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Abstract

Milton Friedman argued that irrational traders will consistently lose money, won’t survive
and, therefore, cannot influence long run equilibrium asset prices. Since his work, survival
and price influence have been assumed to be the same. Often partial equilibrium analysis
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are two independent concepts. The price impact of irrational traders does not rely on their
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wealth becomes negligible. In addition, in contrast to a partial equilibrium analysis, general
equilibrium considerations matter since the ability of irrational traders to impact prices even
when their wealth is diminishing can significantly affect their chances for long-run survival.
In sum, in a long-run equilibrium, we explicitly show that price impact can occur whether
or not the irrational traders survive. In related work, we show that even if the irrational
traders survive they may have no price impact.
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1 Introduction

Most neoclassical asset pricing models rely on the assumption that market participants

(traders) are rational in the sense that they behave in ways that are consistent with the

objective probabilities of the states of the economy (e.g., Radner (1971) and Lucas (1978)).

More particularly, they maximize expected utilities using the true probabilities of uncertain

economic states. This approach is firmly rooted in the tradition of going from the normative

to the positive in economics, yet there is mounting evidence that it is not descriptive of the

observed behavior of the average market participant (see, e.g., Alpert and Raiffa (1959),

Benartzi and Thaler (2001), Black (1986), Kahneman and Tversky (1979), Odean 1998)).

How the presence of traders with incorrect beliefs may affect the behavior of financial markets

remains an open question.

It has long been argued (see, e.g., Friedman (1953)) that irrational traders who use wrong

beliefs cannot survive in a competitive market. Trading under the wrong beliefs makes them

lose money to the rational traders and eventually lose their wealth. It is the rational traders

who in the long-run control most of the wealth and determine asset prices. Using a partial

equilibrium model, De Long, Shleifer, Summers and Waldmann (1991) suggest that traders

with wrong beliefs may survive in the long run because they may hold portfolios with higher

growth rates and therefore can eventually outgrow the rational traders.6 In contrast, in a

general equilibrium setting, Sandroni (2000) and Blume and Easley (2001) show that with

intermediate consumption, irrational traders do not survive in the long-run.

The efficiency of financial markets is the principal motivation behind the interest in the

survival of irrational traders. If irrational traders impact asset prices, then markets will not

be efficient, either informationally or allocationally. Implicitly, the discussion on survival is

based on the assumption that survival is a necessary condition for long-run price impact.

It is thought that irrational traders have to control a significant amount of wealth in order

to affect – or ‘infect’ – prices with their irrational beliefs. In this paper, we show that this

assumption is false and that irrational traders can maintain a large price impact even as

their relative wealth diminishes towards zero over time.

Our analysis is conducted with a parsimonious general equilibrium model inhabited by

6See also Figlewski (1978) for a discussion on the notion of long-run survival. Many papers in existing
literature analyze survival of irrational traders and their effect on prices in financial markets with various
constraints and imperfections, e.g., De Long, Shleifer, Summers and Waldmann (1990), Shleifer and Vishny
(1997), Hirshleifer, Subrahmanyam, Titman (2002). In contrast, the setting of this paper assumes perfect,
complete financial markets.
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both rational traders and irrational traders. Traders only care about their terminal con-

sumption. We are able to derive an explicit solution to the model, and we obtain conditions

under which the irrational traders can survive in the long run in the sense that their share of

the total wealth does not go to zero over time. However, we show that even when irrational

traders do not survive, with a negligible amount of wealth they can still exert significant

influence on the asset price over a long period of time.

Underlying this initially counterintuitive result is a solid economic intuition. Under

incorrect beliefs, irrational traders express their views by taking positions (bets) on extremely

unlikely states of the economy. As a result, the state prices of these extreme states can be

significantly affected by the beliefs of the irrational traders with negligible wealth. In turn,

these states, even though highly unlikely, can have a large contribution to current asset

prices. This is especially true for states associated with extremely low levels of aggregate

consumption in which the traders’ marginal utilities are very high and so too are the state

prices. The beliefs of the irrational traders on these low probability but high marginal

utility states can influence current asset prices and their dynamics. Furthermore, irrational

traders need not take extreme positions in order to influence prices. The formal analysis

clearly verifies this conceptual distinction between the long-run price impact and the long-

run survival of irrational traders.

The possibility that irrational traders may have a significant price impact with a neg-

ligible share of wealth also has important implications for their survival. In the partial

equilibrium analysis of De Long, Shleifer, Summers and Waldmann (1991) (DSSW, there-

after), for example, it was assumed that when the irrational traders control only a negligible

fraction of the total wealth, they have no impact on asset prices, i.e., asset prices behave as if

the irrational traders are absent. Given the rationally determined prices, DSSW then show

that the wealth of irrational traders can grow at a faster rate than the wealth of the rational

traders. Thus the irrational traders can recover from their losses and survive in the long-

run. Although such an argument is illuminating, the limitations of partial equilibrium do

not allow it to adequately resolve the question of price impact. As we have argued, irrational

traders may still influence prices with diminishing wealth. Moreover, such a possibility can

significantly affect the irrational traders’ portfolio policies in ways that make their recovery

difficult.

The paper proceeds as follows. Section 2 develops a canonical, pure exchange economy

similar to that of Black and Scholes (1973), but in presence of irrational traders who have

persistently wrong beliefs about the economy, and Section 3 describes the general equilibrium
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of this economy. Section 4 treats the special case of logarithmic preferences and demonstrates

that although irrational traders never survive they nevertheless can still influence long-run

asset prices. Section 5 analyzes the survival of irrational traders for the general case. We

first consider the partial equilibrium arguments of DSSW using our setting to analyze the

conditions under which the irrational traders may survive in the long run. We then present

the general equilibrium results on the survival of irrational traders and contrast them with

the partial equilibrium analysis. In Section 6, we examine the price impact of the irrational

traders and how it affects their survival. Section 7 discusses the equilibrium portfolio policies

and demonstrates ow the effects on price we describe extend beyond the first two moments

and affect traders’ portfolio policies and long-run survival. Section 8 concludes the paper

with a short summary and some suggestions for future research. Appendix A provides

additional results on the dynamics of wealth distribution and the welfare implications of

irrational beliefs. Proofs are given in Appendix B.

2 The Model

The economic mechanisms that determine the survival of irrational traders and their impact

on prices can be studied in a simple, parsimonious model, which is defined as follows.

Information structure

The economy has a finite horizon and evolves in continuous time. Uncertainty is described

by a one-dimensional, standard Brownian motion Bt for 0 ≤ t ≤ T , defined on a complete

probability space (Ω, F, P ), where F is the augmented filtration generated by Bt.

Financial markets

There is a single share of a risky asset in the economy, the stock, which is a claim on a

terminal dividend payment DT at time T . DT is the value of a geometric Brownian motion

Dt at time T , where D0 = 1 and

dDt = Dt (µdt+ σdBt) , σ > 0. (1)

There is also a zero coupon bond available in zero net supply. Each unit of the bond makes

a certain payment of one at time T . We use the risk-free bond as the numeraire and denote

the price of the stock at time t by St.
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Endowments

There are two competitive traders in the economy, each endowed with a half share of the

stock (and none of the bond) at time zero.

Trading strategies

Financial markets are frictionless, and there are no constraints on lending and borrowing.

Traders’ trading strategies satisfy the standard integrability condition used to avoid patholo-

gies

∫ T

0

θ2
t d〈S〉t <∞ (2)

where θt is the number of shares of the stock held in the portfolio at time t and 〈S〉t is the
quadratic variation process of St.

Preferences and beliefs

Both traders have constant relative risk aversion utility, defined over their consumption at

time T :

1

1− γ
C1−γ
T , γ ≥ 1.

For ease of exposition, we only consider the cases when γ ≥ 1. The cases when 0 < γ < 1

can be analyzed similarly and the results are similar in spirit.

Standard aggregation results imply that each trader in our model can actually represent

a collection of traders with the same preferences. This provides a justification for our com-

petitive assumption for each of the traders. The first trader, the rational trader, knows the

true probability measure P and maximizes expected utility

EP0

[
1

1− γ
C1−γ
r,T

]
(3)

where the subscript r denotes quantities associated with the rational trader. The second

trader, the irrational trader, believes incorrectly that the probability measure is Q, under

which

dBt = (ση)dt+ dBQ
t (4)
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and hence

dDt = Dt

[(
µ+ σ2η

)
dt+ σdBQ

t

]
(5)

where BQ
t is the standard Brownian motion under the measure Q and η is a constant,

parameterizing the degree of irrationality of the irrational trader. When η is positive, the

irrational trader is optimistic about the prospects of the economy and overestimates the rate

of growth of the aggregate endowment. Conversely, a negative η corresponds to a pessimistic

irrational trader. The irrational trader maximizes expected utility using belief Q:

EQ0

[
1

1− γ
C1−γ
n,T

]
(6)

where the subscript n denotes quantities associated with the irrational trader.

Because η is assumed to be constant, the probability measure of the irrational trader Q

is absolutely continuous with respect to the objective measure P , i.e., both traders agree

on zero-probability events. Letting ξt ≡ (dQ/dP )t denote the density (Radon-Nikodym

derivative) of the probability measure Q with respect to P ,

ξt = e−
1

2
η2σ2t+ησBt (7)

the irrational trader maximizes

EQ0

[
1

1− γ
C1−γ
n,T

]
= EP0

[
ξT

1

1− γ
C1−γ
n,T

]
. (8)

This permits us to interpret the objective of the irrational trader as the expected value of a

state-dependent utility function, ξT
1

1−γ
C1−γ
n,T , under the true probability measure P .

The equivalence between incorrect beliefs and state dependent preferences raises the

conceptual question about the precise definition of irrationality. It is beyond the scope of

this paper to address this question, and our analysis of this form of irrationality is primarily

motivated by the fact that it is widely adopted in the recent literature on behavioral models

of asset prices.
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3 The Equilibrium

The competitive equilibrium of the economy defined above can be solved analytically. Since

there is only one source of uncertainty in the economy, the financial market is dynamically

complete as long as the volatility of stock returns remains non-zero almost surely. Conse-

quently, the equilibrium allocation is efficient and can be characterized as the solution to a

central planner’s problem:

max

[
1

1− γ
C1−γ
r,T + b ξT

1

1− γ
C1−γ
n,T

]
(9a)

s.t. Cr,T + Cn,T = DT (9b)

where b is the ratio of utility weights. The equilibrium allocation is characterized in the

following proposition.

Proposition 1 For the economy defined in Section 2, the equilibrium allocation between the

two traders is

Cr,T =
1

1 + (b ξT )
1/γ

DT (10a)

Cn,T =
(b ξT )

1/γ

1 + (b ξT )
1/γ

DT (10b)

where

b = e(γ−1)ησ2T . (11)

The price of a financial security with the terminal payoff ZT is given by

Pt =
Et

[(
1 + (b ξT )

1/γ
)γ

D−γ
T ZT

]

Et

[(
1 + (b ξT )

1/γ
)γ

D−γ
T

] . (12)

For the stock, ZT = DT and its return volatility is bounded between σ and σ(1 + |η|).

Since the instantaneous volatility of stock returns is bounded below by σ, the stock

and the bond dynamically complete the financial market. In the limiting cases when only

the rational or the irrational trader is present, the stock prices, denoted by Sr,t and Sn,t,
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respectively, are given by

Sr,t = e(µ/σ2
−γ)σ2T+ 1

2
(2γ−1)σ2t+σBt (13a)

Sn,t = e(µ/σ2
−γ+η)σ2T+ 1

2
[(2γ−1)−2η]σ2t+σBt = Sr,te

ησ2(T−t). (13b)

We will use this equilibrium model to analyze the survival and extinction of the traders.

We employ two definitions of extinction, and, conversely, of survival.

Definition 1 The irrational trader is said to experience relative extinction in the long-run

if

lim
T→∞

Cn,T

Cr,T

= 0 a.s. (14)

The relative extinction of the rational trader can be defined symmetrically. A trader is said

to survive relatively in the long-run if relative extinction does not occur.

Definition 2 The irrational trader is said to experience long-run extinction in the absolute

sense if

lim
T→∞

Cn,T = 0 a.s. (15)

The absolute extinction of the rational trader can be defined symmetrically. A trader is said

to survive absolutely in the long-run if absolute extinction does not occur.

In the above definitions and throughout the paper all limits are understood to be almost

sure (under the true probability measure P ) unless specifically stated otherwise.

Clearly, relative survival is sufficient for absolute survival but as our analysis demon-

strates, absolute survival is not sufficient for relative survival. Similarly, absolute extinction

implies relative extinction, but the converse is not true. Throughout this paper, we use the

notion of relative extinction or survival unless it is specified otherwise.

In our model, the final wealth of each trader equals the terminal consumption. Thus, the

definitions of survival and extinction are equivalent to a similar definition using wealth.
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4 A Special Case: Logarithmic Preferences

We begin analyzing the equilibrium by considering a special case of the economy where all

traders have logarithmic preferences. When both the rational and irrational traders have

logarithmic preferences, we have the following result:

Proposition 2 Suppose η 6= 0. For γ = 1, the irrational trader never survives.

This result is immediate. For γ = 1, the rational trader holds the portfolio with maximum

expected growth. Any deviation in beliefs from the true probability causes the irrational

trader to move away from the maximum growth portfolio, which leads to his long-run relative

extinction.

Our interest, however, is not merely on the survival of the irrational trader, but also on

the impact of irrationality on the long-run stock price. Under logarithmic preferences, b = 1

and from Proposition 2 the stock price is

St =
1 + ξt

Et [(1 + ξT )/DT ]
=

1 + ξt
1 + e−ησ2(T−t)ξt

1

e(−µ+ 1

2
σ2)T+ 1

2
σ2(T−t)−σBt

. (16)

Moreover, the moments of stock returns can be derived explicitly. Let αt denote the relative

wealth of the rational trader,

αt ≡
Wr,t

Wr,t +Wn,t

the conditional volatility of stock returns is given by

σS,t = σ + η σ(1−αt)− ησ

[
1− 1

1 + e−ησ2(T−t)(α−1
t −1)

]

while the conditional mean is

µS,t = σ2
S,t − η σ(1−αt)σS,t.

The presence of the irrationality parameter η in the expressions for the stock price and its

first two moments provides our first demonstration that the irrational trader can maintain

influence on the stock price for long periods of time even though he does not survive in the

long run.
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This can be seen explicitly from a numerical illustration with parameters corresponding to

an economy with a relatively long horizon. The irrational trader is assumed to be pessimistic

(η = −4). The horizon of the economy is set at T = 400. We let the current time t be
sufficiently large, so with high probability most of wealth in the economy is controlled by

the rational trader. For convenience, we define the following normalized state variable:

gs,t ≡
Bt −Bs√
t− s

. (17)

It is easy to show that gs,t is the unanticipated dividend growth normalized by its standard

deviation, which has a standard normal distribution. Figure 1 plots the stock price volatility

and the wealth distribution at t = 100 against the normalized state variable g0,t. The

probability density for g0,t is illustrated by the shaded area (with the vertical axis on the

right). The bottom panel of Figure 1 shows that with almost probability one, the wealth of

the economy is all controlled by the rational trader at this time. Yet as the top panel of the

figure shows, the conditional volatility of stock returns is very different from σ, the volatility

of the state variable Dt, which would be its value in the economy populated by only one

type of traders. In particular, over a large range of values of the dividends, the conditional

volatility of returns is approximately equal to σ(1− η) 6= σ.

To examine the long-run stock price more generally we employ asymptotic analysis. We

call two stochastic processes asymptotically equivalent if for large values of T , their ratio

converges to one. That is,

Definition 3 (Asymptotic Equivalence) Two stochastic processes, Xt and Yt are said to be

asymptotically equivalent if

lim
T→∞

XT

YT
= 1 a.s.

which are denoted by XT ∼ YT .

As the horizon of the economy, T , increases, we need to have some sense of what it means

for a particular property of the economy to persist for a significant period of time. Suppose,

for example, we say that the impact of the irrational trader on a variable is significant as

long as the variable exceeds a fixed level e within a time interval. If as T grows, this time

interval also grows with T but at a slower rate, this would mislead us into arguing that the

impact of the irrational trader was significant, even though it was not persistent. Persistence

requires that the proportion of time over which the impact is significant does not go to zero

9
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Figure 1: The conditional volatility of stock returns, σS,t and the wealth distribution αt =
Wr,t/(Wr,t +Wn,t) are plotted against the normalized state variable, g0,t ≡ Bt/

√
t. The shaded

area is the probability density function of the normalized state variable (vertical axis on the right).
The model parameters are set at µ = 0.12, σ = 0.18, η = −4, T = 400 and γ = 1. The current time
is t = 100.

as T grows. Conversely, if the proportional amount of time over which there is negligible

impact is going to one, then we conclude that the irrational trader has no persistent impact.

To make this more formal, we will consider a sequence of economies with increasing

horizon T , where the current time of observation is chosen to be t = λT , 0 < λ ≤ 1. As
the horizon of the economy approaches infinity, the “current” time t increases as well, but it

remains at a constant fraction of the horizon of the economy. Moreover, the time remaining

until the final date of the economy is also increasing proportionally to T . Since the properties

of the equilibrium prices and quantities depend on how much time is remaining until the

final date, they depend on λ.

We have the following result on the persistence of the price impact of irrationality when

traders have logarithmic preferences:

Proposition 3 Suppose γ = 1 and η < 0. Let λS = 2/(2 − η). At t = λT , the stock price
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behaves as follows when T →∞:

St ∼





Sr,t e
η[σ2T+( 1

2
η−1)σ2t−σBt], 0 < λ < λS

Sr,t, λS < λ ≤ 1
(18)

where Sr,t, defined in Equation (13) with γ = 1, is the stock price when only the rational

trader is present. The limiting values of the instantaneous moments of stock returns are

equal to the moments of the corresponding asymptotic expression (18).

It follows from Proposition 3 that for any t < λST , the price influence of the irrational

trader remains significant, that is, St 6= Sr,t, despite the fact that as T approaches infinity, t

can be arbitrarily large and the wealth share of the irrational trader becomes negligible.
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1 
− 

α t
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Figure 2: The maximum likelihood path of the irrational trader’s wealth share, 1 − αt, and the
stock price volatility, σS,t. The model parameters are set at µ = 0.12, σ = 0.18, η = −4, T = 400
and γ = 1.

What Propositions 3 describes is the situation where the wealth share of the irrational

trader and his price impact converge to zero over time at drastically different rates. Figure 2

illustrates the most likely path over time (the path with highest probability) for the irrational

trader’s wealth share and the stock price volatility. In fact, his wealth share diminishes to

zero exponentially while his price impact diminishes at a much slower rate. The stock

price volatility stays away from its asymptotic level for an extended period of time before

eventually converging to its limiting value.
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In order to better understand how the irrational trader can exert influence on the stock

price despite having negligible wealth, we examine how his portfolio policy affects the state

price density (SPD). With the horizon of the economy set at T = 30, the left panels of

Figure 3 plot the relative consumption shares of the rational and the irrational traders at

two different times, t = 0, 20, as a function of the normalized state variable, gt,T (i.e., the

normalized unanticipated dividend growth from t to T defined in (17)). At each date, the

state of the economy is conditioned on Bt = 0, the most likely state. For t = 0, the irrational

trader owns half of the economy. But at η = −4, he is very pessimistic and bets on states of
low dividends (states toward the left end of the horizontal axis). This is shown in the top

left panel of Figure 3. The dashed line plots his terminal consumption for different states of

the economy. Over time, these ‘bad’ states become even less likely and the irrational trader’s

bets become less valuable. Thus, his wealth decreases. At t = 20 and Bt = 0, these bad

states become extremely unlikely and the irrational trader has lost most of his wealth. His

wealth relative to the wealth of the rational trader has reduced from 1 at t = 0 to 0.0056.

As shown in the bottom left panel of Figure 3, going forward, he consumes a non-trivial

fraction of the total wealth only in the extreme states toward the left end of the horizontal

axis. The probability of these states, as shown by the shaded area, becomes very small. So

is the irrational trader’s wealth.

In the two panels on the right of Figure 3, we plot the state price density against the

normalized state variable dT at the two times, t = 0, 20, conditioned again on Bt = 0. With

logarithmic preferences, the equilibrium state price density at time t is given by

φt ≡
(1 + ξT )D

−1
T

Et

[
(1 + ξT )D

−1
T

]

which is represented by the dashed line in each of the two panels. The solid line plots the

state price density when the economy is populated only by the rational traders, which can

be obtained by setting ξT = 0 in the above expression for φt. The top panel gives the state

price density at t = 0. It is obvious that at this point, the irrational trader owns half of

the total wealth and his portfolio policy has a significant influence on the state price density

over the whole range. In particular, being pessimistic, he is effectively betting on the bad

states, which causes the state price density to increase for the bad states and decrease for

the good states. This is shown by the difference between the dashed line, the state price

density in the presence of the irrational trader, and the solid line, the state price density

without the irrational trader. As time passes, his wealth dwindles and his influence on the

state price density diminishes quickly for most of the states, as the bottom panel for t = 20

12
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Figure 3: The terminal consumption of the rational and irrational traders as a fraction of the
total consumption and the state price density (SPD) in different terminal states of the economy at
different times. The model parameters are set to be µ = 0.12, σ = 0.18, η = −4, γ = 1 and T = 30.
The horizontal axis in all panels is the normalized state variable gt,T ≡ (BT − Bt)/

√
T − t, which

has a standard normal distribution with zero mean and unit variance, which is shown by the shaded
area (vertical axis on the right). In the two panels on the left, the terminal consumption for the
rational trader (the solid line) and the irrational trader (the dotted line) are plotted against the
normalized state variable at times t = 0, 20, respectively, when Bt = 0. In the two panels on the
right, the dashed line plots the logarithm of the state price density at times t = 0, 20, respectively,
which is ln

{
[(1 + ξT )/DT ]

/
Et [(1 + ξT )/DT ]

}
. The solid line plots the logarithm of the state price

density in the economy populated only by the rational traders, which is ln
{
D−1
T

/
Et

[
D−1
T

]}
.

shows. However, for the extremely bad states, his influence remains significant because he

is still betting heavily on these states.

In order to further examine how the irrational trader can affect the state-price density

for the bad states, let us consider the following thought experiment. We start with the

economy inhabited only by the rational trader. The state price density, denoted by φ,

is proportional to the rational trader’s marginal utility u′(C): φ = au′(C), where a is a

constant. Suppose now the irrational trader is introduced into the economy and he purchases

δ units of state-contingent claims that pay off only when the aggregate consumption is C.

The total cost is w ≡ φδ ≈ au′(C)δ when δ is small. The state-price density now will change
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by ∆φ ≈ −au′′(C)δ. Divided by the wealth spent by the irrational trader, we obtain the
marginal change in the state-price density:

∆φ

w
=
u′′(C)

u′(C)
=
1

C

which is independent of δ. Clearly, for the bad states when C is low (close to zero), the

irrational trader can have a large impact on the state-price density with little wealth if he

decides to bet on these states. Moreover, through his impact on the state-price density in

bad states, the irrational trader can influence asset prices, such as the prices of the stock

and the bond. Given that the bond is used as a numeraire and its price is always one, this

influence is captured in the stock price. In particular, we have

St = Et [φtDt]

which is computed in Equation (16). As t increases, Equation (18) gives the stock price

asymptotically. The above analysis shows that despite the low probability and low dividends

of the extreme bad states, the irrational trader can maintain his influence on the stock price

through his impact on the state price density of these states, even as his wealth diminishes

over time.

The simple case of logarithmic preferences clearly shows that survival and price impact

are in general not equivalent. In particular, survival is not a necessary condition for the

irrational traders to influence long-run prices, and depending on their beliefs, irrational

traders can maintain a significant price impact even as their wealth becomes negligible over

time.

5 The Survival of Irrational Traders

In the case of logarithmic preferences, the irrational trader does not survive in the long-run

simply because his portfolio grows more slowly than the maximum growth rate which is

achieved by the rational trader. For relative risk aversion different from one, though, the

rational trader no longer holds the optimal growth portfolio and under an incorrect belief,

the irrational trader may end up holding a portfolio that is closer to the optimal growth

portfolio, and so his wealth may grow more rapidly. This was the argument put forward by

DSSW using a partial equilibrium setting similar to ours. In this section, we examine the

long-run survival of the irrational trader in a general equilibrium setting.
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5.1 Heuristic Partial Equilibrium Analysis

We first follow the partial equilibrium argument of DSSW and derive conditions under which

the irrational trader may survive in the long-run despite having incorrect beliefs. The essence

of the partial equilibrium argument is to examine a limiting case in which one of the two

traders controls most of the aggregate wealth in the economy while the other trader is

infinitesimal. The argument then assumes that the infinitesimal agent has no impact on

market prices and computes the implied growth rate of both traders’ wealth. If the wealth

of the infinitesimally small trader has a higher growth rate, and therefore the share of wealth

of such a trader is growing over time, then DSSW conclude that such a trader would be able

to successfully “invade” the economy and hence must survive in the long-run, “in the sense

that their wealth share does not drop toward zero in the long run with probability one.”

Assume first that the rational trader dominates the economy and the prices of financial

assets are as if there were no irrational traders. Let µS and σS denote the drift and volatility

of the stock price process:

dSt = St (µSdt+ σSdBt) .

It is easy to show that

µS = γσ2, σS = σ.

The rational trader invests only in the stock. The rate of growth of the rational trader’s

portfolio, defined as the drift of the logarithm of the trader’s wealth, is given by

µS −
1

2
σ2
S =

1

2
(2γ − 1)σ2.

Under the beliefs of the irrational trader (under the measure Q), the drift of the stock price

process is

µ̂S = µS + σ2η

and the volatility remains σ. The irrational trader invests a fraction wn = µ̂S/ (γσ
2) = 1+η/γ

of his wealth in the stock. Thus, the growth rate of the irrational trader’s portfolio is

µS −
1

2
σ2 +

1

2

σ2

γ2
η (γη? − η)
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where we define

η? ≡ 2(γ − 1). (19)

The growth rate of wealth of the “invading” irrational trader is higher than that of the

dominant rational trader if and only if 0 < η < γη?.

Next, assume that the irrational trader dominates the economy. Repeating the steps of

the previous analysis, the volatility of the stock price remains at σ and the drift becomes

µS = γσ2 − ησ2.

For the irrational trader, the growth rate of the portfolio is

µS −
1

2
σ2

while for the rational trader it is

µS −
1

2
σ2 +

1

2

σ2

γ2
(2γ − 1)η

(
η − γ

2γ − 1η
?

)
.

The rational trader’s portfolio grows faster than the irrational trader’s portfolio if and only

if η < 0 or η > γ
2γ−1

η?.

The partial equilibrium analysis thus appears to provide sufficient conditions for long-run

survival of both types of traders. In particular, for γ > 1

0 < η < γ
2γ−1

η? ⇒ Irrational trader survives

γ
2γ−1

η? < η < γη? ⇒ Both traders survive

η < 0 or η > γη? ⇒ Rational trader survives

(20)

For γ = 1, only the rational trader survives regardless of the value of η. These results are

summarized in the phase diagram shown in Figure 4. Since γ/(2γ − 1) ≤ 1 for γ ≥ 1, η?
belongs to the second region defined in (20).

5.2 General Equilibrium Analysis

The partial equilibrium analysis seems straightforward and intuitive. However, it is based

on the assumption that the stock price is unaffected by the trader whose wealth approaches
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Figure 4: The survival of rational and irrational traders for different values of η and γ in partial
equilibrium. For each region in the parameter space, we document which of the agents survives in
the long run. “R” means that survival of the rational trader is guaranteed inside the region, “N”
corresponds to the irrational trader, “N,R” means that both traders survive.

zero in the long run. The fact that this assumption does not hold in the case of logarithmic

preferences suggests that the partial equilibrium analysis cannot, in general, be trusted

to correctly analyze survival and extinction. From the competitive equilibrium derived in

Section 3, we have the following result:

Proposition 4 Suppose η 6= 0. For γ = 1, the irrational trader never survives. For γ > 1,
only one of the traders survives in the long run. In particular,

Pessimistic irrational trader: η < 0 ⇒ Rational trader survives

Moderately optimistic irrational trader: 0 < η < η? ⇒ Irrational trader survives

Strongly optimistic irrational trader: η > η? ⇒ Rational trader survives

(21)

where η? = 2(γ − 1). For η = η?, both rational and irrational traders survive.

For γ > 1, Proposition 4 identifies three distinct regions in the parameter space as shown

in Figure 5. For η < 0, the irrational trader is pessimistic and does not survive in the

long-run. For 0 < η < η?, the irrational trader is moderately optimistic and survives in the

long-run while the rational trader does not. For η > η?, the irrational trader is strongly

optimistic and does not survive.
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Figure 5: The survival of rational and irrational traders for different values of η and γ in general
equilibrium. For each region in the parameter space, we document which of the agents survives in
the long run. “R” means that survival of the rational trader is guaranteed inside the region, “N”
corresponds to the irrational trader.

By contrast with the partial equilibrium displayed in Figure 4 where there is a region in

which both traders survive, other than the knife-edge case (η = η?), only one of the traders

can survive in general equilibrium. Furthermore, the surviving trader eventually dominates

the economy and owns most of the wealth. In general, however, survival and dominance

may not be equivalent. In addition, comparing Figures 4 and 5 we see that for some regions

of parameter values, the partial equilibrium argument leads to incorrect predictions about

the survival of traders. In particular, the general equilibrium divides the mixed partial

equilibrium where both traders seem to survive into two sections; a lower one below η?

where only the irrational trader survives and an upper one in which only the rational trader

survives.

In order to gain more insight into what determines the survival of the irrational trader,

we examine the terminal wealth (consumption) profiles of the rational and irrational traders.

The two panels on the left in Figure 6 show the two traders’ terminal wealth profiles for two

values of T (10 and 30) when the irrational trader is pessimistic. The solid line shows the

terminal wealth share of the rational trader and the dashed line shows that for the irrational

trader. As expected, the rational trader ends up with more wealth in good states of the

economy (when the dividend is high) while the irrational trader, being pessimistic, ends up

with more wealth in the bad states of the economy. As the horizon increases, the irrational
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Figure 6: The terminal consumption of rational and irrational traders for different horizon T .
We consider two values of T , 10 and 30, respectively. The model parameters are set at µ = 0.12,
σ = 0.18, and γ = 5. We consider three distinctive cases for the irrational trader’s belief: (1)
pessimistic, η = −0.3η?, (2) moderately optimistic, η = 0.5η?, and (3) strongly optimistic, η = 2η?.
The horizontal axis in all panels is the normalized state variable g0,T ≡ (BT )/

√
T , which has a

standard normal distribution with zero mean and unit variance, which is shown by the shaded area
(vertical axis on the right). The two panels on the left show the terminal consumption, as a fraction
of the total consumption, of the rational trader (solid line) and the irrational trader (dashed line)
with a pessimistic belief, i.e., Cr,T /DT and Cn,T /DT , for the two values of the horizon, T = 10, 30,
respectively. The two panels in the middle and on the right show the terminal consumption, as a
fraction of the total consumption, of the rational trader and the irrational trader with a moderately
and strongly optimistic beliefs for the two values of T , respectively.

trader ends up with non-trivial wealth in more extreme and less likely, low dividend states.

When the irrational trader is mildly optimistic, the situation is different. His impact on the

prices make the bad states (i.e., the low dividend states) cheaper than the good states. This

induces the rational trader to accumulate more wealth in the bad states by giving up wealth

in the good states, including those with high probabilities. As a result, the irrational trader

is more likely to end up with more wealth. When strongly optimistic, the irrational trader

ends up accumulating wealth in very unlikely, good states by giving up wealth in most other

states, which leads to his extinction in the long-run.
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5.3 Absolute Extinction

In the above discussion, we used the notion of extinction in the relative sense that the relative

wealth of a trader goes to zero in the long-run. Our equilibrium analysis gives the following

result about absolute survival:

Proposition 5 Assume that the aggregate endowment is growing, i.e., µ > 1
2
σ2.

(i) The irrational trader experiences long-run absolute extinction if

η < (γ − 1)−
√
(γ − 1)2 + γ (2µ/σ2 − 1)

or

η > (γ − 1) +
√
(γ − 1)2 + γ (2µ/σ2 − 1).

(ii) The rational trader experience long-run absolute extinction if (γ−1)2−γ (2µ/σ2 − 1) > 0
and

(γ − 1)−
√
(γ − 1)2 − γ (2µ/σ2 − 1) < η < (γ − 1) +

√
(γ − 1)2 − γ (2µ/σ2 − 1).

Figure 7 shows the ranges of η, given γ, for the relative and absolute extinction of the

two traders. This verifies that there are regions where the two concepts do not coincide. It

is worth pointing out that for η < (γ−1) −
√
(γ−1)2 + γ(2µ/σ2−1), the irrational trader

experiences absolute extinction and yet he can still have non-trivial price impact in the

long-run (when η < 0) as our discussion in the logarithmic case shows.

6 The Price Impact of Irrational Traders

The difference in the results between the partial equilibrium argument and the general equi-

librium analysis on the irrational trader’s survival comes from the fact that the price impact

of irrational traders is taken into account in general equilibrium and ignored in partial equi-

librium. The partial equilibrium “invasion” analysis of an infinitesimal trader, i.e., a trader

who controls only a negligible fraction of the total wealth, relies on the following two as-

sumptions: (i) such a trader has no impact on prices, (ii) the portfolio policies of both
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Figure 7: Comparison between relative extinction and absolute extinction.

traders are the same as if the prices are exclusively set by the dominant trader. Under these

assumptions, the infinitesimal trader’s wealth is growing as a fraction of the total and one

can conclude that such an trader must survive in the long run.

Having derived the exact solution to the general equilibrium economy, we now investigate

the validity of these two assumptions and characterize the precise combinations of the model

parameters under which they fail to hold. We have already seen that in the case of logarithmic

preferences, assumption (i) does not always hold. In this section we examine the validity of

the first assumption in the general case for γ > 1 and in Section 7 we examine the second

assumption.

Our focus is on relative survival and, as in Section 4 when considering a sequence of

economies with increasing horizon, we choose the time of observation to be t = λT , 0 <

λ ≤ 1. We define three values of λ to help us characterize points of change in the limiting
behavior:

λS ≡
2

2γ − η
, λr ≡

η

(γ − 1)(2γ − η)
, λn ≡

η

η(γ + 1)− 2γ(γ − 1) . (22)

It is easy to verify that for η < η?, 0 < λS ≤ 1; for 0 < η ≤ η?, 0 < λr ≤ 1; and for η < 0 or
η > η?, 0 < λn ≤ 1.

The limiting behavior of the stock price process can be characterized as follows.

Proposition 6 (Stock Price) At t = λT , the stock price behaves as follows when T →∞.
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Case 1. Pessimistic Irrational Trader (η < 0):

St ∼





Sr,t e
η[σ2T+ 1

2
(η−2γ)σ2t−σBt], 0 < λ < λS

Sr,t, λS < λ ≤ 1

Case 2. Moderately Optimistic Irrational Trader (0 < η < η?):

St ∼





Sn,t e
−η[σ2T+ 1

2
(η−2γ+2)σ2t−σBt], 0 < λ < λS

Sn,t, λS < λ ≤ 1

Case 3. Strongly Optimistic Irrational Trader (η? < η):

St ∼ Sr,t.

The limiting values of the stock price, Sr,t and Sn,t, are given in Equation (13). The lim-

iting values of the instantaneous moments of stock returns are equal to the moments of the

corresponding asymptotic expressions above.

Observe that in the first two cases, when the irrational trader is pessimistic or moderately

optimistic, the stock price process does not converge quickly to its value in the economy

populated exclusively by the trader who survives in the long-run. Instead, over long periods

of time, i.e., for t between 0 and λST , the stock price process is affected by the presence of

both traders.

We illustrate this property of the stock price in Figure 8 by showing which of the traders

has a finite asymptotic impact on the stock price for different combinations of model pa-

rameters. We set λ = 2
3
to illustrate that both traders can potentially affect the stock price

even if one of them becomes infinitesimally small asymptotically. Eventually, when t reaches

λST , convergence of the stock price to its value in a single-trader economy does occur. As

we show in the next proposition, in each of the cases considered in Proposition 6, for any

non-zero value of lambda, the proportion of aggregate wealth controlled by the trader who

does not survive in the long run becomes arbitrarily small by time t = λT .

This verifies that the first assumption of the partial equilibrium “invasion” argument is

incorrect. As the horizon of the economy expands, a trader can control an asymptotically

infinitesimal fraction of the total wealth and yet exert a non-negligible effect on the stock

price. In other words, convergence in wealth does not readily imply convergence in prices.
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Figure 8: The price impact of rational and irrational traders for different values of η and γ in
general equilibrium. The time is fixed at t = 2

3
T . For each region in the parameter space, we

document which of the traders has an impact on the stock price in the long run. “R” means that
the rational trader has an impact inside the region, “N” means that the irrational trader has an
impact, and “N,R” means that both traders have an impact.

7 Portfolio Policies

Proposition 6 in the previous section established the possibility that a trader whose wealth

diminishes over time can have a persistent impact on asset prices. In this section, we study in

more detail the differences in the survival results between the partial equilibrium and general

equilibrium analysis.7In particular, we examine the traders’ portfolio policies and show that

convergence in the price process does not lead to immediate convergence in policies.

Expressions for portfolio policies are not available in closed form. However, using the

same arguments as in the proof of the bounds on the volatility of stock returns in Proposition

1, it can be shown that individual portfolio holdings are bounded in absolute value, |w| ≤
1 + |η|(γ + 1)/γ. The bound on the traders’ portfolio holdings is important for our results.
It explicitly shows that price impact of the irrational trader with negligible wealth does not

rely on excessive leverage. It also implies that our long-run survival results do not rely on the

traders’ use of high leverage. Our solution for the equilibrium remains valid even if traders

are constrained in their portfolio choices, as long as the constraint is sufficiently loose to

allow for w = ±[1 + |η|(γ + 1)/γ].

7In a recent paper, Loewenstein and Willard (2002) emphasize the importance of imposing market clearing
in all markets for many existing models of mispricing with irrational traders.
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The difference in the survival results between the partial equilibrium and general equi-

librium analysis occur when γ
2γ−1

η? < η < γη? (see Equations (20) and (21) and Figures 4

and 5). Partial equilibrium argument predicts survival of both traders for these parameter

values while general equilibrium analysis shows the extinction of the irrational trader when

η > η?. As mentioned earlier, the partial equilibrium argument relies on assumptions, (i) and

(ii), namely, when the irrational trader becomes small in relative wealth, (i) the stock price

behaves as if he is absent and (ii) he adopts the portfolio policy that is optimal under that

price process. We know that assumption (i) is false in general. But this does not directly

explain the discrepancy in survival results. For instance, η? < η < γη? corresponds to Case

3 of Proposition 6, in which the stock price is asymptotically the same as in the economy

without the irrational trader. In other words, the irrational trader has no significant impact

on the current stock price as his wealth becomes negligible. The moments of stock returns

converge to the values implied by the partial equilibrium analysis. However, as we show

below, the irrational trader’s portfolio policy can differ significantly from what the partial

equilibrium price process predicts, in contrast to assumption (ii). This explains the different

conclusions about traders’ survival in the long-run.

To analyze the traders’ portfolio policies in more detail, we decompose a trader’s stock

demand into two components, the myopic component and the hedging component. The sum

of the two gives the trader’s total stock demand. We have the following proposition.

Proposition 7 (Portfolio Policies) At t = λT , the individual stock holdings behave as follows

when T →∞.

Case 1. Pessimistic Irrational Trader (η < 0):8

wr,t ∼





(myopic) (hedging) (total)

γ−η
γ(1−η)

− (γ−1)η
γ(1−η)

= 1, 0 < λ < λS

1 + 0 = 1, λS < λ ≤ 1

wn,t ∼





(myopic) (hedging) (total)

1
1−η

+ 0 = 1
1−η

, 0 < λ < min(λn, λS)

1 + η
γ

+ 0 = 1 + η
γ
, max(λn, λS) < λ ≤ 1

8The limit of the portfolio policy for values of λ ∈ [min(λn, λS),max(λn, λS)] can be characterized ex-
plicitly as well, but the results depend on the ordering between λn and λS , which in turn is determined by
the values of model parameters. We omit these results to simplify the exposition.
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Case 2. Moderately Optimistic Irrational Trader (0 < η < η?):

wr,t ∼





(myopic) (hedging) (total)

1
1+η

+ 0 = 1
1+η

, 0 < λ < λr

1
1+η

+ η(γ−1)
γ(1+η)

= 1− η
γ(1+η)

, λr < λ < λS

1− η
γ

+ 0 = 1− η
γ
, λS < λ ≤ 1

wn,t ∼





(myopic) (hedging) (total)

γ+η
γ(1+η)

+ η(γ−1)
γ(1+η)

= 1, 0 < λ < λS

1 + 0 = 1, λS < λ ≤ 1

Case 3. Strongly Optimistic Irrational Trader, (η? < η):

wr,t ∼ 1 + 0 = 1, 0 < λ ≤ 1

wn,t ∼





(myopic) (hedging) (total)

1 + η
γ

+ η(γ−1)
γ

= 1 + η, 0 < λ < λn

1 + η
γ

+ 0 = 1 + η
γ
, λn < λ ≤ 1

Since the moments of stock returns are asymptotically state-independent, it is intuitive

to assume, as in assumption (ii), that the implied portfolio policies are myopic. Proposition

7 shows, however, that this is not true. In other words, the asymptotic portfolio policy

can differ significantly from what the asymptotic moments of stock returns suggest. The

deviation comes from the hedging demand in the traders’ portfolio holdings. By definition,

the myopic component of portfolio holdings depends only on the instantaneous moments of

stock returns. Hence, it converges to its partial equilibrium value as long as the instantaneous

moments of stock returns converge. Given that the instantaneous moments of stock returns

are asymptotically state-independent, it may seem surprising that the hedging component

of portfolio holdings may not converge to zero, as Case 3 of Proposition 7 illustrates for the

irrational trader. The reason behind this result is that limiting moments of stock returns

do not fully characterize the investment opportunities traders face. In particular, for finite

values of T , moments of stock returns do not always stay constant. As we have seen in Figure

1, for example, return volatility can change significantly as the relative wealth distribution

changes. As T becomes large, the probability for the reversal of wealth distribution between
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the rational and irrational traders and changes in the equilibrium return moments becomes

smaller. Nonetheless, the possibility of such a change remains important, which gives rise to

the significant hedging demand in the traders’ portfolio holdings.
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Figure 9: The behavior of the economy for the following parameter values: µ = 0.12, σ = 0.18,
γ = 5, T = 30. Also, η = 2η? = 16, i.e., the irrational trader is strongly optimistic. The time of
observation is set at t = 0.15× T . The horizontal axis in all panels is the normalized state variable,
g0,T = BT /

√
T , which has a standard normal distribution with zero mean and unit variance, shown

by the shaded area (vertical axis on the right). The four panels from top to bottom show (i)
the instantaneous Sharpe ratio of returns, µS/σS ; (ii) the state dependence of the indirect value
function of the rational trader, as captured by the function h(t,Dt) in (23); (iii) the portion of
the portfolio strategy of the irrational trader attributable to hedging demand, defined as whedge

n =
wn − µS + ησ2

S/(γσ
2
S); (iv) the fraction of the aggregate wealth controlled by the rational agent,

Wr/(Wr +Wn).

Figure 9 illustrates the behavior of the economy when the irrational trader is strongly

optimistic (η > η?). In this case (Case 3 in Propositions 4, 6 and 7), the irrational trader

does not survive and has no price impact in the long-run. For the chosen set of parameter

values, λn = 0.29. The time of observation t is set to be 0.15T . Thus t < λnT . As the

bottom panel of Figure 9 shows, with almost probability one, the rational trader controls

most of the wealth in the economy by this point in time. As Proposition 6 states, at this point

the stock price converge closely to the price in the economy populated by only the rational
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trader. If we consider the Sharpe ratio of the stock, defined by µS/σS, which characterizes

the instantaneous investment opportunity traders face, it also converges to its value in the

limiting economy with the rational trader only, which is γσ. The top panel plots the value

of the Sharpe ratio for different states of the economy at time t. It is obvious that with

almost probability one, the value of the Sharpe ratio equals the limit γσ (the probability

distribution of the state of economy is shown by the shaded area). However, for very large

values of Dt (or Bt), the economy will be dominated by the irrational trader (as we see from

the bottom panel) and the instantaneous Sharpe ratio of the stock converges to its value in

an economy populated by the irrational trader only, which is (γ − η)σ. Such a possibility,

even though with very low probability under the true probability measure, can be important

to the irrational trade because under his belief, its likelihood can be non-trivial. As a result,

it can have a significant impact on the irrational trader’s portfolio choice.

The importance of these low probability but large changes in the Sharpe ratio is reflected

in the traders’ indirect utility function. Since traders in our model have constant relative

risk aversion, the indirect utility function of the irrational trader can be expressed in the

form

V (t,Wt, Dt) ≡ Et

[
ξT
W 1−γ

T

1− γ

]
=

1

1− γ
eh(t,Dt)W 1−γ

t ≡ Et

[
ξT

1

1− γ
C1−γ
n,T

]
. (23)

State dependence of the indirect utility function, i.e., the effect of possible changes in the

Sharpe ratio, is captured by the function h(t,Dt). The second panel of Figure 9 shows that

for the irrational trader h is non-constant over a wide range of values of Dt. It exhibits

significant state-dependence even when the contemporaneous Sharpe ratio is approximately

constant. It is this state-dependence in the indirect utility function that induces hedging

demand. The third panel of Figure 9 shows hedging demand of the irrational trader. Over

a wide range of values of Dt, his hedging demand is non-zero. In particular, it is close to its

asymptotic value η(γ − 1)/γ (see Proposition 7), which equals 12.8 for the chosen values of
parameters.

What we conclude from this is that convergence of the stock price to a limiting process

does not necessarily imply convergence of the traders’ portfolio policies to their policies

under the limiting price process. Price paths of small probability under the true probability

measure can have a significant impact on the traders’ portfolio policies. Thus, assumption

(ii) of the partial equilibrium analysis that convergence in price gives convergence in portfolio

policies does not hold in general. In the case we are interested in, the irrational trader is
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strongly optimistic and does not survive in the long-run. As his wealth diminishes, the stock

price becomes very close to the price set by the rational trader who dominates the economy

and the instantaneous moments of stock returns stay constant with almost probability one.

Yet, the irrational trader’s portfolio policy remains far from myopic. The presence of the

hedging component in his holdings can lower the growth of his portfolio and reduce his chance

of recovery from past losses. Such a mechanism is overlooked in the partial equilibrium,

which creates the difference in the survival results between partial equilibrium and general

equilibrium analysis.

In the appendix, we also examine the dynamics of the wealth distribution of the economy

as well as the welfare implications of the irrational beliefs.

8 Conclusion

The analysis above has examined the long-run survival of irrational traders who use persis-

tently wrong beliefs to make their portfolio choices. Using a parsimonious model with no

intermediate consumption, we have shown that the partial equilibrium arguments to sup-

port the long-run survival of irrational traders are flawed and that the impact irrational

traders have on equilibrium prices is important in determining their long-run fortunes. In

particular, we have found that an irrational trader with a very small wealth may still have a

large impact on the stock price, and, furthermore, that irrational traders with beliefs mildly

different from the true probabilities can survive in the long run.

For tractability, we confined our analysis to preferences with constant relative risk aver-

sion. Extensions of our analysis to more general preferences are possible and may yield

unexpected results. We have also assumed that the rational and irrational traders differ

only in their beliefs but not in their preferences. This allows us to focus on the impact of

irrational beliefs on survival and prices. Of course, differences in time and risk preferences

can have their own implications for long-run survival.

Perhaps more important is the extension of these results to models with intermediate

consumption and to alternative preferences. We have deferred this to a second paper but,

while there is much more to be done on this topic, it is fair to say that a general message

is emerging and is unlikely to be overturned. Namely, survival and price impact are related

but independent concepts and the arguments of partial equilibrium are not to be trusted.

In our model irrational traders could survive and could even dominate rational traders, but,
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contrary to the partial equilibrium analysis, even if they did not survive, they could still

have a persistent impact on prices.
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A Wealth Distribution and Welfare

Wealth Distribution

Section 5 discussed the limiting distribution of wealth between the rational and irrational

traders at the final date T , as T approached infinity. We now characterize the dynamics of

the wealth distribution in the economy.

Proposition 8 (Individual Wealth) At t = λT , the individual wealth processes behave as

follows when T →∞.

Case 1. Pessimistic Irrational Trader (η < 0):

Wr,t

Wn,t

∼





e
1

2
[η−2(γ−1)]ησ2t−ησBt , 0 < λ < λn

e
1

2
(η2/γ2)(γ−1)σ2T+ 1

2
[(η2/γ2)−2η(γ−1)/γ]σ2t−(η/γ)σBt , λn < λ ≤ 1

Wr,t ∼ St

Case 2. Moderately Optimistic Irrational Trader (0 < η < η?):

Wr,t

Wn,t

∼





e
1

2
[η−2(γ−1)]ησ2t−ησBt , 0 < λ < λr

e−
1

2
(η2/γ2)(γ−1)σ2T+ 1

2
[(η2/γ2)(2γ−1)−2η(γ−1)/γ]σ2t−(η/γ)σBt , λr < λ ≤ 1

Wn,t ∼ St

Case 3. Strongly Optimistic Irrational Trader (η? < η):

Wr,t

Wn,t

∼





e
1

2
[η−2(γ−1)]ησ2t−ησBt , 0 < λ < λn

e
1

2
(η2/γ2)(γ−1)σ2T+ 1

2
[(η2/γ2)−2η(γ−1)/γ]σ2t−(η/γ)σBt , λn < λ ≤ 1

Wr,t ∼ St

The results for Case 3 confirms our analysis of the difference in the irrational trader’s

survival between general and partial equilibrium analysis. Despite the convergence of the

stock price to its limiting process, the irrational trader does not follow a myopic portfolio

policy as the limiting price process implies. The hedging demand in his portfolio policy
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changes the growth rate of his wealth from that of the myopic policy and the chance of his

survival.

Lastly, we show that even when the stock price, the traders’ portfolio policies and their

wealth eventually do converge to their limiting values, the irrational trader suffered from

wealth losses may not recover, in contrast to the partial equilibrium argument. Consider

a combination of model parameters satisfying η? < η < γη?. In this case, for sufficiently

large values of t, the stock price, the traders’ portfolio policies, and the growth rate of their

wealth do eventually converge to their partial equilibrium values as Propositions 6 and 7

show. Yet, from Proposition 8, the irrational trader still becomes extinct in the long-run.

The reason for this can be seen from Proposition 8 and is further illustrated in Figure 10

(the second curve from the top). Even though for t = λT , λ > λn, the relative wealth of the

irrational trader is growing, it does so only following a period of decline, i.e., 0 < λ < λn.

This happens because assumption (ii) of the partial equilibrium analysis does not hold for

0 < λ < λn and the irrational trader suffers significant decline in relative wealth growth this

period. If this decline is below certain threshold, he will be unable to recover despite relative

growth afterwards and cannot escape from relative extinction.

-

6
lim
T→∞

1
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Figure 10: Asymptotic Wealth Behavior.
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Utility Loss of Irrational Beliefs

As we have established, the irrational trader can have a significant impact on the behavior of

stock returns. In this subsection we show that the impact on prices is associated with utility

loss by irrational traders. By revealed preference, the rational trader always benefits from the

presence of irrational traders, since the autarchic solution remains feasible in our equilibrium

economy. We quantify this benefit and show that it is asymptotically independent of the

exact belief of the irrational traders, and, surprisingly, therefore independent of the long run

survival of the rational trader.

For γ > 1 and η 6= 0, the certainty equivalent of the terminal consumption of the rational
trader in the equilibrium economy we are analyzing is given by

C.E. (Cr,T ) ≡
(
E0

[
C1−γ
r,T

]) 1

1−γ ∼ e(µ−
1

2
σ2γ)T .

The above expression is the same as the certainty equivalent of consuming the entire aggre-

gate dividend at time T. Thus, we find that, in the limit of economy horizon approaching

infinity, the rational trader realizes the largest possible benefit of risk sharing, and this con-

clusion is independent of the exact belief bias η exhibited by the irrational trader. This

remains the case even if the rational trader does not survive in the long run.

Next, we compute the certainty equivalent of the consumption of the irrational trader.

We are using the objective probability distribution in our calculation, i.e., we are finding the

certainty equivalent the the rational trader would assign to the terminal consumption profile

of the irrational trader. As before, we assume γ > 1 and η 6= 0. We find

C.E. (Cn,T ) ≡
(
E0

[
C1−γ
n,T

]) 1

1−γ ∼ e(µ−
1

2
σ2γ− 1

2
η2σ2(2γ−1)/γ2)T . (24)

We know from our previous analysis that the irrational traders can have long-run impact

on the asset prices in equilibrium. To quantify this impact, we consider that certainty

equivalent of the consumption chosen by the irrational trader facing the prices free of their

impact on prices, i.e.., the prices in the economy populated exclusively by rational traders.

Assuming that the endowment of the irrational trader is one half of the aggregate dividend,

a straightforward calculation yields the certainty equivalent of

1

2
e(µ−

1

2
σ2γ− 1

2
η2σ2 1

γ )T .

Since γ > 1, the above expression has higher growth rate in T than (24), i.e., asymptotically
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the irrational traders are hurt by their own price impact. As a quantitative measure of

the resulting utility loss one can use the fraction of the aggregate dividend with which the

irrational agent must be endowed in an economy without price impact to achieve the same

certainty equivalent consumption as in our general equilibrium economy. We find that this

fraction converges to zero asymptotically.

B Proof of Proposition 1

The optimality conditions of the maximization problem in (9a) require that

Cr,T = Cn,T (b ξT )
1/γ .

Combined with the market clearing condition (9b), this implies (10a) and (10b).

The state price density must be proportional to the traders’ marginal utilities. Since we

set the interest rate equal to zero, the state price density conditional on the information

available at time t is given by

(
1 + (b ξT )

1/γ
)γ

D−γ
T

Et

[(
1 + (b ξT )

1/γ
)γ

D−γ
T

] .

The price of any payoff ZT is therefore given by (12).

The individual budget constraint in a dynamically complete market is equivalent to the

static constraint that the initial wealth of a trader is equal to the present value of the trader’s

consumption (e.g., Cox and Huang (1989). Since the two traders in our model have identical

endowments at time t = 0, their budget constraints imply

Wr,0 =

E0

[
D1−γ

T

(
1 + (b ξT )

1

γ

)γ−1
]

E0

[
D−γ

T

(
1 + (b ξT )

1

γ

)γ] =

E0

[
D1−γ

T (b ξT )
1

γ

(
1 + (b ξT )

1

γ

)γ−1
]

E0

[
D−γ

T

(
1 + (b ξT )

1

γ

)γ] =Wn,0. (25)

We now verify that b = eησ
2(γ−1)T satisfies (25). Note that

D1−γ
T = e[(1−γ)(µ−σ2

2
)+ 1

2
(1−γ)2σ2]T e−

1

2
(1−γ)2σ2T+(1−γ)σBT

33



Define a new measure Q, such that

(
dQ

dP

)

T

= e−
1

2
(1−γ)2σ2T+(1−γ)σBT

where P is the original probability measure. Using the translation invariance property of

the Gaussian distribution, the random variable

BQ
T = BT − (1− γ)σT

is a standard normal random variable under Q. Thus, the equality

E0

[
D1−γ

T (b ξT )
1

γ

(
1 + (b ξT )

1

γ

)γ−1
]
= E0

[
D1−γ

T

(
1 + (b ξT )

1

γ

)γ−1
]

is equivalent to

EQ0

[
(ξQT )

1

γ

(
1 + (ξQT )

1

γ

)γ−1
]
= EQ0

[(
1 + (ξQT )

1

γ

)γ−1
]

where ξQT = exp(−1
2
σ2η2T + σηBQ

T ). Since the variable B
Q
T is equivalent in distribution to

BT , we can restate the last equality equivalently as

E0

[
ξ

1

γ

T

(
1 + ξ

1

γ

T

)γ−1
]
= E0

[(
1 + ξ

1

γ

T

)γ−1
]
.

To verify that the above equality holds, consider a function F (z) defined as

F (z) = E0

[(
e

1

2γ
zT + e−

1

2γ
zT ξ

1

γ

T

)γ]
. (26)

Changing the order of differentiation and expectation operators, (see Billingsley 1995, Th.

16.8),

F ′(z)|z=0 = E

[
1

2

(
1− ξ

1

γ

T

)(
1 + ξ

1

γ

T

)γ−1
]
.

Thus it suffices to prove that F ′(z)|z=0 = 0.

Since

E0

[(
e

1

2γ
zT + e−

1

2γ
zT ξ

1

γ

T

)γ]
= E0

[(
e

1

2γ (zT−
1

2
η2σ2T+ησBT ) + e−

1

2γ (zT−
1

2
η2σ2T+ησBT )

)γ
ξ

1

2

T

]
(27)
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if we define a new measure Q so that

(
dQ

dP

)

T

= e−
1

8
η2σ2T+ 1

2
ησBT

and use a change of measure similar to its earlier application in this proof, we find that (27)

equals

E0

[(
e

1

2γ
(zT+ησBT ) + e−

1

2γ
(zT+ησBT )

)γ]
e−

1

8
η2σ2T .

The symmetry of the distribution of the normal random variable BT implies that F (z) =

F (−z), therefore F ′(z)|z=0 = 0. This verifies that b = eησ
2(γ−1)T .

The stock price is given by

St =
Et

[
D1−γ

T

(
1 + (bξT )

1/γ
)γ]

Et

[
D−γ

T

(
1 + (bξT )

1/γ
)γ]

We now prove that the conditional volatility of stock returns is bounded between σ and

σ(1 + |η|) . Define

A = e

(
−ησ2

γ

)
(T−t)

g = e−
1

2
η2σ2 1

γ
T+σ2η(γ−1) 1

γ
t+ ησ

γ
BT

Then, as we have shown above, the stock price can be equivalently expressed as

St = e(µ−σ
2γ)T+(− 1

2
σ2(1−2γ))teσBt

Et [(1 + g)γ]

Et [(1 + gA)γ]

and therefore, by Ito’s lemma, its volatility σSt is given by

σSt =
∂ lnSt
∂Bt

= σ + ησ

(
Et [(1 + gA)γ−1]

Et [(1 + gA)γ]
− Et [(1 + g)γ−1]

Et [(1 + g)γ]

)
. (28)

To establish the bounds on stock return volatility, we prove that

Et [(1 + gA)γ−1]

Et [(1 + gA)γ]
− Et [(1 + g)γ−1]

Et [(1 + g)γ]
≥ 0 (29)

for A ≤ 1 with the opposite inequality for A ≥ 1. Note that for any twice-differentiable
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function F (A, γ),

∂

∂γ

∂

∂A
ln (F (A, γ)) ≥ 0⇒ ∂

∂A
ln (F (A, γ − 1))− ∂

∂A
ln (F (A, γ)) ≤ 0⇒ ∂

∂A

F (A, γ − 1)
F (A, γ)

≤ 0

Thus, to prove (29), it suffices to show that ∂2 ln (Et [(1 + gA)γ]) / ∂A∂γ ≥ 0. The function
(1 + gA)γ is log-supermodular in A, g, and γ, since it is positive and it’s cross-partial

derivatives in all arguments are positive. Thus, according to the additivity property of log-

supermodular functions (e.g., Athey (2002)), Et [(1 + gA)γ] is log-supermodular in A and γ,

i.e., ∂2 ln (Et [(1 + gA)γ ]) / ∂A∂γ ≥ 0.

Because A > 1 if and only if η < 0 , we have shown that

η

(
Et [(1 + gA)γ−1]

Et [(1 + gA)γ]
− Et [(1 + g)γ−1]

Et [(1 + g)γ]

)
≥ 0

and hence σSt ≥ σ.

Because

(
Et[(1+gA)γ−1]
Et[(1+gA)γ ]

− Et[(1+g)γ−1]
Et[(1+g)γ ]

)
is bounded between −1 and 0 for η < 0, and be-

tween 0 and 1 for η > 0, we obtain the stated upper bound from (28): σSt ≤ σ(1 + |η|).
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Appendix to

The Price Impact and Survival of Irrational Traders

by

Leonid Kogan, Stephen Ross, Jiang Wang and Mark Westerfield

Proof of Proposition 4

According to (10a) and (10b),

Cn,T

Cr,T

= (b ξT )
1/γ = exp

[
1

γ

(
−1
2
σ2η2 + ησ2(γ − 1)

)
T +

1

γ
ησBT

]
.

Using the strong Law of Large Numbers for Brownian motion (see Karatzas and Shreve

(1991, Sec. 2.9.A)), for any value of σ,

lim
T→∞

eaT+σBT =

{
0, a < 0

∞, a > 0
(30)

where convergence takes place almost surely. The statement of the proposition then follows.

Proof of Proposition 5

Equations (10a) and (10b) state that

Cr,T =
1

1 + (b ξT )1/γ
DT

Cn,T =
(b ξT )

1/γ

1 + (b ξT )1/γ
DT

If µ > 1
2
σ2, then the irrational trader’s consumption converges to zero if and only if

(b ξT )
1/γDT converges to zero:

(b ξT )
1/γDT = exp

[(
ησ2 1

γ
(γ − 1)− 1

2
η2σ2 1

γ
+ µ− 1

2
σ2

)
T +

(
ση
1

γ
+ σ

)
BT

]
. (31)

Similarly, the rational trader’s consumption converges to zero if and only if DT

(b ξT )1/γ
converges

to zero:

DT

(b ξT )
1/γ
= exp

[(
−ησ2 1

γ
(γ − 1) + 1

2
η2σ2 1

γ
+ µ− 1

2
σ2

)
T +

(
−ση 1

γ
+ σ

)
BT

]
. (32)
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According to (30), (31) and (32) imply that

Cn,T → 0 ⇔ γ
(
2
µ

σ2
− 1
)
< −2η(γ − 1) + η2 (33a)

Cr,T → 0 ⇔ γ
(
2
µ

σ2
− 1
)
< 2η(γ − 1)− η2 (33b)

The right hand side of (33a) is convex in η, thus Cn,T → 0 for η < (γ−1)−
√
(γ − 1)2 + γ

(
2 µ
σ2 − 1

)

and η > (γ − 1) +
√
(γ − 1)2 + γ

(
2 µ
σ2 − 1

)
.

Similarly, Cn,T → 0 for η > (γ − 1) −
√
(γ − 1)2 −

(
2 µ
σ2 − 1

)
and η < (γ − 1) +

√
(γ − 1)2 − γ

(
2 µ
σ2 − 1

)
. Such a value of η exists as long as (γ − 1)2 − γ

(
2 µ
σ2 − 1

)
> 0.

Proof of Propositions 6, 8

Our analysis will make use of the following technical result.

Lemma 1 Consider a stochastic process Xt = ec t+v Bt and a constant a ≥ 0. Assume that

ac + 1
2
v2a2(1 − λ) 6= 0, 0 ≤ λ < 1. Then the limit limT→∞ Et[X

a
T ] is equal to either zero or

infinity almost surely, where we set t = λT . The following convergence results hold:

(i) (Point-wise convergence)

lim
T→∞

Et [(1 +XT )
a]

1 + Et [Xa
T ]

= 1. (34)

(ii) (Convergence of moments)

lim
T→∞

meant Et [(1 +XT )
a]

meant (1 + Et [Xa
T ])

= 1 (35)

lim
T→∞

volt Et [(1 +XT )
a]

volt (1 + Et [Xa
T ])

= 1 (36)

where meantft and voltft denote the instantaneous mean and standard deviation of the process

ln ft respectively.
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Proof of Lemma 1

(i) Consider the conditional expectation

Et [X
a
T ] = exp

[
ac T +

1

2
v2a2(1− λ)T + avBt

]
. (37)

The limit of Et[X
a
T ] is equal to zero if ac+

1
2
v2a2(1−λ) < 0 and equal to infinity if the opposite

inequality holds (according to the strong Law of Large Numbers for Brownian motion, see

Karatzas and Shreve, 1991, Sec. 2.9.A).

Because the function ac T + 1
2
v2a2(1− λ)T is convex in a and equal to zero when a = 0,

we find that for a ≥ 1

Et [X
a
T ]→∞ ⇒ Et [X

z
T ]

Et [Xa
T ]
→ 0, ∀z ∈ (0, a) (38)

Et [X
a
T ]→ 0 ⇒ Et [X

z
T ]→ 0, ∀z ∈ (0, a). (39)

We prove the result of the lemma separately for six regions that cover the entire parameter

space.

Case 1: 0 ≤ a ≤ 1,Et [Xa
T ]→∞.

If XT ≤ 1, (XT + 1)
a ≤ 2a, while if XT ≥ 1 ⇒ (XT + 1)

a − Xa
T ≤ aXa−1

T ≤ a since

(XT + 1)
a is concave and a− 1 ≤ 0. Therefore, Xa

T ≤ (1 +XT )
a ≤ Xa

T + 2
a + a, and hence

limT→∞ Et [(1 +XT )
a]/Et [X

a
T ] = 1, which implies limT→∞ Et [(1 +XT )

a]/(1 + Et [X
a
T ]) = 1.

Case 2: 1 ≤ a ≤ 2,Et [Xa
T ]→∞.

By the mean value theorem, (1 +XT )
a = Xa

T + a (w +XT )
a−1 for some w ∈ [0, 1]. Using

the analysis of case 1, (w +XT )
a−1 ≤ (1 +XT )

a−1 ≤ Xa−1
T + 2a−1 + a− 1, which, combined

with (38), implies that limT→∞ Et [(1 +XT )
a]/Et [X

a
T ] = 1 and the main result follows.

Case 3: 2 ≤ a,Et [X
a
T ]→∞.

By the mean value theorem, (1 +XT )
a = Xa

T + a (w +XT )
a−1 for some w ∈ [0, 1]. By

Jensen’s inequality, ((1 +XT )/2)
a−1 ≤ (1 +Xa−1

T )/2. Thus,

0 ≤ (w +XT )
a−1 ≤ (1 +XT )

a−1 ≤ 2a−2 + 2a−2Xa−1
T

which, combined with (38) implies that limT→∞ Et [(1 +XT )
a]/Et [X

a
T ] = 1 and the main

result follows.
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Case 4: 0 ≤ a ≤ 1,Et [X
a
T ]→ 0:

If XT ≤ 1, (1 +XT )
a ≤ 1 + XT ≤ 1 + Xa

T , while if XT ≥ 1, (1 +XT )
a ≤ Xa

T +

a ≤ 1 + Xa
T since (1 +XT )

a is concave. Thus, 1 ≤ (1 +XT )
a ≤ 1 + Xa

T and therefore

limT→∞ Et [(1 +XT )
a] = 1, which implies the main result.

Case 5: 1 ≤ a ≤ 2,Et [X
a
T ]→ 0.

By the mean value theorem, (1 +XT )
a = 1 + aXT (1 + wXT )

a−1 for some w ∈ [0, 1].
Further, XT (1 + wXT )

a−1 ≤ XT (1 + XT )
a−1 ≤ XT

(
Xa−1

T + 2a−1 + a− 1
)
, using the same

argument as in case 1. Since limT→∞ Et [X
a
T ] = 0, according to (39), limT→∞ Et [XT ] = 0

and hence limT→∞ Et [(1 +XT )
a] = 1.

Case 6: 2 ≤ a,Et [X
a
T ]→ 0.

By the mean value theorem, (1 +XT )
a = 1 + aXT (1 + wXT )

a−1 for some w ∈ [0, 1].
Further, XT (1 + wXT )

a−1 ≤ XT (1 + XT )
a−1 ≤ 2a−2XT + 2

a−2Xa
T by Jensen’s inequal-

ity. Since limT→∞ Et [X
a
T ] = 0, according to (39), and limT→∞ Et [XT ] = 0 and hence

limT→∞ Et [(1 +XT )
a] = 1.

(ii) Since the conditional expectations Et [(1 +XT )
a] and Et [1 +Xa

T ] are martingales,

they have zero drift for all values of T and t. By Ito’s lemma, convergence of the first

moments of the natural logarithms of the same processes follows from convergence of the

second moments.

We now establish convergence of volatility of the process Et [(1 +XT )
a]. According to

Ito’s lemma, one must show that

lim
T→∞

∂ ln Et [(1 +XT )
a] /∂Bt

∂ ln(1 + Et [Xa
T ])/∂Bt

= 1, ∀a ≥ 0.

Given (37), it suffices to prove that limT→∞ ∂ ln Et [(1 +XT )
a] /∂Bt = 0 if limT→∞ Et [X

a
T ] =

0 and limT→∞ ∂ ln Et [(1 +XT )
a] /∂Bt = av if limT→∞ Et [X

a
T ] =∞.

First, changing the order of differentiation and expectation operators (see Billingsley

1995, Th. 16.8),

∂ ln Et [(1 +XT )
a]

∂Bt

= av
Et [XT (1 +XT )

a−1]

Et [(1 +XT )a]
= av

(
1− Et [(1 +XT )

a−1]

Et [(1 +XT )a]

)
.
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Furthermore, according to part (i),

Et [(1 +XT )
a−1]

Et [(1 +XT )a]
∼ Et [(1 +XT )

a−1]

1 + Et [Xa
T ]

. (40)

Assume a ≥ 1. As we have shown in case 1 of the proof of part (i), Xa−1
T ≤ (1 +XT )

a−1 ≤
Xa−1

T +2a−1+a−1. If Et [X
a
T ]→∞, according to (38), Et

[
Xa−1

T

]
/Et [X

a
T ]→ 0, which yields

lim
T→∞

∂ ln Et [(1 +XT )
a]

∂Bt

= av.

Similarly, if Et [X
a
T ] → 0, then, according to (39), limT→∞ Et

[
Xa−1

T

]
= 0, which, according

to part (i), implies that limT→∞ Et [(1 +XT )
a−1] = 1 and

lim
T→∞

∂ ln Et [(1 +XT )
a]

∂Bt

= 0.

Next, consider the case of 0 < a < 1. If Et [X
a
T ]→∞, because Et [(1 +XT )

a−1] ≤ 1, (40)
implies limT→∞ ∂ ln Et [(1 +XT )

a]/∂Bt = a v.

Suppose that limT→∞ Et [X
a
T ] = 0. By Markov’s inequality, Pt [XT > ε] ≤ Et [Xa

T ]/ε
a →

0, for any ε > 0. Similarly, Pt [XT < ε] ≤ Et [(1 +XT )
a−1]/(1 + ε)a−1. Thus, 1 ≥ Et [(1 +XT )

a−1] ≥
Pt [XT < ε] (1 + ε)a−1, and therefore lim infT→∞ Et [(1 +XT )

a−1] ≥ (1 + ε)a−1 for any ε > 0.

This implies that limT→∞ Et [(1 +XT )
a−1] = 1, and therefore limT→∞ ∂ ln Et [(1 +XT )

a]/∂Bt =

0.

We establish the long-run behavior of the quantities St and Wr,t/Wn,t for the case when

γ > 1 and 0 < η < η? = 2(γ − 1). The results for all other regions in the parameter space
can be obtained similarly.

The equilibrium stock price and the ratio of the individual wealth processes are given by

St =
Et

[
D1−γ

T

(
1 + (b ξT )

1

γ

)γ]

Et

[
D−γ

T

(
1 + (b ξT )

1

γ

)γ] .

Wr,t

Wn,t

=

Et

[
D1−γ

T

(
1 + (b ξT )

1

γ

)γ−1
]

Et

[
D1−γ

T (b ξT )
1

γ

(
1 + (b ξT )

1

γ

)γ−1
] .

5



We therefore need to characterize the long-run behavior of the following four quantities:

Et

[
D1−γ

T

(
1 + (b ξT )

1

γ

)γ]

Et

[
D−γ

T

(
1 + (b ξT )

1

γ

)γ]

Et

[
D1−γ

T

(
1 + (b ξT )

1

γ

)γ−1
]

Et

[
D1−γ

T (b ξT )
1

γ

(
1 + (b ξT )

1

γ

)γ−1
]
.

We will establish the asymptotic behavior of the stock price process in detail, the corre-

sponding results for the wealth ratio process in Proposition 8 are obtained in a very similar

fashion.

Consider the first expression,

Et

[
D1−γ

T

(
1 + (b ξT )

1

γ

)γ]
= D1−γ

t Et

[(
DT

Dt

)1−γ
(
1 +

(
b ξt

ξT
ξt

) 1

γ

)γ]
.

Given the aggregate dividend process,

(
DT

Dt

)1−γ

= e(T−t)(µ(1−γ)− 1

2
σ2(1−γ)γ)e−

1

2
(1−γ)2σ2(T−t)+(1−γ)σ(BT−Bt).

As in the proof of Proposition 1, we introduce a new measure Q with the Radon-Nikodym

derivative
(
dQ

dP

)

t

= e−
1

2
(1−γ)2σ2(T−t)+(1−γ)σ(BT−Bt).

By Girsanov’s theorem, BT − Bt = BQ
T − BQ

t − (1 − γ)σ(T − t), where BQ
t is a Brownian

motion under the measure Q. Using the expression for b from Proposition 1, b = eT (γ−1)σ2η,

we find

Et

[
D1−γ

T

(
1 + (bξT )

1

γ

)γ]
= eT(µ(1−γ)− 1

2
σ2(1−γ)γ)+t(− 1

2
σ2(1−γ)2)+Bt(σ(1−γ))

× EQt
[(
1 + e(−

1

2
η2σ2 1

γ )T+( 1

γ
(γ−1)σ2η)t+ ησ

γ
BQ
T

)γ]
. (41)

We will omit the superscript Q in (41), since the distribution of BQ
t under the measure Q is

the same as the distribution of Bt under the original measure P .
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Using the assumption that t = λT , define

XT = e(−
1

2
η2σ2 1

γ
+(1−λ) 1

γ
(γ−1)σ2η)T+ ησ

γ
BT .

We now apply the result of lemma 1, with

c = −1
2
η2σ2 1

γ
+ (1− λ)

1

γ
(γ − 1)σ2η

v =
ησ

γ
,

a = γ.

Since we are assuming γ > 1 and 0 < η < 2 (γ − 1), limT→∞ Et[X
a
T ] =∞.

According to lemma 1,

Et

[
D1−γ

T

(
1 + (b ξT )

1

γ

)γ]
∼ e(µ(1−γ)− 1

2
σ2(1−γ)γ)T+(− 1

2
σ2(η+1−γ)2)t+σ(η+1−γ)Bt .

We next examine

Et

[
D−γ

T

(
1 + (b ξT )

1

γ

)γ]
.

Using a similar change of measure, we find

Et

[
D−γ

T

(
1 + (b ξT )

1

γ

)γ]
= e(−µγ+ 1

2
σ2(1+γ)γ)T+(− 1

2
σ2γ2)t+(−σγ)Bt

× Et
[(
1 + e(−σ

2η 1

γ
−

1

2
η2σ2 1

γ )T+σ2ηt+ ησ
γ
BT
)γ]

.

We apply lemma 1, setting XT = ec T+v BT and

c = −σ2η
1

γ
− 1
2
η2σ2 1

γ
+ (1− λ)σ2η

v =
ησ

γ

a = γ.

The value of limT→∞ Et[X
a
T ] depends on the exact combination of the model parameters. In
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particular,

lim
T→∞

Et[X
a
T ] =

{ ∞, −2η + λ(2γη − η2) > 0,

0, −2η + λ(2γη − η2) < 0,

(see the proof of lemma 1, part (i)). Define

λS =
2

2γ − η
.

Note that, because γ > 1 and 0 < η < 2 (γ − 1), 0 < λS < 1. Then, limT→∞ Et[X
a
T ] = ∞

if λ > λS and 2γη − η2 > 0 or if λ < λS and 2γη − η2 < 0, and the limit is equal to zero

otherwise.

By lemma 1, if limT→∞ Et[X
a
T ] =∞,

Et

[
D−γ

T

(
1 + (b ξT )

1

γ

)γ]
∼ eT(−µγ+ 1

2
σ2(1+γ)γ−σ2η)T+(− 1

2
σ2(η−γ)2)t+σ(η−γ)Bt

while if limT→∞ Et[X
a
T ] = 0, then

Et

[
D−γ

T

(
1 + (b ξT )

1

γ

)γ]
∼ e(−µγ+ 1

2
σ2(1+γ)γ)T+(− 1

2
σ2γ2)t+(−σγ)Bt .

Using our definition of λS, we re-state these results as

Et

[
D−γ

T

(
1 + (b ξT )

1

γ

)γ]
∼





e(−µγ+ 1

2
σ2(1+γ)γ)T+(− 1

2
σ2γ2)t−σγBt , 0 ≤ λ < λS

e(−µγ+ 1

2
σ2(1+γ)γ−σ2η)T+(− 1

2
σ2(η−γ)2)t+σ(η−γ)Bt , λS < λ ≤ 1

Having established the behavior of both the numerator and the denominator of the ex-

pression for the stock price, we have proven the limiting result for the stock price itself.

According to part (ii) of lemma 1, not only the stock price, but also the mean and volatility

of returns behave according to the asymptotic expressions of Proposition 6 in the limit of

the economy horizon T approaching infinity. The same is true for the ratio of individual

wealth and the volatility of that ratio in Proposition 8.

Proof of Proposition 7

When the financial markets are dynamically complete and there is a single source of un-

certainty (driven by a Brownian motion), the fraction of the agent’s wealth invested in

stock can be computed as a ratio of the instantaneous volatility of the agent’s wealth to
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the instantaneous volatility of the cumulative stock return process. Propositions 6 and 8

provide expression for the long-run behavior of the volatility of stock returns and individual

wealth processes, from which the expression for portfolio holdings follow immediately. To

decompose the portfolio holdings of the rational trader into as a sum of the myopic and

hedging demands, we compute the hedging demand as µS/(γσ
2
S), where µS and σS are the

drift and the diffusion coefficients of the stock return process. The difference between the

total portfolio holdings and the myopic component define the agent’s hedging demand. For

the irrational trader, the calculations are analogous, except the myopic demand is given by

µ̂S/(γσ
2
S) = (µS + ησσS)/(γσ

2
S), where µ̂S is the expected stock return as perceived by the

irrational trader.

9


