
Object Lens:
A "Spreadsheet" for
Cooperative Work

Kum-Yew Lai

Thomas W. Malone

Keh-Chiang Yu

90s: 89-071

ete ber 1988

0 Association for Computing Machinery
Permission to copy without fee all or part of this material is granted provided that the copies are not made or

distributed for direct commercial advantage, the ACM copyright notice and the title of the publication and its date
appear, and notice is given that copying is by permisiion of the Association for Computing Machinery. To copy

otherwise, or to republish, requires a fee and/or specific perm ssion

This paper will appear in ACM Transactions on Office Information Systems, in press

Management in the 1990s
Sloan School of Management

Massachusetts Institute of Technology

Management in the 1990s

Management in the 1990s is an industry and governmental agency supported
research program. Its aim is to develop a better understanding of the
managerial issues of the 1990s and how to deal most effectively with them,
particularly as these issues revolve around anticipated advances in Information
Technology.

Assisting the work of the Sloan School scholars with financial support and as
working partners in research are:

American Express Company
British Petroleum Company, p.l.c.
BellSouth Corporation
CIGNA Corporation
Digital Equipment Corporation
Eastman Kodak Company
Ernst & Young
General Motors Corporation
International Computers Ltd.
MCI Communications Corporation
United States Army
United States Internal Revenue Service

The conclusions or opinions expressed in this paper are those of the author(s)
and do not necessarily reflect the opinion of the Massachussetts Institute of
Technology, the Management in the 1990s Research Program, or its sponsoring
organizations.

Acknowledgements

The work described in this paper was supported, in part, by Wang Laboratories,
Xerox Corporation, General Motors/Electronic Data Systems, Bankers Trust
Company, the Development Bank of Singapore, and the Management in the
1990s Research Program at the Sloan School of Management, MIT.

We would especially like to thank Ken Grant who suggested some of the earliest
ideas that led to Object Lens and Jin Lee who helped debug the most recent
version. The Object Lens system and this paper have also benefitted from
conversations with Cheryl Clark, Kevin Crowston, Randy Davis, Frank Halasz,
Mitch Kapor, Stan Lanning, Wendy Mackay, Ramana Rao, Randy Trigg, David
Rosenblitt, and Franklyn Turbak.

Abstract

Object Lens allows unsophisticated computer users to create their own cooperative work applications

using a set of simple, but powerful, building blocks. By defining and modifying templates for various

semistructured objects, users can represent information about people, tasks, products, messages, and

many other kinds of information in a form that can be processed intelligently by both people and their

computers. By collecting these objects in customizablefolders, users can create their own displays that

summarize selected information from the objects in table or tree formats. Finally, by creating

semiautonomous agents, users can specify rules for automatically processing this information in

different ways at different times.

The combination of these primitives provides a single consistent interface that integrates facilities for

object-oriented databases, hypertext, electronic messaging, and rule-based intelligent agents. To

illustrate the power of this combined approach, we describe several simple examples of applications

(such as task tracking, intelligent message routing, and database retrieval) that we have developed in

this framework.

1

1. INTRODUCTION

It is common in the computer industry today to talk about the "next spreadsheet"--to claim that a

particular application will be the "next spreadsheet" or to wonder what the "next spreadsheet" will be

(e.g., [Greif, 19881). Usually the term "spreadsheet" is used in this context simply to connote a product

that embodies some kind of design breakthrough and is very successful.

We will focus here on a more specific property of spreadsheet programs: They make a restricted, but

nevertheless very flexible and useful, set of computational capabilities extremely easy to use. It is, of

course, possible to do any computation a spreadsheet can do in a general purpose programming

language. But because doing these things with a spreadsheet program is so much more convenient,

the number of people who can use computers to do them increases by orders of magnitude.

In this paper, we will describe an early prototype of a system, called Object Lens, that we believe

shares this property of spreadsheets: It makes accessible to unsophisticated computer users a set of

computational and communications capabilities that, while limited, are quite flexible and useful for

supporting a wide variety of cooperative work activities. In other words, we use the term

"spreadsheet" here, not to connote financial modeling or constraint languages, but to connote a

flexible infrastructure in which people who are not professional programmers can create or modify

their own computer applications.

In the remainder of this paper, we will (1) describe the key ideas used in the design of Object Lens, (2)

show how these ideas are realized in Object Lens features, and (3) illustrate the flexibility and

usefulness of these ideas in several examples of cooperative work.

1.1 Three views of Object Lens

Before proceeding, it is useful to point out three ways of viewing the Object Lens system:

(1) Object Lens is the "second generation " of the Information Lens system. Object Lens is based on our

experience with using and enhancing the Information Lens (Malone, Grant, Turbak, Brobst & Cohen,

1987; Malone, Grant, Lai, Rao, & Rosenblitt, 1987), an intelligent system for information sharing and

coordination. A very large number of the enhancements that we and others have suggested for the

Information Lens are included in Object Lens. Like the Information Lens, Object Lens uses ideas from

artificial intelligence and user interface design to represent knowledge in such a way that both people

and their computational agents can process it intelligently. Object Lens, however, is a significant

generalization of the Information Lens. It potentially goes far beyond the Information Lens in the

kinds of knowledge that can be represented and the ways that information can be manipulated.

(2) Object Lens is a user interface that integrates hypertext, object-oriented databases, electronic

messaging, and rule-based intelligent agents. Object Lens does not include all the capabilities of all

these different classes of systems, but we have been surprised at how cleanly a large portion of these

diverse capabilities can be integrated. The key contribution of Object Lens is thus not the

completeness of its implementation, but the integration of its user interface. Since the capabilities of

these different kinds of systems are no longer separate applications, each capability is more useful

than it would be alone, and the resulting system is unusually flexible.

(3) Object Lens is a knowledge-based environment for developing cooperative work applications. In the

original Information Lens system, we developed specific applications for information sharing, meeting

scheduling, project management, and computer conferencing. From the viewpoint of knowledge-based

systems, these applications only included knowledge about different types of messages: the kinds of

information the messages contained and the kinds of actions they could evoke. Object Lens, in

contrast, can include explicit knowledge about many other kinds of objects, such as people, tasks,

meetings, products, and companies. We expect that the flexible tools Object Lens provides for dealing

with these diverse kinds of knowledge will significantly increase the ease of developing a much wider

range of applications. This last view of Object Lens, which emphasizes its flexibility, is our primary

focus in this paper.

III

3

2. KEY IDEAS

One of the most important characteristics of Object Lens is that it is a semiformal system. We define a

semiformal system as a computer system that has the following three properties: (1) it represents and

automatically processes certain information in formally specified ways; (2) it represents and makes it

easy for humans to process the same or other information in ways that are not formally specified; and

(3) it allows the boundary between formal processing by computers and informal processing by people

to be easily changed.

Semiformal systems are most useful when we understand enough to formalize in a computer system

some, but not all, of the knowledge relevant to acting in a given situation. Such systems are often

useful in supporting individual work, and we believe they are especially important in supporting

cooperative work where there are usually some well-understood patterns in people's behavior, but

where there is usually also a very large amount of other knowledge that is potentially relevant but

difficult to specify.

In order to create such a flexible semiformal system, the knowledge embodied in the system must be

exposed to users in a way that is both visible and changeable (cf., Turbak, 1986). That is, users must be

able to easily see and change the information and the processing rules included in the system. In

Object Lens, there are three key ideas about how to represent and expose knowledge to users:

(1) "Passive" information is represented in semistructured objects with template-based

interfaces;

(2) "Aggregate" information from collections of objects is summarized in customizable folders;

and

(2) "Active" rules for processing information are represented in semiautonomous agents.

~ _ 1 I____II_____ ~ l_ _ l~·I_ _II~X _-l_. ------ -

4

In the remainder of section 2, we will provide an overview of how these two components allow us to

expose knowledge to users in a way that is both visible and changeable. Detailed descriptions of the

system features are in section 3.

2.1 Semistructured objects

Users of the Object Lens system can create, modify, retrieve, and display objects that represent many

physically or conceptually familiar things such as messages, people, meetings, tasks, manufactured

parts, and software bugs. The system provides an interface to an object-oriented database in the sense

that (1) each object includes a collection of fields and field values, (2) each object type has a set of

actions that can be performed upon it, and (3) the objects are arranged in a hierarchy of increasingly

specialized types with each object type "inheriting" fields, actions, and other properties from its

"parents" (see Dittrich & Dayal, 1986; Shriver & Wegner, 1987; Stefik & Bobrow, 1986). For example,

a TASK object may have fields like Requestor, Performer, Description, and Deadline; a PERSON object

may have fields like Name, Phone, Address, and Job title; and a STUDENT object may add fields like

Year and Advisor to the fields present in all PERSON objects. Some objects (e.g., MESSAGES) have

specialized actions defined for them (e.g., Answer and Forward). As described in more detail below, we

have provided rudimentary facilities for saving and sharing objects, and we are currently exploring

ways to link our interface to remote databases.

The objects in Object Lens, like messages in the Information Lens, are semistructured in the sense that

users can fill in as much or as little information in different fields as they desire and the information in

a field is not necessarily of any specific type (e.g., it may be free text, such as "I don't know").

2.1.1 Template-based user interfaces. Users can see and change objects through a particularly

natural form of template-based user interface. These interfaces have a number of virtues. For

instance: (1) they resemble forms, with which users are already familiar, (2) they conveniently inform

users about the fields contained in an object and about other information such as the likely

alternatives for different fields, and (3) their use is consistent across many different kinds of objects.

We will see below how this interface approach, which was used for messages and rules in the

Information Lens, can be easily generalized to many different kinds of objects.

2.1.2 Relationships among objects. Users can easily see and change the relationships among

objects by inserting and deleting links between the objects. For instance, the Requestor and Performer

fields of a Task object might contain links to the Person objects that represent, respectively, the person

who requested that the task be done and the person who will perform the task. Then, for instance,

when the user looks at the Task object, it will be easy to get more information (e.g., the phone

numbers) about the people involved with the task. We will see below how this capability of linking

objects to each other provides a rudimentary hypertext system as a special case (see Conklin, 1987, for

an extensive review of hypertext systems). We will see below how it is also possible for an object to

which a link appears to be displayed as an embedded template inside the original template.

2.1.3 Tailorable display formats. Users have several options for changing the ways they see

objects. For instance, they can easily: (1) select which fields will be shown and which will be

suppressed, (2) rename selected fields, and (3) specify the default and alternative values the system

presents for individual fields.

2.1.4 Inheritance hierarchy for objects. The creation and modification of type definitions is

simplified by arranging object types in an inheritance hierarchy (e.g., Stefik & Bobrow, 1986). New

types of objects are defined as specializations of existing object types, and they automatically "inherit"

all properties of the existing objects except those which are specifically "overridden." Since most of the

information about new object types can thus be "inherited" from existing types, rather than having to

be re-entered each time, creating new object types becomes simpler. Also, when an object type

definition is changed later, the changes are automatically "inherited" by the specializations of that

object type.

6

2.2 Customizable folders

Users of Object Lens can group collections of objects together into special kinds of objects called

Folders. For instance, folders can be created for groups of people (e.g., project teams, company

directory), tasks (e.g., those completed, those to be done by you, those to be done by others), messages

(grouped according to topic or urgency), and so forth. Users can also easily customize their own

displays to summarize the contents of objects in a folder. For instance, they can select certain fields to

be displayed in a table with each row representing an object in the folder and each column

representing a field. They can also select fields from which the links between objects will be used to

create a tree (or graph) display with each object represented as a node in the tree and each link in the

selected field represented as a line between nodes.

2.3 Semiautonomous agents

Users of the Object Lens system can create rule-based "agents" that process information automatically

on behalf of their users (see Crowston & Malone, 1988, for an extended discussion of agents). These

agents provide a natural way of partitioning the tasks performed automatically by the system. As we

will see below, agents can be "triggered" by events such as the arrival of new mail, the appearance of a

new object in a specified folder, the arrival of a pre-specified time, or an explicit selection by the user.

When an agent is triggered it applies a set of rules to a specified collection of objects. If an object

satisfies the criteria specified in a rule, the rule performs some prespecified action. These actions can

be general actions such as retrieving, classifying, mailing, and deleting objects or object-specific

actions such as loading files or adding events to a calendar.

The agents in Object Lens are "autonomous" in the sense that once they have been created, they can

take actions without the explicit attention of a human user. They are only "semiautonomous,"

however, in the sense that (a) they are always controlled by a human user (that is, all their rules can

be easily seen and changed by their human user), and (b) they may often "refer" objects to their human

user for action (e.g., by leaving the object in the user's inbox) rather than taking any actions on their

own.

III

7

2.3.1 Descriptions. Since agents and rules are themselves objects, users can see and modify

them with the same template-based user interface that is used for all other kinds of objects. To specify

the criteria for when a rule should act upon a given object, users create descriptions of the objects to

which the rules apply. A description is simply a partially filled-in template for an object of a particular

type. Descriptions can also include embedded descriptions that specify characteristics that must be

satisfied by objects to which the original object is linked. For instance, a description of a Task might

include an embedded description of the Person who will perform the task. These embedded

descriptions (like those in the Rabbit system [Tou et al, 1982]), allow users to easily specify object

retrieval operations that are equivalent to "joins" followed by "selects" in a relational database.

3. SYSTEM FEATURES

In this section, we will describe in more detail the basic system features of Object Lens and illustrate

them with simple examples (see Lai [1987] for more details about an earlier version of the system).

The Object Lens system is implemented in Interlisp-D on Xerox 1100 series workstations connected by

an Ethernet. The system makes heavy use of the object-oriented programming environment provided

by Loops and the built-in text editor, Tedit. Except where otherwise noted, everything described here

has been implemented, but many features have not yet been extensively tested. As of this writing, the

basic mail handling capabilities have been used regularly by two people in our development group for

about 6 months and the other facilities have received limited testing.

3.0.1 Terminology: Objects and templates. Before proceeding it is helpful .to clarify some

terminology concerning objects and templates. First, we distinguish between object types (or "classes")

and specific object instances (e.g., see Fikes & Kehler, 1985). We use the term object type to refer to a

kind of object (such as Person or Task) and the term object instance (or simply "instance") to refer to a

specific example of one of these object types (e.g., "Joe Smith or "Task No. 17"). In contexts where the

distinction between object types and object instances is not critical, we use the term objects to include

both.

__�___1_�_�_�·�_ _111�1111__·__·__.�._- .

8

We also use the term template in two ways. First, in a general sense, we use the term template to mean

any semi-structured collection of fields and field contents. Most of a user's interactions with Object

Lens are based on such templates. Second, in the Object Lens screen displays, we use the word

Template to mean object type definition. (When we use Template in this specialized sense, we will

always capitalize it.) For instance, users can change the display format for all Person objects by

editing the Template that defines the Person object type.

3.1 Editing instances

Figure 1 shows a template for an instance of a Person. Using the built-in text editor, users can insert

text or bitmaps in any field. In addition, when users click on a field name with the mouse, a list of

likely alternative values for that field appears in a pop-up menu. The alternatives may be links to

other objects or just text strings. Selecting one of these alternatives causes the alternative to be

automatically inserted in the field. For instance, the figure contains a link to the Person object

representing Kum-Yew Lai's supervisor. To insert links to objects that are not in the alternatives list,

the user (a) positions the cursor at the place in the template where the link is to be inserted, (b) selects

the Add Link option from the menu at the top of the window, and then (c) points to the object to which

the link should be made. After a link is inserted, clicking on it with the mouse causes the object it

points to to appear on the screen.

In the current version of Object Lens, users can insert any combination of text, numbers, links, and

bitmaps in any field. Then, in some cases, type checking is done when the editing window for the

instance is closed or when certain kinds of processing are done. For instance, the To and cc fields are

checked for valid addresses before sending messages and the "move to" field in rule actions is checked

for valid folders (see below for descriptions of rules and folders). In future versions of Object Lens, we

may experiment with more restrictive type enforcement in certain fields. For instance, it should

probably be impossible to even insert something other than a folder in the "move to" field of a rule

action.

"I1

9

Figure 2 shows a slightly more complex template; this one is for a Bug Fix Request message. One of the

fields of this template is the Bug to be fixed and the value of this field is a link to a Bug object. In this

case, instead of simply showing a link to the Bug object, the template contains an embedded template

for the Bug object itself. The fields in this embedded template can be edited just like the rest of the

fields in the template. We will see below how users can specify whether links to other objects should be

displayed as link icons (as in Figure 1) or as embedded templates (as in Figure 2).

3.2 Creating new instances

To create and display a new instance of an object type that already exists, users click with the mouse

on the definition (i.e., the Template) for that object type. Figure 3 shows the Templates currently

included in our system. For instance, to send a new message, users click on the Template for the type

of message they want to create; to create a new person object, users click on the Person Template.

Then an object instance, like those shown in Figures 1 and 2, will appear and the user can fill it in.

3.3 Creating new object types

To create a new object type, users click (with the middle mouse button, instead of the left one) on the

Template for the "parent" object type (see Figure 3). This causes a menu to appear showing

alternative actions that can be performed on a Template. One of these actions is to Create a

subtemplate. When the user selects this action, a new Template is created with all the fields and

properties of its "parent." Then users can add fields to the new Template or change its display format

and other properties (see below).

In the current version of Object Lens, all Things have three fields: Name, Keywords, and Comments.

All objects inherit these fields, though as discussed below, some objects rename these fields or suppress

their display. For instance, Messages rename the Name field to be Subject and the Comments field to

be Text.

10

3.4 Changing the display format and other properties of object types

To change the display format or other properties of an object type, users "edit" the Template that

defines the object type. Users make these changes by selecting actions from the menu that appears

when they click on the Template (as shown in Figure 3) with both mouse buttons. In this way, users

can change (a) which fields of the object are actually displayed, (b) the names of the fields that are

displayed, (c) the alternative values that are displayed for each field, (d) the default values that are

displayed in each field when new instances are created, and (e) whether the links in a field should be

shown as link icons (see Figure 1) or as embedded templates (see Figure 2). In this mode, users can

also add or delete fields from a template. All the changes made to a template are applied to old

instances of an object type as well as to newly created ones. For example, if the user changes the name

of a field, then the new name will be shown when any old instances are redisplayed.

We anticipate that this system will be used with a core set of object types shared by the users in a

group and that the fields in these types will be modified only by an "authorized view administrator."

Other users will be able to change the display format of these types (e.g., suppress the display of a field

or change its name), but they would not be able to delete or add fields to these "official" types. All

users would, however, be able to create their own types as specializations of the official types, and for

these types they could add and delete new fields as desired. Elsewhere (Lee & Malone, 1988a, 1988b)

we have proposed a scheme for letting an arbitrarily large number of groups share partially

overlapping sets of type definitions in arbitrary ways. One of the key ideas of this scheme is that

specialized types created by one group can be interpreted by members of another group as instances of

the most specific "ancestor" type that both groups share. For instance, a "Student" object created by

one group might be interpreted as a "Person" object by another group that does not have a definition

for "Student."

3.5 Folders

As noted above, Object Lens users can group collections of objects together into special kinds of objects

called Folders (see Figure 7). An object can be added to a folder in two ways: (1) automatically, as the

III

11

result of a rule action, or (2) manually using the Add Link action from the *Others* submenu on the

folder. In both cases, the folders will contain links to the objects, not the objects themselves.

Therefore, the same object can appear in more than one folder. Other actions for moving, copying, and

deleting both objects and links are described below.

Object Lens currently provides two formats for displaying the contents of folders: tables and trees.

Tables show the values of selected fields from the objects contained in the folder. For instance, Figure

7a shows a folder that contains objects representing people with the fields displayed for a simple office

directory. Users can easily tailor the format of these displays by selecting from a menu the fields they

want to have included in the table. For instance, Figure 7b shows the same folder, but with the display

format changed to include a different set of fields.

Trees are graphs that show the objects in a folder and the links that connect these objects. Just as

users can select the fields to be shown in a table, they can also select the fields from which links will be

shown. For instance, Figure 7c shows the same folder again, but this time in tree' format with the

"Supervisor" field selected as the one from which links are displayed. In this case, the display

resembles a simple organization chart. In the current version of Object Lens, only the links in one

field at a time can be displayed in a tree. In future versions, we plan to allow links from multiple fields

to be shown with the links from different fields being displayed as different types of lines (e.g., solid,

dotted, etc.).

When a new folder is created, the user is asked to select the default object type to be contained in the

folder. The user is then allowed to choose from the fields of this default object type when selecting the

fields to show in a table or when selecting the fields from which links will be shown in a tree. Even

though all folders have default object types, no strict type checking is enforced. If an object of an

unexpected type is inserted into a folder, only the fields it shares with the default type are displayed in

tables and trees.

12

3.6 Performing actions on objects

In addition to editing the contents of objects, users can also perform pre-defined actions on them. The

actions that can be performed at any time depend on two primary factors: (1) the type of object being

acted upon, and (2) the context in which the action is invoked.

3.6.1 Object specific actions. Each object type has a set of actions that can be performed on it.

Some of these actions are "inherited" directly from the "parents" of the object type. Others may be

modified or added specifically for this object type. For instance, there are some actions, such as

Hardcopy and Save that can be performed on all objects (i.e., all instances of Thing and all its

subtypes). (Some of these actions, such as Hardcopy, are not yet implemented for all object types.) In

addition, more specialized types of objects have other actions defined for them. For instance, agents

have a Run action that triggers them to start running, and folders have a Change Display Format

action that changes them from table format to tree format or vice versa.

In a few cases, the object specific actions depend, not just on the type of the object, but also on its state.

For instance, messages created on the local workstation have a Send action, and messages received

from elsewhere have actions such as Answer and Forward. So far these state-specific actions on objects

are implemented as special cases. However, we would like to experiment with a more general

mechanism for representing state-specific actions and perhaps making this representation accessible

to users. In some ways, this mechanism would be a generalization of the conversation manager in the

Coordinator (Winograd, 1988) which restricts the types of messages that a user can send at a given

point in a conversation, based on the conversation state.

3.6.2 Context specific actions. There are some actions that can be applied to any kind of object,

but which can be invoked only from certain contexts. The primary contexts are: (1) from an editor

(like the one in Figure 1), (2) from a folder that contains the object, (3) from a rule operating on the

object, and (4) from a link icon for the object.

13

For instance, when an object is being displayed in an editor, there are several kinds of actions, such as

Close, Move, and Shape, that apply to the editing window. Other actions in an editor include: (a) Add

Link, (insert at the current cursor position a link to another object selected by the user), and (b) Cancel

(close the window without saving any of the changes made since the window was last opened).

When an object is displayed in a folder, other context-specific actions can be applied to it, such as: (a)

Show (open an editor on the object), and (b) Select (select the item for some later folder action such as

Delete Selection).

The actions that can be applied to an object by rules are discussed in Section 3.7 below. The actions

that can be applied to link icons include: Show (open an editor on the object), and Delete (delete this

link to the object).

3.6.3 Displaying and invoking actions. Users invoke the above actions in slightly different

ways depending on the context in which the object is displayed. If the object is displayed in an editor

(like the one in Figure 1), then several of its most common actions are shown across the top of the

editor, and all the other actions are shown in a menu that pops up when the *Others* action is

selected.

When a link to an object is displayed (either as a link icon or as a row in a table), users can invoke

actions in two ways. First, if users click on the link with the middle mouse button, a menu pops up

showing all possible actions on the object. In addition, simply clicking on the link with the left mouse

button invokes the most common action. For instance, clicking with the left button on a row in a table

Selects the object for subsequent folder actions, while clicking with the left button on a link icon inside

an editor Shows the object in another window on the screen.

3.7 Creating agents and rules

In some cases, agents can take actions automatically on behalf of their users. For instance, Figure 4

shows an example of a simple agent designed to help a user process incoming mail. When an agent is

��Y�F___3___�·_I_______l__l_·-- 1__1�_�1_�^����__ ��-·___

14

triggered, it applies a set of rules to a collection of objects in a folder. The agent in Figure 4 is applied

to objects in the New Mail folder and is triggered by the arrival of new mail. That is, when mail is

retrieved to the workstation, the mail program automatically inserts links to the new messages into

the user's New Mail folder and these New Links trigger the agent. In the current version of Object

Lens, two other kinds of automatic triggers are available: Daily at Midnight, and On the Hour.

The agent shown in Figure 4 includes several rules, one of which is shown in Figure 5. A rule contains

an "IF" field (predicate) and a "THEN" field (action). Both these parts of the rule contain links to other

objects which are shown as embedded templates. The IF part of the rule is a description, a special kind

of template that describes a set of instances in terms of the values of their fields. The THEN part of the

rule is an Action object.

To construct the IF part of a rule, a user (a) clicks on the IF field with the middle mouse button, (b)

selects "Descriptions" from the menu presented, and then (c) selects an object type from the tree of

object types presented. This causes a description of the appropriate type to be inserted in the rule as an

embedded template, and the user can then fill in the fields in this description to specify the values that

must appear in particular fields for an object to satisfy the rule. As in the Information Lens, more

complex specifications for a field can be constructed by combining strings with and, or, not, and

parentheses (i.e., arbitrary Boolean combinations are possible within a field). If specifications appear

in more than one field, then all specifications must be satisfied at once for the rule to succeed (i.e.,

specifications in different fields are implicitly and-ed). As in the other template-based editors in

Object Lens, pop-up menus listing likely alternatives for a field are available in editing descriptions.

To specify the THEN part of a rule, a user simply clicks on the THEN field and selects an action from

the menu of alternatives presented. These actions are applied to the "current object" (the object

matched by the IF part of the rule) in the context of the "current folder" (the folder specified in the

"Apply to" field of the agent). In some cases (such as the "Move" action shown here), the user also

needs to fill in some fields in the embedded template for the action (e.g., the field specifying where the

object is to be moved). The actions currently implemented in rules include the following: "copy" (add

the current object to a different folder without removing it from the current folder), "move" (add the

_11___ _____ __ 1__)_ ___ _ _ -_ ___ __ _ _ -~-il i i- _ -- _ - ___ - -------

15

current object to a different folder and delete it from the current folder), "delete" (remove the object

from the current folder), and "add keyword" (add the specified keyword to the Keywords field of the

object). In addition, rules can invoke object specific actions, including the actions that apply to all

objects such as "hardcopy" and "save". We view the addition of more rule actions (and possibly the

refinement of the rule syntax) as one of the important directions for our ongoing research.

The rules are applied in the order in which they appear in the agent's rule folder. Users can create

extended reasoning chains by having some rules set characteristics of objects (using the Add Keyword

action) which other rules test (by checking the Keyword field).

3.7.1 Embedded descriptions. With the capabilities we have described so far, all rules must

depend only on information contained in the objects to which they are being applied. For instance, a

rule about a message can depend only on information contained in the message itself. It is often

desirable, however, to be able to specify rules that also depend on other information contained

elsewhere in the knowledge base. For instance, in the Information Lens system, if a user wanted to

specify a rule that applied to all messages from vice presidents, the rule would have to include in the

From field, the names of all the vice presidents.

In Object Lens, it is possible to draw upon other information by having descriptions embedded within

other descriptions. For instance, the rule shown in Figure 6 will be satisfied if the message is from any

person with a job title that includes "vice president". To apply this rule, the system checks to see

whether the string in the From field of the message is the same as the Name of any Person object in the

knowledge base that satisfies the description.

3.8 Navigating through the system

The starting point for navigation through the Object Lens system is the Object Lens Icon, a window

that shows whether the user has new mail waiting and includes a menu item to Show Basics (show the

basic folders included in the system). The system folders accessible through the Show Basics action

include: (1) a folder containing all the other folders in the system, (2) a folder containing all the

III

16

Templates defined in the system (Figure 3), (3) a folder containing all the agents defined in the system,

(4) a folder for each object type containing all the instances of that type in the system, and (5) the New

Mail folder, into which new mail retrieved from the mail server is automatically inserted. In addition,

we have designed but not fully implemented two other folders: (6) Everything, a virtual folder

containing all objects in the system, and (7) Orphans, a virtual folder containing all objects to which no

links exist.

These basic folders provide users with convenient starting points for locating any object in the system.

In relatively small systems, users can browse through these folders directly. In larger systems, we

expect that users will let their agents search through the system folders to find objects that meet

certain criteria. It is also possible for (a) individual users to create their own customized "directory"

folders that contain the folders and other objects they most often use, and (b) application developers to

create folders containing the objects used in their application.

3.9 Saving and sharing knowledge

One of the important research directions we plan to pursue in the Object Lens system involves

different ways for people to save and share the kinds of knowledge described above. For instance, we

are currently experimenting with linking Object Lens to a remote database server that contains large

shared relational databases. This work is still at an early stage, but it is clear that the usefulness of

Object Lens will be significantly enhanced if it includes access to shared databases. In the current

version of Object Lens, we have preliminary solutions to the problems of saving and sharing

knowledge that meet some, but not all, of the needs people will have in this area.

3.9.1 Saving knowledge. Users can save an object (or a collection of objects in a folder) at any

time by performing the Save action on the object (or the folder). This action uses the file package

commands from the underlying Loops and Lisp systems to store the objects in permanent files in a

form that can be reloaded at any time. There is also a "Save" action on the main Object Lens icon that

saves all the instances in the workstation.

17

The potential disadvantages of this approach to saving knowledge are that (1) it requires explicit user

actions to save objects to permanent storage and (2) it requires all knowledge used by the system to be

loaded onto the local workstation. Sharing remote databases will, of course, help solve these problems,

but we expect that systems like Object Lens can be of value even without shared databases. For

example, many users are already accustomed to explicitly saving their work in applications such as

word processing, and even this task can be simplified by creating agents to run periodically (e.g., every

night) and do automatic backups of selected objects.

3.9.2 Sharing knowledge by sending messages. There are two ways users of Object Lens can

share objects with each other: (1) by sending messages, and (2) by transferring files. In this

subsection, we discuss sending messages; in the next, we discuss transferring files. When an Object

Lens user sends a message, the message object is converted into text and sent via the existing mail

system. Any connected electronic mail users can receive and read this textual message. When an

Object Lens user receives the message, it is added as a new object in the receiver's knowledge base.

When a user sends a message containing an embedded object that is expanded (as in Figure 2), the

embedded object is converted into (indented) text in the message in a form that (a) can be easily read

by any receivers who are not using Object Lens and (b) is reconverted into another embedded object

when it is received by Object Lens users. When a user sends a message containing embedded objects

that are not expanded (e.g., that are shown only as link icons), the names of the objects are included in

the message in place of the link icons, but these names are not resolved back into link icons at the

receiver's end.

One intriguing research direction here involves how to communicate embedded objects in such a way

that they can be resolved into pre-existing objects at the receiver's end. For example, if the sender's

message contains a link to a person object, it would be nice for the receiver's system to be able to

automatically resolve this link into the receiver's object representing the same person.

3.9.3 Sharing knowledge by transfering files. The second way for users to share objects is by

transferring files. As described above, it is easy for users to store on a file server the current state of a

J

18

set of objects. Other users can then load these files to create (or update) the objects in their own

workstations. Saving and loading these files can often be done automatically. For example, we expect

that a common way for users to keep current versions of shared information such as names, addresses,

and job titles of people in their organization will be to have someone maintain the official version of

this information and periodically distribute updates to other users in the organization. Distributing

these updates could be done in several ways: (1) the "maintainer" could have automatic agents that

periodically store the current versions on a file server and the other users could have automatic agents

that periodically load the most recent versions, or (2) the maintainer could explicitly send out

messages announcing the availability of files containing updated objects and the other users could

have agents that automatically load the files announced in such messages (e.g., a rule might load all

files specified in "Official file update" messages from the official maintainer).

One potential problem with this approach is that any changes the users have made to their local copies

of objects (e.g., any notes they had added in the Comments field) will be lost when a new version of the

object is loaded. To help solve this problem, we are currently investigating more specialized updating

actions for agents to use. With this approach, the official maintainer will be able to distribute update

messages that specify changes in particular fields of particular objects. Users can then set up agents

that make these updates automatically under most conditions, but under certain conditions the user

might be notified before the update is made (e.g., if the field about to be modified has previously been

changed by the user). In some cases, the user might want to have the change made automatically but

also be notified (e.g., if someone in the user's group is changing phone numbers).

4. OTHER APPLICATIONS

In this section, we will give more examples of how the above features can be combined to create a

variety of cooperative work applications.

III

19

4.1 Task tracking

One frequently mentioned capability for cooperative work applications is the ability to keep track of

the tasks people are supposed to do (e.g., Winograd & Flores, 1986; Sluizer & Cashman, 1984). For

instance, such systems can help answer questions like: What tasks have other people requested me to

do? Are any of these tasks overdue? What tasks have I requested other people to do for me?

It is a straightforward matter to support capabilities like this in Object Lens. For instance, the system

already includes message types for action requests and commitments. Even in the Information Lens,

it was possible to automatically sort these messages into folders according to who is to perform the

task, which project it involves, and so forth. In the Information Lens, however, the summary display of

a folder's contents shows only the standard message header fields: From, Date, and Subject. To see

more about the tasks, individual messages have to be displayed, one at a time. In Object Lens, the

messages within a folder can easily be summarized by displaying whatever fields the user chooses.

For example, Figure 8 shows a table display of action request messages that includes the action

deadline.

4.2 Intelligent message sorting: Engineering change notices

As we have described in more detail elsewhere (Malone et al, in press), an intriguing example of a

cooperative work problem involves disseminating information about changes in product specifications

(often called "engineering change notices") to the appropriate people in an organization. It was

already possible in the Information Lens to sort engineering change notices according to the contents

of fields such as Part Affected, Type of Change, and Severity. In Object Lens, it is possible to use

additional knowledge to do even more intelligent sorting. For instance, Figure 9 shows a rule that

uses a doubly embedded description to select all change notices that involve parts for which anyone

reporting to a particular manager is responsible.

20

4.3 Database retrieval

There are clearly many cases in both individual and cooperative work when it is useful to be able to

automatically retrieve from a database objects that satisfy certain conditions. Object Lens provides a

simple way to perform database queries: Users can simply create agents that scan the objects in one

folder and insert links to selected objects into another folder. The rules in the agents specify the

criteria for selecting objects.

For instance, suppose you wanted to find all the technical staff members who were assigned to both the

project code-named "Dragon" and the one code-named "Lancelot." Figure 10 shows a rule that would

retrieve all such people. Instead of listing all the technical job titles by name ("software engineer",

"systems programmer", etc.), the rule includes an embedded description to determine whether a

particular job title is on the technical, as opposed to the managerial or administrative, career ladder.

In addition to this general interface for database retrieval, we have also implemented a specialized

feature in Object Lens for determining the recipients of messages. With this feature, descriptions (like

that shown in the IF field of Figure 10) can be embedded in the To and cc fields of a message. Then,

when the message is sent, these descriptions are automatically applied to all the Person objects in the

local knowledge base and the resulting people are inserted in the To and cc fields. This feature allows

senders to create distribution lists that are dynamically computed at message-sending time based on

the current information about people in their data base (see Zloof, 1981 for a similar capability).

4.4 Hypertext

As noted above, it is a straightforward matter to use many of the features of a hypertext system in

Object Lens (e.g., Halasz, Moran, & Trigg, 1987; Garrett, Smith, & Meyrowitz, 1986; Delisle &

Schwartz, 1986). For instance, our system currently contains an object type called Text that displays

only two fields: Name and Text. The Text field of a Text object can contain links to as many other

objects as desired. For example, Figure 11 shows a sample Text object that contains links to people

and bibliographic citations as well as to another Text object.

21

In addition to the usual benefits of hypertext systems, Object Lens derives additional benefits from its

integration of hypertext with other database, messaging, and computational capabilities. For

instance, in order to insert a link to another node in a hypertext system, a user must first find the node

to which the link will be made. In Object Lens, the database retrieval capabilities described above can

be used to automatically find objects (such as people or bibliographic citations) that satisfy certain

criteria. Then links to these objects can be inserted into the text. One desirable feature found in some

hypertext systems that is not yet included in Object Lens is the ability to show and follow the incoming

links to an object. We would like to implement this capability as another action available on all

objects.

Even though the relationship between Object Lens and previous hypertext systems is not the primary

focus of this paper, it is interesting to observe that Object Lens appears to have some functionality in

at least four of the seven areas that Halasz (1987) listed as being needed in the next generation of

hypermedia systems (search and query, computational engines, collaborative work, and tailorability).

5. CONCLUSION

In this paper, we have described a system called Object Lens that integrates facilities for hypertext,

object-oriented databases, electronic messaging, and rule-based agents. Using the basic primitives

provided by this system, we believe it will be relatively easy to create a wide variety of cooperative

work applications. We have shown several such applications here, and an important focus of our

ongoing research will be to test the generality of the framework further by implementing more

applications within it.

Object Lens is an example of a semiformal system, a system that represents knowledge in a way that

both people and their computational agents can process intelligently. We believe that much of the

power and flexibility of this system results from its choice of primitives (semistructured objects,

customizable folders, and semiautonomous agents) and from the template-based interfaces that make

these primitives both visible and changeable by inexperienced computer users.

22

REFERENCES

Conklin, J. (1987). Hypertext: An introduction and survey. IEEE Computer, vol. 20, no. 9, pp. 17-41.

Crowston, K. & Malone, T. W. (1988). Computational agents to support cooperative work. Working

Paper No. 2008-88, Center for Information Systems Research, Massachusetts Institute of Technology,

Cambridge, MA.

Delisle, N. & Schwartz, M. (1986). Contexts - a partitioning concept for hypertext. ACM Transactions

on Office Information Systems, 5 (2), 168-186.

Dittrich, D. & Dayal, U. (Eds.) (1986). Proceedings of the International Workshop on Object-Oriented

Database Systems, Asilomar, CA.

Fikes, R. & Kehler, T. (1985). The role of frame-based representation in reasoning. Communications

of the ACM, 28, 904.

Garrett, L. N., Smith, K. E., & Meyrowitz, N. (1986). Intermedia: Issues, strategies, and tactics in the

design of a hypermedia document system. Proceedings of the Conference on Computer-Supported

Cooperative Work, Austin, TX, December 3-5, 1986, 163-174.

Greif, I. (1988). Computer-supported cooperative work: Breakthroughs for user acceptance (Panel

description), Proceedings of the ACM Conference on Human Factors in Computing Systems (CHI 88),

Washington, D. C., May 16-18, 1988.

Halasz, F. G. (1987). Reflections on NoteCards: Seven issues for the next generation of hypermedia

systems. Communications of the ACM, 31 (7), 836-855.

Halasz, F. G., Moran, T. P., & Trigg, R. H. (1987). NoteCards in a nutshell. Proceedings of the 1987

ACM Conference of Human Factors in Computer Systems (CHI+GI 87), Toronto, Ontario, April 5-9,

45-52.

III

23

Lai, K. Y. (1987). Essays on Object Lens: A tool for supporting information sharing. Unpublished M.

S. thesis, Sloan School of Management, Massachusetts Institute of Technology, Cambridge, MA.

Lee, J. & Malone, T. W. (1988a). How can groups communicate when they use different languages?

Translating between partially shared type hierarchies. Proceedings of the ACM Conference on Office

Information Systems, Palo Alto, CA, March 23-25, 1988.

Lee, J. & Malone, T. W. (1988b). Partially Shared Views: A scheme for communicating among groups

that use different type hierarchies. Sloan School of Management Working Paper, Massachusetts

Institute of Technology, Cambridge, MA, September, 1988.

Malone, T. W., Grant, K. R., Lai, K. Y., Rao, R., & Rosenblitt, D. (1987a). Semistructured messages

are surprisingly useful for computer-supported coordination. ACM Transactions on Office Systems, 5,

115-131.

Malone, T. W., Grant, K. R., Turbak, F. A., Brobst, S. A., & Cohen, M. D. (1987b). Intelligent

information sharing systems. Communications of the ACM, 30, 390-402.

Malone, T. W., Grant, K. R., Lai, K. Y., Rao, R., & Rosenblitt, D. (in press). The Information Lens: An

intelligent system for information sharing and coordination. In M. H. Olson (Ed.), Technological

support for work group collaboration, Hillsdale, N. J.: Erlbaum.

Shriver, B. & Wegner, P. (1987). Research directions in object-oriented programming, Cambridge,

MA: MIT Press.

Stefik, M. & Bobrow, D. G. (1986, Spring). Object-oriented programming: Themes and variations. AI

Magazine, 40-62.

24

Sluizer, Suzanne & Cashman, P. M. (1984). XCP: An experimental tool for supporting office

procedures. IEEE 1984 Proceedings of the First International Conference on Office Automation, Silver

Spring, MD: IEEE Computer Society, 73-80.

Tou, F. N., Williams, M. D., Fikes, R. E., Henderson, D. A., & Malone, T. W. (1982). RABBIT: An

intelligent database assistnat. Proceedings of the National Conference of the American Association of

Artificial Intelligence, Pittsburgh, Pennsylvania, August 18-20.

Turbak, F. A. (1986). Grasp: A visible and manipulable model for procedural programs. Unpublished

M. S. thesis, Department of Electrical Engineering and Computer Science, Massachusetts Institute of

Technology.

Winograd, T. (1988). A language/action perspective on the design of cooperative work. Human

Computer Interaction, 3 (1), 3-30.

Winograd, T. & Flores, F. (1986). Understanding computers and cognition: A new foundation for

design. Norwood, NJ: Ablex.

Zloof, M. M. (1981). QBE/OBE: A language for office and business automation. IEEE Computer 14

(May), 5.

25

M4N -4 -A M . -Cose Cancel Add Link Delete *Others

,Ph.D.: Student Nm La
i':i! ~ ~Name' : m',"wL

Professor
Job title: Stulden t
Office: E40-138
Telephone Number: 25:3-3865

Supervisor: IToa 2.I JoreL2

Projects: Obje:.t Len-n,:
Keywords:
Comments:

Figure 1. Objects can be edited with a simple template

editor. Fields can include text, graphics, or links to

other objects.

26

-i_ %-o- ' -......... _,.,- --o o o -o- - ---- oo- .-- ., ---.- - .- -- - ---- - .--. -- -.-- -. . : -: . -:. .- o --.

¢ oq :.:.- . -:------:--.:--:-----:--:-:-.-::-:---:-:.-:-:-.-::-:-:-:- Ha-:-:-::-:-:.:.-:.-.:.:.-- . . .: . .,..- . . .:- .:.-.:-.-.-.-' .-: .--. :.-.-:-:-....:-:.:--:-:---

s ::--:::::::::::::- :-,:--.- -.:: A--.:P-, :::::::::.::::::::::::::::::::_:::::::::-::-:::::-:::,::-,,:::::::::::::-:::p~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .*t . .l . ..I .- . .= .i .k .n .- .::: _ ,,:::::::::: i - -
':-:-:-:::-:-:-"o:.:::':::---::-.o:o..':-:-:.:-:-:.:o:'-::-:-::::-. -:-'-:-'-T-' = ==== =====-'='='='='-'='='==..=.=.=..===.========..=.=.=======.. = =...........=.=.=..=.=.'

::::-:::-:---:.:-:.-::.-.-.-.-.-:.-.---:.:-.-.-...-:.-:.:-:..-...

i. .t--- .-....... -------- --- --- -k -ok --- -· ~ .::--::--:--::--::--:--::--::--:--::--::--:--::--:- : : . : . : : . . : : . . : . . : : ..::..:..:.:....:.::..::..::...:....:...::..::. :.

qX '."- --':"':"':"'.':"."':' '.. --- - -."''" "' '.' - "- - -"""' ' "'.' '.' '-'':':::: .':.'.'.'.:::.':::.'H-'''' _ . '-'" ''''" "" ''''' . .. ' '''-.'"-'--'"''''"-'..--'''''- ''''---''-.. -.'" -..*.'. ' H' '. . "' ' . ' "'"" '.'." .'." '" ' ."." .'"""'"" ." ". "i."- ..'.''- .. ':..'.
.....................................rt CD 1___ 1___.

rn-K, ~ ~ ~ - - - - -- - - - - -- - - -
CD- - - - - - - - - - - - - - - - -. .0.
C1 1 1 1 1 1 1 1 -, , -, , , , , , , , , : ..l -, , -, , -, -- . , -- - - - - - -.

H t~~~~~~~~~~~~~......
* ~ ~ ~ ~ ~ ~ ~ ~

C D.

CD

rt

(DH

ToI'dI-I-

rtaCD

J~

celH

D0

1`1

(D

ALHCD

CL0

CL1.

CD

L0CDH.CD

CD

l

CD

_ ,,,___,. ______ . . - - -
sv~~~~~~>C T1-C: NzD 0~CDDCCC

. ,,g;
0
-In
CL
(A

m,_':-~==WWZ0 MD CD MD CD)rT~C CD CozDz
'--"': = = . ' ' <.... :.,: .. E= <

cl~~~~~~~~~~l-,', , - 3

- . ,,,¢i: ''.'

Tl - ii

' .. -~ -I1 "" 't 0 -" (T.~b.I ,_.- _ ,:,,, , _ "_,I- I:' ·i I -'t i
.. T' I'I··f'.r(:T1 '-' , IILI

t r ,.. 'R

n - 9,

t Lii - - s- II' .-'. ',:- 0

;ii ii I-:

I - ' -.

LI'll'''t llLI
O aI

..-7- .< _r-' :

1:11-_, I'- II " : ,T

rI C1'.1 7""
'If 0:' '"" (

C .. DC - a'"'

=' -C...

.') 'i :TI I

--I , I:.,:CD , I :I , ,m C

-: , , ,

Of

C

-4
CD-I

r
X

0

CD

U

------------------------------------- - ---

-

27

Close Cancel Zoom Out Zoom In *Others*
emo -, -

TE MP LT E:
Per trtl
TEMKPLATE:
.-- ent

TEMPLA.TE:

T E. PF L4T E:

TE?4PL4TE:
E 1 P ' L. T E:e i r

I t F UT EP
-1. -- t l P, U eC

I I

TEMPL'.TE:
euet for I nfo rm a.ti o l

TE MAFE:La.TE: I
M eeting Propos.l
TEM PLm.T E:I TEMPLa.TE.
EuQ Fix :FRe B e-L-0 Len;EeU F F e'e

T E AP Lj.T E :

TEhAPLa.TET P TEt. PLA. TEi

TEPL.TE: TEPLA. TE:

ATE) 1PLa.ETE: J E TE P L.T E

,TE PLATE E;Lu' Fi < A.noun :ermen
SoftW.are F.elas TEMF La.TE

Nev.' Len; ;o i

T E M P LA T E:C':'mmitrnent TE L2PL4TEI
In i : nfere .e ni i '

T E NALTTEE
Jobt TitleEnTE - ni , e e tn

cr| .r TEAFL-.TE,
Bti Fix Clmtment1

T E AP L.T E:
FI er

Lot, Title

Figure 3. Object types are defined by a set of Templates.

.I

I

I

j

· ,llr�l�ll�·,l�l�1··�··1·····1·1·�·1··········�·�············l···-··r-�······

28

> . Z
0 T C -5 !

:01 --'- 3

'- ' -- iii

,I COOL) c

: rC" C,

C1

/Dd~~~~~~~~C

-t

a.

TS~~~

O~~~~~~~~C

I I

P3 ·
o

ti C
D

rtH-U1

oOQ

olh

ntD

ChoD

02

C',

CD

H-

H-
C)

H-

I I-

- ,f o

C--

-tl -3

,5

C',C'

1 _.,- .c,

000Cl .lIC

00

n

33.

(C'[(.,:, @
-. .,

m m- --
----------- -------

---- - -

29

Close Cancel Add Link Delete *Others*
.,~~~~~~~~~~ I_

X I '

I 111)1~~~~~~DUM If 1T

Toda w:

Torril rrvl v5z
This week

Aap
:Whenever

. x X.
X. · ·.(1'

.. ~~ ~1~
(·1·1--1.1~-1-1-- .~1~. 1Y1.

X ;111.~ ~ 111; ~ 111;~111

I.I.I.I.(11 .·1·...

: I

Name:
If:

ACT 1ON RFEQUES T
Subject.
Date
To;
From:
cc"
Action Deadline; T, d :a. y, Torr co rr- v
Key words,
Text;

Then:
MO VE

IFOLDER
To; Urqet I

Figure 5. Rules describe the objects that will satisfy them and

specify what action to perform on those objects.

...... I... I 1.1~1~~1~1 1.
S1·1·1 ,·�·1·1·1'1·,:1,·�·I·1)·(·111···.·1·1·1·�·1·1·1·1·1·(·11.·1·1i

I ((I (t)(I1 (II1IIII (It 111 1(111 11 11 I 11 (11)) I III (I) I IiI1111 1) 1'ii ()I(I 111 111111 1 11111I 1 111 (Ii
I I ti LI 1)III 11111 1111 111III I 11 11111111 1111111 t 1 1(111((I �:11(:It ())I ((((tIII I III ILI 111111 I 111 11111 1 111111)11 11 1 111111111))())I)(()(((t) It I II I I 1 III1:1:1:(1111111(1111�11)11111(1111 II(III IIII1IIIII I) II((t (((((11111111 11(1(11 (II 1 11(11�11(11(I 1111111111 111111111111111I (t It ((I I ()t 1111t I () ()11111111111l t t (IIIIIII IIII (t I((1 ((111111111111 111111111111111111 11111111111)(((t(((11 (1�11(1(11(1 11111(1 1111()()) I ()) ()(II 111 1 111111111111111 111 IIIIIIIII I

.... - -. - - - -. - - ---
····· ··· ··· ············· ········ ··· ·····

30

Close Cancel Add Link Delete *Others*

'.' 3 . _ imi .

Name:
If:

MESSAGE

Subject,
a te,

To,
From,

::Name,
Jaob title, .i: ic-. president
Office,
Telephone Number,
Supervisor,
Projects,

ey, words;
Comments,

cc
Key vords,
Tex t,

Then:

MO VE

To 'LD

Figure 6. Rules can use embedded descriptions to

create complex queries.

I

II

I

I

31

Close Cancel Show Next Delete Selection *Others*

Name Office Telephone Number

Roy essel 012-350 357-0991
Charles rav 012-50 :357-0798
Mar-, Williams 014-990 357-5915
Karen Fox 014-I 5 7-48 21
Frank enaul 014-9908 5-19
Lisa Hurvitz 014-990 ~;5 315
Maurice Gilman 019-490 37-61
Eric Stavris 014-V11 373 4 88
Susan Menario 019-490 $57-6174

Figures 7 a,b,c. Users can select which fields to display

in tables that summarize a collection of objects.

Figures 7a & 7b

Close Cancel Show Next Delete Selection *Others*

Name Job title Supervisor

Rou Kes-el Vice-oresident Robert Penta
Charles rav Oirector Roy Kessel
Marv Williams Manaaer Charles rav
Karen Fox Manader Charles ra
Frank Menaul Software Enaineer Marv Williams
Lisa Hurvitz Software Eniiineer Marv Williams
Maurice 1ilman Svstems Prourammer Karen Fox
Eric Staris Manai:er Char 1 es r.av
Susan Menario Administrative sst. Eric Stavris

·· , ,,, ll
'
,
L

............ J........... I, l I ! :......... 1 1 ll ~,i~....................

32

Close Cancel Zoom Out Zoom In *Others+

Supervisor

P'FFi:'. O ' :-: 0N!
Eric :5-Acoer usn Mnaril

PE F;:: Or·11 PE;S N,
C::.ar Lince 'WIric G ad

SZON!~I
Li ft Hunedt

PES~: IrP E R S 5 t·4 r u r P E B; O r·: EF:5! J
IF. o Kcs~lres II I e r a ry Vv I M LAnk .Li

Figure 7c

LII

.I --- ---- -- ------- --------------------------------------

III

-----------J

I

33

Please select object (or its link)

Close Cancel Show Next Delete Selection *Others*

Subject Fronl Action Deadline

ILP Visit. Elesse Brown 15-ct-88
Comments on ao:er Wendy Macka. 15-Oct-88
Call Dayis Elesse Brown 15-0ct-88
Thesis question 1 nt.ae Lee 2 -0c, t -88
CS CW paper D avid Rosenb itt 12-Nov-88

Figure 8. Tables can be used to summarize selected fields

from Action Request messages.

III

34

Close Cancel Add Link Delete *Others*

If:
ENGINEERIfNG CANGE NO TJICE

Subject;
Date;
To;
From;
cc'

ignore Alter;
Part allected;

PAR T

/Name,
Part number;
Subs s tem;
Engineer responsible;

PERSONC

Name,
Job t itle;

tt ice,
Telephone INumber;
Supervisor e in :: r- :ow-- t on
Projeets;
K< ey words;
Comments,

<ey words;
Commen ts;

Type o change;
Reason or change;
Severity;
Key words
Descr ip t on o change;

Then:

i - L E E F

To P " ' E :

........
111,111-Figure 9. Rules can include multiple levels of embedded descriptions....................

Figure 9. Rules can nclude multiple levels of embedded descriptions

that refer to linked objects throughout the knowledge base.

I
.! -- m t.~~~~~~~~~~~~~~~~~~~~~~~I

I

I
I

I
I

I

I

I

I

I

I
I

I

I

35

:::::::::::::::::::::::::;::;::: .:::::::::::..... ::::: X.

,:4~~~~:
i d i a r. I 0 L74 -0 ENT&OF VE- F. P ,,

A d mi ni:-strati ve:11~::::::::, ll::I~~; 1::: 11:::1)X1:~1::, XX ;;:X
:;:;:;::;:;:1::~:~::::;:;:::~i:;:X,

x x, X Xy:.,~~~~1::: 1~1:::::::;;)::~i::X 1 111 11::::::::::::::::
X X:::,,,,::::::r:::::
;:;,:::::::::,X.Iji:::::::::1. Xii::~~IIi::::::::::::

Close Cancel Add Link Delete *Others
M- 3

Name:
If:

PEfSON

Name;
Jab title;

JOBE TITLE
Name;
Salary range;
Exempt/Naon-exemp ;
Career ladder; Te ch r- i,: :.- I
K(ey words;
Camments;

ittijce;
Telephone Number;
Supervisor;
Projects, Dr:agon r&. L.nelot
iKey words:
Comments,

Then:
COPY

FC LD E Fi
To; DrIv ro n & Lancelot tectlnic,:.l pe:li

Figure 10. Agents can retrieve all the objects from a database that

satisfy certain criteria.

111 11 11111 ((It I t III 1111 t
I II 1111) I I)1 I I)) (1111 11111 11 II I: I: (: I: I: I: I t I I I I t I I I I I I I I I) I (((I I I 1 (t I) I 111 1 1111 I1:(1(1111((:(11 1111 IIIIIIIIIIIII I 111 I t II II II II ((I (I)(I II ((((t I ((()(It II(t (·) (((t I (1111�11(111)11111�)11111(11�111��)1(1 11(I 11 1(111(11 (11(1(((I (I) tll(llll(((((((t I))(((((I II II(11 1 11111111111111111111 (((II11IIII t (((I(II((I (t () (()I()·()IlIIIII (I(((((1(()1 (I t ((lt)ll I(()()(I 111111111�1)11�11 1 It 1111 111111111(1I t)II(1111 I (111111 1I I III II IrtI 1 t I I I I I I t I I I t I I I I I I r I I I I I I1�()�1111�1�1�1(111111111IIII1 11111111111111II(((111 (111 (IIIIIIIIIII)I 1(I) t (IIIII))(1) II1 It t(I·(I· I) 111 111111111(1111111 11 I· (I I 111

i (l1lt
(IIIIIIIIII11 1111 ((1() III111 111)I II I 11111 111�11�1)((1�1�1�11��iliii

(((I) (I) (II II ()(((I((((

..- .-..-- .. - . -- --. . --- -.. . -r- - , -rr rr r.. .. .

36

Figure 11. Hypertext documents can include links, not only

to other text passages, but also to other object types such as

people and bibliographic citations.

Close Cancel Hardcopy Save *Others*
~~~4 . .1 113 ! -C :S, 1a 

Name: Carmp Da.vid negotiations

Text: At Camp David1 President 3a..t If Egypt $d .

a nd Prirrne NM in iter Beg in o f rael .ea.":etr m i aqr e e d to
a plan that would return the S ina.i t complete Eg ypti.-.n
sov ere ignty anid, by dern i itariz inq large -. reas woulf Id 5t i ll

., :.ure Isa-raeli :Be.::urity l The Eq1ptian flag
w':loul id fly every.where, but Eqypt ian tanks wou 'ld be

n,':,here near I3raC l [Frorm i. t e '

III



GD1 I M- 0 0V
tD tO t

0 0
in

%D 4a %D

a - -

c
0

· ..
E E 

iI coAco2>V

C

o 

E .u o
.02
- 4-

uic 

, 5' mO..Z~c 

4,.v ""Vtd .1 --0
,. Cmmw I..0 &S!-c 0.
GD.~ w

2..vI
MU
GD

M C

.0 S

W D

o7 =

E,.3 .0 GD0 .5 ~ G D*'

1-eU. U

a Ec L Nc,
e, W , IV 

E E U -a M 'nL
M W V 000~ C

O G I 0 

cc~ W Z Zm

c

=U
rvEc -0 z

.. oA

V E u-i Z '

·~. :., o O: ~o ..V 'U.0 aC&.E Q-~I, 
0

G

o0 Lu . L A

0 C.Q.0
*;j DMb. 0

E

U
.A

cr.
0in

E

-CCt0

.?LCzGa,

C

0 :5

C,.C CSc 

E 

20 ,G,
Vn in i

. 0 a, o0 _ N D t M ' in WI0 . , C? IN N N e N N N

0 Q0 co D 0 0 0O 0 0 0 00 c
0x 0 0 0 0 00 0 0 0

GD
0o

el n L .
1; C- e 

0
De

0 0N
U,-..GD

U,
I
co

U,
0

UA
Q0

c
2.
Z c

C3 

.2 M

4-4-INSLEU.

c E
OUO

-

0DM zo
c 

0 . .. Wcno c0 

esfl

D?
Wo

0

v, LAs US Yt 2

a as U'l -

GD
o.0

.5 e

M Emco

-COt

c s.°
o --

M 0 

-5 M
U. cm

4-0 
M E=s

o oW %a
co Wo

to0
N

le04i

C
0
to

* j cm c cO°
* * G 0 O0I. ao0 252

%J o: V V
M ." M

I-- 024- I--

GD
GD V

:3 , . . c tJf cmL

E W LM %

_ N ^ ~~~t W ~~ '--a i = . , o.C.0 m c M *.- > Ws. u V u

E O E O0 U CO GDV ~~C,
A M. I M to 

m- a. mx
m m ~ ~ ~ ~ ~ ~ ~ ~ L

k in LA A o 4 0 ujA UA. L

No co W W U W o 

0

A
a,

iJJ' -I-.2_oCco
V~C~
. '.vin 0,

c

em

a&'-
0

A .-

c
0

c t
go 0

V V (v E 2 t
C C C -
0 0 0 0. ..o o o o g 

fu M; li M X i

7.
cm
0

'A US 0

o 

0 0Goo D G GV ,

a, .E * .

c h. muE

GD 0

o 0 ' @

c

c 0
c

V. E' 4m0 -

WG. O

o.c .GD

00 0 0 CIm0
,., o V o' 0 W-IVc' E. - *-

C1:: .N E o 

,..W .~ .,, C E

0 0 0 - 0 0 -

W Ws Wn 0 0 cW
o CO aO aO ~ c

la
N0o

vqW

CL'O

-kl.0

o

o,GD

GD
U

a.OD

uM %
0o 0
a la

%O tD
0 0

c0
t
0

0Ix

c

tI0
M

c.~o2

-

,CD

- W
0-
C

t m

= c

W 1 .

P C.L4
I0ic._. 

E o
oc
C _U a

vi

41

(U
I.

-C

0-

'A

4-

1

1
Ia
Mu
C



0 0 O

,4~ , . 4:t w eV - a~~~~~~~~~~

MX-4 M >5-

l b l b l 0 .=.0.g

. 0 .1. C 0 6 0 -~~ " C ~ ~ ~ ~ ~ ~ .. '

02. 'o~_ 

C '0
C. =~ ~
3~ "0-g m

M u CaID 

0 

0
C

0

*0CMA

Ml<co.0
'

600
01.ao.
.
O

o M .q
A

0
0
o

Q
0.

0

co

6
Ww

0 6 0 0 0 00 0 0 0 CD

w w w w ° ° ° w 1. 
o0 nO WI 4. Dm NJ 0

0 0

"I c, A, -.

m.D -S- *lbA* o.0"3lb -403'~.S ,*_.~ o

t D 0

'A '

lb

CDC 0 =CD

0 CD
Zb. 

CD

O rn
= I,

0 D,
o, o 

3 Co.
,' - X.I

c 3

mO.., 

M Zn

o3 ,

M o

b a, 61
O, te U2

:;I - 'm a-OMID.

M 0 l, 

C 03
a.0. CD>
3 0.I.
lb ~,'

W I sm

Z =D r.-CD b m'0g 0 to

00

"ClV Z. QZ <

mO

-e Z

O( I
3 In

.0 -CM 0

;. 'M 

-r-1 :.,
0

C

tD

'00r.0

0.

3. >3 Sc> ,CD~' CD ~ . 4 > ' -4

c ~ .3 -@O. ..O 
CD ~ ~ ~ o ~ D 

~~ CD~~>

0 'A> ,CL 

0 lb -'U'0 

60 ~ ~ ~:'C ~.,:t E" lC' * ~ ~ C "C
60 m ~.~ ~, ,~,~5

:3' · o=~~~~6

a2 C _r'i a. O
O C

lQ

a,- C
3 .lb 00O ;t 

0 0 0 0 o C 0 w a c - a a5

co co co co co co co co co co co co OD0 0 09 090 0C0 0 0 90 CCO O. 0 °0 00

4A 4.n I VI I VI WI i! VI -oh 4 4 V. U .
co 14 a% v1 -A w fl - O 0 co CCO sAV

CD05 u' 50 O CA O

CD,:.3 '03

b o 0.

=QX .. , 

c' R S-'O"-n0 A :DOM-M=

LAM 'C
A lb

a NSo cm _

2. - ZZ -i,_

: , 3

Z. 5 Q

3o_,, zS0 oo = 0Z60 2 -0

ID Is lCD

.
mo tD

0Go 0

00

3 >
'0
cD>

0 M'A- aM

0 :

3 0.9 -

=0 

QU
A 0

O=C
0 'C_-.m'IC

5 >
O m
8

C.-0604MMC ~
=0.

0 

M %A~ i'

3 ,.O

< =C 

S C
M >=.3'3

cm

Z .

,al A,0
M

m..~,,

-C M 4D

a W 3 CAl t no _

00-4

g.
-_D CDVA=o to_.

cObI -UDC 0 
S-b 'A

QC 

-ito I$

x b,

-2A 

3D 

a

m

D-

sV ~ '> > 5 Z-M- Mn

30 O O

MO M '0 3 O

M" 0 lb CD < D 0 0 g

0 . _ '' g3 M ~3' " Do-

ZC ID3 M l s-_A , =,~ Z._=e,~ ~ l . -,ACD,~ ~. ol ,'"~/b'A c, G4O_ ~ ~.'A;c

Z 40~~~~l__.. b 0M ~~~~~~~~~~, Z Cy 4. .o~'-* ~)" ,v ~ (
6='~~~

WI U'.,w0 M~

, C ~ ~ ~ 'A .4 'A= 4 

!Zl II3M 0 b c
C~lb C~lb

A

~00 o co C co

a0m

a a 0
OD 0 co 0 0 C D 0 ODoo 0o 0 0 co

W .Zc a

A

0 M0
'<0

0
co 0Cc

11



_� __�11__11__11_1_______

co 0% 0% a,

- Go CZ) coco 00 0

e :: -

-~ ~~ C

s :-

m .

> 1^ t I

0 0 o

0 

C 

._ >.

,£ o
G °

= .¢

CM
._

a I

ca zl 

C~a CO co0:0 COc
_i _ _5

m_
_ E
O 

IV w : O 0==z
>
w

~o
X

D
i3

!I

Z5

S
v
0

Jt

co

E ~

o 0
_ o o

4)

1.2u m11
2 3�

8 -;;.0 Zm s-j
.0 2Cm 6
tm,�-
0-=
� 5
,= t" 0(v CL

�- 0.

� 0
W C
Z 
CM �� 4,
.C C �!
0%0
,a Z: CU
C M.2
m IT
2 C_ -=
e�l
I,,:.
0
coco

..

V -;

,r -2o" o

z .2 
E.-° ev

_ .. 

, 0 -
>. - -

V C-
c ,_

, -
I. _ _

E c C
C s
_ VU

_Z <

Z

'A

.6-i

-'

,- 

-0 

C CL 

. m

-
-=

-C

m < .C

E
o w

U 

jC~E=v >e
0 cJ

w E

E-

C =

E-c

E

* E 
3 'C=

fz C

= V1
_ _ _
_L _ C)

V C

=, 

C _

,Cr 

- _

M=

_ _:

- ,

C ,4

2 _ M

, o
V C _
_ _ _

ZL - v

C

.t_

Ch

C

T

0

C

m

3

c

C

Zet

O t-

t V

- _;
C %d

I '
IV 

C a

- C

v 
IV o

: Uv

8

40
5

'C

. o

. 4#

C .>

-

D6 0
Ou

4

.=.n

O >_

C.

E -
oa _ 

'a CC

_ 4 ell

;Z r- r- -

o o o 

C, m a, a
w CO co co

o o

co co

o ?I c
o 0o

Co co wco co o0

*, N co CO

E .
2 :, ,~ o

_. .e 5, > o- C _


