are

summed. We use a separate oblique Mercator map projection for each fault. This

projection is locally tangent to the GCP between the two fault endpoints. After the

dislocation calculation is carried out in planar space, we rotate the velocities to account

for the strike of the fault where they are interpreted as east, north and up. The velocity

vectors do not need any further "unprojecting" (see vinvtran in the MATLAB

Mapping toolbox) due to the fact the Mercator projection is angle preserving (conformal).

This algorithm (figure A.5) is useful for three reasons: 1) a user can simply work with

station and fault coordinates in longitude and latitude space, 2) spatial distortion is

minimized for every fault segment, 3) the block model can be extended to arbitrarily

large areas.
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Basic ordering of procedures

Figure A.1. blocks splWL2 flow control
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Block closure and labeling algorithm

Figure A.2. Block closure algorithm
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Algorithm to assign east and west block labels to segments

Figure A.3. East-west label determination
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Algorithm to assign stations to blocks

Figure A.4. Station assignment algorithm
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Auto-projected dislocation algorithm

Figure A.5. Auto-projected dislocation algorithm
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