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Abstract

In this paper, we present a combinatorial theorem on a bounded

polyhedron for an unrestricted integer labelling of a triangulation

of the polyhedron, which can be interpreted as an extension of the

Generalized Sperner lemma. When the labelling function is dual-

proper, this theorem specializes to a second theorem on the

polyhedron,-that is an extension of Scarf's dual Sperner lemma.

These results are shown to be analogs of Brouwer's fixed point

theorem on a polyhedron, and are shown to generalize two

combinatorial theorems on the simplotope as well.

The paper contains two other results of interest. We present a

projective transformation lemma that shows that if X = (xERnJAx < e) is a

bounded polyhedron, then X' = (xERni(A-eoy)x < e) is combinatorially

equivalent to X if and only if y is an element of the interior of the

polar of X. Secondly, the appendix contains a pseudomanifold

construction for a polyhedron and its dual that may be of interest to

researchers in triangulations based on primal and dual polyhedra.

Key words: polyhedron, triangulation, pseudomanifold, fixed-point,

integer label, simplex.
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1. Introduction

In an article published in 1928, Emanuel Sperner demonstrated a

purely combinatorial lemma on the n-simplex that implied the fixed-

point theorem of Brouwer for continuous functions. The connection

between combinatorial theorems and topological theorems was further

investigated by Tucker 24], who developed a combinatorial lemma

that implied the antipodal point theorems of Borsuk and Ulam, and of

Lusternik and Schnirelman [19]. Kuhn [15] and Fan [5] later

examined combinatorial results on the n-cube that imply Brouwer's

fixed point theorem.

With the development of fixed-point computation algorithms

stemming from Scarf's seminal work [21], there has been a resurgence

of research in combinatorial analogs of Brouwer's theorem. Such

analogs of Brouwer's theorem on the simplex include Scarf's "dual"

Sperner lemma [22], the Generalized Sperner lemma [10], and of

course, the original Sperner lemma [23]. Analogs of Brouwer's

theorem on the cube include a pair of dual lemmas presented in [6],

one of which is analogous to the constructive algorithm in van der

Laan and Talman [17]. Recently, these combinatorial results have

been extended to simplotopes (see Freund [7] and van der Laan,

Talman, and Van der Heyden [18]), for which the simplex and cubical

theorems are special cases.

In this paper, we present a combinatorial theorem on a bounded

polyhedron for an unrestricted labelling of a triangulation of the

polyhedron, which can be interpreted as an extension of the

Generalized Sperner lemma. This theorem is the main theorem of

section 3, theorem 1. When the labelling function is dual-proper.
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theorem 1 specializes to a second combinatorial theorem on the

polyhedron, that is an extension of Scarf's dual Sperner lemma.

These results are shown in section 3, and their relationship to

results on the simplex and simplotope are also shown. Section 4

contains a combinatorial proof of theorem 1, and hence of theorem 2.

In section 5, we address the issue of an extension of Sperner's

lemma to a bounded polyhedron. We present such an extension as

theorem 5 of the section. However, the proof of theorem 5 is based

on Brouwer's theorem; it is an open question whether a purely

combinatorial proof of theorem 5 can be demonstrated.

The paper contains two other results of interest. In section

3, we present a projective transformation lemma, that shows that

if X = (xERnlAx < e} is a bounded polyhedron, then

X' = (x'ERn(A-eoy)x ' < e) is combinatorially equivalent to X if

and only if y is an element of the interior of the polar of X.

This lemma is used in the proof of theorem 1, but it may also have

applications elsewhere. Secondly, the appendix contains a

pseudomanifold construction for a polyhedron and its dual that may

be of interest to researchers in triangulations based on primal and

dual polyhedra.
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2. Notation

Let Rn denote real n-dimensional space, and define e to be the

vector of l's, namely e = (1, ..., 1). Let x y and xoy denote inner

and outer product, respectively. Let denote the empty set, and

let ISI denote the cardinality of a set S. For two sets S, T, let

S\T = {xIxES, xT}, and let SAT = {xIxESuT, xSnT}. If xES, we

denote S\(x} by S\x to ease the notational burden. Let v, ..., vm

be vectors in Rn. If the matrix

IVO ... VM

has rank (m+1), then the convex hull of v0 ... vm, denoted

<v 0 ..., vm>, is said to be a real m-dimensional simplex, or more

simply an m-simplex. If a = <vO, ..., vm> is an m-simplex and

{v jO , ..., vk is a nonempty subset of (vO, ..., vm}, then

T = <v j , ... vj k > is a k-face or face of .

Let X be a cell in Rn, i.e. a nonempty bounded polyhedron in Rn.

Let T be a finite collection of m-simplices a together with all of

their faces. T is a finite triangulation of X if

i) u o = X,
oET

ii) a, T ET imply Ca n T ET, and

iii) If a is an (m-l)-simplex of T, is a face of at most two

m-simplices of T.

An abstract complex consists of a set of vertices KO and a set

of finite nonempty subsets of K O, denoted K, such that

3
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i) v E KO implies (v} E K, and

ii) # x c y E K implies x E K.

An element x of K is called in abstract simplex, or more simply a

simplex. If x E K and Ixi = n + 1, then x is called an n-simplex,

where 1 I denotes cardinality. Technically, an abstract complex is

defined by the pair (K O, K). However, since the set KO is implied

by K, it is convenient to denote the complex by K alone. An

abstract complex K is said to be finite if KO is finite.

An n-dimensional pseudomanifold, or more simply an

n-pseudomanifold, where n > 1, is a complex K such that

i) x E K implies there exists y E K with lyj = n + 1 and x c y, and

ii) if x E K and x = n, then there are at most two

n-simplices of K that contain x.

Let K be an n-pseudomanifold, where n > 1. The boundary of K,

denoted K, is defined to be the set of simplices x E K such that x is

contained in an (n-1)-simplex y E K, and y is a subset of exactly one

n-simplex of K.

Let X be an m-cell in Rn, and let T be a finite triangulation

of X For each nonempty face T of each m-simplex of T, define

T = (vlv is a vertex of T). Then the collection K = (T{T is a

nonempty face of a simplex of T) is an m-pseudomanifold, and is

called the m-pseudomanifold corresponding to T.

If A and b are a matrix and a vector, let Ai and bi denote the

ith row and component of A and b respectively, and let A and b8

denote the submatrix and subvector of A and b corresponding to the

rows and components of A and b indexed by 8, respectively.

4



A vector x is lexicographically greater than or equal to y,

written x y, if x = y or the first nonzero component of x-y is

positive. A matrix A is lexicographically greater than or equal to a

matrix B, written A B, if (A-B)i 0 for every row i of (A-B).

5
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3. The Main Theorem

Consider a bounded polyhedron X of the form X = {xERnjAx < b},

where A and b are a given (mxn)-matrix and m-vector, respectively.

Let T be a finite triangulation of X , let K denote the set of

vertices of T, and let K be the pseudomanifold corresponding to T.

Let M = (1, ... , m) be the set of constraint row indices, and let

L(.):K°M be a labelling function that assigns a constraint row index

i to each vertex v of K. Our interest lies in ascertaining the

combinatorial implications of such a labelling function, under

boundary conditions or not, in the spirit of and as a generalization

of other combinatorial theorems on the simplex, cube, and simplotope

[5,6,7,9,15,17,18,22,24]. Toward this goal, we will make the

following assumptions on X , some of which will be relaxed later on:

Al (Bounded). X is bounded, i.e., there is a vector

X > 0, X # 0, such that XA = 0.

A2 (Solid). X has an interior, i.e., there exists x E X such

that Ax ° < b.

A3 (Nonredundant). There is no redundant constraint governing X,

i.e. there is no iM and X > 0, with Xi = 0 such that XA = Ai

and X-b < bi. If X is solid, this means that for every iM,

there exists xx such that Aix = bi and Akx < bk for every k M\i.

A4 (Centered). X contains the origin in its relative

interior, i.e. b > 0.

A5 (Centered and Scaled). X contains the origin in its relative

interior, and the rows of A have been scaled so that each bi

equals 0 or 1.
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Assume for the remainder of this section that X is bounded, solid,

nonredundant, and centered and scaled. Then, in particular, b=e. Let

X O = {yERnly=XA, X>O Xb=l}. Then X° is bounded, solid, and centered.

Furthermore, X° can alternately be described as X° = {yERnly.x < 1 for

all xx), whereby X° is seen to be the polar of X (see [20]). X° is

also a combinatorial dual of X, i.e., there is a one-to-one inclusion

reversing mapping from the k-faces of X to the (n-k-1)-faces of X°, see

[12].

Because X is nonredundant, each row of A is an extreme point of

X°. Furthermore, every point yX ° can be expressed as a convex

combination of (n+l) extreme points of X, i.e., (n+1) rows of A. A

point YEX ° is called a regular point of X° if y cannot be expressed

as a convex combination of n or fewer rows of X° . Because X is

bounded, X° is solid, and so almost every point in X° is a regular

point of XO, i.e., the set of points in X that are not regular are

a set of measure zero, and XO has positive measure. Figure 1

illustrates the above remarks. In the figure, yl is a regular

point, and y3 is not a regular point. The circled numbers on the

boundary of X in the figure indicate the row constraint index for

the facets indicated.

For a subset acM, define Sa = {yERny=XAa, X > O, Xba=l},

i.e., S is the convex hull of the rows of A indexed over a. We

have S = X for a=M, and Sa c X for all acM. For every yeXO

define Gy = {acMlyE S}). Then Gy consists of the row index sets of

vertices of cells S that contain the point y. Referring to figure

1 again, we see that Gyl consists of the four sets {1,3,4}, (1,3,5),

(1,2,4}, and (1,2,5), plus all other subsets of M that contain one

7
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X = {xeR 2 Ax < b}, where A =

x 2 '
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of these

{1 ,2,5},

Gy 3 are

Now

pseudoma

function

constrai

L(a) = {

A, I - I I

four sets. Likewise, the minimal members of Gy4 are

(1,3,5), and 1,4,5). Regarding Gy3 , the minimal members of

(1,2,3), 2,4). amd (2,3,5).

let T be a finite triangulation of X, let K be the

nifold corresponding to T, and let L(-):K°-M be a labelling

from K, the set of vertices of K, to M, the set of

nt row indices of X. For a simplex aoK, let

iEMli=L(v) for some vEK). For a given subset S of X, define

lrlmla" _- _ ~__ _,1 __c% w . . . ._ _ _ - _s.. -ve_ l _ 1__%v 

Gus) = ItlMIAiX=Di or all x. For a point xtX,

C(({x}). The mapping C(-) identifies the "carrier"

the set S or point x.

With the above notation in hand, we can state

Theorem 1. Let X be a polyhedron that is bounded,

nonredundant, and centered and scaled. Let T be a

triangulation of X, let K be the pseudomanifold cor

and let L():K°MM be a labelling function. Then

(i) for any regular point yEx 0 , there are an

simplices acK such that (L(o) u C(a))EGy

least one.

(ii) for any point yE int X°, there is at lea

aEK such that (L(a) u C(o))EGy.

To illustrate the theorem, let us continue with the

figure 1. Figure 2 shows a triangulation T of X an

K° . Regarding yl, a regular point of X°, there are

of K for which (L(v) C(a)) E Gyl = ((1,3,4), (1,3

(1,2,5)), namely (t}, (w,v}, (a), (f,g,k}, and (p,q

L((w,v)) = (1,3), C({w,v)) = (5), and hence

aeiine OLX) =

hyperplanes of

our main theorem:

solid,

finite

responding to T,

odd number of

, and hence at

st one simplex

example of

d a labelling of

five simplices 

,5}, 1,2,4},

,u}. Note that
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(L({w,v}) u C({u,v})) = {1,3,5} E Gyl. Regarding y4, there are

three simplices aEK for which (L(o) u C(r)) E Gy4 = {{1,2,4},

{1,3,5}, {1,4,5}}, namely {p,q,u}, {w,v), and {x,t,z}. In the case

of the pentagon X in figure 1, theorem 1 actually makes eleven

assertions about the oddness of certain instances of labels, one

assertion for each of the eleven regions composing X° .

The assertions of theorem 1 do not depend on any special

restrictions of the labelling L(-) on the boundary of X. If we

restrict the labelling L(-) on the boundary of X, we can obtain a

stronger form of theorem 1. A labelling L(-):K°.M is called

dual proper if L(v)EC(v) for all vax, vEK °. If L(-) is dual-

proper, L(v) must index a binding constraint at v if v lies on the

boundary of X. This restriction was first introduced by Scarf [22]

for the simplex. The denotation here is consistent with the notion

of a dual proper labelling as used in [7]. A triangulation T of X

is said to be bridgeless if for each aET, the intersection of all

faces of X that meet a is nonempty. This concept is illustrated in

Figure 3, for n=2. In the figure, each of the simplices a1, 2, and

a3 fails the intersection property. Essentially, if T is

bridgeless, then no simplex of T meets too many faces of X that

are disparate.

If L(.) is dual-proper and T is bridgeless, we have the

following stronger version of theorem 1:

11
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Cases where the intersection of the faces that meet a are empty

Figure 3
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Theorem 2. Let X be a polyhedron that is bounded, solid,

nonredundant, and centered and scaled. Let T be a finite

triangulation of X and let K be the pseudomanifold corresponding to

T. Let L(-):K°-M be a labelling function on K° . If L(-) is dual-

proper and T is bridgeless, then:

(i) for any regular point yEXO, there are an odd number of

simplices aEK such that L(c) E Gy, and hence at least

one.

(ii) for any point y E int X°, there is at least one simplex

aEK such that L(a) E Gy.

Theorem 2 can be deduced from theorem 1 as follows:

Proof of Theorem 2: Assuming theorem 1 is true, it suffices to show

that for each y E int X°, that if (L(a) u C(o))EGy, then C(o) = 0.

Suppose not. Then there exists aEK such that (L(e) u C(a))EGy and

C(a)#0. Because C(c)#A, a EX, whereby each vertex v of a

must satisfy L(v)EC(v). If L(v)=i, then v, and hence a, meets the

facet Fi defined by Fi = ({xE X IAix=bi}. Therefore a meets

every facet Fi for iL(o). Furthermore, a meets every facet

Fi for iC(a). Denoting a=(L(a) u C(a)), we have a meets Fi

for every ia. Thus n Fi # 0, because T is bridgeless. Let
i a

x E n Fi, i.e. Aax = b. Since aEGy, there exists ka 0 for which
iEa

ba,'a = 1 and y = kaAa. However, y x = XaAx = Xba = 1.

But since y int X° , there exists e > 0 such that (y + ey) E X° .

Thus (l+e)y E X and (1+e)y-x = +e > 1. However, for any yEX°,

xEX, y x < 1, contradicting (1+e)y-x > 1. Thus C) = , and the

theorem is proved. [X]

13
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Theorems 1 and 2 (without the oddness assertion) are equivalent

to the fixed point theorem of L.E.J. Brouwer [2], stated below:

Brouwer's theorem on a bounded polyhedron. Let X be a nonempty

bounded polyhedron, and let f(): XX be a continuous function.

Then there exists a fixed point of f(-), i.e. a point x*EX such that

f(x*) = x*.

In order to demonstrate the equivalence of theorems and 2 to

Brouwer's theorem, we will use the following lemma, which relates the

equilivance of polyhedral representations under projective

transformation.

Projective Transformation Lemma. Let X = (xERnAx < b) be a

polyhedron that is bounded, solid, and centered and scaled, and let

X° = {yERnly=XA, X > O, b = 1}. For any given y int X°, the set

X' = {x'ERn{(A-eoy)x ' < b) is combinatorially equivalent to X, and

X'° = X - y. The mapping g(x) = x/(1-y-x) maps faces of X onto the

faces of X' and is inclusion preserving. Furthermore, T is a

triangulation of X if and only if T' is a triangulation of X' , where

T' is the collection of simplices a' = g(a) for every aT.

PROOF: Since yE int X°, yx < 1 for all xx. Consider the

mapping g(.): XX', given by g(x) = x/(1-y.x). It is easy to verify

that g(-) maps X onto X' continuously, that xX satisfies Aix=bi if

and only if (A-eoy)ig(x) = bi, and g-l(.) is given by g-l(x') =

x'/(l+y-x'). Thus X and X' are combinatorially equivalent. That T'

is a triangulation of X' follows from the fact that g(-) maps affine

sets to affine sets and convex sets to convex sets. The mappings g(')

and g-l(.) are, of course, projective transformations. [X]

14
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Proof of theorem (without the oddness assertion) from Brouwer's

theorem:

Let X, T, L(-) and K be given as in theorem 1. Let y int X be

given, define X' and T' as in the projective transformation lemma, let

K' be the pseudomanifold corresponding to T', and define L'(v') =

L(g-l(v')) for v'EK °' . For each v'EK'°, define h(v') = ALI(v,)-y, and

extend h(-) in a PL manner over all of X'. Define f(x') =

arg min llz'-x'+h(x')112, where 11-112 denotes the Euclidean norm.
z 'EX'

Because h(-) is continuous, f(-) is continuous

and so contains a fixed point x' . Let a' be the smallest simplex

a' in T' that contains x', and let Y = L(a'), B = C(a'), and

a = y u B. Then the Karush-Kuhn-Tucker conditions state that x' -

x' + h(x') = -X 8(A - eoy) B, for some X > O. Furthermore, h(x') =

Xy(A-eoy)y for some particular Xy > O, Xyey = 1. Therefore,

XB(A-eoy)B + Xy(A-eoy)y = 0, whereby Xa(A-eoy) = 0 has a nonnegative

and nonzero solution. Upon rescaling the multipliers X so that they

sum to unity, we have XaA = y, Xa > , Xae = 1. Thus aE Gy and

(L(a') u C(a')) = a. whereby the simplex a ET defined by a = g-l(a')

has (L(a) u C(a)) = a E Gy, proving the result. [XI

The construction of the function f(.) was introduced by Eaves [3]

to convert the stationary point problem of h(-) to a fixed point

problem on f().

15
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Proof of Brouwer's theorem from Theorem 1: Let X be a polyhedron

that is bounded, solid, nonredundant, and centered and scaled, and

let f(.): XX be a continuous function. Let T be a finite

triangulation of X and K be the pseudomanifold corresponding to T.

Let L(.) be a labelling function on K defined so that L(v) equals any

index i for which Ai(v-f(v)) > O. Because X is bounded, such an index

must exist. Let y be a given regular point of X . Then there exists

a simplex EK such that (L(a) u C(a)) E Gy. Taking a limit of

sequences of such a as the mesh of T goes to zero, we

conclude that there exists x E X, a E Gy, and 8 a such that

Ag(x-f(x)) > 0, and (8 u C(x)) a. Let Y = C(x). Because Ay(x-f(x))

> 0, Aa(x-f(x)) > O. However, since a E Gy, there exists Xa > 0 with

the property that eXa = 1 and XaAa = y. Thus y(x-f(x)) = XaAa(x-

f(x)) > O. However, because y is regular Gy = Gz for all z

sufficiently close to y. Thus z(x-f(x)) > 0 for all z sufficiently

close to y, whereby x-f(x) = O, proving Brouwer's theorem. [X]

The equivalence of Brouwer's theorem and theorem 2 (without the

oddness assertion) can be accomplished in a manner that parallels the

above arguments.
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Relation of Theorems 1 and 2 to combinatorial results on the simplex

and simplotope.

We show how theorems 1 and 2 specialize to known results on the

simplex and the simplotope. The three major combinatorial results on

the simplex, namely Sperner's lemma [23], Scarf's dual Sperner lemma

[22], and the Generalized Sperner lemma [10], all assert the existence

of an odd number of simplices with certain label configurations.

However, when these three results are extended to the cube and

simplotope, the oddness assertion disappears, and the dimension of the

specially labelled simplices of interest is reduced (see [7] and [18]).

The inability to assert that there are an odd number of specially

labelled simplices stems from the constructive proofs of these

simplotope theorems. Herein, by

casting the simplex and simplotope theorems as instances of theorems

1 and 2 for particular values of y E X, we will see that the

oddness assertion holds on the simplex precisely because y is a

regular point in X°, and the oddness assertion on the simplotope

(and hence the cube) does not hold, precisely because y is not a

regular point in X° .

Let S n = {xERnI x < e, -e-x l 1}. Then S n is an n-dimensional

simplex. By defining

An = and b =

we can write n as n = (xERniAnx < b. Let T be a triangulation of

Sn, K the pseudomanifold corresponding to T, and L(-):Ko-M, where M =

(1, ... m} = (1, ... , n+1}, because m = n+l. For X = Sn , the set X0

= (yly=XAn, X > 0, eX = 1) is an n-simplex that contains the

17
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origin, and any y int X is a regular point in X° . In particular,

y = 0 is a regular point in X°, and G = (M} = ((1, ... , n+))}.

Because Sn is bounded, solid, nonredundant, and centered and scaled,

we can apply theorem 1, and assert that there are an odd number of

simplices EK with the property that (L(o) u C(a)) E G, i.e., L(a)

u C(¢) = (1, ... , n+1}. This is precisely the Generalized Sperner

lemma [10], and is seen to follow as a specific instance of theorem

1.

Now suppose that the labelling L(-) is dual-proper, i.e. for each

vE2Sn, L(v) = i must be chosen so that Aiv = bi. Furthermore, suppose

that no simplex of T meets every facet Fi of Sn, where Fi = (xeSnlAix=

bi}, i=1, ... , n+1. Then it can be shown that for any simplex of T,

the intersection of all faces of S n that meet ca is nonempty, i.e. T is

bridgeless, whereby the conditions of theorem 2 are satisfied. Thus

there exists an odd number of simplices rEK such that L(a) E G, i.e.

L(a) = (1, ... , n+1}. This latter result is precisely Scarf's dual

Sperner lemma [22], and it is seen to follow as a specific instance of

theorem 2.

We now turn our attention to theorems on the simplotope. A

simplotope S is defined to be the cross-product of n simplices, S =

Sm 1 x ... x Smp, where, for simplicity, we will assume that each

mj 1, j=1, ... , p. Any point xES is a vector in RN, where

p
N = £ mj, and x can be written as x = (x1; ... ; xP), where each

j=1

each xJ ERmj, j=1, ... , p, and x is the concatenization of the n

vectors x, j=1, ... , p. Defining An as above, let us define A as the

(N+p)x(N) matrix:

18



A =

Aml 0

0 Amp

where Amj is as described previously.

Then S can be described as S = (xERnlAx b where bRN+P and b=e.

Define M = {(j,k)lj=l, ..., p, k=l, ..., mj+l}. The rows of A can be

indexed by the ordered pairs (j,k) M where row (j,k) of A is in

j-1
fact row number ( (mi+1) + k) of A. Likewise, a vector X E RN+P

i=1

will be indexed by the ordered pairs (j,k) E M. Let T be a

triangulation of S, let K be the pseudomanifold corresponding to T, and

let L(.):K°M be a labelling function. For X = S, X is bounded, solid,

nonredundant, and centered and scaled, and so the conditions of theorem

1 are met. We have X° = {yERnly=XA, eX=l,

X > 0} and y=O E X However, y=O is not a regular point of Y

To see this, pick any one index j from among j (1, ..., p}.

Then set

0 if i j

1/(mj+l) if i = j,

for each (i,k) E M, and note that X > O, e-X=l, and XA=O=y. If we

define aj=((j,l), ... , (j,mj+l)}, we see that 0 E Sj, but

lajl = mj+1 < N+1, so long as n > 1. Thus y=O is not a regular

point of X°O. Thus, by theorem 1. we can only assert that there

19
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exists at least one simplex

However G = ({ cM I y ES)}
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(2,2), (1,1)}, {(2,1), (2,2

with (L() u C(1)) E Gy, na

X° is the convex hull of th

the diamond shown in the fi

regular point.

o of K

= {(t c

o of K

., P)

he theore

2,1)), {(

), (1,2))

mely 01,

e points

gure. As

such

Ml a

such

Th

that

= j

that

is is

(L(a) u C(a)) EG-.

for some j E {1,..

(L(a) u C(c)) ({(

precisely theorem

m for m1=m 2=l, and n=2.

1,1), (1,2), (2,2)), (2

There are six simpli

... 06 in the figure.

(1,O), (-1,0) (0,1) and

the figure shows, y=O i

. , p}}.

j, ), ....

1 of [7]

With

ces of S

The set

(0 , -1)

s not a

Suppose now that the labelling L():K°-M is dual proper, i.e.

for each vS, L(v) must be chosen so that Aix=bi. Furthermore,

suppose that no simplex a E K meets each facet' F(j,k) =

{xESIA(j,k)x=b(j,k)), for all (j,k) aj, for any j=1, ..., p. Then

it can be shown that the requirements of theorem 2 are met. This

being the case, the logic employed herein can be used to show that

there exists a simplex a E K such that L(¢) aj for some j E (1,

p}. This latter statement is precisely theorem 2 of [7], and

thus is a specific instance of theorem 2 of this paper.

The Sperner lemma, and its extension to the simplotope [7,17],

does not appear to be a specific instance of theorems 1 or 2.

Sperner's lemma can be derived from the Generalized Sperner lemma,

see [6], but this derivation fails to carry over to the simplotope.

In the last section of this paper, we

theorem on a bounded polyhedron, that

on the simplex.

present another combinatorial

specifies to Sperner's lemma
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Relaxing the Assumptions of Theorem 1

Our final remarks of this section are concerned with relaxing

the assumptions presented earlier. The assumption that X is bounded

is central to Brouwer's theorem, and to the counting arguments

regarding endpoints of paths of simplices, as will be seen in the

proof of theorem 1 in the next section. The assumptions that X is

solid and centered and scaled can be eliminated, but the definition

of X° must then be changed. Let us first consider the case when X =

{xERnlAx < b) is solid but not centered and scaled. For any given

x° E int X, X' = {xERnlAx b-Ax° } is just a translation of X by

-x0, and can alternatively be written as

X' = ({xRnIAx < e}, where Ai = Ai/(bi-AixO). X' now is centered

and scaled, and so the assertions of theorem 1 apply. In this case,

the set X = (yERnly=XA, e-X=1, X > O) = (yERnly=XA, X > O, X-(b-

Ax°)=1}, and for a c M, S = (yeRnly=XaAa,X= > 0 Xa(b-AxO)a=l}.

Thus theorem 1 (and hence theorem 2) can be modified to include the

case when X is not centered and scaled.

Next, let us consider the case when X is neither solid nor

centered and scaled, and let k be the dimension of X. Then in order

to center and scale X, a point x E rel int X can be found using,

for example, the methodology in [8]. Once x° E rel int X has been

given, X can be rewritten as X = {xERnlDx=d, Bx < b}, where Dx°=d

and s=b-Bx° > 0. Furthermore, by scaling the rows of (B,b), we can

ensure that s=b-Bx°=e. Let C be any matrix whose rows form an

orthonormal basis for the subspace N={xERnlDx=O}, and let X° =

{yERnJy=UD+B, s-X=l, X > 0). Then the transformation f(.)=XRk
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given by f(x)=Cx-Cx° maps X onto X'={ZERkIBCTz s}, and the

transformation g(y)=Cy maps the set X° into the set X '° =

{vERklv=XBCT, X > O, X s=l}. There is a one-to-one correspondence

between each given point v in X' ° and the subset {yERnly=CTv + DTU

for some u} of X°. The sets X' and X' ° conform to the conditions of

theorem 1. For a given point YEXO, there is a unique point vEX' °

such that y=CTv+DTu for some u. The point y in X°is called a

regular point of X if y=CTv+DTu and v is a regular point of X'° .

Furthermore, for any yEX °, define Gy=Gv where v is uniquely

determined by the relation y=CTv+DTu for some u.

This transformation, together with the above remarks on centering

and scaling, can be used to prove the following extension of theorem

1:

Theorem 3. Let X be a nonempty bounded polyhedron of dimension k

in Rn that is nonredundant, of the form X={xERnlDx=d, Bx < b}. Let

x° be a given point in rel int X, and let s=b-Bx°> 0 be given. Let

T be a finite triangulation of X and let K be the pseudomanifold

corresponding to T. Let L():K°M, where M={1, ..., m} indexes the

rows of B, and let C(a)={iEMIBix=bi for all xEa) for each cET. Let

X° be defined as in the remarks above. Then:

(i) If y is a regular point of X°, there exists an odd

number of simplices oET with the property that (L(a) u

C(0)) E Gy, and hence at least one.

(ii) If y E rel int X°, then there exists at least one

simplex ET with the property that (L(a) u C(a)) E Gy. [X]
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Theorem 3 obviously implies theorem 1 as a special case. The above

remarks outline how to prove theorem 3 as a consequence of theorem

1, using the transformation f(-). Theorem 3 is the most general

combinatorial theorem we will consider. The theorem still retains

the nonredundancy assumption. This assumption is retained for

convenience. Because redundant constraints do not contribute to

either the geometric or combinatorial properties of a polyhedron,

the fact they are assumed away does not detract from the generality

of the results.
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4. A Combinatorial Proof of Theorem 1

This section contains a combinatorial proof of theorem 1. The

ideas behind the proof derive from relatively straightforward

concepts that are easy to follow in two dimensions. In higher

dimensions, they become more encumbered due to the possible presence

of degeneracy in X. Hence, in order to motivate the 'proof along

more intuitive lines, we start by showing an example of the proof in

two dimensions. We then proceed to the more general case.

Example of proof in two dimensions

Let X and X° be as shown in figure 1, let T and L(.-) be as

shown in Figure 2, and let K be the pseudomanifold corresponding to

T. Define K to be the pseudomanifold consisting of simplices aEK

"joined" with the indices of C(o), i.e.

K = (ala , a (a C(a)), aEK), and

Ko = K u {1, ..., m) = K u M.

The construction of K is shown in Fgure 5. Note that

AK = {(BI = C(x) for some xK}.

For each iEM, extend L():K°-M to L(-):K°-M by the association L(i)=i

for iEM. For each y X°, let #Gy denote the number of simplices aK

with the property that L(a)E Gy. In order to prove theorem 1, it

suffices to show that #Gy is odd for all regular points y X.

Now let 8 c M = {1,...,5} with IBl=n=2. Let RB = {Bu{j}, jEM,

jOB}. For example, for B = (1,3), RB = ((1,2,3), (1,3,4), (1,3,5)).
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The pseudomanifold K

Figure 5

26

©

P



Let *#R be the number of simplices EK with the property that L(a)

ER B, and let q be the number of simplices oE2K with the property

that L(o) = 8. A parity argument, first introduced by Kuhn [16], and

later used by Gould and Tolle [11], states that the parity of #R B and

the parity of q is the same for any given , with IBl=n. This

implies, in particular, that

(i) if 8 E K, 11=2, then R B is odd, and

(ii) if B K, 161=2, then R6 is even.

The first statement follows from the fact that if EK, then

L(B)=B, and there is no other simplex E K with L(a)= (if so, t

a=L(a) = 6, a contradiction). Thus q = 1, an odd number,

whereby #R8 is odd. As an example, let B={4,5}. Note that EaK.

There are five simplices EK with L(a) E R, namely (4,p,u},

(x,t,z), {w,x,s}, {e,j,2), and {e,j,i), an odd number. The second

statement follows from the fact that if 8 { K, there can be no

simplices a E K with L(a) = 8 (for if so, then o = L(o) = 8, a

contradiction). Thus q8=O, an even number, and hence R8 is an

even number. As an example, let = 1,4), and hence aK. The

are four simplices qEK with L() E R, namely {a,3,4), {f,g,k},

{x,t,z}, and {t,1,2}.

Now consider the set X°, now shown in Figure 6, subdivided in

the eleven regions Tk, k=l,...,11. For any y E int T1, y is a

regular point of X°. Also, for any y E T1, Gy = ((1,4,5), (2,4,5)

(3,4,5)), i.e. Gy = R, where ={4,5}. Because B E K, by (i) abo

#R8 is odd, whereby #Gy is odd, because R = Gy. This proves

hen

re

to

ve,
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The subdivided cell X

Figure 6
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m 1 for all y E int T 1. For y E int T1, those simplices E K
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of subsets of M, let D denote the number of simplicies EK such

that L(o) E D. Note that

Gy = (Gy\Gz) u (Gy n Gz), whereby

#Gy = #(Gy\Gz) + #(Gy n Gz),

because these two sets are disjoint. Similarly, we have:

*Gz = (Gz\Gy) + #(Gy n Gz).

We obtain:

#Gy - *Gz = *(Gy\Gz) - #(Gz\Gy)

= *(Gy\Gz) + #(Gz\Gy) - 2#(Gz\Gy)

= *(GyAGz) - 2#(Gz\Gy)

= *R{3, 5} - 2*(Gz\Gy).

However, *#R 3 , 5} is even, because {3,5} 0 K. Therefore #Gy - #Gz

is even, i.e. Gy and #Gz have the same parity. This completes the

proof of Theorem 1 for the example of figures 1 and 2.

The important facts leading to the proof that Gy and #Gz have

the same parity if y and z are interior to adjacent regions Ti and

tj of X° are as follows: If T i and Tj are adjacent, there is a

unique index set B such that the (n-1)-simplex S = {yERnJy=XA8,

XB > O, e.XB=1}, separates i from j. Furthermore, SB cannot lie

on X °, whereby B V 3K. Finally, GyAGz = RB. Therefore

#Gy - #Gz = #RS - 2#(Gy\Gz), which is an even number.

Proof of Theorem 1

Let X, T, L(.), and K be as given in theorem 1. X is said to be

centrally regular if y=O does not lie in the affine hull of n or fewer

rows of A. Note that if X is centrally regular, then y=O must be a

regular point of X° . The remark below allows us to assume, without

loss of generality, that X is centrally regular.
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Remark 1. If theorem 1 is true when the polyhedron X is centrally

regular, then theorem 1 is true independent of X being centrally

regular.

Proof: Suppose X is not centrally regular, but that X satisfies the

hypotheses of theorem 1. Then X° is solid, and almost every point

y E X does not lie in the affine hull of any set of n or fewer rows

of A. Let y be any such point X° . Then y must be a regular point in X.

Now let X' = (x'ERn](A=eoy)x' < b), X' ° = (y'ERnly'=X(A-eoy), X > O,

Xe=l}. From the projective transformation lemma, the mapping g('):X-X'

given by g(x) = x/(1-y x) maps X onto X', and maps T to the triangulation

T'and K to the pseudomanifold K'. For each v'EK'°, define L'(v') =

L(g-l(v')). Notice that X'°=X°-y, and that 0 is a regular point in X'° .

Therefore, because the system X', T', L'( ), and K' is combinatorially

equivalent to our original system and by hypothesis theorem 1 is true for

this new system, theorem 1 is true for the original system. [X]

We therefore will assume for the remainder of this section that X is

centrally regular.

X is said to be nondegenerate if Ax=b~ has no solution xEX when

1al > n+1 and cM. In order to prove theorem 1, we will first assume

that X is nondegenerate. This assumption will be relaxed subsequently.

The remark below lists some of the properties that are consequences of

the property of nondegeneracy in conjunction with the assumption that X

is centrally regular.

Remark 2. If X satisfies the assumptions of theorem 1 and X is

nondegenerate and centrally regular, then:
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(a) every extreme point of X meets exactly n facets of X.

(b) every facet of X° is an (n-l)-simplex S, where B = C(x) for

some extreme point of X, and for every extreme point xEX, S is

a facet of X° , where = C(x).

(c) for every a c M with a = n+l, Sa is an n-simplex.

(d) for every B c M with 1I1 = n, S is an (n-l)-simplex, whose

affine hull contains no other rows Ai, i E M\8.

Proof: (a) is a direct consequence of the definition of nondegeneracy

and the fact that an extreme point x of X must meet at least n facets

of X, because the dimension of X is n.

To prove (b), let F be a facet of X°. Then there exists a

supporting hyperplane H of X° such that H n X = F. This hyperplane

can be written as H = (ylyTx = e) for a particular (x,e). Hence F =

S B , where 8 = (ilAix = e} and Aix < 8 for iEM\B. Because 0 e int X°, 

must be positive and we can assume =1. Therefore xEx, and Ax = b,

whereby 181 n, since X is nondegenerate. But since F is an (n-l)-

cell, we must have IBI > n, and hence IBI = n, and F is an (n-1)-

simplex. Conversely, let x be an extreme point of X and let = C(x).

Then IBI = n, from (a), and the hyperplane (yERnlyTx = 1) supports X°

and contains S, since Aix = 1 for each iEB. Thus S is a face of X°.

Since A must have linearly independent rows, the rows of A are

affinely independent, whereby So is an (n-1)-simplex.

To prove (c), let a c M, ai = n+1. If the matrix

Z i A T ]
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does not have rank n+l, then there exists (x,e) (0,0) such that

Aax = ee, a contradiction. Therefore Z has full rank, whereby the set

Sa is an n-simplex.

For (d), let B c M, 18 = n, then a = S u {i} satisfies (c) for

any i E M\S, whereby S is an (n-l)-simplex and Ai does not lie in the

affine hull of S . [XI

Our next task is to construct the extended pseudomanifold K,

defined by

Ko = K u M

K = ( EKOo # , a C ( u C(a) ) for some rEK).

This construction is illustrated in figure 5. We have the following

lemma:

Lemma 1. If X is nondegenerate, K is an n-pseudomanifold, and K =

( c MIB c C(x) for some x X, B # *}. B is an (n-1)-simplex in aK

if and only if So is a facet (and an (n-l)-simplex) of X.

PROOF: X is nondegenerate, and so by Corrollary Al of the appendix,

K and K are as stated. The second statement of the lemma follows

from part (b) of remark 2. [X]

The construction of K will be generalized later in this section to

include degenerate bounded polyhedra as well. This construction

resembles the construction of an antiprism in Broadie 1], but is

combinatorial in nature and so does not depend on the geometric

projection property used in his work.

We now extend L(-):K°-M to L(-):K°-M, by defining L(i)=i for iEM.

For each c M, {B0=n, define R = ( u {j}jjEM\B}. For any

collection D of subsets of M, let D denote the number of simplices
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a E K with the property that L(a) E D. We have the followihng

result:

Lemma 2: Let c M with IBl=n.

(a) If B E a K, then #Rs is odd, and

(b) If B 0 a K, then *#R is even.

PROOF: Let q be the number of simplices E K with the property

that L(a) = B. A parity argument, first introduced by Kuhn [16] and

later used by Gould and Tolle [11], states that the parity of RB and

the parity of q is the same for any c M with I=n. If E K

and IBI=n, then L(B)=S, and q=1, whereby #R 8 is odd. If 8 0 aK,

then q=O, and hence RB is even. [X]

Consider a regular point yE XO. Then al = n+1 for every a E Gy.

Furthermore, because y is regular, y int S, for every E Gy, and

thus y E int n Sa, whereby n Sa is an n-cell, and every element
aEGy aeGy

of the interior of this cell is a regular point in X°. If y,z are

two regular points in X°, then define the relationship yzz if Gy=Gz.

The relation z is an equivalence relation on the regular points of

X°0 . Furthermore, because Gy can take on only a finite number of

values, this equivalence relation divides the regular points y of

X° into p mutually disjoint sets of the form int ( n Sa ), for p
aEGy k

distinct values of y, = Y,...,Yp.

For k=l,...,p, define T k = n Sa, and each T k is thus an n-cell
aEGy k

in X°, and (int k) n T i = for all ik. Furthermore, a limiting

p
argument easily demonstrates that u Tk = X°. Figure 6

k=l
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illustrates the above remarks. It is our aim to prove that the

collection M = {T1 ..... k}) constitutes a PL subdivision of X° (see

Eaves [4]).

Lemma 3. Let X satisfy the assumptions of theorem 1 and suppose

X is nondegenerate. Let M = (T 1 ,...Tp)}. Then (M, X°) is a

subdivided n-manifold. Furthermore, if y and z lie in adjacent

n-cells of X°, then Gy&Gz = R for some c M, 1B0=n, and 8 f K.

PROOF: In order to show that (M,X ° ) is a subdivided n-manifold, it

suffices to show that if F is a facet of an n-cell Ti, then either F

c Xo , or F is a facet of an n-cell rj, j#i. Let Ti be given, let

F be a facet of T i, and suppose that F aX °. Let y E rel int F,

and let y' be a given element of int i. Then i = n S a . Because
aEGy'

y E F, there exists a E Gy' with the property that y E S.

Because y E rel int F, there exists a unique subset B c a, 1B0=n,

with the property that y E S, and y E rel int S. Thus y = X\gA, for

some XB > O, eXB = 1, and X is uniquely determined. Let H be the

unique hyperplane in Rn containing S (see Figure 7); H can be represented

as H = {yERnly.x = }) for some (x,e) # (0,0) and unique up to scalar

multiple. Because SB c H, Ax = ee. Because H is asupporting

hyperplane of Ti, then without loss of generality, we can assume that

yx > for all yET i. Because y E rel int S, and y E rel int F,

y + tx E int Ti for all t > 0 and sufficiently small. From remark

l(d), Aj H for any jM\B, i.e. Ajx # 8 for any JEM\B. Let

P = {jEMIAjx > }) and N = {jEMIAjx < 8). Then, P, N, and are disjoint

subsets of M. Furthermore, because we can assume that X is centrally

regular, the set {ilAix = }) can contain at most n elements, whereby
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8 = (ijAix = e} and M = P N B. For all t > O and sufficiently small,

y + tx int S for each jP. Thus for y = y + tx, Gy 2 (8 uj))

for t > 0 and sufficiently small for jP. But y + tx E Ti for all t > O

and sufficiently small. Thus, since Gy=Gy, for all t > 0 and sufficiently

small, (8 u {j}) E G y,* Also, it is easy to verify SBufj}n T i = F for all

JEN, whereby (Bu(j}) 0 G6 y for jEN. Now consider y=y - tx for t > 0

and sufficiently small. Then y-tx E S u{jfor all jEN, whereby (u{j})

E Gy for y=y-tx and t > 0 and sufficiently small. Furthermore, since

y E int S a for all aEGy, such that 8 4 a, (y-tx) E Sa for all aGy,

B ~ a, and t > 0 and sufficiently small. Also, for t > 0 and

sufficiently small, (y-tx) S{j } for any jEP. Therefore,

(Gyl\( S Bu{j}) ( U Bu{j})) c G y, for y=y-tx and t > 0 and
j EP jjEN

sufficiently small. Suppose that aGy for y=y-tx and t > 0 and

sufficiently small. If 8 a, then y E Sa. If y EaSa, and 8 a,

then y E Sy for some Y c a, Y8, and hence y is not in the relative

interior of F. Thus y E int Sa, whereby y + tx E int Sa for all t > 0 and

sufficiently small. and hence aGy,. Thus we have for all t> 0

and sufficiently small:

Gy = Gy' \ ( U B{j}) u ( U u{j}), (*)
jEP jEN

for y = y - tx, and y is therefore a regular point of XO. Let Tk be

the unique n-cell of (M, X°) containing y=y + tx for t > 0 and

sufficiently small. There thus exists t > 0 such that y=y - tx is a

regular point of X°, and Tk = n Sa. Thus Tk n H = Ti n H, and so F
aOEG

is a facet of Tk. and from (*), we have
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GyAGy = u (B u(j)) = u (u{(j}) = RB.
jEPuN jEM\B

Finally, note that B cannot be an element of K, for otherwise SB

would be a facet of X (by lemma 1) and H would be a supporting

hyperplane for X°, which cannot be true. [X]

The last intermediate result we will need to prove theorem 1

under nondegeneracy is:

Lemma 4. If X satisfies the assumptions of theorem and X is

nondegenerate, then for each E2K with IBl=n, n Ssu(j )
JEM\8

tk for some kE {l,...,p}.

PROOF: Let BE3K, IBl=n. Thus S is a facet (and is an (n-1)-simplex)

of X° , by lemma 1. By remark 2 (b), there is an extreme point x of

X such that = C(x). Thus ABx = e and Ajx < 1 for all jM\B.

Let y E rel int S, and let T = n S{j } . Then (y - tx) E SBu{j}

for all t > 0 and sufficiently small, whereby T is an n-cell and (y-tx)

E int T for all t > 0 and sufficiently small. Suppose (y-tx) E Sa for

all t > 0 and sufficiently small, and al = n+1. If a # Bu{j} for some

{j} EM\B, there exists iB such that ia, whereby, y Sa. But

(y-tx) E S for all t > 0 and sufficiently small, a contradiction.

Thus for y = y-tx, and t > 0 and sufficiently small, Gy = u Bu{j},
jEM\8

and y is a regular point of X° , whereby T = Tk for some

k E (1,...,p}. [X]
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We now have:

Proof of theorem 1 when X is nondegenerate:

Let EOK with 1Bl=n. Then by lemma 4, n Sou{j)
jEM\8

{ ,...,p}. Therefore for every y E int T
k , Gy = n

= k for some ke

Ouj) = R.
jEM\3

By lemma 2, #RS is odd, and hence #Gy is odd. For any two adjacent n-

n-cells Ti, Tj, GyAGz = R for some B K, Bj=n, for any y E int i,

z E int Tj, by lemma 3. We have:

Gy = (Gy\Gz) u (Gy Gz), whereby

*Gy = #(Gy\Gz) + (Gy n Gz), because these two sets are disjoint.

Similarly, we have Gz = #(Gz\Gy) + #(Gy n Gz).

Therefore, #Gy - #Gz = #(Gy\Gz) - #(Gz\Gy)

= #Gy\Gz) + #(Gz\Gy) - 2 #(Gz\Gy)

= #(Gy&Gz) - 2 #(Gz\Gy)

=#R - 2 #(Gz\Gy).

However, RB is even, by lemma 2. Thus Gy and #Gz have the same

parity. Therefore, for any two adjacent n-cells Ti and j, #Gy and

#Gz have the same parity for all y E int Ti, Z E int Tj. Furthermore,

for at least one Tk, #Gy is odd, by choosing Tk = n SBU{j} where
jEM\B

BEaK. Thus Gy must be odd for all y E int Tk for all k, because

8 k = X° is a connected set. But y E int T k for some k if and only
k=l

if y is a regular point of X°. Thus Gy is odd for all regular points

of X°.

Therefore, if y is regular, there exists an odd number of simplices

E K such that L(;) E Gy. Each simplex is of the form u C(a) where

aEK, and L() u C(a) = L(o) for all aEK. Thus there exists an odd number

of simplices aEK with the property L(a) u C(a) E Gy. This proves
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assertion (i) of theorem 1. Assertion (ii) follows from an elementary

closure argument. [X]

The proof of theorem 1 when X is nondegenerate has depended

critically on being able to create a pseudomanifold K whose boundary

bears a combinatorial equivalence to the boundary of XO. This

combinatorial equivalence is driven by the fact that every row Ai of A is

an extreme point of X, every facet of X° is an (n-1)-simplex, and that

X is nondegenerate. These observations suggest a more general

combinatorial result, whose development will aid in proving theorem 1 for

the more general (degenerate or nondegenerate) case.

Let Z be a polyhedron of the form Z = {zERnlz=XE, X > O, X-e=l}.

Let M ={l,...,m} index the rows of E. For each a c M, define T =

{zERnlz=aEa, a > O, Xaea=l}. A point zZ is said to be a regular

point of Z if z Ta for any a c M with a < n. For every zZ, we

define Gz = (a c MlzETa). Z is said to be special if

(i) every row of E is an extreme point of Z,

(ii) z=O E int Z and z=O does not lie in the affine hull ot Ta for

any a with lal < n, and

(iii) no hyperplane H in Rn meets more than n extreme points of Z.

Let K be a finite pseudomanifold with vertex set KO M.

We say that K agrees with Z if

(i) BEaK implies B c M and T is a face of Z, and

(ii) if c M and TB is a face of Z, then BEK.

We have the following result:
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Lemma 5. If Z is special, K agrees with Z, and L(-):KROM is a given

labelling such that L(i)=i for each iEM, and z is a regular point in

Z, then there are an odd number of simplices EK with the property

that L(o)EGz.

PROOF: If Z is special, define X = (xeRnjEx < e}. Then X is solid

and centered and scaled, and because Z is special, X is nonredundant

bounded, nondegenerate, and centrally regular. In this case, we

have X°=Z, where X° = {yERnjy=XE, X > O, eX=l}. Therefore Remark 2

pertains. Furthermore, lemma 2 is valid, because the proof of lemma 2

only depends on the fact that K agrees with X. and not on how K was

constructed from K and T. Finally, lemmas 3 and 4 hold true.

Therefore, if z is a regular point of Z, i.e. z is a regular point

of X°, there exists an odd number of simplices aEK with the

property that L(a)EGz. [X]

(The statement of lemma 5 can be regarded as a combinatorial

version of the No Retraction Theorem (see Hirsch [13], e.g.). To

see this, suppose Z is as given in the lemma, and let T be a

triangulation of Z that does not refine any facet of Z. Then the

set of vertices of T consist of K = {EiliEM} u K, where K are

vertices of T in the interior of Z. Any simplex ET can be written

in the form = <v,...,vk,Ei,......Ei >, where each vi E K, and each
p

Ei is a row of E. If we let a = {v °,. ..v k i i, ip}, then the

collection K of all such o is a pseudomanifold that agrees with Z.

If L(-) is a labelling K°O-M, then for each vK °, let f(v)=EL(v), and

for each Ei, let f(Ei)=Ei. Then if f(-) is extended to a PL function

f(.) maps Z into Z continuously and leaves the boundary fixed.

According to lemma 5, for each regular point zEZ, there exists an
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odd number of simplices aEK such that L(-)EGz. But this means that

z=f(x) for at least one xa, where is the real simplex

corresponding to . Thus f(-) maps Z onto Z, proving the No

Retraction Theorem.)

When X is degenerate, then the preceding proof of theorem 1 is not

valid. In particular, if X is degenerate, the construction of K does

not result in an n-pseudomanifold. (To see this, suppose X is

degenerate, and let x be an extreme point of X for which

IC(x)l > n. Then, since x}EK, (x} C(x) EK, but this set contains

at least n+2 elements, and so is not an n-simplex in K.)

The typical method for side-stepping degeneracy is to perturb the

constant coefficients of the constraints of X by a vector of

infinitesimals. In our case, however, such a perturbation of X has

adverse consequences. The perturbation will alter the combinatorial

properties of X , which is undesirable in a combinatorial analysis

such as this. Also, if T is a triangulation of X, it is unclear how to

amend T so that the amended version is a triangulation of the perturbed

X. In any case, the combinatorial structure of T may change, which

again is undesirable.

The usual perturbation of X is performed by changing each right-

hand side coefficient b i to bi + i . We will instead perturb

X° , by using this same construction in a dual form. Our first task,

however, is to repair K. We proceed as follows. A subset a c M

is said to be consistent if there exists xE X with the property that

C(x)=a. For any matrix D or vector d, let (D) or (d) denote the number

of leading zero columns or components of D or d, respectively. Let

B=[b,I]. If a c M is consistent, a subset
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B c a is said to be a basis for a if AX+Y=B has a solution X, Y with

Y 0, (YM) > 1, Y = O, i.e., (Ye) = m+l, and I8[ = rank Aa.

Instead of constructing the pseudomanifold K by joining each

simplex a of K with its carrier set C(a), we now construct K by

joining each of K with every subset B of its carrier set C(a) that

forms a basis for this carrier set. We obtain the following

theorem:

Theorem 4. Let X be a solid, bounded, and nonredundant polyhedron.

Let T be a triangulation of X and let K be the pseudomanifold

corresponding to T. Let K°=K° M, and define K = (a c Kola # A, a

= a i 8, where aEK and B is a basis for C(a)). Then K is an

n-pseudomanifold, and K = (B c MB#o, and B is a basis for a = C(x) for

some XE X}. [X].

The proof of this theorem is rather laborious, and so is relegated

to the appendix. The boundary elements of K correspond in a natural

way to subsets of faces of X°, in a manner that we will soon see.

Theorem 4 thus gives a constructive procedure for triangulating the

boundary of X° The procedure of joining simplices a of X with bases

B c M is similar to the construction of an antiprism, see Broadie l1].

This construction of K is also closely related to the construction of a

primal-dual pair of subdivided manifolds, as in Kojima and Yamamoto

[14], although K is combinatorial while the primal-dual pair of

manifolds is not.
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Our next task is to perturb the n-cell X. Define A Ai/(I+c i)

for iEM, and define A to be the matrix whose ith row is Ai. Define

x ° = {(yRn y=XA, X > 0, e.X=l} and S = {yERnly=Xa A, Xa O,

ea* ma=l }.

Lemma 6. If a c M and a n+l, then Ax = ea has no nontrivial

solution for all sufficiently small positive .

PROOF: We will actually prove a stronger statement, that if a c M

and al=n+l, then Ax=eea can only have a solution for at most n

values of . The proof is by contradiction. Therefore let

.I..... n+l be n distinct values of for which Ax=eea has a non-

trivial solution. If e in all of these solutions, then by

rescaling, we can assume that Aax=ea has a solution for all

c=c1,...n+1. Therefore Aax=B[c] has a solution for =cl,...,en+l where

B=[e,I] and [c]=(1,c,c2,....,m). Let Q be the matrix

1 1 ... 1

I CI . . l
1 2 n+l

m m . c m
1 2 ' n+l

Then there exists a solution X to AaX=BaQ. But, since m > n, an

induction argument establishes that the rank of Q is n+l, as is the

rank of Ba. However, the rank of A is at most n, whence AaX=BaQ

cannot have a solution, because the rank of BaQ is also n+1.

It only remains to show that if Ax=eea has a nontrivial

solution, it has a solution with e#O. Suppose that Ax=eea has a

nontrivial solution (x,e)=(x,0), and suppose that there is no
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solution to Ax=ea . Then there exists Xa with the property that

XaAa=O, Xa-ea=l, i.e. the zero vector is an element of the affine

hull of S. Denoting this affine hull by HE, we also have Aa x=0,

whereby H has dimension at most n-1. Thus there exists a subset 8

of a such that 1BI < n and the affine hull of S is spanned by

C _ _affine combinations of the rows A Therefore HE is the affine£hull of SB. But y=O £ He, and hence y=O lies in the affine hull of n or

fewer rows of So, and hence of S . This contradicts the assumption that

X is centrally regular, and the proof is now complete. [X]

We also have:

Lemma 7. For all sufficiently small positive c,

(a) X °O is special,

(b) XO° agrees with K, and

(c) any regular point y of X° is a regular point of X, and if

y is a regular point of X°, yES a if and only if ySa.

PROOF: Let X={xERnlAcx b} = {xERnIAx < B[c]), where B=[e,I], and

[C]=(,c,E 2 ,...,cm). Because XE is nondegenerate for all sufficiently

small positive , the faces of X°O are all simplices. Furthermore, since

X is nonredundant, the rows Ai of A are all

extreme points of X, whereby the rows Ai of A are all extreme

points of X°O. Furthermore, because y=O E int X° , y=O E int X° for

all sufficiently small positive . Finally, because the conditions

of lemma 6 are met, whenever a c M and lai > n+l, A x=eea has no

nontrivial solution for all > 0 and sufficiently small. Thus for

all sufficiently small positive , no hyperplane meets more than n

extreme points of X° £O. Thus X°O is special, proving (a). Part (b)

follows from the fact that BE2K if and only if AX+W=B has a solution
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with W=O and and WM\B O; if and only if Ax+w=B[c] has a solution

with w=O and wM\B > 0 for all sufficiently small positive c; if and

only if {yERn-y=jAS, XB > O, XBBB[c]=I} is a face of {yERnly=XA,

X > 0, XB[e]=1} for all sufficiently small positive ; if and only if

{yly=XSAC, gB > O, XB-e=l} is a face of {yERnjy=XA C, X > 0, X-e=l},

i.e. if and only if S is a face of X°O. For part (c), note that y

is a regular point of X° if and only if y meets no So for B c M,

IBl=n, and so y meets no S, B c M, IBl=n, for all sufficiently

small positive . [X]

Our last intermediary result is:

Lemma 8. Let X, T, K, and L(.) satisfy the assumptions of theorem

1, and let y be a regular point of X°O. Then there is a one to one

correspondence between simplices E K that satisfy L(a) E Gy, and

simplices E K that satisfy (L(a) u C(O)) E Gy.

PROOF: Let a E K have the property that L(a) E Gy. Then is of

the form a=o u B where EK and c C(o), and because 181 < n and

IL(a)I=n+1, ja > 1, whereby a#. Now L(a) EGy if and only if

(L() u B) EGy. Because B c C(a), this means L(a) C(c) EGy.

We thus must show that if -i=(oi U 1) E Gy and a2 = (2 u 82) E Gy

and a1 # 2, then we cannot have a1=a2. Suppose =1=o2 and

B1B82. Then 1 c C(o) and 82 C C(a). Let L=L(a). Then there

exists X 1, 2, Ul, U2 > O. such that:

X1AL + U1AB 1 = y (1)

X2AL + U2AB 2 = y (2)

Because 2 is a basis for a = C(a) i=1,2, 111=1021 and there

exists a sqaure matrix T such that A 2 = AB 1 , and Wt must be
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nonsingular, whereby A 1 = -lA2. If t=dim , then ILI < t+l and

1Bil=n-t, i=1,2. Because y is a regular point, Ll=t+l, and

ILuBil=n+l. Furthermore, Xi > O, i > 0, i=1,2, for otherwise y is

not regular. Combining (1) and (2) above, we obtain

(X 1-X 2) AL + (u 1-u 2n) A 8 1 = (3)

If X 1 -X2 # , or U1-U2T # O, then we could use (3) to reduce the

number of positive components in (1) or (2), violating the fact

that y is a regular point. Thus X 1 =X 2 and U=u2, and UlT-l=u2 -

Furthermore, because Si is a basis for a = C(8) and each 8i a,

there must exist X 1, X 2, Y 1, Y2 such that

A81X1 = Be 1

A82X1 + Y1 = B8 2' Y1 0, Y1 # 0.

A82X2 = B 2

AS1X2 + Y2 = Be 1 Y2 , Y1 # 0.

Therefore B 1 = A 1 X1 = T- 1A8 2 X1 = -1B 8 2- -lY 1 = T-1 A 8 2 X2 -

-l1Yl = A 81 X2 - 1Y1 = BS 1 - Y 2 - - 1Y 1, and hence Y 2 = -- IY1.

Because u1, U2 > 0, 0 L U 1Y 2 = U 2TY 2 = -2Y1 O0, a contradiction.

Thus 81=82.

Next, suppose E K and (L(o) C()) E Gy. Let a = C(o), and

let 6 = L(a). We need to find a basis 8 for a with the property that

(6 u a) E Gy. Because (6 u a) E Gy, there exists X6 > 0, Xk > 0 with

the property that X6 A + XaAa = y, and e 6X6 + eXa = 1. Furthermore,

there exists x E X with the property that C(x) = C(a) = a, i.e. Ax =

ba. Let B = [b,I] and let z=XaAa and consider the following lexico-

linear programs:
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lex max z.X lex min XaBa
P D

subject to AaX+Y Ba subject to XA+Y = subject to 

Y k 0 X t > 0

Note that X = (x;O), Y = (0;I) is feasible for P and Xk = X is

feasible for D, whereby there exists basic optimal solutions

(X*, Y*), a to P and D, respectively, with basis c a. Therefore,

= (o u B) E K. Let v* be the optimal value of P and D. Then

because X = (x;O), Y = (O;I) is feasible for P and Xa=Xa is feasible

* _ * * _

for D, v > zx = XaAax = Xaba > v1, whereby v = Xea. Thus 8 is

a basis for a, and X6A6 + XSA = X 6A6 + XaAa = y, and X6e + Xe B =

X6e + Xaea = 1, and so L(a) = (L(a) u 8) E Gy. Thus for every a E K

with (L(a) C(a)) E Gy, there exists c M with = (a u B) E K and

L(a) E Gy. This completes the proof. [X]

Proof of Theorem 1. Let X, T, K, and L(-) satisfy the assumptions of

theorem 1. Then for all sufficiently positive c, X°O agrees with K,

by lemma 7. Therefore, by lemma 5, if z is a regular point of X,

#Gz is odd. If y is a regular point of X°, then y is a regular

point of X° c for all sufficiently small positive c, and hence #Gy is

odd. Thus there are an odd number of simplices of aEK with the

property that L(a) EGy. By lemma 8, there are an odd number of

simplices aEK-with the property that (L(a) u C(a)) EGy. [X]
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5. A Combinatorial Theorem on a Bounded Polyhedron that Generalizes

Sperner's lemma

Theorems and 2 have been shown to generalize combinatorial

results on the simplex and simplotope that have unrestricted labels

and dual-proper labels, respectively. In this section, we present a

theorem that generalizes the results on the simplex and simplotope for

proper labels, including Sperner's lemma [23].

Let X, T, and L(-) satisfy the assumptions of theorem 1, and let

X° = (yCRnly=XA, X > 0, X e=l}. For any y E int X°, let

Dy = {(a,8) E MxM I XBA - XaAa = y has a solution X8 , Xa such that

> 0, Xa > 0, and ea-Xa eX = l}. We have:

Theorem 5. Let X = ({xRnAx b} be bounded, solid, nonredundant,

and centered and scaled. Let T be a triangulation of X, let K be the

pseudomanifold corresponding to T, and let L(-):K°-M be a labelling

function. Then if y E int XO, there exists at least one simplex aEK

with the property that (L(a)), C(a)) E Dy.

PROOF: Let X, T, L(.), and K be given as in theorem 5. Let y E int X°

be given, and define X' and T' as in the projective transformation

lemma, let K' be the pseudomanifold corresponding to T', and define

L(v') = L(g-l(v')) for v'EK °', where g(.) is as defined in the

projective transformation lemma. For each v'EK °' , define h'(v') =

AL'(v,)+y, and extend h(-) in a PL manner over all of X'. Define

f(x') = arg min llz'-x'+h(x')112, where n.112 denotes the Euclidean norm.
'EX'

Because h'(-) is continuous, f'(.) is continuous and so contains a

fixed point x'. Let a' be the smallest simplex ' in T' that contains

x', and let a = L(o'), = C(a'). Let = gl(a). Then a = L(a)

and B = C(a). The Karush-Kuhn-Tucker conditions state that
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x'-x'+h(x') = XB(A-eoy) B for some XB > 0. Furthermore, h(x') =

-XxAa - y for some particular Xa > O, ea-X -= 1. Therefore,

X8AB - XaAa = (e-X B + eX~)y. After normalizing the vectors X8 and Xa

so that the sum of the component of both vectors is one, we see that

(a,B) = (L(6), C(a)) EDy. [X]

The proof of theorem 1 using Brouwer's theorem, presented in

Section 2, derives from the existence of an outward normal of the

function h. The existence of an inward normal of h(-) is equivalent

to the existence of a fixed point of f('), see Eaves [3]. When y=O,

the function h'(-) in the proof above is just -h(-) and the existence

of an inward normal of h(-) is the same as the existence of an outward

normal of h'(-).

To show that Sperner's lemma derives from theorem 5, let Sn, All

be defined as in section 2, let T be a triangulation of Sn , K be the

pseudomanifold corresponding to T, and L(-):K°-M be a labelling

function, where M = (l,...,n+1). L(-) is said to be proper if for

each vEK°, L(v) is the index of an element of M\C(v), i.e. L(v) is the

index of a nonbinding contraint of v, for vEK °. For X = Sn , the set

X° = (yeRny=XAn, X > O, eX=l) is an n-simplex that contains the

origin, and so y=O E int X°. The conditions of theorem 5 are met,

and so there exists a simplex cEK with the property that (L(o),

C(a)) E Dy for y=O. Let a = L(o), S = C(a); then there exists

n n
Xa, XB such that XA= X A , X0 > 0, Xa > 0, eBX + e X = 1.

Because L(-) is proper a n = . Note that for any i, j E M, ij,

Ai-Aj < 0. Thus A (An)T < 0 and so 0O X A (An)T Xa = (XaAn)

n n
(XaA)T > 0 whereby XaAa = 0, thus a = M = (1,...,n+1), and so

L(a) = (1,...,n+}l. This is precisely Sperner's lemma, without the
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oddness assertion.

The logic used above can also be used to prove theorem 3 of [7]

(see also van der Laan and Talman [17]), which generalizes Sperner's

lemma to the simplotope.

Theorem 5 does not contain an assertion of the oddness of the

number of simplices under consideration. The basic constructs used to

prove theorem 1 combinatorially do not appear to carry over directly

to the case of theorem 5. It is an open question whether there exists

a combinatorial proof of theorem 5 which asserts the existence of an

odd number of simplices aEK for which (L(o),C(o)) EDy, when y is

regular.
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Appendix A. A Pseudomanifold Extension Theorem

Let X = {xERIAx < b} be bounded, solid, and nonredundant, let T be

a triangulation of X, and let K be the pseudomanifold corresponding to T.

Let M = {l,...,m} be the set of constraint row indices. We wish to

construct an n-pseudomanifold K, where each n-simplex a of K consists of

a simplex a of K together with a subset of C(a), the carrier indices of a.

In order to construct K for arbitrary polyhedra, we need to work with

the lexicographic system AX + Y = B, Y O, where B = [b,I]. For a given

vector v, define (v) to be the number of leading zeroes of v. For a

matrix V, let (V) denote the number of leading zero columns of V. An

index set a c M is said to be consistent if there exists xx with C(x)=a.

A subset 8 c a is said to be a basis for a if there exists X, Y such that

AX + Y = B, Y 0, (Y)> 1, and (Ye)= m+l, and [8 = rank (A). Let us

construct K as follows:

-o

let K = K u M, where M = {l,...,m}, and

let K = c a u a f 6 ~ c, a E K, a = C(a), and is a basis for a}.

Our aim is to prove:

Theorem 4. Let X be solid, bounded, and nonredundant. Let T be a triangulation

of X and let K be the pseudomanifold corresponding to T. Let K = K u M, and

define K = {a c K a , a c a u 5, where a E K and is a basis for C(a)}.

Then K is an n-pseudomanifold, and K = {8 c M , and is a basis for

some a, where a is consistent}.
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When X is nondegenerate, we have:

Corollary Al. Let X = {x E RnAx < b} be a solid, bounded, nonredundant,

and nondegenerate polyhedron. Let T be a triangulation of X, and let K

-o

be the pseudomanifold corresponding to T. Let K = u M, and define

K = {a c K a ; r, a c a u , where a E K and = C(a)}. Then K is

an n-pseudomanifold, and K = { c M I a4$, = C(x) for some xx}.

Proof of Corollary Al from Theorem 4. If X is nondegenerate, then if

a is consistent, the rows of A. are linearly independent, the only

basis for a is =a, and the result then follows. [X]

In order to prove theorem 4, we proceed as follows. Throughout,

it is assumed that X is solid, bounded, and nonredundant.
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Proposition Al. If a is consistent, then there exists X*,Y*such that

At+ Y*= B Y 0, and (Y*) 1, i.e., the first column of Y is zero.
a a

PROOF: Consider the lexico-linear program:

lex min Z = e Y
a

s.t. AX + Y = B P ,

Y O

where e is the vector with (e )j equal to one if j E a and equal to zero

otherwise. Because a is consistent, there exists x, y such that

Ax + y = b, y 0, and y = 0. Then define X = [x,O], Y = [y,I], and

note that X, Y is feasible for P. Furthermore, since e Y 0 for any
a

feasible X, Y, the above has an optimal solution, X*, Y*. If (eaY*)1 > 0,

then there exists rr*< ea such that 7T*A = 0, (*B) 1 > O, by duality.

Thus 0 < (r*B) = r*b = r*Ax + ,T*y e y = 0, a contradiction. Thus

(eaY*)l = 0, whereby (Ya*) 1. 

Lemma Al. Let X, Y satisfy AX + Y = B , Y 0, and let a = {i I Yil = 0},

= {i Yi = 01. Then there exists B' a B such that ' is a basis for a

PROOF: First note that l B I = rank(A ). To see this, observe that A X = B ,

whereby since rank(B) = I B I , rank(Aa) 2 I B I , but since rank(A ) I ,

we must have rank(A) = I B I . Therefore I B I = rank(A8) < rank(A ) . And if

8' B, then 1B'I = rank (AS,) < rank (Aa).

Let c = rank(A ) - B I . If c = 0, then let ' = , and the lemma is

proved. Suppose the lemma is true for rank(A ) - B 8 I = 0,..., c-l1, and

consider the case rank(Aa) - I B I = c. Let 6 = a\ , and T = M\a, i.e.,

T = {ilYil > 0. Because c > 0, there exists j E 6 with A independent
J
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of the rows ofA . There thus exists d E Rn such that Ad = 0, and

AMd = 1 . Now, let
J

Y.;Y.)
v = lex min Y for some i E M .

A.d>0
1

We note that (v) = (Yi) 1, and i C 8, whereby v 0. Let X' = X + do v,
A.d

Y' B-AX', whereby Y' = Y It then follows that Y =Y = 0,i i A.d i 

Y = 0, and (Y ) > 1, (Y) = 0, and Y' O. Upon setting = S u {i},1 a T

we have that rank(A )- 1 I = c- 1 . We thus have reduced the problem to

one where rank(A )- < c , which by induction, means that there exists
a

a' with a' v , and 5' is a basis for a. 

Lemma A2. Let a be consistent and be a basis for a. Let k E . Let

\kuj be a basis for a , with j k. Then the choice of j is unique.

PROOF: Because is a basis for a, there exists X, Y such that

AX +Y = B, Y O,. a = { iI Yil =O},, i = , and

S I = rank(AB) = rank(A). Now suppose there are two such j k such that

\ k u j is a basis for a. Then, by reordering if necessary assume that

j = 1 and j = 2. Then there exist X,Y , X, y2, such that:

AX +Y =B,y O, al 0, \ku = {iY = 01, = 1,2

Define D = A(X-X ) = Y - Y , a = 1,2. Then we have:

D = , i E S\k , = 1,2 ,
1

D = -Y O , £ = 1,2,

a k
and D = Y>-O = 1,2

k = k 0
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Also, because rank(A) = rank(Aa) , and I I = rank(A) , there exists a

unique matrix such that EA = Aa . For any i E a, we have

DiQ.= A.(X-X ) = IA(X-X ) = D
1 i iA ikk If we then define ri = Tik for all

1ik

k 9,
i a , then we have DD forall iiDk a .

Because DQ <O and DkQ ?O, we must have <0 = 1,2. Also, because91 k ~~~~~~~~~~~~~~~~~~~~~9 

9, 1 D g 9 fi D I
Dk T D9 , we can write D = -Dk ,=,2.z PIrr R 1 'i k 7 , =1,2

9,R

1 = + D1
Now, Y2 =2 + 2

'r2 1
=Y2 + -r D

7r

= Y2 1 Y 2 n 
Thus, - '2

71 7T2

2 Y Y Y1
Using a parallel argument with Y , we obtain , whereby

=2 r1

Y2 Y1 1
r =I , whereby Y2 =
2 1

2 1 2
y =y =Y =0
1 1 2

Thus A \k u{l} u{2}) X1 B \ ku l u2(5~~~\k{1}u 0\u~ {2}'
But since 1,2 Ea , the

matrix A \k u{l1 u{2} has rank equal to I1 I = rank(Aa) , but

rank(B \ ku {1} u{2}) = B I + 1, a contradiction. Thus j is uniquely

determined. [

LemmaA3 If a is consistent and is a basis for a, and i E , then

exactly one of the following statements are true:

i) there exists j a, j i such that B \ iu j is a basis for a, or

ii) (5 \ i) is a basis for some a' c a , where a' is consistent.
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i i th
PROOF: Let d be chosen so that Ad = -e , where e is the i- unit

vector. There exists X, Y such that AX + Y = B, Y a 0,

a = {kYkl = , = {kYk = O}. Upon examining Aad, we can either have

A d O or A d 0 . We have two cases:
a a

Case 1 A d
a

0 . Let v = lex min k and we have v = A
d A.d

Ad> 0 k

for some j . Furthermore, since A d $ 0, j E a . We must have

(v) = (Y.) > 1 . Let X' = X + do v, Y' = B - AX' . Then Y' O,

and Yk = 0 for all k E 6 \ iuj . Also, (Y ) > 1, and {kJYk = O} = \ iuj .

Thus the conditions of (i) are satisfied.

Case 2 Aad < O. Let v = lex min Akd (This set is n

Akd> O _
Y.

otherwise X is unbounded.) Then v = for some j a, an
A.d

(v) = (Yj) = 0. Let X' =X + d ov ,Y' = B-AX' . Then fo:

k Yk A d aJ Y'nd . For k E \ i, Yk = .

Yj - Y Y , and
Yi 2A.d >0 and (Yi) = 0, i.e., Yil > O. Likewise, for

J
21

ot empty, since

I hence

r k E M,

Also,

k a, (Yk) = , i.e., Ykl > 0 . Define 6' = B\ i, a' = {iJYil = O} .

Then a'c a. Since is a basis for a, there is a unique HI such that

EA = A . Now for each k E a', Yk

implies Akd = O. Likewise k E a'

Akd = AB d = -ki = 0 if and only if

combination of the rows of Aa\i. Thus
6 \i·

Akd

= k A.d Yj , whereby (Yk) > 1
3

if and only if Ad = O. Now

k E a' . Thus each Ak is a linear

B' is a basis for a'.
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It only remains to show that (i) and (ii) cannot take place

simultaneously. If (i) holds, then there exists X, Y , such that

AX + Y = B, Y O, = {kYk = O} , a = {kYkl = O} , and X', Y' with

AX' + Y' = B , Y' O, \ iuj = {kIY'k = 0} , = {klYkl = 0} .

Defining D - A(X- X') , we have D = Y'- Y. Let I be the unique solution

1A =

= Y'
\i

ereby si

If (i

i = {k|

have I

would 

= .kiDk1 

Aa Then Dk = Ak(x- ) = kA(X- X') = kIkiDi, for kE a, because

Y =0-0=0. Now, D O=Y 0, and D =-Yj O,<
B\i ~\i 1 1 j j

.nce D = ..jiDi, we must have ji< 0

.i) also holds, then there exists X', Y' with AX' + Y' = B, Y' O0 ,

Yk= } , a' = {kYkl = O} , a' c a. Again letting D = A(X-X') =Y'-Y,

Dk = NkiDi and Di0 , for k E a. Now, since i a' (otherwise

Lot have independent rows) we must have Dil> 0, whereby since

for all k E a , and Yk = Yk + Dk = Yk + kiDi we have

for all k a', ki > for all k E a\ a' 

{k E a Ki< 0} = , contradicting the fact that Eji < 0

exactly one of (i) and (ii) holds. 0

Thus

from above.

Lemma A4 If a' za and a' and a are consistent, and rank(A ,) = rank(A ) + 1,

and is a basis for a, then there exists ' 8 that is a basis for a'.

Furthermore, ' is uniquely determined.

PROOF: Let X, Y satisfy AX + = B, V Y 0, a = {iil =

Then some element of AaNa is independent of the rows of A ,

element of A , \a is independent of the rows of A Let j

given, and let d be any vector such that Asd = O, Ajd = 1.

{Y Yk fosoe kEa\a. Tn p
v = lex min Akd for some k E a' \ . Then upe

A.d>0 k
1

01 , = {ilYi= 0}

whereby some

E a' \a be

Then let

on setting
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D8

whe

8\

we

Ak

Dk

Iki = 0

Thus
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_ Aid ,
X = X + do v Y' = B - AX', we have Y = Yor all j

.~ Akd k Y °

Y u k = . Now ukca', and rank(A uk) = rank(A ,) , whereby

B' = 8 uk is a basis for a'.

Now suppose that B1 B are both bases for a' that contain 8. For

ease of notation, suppose B1 = u {l} , 8 = B u{2 , where {1,2} c a' \ a.

Then consider 81. 1\ {1} u {2} is a basis for a', whereby by lemma 3,

there does not exist i E s such that 1\ {i} is a basis for some ac a'

But B1\{l} is a basis for ac a', a contradiction. Thus 1 is uniquely

determined.

With lemmas Al, A2, A3, and A4 as preparation, we can now prove Theorem 4.

PROOF

and B

of Theorem 4: Let

is a basis for a.

T E K with

6c a U 

Then if

be a simple:

k = rank(A-'

- D a such that C(T) = C(a) = a.

x of K, where a E K, a = C(a) ,

) , there exists an (n-k)-simplex

Thus, 6 c a u c T u , and

TUBEK, and I[uB1 = n- k+1+ k = n+l . Thus every simplex of K is

contained in an n-simplex of K.

Now let v E K . Then {v} K, and let a = C(v) . By proposition Al,

there exists X, Y such that AX + Y = B , Y 0, and (Y )2 1 . By lemma Al,

with 8 = {iYi = O} , there exists B' B such that B' is a basis for a.

Then 1B'1 = rank(At,) = rank(Aa) . Now there exists a K such that

v E a, C(a) = a, and a is an (n-k)-simplex, where k = rank(As,) = B'1.

Thus, ou B' is an n-simplex of K, and {v}c ac a u' Thus every vertex

of K is a zero simplex of K.

Likewise let i M. Then, since

exists x X with Ax + y = b, y O,

thus exists X, Y with AX + Y = B, Y 

and by lemmaAl, we may assume Yi = 0,

smallest simplex of T that contains x.

59

X has no redundant equations, there

Yi = 0, yj > 0 for j i . There

O, {i} = {Yjly= 0} , by proposition Al,

Yj O, for j i. Let a be the

Then C(a) = {i}, and a is an
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(n-l)-simplex; thus a I = n. Therefore a u {i} E K , whereby {i} is

a zero-simplex of K . Thus K is precisely the set of zero-simplices of K.

Now let a u be an n-simplex of K . Thus C(a) = a and is a

basis for a, and rank(A) = rank(A ) = 8 Now let s a u and

consider an (n-l)-simplex a u B \ s u t , where t s . It is our aim to show

that the choice of t is unique. Regarding s, we have either s E ,

i.e., s = v for some v E K , or s E , i.e., s = i E M for some i

Case 1 s = v E a. Then a E K , a k-pseudomanifold where K = {o E KIC(a) - a},

and where n-k = rank(A ), and a is a k-simplex. If \ v / a Ka, there exists a

o

unique v ' E K , v' tv, such that a \v uv' is a k-simplex in K 

Thus t = v' and t is uniquely determined. If a\ vE a K , then there

exists a' a such that - \ VEK a , and Ka , is a (k-l)-pseudomanifold,

and rank(A ,) = n-k+l. By lemma A4, there exists a unique j EM such

that B' = B u{j} is a basis for a'. Thus t = j and is uniquely

determined.

Case 2 s = i E . From lemma A3, either there exists j E a , j i ,

such that B \ i u j is a basis for a and j is uniquely determined according

to lemma A2, or \ i is a basis for some a' c a, where a' is consistent. In

the former case, t = j. In the latter case, let T be the unique simplex in

Ka , that contains oEK Then T = a U {v} for a unique v E K . Thus t = v

and t is uniquely determined.

Because t can never attain more than one value, K is an n-pseudomanifold.

Furthermore, the only instance where t cannot exist occurs when a is an

extreme point of X , and B = n, and s = v where a = {v} . Thus

aK = {6cM t , B , = n, and B is a basis for some a, where

a is consistent }, 
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