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Abstract

The decision rules in simulation models purport to describe decision-
making behavior as it is and not as it should optimally be. Without the
criterion of optimality to judge the appropriateness of a decision rule,
simulation modelers must rely on empirical confirmation of the structure of
their models. In models of small organizations, traditional social science
methods may be used. But these methods are infeasible in models of larger
systems such as industries or the macroeconomy. This paper shows how direct
experiment can be used to confirm or disconfirm the decision rules in
simulation models. Direct experiment uses interactive gaming in which human
subjects play a role in the system being modeled. The subjects play the game
in the same physical and institutional context assumed in the model, and are
given the same information set, but are free to make decisions any way they
wish. The behavior of the subject can then be directly compared against the
behavior produced by the assumed decision rules of the model. An example is
described in detail and the correspondence of the experiment to reality is
discussed.
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TESTING BEHAVIORAL SIMULATION MODELS BY DIRECT EXPERIMENT

The problem of testing behavioral simulation models

The utility of simulation models depends on the confidence the model

users vest in the model. The model must represent the physical and

institutional structure of the system and the decisionmaking procedures used

by the actors with enough accuracy for the purpose at hand. Accurately

portraying the 'physics' of the system is relatively straightforward. In

contrast, discovering and representing the decision rules of the actors is

subtle and difficult. In models of small organizations such as a family,

community, or corporation, traditional social science techniques can be used

to gather primary data on decisionmaking behavior. Interviews, surveys,

participant observation, and other techniques can reveal the networks of

information flow, organizational structures, and decisionmaking heuristics

necessary to construct a useful model.

Such techniques are of less use to the analyst interested in larger

systems such as an entire industry or the macroeconomy. Fieldwork involving a

significant sample of firms is prohibitively expensive and time consuming.

Consistent aggregation is difficult. The traditional alternative has been to

draw on established organizational and economic theory to specify the model,

followed by estimation of the parameters and sensitivity tests. Econometric

estimation provides an obvious means to test the consistency of models with

past experience.

But these methods are unsatisfying to many economists and simulation

modelers alike. Data limitations and technical difficulties of identification

and estimation aside, econometrics is fundamentally unable to validate the

behavioral decision rules in simulation models because the data represent the
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'what' of decisions, not the 'why'. The numerical data used in estimation are

the result of decisionmaking, and do not in themselves reveal the motivation

for the decisions. As a result, econometrics has proven to be a rather dull

knife: it is often impossible to discriminate between radically divergent

theories using econometrics alone (Leamer 1983, Thurow 1983, Leontief 1982,

1971, Phelps-Brown 1972, Keynes 1939).

Of more importance, however, traditional neoclassical economic theory is

heavily based on the assumptions of rational behavior, optimization, and

equilibrium. Human behavior is assumed to be rational: decisions are guided

by the urge to maximize profits or utility; the information required to

successfully optimize is assumed to be available, usually freely, and often

including information about the true structure of the system (as in rational

expectations), about the future (as in intertemporal optimization models) and

about hypothetical situations (e.g. the productivity of untried combinations

of factor inputs). The economy is assumed to be in or near equilibrium nearly

all the time, and adjustment processes are usually assumed to be stable.1

The behavioral simulation modeler cannot accept such assumptions. As

Herbert Simon (1979, 510) declared in his Nobel Prize acceptance speech,

There can no longer be any doubt that the micro assumptions of the
theory--the assumptions of perfect rationality--are contrary to fact.
It is not a question of approximation; they do not even remotely
describe the processes that human beings use for making decisions in
complex situations.

The purpose of simulation models is to mimic the real system so that its

behavior can be anticipated or changed. Simulation models must therefore

portray decisionmaking behavior as it is, and not as it might be if decision-

makers were omniscient optimizers. The decisionmaking heuristics and

strategies people use, including their limitations and errors, must be

modeled.
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Bounded rationality and behavioral decision theory

An extensive body of theory and empirical data exists which documents the

strategies and heuristics people use in a wide variety of decisionmaking

contexts. The sources of this knowledge include organizational studies,

cognitive and social psychology, and other social sciences. Known generally

as Behavioral Decision Theory (BDT), these studies emphasize bounded

rationality in human behavior. BDT focuses on identifying cognitive

limitations in the perception and processing of information and the

organizational strategies people devise to deal with these limitations

(Armstrong 1985, Hogarth 1980, Kahneman et al. 1982, Simon 1982). BDT not

only illuminates the way decisions are actually made, but documents a large

number of systematic deviations from objectively rational behavior. Many

heuristics lead to suboptimal or biased decisions in a wide variety of

settings. Common examples include the gambler's fallacy and the regression

fallacy (Tversky and Kahneman 1974). BDT shows that "people give more weight

to data that they consider causally related to a target object..." (Hogarth

1980, 42-43, emphasis in original). However, people are poor judges of

causality and correlation, and in controlled experiments systematically create

mental models at variance with the known situation. Ironically, most people,

including many professionals, consistently assert that their own performances

are immune from such pitfalls, are reluctant to abandon their mental models,

and selectively use hindsight to 'validate' their preconceptions.

BDT is useful in simulation for two reasons. First, bounded rationality

provides theoretical foundations for behavior that deviates from objective

rationality. Second, the empirical results of BDT research document the

heuristics people actually use, providing a data base for model development.

However, the empirical results of BDT are overwhelmingly micro-level. It is

3



D-3783 4

difficult to connect the results of BDT to the aggregate decision rules

typically used in simulation models. Compare, for example, the verbal

protocols and models described in Feigenbaum and Feldman 1963 or Ericsson and

Simon 1984 with the typical continuous simulation model. Protocols for

decisionmaking heuristics are usually given in the form of decision trees or

other discrete, event-oriented procedures such as the TOTE unit (Miller,

Galanter, and Pribram 1960). In contrast, a typical continuous simulation

decision rule for inventory management in a manufacturing firm might be:2

DPt = EOt + (DINVt-INVt)/TCI

where

DP = Desired Production (units/time) INV = Inventory (units)
EO = Expected Orders (units/time) DINV = Desired Inventory (units)
TCI = Time to Correct Inventory (time)

The continuous rule may be used to describe aggregate behavior for a firm or

industry. It is not intended as a literal statement of how production

decisions are made. Rather it is deemed to be an acceptable simplification.

The lumping of distributed but similar components, as in the aggregation of

stocks of different product lines and firms into a single measure of

inventory, is often cited as justification for assuming continuous decision

rules (Forrester 1961, Ch. 11). Such aggregation is justified as necessary if

a model is to remain small enough to be comprehensible, and thus useful. Yet

the inevitability of aggregation does not mean such aggregation is appro-

priate. (For informative discussion of the connection between representations

of feedback at the event level with continuous representations, see Richardson

1984). The production scheduling example, though simple, shows that methods

are needed to bridge the gap between the micro knowledge of individual

decisions and the macrobehavior of aggregate phenomena. Simulation has long

been touted as one such method, but its acceptance has been limited by the
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inability to relate the micro data to aggregate decision rules. Direct

experiment offers a useful method to bridge this gap.

Experimental economics

Direct experimental investigation of economic behavior has flowered over

the past two decades (for surveys, see Smith 1982a, Plott 1982; also Smith

1979, 1982b). Most of these experiments concern what Smith 1982a calls

microeconomic systems. These microworlds consist of an environment and an

institutional structure. The environment includes the number of agents

participating and their individual preferences, knowledge, and resource endow-

ments. The institutional structure of the experiment consists of a specified

language for interaction, resource allocation rules, cost imputation rules,

and adjustment process rules governing the beginning, transitions, and end of

the experiments. By manipulating both the environment and the institutional

arrangements, the experimenter creates controlled situations in order to test

hypotheses or elicit new data. Typical experiments investigate aspects of

price theory such as the number of buyers and sellers required to find compet-

itive equilibrium, test whether decisionmaking is conducted in accordance with

expected utility theory, and evaluate the efficiency of various institutions

such as different types of auctions. While many of these studies are

concerned with equilibrium or asymptotic results, a relative few studies are

primarily concerned with dynamic behavior (e.g. Plott and Wilde 1982, Garner

1982, Alker and Tanaka 1981, Williams 1979). As Shubik (1979, 354) notes:

When an economy is in equilibrium, the role of markets, financial
institutions and money tends to disappear. The institutions such as
organized markets, firms and banks are the carriers of process and a
major part of the information and communication flow of an economy.
In disequilibrium they appear clearly ....Many different institutions
may have the same static efficiency properties, but it is possible
that they manifest considerably different dynamic properties. The
questions concerning the selection of optimal...institutions in a
fully dynamic context have hardly been asked in a precise form, let
alone answered.

5
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Because experimental microeconomics must pay careful attention to the

institutional structure of the system, that is, to the procedural aspects of

decisionmaking, it is inherently dynamic and well suited to test the decision

rules of behavioral simulation models, even if they are not strictly

microeconomic in focus. The need for explicit specification and control of

the information set available to the actors and the rules of interaction and

exchange give the experimental method the flexibility required to test the

behavior of real people against the models of behavior assumed in

simulations.

Protocols for direct experiment to test simulation models

The structure of models considered for experimental testing can be

divided into two components: the physical and institutional structure on the

one hand, and the behavioral decision rules on the other. For example, the

physical and institutional assumptions in a model of a manufacturing firm

might include the aggregation of different product lines into a single

inventory of finished products from which orders are filled. Other

assumptions may be that there is a certain average lag required to produce

goods, that labor is the sole factor of production, that list prices are

announced publicly. The behavioral decision rules would include procedures

for determining production goals, workweek, hiring and layoffs, and changes in

prices. The design of the experiment will depend on which type of assumption

is to be tested. The discussion below focuses on tests of the decision rules.

Tests of the physical and institutional assumptions are considered in the

concluding section.

To test the decision rules of the model, the experimenter must ensure

that the human subjects are placed in the same physical and institutional

context assumed in the model. The purpose of such a test is to determine
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whether real people behave in the same way the model presumes them to behave,

given the physical structure and other aspects of the organizational setting.

Likewise, the behavioral decision rules in simulation models presume that

a certain information set is available at each decision point. The managers

of the firm in the example above may not know the demand schedule of the

customers, but only the past history of orders and prices. Behavioral

simulation models, in keeping with the theory of bounded rationality, often

presume that decisions are factored into subdecisions, and that the local

decisionmaking units may have access to or choose to use less than the full

set of available information (Morecroft 1983, 1985). Typically, decisions

would emphasize locally available, relatively certain, and relatively new

information over distant, uncertain, or dated information.

The information available to the human subject must be carefully

controlled. Several designs are possible here, depending on the purpose of

the experiment. One can deliberately restrict the information available to

the human subjects to the set assumed to be actually used in the model, so as

to see if the live agents process that information in the same way as presumed

in the model. Alternatively, one may give the live subjects more information

than is presumed to be used in the model, and test whether they utilize the

same subset of the available information.

The decision rules in behavioral simulation models also impute

preferences to the decisionmakers. These preferences may not take the form of

explicit cost or utility functions, but may appear as a set of subgoals which

the decisionmaker strives to satisfy. For example, the production model

described above may assume that desired inventory is determined by a desired

coverage ratio of expected orders. Implicit in this subgoal is a loss

function which assumes costs arise from excess of deficient inventory
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coverage. The experiment must ensure that subjects are faced with the same

underlying preferences and costs the modelbuilder presumes to be operating.

For example, to motivate players to balance inventory and desired inventory,

the experimenter might create a cost function which specifies losses for

excess or deficient inventory, and reward players for minimizing their costs.

The cost function approach is taken in the "Beer Distribution Game" (Sterman

1984).

If the experimenter can control for the institutional structure,

information availability, and preferences assumed in the model, then the

resulting behavior of live subjects can be directly compared to the behavior

produced by the decision rule of the model. The human subjects are placed in

the same physical and institutional structure, given the same information set,

and strive for the same goals as the simulated decisionmakers. But whereas

the simulation model contains an explicit rule for processing the information

to yield a decision, the subjects of the experiment are free to make their

decisions any way they wish. The comparison of simulated and experimental

behavior thus provides a potential disconfirmation of the model's decision

rules (Bell and Senge 1980). A strong caveat must be issued here, however.

The correspondence of experimental and simulated behavior does not validate

the model--after all, any of the assumptions about physical structure,

information availability, and preferences may be false. Additional

experiments are necessary to test these assumptions. A successful outcome

shows only that given the institutional structure, real people behave the same

way the model presumes them to behave.

An example: A behavioral model of capital investment cycles

The example presented here involves a model of aggregate investment

behavior. The original simulation model (Sterman 1985) showed how the capital
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investment decisions of individual firms could lead to long-period cycles in

the economy. A simple model of a capital-producing firm was developed. The

decision rules of the model were shown to be locally rational through partial

model tests. That is, the individual decision rules behaved rationally in

isolation. The response of the partial model to unanticipated shocks was

smooth, stable, and appropriate. Next, a macroeconomic linkage (the capital

investment accelerator) was introduced. The accelerator represents the fact

that capital is an input to its own production. When the demand for capital

rises, capital-producing firms must expand their own capacity, further

increasing the total demand for capital (cf Frisch 1933, Samuelson 1939,

Goodwin 1951). Introducing the accelerator into the model caused large

amplitude limit cycles to emerge (Figure 1). The model showed that locally

rational decisionmaking by individual firms could lead to macroeconomic

instabilities when the firms were coupled through the accelerator mechanism.

The physical and institutional structure assumed in the model is

extremely simple (Figure 2). Orders for the firm's product accumulate in the

backlog, which is depleted by production. Production is determined by

capacity and capacity utilization. Utilization is a nonlinear function of the

ratio of desired production to capacity: when desired output exceeds

capacity, production is constrained by capacity; when desired output is less

than capacity, utilization is gradually cut back. Capacity is determined by

the capital stock and the (constant) capital/output ratio. Capital stock is

augmented by acquisitions and diminished by discards. The average lifetime of

capital is assumed to be constant and the discard process exponential. Orders

for capital are received after a delay representing the construction process.

Hence orders for capital accumulate in the supply line (the backlog of

unfilled orders for capital, including units under construction). The supply

9
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line is diminished when construction is completed and the capital enters the

productive stock.

The key decision rule in the model is the capital order decision. The

firm must decide how much capital to order each time period given available

information such as the current backlog, past order rates, capacity, capacity

on order, and the capital acquisition delay. The assumed order decision is

decomposed into several blocks of equations:

COt tCOFt (1)

COF t= OFO<fCOFma x, f '>0 (2)

ICOFt = (CDt+CCt+CSLt)/Ct

where

CO = capital order rate (capital units/year)
C = capital stock (units)
COF = capital order fraction (fraction/year)
ICOF= indicated capital order fraction (fraction/year)
CD = capital discard rate (capital units/year)
CC = correction to orders from capital stock (capital units/year)
CSL = correction to orders from supply line (capital units/year).

Three motivations for ordering capital are assumed: first, to replace

discards; second, to correct any discrepancy between the desired and actual

capital stock; and third, to correct any discrepancy between the desired and

actual supply line. The sum of these three pressures, as a fraction of the

existing capital stock, defines the indicated capital order fraction ICOF.

The actual order fraction COF is a nonlinear function of the indicated order

fraction. For indicated order fractions between 5%/year and 25%/year,

COF=ICOF. In extreme circumstances, however, the indicated capital order

fraction may take on unreasonable values. For example, an extreme excess of

capacity could cause ICOF to be negative. But since gross investment must be

positive, COF asymptotically approaches zero as ICOF drops below 5%/year.

Similarly, to prevent the order fraction from taking on unreasonably large

10
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values, it is assumed that the maximum capital order fraction COF ismax

30%/year. The limit reflects physical constraints to rapid expansion such as

labor and materials bottlenecks, financial constraints and organizational

stress.

CSLt = (DSLt-SLt)/TASL (4)

DSL t = CD t*PCATt (5)

PCATt = CATt (6)

where

DSL = desired supply line (capital units),
SL = supply line (capital units),
TASL = time to adjust supply line (years),
PCAT = perceived capital acquisition time (years),
CAT = capital acquisition time (years).

Firms strive to eliminate discrepancies between the desired and actual

supply lines within the time to adjust supply line TASL. To ensure an

appropriate acquisition rate, firms must maintain a supply line proportional

to the delay they face in acquiring capital. If the acquisition time rises,

firms must plan for and order new capital farther ahead, increasing the

required supply line. For simplicity, the perceived capital acquisition time

is assumed to equal the actual acquisition time.

CCt = (DCt-Ct)/TAC (7)

DC = R~f fI2t1)C1, (8)Dt RCf 2(ICt/RC), ' f)=, f2(1)= f2'> f2 <O, (8)

ICt = IPCt*COR (9)

where

DC = desired capital (capital units),
TAC = time to adjust capital (years),
RC = reference capital (capital units),
IC = indicated capital (capital units),
IPC = indicated production capacity (units/year),
COR = capital/output ratio (years).

Like the supply line correction, firms attempt to correct discrepancies

between desired and actual capital stock over a period of time given by the

11
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time to adjust capital. Desired capital is nonlinearly related to the

indicated capital stock, which is the stock needed to provide the indicated

production capacity IPC. Indicated production capacity is the capacity judged

necessary to meet expected demand. Diminishing returns to capital are assumed

to limit capital expansion when IC becomes large relative to the initial

equilibrium capital stock RC.

IPCt = EOt + CBt (10)

CBt = (Bt-IBt)/TAB (11)

IBt = NND*EOt (12)

where

EO = expected orders (units/year),
CB = correction from backlog (units/year),
B = backlog (units),
IB = indicated backlog (units),
TAB = time to adjust backlog (years),
NDD = normal delivery delay (years).

Indicated production capacity reflects the capacity the sector judges

necessary both to fill expected orders and adjust the backlog of unfilled

orders to an appropriate level. The speed with which the sector strives to

correct discrepancies between the actual and indicated backlog is determined

by the time to adjust backlog. TAB represents management's sensitivity to

abnormal delivery delays. Indicated backlog is the backlog required to supply

the expected order rate within the normal delivery delay.

(d/dt)EOt = (ORt-EOt)/TAO (13)

where

EO = expected orders (units/year),
OR = order rate (units/year),
TAO = time to average orders (years).

The expected order rate represents the sector's forecast of demand.

Adaptive expectations are assumed. Incoming orders are smoothed because it

12
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takes time for firms to decide that an unanticipated change in demand is

lasting enough to warrant capacity expansion. Smoothing filters out short-

term noise in demand, providing a more certain measure of long-run demand than

the raw order rate and preventing wild swings in investment by allowing the

backlog to buffer the system from the short-term variability of demand.

First-order exponential smoothing is assumed for the averaging process. The

smoothing time is given by the time to average orders TAO.

The assumed capital order decision represented by eq. 1-13 is typical of

continuous simulation models. The rule deliberately abstracts from the

discrete nature of individual decisions. The formulation is intended to

capture the aggregate result of the investment decisions made by many firms.

Orders are expressed as a continuous function of various inputs. Those inputs

are restricted to information that is locally available to the decisionmakers

(e.g. backlog, capacity). Information an individual firm is unable or

unlikely to have, such as the value of the equilibrium capacity stock, is not

used. The firm's forecasting process is rather simple. Finally, the

formulation includes appropriate nonlinearities so that it is robust in

extreme conditions: gross investment is constrained to be positive and

finite; desired capital is assumed to reflect diminishing returns. The

parameters assumed in the decision rule were chosen to be consistent with

survey and econometric evidence reported in various studies (Mayer 1960; Coen

1975; Senge 1978, 1980).

Protocol for the experiment

To test the correspondence of the model to real behavior, an interactive

simulation 'game' was developed. In the game, human subjects play the role of

the manager of the capital producing sector and are responsible for making

investment decisions. The structure of the game, the physical and

j�_lllll___l______l_·-_-__ll_�·l_··�-·P
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institutional context in which the player makes decisions, is identical to the

original model. The player is given the same information set available in the

original simulation model. The only difference between the original

simulation model and the game is the fact that investment decisions are

specified in the latter by the player and in the former by the decision rule

described above.4

The simulation game is described fully in Sterman and Meadows 1985. It

can be played manually or on a personal computer. In the PC version, the game

board is displayed on the screen, showing the current values of variables such

as capacity, desired production, orders, etc. (Figure 3). The players enter

their order decision for the current period in the box marked 'New Orders-

Capital Sector'. Using animation, the flows of orders, shipments, and

depreciation of the capital stock are graphically displayed on the screen.

The current values of all the system variables are displayed on the

screen at all times. Players have the option of plotting and/or printing the

entire history of the game to date at any time before entering their order

decision. Thus perfect and complete information is available to the player.

The only unknown in the system is the future order stream placed by the goods

sector.

The player, or team of players, takes the role of manager for the entire

capital-producing sector of the economy. Time is divided into two-year

periods. At the beginning of each period, orders for capital are received

from two sources: the goods sector and the capital sector itself. Orders for

capital arriving from the goods sector are exogenous, as in the simulation

model. Orders for capital from the capital sector are determined by the

player. Orders placed by both sectors accumulate in the corresponding halves

of the rectangle containing the supply line of unfilled orders. The sum of

III
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the supply lines of the two sectors is desired production for the current two

year period. Production itself is the lesser of desired production or

production capacity. Capacity is determined by the capital stock of the

sector. Capital stock is decreased by depreciation and increased by shipments

out of the supply line. Depreciation is 10% of capacity each period, corre-

sponding to an average lifetime of 20 years. If capacity is inadequate to

meet demand fully, available production of capital is allocated between the

capital and goods sector in proportion to their respective backlogs. For

example, if the backlog of the capital sector were 500 and the backlog of the

goods sector were 1000, desired production would be 1500. If capacity were

only 1200, production would be 1200 and the fraction of demand satisfied would

be 1200/1500=80%. Thus 400 units would be shipped to the capital sector and

800 would be shipped to the goods sector. Any unfilled orders remain in their

respective supply lines to be filled in future periods. In the example, 100

units would remain in the supply line of the capital sector and 200 would

remain in the supply line of the goods sector.

Note that there is only one decision in the game that is left to the

discretion of the player--how much new capital to order. The player's goal in

making these decisions is to minimize the total score for the simulation. The

score is the average absolute deviation between desired production and

production capacity over the length of the game. Thus the score indicates how

well the player has balanced supply and demand. Players are penalized equally

for both excess demand and excess supply. The scoring rule supplies the loss

function which shapes the preferences of the players.5

The games reported below were initialized in equilibrium with orders of

450 units each period from the goods sector and capital stock of 500 units.

The capital sector must then order 50 units per period to replace deprecia-

15
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tion. Desired production then equals 450 + 50 units, exactly equal to

capacity, and yielding an initial score of zero.

Results

Several typical games are plotted in Figure 4; the results of 50 games

are summarized in Table 1. The sample includes MIT undergraduate, master's,

and doctoral students; PhD scientists and economists from various institutions

in the US, Europe, and the Soviet Union; and business executives including

several presidents and CEO's.6 In all the games, orders for capital from the

goods sector rise from 450 to 500 in year 4, and remain at 500 thereafter.

The step change in orders is not announced to the players in advance.

Consider figure 4g. The player reacts aggressively to the increase in

demand by ordering 150 units in year 4. The increase in orders further boosts

desired production, leading the player to order still more. Because capacity

is inadequate to meet the higher level of demand, unfilled orders accumulate

in the backlog, boosting desired production to a peak of 1590 units in year

12, and slowing the growth of capacity. The fraction of demand satisfied

drops to as low as 52%, so the player receives less than expected. Faced with

high and rising demand, the player's orders reach 500 in the tenth year.

Between years 14 and 16, capacity overtakes demand. Desired production then

falls precipitously as the backlog of the capital sector is depleted, opening

a large margin of excess capacity. Because of unfilled orders in the backlog,

capacity continues to rise until year 18, reaching over 1600 units. Note that

the step increase in goods sector orders raises total demand for capital by

just 10 percent, but capacity reaches a peak more than 300 percent greater

than its long-run equilibrium level. Faced with excess capacity, the player

cuts orders back to zero. Capacity then declines through discards for the

next 24 years. Significantly, the player allows capacity to undershoot its
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equilibrium value, initiating a second cycle of similar amplitude and

duration. The other games shown in Figure 4 are much the same. The specifics

vary, but the pattern of behavior in the games is remarkably similar. As

shown in Table 1, the vast majority of players generate significant

oscillations. The equilibrium value of capital stock is 560 units. The mean

peak value of capacity was 2200, nearly 4 times the equilibrium level. The

mean periodicity of the cycle is 45 years.

The oscillatory behavior seen in the majority of games is far from

optimal. The optimal path (Figure 5) assumes that the shock is unanticipated:

orders remain at their initial equilibrium level until after the rise in goods

sector orders. Because capacity can only increase with a lag, the sudden

increase in demand means the backlog of unfilled orders must rise above its

equilibrium value. Thus capacity must rise above equilibrium to work off that

excess backdog. After the backlog is reduced, capacity can fall back to the

equilibrium value. In the optimal pattern, orders rise sharply immediately

after the shock to boost capital stock above equilibrium and reduce the excess

backlog. Unlike most actual games, the resulting rise in desired production

does not cause further increases in orders. Instead, orders immediately drop

below the replacement level, allowing capacity to fall back to the equilibrium

level as the backlog of unfilled orders is filled. The optimal score is 19,

thirty-one times less than the mean and 4.5 times less than the minimum score

achieved in the sample of actual first-time players. Equilibrium is

reestablished just 5 periods after the shock. In contrast, only 8 percent of

the players were able to reach equilibrium within the 70 year time horizon of

the game, even though there is no additional disturbance to the system after

the initial shock, and it rapidly becomes clear that the goods sector will

continue to order 500 units.

7_·_(1·_1________1_1ICIII�-�.��-Y�·--�II �
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Comparing the simulation model with experimental results

To facilitate computation during the experiment, there are a few

differences in parameters between the experiment and the original model (Note

4). To ensure that these differences do not produce spurious results the

parameters of the model were altered to correspond exactly to the experiment.

The behavior generated by the original simulation model, modified model, and

the experiment is strikingly similar (Table 2, Figure 6). In all three cases,

1. Output rises slowly due to the lags in acquiring capital, but falls
precipitously, followed by a long depression while the excess capital
depreciates.

2. Capacity peaks after and higher than production.

3. Delivery delay peaks before the peak of output (the fraction of demand
satisfied reaches its minimum before the peak of output).

4. Successive cycles occur despite the fact that there is no external
disturbance after the initial step increase in orders.

The correspondence between the simulations and experimental results is

excellent. The experiment shows that people do not behave rationally or

optimally even when perfect knowledge of the system structure and perfect

information are available, and even though the environment is highly simpli-

fied compared to real-life management situations. Indeed, players make basic

errors such as ignoring the amount of capital on order, failing to anticipate

the lag in acquiring capital, failing to realize that they will not receive

everything they order within one period when the fraction of demand satisfied

is less than one, and failing to anticipate the increase in the apparent

demand caused by their own orders. Interestingly, few players exercised their

option to plot out the behavior of the variables during the game.

The primary difference between the model and the experimental results is

the fact that many of the players began to learn how to control the system as

the game progressed. The mean capacity peak for the second cycle is "only"
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1130 compared to 2200 for the first peak. The original model on the other

hand presumes no learning, and generates a limit cycle that reaches a constant

amplitude and persists without continuous exogenous triggering (Figure 1). It

may seem that the diminishing amplitude of the cycles in the experiment

reflects learning on the part of players. But this is not necessarily true.

Note that the amplitude of the cycle in the game version of the model

diminishes over time even though there is no learning process in the

model (Figure 6). The parameters in the modified model result in a lightly

damped cycle while those of the original model cause a limit cycle.7

Learning, however, does occur. It typically requires several plays of

the basic game (with the single step increase in goods sector orders) for

people to learn how to avoid the large amplitude cycles typical in their first

play. And when the pattern of goods sector orders is changed, say by the

inclusion of a small amount of random noise, the performance of the players

deteriorates markedly; repeated play then brings the score down again. Players

rapidly learn how to do better in the basic game, but an appreciation for the

structure of the system and a robust ordering policy evolve more slowly.

Is the experiment a fair test?

One might argue that the experiment, while perhaps interesting, does not

reveal anything about investment behavior in the real world. The time

available for play is too short, the problem too simplified. Further, real

managers have access to decision aids such as corporate staffs, management

information systems, and sophisticated models of the economy. This issue

cannot be settled without further experimentation, but the parameters of the

problem can be estimated (generalizing from experimental to field settings is

discussed in Locke 1986). Investment decisions in the game are made in less

time than is available for real investment decisions. But the decisionmaking
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task is much simpler than that for any actual investment, and the information

available far more complete. These two effects offset each other. The issue

is whether the time available for decisionmaking in the experiment is long

enough with respect to the difficulty of the task. The experiment would not

be very illuminating if the results were contingent upon speeding players

through so fast that their short-term memory was overloaded, causing them to

make errors they would not make if they had more time to reflect. A rough

calculation suggests this not to be the case. First-time players typically

complete the 36 periods in about 40-80 minutes, implying about 70-130 seconds

per decision. There are eight pieces of information on the screen at any

given time. Short-term memory can store 7+2 chunks of information. It takes

about 5-10 seconds to transfer a chunk between short- and long-term memory.

70-130 seconds seems to be adequate time to scan and store the data and

manipulate it to produce an investment decision, even if subjects transfer

several pieces of data to long-term memory, particularly since not all

decisions take the same length of time. The first several require a long

time, as participants familiarize themselves with the game. Decisions when

capacity is inadequate also require relatively longer. But when capacity

vastly exceeds demand, players make their order decisions (usually to order 0)

quite rapidly, often in just a few seconds. Of particular significance here

is the fact that the experimental protocol does not impose any overt time

pressure on the participants--they proceed at their own pace.

Why does the model work?

Why does the model, with its highly aggregate, simplified representation

of decisionmaking, correspond so well to the behavior of real players? Why

does such a gross description of decisionmaking work at all? The task in the

game is a member of the large family of stock management control problems. In
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such a problem, the decisionmaker strives to adjust some stock to a desired

level, and to compensate for disturbances in the environment. Often there are

lags in the response of the stock to control actions. In the game, the

decisionmaker must adjust the level of capital toward some desired level and

keep it there once the desired level is attained, taking into account the fact

that capital depreciates and that there is a lag in acquiring new capital.

The ordering rule in the model says simply "order enough to replace

depreciation, modified by some fraction of the discrepancy between the desired

and actual levels of capacity, and don't forget to take the supply line of

previous orders into account." It includes obvious nonlinearities to prevent

negative or infinite orders. Any heuristic for managing a stock must take

these motivations into account or fail in an obviously irrational manner. A

decision rule that failed to replace the expected loss from the stock would

produce steady state error in which the actual quantity would always be

insufficient. A rule that failed to compensate for discrepancies between the

desired and actual values of the stock could not respond to a change in the

desired level of the stock and would allow the stock to drift randomly in

response to environmental disturbances. The replacement and stock adjustment

motivations for ordering are essential. In addition, a rule that fails to

adjust for the supply line of capital on order will always overorder,

producing instability.9

The decision rule in the model works because it captures the essential

attributes of any reasonable stock-management procedure. No matter how

detailed or complex the actual decisionmaking procedure is, it must compensate

for depreciation and adjust for discrepancies between the desired and actual

stock. The excellent fit between the aggregate rule and the behavior of real

people reflects what Simon (1969) calls the near decomposability of the

system:
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...We knew a great deal about the gross physical and chemical
behavior of matter before we had a knowledge of molecules, a great
deal about molecular chemistry before we had an atomic theory, and a
great deal about atoms before we had any theory of elementary
particles....

This skyhook-skyscraper construction of science from the roof down
to the yet unconstructed foundations was possible because the
behavior of the system at each level depended on only a very
approximate, simplified, abstracted characterization of the system
at the level next beneath....
Artificial systems and adaptive systems have properties that make

them particularly susceptible to simulation via simplified
models....Resemblance in behavior of systems without identity of the
inner systems is particularly feasible if the aspects in which we
are interested arise out of the organization of the parts,
independently of all but a few properties of the individual
components (Simon 1969, 17).

In other words, it is the feedback structure of the system that determines its

behavior, not the details of the decision rules.

Caveats and conclusions

The experiment shows that the continuous, aggregate decision rules used

in behavioral simulation models can be excellent representations of real

behavior. But the results reported here do not validate the model. The

validity of the model is contingent on assumptions about both the

institutional structure and the decision rules used by actors in the system.

The experiment shows the behavior of human subjects is not significantly

different from the behavior of the decision rule for investment assumed in the

model. But it leaves the institutional assumptions untested.

The experimental method described here can be used to test these

institutional assumptions. Among the most important are the aggregation of

all capital-producing firms into a single sector under the control of the

player, and the perfect information thus made available. These assumptions

can be tested by re-designing the game for multiple players. In such a design

each player would order capital from a supplier and receive orders from

various customers. The individual players would be linked by an input/output
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matrix specifying interfirm transactions. But as in real life, an individual

player would not be able to distinguish final demand from orders caused by

transient stock adjustments or acceleration effects. A successful outcome

would help build confidence in the appropriateness and utility of the original

model. Failure to replicate would show the aggregation assumptions of the

original model to be flawed.

The experimental method described here thus provides a process for

building confidence in models where primary data on decisionmaking behavior

are unavailable and significant aggregation is inevitable. It offers a useful

tool for reproducible testing of hypotheses about institutional structure and

decisionmaking behavior. Further, the experimental method seems to offer a

promising approach toward building confidence in simulation models at all

levels. While the approach may be particularly useful in simulations of macro

systems where more usual research methods are not feasible, it should be

useful in models of smaller organizations as well.
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NOTES

1. Nelson and Winter 1982 provide a notable exception based on bounded
rationality.

2. See e.g. Holt et al. 1960, Forrester 1961, Mass 1975, and Lyneis 1980, for
models employing this or similar rules for production scheduling.

3. Experimental economics is closely related to simulation gaming. The
literature on participatory simulation games is large and diverse (for
surveys, see Horn and Cleaves 1980 and Wolfe 1985). Gaming in system
dynamics contexts includes the "Beer Game," a production-distribution
game (Sterman 1984), and STRATEGEM-1, an economic development game
(Meadows 1985). Unlike experimental economics, for the most part these
games are designed as teaching aids for the education of the players and
not as research tools.

4. There are minor differences in parameters between the two models to
facilitate computation in the game.

Parameter Original Experiment

COR Capital/Output Ratio (years) 3 2
CAT Capital Acquisition Time (years) 1.5 2
DT Computation Interval (years) small 2

In addition, all numbers are rounded in the experiment to the nearest 10
units. These differences substantially reduce the complexity of the
player's decisionmaking task without influencing the essential dynamics of
the game.

5. Average absolute deviation was used rather than quadratic or other
possible loss functions solely for simplicity. The experiment could
easily be replicated with alternative scoring rules to test robustness
with respect to this assumption.

6. No monetary rewards were used to motivate the players, in violation of
Smith's (1982a) protocol for experimental microeconomics. While the
experiment can be replicated with financial incentives, players in the
sample here reported that they took the game seriously and tried their
best. Particularly for the academic and business players, pride and fear
of embarrassment seemed to be strong motivators. Many players expressed
chagrin at their performance; some attempted to destroy their first
results and substitute later trials. It is important to debrief players
and explain the causes of the instability to convert the frustration of
playing into useful learning.

7. Sensitivity tests of the parameters are presented in Sterman 1985. The
parameters most influential for stability are the capital/output ratio COR
(eq. 9) and the stock adjustment parameters TAC and TAB (eq. 7 and 11).
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8. The existence of significant learning in the real economy is open to
question. The structure of the actual economy is far more complex, and
information far less available than in the experiment. Interconnections
among firms are not fully appreciated. Individual firms cannot
distinguish, as a player in the game can, the 'true' long-run demand from
the 'false' orders generated by transient stock-adjustments and
self-ordering. Note that the optimal behavior in the game demands that
investment fall dramatically just when demand is highest relative to
supply. Do real firms scale investment back just when backlogs are
bulging, demand growing, prices and profits high, and delivery schedules
stretching out? In addition, the long time required in real life for the
consequences of the accelerator to manifest reduces the likelihood that
corporate and government managers will learn from experience. Learning is
hindered by the low weight accorded to the record of past decades and the
advice of 'elder statesmen' compared to the memory of recent events and
the pressures of the moment. Note that the three-to-five games typically
required to learn how to bring the system smoothly into equilibrium in the
experiment corresponds to several hundred years of simulated personal
experience in a controlled environment.

9. In fact many players do forget to take the supply line into account,
exacerbating the instability (e.g. Figures 4a, 4b). The importance of the
supply line correction is tested in Sterman 1985.

25



D-3783

REFERENCES

Alker, H. and A. Tanaka (1981) "Resolutional Possibilities in 'Historical'
Prisoner's Dilemmas," Working Paper, MIT Center for International Studies.

Armstrong, J. S. (1985) Long Range Forecasting. New York: Wiley.

Bell, J. and P. Senge (1980) "Methods for Enhancing Refutability in System
Dynamics Modeling," TIMS Studies in the Management Sciences 14, 61-74.

Coen, R. (1975) "Investment Behavior, the Measurement of Depreciation, and Tax
Policy," American Economic Review 65, 59-74.

Ericsson, K. A. and H. A. Simon (1984) Protocol Analysis: Verbal Reports as
Data. Cambridge: The MIT Press.

Feigenbaum E. A. and J. Feldman (1963) Computers and Thought. New York:
McGraw-Hill.

Forrester, J. W. (1961) Industrial Dynamics. Cambridge: The MIT Press.

Frisch, R. (1933) "Propagation Problems and Impulse Problems in Dynamic
Economics," Gordon, R. and L. Klein (eds) Readings in Business Cycles.
Homewood, Illinois: Irwin, 155-185.

Garner, C. A. (1982) "Experimental Evidence on the Rationality of Intuitive
Forecasters," in Smith, ed. Research in Experimental Economics Volume 2.

Goodwin, R. (1951) "The Nonlinear Accelerator and the Persistence of Business
Cycles," Econometrica 19, 1-17.

Holt, C., F. Modigliani, J. Muth, H. Simon (1960) Planning Production,
Inventories, and Workforce. Englewood Cliffs, NJ: Prentice-Hall.

Hogarth, R. (1980) Judgement and Choice. New York: Wiley.

Horn, R. and A. Cleaves (1980) The Guide to Simulation/Games for Education and

Training. Beverly Hills: Sage.

Kahneman, D., et al. (1982) Judgement under Uncertainty: Heuristics and
Biases. Cambridge: Cambridge University Press.

Keynes, J. M. (1939) "Professor Tinbergen' s Method," The Economic Journal.

49(195), 558-568.

Leamer, E. (1983) "Let's Take the Con out of Econometrics," American Economic
Review 73 (1), 31-43.

Leontief, W. (1971) "Theoretical Assumptions and Nonobserved Facts," American
Economic Review, 61(1), 1-7.

Leontief, W. (1982) "Academic Economics," Science, 217 (9 July), 104-107.

26



D-3783

Locke, E. (1986) Generalizing from Laboratory to Field Settings. Lexington,
MA: DC Heath.

Lyneis, J. (1980) Corporate Planning and Policy Design. Cambridge: The MIT
Press.

Mass, N. (1975) Economic Cycles: An Analysis of Underlying Causes. Cambridge:
The MIT Press.

Mayer, T. (1960) "Plant and Equipment Lead Times," Journal of Business 33,
127-132.

Meadows, D. L. (1985) "STRATEGEM-1: A Resource Planning Game" Environmental
Education Report and Newsletter, 14 (2), 9-13.

Miller, G. A., E. Galanter and K. Pribram (1960) Plans and the Structure of
Behavior. New York: Henry Holt.

Morecroft, J. (1983) "System Dynamics: Portraying Bounded Rationality,"
Omega, 11 (2), 131-142.

Morecroft, J. (1985) "Rationality in the Analysis of Behavioral Simulation
Models," Management Science. 31(7), 900-916.

Nelson, R. and S. Winter (1982) An Evolutionary Theory of Economic Change.
Cambridge: Belknap Press of Harvard University Press.

Phelps-Brown, E.H. (1972) "The Underdevelopment of Economics," The Economic
Journal. 82, 1-10.

Plott, C. R. (1982) "Industrial Organization Theory and Experimental
Economics," Journal of Economic Literature 20, 1485-1527.

Plott, C. R. and L. Wilde (1982) "Professional Diagnosis versus Self-
Diagnosis: An Experimental Examination of Some Special Features of
Markets with Uncertainty," in Smith, ed. Research in Experimental
Economics Volume 2. Greenwich: JAI Press.

Richardson, G. P. (1984) "The Evolution of the Feedback Concept in American
Social Science," Ph.D. dissertation, Sloan School of Management,
Massachusetts Institute of Technology.

Samuelson, P. (1939) "Interactions Between the Multiplier Analysis and the
Principle of Acceleration," The Review of Economic Statistics 21, 75-78.

Senge, P. M. (1978) "The System Dynamics National Model Investment Function:
A Comparison to the Neoclassical Investment Function," Ph.D. dissertation,
Sloan School of Management, Massachusetts Institute of Technology.

Senge, P. M. (1980) "A System Dynamics Approach to Investment Function
Formulation and Testing," Socioeconomic Planning Sciences 14, 269-280.

'"~"`�---`�'�II�--�-�-��-

27



D-3783

Shubik, M. (1979) "On the Number of Types of Markets with Trade in Money:
Theory and Possible Experimentation," in Smith, ed. Research in
Experimental Economics Volume 1. Greenwich: JAI Press.

Simon, H. A. (1969) The Sciences of the Artificial. Cambridge: The MIT
Press.

Simon, H. A. (1979) "Rational Decisionmaking in Business Organizations,"
American Economic Review 69, 493-513.

Simon, H. A. (1982) Models of Bounded Rationality Volume 2: Behavioral
Economics and Business Organization. Cambridge: The MIT Press.

Smith, V. L. ed. (1979) Research in Experimental Economics Volume 1.
Greenwich: JAI Press.

Smith, V. L. (1982a) "Microeconomic Systems as an Experimental Science,"
American Economic Review 72(5), 923-955.

Smith, V. L. (1982b) Research in Experimental Economics Volume 2. Greenwich:
JAI Press.

Sterman, J. D. (1984) "Instructions for Running the Beer Distribution Game,"
D-3674, MIT System Dynamics Group.

Sterman, J. D. (1985) "A Behavioral Model of the Economic Long Wave," Journal
of Economic Behavior and Organization 6, 17-53.

Sterman, J. D. and D. Meadows (1985) "STRATEGEM-2: A Microcomputer Simulation
Game of the Kondratiev Cycle," Simulation and Games 16(2), 174-202.

Thurow, L. (1983) Dangerous Currents. New York: Random House.

Tversky, A. and D. Kahneman (1974) "Judgement under Uncertainty: Heuristics
and Biases," Science 185, 1124-1131.

Williams, A. W. (1979) "Intertemporal Competitive Equilibrium: On Further
Experimental Results," in Smith, ed. Research in Experimental Economics
Volume 1. Greenwich: JAI Press.

Wolfe, J. (1985) "The Teaching Effectiveness of Games in Collegiate Business
Courses," Simulation and Games 16 (3), September, 251-288.

28



Figure 1. Limit cycle generated by original simulation model
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Figure 2. Structure of original simulation model.
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Figure 3. Game board, showing initial configuration.
Player is about to enter new orders for capital sector.

Fraction of
Demand
Satisfied

100

0

k

Year 0

Shipme.
to Capit
Sector

nts
al

Desired Production

500

Backlog of Unfilled Orders

50

Capital Sector

450

Goods Sector

Depreciation

Production
500

Shipments to

Goods Sector

New Orders

450

Goods SectoiI

Capital Stock

500

(1%Tcch~l7 (AwAa

r

__

l- III

i i i

_ f~~
i

I

31

100 

i



D-3783 32
32

0
co0

ID000

|o a BN

co

,0o

N0
N-0N

0

N

0

° ° 8 8 o 

I
4
I IBciii

A6~
f 6 

8

I~~~8S

'Sb~~~~~~~jDi
:wN Cd

V18 j Pi~~~~U
It l.R C)4-4

14 a)

Cd. N UV C ~CZu(n
o~~~~~c

0

4J

0
z
4J

12-
ma)

matU)r(
(d

co

, o

, 0
,

0w w~~~
t

o ,0

N0

0 A I e~~rAo

N

IN

0

N

° g o o o -In oon 
o" § m N 

o

A
0

8
U,

id

o

8
u

>-

$o a
t'r

0 X

N

at n

0 t4

C,

0

R0

ND

8 o o I
vo if o 

'a0

A
.6

----

,



33

(12
0,

OU)(12

C-)

J

4..aS

oa)

0z

U

a)a)

'4a
3

x
8

I 0

3

* N

I e ~~,

*6. <0
, ~~Ca

%} a

Ea w

I 0

o 

D-3783

i

D3

in

o

(D0
0

N
CY0

cm

oN

N
0

N

,w

I

'3I:

I

Ijj
I

i6i

3

a

a

3

1a

N

N

0

Ou

1_ 1111_1_1----�11�- 1.�_��_��_�

§ I 8 I 8 ? 
-

IIII § IIII



IV 0 0 - CN
kn IV o _ .

0^

% -

'U.

I

.0

I

I
0 %n

vo 

Cw

_ o 0-

oo _-

i 5 r z II
Z

ON o A C 00
C- x - I

?A

'I
.
0

.o

9

00

c o-o 

cn 00~~~~~~~~0
co Y(

o m co cn 0,'
- ff*"

_ ~o *I.1e 
o

ii
.5g

1.1-IiiI:
tdCI . Z8E 

||EW 1'1

D-3783

00 o 0 
el

34

eK p

a

2 z

E.;!z 2

t 

t

z

_N

_ 0
-

0 
o Gii

C.,'6

w

eg

9-
tfis

I

0

g

.g 

. el

(A

o 'u
.

.0

. .i
S
$j e

. 0Ž

._ C

U ,

o t 

,~

> E@g

'u

eq 0

C.,'

IV *
ON

C 

0

I
I, Ioc L ; rC go 0



D-3783

Optimal behavior in the game.
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Figure 6. Behavior of modified model. Parameters of original model

modified to correspond exactly to the experiment.
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