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Abstract

A gauge function f(.) is a nonnegative convex function that is

positively homogeneous and satisfies f(O)=O. Norms and pseudonorms

are specific instances of a gauge function. This paper presents a

gauge duality theory for a gauge program, which is the problem of

minimizing the value of a gauge function f(.) over a convex set.

The gauge dual program is also a gauge program, unlike the standard

Lagrange dual. We present sufficient conditions on f(-) that ensure

the existence of optimal solutions to the gauge program and its

dual, with no duality gap. These sufficient conditions are

relatively weak and are easy to verify, and are independent of any

qualifications on the constraints. The theory is applied to a class

of convex quadratic programs, and to the minimum lp norm problem.

The gauge dual program is shown to provide a smaller duality gap

than the standard dual, in a certain sense discussed in the text.

Keywords: Gauge function, norm, quadratic program, Lagrange dual,

duality.
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Introduction

A gauge function f(.):RnRu{(+ =} is a nonnegative convex

function that is positively homogeneous and satisfies f(O)=O. Norms

and pseudonorms are specific instances of a gauge function. A gauge

program is defined as an optimization problem of the form

P: minimize f(x)

subject to Mx > b

where f(.) is a gauge function. Many problems in mathematical

programming fall into this category, including strictly convex

quadratic programming, linear programming, and the minimum norm

problem on a polyhedron (see Luenberger [9]). Duality for programs

similar to P have been studied by Eisenberg [2], whose work has most

recently been generalized by Gwinner [7]. Glassey [6] has examined

instances where explicit Lagrange duals of convex homogeneous

programs like P can be stated, without reference to primal

variables.

This paper presents a gauge duality theory for gauge programs

that contrasts, but is related to, the Lagrange dual of P. In

particular, the gauge dual D of P is also a gauge program, unlike

its Lagrange dual. The gauge duality theory states that if z and v

are feasible values of the primal and dual objective functions, then

z.v > 1, with equality only if z and v are optimal values of P and

D. This inequality is analagous to the weak duality relationship z

> v for the Lagrange dual. We present sufficient conditions on f(.)

that ensure that optimal solutions to the dual gauge programs exist

and that z-v=1 for these solutions. These sufficient conditions are
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relatively weak and are easy to verify. They are independent of any

qualification on the constraints of the gauge program, unlike the

Slater condition for Lagrange duality, for example.

In the case of quadratic programming, the theory developed is

applicable to a class of quadratic programs that is slightly broader

than the class of strictly convex quadratic programs. The gauge

dual is equivalent (by a monotone transformation) to a quadratic

program different from the Lagrange dual.

Another application of the gauge duality theory is to the

problem of minimizing the lp norm of a vector over a polyhedron.

The gauge dual is shown to provide a smaller duality gap (in a

certain sense discussed in the text) than the standard dual, and

hence provides a better lower bound on the primal objective value,

for feasible values of the dual, than does the standard dual

program.

A final application of the gauge duality theory is to linear

programming, where the gauge dual is different (but equivalent to)

the standard linear programming dual.

In order to lay the groundwork for the ensuing theory, Section

1 reviews basic polarity properties of gauge functions. Section 2

presents the gauge duality theory, which includes a weak duality

theorem, and necessary conditions for a strong duality theorem to be

valid. The duality theory of Section 2 is generalized to gauge

programs with nonlinear constraints in Section 3. The theory of

Section 2 is applied to selected mathematical programming problem in

Section 4. This section first discusses convex quadratic

programming, followed by a duality analysis of the minimum lp norm

problem, for which strictly convex quadratic programming is a
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special case. The discussion shows that the duality gap for the

gauge dual is in a certain sense smaller than that of the standard

dual. Section 4 concludes with an analysis of linear programming in

the context of gauge duality theory.
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1. Preliminaries

Let R denote the set of real numbers and let R=Ru{(+}. A

function f(.):Rn-R is called a gauge if f(-) is convex, nonnegative,

positively homogeneous (i.e., f(ax) = af(x) for a > 0), and f(O)=O.

Norms and pseudonorms are gauge functions. A gauge function need

not be symmetric and can take on the value +, unlike a pseudonorm

or a norm.

An example of a gauge function is

( 1 (Xl-x3),(xl-x2)12 if 2x1-x2-x3 = 
f(x)=f(xl, x2, x3) =

( + otherwise.

Note that f(x) is finite only on the plane {xER3 12xl-x 2-x 3 = 0), and

that f(x) = 0 for all x = (a,a,a). In this example, f(.) is

symmetric.

For any convex set C c Rn, the polar of C, denoted C, is defined

by C = {yeRnlyTx 1 for all xC}. C is a closed convex set

containing the origin, and C = C if and only if C is a closed

convex set containing the origin (see Rockafellar [12], p. 121). If

f(.) is a gauge function, and if C is defined by

C = {(xRnl f(x) < 1) (1)

then f(-) can be represented by

f(x) = inf ({ > OxEuC). (2)

where by convention, we denote inf = +=O. Furthermore, f(.) is a

closed function (i.e., all of the level sets of f(.) are closed) if

and only if C is a closed set. Also, for any closed convex set C

that contains the origin, the function f(.) defined by (2) is a

closed gauge function, called the closed gauge function

corresponding to C.
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For any gauge function f(.), define its polar function f(.) by

fo(y) = inf {v > olyTx < vf(x) for all x). (3)

Then f(.) is a closed gauge. If C = (xlf(x) 1}, then C =

(ylfo(y) < 1), whereby f(.) is closed, since C is closed.

Furthermore, if f(.) is closed, then fOO(x) = f(x), because C° O = C.

The following summarizes the above statements:

Remark 1 (see Rockafellar [12], p. 129). The polarity operation

f(.)ofO(.) induces a one-to-one symmetric correspondence in the

class of all closed gauges on Rn . Two closed convex sets containing

the origin are polar to each other if and only if their gauge

functions are polar to each other. X]

We also have:

Remark 2. If f(.) is a closed gauge function, then f(.) and f(.)

can be written as:

f(x) = sup yTx and fO(y) = sup yTx
yECO xEC

In the case when f(x) = xHIp, the lp norm, and 1 p < , then

fO(y) = IX{{q, where 1/p + 1/q = 1, and the Holder inequality states

that yTx < xUpHUyHq = f(x)fO(y). The following generalization of the

Holder inequality can be stated as:

Remark 3. If f(.) is a gauge function, then yTx < f(x)fO(y) provided

f(x) and fO(y) are both finite or that {f(x),fO(y)) # (0,}).

For a given function f(.):Rn.R, its conjugate f*(.) is defined

by f*(y) = sup {yTx-f(x)). If f(.) is a gauge function, then it is
x

straightforward and demonstrate that
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0 if fo(y) < 1
f*(y) =

+= if fo(y) > 

If g(x) is a-gauge function defined by x E Rn and w E R, then

the function f(x,w):Rn+m-R defined by f(x,w) = g(x) is a gauge

function, and

fo(y,z) =
go(y) if z = 0

+* if z 0

where y E Rn and z Rm.
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2. Dual Gauge Programs

Consider the following nonlinear program:

P: minimize z = f(x)

subject to Mx > b

where f(.) is a closed gauge function. The Lagrange dual of P is

formulated as

supremum {infimum {f(x) - XT(Mx-b))),
> x

which can be simplified to

supremum {bTX - f*(MTX))},
X > O

or

LD: maximize v = bTX

subject to fo(MTX) < 1

X > 0

Dual programs for classes of programs that include P have been

developed by Eisenberg [2] and Gwinner [7]. Glassey [6] has shown

how to construct explicit duals (with no primal variables) for such

problems. All three authors work with a primal problem for which

the objective function f(.) is convex and positively homogeneous

(f(.) need not be nonnegative, as in our primal, but is restricted

to be finite-valued). When applied to a gauge program P, however,

the dual programs that each author develops is the program LD above.

If we exchange the objective function with the polar gauge

constraint in LD, we obtain a dual gauge program:

D: minimize v = fo(MTX)

subject to bTX = 1

X > 0
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Together, the pair P and D constitute dual gauge programs,

Note that both the primal (P) and dual (D) are minimization

problems, and their objective functions are polar gauge functions.

The dual variables X are restricted to be nonnegative and correspond

to primal constraints. The constraint matrix M in the primal

appears in the dual in the objective function, and the right-hand

side (RHS) of the primal appears in the equality constraint in the

dual.

The definition of the gauge dual program D can be extended to

other types of linear constraints in the standard way. If the ith

constraint of P is Mix = () bi, then in the dual D, we require the

ith variable Xi to be unrestricted in sign (less than or equal to

zero.)

Note that the dual of the dual is the primal. To see this,

write the dual in the format:

minimize v = g(y,X)

subject to: y-MTX = 0 (i) (x)

bTX = 1 (ii) (t)

X > 0 (iii) (s).

where g(y,X) = f(y). Then if we associate the variables x, t, and

s with constraints (i), (ii), and (iii), the dual of this program

is:

minimize z = gO(x,bt-Mx+s)

subject to: t = 1

s > 0.
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However, gO(x,w) = fOO(x) = f(x) when w=O, and gO(x,w) = +. if w O.

Thus the last program can be written as

minimize z = f(x)

subject to: Mx-s = b

s > O

which is precisely the primal P.

The vector of variables x (X) is said to be feasible for P (D)

if x (X) satisfy the linear constraints, i.e. Mx > b (bTX=l, X > 0),

otherwise x (X) is infeasible. If x (X) is feasible but f(x) = +-

(fO(MTX) = +), then x (X) is essentially infeasible. If x(X) is

feasible and f(x) < + (fo(MTX) < +), then x (X) is strongly feasible

If P (D) has no strongly feasible solution, P (D) is an essentially

infeasible program; otherwise P (D) is a strongly feasible program.

We have the following preliminary duality result for dual gauge

programs.

Theorem 1. Let z and v* be optimal values of (P) and (D),

respectively. Then:

(i) If x and X are strongly feasible for P and D, with objective

values z and v, respectively, then zv > 1, and hence z*v* > 1.

(ii) If z* = O, then D is essentially infeasible, i.e., v* = +~.

(iii) If v* = O, then P is essentially infeasible, i.e., z = +o.

(iv) If x and X are feasible solutions for P and D with objective

values z and v, respectively, and zv = 1, then x and X are

optimal solutions of P and D, respectively.

PROOF: If x and X are strongly feasible for P and D, then we have

1 = XTb < XTMx < fo(MTX) f(x) = zv, by Remark 3. This result shows

(i), and (ii) and (iii) follow by contradiction from (i). (iv) follows
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from (i) by noting that 1/v is a lower bound on z*, and is achieved by

z. [XI

Assertion (i) corresponds to the standard duality result that the

value of the max program is less than or equal to the value of the min

program, and assertion (iv) corresponds to the result that if max

equals min, then both are optimal. Assertions (ii) and (iii)

correspond to unbounded cases in the standard theory. Because f(.) is

a gauge, f(x) > 0 for any x, whereby z* > O. If z* = 0, the program P

has achieved its absolute lower limit, in the same way that a standard

program would have a value of -, and hence the dual program is

infeasible, i.e., v* = +.

In order to prove a strong duality theorem for the dual gauge

programs P and D that asserts that z*v*=l and that P and D both attain

their optimal values, it is necessary to impose some qualifications on

the function f(.). We proceed as follows.

A convex set S c Rn satisfies the projection property if all

projections of S are closed convex sets, i.e., if for any linear

transformation A:Rn4Rm, (z E RmIz=Ax for some xES) is a closed convex

set. A gauge function f(.) satisfies the projection qualification if

both C and C satisfy the projection property, where C is given by

C = (xERnlf(x) < 1). For notational convenience, f(-) and C will be

assumed to be related by relations (1) and (2) of the previous section,

for the remainder of this paper.

Note that by definition, f(-) satisfies the projection

qualification if and only if f(.) satisfies the projection

qualification. If C and C are convex and compact, then f(-) satisfies

the projection qualification, and hence f(x) = xI1p satisfies the

projection qualification for 1 < p < . Also note that if C is a
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polyhedron (bounded or not), then C is a polyhedron and f(-) and f(.)

satisfy the projection qualification. Finally, note that if g(-) is a

gauge function that satisfies the projection qualification, and

f(x,w) = g(x) then f(..) satisfies the projection qualification.

The projection qualification allows us to prove the following

results which will be useful in proving the strong duality theorem.

Remark 4. If f(.) satisfies the projection qualification and if

f(x) is finite, then f(x) = yTx for some yCO.

PROOF: We have f(x) = sup yTx = sup {uIU=yTx for some yECO}.
yECO

However, {ulu = yTx for some yECO} is a nonempty closed convex set,

i.e. a closed interval, by the projection qualification. If f(x) is

finite, then f(x) = yTx for some yCO. [X]

Lemma 1. If f(.) satisfies the projection qualification, and X is a

polyhedron such that UC n X = for a given > O, then there exists a

vector yERn such that for all xEUC, yTx < 1, and for all xEX, yTx > 1.

PROOF: The sets UC and X are convex and have no points in common.

There thus exists a hyperplane that separates them. Because f(.)

satisfies the projection qualification, all projections of uC are

closed. Furthermore, X is polyhedron. Consequently, according to

remark 5 in the appendix, there exists a hyperplane that separates UC

from X and does not meet UC. Therefore, there exists (y,a)E(Rn,R) such

that yTx < a for all xEUC, and yTx > a for all xEX. Since x=O EUC, a

must be positive, whereby by scaling we can presume it is equal to 1,

completing the proof. [X]

We can now prove:

11
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Theorem 2.

and let z*

Then:

Assume that f(.) satisfies the projection qualification,

and v* be the optimal values of P and D, respectively.

(i) If P and D are both strongly feasible, then z*v* =1; and

the optimal values of P and D are achieved for some x*

and *.

(ii) P is essentially infeasible (i.e. z*=*) if and only if

v*=O; and v*=O is achieved for some feasible X* if P is

infeasible.

(iii) D is essentially infeasible (i.e. v*=o) if and only if

z*=O; and z*=O is achieved for some feasible x* if D is

infeasible.

PROOF: (i) Let X = {xERnlMx > b}. If P and D are strongly feasible,

then 0 < z* < += and 0 < v* < +. We must now show that for some

x E X, f(x) = /v*. Assume the contrary. Then (1/v*)C n X=¢, and fr

Lemma 1, there exists yRn that satisfies yTx < 1 for all x(1/v*)C,

and yTx > 1 for all feasible x. But since C satisfies the projection

property, so does (1/v*)C, and therefore (yTxlxE(l/v*)C) is a closed

convex set, i.e. a closed interval [c,d] or (-a,d], and d < 1. Now

since yTx > 1 for all x that satisfy Mx > b, there exists X > 0 with

y=MTX, XTb > 1. Now X = X/XTb is feasible for D, and

fO(MTX) = (1/XTb) fO(y) < dv* < v*, a contradiction. Thus P achieves

its minimum at some feasible point x*, and z* = f(x*) = l/v*.

A parallel argument shows that D achieves its minimum at some

feasible point X*, establishing (i). Regarding (ii), the "if" part o

the statement has been shown in Theorem 1. For the "only if" part,

assume that P is essentially infeasible. Then for any finite > 0,

UC n X = , whereby there exists a vector yRn as described in

12
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Lemma 1. Let X and X be constucted as above. Then X is feasible

for D and f(MTX) < 1/U, whereby v* < 1/u for any U > 0, i.e. v*=O.

If P is infeasible, then by a theorem of the alternative, there

exists X > 0 with MTX = 0 and bTX = 1. Furthermore f(MT\) = 0 = v*.

This completes the proof of (ii).

The proof of (iii) parallels that of (ii). [X]

Theorem 2 thus provides a rather weak qualification on f(.) that

is sufficient to guarantee the existence of primal and dual optimal

solutions, namely that all projections of C and C be closed. Note

that the projection qualification makes no reference to the constraints

of P, in contrast to more typical sufficient conditions such as the

Slater condition, which is used directly in Glassey 6] and indirectly

in Eisenberg [2] and Gwinner [7]. As the proof of Theorem 2 indicates,

a constraint qualification is not needed, because the feasible region

is polyhedral. Also note that f(.) need not be differentiable, and can

take on the value + in the feasible region of P. The proof of Theorem

2 is based essentially on arguments stemming from an "open separation"

theorem (see the appendix), which states that if uC and X are disjoint

for some > 0, then UC can be openly separated from X. The projection

qualification is sufficient to guarantee the open separation.

Although part (i) of Theorem 2 asserts that the projection

qualification is sufficient in order for a gauge program to attain its

optimum z* where 0 < z* < , part (ii) makes no such assertion when

z*=O. The rather stronger condition that the dual is infeasible is

shown to be sufficient in this case. To see that the projection

qualification is not sufficient to guarantee the existence of an

optimal solution when z*=0, consider the following example. Let

C = {(xl,x2)eR2x2 > x/2) and let f(.) be defined as in (2). Thus

13
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we have

x2/(2x 2 ) X2 > O

f(xl,x2) = 0 xO, X2=0

+o= x170, X2=0

+00 X2 < 0

2
It is straightforward to derive C = {(Y1,Y2)ER2ly2 < -Y 1/

2 ), and to

verify that both C and C° satisfy the projection qualification.

Let the feasible region X of P be defined by X = {xER 2 Mx > b}, where

M , and b = 

By choosing x 1=1 and x2 sufficiently large, Mx > b, and

-2
f(xl,x2) = X1 /(2x2) = 1/(2x2), which goes to zero as x2 goes to

infinity. Thus z*=0. However, there is no feasible pair (xl,x 2) for

which f(xl,x 2)=0.

An alternate sufficient condition for strong duality in P and D in

the spirit of the Slater condition is given below. We proceed as

follows. Given dual gauge programs P and D, define X = {xERnJAx > b),

and Y = {yeRnly=ATX, X 0, bTX > 1). Let C = {xERnlf(x) < } and

CO = {yERnlfo(y) < o). We have

Lemma 2. The dual gauge programs P and D each attain their optima

z* and v* and z*v* = 1, if (rel int X) n (rel int C) # , and

(rel int Y) n (rel int Co) f 0.

Note that the condition on the intersection of relative interiors

is precisely Fenchel's sufficient condition for strong duality, which

has been shown to be equivalent to the Slater condition for the

Lagrange dual, see Magnanti [10]. Unlike the projection qualification,

this condition can be rather cumbersome to verify in practice.
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We will not prove Lemma 2 here. Its proof follows as an immediate

consequence of Theorem 2A of the next section, which is a restatement

of Lemma 2 for a gauge program with nonlinear constraints. As the

proof there indicates, the intersection condition of Lemma 2 guarantees

strong duality by guaranteeing proper separation of z*C and X if z is

not attained. The projection qualification, on the other hand, gives

us strong duality by guaranteeing open separation of z*C and X if z* is

not attained. In this sense, the projection qualification is a

stronger qualification, because open separation is a stronger

separation than proper separation. Nevertheless, the projection

qualification is indeed a "sufficiently" weak condition so as to be

valid for all of the applications in Section 4 of this paper.

15
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3. An Approach to Dual Gauge Programs with Nonlinear Constraints

In this section, we show how the gauge duality theory developed

in Section 2 for gauge programs (with linear constraints) can

conceptually be extended to include nonlinear constraints. Consider

the nonlinear gauge program

NGP: minimize z = f(x)

subject to xEX

where f(.) is a closed gauge function, and X is a closed convex set,

not necessarily a polyhedron.

Corresponding to the gauge function f(.) is its polar function

fo(.). In order to develop a nonlinear gauge dual of NGP, we also use

a duality correspondence for the set X. For a given closed convex set

X, define X' by the relation

X' = {yERnlyTx > 1 for all xEX}.

Following McLinden [11], we will refer to X' as the antipolar of X,

although this nomenclature is not universal. (In a more restrictive

context, X' is the blocker of X in Fulkerson 5]. In Ruys [13], X' is

the upper dual set of X.) We define the nonlinear gauge dual of NGP

to be the program

NGD: minimize v = fO(y)

subject to yEX'

In the dual, the objective function is the polar of the primal gauge

function, and the dual objective function is the antipolar of the

primal feasible region. In order to characterize when the dual of the

dual is the primal, we need to introduce some additional definitions.

For a given nonempty convex set XcRn, a vector rERn is called a ray of

X if for every xEX, x+er E X for all e > O. X is a ray-like set if

16



every element x of X is also a ray of X. (McLinden [11] calls such an

X an antipolar set, Ruys [13] calls X auerole-reflexive).

Lemma 3 (see also McLinden [11], p. 176). For any set X c Rn, its

antipolar X' is a raylike set. If X is closed, convex, raylike, and

does not contain the origin, then X" = X.

PROOF: If X=¢, then X'=Rn, which is raylike, and X"=X. If X,

then X' is the intersection of a family of closed halfspaces, and so

is closed and convex. If yX', then eyEX' for all e > 1, and so X' is

raylike.

We now must show that if X is a nonempty closed, convex, raylike

set that does not contain the origin, then X"=X. Let xeX. Then

yTx > 1 for all yX', whereby xX", and so X c X". Suppose XX".

Then there exists an element z of X" that is not contained in X.

Because X is closed and convex, there exists a hyperplane that

strictly separates (z) from X, and so there exists (y,a) E (Rn, R),

with the property that yTx > a for all xX, and yTz < a. If a > 0,

then by rescaling we can assume that a=1. This being the case, yX',

and so yTz > 1=a, a contradiction. Thus a < O. Because X is raylike,

yT(ex) > a for all xX and all e > 1, and hence yTx > 0 for all xX.

Also yTz < a < O. Because OX and X is nonempty, X' is nonempty.

Let y be any element of X'. Then, yTx > 1 for every xX. Because

yTx > 0 for every xX, (y + ey)Tx > 1 for any > 0, for every xX.

Therefore (y + ey) EX' for every e > . This in turn implies that

(y + ey)Tz > 1 for all e > 0, and so yTz > O, which contradicts

yTz < a < O. [X]

Lemma 3 implies that the dual of NGD is precisely NGP whenever

f(-) is closed, and X is a closed, convex, raylike set that does not

contain the origin. Of course, if X does contain the origin, then
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z*=O, X'-$, and v*=, where z* and v* are the optimal values of the

primal and dual, respectively.

The following result is analogous to Theorem 1:

Theorem 1A (Weak Duality). Let z* and v* be optimal values for

NGP and NGD, respectively. Then

(i) If x and y are strongly feasible for NGP and NGD, with

objective values z and v, respectively, the zv > 1, and

hence z*v* > 1.

(ii) If z*=O, then NGD is essentially infeasible, i.e. v*=+".

(iii) If v*=O, then NGP is essentially infeasible, i.e. z*=+o

(iv) If x and y are strongly feasible for NGP and NGD with

objective values z and v, respectively, and zv = 1,

then x and y are optimal solutions of NGP and NGD,

respectively.

PROOF: If x and y are strongly feasible for NGP and NGD, then

1 < yTx < fo(y) f(x) = zv, by Remark 3. This result shows (i), and

(ii), (iii), and (iv) follow from (i). [X]

To see how to obtain the linearly constrained problems P and D

from NGP and NGD, let P be as given. Define X = (xeRnjMx > b} and

X = (xeRnlxEeX for some > 1) = (ERnMx > be for some > 1}.

Then X is a raylike set that contains X. Furthermore, X' =

(yERnly=MTX for some X > 0 satisfying bTX > 1, and define

Y = (yERnly=MTX for some X > 0 satisfying bTX = 1), and note that X'

is raylike and contains Y. The linearly constrained gauge program P

is equivalent to the program

P: minimize f(x)

subject xEX

18



because even though the feasible region of P contains the feasible

region of P, every point xEX has at least as large an objective

function value as a corresponding point xX. The nonlinear gauge dual

of P is

D: minimize fO(MT\)

subject to bTX > 1

>0

However, because f(.) is homogeneous, we can restrict our .attention

to those X > 0 for which bTX = 1, obtaining the equivalent program:

D: minimize fo(MTX)

subject to bTX = 1

> 0

which is the linear gauge dual.

We have the following strong duality result for the nonlinear

case which is an extension of Lemma 2. Let E = {xERnlf(x) < } and

CO = {yeRnlfO(y) < o).

Theorem 2A. Given dual gauge programs NGP and NGD, where f(.) is

closed and X is closed, convex, and raylike, let z* and v* be optimal

values of NGP and NGD, respectively. If (rel int X) n (rel int ) # 0

and (rel int X') n (rel int °O) # *, then z*v* = 1, and each program

attains its optimum.

PROOF: Let xo e (rel int X) n (rel int C) and y (rel int X') n

(rel int O). Then both NGP and NGD are strongly feasible, and by

Theorem 1A, 0 < z* < . Suppose that z* is not attained by any

feasible xX. Then z*C n X = , and so z*C and X can be properly

separated by a hyperplane H. Thus, there exists yERn and aR such

that yTx > a for all xX, and yTx < a for all XEz*C. If a > 0,

then we can presume a = 1 by rescaling if necessary. Then yX'
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and v* < f(y) = sup yTx = (/z*) sup yTx < a/z* = l/z*.
xEC XEZ*C

However, since vz* > 1, we have z*v* = 1 and y is optimal for NGD.

If a 0, then a = 0, because OEz*C. Then ytxO > 0 because xO E X.

Also, because x rel int C, (z*/f(xO))xO E z*C, whereby yTxo 0.

Thus yTxo = 0. Because xO E rel int X, for every xX, there exists

6 > 1 such that x + (1-6)x E X. Thus yT(6x + (1-6)x) > 0, which

implies yTx < 0. This in turn means yTx = 0 for all XEX. Similarly,

we can demonstrate that yTx = 0 for all xz*C, and hence for all xC.

Thus H does not properly separate X from z*C. This contradiction

ensures that a > 0, and so v* is attained in the dual and z*v* = 1.

If z* is attained in the primal, then the above proof is still valid,

so long as z*C and X can be properly separated by a hyperplane H. If

z*C and X cannot be properly separated, then by Theorem 6 of the

appendix, there exists XE (rel int X)n(rel int z*C). Because

xE rel int z*C and OEz*C, there exists 6 > 1 such that 6x + (1-6)OEz*C,

whereby x (z*/6)C, and so f(x) < z*, a contradiction. Thus z*C and X

can be properly separated, and so v* is attained in the dual, and

z*v*=1.

A parallel argument establishes that z* is attained in the

primal. [X]

The nonlinear gauge duality theory parallels the gauge duality

theory for linear constraints. It is only natural then to examine if

there is a parallel duality construction that extends the Lagrange-

type dual LD to handle nonlinear constraints. If X is closed, convex,

and does not contain the origin, NGP can be written as

minimize f(x)

subject to yTx > g(y) for all y E cone X',
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where cone X' = {yeRnly = aw for some a > 0 and wX') and

g(y) = max (a > Oy = aw for some wX'). The above program is in a

suitable format so that Gwinner's dual [7] can be constructed, which

is:

GwD: maximize g(y)

subject to yTx < f(x) for all x

y E cone X'

Because yTx < f(x) for all x if and only if f(y) < 1, program GwD can

be transformed into

NLD: maximize a
y,a

subject to fO(ay) 1

yEX'

which we define as the program NLD. To see that NLD and GwD are

identical, notice that for any feasible solution (y,a) to NLD,

y' = (/g(y))y is feasible for GwD with identical objective value.

For every feasible solution y' of GwD, y' = Bw for some B > 0 and

wEX', and y = (1/d(w))y', a = d(w) is feasible for NLD.

The dual nonlinear gauge programs NGP and NGD make up a neat

theory in terms of polar functions and antipolar sets. However, the

explicit dual variables y do not directly correspond to primal

constraints (though they do indirectly), and there is no formal

mention of constraints per se in either the primal or the dual. One

special case of the general nonlinear theory is of course the linear

theory, instances of which will be seen in the next section. An open

issue regarding nonlinear gauge duality is under what circumstances

can the nonlinear gauge dual program be written explicitly in terms of

a finite number of constraints whose variables include a multiplier

for every primal constraint?
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4. Applications

In this section we explore a number of mathematical programming

models that correspond to a gauge program, including convex quadratic

programming, problems involving the lp norm, and linear programming.

Many of the applications will involve programs of the form:

minimize f(Nx+d)
x

subject to Ax > b

where f(-) is a gauge. Note that this format does not conform to

that of P. However, it is equivalent to:

minimize
x,s

g(x,s)

subject to Ax > b
-Nx + Is = d

where g(x,s) = f(s). Furthermore, f(-) satisfies the projection

qualification if and only if g(.,.) does. The gauge dual of this

program is:

minimize
X,U

subject to

But gO(y,t) = f(t) when y=O,

last program becomes

minimize
subject to

subject to

g(ATX-NTU, )

bTX + dT U = 1
X> 0

and gO(y,t) = + for y # O; thus this

fO(u)

ATX-NTU = 0
bTX+dTU = 1

X> 0
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A. Convex Quadratic Programming

The standard convex quadratic program is given by

QP: minimize (1/2)xTQx + qTx

subject to Ax > b

where Q is a symmetric positive semi-definite matrix. Furthermore,

the matrix Q can be factored into the form Q = MTM for some square

matrix M. If M is nonsingular (i.e., Q is positive definite), or if q

lies in the row space of M, then q = MTs for some vector sERn, and QP

can be written as

minimize (1/2)xTMTMx + sTMx

subject to Ax > b

which is equivalent to the gauge program

GP: minimize lMx+sU 2

subject to Ax > b

where f(.) = #'U 2, and so f(.) satisfies the projection qualification.

Note that QP and GP are equivalent in that their constraints are

identical and their objective functions differ by a strictly monotone

transformation. In examining the duality properties of QP and GP, we

will first study the case where Q is positive definite, followed by

the case when Q is positive semi-definite.

Q is Positive Definite

When Q is positive definite the Lagrange dual of QP is

maximize bTX - (1/2)(XTA-qT)Q-1(ATX-q)
X

(LQP),
subject to X > 0

see Dorn [1]. The guage dual of GP, on the other hand, is

minimize 11(MT)-IATX1{ 2

(GD),
subject to (bT+qTQ-lAT)X = 1

X > 0
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which is equivalent to the quadratic program

minimize XTAQ-1ATX
(D).

subject to (bT+qTQ-1AT)X = 1
X >O

Note that both LQP and GD are strictly convex quadratic programs. The

constraints of LQP consist of the nonnegativity conditions X > 0, whereas

GD also includes the single equality constraint (bT+qTQ-1AT)X = 1.

The following theorem shows the relationship between the gauge dual

programs GD or GD and the Lagrange dual LQP:

Theorem 3. If Q is positive definite, then

(i) If * is a solution to GD and t* = X*TAQ-1ATX*, then

a) t* 0 if and only if X = X*/t* solves the Lagrange

dual LQP,

b) t* = 0 if and only if QP is infeasible.

(ii) If is a solution to LQP and t = bTX + qTQ-1ATX, then

a) t 0 if and only if \* = X/t solves the guage dual

GD,

b) t = 0 if and only if QP has a solution x to Ax > b

satisfying Mx + s = O, i.e., if and only if GD is

infeasible.

PROOF: The proof follows from an examination of the Karush-Kuhn-

Tucker conditions for GD and LQP. The transformations follow from

direct substitution. [X]

Q is Positive Semi-Definite

We now turn our attention to the broader case, when Q is positive

semi-definite and q lies in the row space of M, whence q = MTs for

some vector sRn. In this case, the Lagrange dual of QP is
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maximize bTX - (1/2)xTMTMx
',x (LQP'),

subject to ATX - MTMx = MTs
X> O

as in Dorn [1]. The gauge dual of GP is

minimize null 2
X,u

subject to -ATX + MTu = 0 (GD'),
bTX + sTU = 1
X > 0

which is equivalent to the quadratic program

minimize uTu
X, u

subject to -ATX + MTU = 0 (GD')
bTX + sTU = 1
X > 0

Analogous to Theorem 3, Theorem 4 demonstrates the relationship

between the two different dual quadratic programs LQP' and GD'.

Theorem 4. If Q is positive semi-definite, Q = MTM and q = MTs for

some s ERn, then

(i) (X*,u*) constitute an optimal solution to the gauge dual

GD' if and only if there exists x*, t* such that

(a) -ATX*+MTU*=O

(b) bTX*+sTu*=l

(c) X* > 0

(d) Ax* > bt*

(e) U*=Mx*+st*

(f) X*TAx*=X*Tbt*

(ii) t*=O if and only if QP is infeasible. t$*O if and

only if =X*/t*, x=x*/t* constitute a solution to the

Lagrange dual LQP'.
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(iii) (X,x) constitute an optimal solution to the Lagrange

dual LQP' if and only if there exists z such that

(a) X > 0

(b) AT\-MTM=MTs

(c) Az > b

(d) MTMx=MTMz

(e) XTAz=XTb

(iv) XTb+sTs+sTMz=o if and only if QP has a solution Ax > b,

Mx+s=O, i.e. if and only if GD' is infeasible.

XTb+sTs+sTMz~o if and only if (X*,U*) solves the gauge

dual D' with multipliers x*, t* given by:

t* = 1/(XTb+sTs+sTMz)

X* = Xt*

U* = (Mz+s)t*

x* = zt*. [X]

The conditions (i) and (iii) of this theorem are simply the Karush-

Kuhn-Tucker conditions, and the transformations in (ii) and (iv)

follow from direct substitution.

B. Programs with the l Norm

If f(x) = xllp, 1 < p < . then the polar of f(.) is f(y) =

YUq, where q must satisfy 1/p+l/q = 1. In particular, p=1 or p= if

and only if q=* or q=1, respectively.

Consider the lp norm program:

minimize IwUp
xt (GPp)

subject to Bw+Cz > d
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The gauge dual of GPp, derived using P and D, is

minimize nBTXq

subject to CTX = 0-

dTX = 1

(GDq)

X > 0

Because f(x) = Hxlp satisfies the projection qualification, the

results of Theorem 2 are valid for GPp and GDq.

Note that the program GP, which is a derived equivalent of the

quadratic program QP (when Q is positive semi-definite and q=MTs has a

solution s), can be cast as an instance of GPp, by setting

B i -I C M , d = s

Thus GPp is a more general program than QP.

When pl, p, the program GPp is equivalent to

minimize (l/p) w p

X,Z

subject to Bw+Cz > d

The Lagrange dual of this program is

maximize XTd-(1/q)UBTn q
q

subject to CT = 0

and p = 2.

(LPp)

(LDq)

X> 0

The gauge dual GDq and the Lagrange dual LDq bear a relationship

that generalizes the case of quadratic programming in Theorems 3 and

4. This relationship is demonstrated below. In the theorem, the

notation xP, where xERn, denotes the vector whose jth component is

(sign xj)(Ixjlp).
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Theorem 5. If pl and p, then

(i) If X* is an optimal solution to the gauge dual GDq and

t* = \*T(B)(BTX*)q-1, then

(a) t'*O if and only if =X*/t* solves the Lagrange

dual LDq.

(b) t*=O if and only if GPp is infeasible.

(ii) If X is an optimal solution to the Lagrange dual LDq, then

(a) XTd~O if and only if X*=X/XTd solves the gauge

dual GDq.

(b) XTd=o if and only if GPp has an optimal solution

with value 0, i.e. Cz > d has a solution. [X]

The proof of this theorem follows from examining the Karush-Kuhn-

Tucker conditions and substituting in the transformations as given.

Although the programs GPp and LPp are equivalent (their

objective functions differ by a monotone transformation), the gauge

dual GDq of GPp will yield a better (i.e., larger) lower bound on

the optimal solution to GPp than will the Lagrange dual LDq for LPp.

To see this, let (w,z) be any strongly feasible solution to GPp and

LPp, and let and be the corresponding objective values of (w,z)

P
in GPp and LPp, namely = wllp, ' = (l/p) Uwlp . Let X > 0 be any

feasible solution to LDq with a positive objective value, and hence

X = X/(dTX) is a feasible solution to GDq. Let g = BTXUq, and

h = dTX - (l/q)JJBTx\ p be the corresponding objective function
p

values of X and X in the programs GDq and LDq, respectively. Then

1/g and h each represent a lower bound on the optimal primal

objective values for GPp and LPp, and the values g and /h are

numbers greater than or equal to one that measure the duality gap in

the respective dual pairs of programs, as a ratio of the primal
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objective function value to the dual objective function value. We

have:

Lemma 3. Under the above assumptions, g < /h.

This lemma states that the corresponding duality gaps (measured as a

ratio) is always smaller for the gauge dual GDq than for the

Lagrange dual LDq. Of course, the comparison is somewhat unfair,

inasmuch as the objective functions of GPp and LPp differ by a

monotone transformation. Yet the proof below shows that the gauge

dual GDq in a sense uses an intrinsically better convex inequality

than does the Lagrange dual LDq.

Proof of Lemma 3: Let w, z, , , g, h, X, and X be as stated. Then

XTd < XTBw + XTCz = TBw < wNUp BTXHq < (/p)Nw p + (l/q)fBTX\q

the last inequality being an instance of the inequality between the

arithmetic and the geometric mean. Let s, t, and u represent the

nonnegative gaps in the three inequalities above, respectively.

Then we have

dTX+s+t+u s+t+u

,g = I[w[[p BTXHq/(dtX) = 1 +
dTX dTX

Therefore

s+t+u s+t+u
g = 1 + < 1 + = - . [X]

Note that it is the inequalidT-(/)y between BThe arithmetic mean and

Not e an that it ives t he rbetween the arithetic ean and

the geometric mean that drives the result.
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C. Linear Programming

As a final note, observe that the linear programming problem:

LP: minimize cTx

subject to Ax > b

can be formulated as a gauge program when the optimal value of LP is

positive. In this case, let f(x) = max (cTx,O). Then f(-) is a gauge

and C = (xERnlf(x) 1) = (xERnlcTx < 1). It is then straightforward

to compute C = yERnly = cv, v > 0), and

v if y=cv for some v > 0
fo(y) =

+~ else

The gauge dual of LP then is

DLP': minimize v
X,v

ATX - cv = 0

bTX = 1

X > O

which is equivalent to the standard linear program dual:

DLP: maximize bTX
X

subject to ATX = c
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Appendix: Separation Theorems

Given two convex sets X and Y in Rn , X is properly separated

from Y by a hyperplane H provided X and Y lie in the opposite closed

halfspaces bounded by H, and X and Y do not both lie in H. The

following theorem of Fenchel [3] characterizes when X and Y can be

properly separated:

Theorem 6 (Fenchel [3], see Rockafellar [12]). Let X and Y be

nonempty convex sets in Rn. X and Y can be properly separated by a

hyperplane H if and only if (rel int X) n (rel int Y) = . [X]

If X and Y are convex sets in Rn, X is openly separated from

Y by a hyperplane H provided X lies in one of the open halfspaces

bounded by H and Y lies in the other closed halfspace. Clearly, if

X is openly separated from Y, then X and Y are properly separated.

Klee's results of [8] give criteria on X and Y that are sufficient for

X to be openly separated from Y by some hyperplane H. Some of these

criteria are given below.

A convex set XcRn is called evenly convex [4] provided that X

is the intersection of a family of open halfspaces. A set ZRn is

called an asymptote of a convex set YcRn provided that Z is an

affine variety, ZnY = , and inf ({z-yH zEZ, yY) = O. The set

ycRn is said to be boundedly polyhedral if its intersection with any

bounded polyhedron is a bounded polyhedron. One of Klee's results in

[8] is the following:

Theorem 7 (Klee [8]) If X and Y are disjoint convex subsets of Rn,

then X can be openly separated from Y if X's projections are all

evenly convex, and Y admits no asymptote and Y is boundedly

polyhedral. [X]
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Actually, Klee's results are much broader than indicated. He shows

that the stated conditions are maximal in a sense he defines

precisely, and he also gives five alternative criteria that guarantee

that X can be openly separated from Y.

Remark 5. If X and Y are disjoint convex sets and all projections of

X are closed, and Y is a polyhedron, then there exists yERn and aER

such that yTx < a for all xX and yTx > for all xY.

PROOF: Any closed convex set is evenly convex, since any closed

convex set is equal to the intersection of the family of the closed

halfspaces that contain it, see Rockafellar [12], and each closed

halfspace is the intersection of an infinite family of open

halfspaces. Thus, if all projections of X are closed, all projections

of X are evenly convex. If Y is a polyhedron, then Y is boundedly

polyhedral, and admits no asymptote. Thus X and Y satisfy the

conditions of Theorem 7, whereby the desired result is obtained. [X].
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