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Abstract

In the context of the theory and computation of fixed points of

continuous mappings, researchers have developed combinatorial analogs of

Brouwer's fixed-point theorem on the simplex and on the n-cube. Although

the simplex and the cube have different combinatorial properties regarding

their boundaries, they are both instances of a simplotope, which is the

cross-product of simplices. This paper presents three combinatorial theorems

on the simplotope, and shows how each translates into some known and new

results on the simplex and cube, including various forms of Sperner's lemma.

Each combinatorial theorem also implies set covering lemmas on the simplotope,

the simplex, and the cube, including the Generalized Covering lemma, the

Knaster-Kuratowski-Mazurkiewicz lemma, and a lemma of Freidenfelds.

Key Words: simplotope, simplex, cube, fixed-point, V-complex, combinatorial

lemma, set covering.
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1. Introduction

In the context of the theory and computation of fixed-points of continuous

mappings, researchers have developed combinatorial analogs of Brouwer's

fixed-point theorem on the simplex (see [1], [3], [5], [9], and [10]) and the

n-cube (see [3], [5], [7]). Although the simplex and the cube have different

combinatorial properties regarding their boundaries, they are both instances

of a simplotope, which is the cross-product of simplices. This paper presents

three combinatorial theorems on the simplotope, and shows how each translates

into some known and new results on the simplex and cube. It is shown that

these three theorems are each equivalent to Brouwer's fixed-point theorem,

in the sense that each yields a relatively short proof of Brouwer's theorem,

and vice versa. Furthermore, each combinatorial theorem implies a set

covering lemma on the simplotope, that in turn implies set covering lemmas

on the cube and simplex, including the Generalized Covering lemma [5], the

Knaster-Kuratowski-Mazurkiewicz lemma [6] and a lemma of Freidenfelds [2]

on the simplex.

Sperner's lemma [10] and Scarf's dual Sperner lemma 9] rely on a

"proper" labelling and a "dual proper" labelling of the vertices of a

triangulation of the simplex, where the labelling is restricted on the boundary

in each instance. On the other hand, the Generalized Sperner Lemma ([1] or

[3]) relies on no restriction on the labelling used. Generalizing the above,

the first of the three combinatorial theorems on the simplotope presented

herein does not depend on any restrictions on the labelling on the boundary.

The second and third combinatorial theorems on the simplotope depend on a

proper and dual proper labelling of the simplotope, where these terms are

defined precisely in section 4.
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The notation used is presented in section 2. In section 3, we give a

synopsis of the terminology and theory of V-complexes, as presented in [4].

This theory is central to the proofs of the combinatorial theorems to

follow. In section 4, the three combinatorial theorems are proved, and

their equivalence to Brouwer's theorem is demonstrated. Furthermore, three

set covering lemmas on the simplotope are also presented. In section 5, the

results of sections 4 are applied to the simplex. These results include

Sperner's lemma [10], Scarf's dual Sperner lemma [9], the Generalized Sperner

lemma ([1] a [3]), The Generalized Covering lemma of [5], the Knaster-

Kuratowski-Mazurkiewicz lemma [6], and a lemma of Freidenfelds [2]. In

section 6, the results of section 4 are applied to the cube. These results

include lemmas 1 and 2 of [5], and new results as well. Section 7 contains

concluding remarks.
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2. Notation

Let Rn denote real n-dimensional space, and define e to be the vector of

l's, namely e = (1,..., 1). Let denote the empty set, and let SI denote the

cardinality of a set S. For two sets S, T, let S\T = {x x e S, x T}.

Let v0 ,..., vm be vectors in Rn. If the matrix

has rank(m + 1), then the convex hull of v0 ,..., vm, denoted (v0,..., vm is

said to be a real m-dimensional simplex, or more simply an m-simplex. If

(v,..., vm> is an m-simplex and {v ,..., v is a nonempty subset of

{v0,..., vOm, then T = (>,, V k> is a k-face or face of a.

Let H be an m-dimensional convex set in IRn. Let C be a collection

of m-simplices a together with all of their faces. C is a triangulation

of H if

i) H - U a,
acc

ii) a, r C imply a n E C, and

iii) If a is an (m-l)-simplex of C, a is a face of at most two m-simplices

of C.

C is said to be locally finite if for each vertex v e H, the set of simplices

a C that contain v is a finite set.

If S1,..., Sn are n simplices in IR ,..., R , respectively, the

set S = S1 x ... x Sn in IR x ... xR is called a simplotope. Thus a

simplotope is the cross product of n simplices, for n 1. Note that any

simplex is itself a simplotope (by setting n = 1), and the n-cube

{x E Mn | 0 < x e} is just the cross product of the n 1-simplices

{x 0 xj < 1, = 1,..., n
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3. Review of V-Complex Terminology and Results

This section presents a condensation of the terminology and major

results concerning the theory of V-complexes, as presented in [4].

This material is central to proofs of the combinatorial theorems in Section 4.

An abstract complex consists of a set of vertices K0 and a set of finite

nonempty subsets of K , denoted K, such that

i) v K implies {v} E K

ii) * $ x c y E K implies x K.

An element x of K is called in abstract simplex, or more simply a simplex.

If x K and xf = n + 1, then x is called an n-simplex, where 11 denotes

cardinality. Technically, an abstract complex is defined by the pair (KO, K).

0
However, since the set K is implied by K, it is convenient to denote the

complex by K alone. An abstract complex K is said to be finite if K is

finite, and is locally finite if for each v K 0, the set of simplices

x K for which v x is a finite set.

An n-dimensional pseudomanifold, or more simply an n-pseudomanifold,

where n > 1, is a complex K such that

i) x K implies there exists y K with lYl - n + 1 and x c y.

ii) If x K and Ixl = n, then there are at most two n-simplices of K

that contain x.

Let K be an n-pseudomanifold, where n > 1. The boundary of K, denoted

aR, is defined to be the set of simplices x K such that x is contained in

an (n - 1)-simplex y K, and y is a subset of exactly one n-simplex of K.

A O-dimensional pseudomanifold K is defined to be a set of one of the

following two forms:
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i) K { , {v}}, where KO = {v}, or

ii) K = {, {u}, {v}}, where KO {u, v}.

Because K contains , the empty set, as a member, K is not properly a complex

by the usual definition. Here, however, is defined as a -1-simplex. If

K is of type (i) above, we denote K = { . If K is of type (ii) above, then

aK = %, i.e. K has no boundary.

If C is a triangulation of a set H in Rn with vertex set K , then

corresponding to each simplex a in C is its set of vertices {v0,..., vk}.

Let K be collection of these sets of vertices together with their nonempty

subsets. Then K is a pseudomanifold and K is defined to be the pseudomanifold

corresponding to C.

Let K be a locally-finite abstract complex with vertices KO. Let N

be a fixed finite nonempty set, called the label set. Let 7 denote a

collection of subsets of N, denoted the admissible subsets of N. Let A(-)

be a map A(-) : -, 2K \ , where 2S denotes the collection of subsets of a

set S. K, N, 7, A(-) are said to constitute a V-complex with operator A(-)

and admissible sets , if the following eight conditions are met:

i) K is a locally finite complex with vertices K0

ii) 7 c 2N

iii) T c'J, S e implies S n T 

iv) A(.) : 7'- 2K \ 

v) For any x e K, there is a T 7 such that x E A(T)

vi) For any S, T E , A(S n T) = A(S) n A(T)

vii) For T , A(T) is a pseudomanifold of dimension ITI

viii) If T E 7 and T u j} 7 but j T, then A(T) c A(T u {j}).

-3.1-
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The nomenclature "V-complex" is short for variable-dimension complex,

and derives from property (vii) above, where the dimension of the

pseudomanifolds A(T) varies over the range of T E .

If K is a V-complex, for each x K, we define:

T = n T
TEy

xEA(T)

x is a full simplex if jx = TxI + 1. For each T E, we also define 'A(T)

as 'A(T) = {x A(T) Tx = T. If Ec7 and A(+) - {, {v}}, then

a'A(O) {. If A(f) = {u, {u} , {v}, then 'A(O) = 

Let K be a V-complex with label set N. A function L(.) : K + N that

assigns an element of N to each vertex of K is said to be a labelling

function. If L(-) is a labelling function, for each x E K, we define

L(x) = u L(v). Two distinct simplices x, y K are defined to be adjacent,
vex

written x y, if

i) x and y are full, and

ii) L(x n y) T u Tyx y

Note that if x y for some y, L(x) : Tx . To see this, observe that if

x - y, L(x)D L(x n y) = Tx U Ty Tx

For a given V-complex K and labelling function L(-), we define the

two sets:

G {x K x is full and L(x) D Tx, and L(x) 7}, and

B = {x K x E a'A(T) and L(x) = Tx}.

G and B are short for "good" and "bad", for in most applications of V-complexes,

a path-following scheme will terminate with an element of G or B. G typically

contains those simplices with pre-specified desirable properties, whereas
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B does not. G can also be thought of as the "goal" set. Note that B n G = 4.

The following result is proved in [4]:

Lemma 3.1 ( [4], Lemma 11). If x E K, then x is adjacent to at most two

other simplices in K.

With the above lemma in mind, we can construct paths of simplices in

K. Let <xi>i be a maximal sequence of simplices in K such that xi ~ Xi+l,

and xi_1 # xi+1. If x i is left endpoint of this sequence, and x G, then

there exists a unique simplex xi_1 C xi, such that xi_1 E B, and we append

Xi-l to the sequence. Likewise, if xi is a right endpoint of the sequence,

and xi J G, then there exists a unique simplex xi+l c xi, such that xi+l B,

and we append xi+l to the sequence. The new sequence, with possible

endpoints added, is a path on K.

We have the following results, which are central to the proofs the

combinatorial theorems in the next section:

Lemma 3.2 ( [4], Lemma 12). Let x e K. If x is an endpoint of a path

on K, then x B U G.

Lemma 3.3 ( 4], Lemma 13). If K is finite, then B and G have the same

parity.
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4. Three Combinatorial Theorems on the Simplotope, and Extensions

In this section, we present three combinatorial theorems on the sim-

plotope, eachof which is a generalization of related results on the simplex

and the cube. We also present three covering lemmas related to these

theorems, and show the equivalence of these results with Brouwer's fixed

point theorem.

Define the standard (m - 1)-simplex in Rm to be the set

Sm -l = {x EIRm e x = 1, x 0. Our concern centers on the simplotope

formed by taking the product of n standard simplices, namely

S = S x ... x S ,wherewe presume m > 1 , j = 1,..., n, to avoid

trivialities.

If v is an element of S, let i denote the jth concatenated vector of

v, j -1,..., n, and let v denote the component of vi = 1,..., j.,

j = 1,..., n. Furthermore, define Fi(v) = {(j, k) I vk > 01, j = 1,..., n,

i.e. F (v) is the carrier of v with respect to the j coordinates of v. If

x is a set of vectors v E S, then define F (x) = u Fj (v). Define ejk to

th M ~~~~~~~~vex
be the k unit vector in J, and define E = (ell; e21;); , and

n
define M Z (mj - 1); i.e. M is the dimension of S.

j=1 mll mn-l
In the context of a simplotope S = S x ... x S , define the lab

set N by N = {(J, k) I j E {1,..., n}, k E {1,..., mj}}, and define

Nj = {(j, 1),..., (j, m)}, j = 1,..., n. If T c N, denote

Tj - {j, k) I (j, k) E T, j = 1,..., n.

Let C be a triangulation of S with vertex set K°, and let K be the

pseudomanifold corresponding to C. Let L() K + N be a labelling functi

on K° . Then for v K0, define L(v) = {(j, k) I (j, k) E L(v)}, j = 1,...

and for x a subset of K° , define L(x) = u L(v) and Lj (x) = u LJ(v).
VEX VEX

el

.on

n,
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The following elementary lemma will be used in the analysis presented

in the remainder of this section:

1L y n sn-l
Lemma 0. Let y,..., y be elements of S , not necessarily distinct. Then

there exists a nonempty set S c {1,..., nI with the property that

S = {j I (y )j > for some i S}.

th i
PROOF: Let Y be the matrix whose it h column is y i = 1,..., n, and consider

the system of equations:

[I - Y] 0 = O

e · X = 1 (*)

X >0

where I is the identity matrix. If this system has no solution, then by a

theorem of the alternative, there exists r, a, such that

wI - Y + a e > 0 , a < 0.

Let i denote the smallest component of , i.e. i < j,. for j = 1,..., n.

Then we can write 'i e + , B > 0, and Bi = 0. From the above, we have

that i - nyi + a > 0, and a < . However, fyi = (e + )yi = i + y i

since e yi= 1, whereby i - yi + a > O means -y i + a2 O 0. But yi O0

(since B > 0 and yi > 0) and a < 0, which is a contradiction. Therefore, the

system (*) has a solution .

Let S = {j JI j > 0. Because e = 1, S *. For each j E S,
n

Xj > 0. From (*), we have X = i(yi )J, whereby if X; > 0, there exists

some i with j > O and (yi) > O0; i.e. if j E S, there exists i E S with

(y ) > 0. Thus S c {j (yi) > 0 for some i E S}.

Now suppose j {j i (yi). > 0 for some i E S. Thus there exists i S

with i > 0 and (y)j > 0, whereby from (*) we must have X. > 0, i.e. e S.

Thus S {j (yi)j > 0 for some i S}, fromwhich it follows that

S {I (yi) > 0 for some i S. J
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Corollary 0.1 Let T c {l,..., n}, T , and define ST {x E Sn1 x = 

for j E {1,..., n} \ T, i.e. ST is the face of Sn -l whose carrier is T.

For each i T, let yi be a given element of ST. Then there exists S c T,

S # *, such that S = {j I (yi) > 0 for some i E S}.

ml-1 mnl
Corollary 0.2 Let S = S x ... x S . Let C be a triangulation of S,

with vertex set K, and let K be the pseudomanifold corresponding to C.

Suppose there exists x E K and j E {1,..., n} such that Lj(x) = Fj(x). Then

there exists z c x, z 4, such that L(z) = F (z).

PROOF: Let T = {k (, k) L(x)}. Because x E S i- Lj(x) = F(x) # p,
k

whereby T $ %. For each k E T, there exists some vector v x, such that

kv ( k L k th k k
L(v) (, k). Let y be the jth concatenated vector of v , i.e. y = (v)i.

Note that since Fj(x) {(j, k) k T, then yE T for each k E T. By

corollary 0.1, there exists a nonempty subset S c T, S *, such that
~~~k k

S {R I (Yk)Z > 0 for some k S. Let z = {v k S. Then

PF(z) {(j, k) I k E S = L(z). 

With the above material and notation as background, we present our first

result.

Theorem 1. Let L() : K- + N be a labelling function on the vertices of a

m1 -l mn-l
triangulation C of S = S x ... x S and let K be the pseudomanifold

corresponding to C. Then there exists a simplex x K and an index

j {1,..., n such that L(x) = F(x).

The proof of Theorem 1 appears below, and proceeds by first defining a

V-complex associated with K. Next, the special sets B and G are examined,

and it is shown that if x E G or x B \ $, then there exists a subset y of

x such that L(y) = F(y) for some j E {1,..., nI. Because E B, and B and

G have the same parity by lemma 3.3 there must exist some xsuch that x E G B \ $.
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Proof of Theorem 1: We first construct a V-complex on K. Let f = {T c N

(j, 1) T for = 1,..., n}, and let A(+) - {{E}, }). For T 7, T # 4,

let A(T) be the pseudomanifold corresponding to the restriction of C to

Iv S I vk = 0 for any (I, k) T u {(j, 1)}, j 1,..., n. It is simple

to verify that K, A(.), N, 7 constitute a V-complex.

Note that if x A(T), then F(x) c Tj u {(j, 1)}, j = 1,..., n, and

if x is full, then Tj u {(j, 1)}= F (x) for j = 1,..., n. Since
X

A(+) = {{E}, 3}, 4 E B. Suppose 4 ~ x E B. Then x E a' A(Tx) and L(x) = Tx.

Because .; E a' A(Tx), there exists some j for which v = 0 for all v E x,

whereby F(x) = ,x' because x is a (TxI - 1)-simplex. But because L(x) = Tx,

LJ(x) = T = F(x). Applying Corollary 0.2, there exists a nonempty subsetX

z of x such that L(z) = FJ(z).

Now suppose x E G. Then Tx c L(x) . Thus there exists some

j e {1,..., n} such that L(x) Tx u {(j, 1)}. Because x is full

FJ(x) = T u {(J, 1) = L(x). Applying Corollary 0.2, there exists a

nonempty subset z of x such that L(z) = F (z).

Since K is finite, by lemma 3.3, B and G have the same parity, whereby

thereexixts some x E G B \ . Fnm the above remarks, thereexixts z c x,

z # 4, with L(z) = F(z) for some j E {1,..., n}. 

Note that the proof of theorem 1 is constructive. For a given

triangulation C of S, the algorithm for finding an element x of G u B \ 4

consists of starting at the endpoint e B and following the unique path of

adjacent simplices until the path terminates with an element x of G u B \ 4.

One of the finitelymany subsets z of x will satisfy L(z) = F(z) for some j.

Now suppose L(-) : K° + N is a labelling function. L(.) is called a

proper labelling if vk = 0 implies L(v) (j, k), j = 1,..., n, k = 1,..., mi.
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L(') is called dual proper if whenever v K and v E a S, then vi > 0

implies L(v) y (j, k), j 1,..., n, k = 1,..., mi.

Our next result is:

Theorem 2: Let L() : K° + N be a dual proper labelling function on the

m l-1 mn-l
vertices of a triangulation C of S = S x ... x S and let K be the

pseudomanifold corresponding to C. Suppose furthermore that for any x E K,

and any j {1,..., n}, {k I v = for some v x {1,..., m.}. Then

there exists x E K and j {1,..., n}, such that L(x) = N.

Proof of Theorem 2 From theorem 1, there exists x E K and j E {1,..., n}

such that L(x) = Fj(x). Suppose i (x) N . Then for all k such that

(j, k) N \ F(x), VJk = 0 for all v E x. Thus v E a S for all v E x, and

since L() is dual proper, for all (j, k) E F(x) = L(x), there exists v E x

with k =0. Thus {k vk = 0 for some v x} { 1,..., my}, a contradiction.

Therefore L(x) = F(x). |

Note that an algorithm for finding a simplex x K such that L(x) = Fj (x)

for some is just the algorithm suggested for theorem 1. Our third

combinatorial theorem is:

Theorem 3 (van der Laan and Talman [8]) Let L() : K + N be a proper

labelling function on the vertices of a triangulation C of

mn- 1 mn-i
S = Sm 1 x ... x S , and let K be the pseudomanifold corresponding to C.

Then there exists x E K and j E {1,..., n} such that L(x) = N.

This theorem was first proved in van der Laan and Talman [8].

In their paper, a simplex x for which L(x) - N is called a "j-stopping

face", and their proof of the existence of a j-stopping face is for a

special triangulation of S developed specifically for computational capabilities.

The proof given below is more general, as it does not depend on any particular

triangulation of S.
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Proof of Theorem 3 We first construct a V-complex. Let 7= {T c N I

(j, m) T, and (, k) E T and k > 1 implies (j, k - 1) E T, for all

j = 1,..., n}. Define A(4) = (E), }, and for * # T E7, define the region

R.(T) as follows:

{ei} if T = 4

Rj (T) =

<e j,..., ej, k+l> if Tj = {(j, 1), (j, 2),..., (j, ),

where () denotes convex hull. Then define A(T) to be the pseudomanifold

corresponding to the restriction of C to R1(T) x R2(T) x ... x Rn(T). Note

that if v A(T), then vk = for k > T I + 1. Also, note that if

ITJl t, R(T) = (e l , ej ' t+l> . If x E a' A(T) and T 4 4, then

there exists j {1,..., n} such that t = T > 0 and for some k < t

vk = 0 for all v x. It is simple to verify that K, A(-), , N constitute

a V-complex.

First examing the set B, note that E B, since A(4) {{E}, 4}.

Suppose x E B, x . Then x E a' A(Tx) and L(x) = Tx . Thus there exists

j E {1,..., n} such that t = ITjil > 0 and for some k < t, v = 0 for all

v E x. But since L(*) is proper, (j, k) j L(x), whereby (j, k) Tx, a

contradiction. Thus x B, and so B = {}.

Now suppose x E G. Then Tx = L(x) %7; thus there exists (j, k) E N

such that (j, k) Tx, L(x) = Tx u {(j, k)}, and L(x) . Let t = ITj I.

Because L(.) is proper, k < t + 1 and since L(x) 7, k = mj, whereby

t = m - 1 and so Lj(x) = {(j, 1), (j, 2),..., (, mj))} = N. From lemma

3.3, G must have an odd number of elements, hence at least one, say x.

Let y = {v E x I L(v) E L(x). Then L(y) = N. 
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Theorems 1, 2, and 3 are each "equivalent" to Brouwer's fixed-point

theorem on the simplotope, stated below:

Brouwer's Theorem on the Simplotope: Let f(-) : S -+ S be a continuous

mapping, where S = 1l-1 x ... x Sn . Then there exists v E S such that

f(v) = v.

The combinatorial theorems are equivalent to Brouwer's theorem in

that each theorem provides a relatively straightforward proof of Brouwer's

theorem, and vice versa. This is shown as follows:

Proof of Equivalence of Theorems 1, 2, and 3 with Brouwer's theorem:

Consider Theorem 1 first. Suppose f(*) : S - S is given and let C be a

triangulation of S with vertex set K
° . For each v E K°, assign the label

L(v) = (j, k) N such that (j, k) is any element of N that satisfies

fj(v) - > f(v) - vm for any (, m) N , m $ j. By theorem 1 there

exists a simplex x and an index j such that L(x) = F (x). Let v* be any limit

point of such a sequence of simplices x for a sequence of triangulations

whose meshes approach zero. Then a continuity argument implies that

f(v*) = v*. This shows that theorem 1 implies Brouwer's theorem.

The proof that theorem 2 implies Brouwer's theorem follows along similar

lines, where the labelling rule is such that for v 4 aS, L(v) = (j, k) E N

is any element of N that satisfies f(v) - k L fm(v) - vm for any

(Q, m) N, m # j; and if v a3S, L(v) is any element (j, k) of N for which

k = 0. The proof that theorem 3 implies Brouwer's theorem follows by

defining L(v) = (j, k) if vk > O and f (v) - < f(v)k -c for any
de f in in g L(v) , k) if v1 > 0 and fJ(v) - VI f(v) - v for any

k k k m m

(, m) E N, m # j.

To see that Brouwer's theorem implies theorems 1, 2, and 3, again con-

sider theorem 1 first. Suppose L(.) is given. Then define, for each vertex

v E K° , f(v) as follows:
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QfRv) ~ ej k if L(v) = (j, k) and = k
fe (v) -

v if L(v) (j, k) and # k ,

and extend f(-) in a PL manner over all of S. Then f(-) : S + S is continuous

and so has a fixed point v*. Let x {v°,..., vm } be the vertices of the

smallest simplex containing v*. Let (j, k) = L(v°). Then because f(v*) = v*,

we must have L(x) = F(x), and by corollary 0.2, there exists z c x, z 4,

such that L(z) = F(z).

The proof that theorem 2 is implied by Brouwer's theorem follows from

an identical argument to that above, except that since L(-) is dual proper,

this means L(x) = F (x) = N.

To prove that theorem 3 is implied by Brouwer's theorem, let L(-) be

a proper labelling of K, and for each v K, define f(v) as follows:

v if L(v) (, k) and Z k

ft (v) eJ,k+l if L(v) (, k) and k < m

eJl if L(v) = (j, m

and extend f() in a PL manner over all of S. Then f(.) : S - S is continuous,

and so by Brouwer's theorem has a fixed point v*. Let x = {v°,..., vm} be

the vertices of the smallest simplex of C containing v*, and let (j, k) -

L(v° ). Then it is simple to show that L(x) - Nj, proving theorem 3. 

Analogous to the Knaster-Kuratowski-Mazurkiewicz covering lemma [6]

on the simplex, theorems 1, 2, and 3 also imply covering lemmas on the

ml-l ma-l
simplotope. Again, let S = S x. ..x S , and let

N = {(j, k) I j E {1,..., n}, k E {1,..., ml}}. We have the following:

Covering Lemma 1 Let cjk, (j, k) N, be a family of closed sets such that

u k c = S. Then there exists j e {1,..., n}, and v E S such that
(I ,k) N

Y (i nk) FivC i.e. F3(v) c {(j, k) Iv e Ck.
(J , k) IEFJ (v) ,ie
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Covering Lemma 2 Let Cjk, (j, k) e N, be a family of closed sets such that

u Ck S, and k {v S v = 01 for each (j, k) N. Then there(j,k)EN
exists j e {1,..., n} such that n Cj k # ,.

k-l,...,mj

Covering Lemma 3 Let Cjk, (j, k) N be a family of closed sets such that

u Cj k = S, and for each T c N with Tj # 4 for j = 1,..., n,
(j ,k) EN

u Cj k {v S I v = 0 for (Q, m) T. Then there exists j E {1,..., n}
(j, k) ET k
such that n Cjk f .

k=l,...,m1
The proofs of each o these covering lemmas is similar. We will prove covering

lemma 1; the other two are proved in a parallel manner. Suppose the family

of closed sets Cjk is given. Then let C be a triangulation of S, and for any

v E K0, let L(v) = any (j, k) such that v E Cik. By theorem 1, there exists

j and x such that L(x) = FJ(x). Taking a sequence of triangulations whose

mesh goes to zero, and enumerating an infinite sub-sequence of x's and j's, we

have in the limit a point v* such that {(j, k) I v* E Cj k } , FJ(v*) for some

I. D

Finally, note that each of the covering lemmas implies Brouwer's fixed

point theorem on the simplotope. To see this for covering lemma 1, let

f(.) : S - S be a given continuous function, and define

Cj k {v E S fj(v) - j > f(v) - v for any (, m) e N}. Any v for which

Fj(v) c {(j, k) I v e Cjk} must be a fixed point of f('). The derivations

of Brouwer's theorem from covering lemmas 2 and 3 follows along similar lines.
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5. Applications to the Simplex

This section states the results of section 4 for the case when S is

ml-1 sm-1
the (trivial) cross-product of one simplex, i.e. S = S = . For

r-i
x c S , let F(x) = {j I vj > 0 for some v E x}, i.e. F(x) is the carrier of

x. Then theorems 1, 2, and 3, and covering lemmas 1, 2, and 3 become

previously known results related to the simplex:

Theorem 1 on the Simplex (Generalized Sperner Lemma of [1] or [3]): Let

Sm -1 be given and let C be a triangulation of Sm -1 with vertex set K, and

let K be the pseudomanifold corresponding to C. Let L() : K° {1l,..., ml

be given. Then there exists an odd number of x E K such that L(x) = F(x).

Theorem 2 on the Simplex (Dual Sperner Lemma of Scarf [9]): Let Sm -1 be

given and let C be a triangulation of Sm -1 with vertex set K, and let K

be the pseudomanifold corresponding to C, and suppose no simplex of K meets

every facet of Sm - l. Let L() : K+ {1,..., ml be given, such that for

v aS, L(v) j implies v = 0. Then there exists an odd number of x E K

such that L(x) = {1,..., m}.

Theorem 3 on the Simplex (Sperner's Lemma [10]): Let Sm -1 be given and let

C be a triangulation of Sm -1 with vertex set K, and let K be the pseudo-

manifold corresponding to C. Let L(.) : K° + {1,..., ml be a labelling

function with the property that L(v) = j implies v > O. Then there exists

an odd number of x E K such that L(x) = {1,..., m}.

Note that the above three results are, respectively, instances of

theorem 1, 2, and 3, with the stronger conclusion that there are an odd

number of simplices x with the respective required lables. The conclusions

that the number of simplices is odd follows from the uniqueness of the

cross-product. For a complete proof, refer to [5].
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We also have:

Covering Lemma 1 on the Simplex (Generalized Covering Lemma of [4]): Let

Sm 1 be given and let C, ..., C be m closed sets such that u Ck S

m-l k k=l k
Then there exists v S 1 such that v E n C, i.e. F(v) c {k v E Ck }.

kEF(v)
Covering Lemma 2 on the Simplex (Freidenfelds [2]): Let Sm -1 be given and

m Ck = §mr-llet C1,..., Cm be m closed sets such that u Ck Sm 1 and

k r-1Sn-1 k
C {v S I vk = 01, k = 1,..., m. Then n C .

k=1
Covering Lemma 3 on the Simplex (Knaster-Kuratowski-Mazurkiewicz Lemma [6]):

m-l 1m m-1
Let S be given, and let C..., Cm be m closed sets such that u Ck S

k=l
and for anyT c , m T , u C {v E S 1 v. = 0 for j i T}.

mk kT 
Then n C # ~.

k=l
Note that Freidenfelds' covering lemma is a direct consequence of the

Generalized Covering Lemma on the simplex. From the latter lemma, we have

that there exists v E S such that v n C. But if the conditions of
kEF(v) m k

the former lemma are met, then v E n Ck, whereby v E n C
kAF(v) k=l

-5.1-



6. Applications to the Cube

In applying the results of section 4 to the cube, note that when

nm~l m ln-1
mj 2, j = 1,..., n, then S = Sm l-1 x ... x S is isomorphic to the

n-cube, defined to be C v En = {v v e. Because Cn c R n, whereas

S - S2-1 x ... x S2- 1 cR 2n, it is more convenient to state our results on

Cn rather than on S. For w E S, its corresponding element in Cn is given by

v, where vj = wi j 1, ... n; and for v Cn, its corresponding element

in S is. given by w, where = 1- vj, j ,...,n. In the

context of S, we defined N = {(j, k) f j e {1,..., n, k E {1,..., m}}=

{(l, 1), (1, 2), ..., (n, 1), (n, 2)). Regarding the cube Cn, we define

N - {1, -1,..., n, -n}, where we have the correspondence (j, )*-+ j and

(J, 2) + - between N and N.

Finally, for v e Cn, we define its th carrier function PJ(v), by

{j} if v 1

FJ(v) - {-J} if v = O ; j = 1,..., n.

{j, -j} if 0 < v < 1

Note we have the following correspondence between F

Fj(w) = {(j, 1)J} : j}

FJ (w) = {(J, 2)} ++ {-j}

FJ(w) - {(j, 1), (J, 2)} ++ {j, -

With the above notation, we can now state Theorems

lemma 1, 2, and 3, in the context of the n-cube Cn.

Theorem 1 on the Cube: Let C be a triangulation of

and let K be the pseudomanifold corresponding to C.

given. Then there exists x K and j E {1,..., n}

4(w) and PJ (v):

= FJ(v)

2 and 3 (v)

1, 2, and 3, and covering

Cn , with vertex set K° ,

Let L() : K+ N be

such that L(x) = F(x).
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Theorem 2 on the Cube (Freund, [5]): Let C be a triangulation of Cn, with

vertex set K, and let K be the pseudomanifold corresponding to C. Let

L() : K° + N be a given labelling function such that if v aCn, then

L(v) = j implies vj = 0 and L(v) = -j implies vj = 1, j = 1,..., n. Then

there exists x K and j {1,..., n} such that L(x) = {-j, 1}.

Theorem 3 on the Cube (Freund [5], van der Laan and Talman [8]): Let C be

a triangulation of Cn with vertex set K° and let K be the pseudomanifold

corresponding to C. Let L() : K+ N be a given labelling function such

that L(v) j= implies v > O and L(v) -j implies vj < 1, j = 1,..., n.

Then there exists x e K and j e {1,..., n} such that L(x) = {-j, j}.

The above three results are, respectively, direct instances of theorems

1, 2, and 3, except that in the case of theorem 2, we no longer need the

hypothesis that no simplex x of C meets the two facets {v Cn v = 0} and

{v e Cn I vj = 1 for any j = 1,..., n. For the details of the proof, refer

to [5].

We also have:

Covering lemma 1 on the Cube: Let D ,..., .. Dn, D,..., D-n be 2n closed sets

such that u (Dk u D-k)= C. Then there exists v Cn and j {1,..., n}
k-=l

such that v n Dk, i.e. FJ(v) c {k I v E Dk} .
kEFJ (v)

Covering lemma 2 on the Cube: Let D , , D ,..., D be 2n closed sets

nk k Cn k n

such that u(D u D- k ) = C, and such that Dk {v E Cn vk 01 and
k=l

D-k {v E Cn I vk = 1, k = 1,..., n. Then there exists j e {1,..., nI

such that Di n Dj # I.

Covering lemma 3 on the Cube: Let D ,..., D , D,..., D be 2n closed sets
k -k -n

such that u(Dk D-k) = Cn, and for each T c N, with T n {-j, j} # c for
k=l
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each j 1,..., n, u Dk v E Cn I v. = 0 if j T, vj = 1 if -j T}.
kET J

Then there exists j e {1,..., n} such that D n D- J .

Covering lemmas 2 and 3 are illustrated in Figures 1 and 2.

-6.2-



(1, 1)

(0, 0) (1, 0)

Illustration of Covering lemma 2 on the Cube, n = 2.

Figure 1.

(0, 1)

(0, 0)

(1, 1)

(1, 0)

Illustration of Covering lemma 3 on the Cube, n = 2.

Figure 2.
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7. Concluding Remarks

In this study, we have presented three combinatorial theorems on the

simplotope, each of which is equivalent to Brouwer's fixed point theorem, and

three covering lemmas on the simplotope that derive from the combinatorial

theorems and which imply Brouwer's theorem. The first theorem implies the

Generalized Sperner Lemma on the simplex [3] and the Generalized Covering theorem

on the simplex [5], and implies two new results on the cube. The second

theorem implies Scarf's dual Sperner Lemma [9] on the simplex, Freidenfeld's

covering lemma on the simplex [2], lemma 2 in [5], and a new covering lemma

on the cube. The third combinatorial theorem on the simplotope, originally

due to van der Laan and Talman [8], implies Sperner's lemma on the simplex

[10], the Knaster-Kuratowski-Mazurkiewicz Covering lemma [6] on the simplex,

lemma 1 in [5J, and a new covering lemma on the cube.

One combinatorial result that has not been mentioned up to this point

is Kuhn's Strong Cubical lemma, presented in [7]. This lemma is different

in many ways from other combinatorial results related to Brouwer's theorem.

Kuhn's strong cubical lemma starts with a vector labelling that is "proper",

which is then condensed into a reduced integer labelling, unlike other

results discussed herein. Furthermore, the lemma asserts the existence on

the n-cube of an n-simplex with (n + 1) distinct labels, whereas the results

herein pertaining to the n-cube assert the existence on the n-cube of a

1-simplex with two complementary labels. In a forthcoming paper, I hope to

report on a generalization of Kuhn's Strong Cubical lemma to the simplotope.
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