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ABSTRACT

We examine the technology and capacity choice problems of a multi-
output firm facing stochastic demands. The firm can produce by installing
output-specific capital, or, at greater cost, flexible capital that can be
used to produce different outputs. Investment is irreversible, i.e., the
firm cannot disinvest. The firm must decide how much of each type of
capital to install, knowing it can add more capital in the future as demand
evolves. We show how an investment rule can be derived that maximizes the
firm's market value, and accounts for irreversibility. We also address the
analogous problem for a multi-input firm that faces stochastically evolving
factor costs, and can install input-specific or flexible capital.



1. Introduction.

Consider a firm that produces two products, with (possibly inter-

dependent) demands that vary stochastically over time. It can produce these

products in one of two ways: by installing and utilizing certain amounts of

output-specific capital, or by installing - at greater cost - a flexible

type of capital that can be used to produce either product. Investments in

all three types of capital are irreversible, i.e., the firm cannot

disinvest, so the expenditures are sunk costs. The firm must decide how

much of each type of capital - flexible or output-specific - to install, in

order to maximize its market value.

Or, consider a firm that produces one product, using either of two

alternative factor inputs whose costs vary stochastically over time. The

firm can produce this product in two ways: by irreversibly investing in

input-specific capital, or by installing a more costly flexible type of

capital that allows the use of either input. Again, the firm must decide

how much of each type of capital to install to maximize its market value.

These problems arise in part because of new manufacturing technologies.

Automobile companies, for example, produce both four- and six-cylinder

engines. The demands for the engines are interdependent, and vary

stochastically over time in response to unpredictable changes in gasoline

prices, GNP, interest rates, and tastes. In the past, a firm such as GM

could invest in capacity specific to four-cylinder engines, and/or capacity

specific to six-cylinder engines. New technologies allow the same

production line to turn out either type of engine. Given the uncertainty

over future demands, the more flexible capacity has an obvious advantage.

But it is also more costly. The firm must decide whether the additional

cost is justified, and how much of each type of capacity to install.



Or, consider an electric utility planning new generating capacity. The

utility can build a coal-or oil-burning plant. If future coal and oil

prices were known the choice would be straightforward. But future coal and

oil prices are not known, and it is very costly to convert a coal-burning

plant into an oil-burning one, or vice-versa. A third alternative is to

build - at greater cost - a plant designed at the outset to burn either coal

or oil. Which type of plant should be built, and how much capacity should

be installed?

This paper develops a framework to address these problems. It yields

an investment rule that maximizes the firm's market value, and accounts for

the irreversibility of investment, and the opportunity cost that this

implies.l As in Bertola (1987) and Pindyck (1988), we focus on incremental

investment decisions; the firm must decide how much of each type of capacity

to install, knowing that it can add more later should demands increase, but

also knowing that investment expenditures are sunk costs.2

The value of flexibility in plant design was first examined by Fuss and

McFadden (1978). More recently, Fine and Freund (1986) studied investments

in output-flexible capacity, using a quadratic programming model in which

investment occurs in the first period, before demands are. known, and

production in a second period. Their two-period framework provides insight

into the value of flexibility and choice of technology. However, it does

not account for the irreversibility of investment, it requires product

demands to be independent, and the investment rule it yields does not

necessarily maximize the firm's market value.

To understand the implications of irreversibility, consider a firm that

must decide how much capacity to install to produce a single output, the

demand for which fluctuates stochastically. The firm's capacity choice is
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optimal when the present value of the expected cash flow from a marginal

unit of capacity equals the total cost of the unit. This total cost

includes the purchase and installation cost, plus the opportunity cost of

exercising the option to buy the unit. An analysis of capacity choice

therefore involves two steps.

First, the value of an extra unit of capacity must be determined, and

in a way that accounts for the fact that if demand falls, the firm can

choose not to utilize the unit. Second, the value of the option to invest

in this unit must be determined (it will depend in part on the value of the

unit itself), together with the decision rule for exercising the option.

This decision rule is the solution to the optimal capacity problem. It

maximizes the net value of the firm, which has two components: the value of

installed capacity net of its cost, and the value of the firm's options to

install more capacity in the future.

Now suppose the firm produces two products with interdependent demands

that fluctuate stochastically. If it uses product-specific capital, it

must decide how much of each type to purchase. Capacity choice requires the

valuation of a marginal unit of each type of capital (which may now depend

on how much of the other type is installed), the valuation of the options to

invest in marginal units of each type, and the rule for exercising the

options. That rule maximizes the firm's net value: the total value of

installed capacity of both types net of costs, plus the value of the firm's

options to add capacity in the future. Or, the firm could install flexible

capacity, again choosing an amount to maximize its net value (the value of

the capacity less its cost, plus the value of the firm's options to add

capacity later). The optimal choice of technology then boils down to an ex

ante comparison of the firm's net value under each alternative.
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The next section discusses the solution to this investment problem for

a firm that produces two outputs. Section 3 shows how the firm's value-

maximizing choice of technology and capacity can be found for a class of

models with linear demand functions and Leontief production technologies.

Numerical solutions for a specific example are presented in Section 4.

Section 5 discusses the analogous problem of investing in input-flexible

capacity. Section 6 concludes and mentions some of the limitations of our

approach.

2. Optimal Irreversible Investment and the Choice of Technology.

The value of a firm is the value of its installed capacity plus the

value of its options to add capacity in the future. But installed capacity

also represents a set of options. Each unit of capacity gives the firm

options to produce at every point over the lifetime of the unit, and can be

valued accordingly.3 Hence the firm's capacity choice problem can be

reduced to one of option valuation. This is spelled out in more detail

below, first for a firm that invests in one type of capital to produce a

single output, and then for a firm that produces two outputs and must choose

between output-specific and output-flexible capital.

A. The Single-Output Firm.

Consider a firm facing a demand curve that shifts stochastically, so

that future demands are uncertain. Let denote the demand shift parameter,

with aQ(P,O)/88 > 0. Suppose the firm can install units of capital one at a

time, at a sunk cost k per unit, whenever it wishes. If K is the amount of

capital in place, the value of the firm, W, is given by:

W - V(K;9) + F(K;8) (1)

V(K;6) is the value of the firm's capital in place, and F(K;O) is the value



of its "growth options," i.e., the present value of any additional profits

that might result should the firm add more capital in the future, less the

present value of the cost of that capital. Note that F(K;8) exceeds the

present value of the expected flow of net profits from anticipated future

investments, because the firm is not committed to any investment path.

Units of capital are installed sequentially, and we can number them in

the order they are installed. Suppose units 1 through n have been installed

so far. Then, suppressing , we can rewrite (1) by summing the value of

each installed unit and the values of the options to install further units:

W AV(O) + AV(1) + AV(2) ... + AV(n-l) + AF(n) + AF(n+l) + ... (2)

AV(j) is the value of the j+lst unit of capital, i.e. the present value of

the expected flow of incremental profits generated by unit j+l. Of course

the firm need not utilize this (or any other) unit of capital. It has an

option to utilize it at each point during its lifetime, and AV(j) is equal

to the value of these options. Section 3 shows how AV(j) can be calculated.

The firm must decide whether to add more capital. With n units in

place, AF(n) is the value of the option to buy one more unit, i.e. unit n+l,

at any time in the future. If the firm exercises this option, it pays k and

receives an asset worth AV(n). The firm also gives up AF(n), because once

exercised, the option is dead - whether or not the firm later buys more

capital, it has now paid for unit n+l, and cannot disinvest. Hence AF(n) is

also a cost of investing in this unit. The full cost of investing is thus k

+ AF(n), which must be compared to the benefit AV(n).

Once the firm buys unit n+l, it must decide when to exercise its

option, worth AF(n+l), to buy unit n+2, which is worth AV(n+l). And so on.

These options must be exercised sequentially, so the total value of the

firm's options to grow is F(n) - Z AF(j).
j=n
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Letting these units become infinitesimally small, eq. (2) becomes:

K c
W AV(v;9)dv + AF(v;O)dv (3)

O K

The optimal capital stock K maximizes the firm's net value, W - kK*. Using

(3), this implies the following optimality condition that must hold whenever

the firm is investing:

AV(K* ;) = k + AF(K* ;) (4)

Thus the firm should invest until the value of a marginal unit of capital,

AV(K;9), equals its total cost: the purchase and installation cost, k, plus

the opportunity cost AF(K;9) of irreversibly exercising the option to

invest in the unit, rather than waiting and keeping that option alive.4

(Later, should fall, the firm might find that its capital stock K is

larger than it would like. It will invest further only when rises enough

so that (4) is satisfied by a K > K .) The firm's investment problem can

therefore be solved in two steps: First, determine AV(K;B) and AF(K;O), and

second, use (4) to determine the optimal capacity K *().5

B. The Multi-Output Firm.

Now consider a firm that produces n outputs, with demand functions

Qi(Pl ... Pnoi) i - l,...,n, where 1,., 8n are shift parameters that

follow (possibly correlated) stochastic processes. Suppose the firm uses

flexible capital, which costs kf per unit, and can produce all n outputs.

Then, if the current capital stock is Kf, the value of the firm is:

Kf X

Wf = f AVf(v;l, ...,Bn)dv + AFf(v;1,...,Bn)dv (5)
0 Kf

Here, AVf is the value of an incremental unit of flexible capacity, and AFf

is the value of the firm's option to invest in this incremental unit, given

a capacity Kf in place and the current values of 81,..., n.
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The firm must choose a quantity of capital Kf to maximize its net value

Wf - kfKf*. Using (5), this implies the following optimality condition:

AVf(Kf ;-1 ...,n) - kf + AFf(Kf;l,... .. n) (6)

Once again, the firm invests until the value of a marginal unit of capital

is equal to its purchase and installation cost plus the opportunity cost of

exercising the option to invest.

Suppose instead that each of the firm's n outputs are produced with a

specific type of capital, and capital of type i can be installed at a sunk

cost of ki per unit, with ki < kf for all i, and iki > kf. If the firm has

quantities of capital K1,...,Kn in place, its value is:

n n
W = Z Vi(Kl,...,Kn;1l A...On) + Z Fi(Kl,...,Kn;Ol ....,n) (7)

i=l i=l

where Vi is the value of the capital Ki, given that the firm also has

quantities K1, K2,... of the other types of capital, and given the current

values of 81,.,8On. Likewise, Fi is the value of the firm's options to add

more capital of type i in the future.

Let AVi(K1,...,Kn;l,...,On) denote the value of an incremental unit of

capital of type i, given quantities of capital Kl,...,Kn in place, and let

AFi(K 1,...,Kn, 1,*..,On) denote the value of the firm's option to install

one more unit of capital of type i. Then we can rewrite (7) as:

n K.
W - AVi(K 1... ,Kilvi,...,Kn;9 1... Sn)d'i +

i-l 0

n 

Z AFi(K 1...,Ki lVi, ;..n; 1,...,ndv i (8)
i-l K i

The firm must choose quantities of capital K,...,Kn to maximize its

net value W - kiKi. Using (8), this implies the following optimality

condition that holds whenever the firm is investing in capital of type i:
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AVi(K1 .....Ki . ..,Kn;8 1,...8 n) = ki + AFi(K1,,..,K,...,Kn;1, .., ,n) (9)

When the firm chooses its initial capital stocks, it must simultaneously

solve the set of equations (9) for each Ki, i = 1,...,n. Later, shifts in

demand may result in the firm holding excess amounts of some types of

capital, although it is still investing in other types.

Now suppose that given the current demand states 1, .ion, the firm

must decide which technology - flexible or output-specific - to invest in,

and how much capacity to install.6 This can be solved as follows. First,

calculate the functions AVi(K,...,Kn;el...,Sn) and AFi(K1 ...Kn;81 n) ,

i = 1, ...,n, and the functions AVf(Kf;1l,...,9 n) and AFf(Kf;0 1,...,n).

Second, use eqn. (7) to obtain the optimal amount of flexible capacity Kf,

and eqn. (9) to obtain the optimal amounts of output-specific capital

Kl,...,Kn. Finally, use eqns. (6) and (8) to determine the firm's market

value for each technology. The optimal technology maximizes this value.

Note that the AVi, AFi, AVf,and AFf must be determined subject to a

value-maximizing operating strategy. In other words, these functions are to

be calculated under the assumption that the firm produces and invests

optimally. We show how this can be done in the next two sections.

3. A Two-Output Model.

Consider a firm facing the following demand functions for its outputs:

P1 gl(01 ) -' llQ1 + 71 2 Q2 (10a)

P2 g2 (82 ) + 21Q1 - 722Q2 (10b)

with 711722 - 712721 > 0. Here gl and g2 are arbitrary functions of 81 and

82 respectively, which in turn evolve according to the stochastic processes:

d0 i = caiidt + ai~idzi, i - 1,2 (11)

where dzi is the increment of a Weiner process, and E(dzldz 2) - pdt. Thus

III
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future values of 1 and 2 are jointly lognormally distributed with

variances that grow linearly with the time horizon.

We will assume that stochastic changes in demand are spanned by

existing assets, i.e., there are assets or dynamic portfolios of assets

whose prices are perfectly correlated with 1 and 82. (This is equivalent

to saying that markets are sufficiently complete that the firm's decision to

invest or produce does not affect the opportunity set available to

investors.) With this assumption we can determine the investment rule that

maximizes the firm's market value, and the investment problem reduces to one

of contingent claim valuation. This lets us avoid making arbitrary

assumptions about risk preferences or discount rates. If spanning does not

hold, dynamic programming can still be used to maximize the present value of

the firm's expected flow of profits, using an arbitrary discount rate.7

(But note that in such cases there is no theory for determining the correct

discount rate; the CAPM, for example, would not hold.)

Let xi be the price of an asset or dynamic portfolio of assets

perfectly correlated with i, and denote by Pim the correlation of xi with

the market portfolio. Then xi evolves as:

dx i = ixidt + aixidz i ,

and by the CAPM, its expected return is i r + OPimai, where is the

market price of risk. We will assume that ai, the expected percentage rate

of change of i, is less than i, i - 1,2. (If this were not the case, no

capacity would ever be installed. Whatever the current levels of 1 and 82,

firms would be better off waiting and simply holding the option to install

capacity in the future.) Denote by 6i the difference i ai.

The firm's cost and production constraints are as follows: (i) Units

of flexible capital can be bought at a price kf each, and each unit
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provides the capacity to produce one unit of either type of output per time

period, so Q1 + Q2 < Kf. Alternatively, units of output-specific capital

can be bought at prices k and k2, with k < kf, k2 < kf, and k + k2 > kf.

Each unit provides the capacity to produce one unit of the corresponding

output, so Q1 < K1 and Q2 < K2. (ii) The firm has zero operating costs.

(iii) Starting with no capacity, at t 0 the firm must decide which

technology to adopt and how much initial capacity to install. Later it may

add more capacity, depending on how demand evolves. (iv) Capacity can be

installed instantly, and capital in place does not depreciate. (v)

Investment is completely irreversible - the firm cannot disinvest.

To solve the firm's investment problem we determine the value of a

marginal unit of each type of capital, the value of the option to invest in

that marginal unit, and the optimal rule for exercising this option. To

determine which technology the firm should adopt, we calculate the net value

of the firm for each.

A. The Value of a Marginal Unit of Capital.

First, suppose the firm is utilizing flexible capital. What is the

value, AVf(Kf), of an incremental unit of this capital, given that Kf is

already in place? Denote by Arf(Kf) the flow of profit that this

incremental unit generates, and let - 712 + 21.

Using eqns. (10a) and (10b) and solving for the firm's profit-

maximizing output levels, we show in the Appendix that the profit that an

incremental unit of capital generates at a future time t is given by the

following nonlinear function of 8lt 2t' and Kf:8

Arft = max [0, fl(Olt), f2(02t), f3(Olt,02t)] (12)

where fl(9l) = gl(81) - 2Kf,

f2(02) = g2(02) - 222Kf,

III
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(2722+7)g1 (01) + 2(Y11 +Y)g 2(62) - (4l71122-2 )Kf

and f3(81, 2) = 2(711 + 22 + )

Thus AVf(Kf) can be written as:

AVf(Kf;0 1,82) - fSAft(Kf;1t,02t)O(81t,82t 181,82)d6ltd82 te' 
t dt (13)

000

where ( ) is the joint density function for 1lt and 2t given their current

values 81 and 82, and is the isk-adjusted discount rate.

Eqn. (13) is clearly difficult to evaluate, and the discount rate 

might not be known. We will show below that AVf(Kf) is more easily obtained

by making use of the spanning assumption. First, however, we turn to the

case of a firm that invests in output-specific capital.

We must determine the values AV1(K1,K2) and AV2(K1,K 2) of an

incremental unit of each type of capital, given that the firm currently has

K1 and K2 in place, and given 81 and 2. Denote by Ai(K1,K2) the profit

that an incremental unit of capital of type i generates. Using eqns. (10a)

and (10b) and solving for the firm's profit-maximizing output levels, it can

be shown (see the Appendix) that the profit that an incremental unit of

capital of type i generates at a future time t is given by:9

Jmax [0, min (max [fil(Oit), fi2(Oit',jt)]' fi3(Oit))], < 

,max [0, max (min (fil(Oit), fi2( 8it,'jt)), fi3(ait)] > 0

where fil(Oi) - gi(Oi) - 27iiKi + Kj,

fi2(6i,Oj) - gi(Oi) - 2 iiKi + [gj(Oj)+Ki]/2yjj,

and fi3(-i) - gi(-i) - 2iiKi,

for i,j = 1,2, i j. Then AVi(K1,K 2) can be written as in eqn. (13), but

with Aft(Kf;o,1, 2) replaced by Ait(K1,K2;81, 2). Again, rather than try

to evaluate the integral directly, we make use of the spanning assumption.
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In the Appendix we show that spanning implies that AV i, the value of a

marginal unit of capital of any type (i = 1, 2, or f), must satisfy:

/1 11+ ( /2)2 AVi,22 + P 1aa2 2 Vi,12 +

(r-61)lAVi,l + (r-62)02AVi,2 + Ari(01,8 2) - rAVi 0 (15)

where AVill denotes 82AVi/a 21, etc. This differential equation must be

solved subject to a set of boundary conditions that depend on the functions

gl(l1) and g2( 2). We discuss these boundary conditions and the solution of

(15) in the context of a specific example in Section 4.

B. The Investment Decision and Choice of Technology.

AVi is the payoff to the firm from exercising its option, worth AFi, to

invest in an incremental unit of capacity of type i. The Appendix also

shows that AFi must satisfy:

)a AFill + (1/2)a 20AFi,2 2 + pala28162AFi,12 +

(r-61)0lAFi, + (r-62)82AFi, 2 - rAFi - 0 (16)

As discussed in the Appendix, the following boundary conditions apply:

AFi(e1,e 2) = AV i(l,e 2) - k , i - 1, f (17a)

AFi(6 1, 2) AVi( l,) - ki i - 2, f (17b)

aAFi(e 1 e2)a 1- aAvi( *
8AFi(6 2)/a l = 8AVi(61,6 2)/86l , i 1, f (17c)

aAFi(61 , )/8le2 - 8Vi(l )/a 2 , i - 2, f (17d)

Here, 81 and 62 are critical values of 81 and 82 at which it is

optimal to exercise the investment option (i.e., pay ki and receive a unit

of capital of type i, worth AVi). For example, a firm investing in

flexible capacity that has Kf in place should add another unit if 1 > 8 or

if 82 > 2. (Note that AFf and AVf both depend on Kf.) Hence the solution

to eqns. (16) and (17) is the optimal investment rule: if the firm invests

in output-specific capital, (16) and (17) imply a 81(K1,K2) and 2(K1,K2),

11
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or alternatively a K(8 1,82) and K2(81,82), the optimal initial capacity

levels. For flexible capital, (16) and (17) imply an optimal initial

capacity Kf(81,82)

The solution of (16) and (17) gives the optimal investment rule for a

particular technology. To determine which technology is optimal, we must

find the value of the firm for each. For flexible capital, the value is

given by:

Kf
Wf = Vf(v+ Ff(vv;91, 2)d v (18)

0 Kf

where AVf is the solution to (15), and Kf and AFf are jointly determined as

the solution to (16) and (17) given the current state of demand 81 and 82.

For output-specific capital, the value of the firm is:

* K*

W = f V1(K2,; 1,82)dv + AV2(K,v; 1,82)dv +
0 0

S AFl(v,K2;l,82 )dv + *AF 2(K ,v;6, 2)dv (19)
K1 K2

where AV1 and AV2 are likewise solutions to (15), and K1, K2, AF1 and AF2

are solutions to (16) and (17) given 81 and 82.

Eqns. (15) and (16) are elliptic partial differential equations,. and in

general would have to be solved using numerical methods. In the next

section we go through the steps outlined above for a simpler example that

can be solved analytically.

4. An Example.

Our model can be simplified considerably, while retaining its basic

economic structure, by reducing the number of stochastic state variables to

one. We will assume as before that the firm produces two outputs with zero

operating costs, but that the demand functions are given by:
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P1 - log - 711Ql + 71 2 Q2 (20a)

P2 - logo + 72 1Q1 - 2 2 Q2 (20b)

with d - adt + adz (so that the stochastic component of demand is

normally distributed). We will assume that the two outputs are substitutes,

so that - 12 + 721 < 0 (Q1 and Q2 might be the demands for large and

small automobile engines, and (t) an index of gasoline prices.) To clarify

the solution, we also make the demands symmetric: 71 1 - 722 b. (In this

case, drops out of the solution.)

A. Flexible Capital.

We first find the optimal investment rule and market value for a firm

using flexible capital. Using (12), the profit generated by an incremental

unit of capital, given Kf already in place, is: 10

- logO - 2bKf ; logO < -2bKf

Aft { 0 ; -2bKf < logO < 2bKf (21)

logO - 2bKf ; logO > 2bKf

The value of this incremental unit of capital, AVf(Kf;O), must satisfy (15):

(1/2)a282AVf89 + (r-6)OAVf - rAVf + Arf(o) 0 (22)

where AVf 0 denotes aA2Vf/a82 , etc. The boundary conditions are:

gie AVf(9) + (logG)/r + 2bKf/r + (r-6-a 2/2)/r 2 0 (23a)

im AVf(O) - (logO)/r + 2bKf/r - (r-6-a 2/2)/r - 0 (23b)

and both AVf and AVf 0 continuous in . Condition (23a) says that for 

close to zero, the firm can expect to use this unit of capital to produce

good 1 and only good 1 for the indefinite future, and AVf(9) is the

corresponding present value of the expected stream of marginal profit.ll

Similarly, (23b) says that for very large, the firm can expect to use the

II
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capital to produce good 2 and only good 2 for the indefinite future.

The reader can verify that the solution to (22) and its boundary

conditions is:

AVf(9) -

A91 - L7 Lr o r2 /L- 2bKf/r ;

B81l + C 82

D2 + log (r-6-a /2) bKf/r
r 2

r

8 < e-ZbKf

e< 2bKf < f < 2bKf

0 > e2bKf

(r-6-au /2) 1 2 2 2 1/2where : (r B -2 [(r-6-a /2) + 2ra ]

a a

(r-6-a2 /2) 1 2 2 1/2
B, -------- ;r82--- -2 2[ (r - 6 a2 /2) + 2 ra 2]

aa

A= (l(e2bKfl + e-2bKffl)

B l- e e2bKf1

C = -2bKfP2

D 2(e f62 + e2bKf 2)

1 - 02(r-6-a2/2)/r

r($l - 2)

1 - 1 (r-6-a2 /2)/r

2 r(C1 - 2)
and-

>1

<0

Figure 1 shows AVf as a function of logO for b - 1, Kf - .75, r - .04,

and a - 0, .2, and .412 We let 6 r - a2/2, making the expected rate of

change of 6 zero, so that AVf(8) is symmetric around logO - 0. When a - 0,

A, B, C, and D in eqn. (24) become zero, so AVf - -logO/r - 2bKf/r if <

e 2bKf AVf loge/r - 2bKf/r if 8 > e2bKf, and AVf O otherwise. Note

that for our choice of parameter values, AVf is then greater than zero only

if logO exceeds 1.5 in magnitude. But if a > 0, AVf > 0 for all values of

logs, because of the possibility that will rise or fall in the future.

(24)

I -- I / - C / /n
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Given the value Vf(Kf;6) of an incremental unit of flexible capital,

we can determine the value AFf(Kf;6) of the firm's option to invest in this

unit. AFf must satisfy the following differential equation:

(1/2)a 22AFf + (r-S)eAFf - rAFf = 0 (25)

with boundary conditions:

AFf(O*) = AVf(* ) - kf (26a)

AFf( ) A= Vf( ) - kf (26b)

AFf,6 (s*) = AVf,6(8*) (26c)

AFf,6(( ) = AVf,(6 ) (26d)

Here and 6 are the lower and upper critical points, i.e., the firm

should add a unit of capital if 6 falls below * or rises above '.

The solution to (25) is:

AFf(6) = aleol + a26P2 (27)

The critical values * and e'*, as well as a and a2, are found by

substituting (24) for AVf and (27) for AFf into (26a-d) and solving

numerically. A solution is shown in Figure 2, for a cost of capital kf -

12, a = .2, and Kf, r, and 6 as before. Note that if 6* < < *, the

total cost of investing in the incremental unit of capital, AFf(6) + kf,

exceeds the value of the unit, AVf(6), and so the firm should not invest.

Also, recall that a, a2, , and are all functions of Kf. As Kf

increases, * falls and rises. Thus, if the current value of is less

than 6* or greater than e*, the firm will add capacity up to the point that

6 just equals one of these critical values. Given this optimal capacity

Kf, the value of the firm can then be found from eqn. (18).

B. Output-Specific Capital.

The optimal investment rule for output-specific capital is found in

the same way. Using (14) with < 0, the profits from incremental units of
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each type of capital, given K1 and K2 in place, are respectively: 13

- logO - 2bK 1 ;

Ailt -
0

and An 2t 
I logO - 2bK 2 ;

log < -2bK1

logO > -2bK1

logO < 2bK2

logO > 2bK 2

The value of an incremental unit of capital of type i, AVi(Ki;6), i =

1,2, must satisfy the following differential equation:

(1/2)a202AVi + (r-6)SAVi, 8 - rAVi + =i() = 0 (30)

The boundary conditions are:

ji AVi(8) = - (logO)/r - 2bKl/r - (r-6-a2/2)/r 2 (31a)

im V (logO)/r - 2 + (- 2/2)/2 (31b)im AV2() (log)/r - 2bK 2/r (r-6-a/2)/r

and AVi and

AV1l() =

AV2() -

AVi, 

BlerlB102

A20f1

B2082

continuous in . The solutions to these equations

logo (r-6-a2/2) -2bK 1/r 
r 2 

6< e 2 bKi

are:

(32)

< e2bK2

log + (r-6-a2 /2) 2bK 2/r

r r2
6 > e 2 bK2

(33)

where A1 - 2 e2ll, B1 - 12bK, A2 - 2e 22, B2 - 1e-2bK22, and

P1' 2' 11 and 2 are defined as above.

Figure 3 shows AV1 and AV2 plotted against logO for K1 - K2 - .75, and

again, b - 1, r - .04, a - 0, .2, and .4, and 6 - r - a2/2. As with the

case of flexible capital, if a - 0 and -1.5 < logO < 1.5, an extra unit of

capital would never be used, and has no value. For a > 0, an extra unit of

capital of either type might be used in the future, and has positive value

(28)

(29)
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for all values of log@. Note that AV1 and AV2 have the form of a call

option, and increase with a. Indeed each is the value of an infinite number

of (European) call options to produce at every point in the future.

Given AV1(K1,K 2;9) and AV2(K1,K2;9), AF1(K1,K2;6) and AF2(K1,K2;8) are

found by solving:

(1/2)a2 e2 tAFi, + (r-6)9AFi, e - rAFi O, i - 1,2 (34)

with boundary conditions:

AF 1 (*) = AV 1 (* ) - k (35a)

AF1 ,(0*) = V1,(6*) (35b)

AF2( ) = AV2(9 ) - k2 (35c)

AF2,( *) = AV2,( ) (35d)

~im AF 1 () = 0 (35e)

iiF 2(9) = O (35f)

The solutions to (34) and boundary conditions (35e) and (35f) are:

AF 1() = m1 002 (36a)

and AF 2(8) = m2 o 1 (36b)

Note that e* and * are again the critical values of ; the firm should add

a unit of capital of type 1 if falls below * and add a unit of capital of

type 2 if rises above 9 . After substituting in (32), (33) and (36),

eqns. (35a-d) can be solved simultaneously for *, , ml, and m2.

A solution is shown in Figure 4 for costs of capital k - k2 10, and

a .2. The critical values of loge are ±2.35. For log9 inside this range,

the value of a unit of either type of capital is less than the total cost of

investing in the unit, so the firm does not invest. Again, * e, ml, and

m2 are all functions of K1 and K2; as K1 (K2) increases, ml and * fall (m2

falls and * rises). Thus given the current value of , (35a-d) can be used

to find the firm's optimal initial capital stocks K1 and K2. Then, given K1

II
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and K2, eqn. (19) can be used to find the value of the firm.14

C. The Choice of Technology.

The ex ante choice of technology requires comparing the net value of

the firm using flexible versus output-specific capital. This comparison

will depend on the parameters a, , and r, the capital costs kl, k2, and kf,

as well as the current state of demand, i.e., the value of .

Table 1 shows the net value of the firm and its components for various

values of a and , for flexible and nonflexible capital. Note that if a -

0, the firm observes and installs as much capital as it will ever need,

and the value of its options to grow (Ff in the flexible case, F1 + F2 in

the nonflexible) is zero. The total value of the firm is then the same for

either technology, so the firm will use the cheaper nonflexible capital.

(In the nonflexible case, K1 3 0 for all combinations of a and shown, but

F1, the value of the option to install capital of type 1, is positive for a

> 0.) For both technologies, as a increases, the amount of capital that

the firm initially installs falls; although the value of each incremental

unit of capital rises with a, the value of the option to invest in the unit

(an opportunity cost) rises even more. For large a, much of the firm's

value comes from its options to grow; for a .4 and logB - 1.5, these

options account for more than half of total value, with either technology.

In the example in Table 1, flexible capital makes the net value of the

firm higher only when a is .4. (It is misleading to compare total values.

With equal amounts of installed capacity, a firm using the flexible

technology will always have a higher total value. But flexible capital is

more expensive, and, as Table 1 shows, the amounts of installed capacity

differ in the two cases.) Figure 5 shows how the choice of technology

depends on relative capital costs for a - 0, .2, and .4, and loge - 2.5.
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(There, k and k2 are fixed at 10, and the optimal amount of flexible

capacity and corresponding net value of the firm are calculated as kf is

varied between 10 and 15.) When a = .2, the ratio of net values exceeds 1

only when kf/k2 is less than about 1.07.

These results illustrate how a value-maximizing choice of technology

and capacity can be calculated, and how they depend on various parameters.

One should not infer that the net benefit of flexible capital is low; our

example is based on a specific production technology and specific demand

functions, and our solutions apply to a limited range of parameter values.

5. Investments in Input-Flexible Capacity.

The analogous investment problem that arises with input-flexible

capacity can be treated in the same way. To see this, consider a firm

facing the following non-stochastic demand curve for its single output:

P = a - bQ (37)

Suppose the firm must use, in addition to capital, one of two variable

inputs whose costs, cl and c2, vary stochastically:

dci = aicidt + aicidzi , i = 1,2 (38)

with E(dzldz 2) = pdt, and (assuming spanning), pi is the expected return on

an asset or portfolio perfectly correlated with dzi, and i - i - ai'

The firm can (irreversibly) purchase and install input-flexible

capacity at a cost kf per unit, or input-specific capacity at a (lower) cost

kl or k2. Each unit of capacity allows the firm to produce one unit of

output using one unit of the corresponding input.

This technology and capacity choice problem can be solved using the

approach of Section 3. The profit generated by an incremental unit of

flexible capacity at time t is given by:
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Art(Kf) = max [0, a - 2bKf - min (Clt, c2t)] (39)

For an incremental unit of input-specific capacity of type 1, the profit is:

At 1 (K1,K 2 ) -

min (max [0, a-2bKl-clt], max [0, c2 t-clt, a-2b(K 1+K2 )-cltl) (40)

(Similarly for Ar 2.) AVi , i = 1, 2, and f, again satisfies eqn. (15), with

boundary conditions derived from (39) and (40), and AF i satisfies eqn. (16)

and boundary conditions (17a) - (17d). The solutions of these equations

give the optimal capacity levels, and (18) and (19) can be used to find the

value of the firm for each technology.

In general, a solution requires numerical methods. However, the

problem is much simpler if only one input cost is stochastic, and the other

is constant. (This would apply, say, to an electric utility choosing among

a coal-fired plant, an oil-fired plant, or a plant that can burn either

fuel - coal prices fluctuate little compared to oil prices.) An analytical

solution can then be found similar to the one presented in Section 4.

6. Conclusions.

The NPV rule, "Invest when the value of a unit of capital exceeds its

purchase and installation cost," is not optimal when investment is

irreversible, because it ignores the opportunity cost of exercising, or

"killing," the option to invest at any time in the future. Likewise, the

rule, "Choose that technology (flexible or nonflexible) that maximizes the

present value of the firm's cash flows," is not optimal for the same reason.

We have shown how the value-maximizing choice of technology and

capacity can be found in a way that is consistent with the irreversibility

of investment, the fact that capacity in place need not always be utilized,

and the existence of a competitive capital market. First, the value of an
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incremental unit of capacity of each type is determined. Second, the value

of the firm's option to invest in this unit is determined, together with the

optimal exercise rule. The latter yields the firm's optimal initial

capacity, and the corresponding net value of the firm can be calculated.

The choice of technology can then be made by comparing ex ante net values.

Our numerical example suggests that irreversibility and uncertainty can

have a substantial effect on the amount of capacity the firm initially

installs; note from Table 1 that K* falls rapidly as a is increased, for

both technologies. This is consistent with recent studies of irreversible

investment (see the references in Footnotes 2 and 5), but some restrictive

assumptions may have exaggerated this effect. For example, by assuming the

firm can incrementally invest, we have ignored the lumpiness of investment.

We have also ignored depreciation (if capital becomes obsolete rapidly, the

opportunity cost of investing will be small). And, as mentioned earlier,

our numerical results apply to a simplified model and a limited range of

parameter values. This also limits the generality of our finding that

flexible capital is the preferred choice only if its cost premium is low.

Other caveats deserve mention. We ignored scale economies, which could

make cost increase with the number of products the firm produces, creating

an incentive to produce only one output (and use nonflexible capital).

Except for capital costs (and constant average variable costs), only demands

affect the output mix in our model. (For a model that shows implications of

scale economies, see de Groote (1987).) And we ignore strategic aspects of

flexibility. As Vives (1986) and others have shown, flexibility can have a

negative value in a small numbers environment because with it the firm is

less able to commit itself to a particular output level or product mix.

IN1
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APPENDIX

A. Marginal Profit Functions.

Here we derive the marginal profit functions Awf(Kf;01,02),

Al(K1,K2;01,02) , and Ar2 (K1,K2;81,02). First consider flexible capital.

The total profit function is:

2 2
- gl(01)Q1 + g2(82)Q2 - 711Q1 22Q2 + 7Q1Q2 (A.1)

where 7 - 712 + 721. This must be maximized subject to Q1 > 0, Q2 > 0, and

Q1 + Q2 < Kf. Let Q1 and Q2 be the quantities that maximize f. If Q1 + Q2

< Kf, Arf = 0. Suppose Q1 + Q2 = Kf. Substitute Q2 Kf - Q1 into (A.1),

differentiate with respect to Q and set equal to zero, yielding:

gl(61) - g2 (#2 ) + (27 2 2 +7)Kf
=1(81,8,> (A.2)Ql(01,2) = 2(711 + 722 + 7)

* * 2
If Q1 (81,82 ) > Kf, then Q1 Kf, Q2 - 0, and - gl(O 1)Kf - 11Kf, so Af -

fl(81) - gl(61) - 2711Kf. If Q1(81,82) < 0, then Q1- 0, Q2 - Kf, and r -

g2(82)Kf - 722Kf, so Arf - f2(82) - g2(82) - 2722Kf. If 0 < Q1(81 ,82) < Kf,

then Q1 = Q1(818 2), and Q2 = Kf - QI' Substituting these values of Q1 and

Q2 into (A.1) and differentiating with respect to Kf gives:

(272 2+7)g1 (81) + 2(711+7)g2(02) - (4711722-72)Kf

AIwf = f3(81X,2) 2(711 + 722 + 7)

Hence we can write Arf compactly as eqn. (12).

In the case of output-specific capital, the profit function (A.1) must

be maximized subject to 0 < Q1 < K1, and 0 < Q2 < K2. By the Kuhn-Tucker

Theorem, there exist A1, A2 > 0 such that Q1 and Q2 satisfy the constraints,

and (i) 1 > gl(81) - 2711Q1 + Q2 and 2 > g2(82) + YQ* - 272 2 Q2; (ii)

Al(Kl - Q1) = 2(K2 Q2) = 0; (iii) Q[gl(0 1) - 2711Q+ 7Q2 - 1] Q2[

+ 7Q1 - 2722 Q2 - 2] = O. Note that 1 - A 1 and A2 - A 2. Because of

symmetry, we only consider Aw2.
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If Q2 < K2 Ar2 = 0. If Q2 = K2, there are three possibilities. (i)

If Q1 = K then the K-T conditions imply that gl(l1) - 2 11K1 + K2 > 0,

g2(82) + K1 - 2 2 2K2 > 0, and Ar2 = f21(02) = g2(02) + K1 - 2722K2. (ii)

If 0 < Q1 < K1, then the K-T conditions imply that gl(81) - 2711K1 + yK2 <

0, gl(l 1) + 7K2 > 0, g2(02) - 2 22K2 + [gl(1 l) + K2]/2 11l > 0, and A 2

f2 2(81,02) = g2(02) - 2722K2 + [gl(81) + K 2 ]/21 1 1. (iii) If Q1 O0, then

gl (01) + K2 < 0, g2 (92) - 272 2K2 > 0, and A 2 f2 3 (02) = g2 (02) - 2722K 2 -

If - < (substitute products), the K-T conditions become: (i) If Q 

K1, then f2 1 > f22, f2 1 > 0, and Ar2 = f2 1; (ii) if 0 < Q1 < K1, then f2 2

f21' f21 < f23 > 0, and Ar2 = f2 2; and (iii) if Q1 = 0, then f22 f

f23 > 0, and Ar2 = f23. If > 0 (complements), the conditions instead

become: (i) If Q1 = K1, then f21 < f22' f2 1 > 0, and Ar2 - f21; (ii) if 0 <

Q1 < K then f22 f2 1 f2 1 > f23 f2 2 > 0, and Ar2 - f22; and (iii) if Q1

0, then f22 < f23, f23 > 0, and A 2 = f23 . Hence we can write A 2 (and

Ar1) compactly as eqn. (14).

B. Differential Equations for AVi and AFi.

To derive eqn. (15) for AVi we value the marginal profit flow resulting

from an incremental unit of capital of type i. Consider a portfolio that is

long the rights to this profit flow (i.e., long AVi), short AVi 1 units of

1l (or equivalently, lAVi,l/xl units of xl, the asset or portfolio of

assets perfectly correlated with 1), and short AVi,2 units of 2 (or

equivalently, 82 AVi,2/x 2 units of x2). Because the expected rate of growth

of i is only ai - i - 6i, the short positions require a total payment of

611AVi, + 6202AVi,2 per unit time (or no rational investor would hold the

corresponding long positions). The value of this portfolio is - AVi-

1AVi 1 - 2AVi, 2, and its instantaneous return is:

d = dAVi - AVild01 - AVi,2dO 2 - 101AVi,ldt - 6202AVi, 2dt + Airi(01,0 2)dt

III
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By Ito's Lemma, dAV i = Vi ,ld91 + AVi, 2 d8 2 + (1/2)AVi ll(d61)2 +

(1/2)AVi,2 2 (d92)
2 + AVi, 12d9ld9 2 Substitute eqn. (11) for d 1 and d 2 and

observe that the return is riskless. Setting the return equal to rdt =

rAVidt - 1lVi,ldt - 2AVi, 2dt and rearranging yields eqn. (15).

Note that AVi must be the solution to (15) even if the unit of capital

did not exist or could not be included in a hedge portfolio. All that is

needed is an asset or dynamic portfolio of assets (xi) that replicates the

stochastic dynamics of i, i = 1,2. As Merton (1977) has shown, one can

replicate the value function with a portfolio consisting only of the assets

x1 and x2 and risk-free bonds, and since the value of this portfolio will

have the same dynamics as AVi, the solution to (15), Vi must be the value

function to avoid dominance.

Finally, note that eqn. (15) can be obtained by dynamic programming.

Consider the operating policy (produce a unit of output 1, produce a unit of

output 2, or produce nothing) that maximizes the value of 4' of the above

portfolio. Since Ari is the maximum flow of profit that can be obtained

from an incremental unit of capital of type i, the Bellman equation becomes:

r - Ai(01 ,82) - 6181AVi, - 6292AVVi 2 + (l/dt)EtdD (B.1)

i.e., the competitive return r has two components, the cash flow given by

the first three terms on the RHS of (B.1), and the expected rate of capital

gain. Expanding d - dAVi - Vild 1 - AVi,2dO2, substituting into (B.1)

and rearranging gives eqn. (15).

Eqn. (16) for AFi can be derived in the same way. Conditions (17a) and

(17b) define the boundary points 81 and 2, and (17c) and (17d) are the

continuity, or "smooth pasting" conditions. Other conditions will apply,

depending on the demand functions. For example, since 0 is an absorbing

barrier, the solution must satisfy AFi(0,0) max [0, AVi(0,0)-ki].
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Table 1 - Value of the Firm*

A. Flexible Capacity

K Vf(Kf:e) Ff(Kf;O)
Total
Value

Net
Value

12.5 6.5
37.5 25.5
75.0 57.0

12.0 7.8
37.5 27.4
76.1 60.0

14.3 11.1
40.0 31.1
78.7 63.7

28.9 26.3
53.6 46.4
92.5 79.5

B. Non-Flexible Capacity

Total Net
a logo K2 V2(K 1,K2; O) F2(K,K2;) F(K,K 2; ) Value Value

0 1.5 0.55 13.1 0.0 0.0 13.1 7.6
2.5 1.05 38.1 0.0 0.0 38.1 27.6
3.5 1.55 75.6 0.0 0.0 75.6 60.1

0.1 1.5 0.40 11.3 1.5 0.0 12.8 8.8
2.5 0.90 37.0 1.5 0.0 38.5 29.5
3.5 1.40 75.6 1.5 0.0 77.1 63.1

0.2 1.5 0.29 9.4 5.5 0.2 15.1 12.2
2.5 0.79 35.0 5.5 0.0 40.5 32.6
3.5 1.29 73.5 5.4 0.0 78.9 66.0

0.4 1.5 0.15 5.3 19.5 2.9 27.8 26.2
2.5 0.65 31.0 19.3 1.4 51.7 45.2
3.5 1.65 69.6 19.3 0.7 89.6 73.1

kf = 12, k = k2 = 10, r = .04, and 6 r - a2/2. All of the solutions are
symmetric around logo = 0.

**In all cases shown, K1 - 0, so V1(K*,K12;) - 0.

a

0

0.1

0.2

0.4

logo

1.5
2.5
3.5

1.5
2.5
3.5

1.5
2.5
3.5

1.5
2.5
3.5

0.50
1.00
1.50

0.35
0.84
1.34

0.27
0.74
1.25

0.22
0.60
1.08

12.5
37.5
75.0

10.5
36.0
74.6

9.2
34.6
73.3

10.1
33.7
72.5

0.0
0.0
0.0

1.5
1.5
1.5

5.1
5.4
5.4

18.8
19.9
20.0

-------- -- --- ---

III
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FOOTNOTES

1. When investment is irreversible and future demand or cost conditions
are uncertain, an investment expenditure involves the exercising, or
"killing," of an option - the option to productively invest at any time
in the future. One gives up the possibility of waiting for new
information that might affect the desirability or timing of the
expenditure; one cannot disinvest should market conditions change
adversely. As a result, the firm should invest in a unit of capital
only when its value exceeds its purchase and installation cost by an
amount equal to the value of keeping the option to invest alive - an
opportunity cost of investing. McDonald and Siegel (1986) have shown
that the value of this opportunity cost can be large, and investment
rules that ignore it may be grossly in error.

2. Most of the literature on irreversible investment examines the
decision to build a discrete project of some fixed size. See, for
example, Baldwin (1982), Brennan and Schwartz (1985), McDonald and
Siegel (1986), Majd and Pindyck (1987), and MacKie-Mason (1988).

3. This point and its implications are discussed in McDonald and Siegel
(1985).

4. Note that AV(K) is not the marginal value of capital, as the term is
used in marginal q theory. The marginal value of capital is the
present value of the expected flow of profits throughout the future
from whatever unit of capital is the marginal one, i.e.,

0
where is the discount rate. This depends on the firm's capital
stock, Kt, or its distribution at every future t, and its calculation
can be difficult. Note that AV(K), the PV of the expected flow of
incremental profits from the K+lst unit of capital, is independent of
how much capital the firm has in the future.

5. Pindyck (1988) solves this problem for a linear demand function and
Leontief production technology, and a geometric random walk.

6. For simplicity, we only allow the firm to invest in a single techno-
logy. In general a firm might install a mixture of output-specific and
flexible capital.

7. The spanning assumption will usually hold; most commodities are
traded, often on both spot and futures markets, and the prices of
manufactured goods are often correlated with the values of shares or
portfolios of shares. In some cases, however, the assumption will not
hold, e.g. a new product unrelated to any existing ones.

8. Suppose the capacity constraint is binding (Q1 + Q2 - Kf). Then the
marginal profit of flexible capital is fl when Q2 0 and Q1 - Kf, f2
when Q1 0 and Q2 - Kf, and f3 otherwise.

II
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9. The functions fil, fi2, and fi3 are the marginal profit of capital of
type i when Qi = Ki, for Qj = Kj, 0 < Qj < Kj, and Qj 0, j f i,
respectively.

10. From (12), Aft = max [0, fl(t f2(t), f3( )], here fl() = -logo
- 2bKf, f2(o) logo - 2bKf, and f3(o) -(4b - )Kf/(4b + 2) < 0.
Since f3(9) < 0 for all , this reduces to Arft max[ 0, fl(Ot),

f2(St)], or equivalently (21).

11. As - 0, ALrft - fl(St) Since St = B0exp[(a-a2/2)t + az(t)], and
fl(t)- - log9t - 2bKf,

AVf - 0(log + 2bKf)ertdt - 0 (a - 2 /2)te tdt.

Kf and the current value of are known, and are therefore discounted
at the risk-free rate r, but the last term, which is stochastic, is
discounted at the risk-adjusted rate . Also, a = p - 6.

12. The standard deviations of annual changes in the prices of commodities
such as oil, natural gas, copper, and aluminum are in the range of 20
to 50 percent. For manufactured goods the numbers are lower (based on
Producer Price Indices for 1948-87, they are 11 percent for cereal and
bakery goods, 3 percent for electrical machinery, and 5 percent for
photographic equipment). But variation in the sales of a product for
one company will be much larger than variations in price for the
entire industry. Thus a a of .2 or .4 could be considered "typical.'

13. Eq. (14) becomes Arlt = max [0, min (max [fll(Ot), f12(St)], f13(ot))],
where fll(o) = - logo - 2bK 1 + 7K2, f1 2(8) - - log - 2bK 1 + (log +
yK1)/2b, and f1 3(O) = - logo - 2bK1. This reduces to (28).

14. K1 and K2 are both positive only if = (K1, K2) - O(K1 , K). K1 0

if - (0, K2) > (0, K2), and K2 0 if - (K, 0) < (K1, 0).
2 2 - 1 1~~~



FIGURE I
VALUE OFAN INCREMENTAL UNIT OF FLEXIBLE
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FIGURE 2
OPTIMAL INVESTMENT RULE - FLEXIBLE CAPACITY

(Kf=.75, kf 12, .2)
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FIGURE 3
VALUE OFAN INCREMENTAL UNIT OF OUTPUT-SPECIFIC CAPACITY

(K I =K 2 x . 7 5 , . O, .2 .4)
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FIGURE 4
OPTIMAL INVESTMENT RULE -NONFLEXIBLE CAPACITY

(K- 1 K2 =.75, kk 2xIO, o.2 )
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FIGURE 5
RATIO OF NET VALUES VS RATIO OF CAPITAL COSTS

(log 8=2.5)
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