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Abstract

This thesis demonstrates that acoustic variability, acoustic measurement error, and phoneme
classification error can be interpreted as predictable entailments of articulatory variability.
Speech production theory is tapped to explain sources of variability in the acoustic signal,
including random variation in a turbulent spectrum, increased losses at the glottis, and
coloration of the spectrum by subglottal and back cavity resonances. Measurements of
the burst front cavity resonance, and of formant frequencies, which are defined as the
eigenfrequencies of the vocal tract, are developed using both knowledge-based and HMM
design methods, and are evaluated using the tools of acoustic phonetics and of statistical
speech classification.

The error or uncertainty of both rule-based and HMM algorithms is evaluated by com-
parison to the measurements of human judges on a test set. Measurement error of the
rule-based algorithm is evaluated using aggregate statistical models, including explicit mod-
els of outliers and heteroskedasticity, and a non-parametric model of the effect on error of
phonetic context. Measurement uncertainty of the HMM formant tracker is calculated by
the HMM itself during the measurement process. The uncertainty models generated by the
HMM formant tracker are compared to formants transcribed by human judges, and shown
to provide imperfect but generally acceptable predictions of the measurement error.

Acoustic variability and acoustic measurement error are evaluated using the tools of
phonetic classification. Context-independent linear discriminant classification of stop place,
using tokens from the TIMIT multi-speaker database, is shown to be 83% correct using
manual formant and burst spectral measurements, but only 76% correct using automatic
measurements. It is demonstrated that the difference between the classification of man-
ual and automatic measurements can be accurately predicted using a heteroskedastic error
model. Context-dependent classification experiments using both rule-based and HMM for-
mant measurements result in 83-84% correct classification over the TIMIT TEST database.
The pattern of classification errors as a function of phonetic context is shown to be similar
to the pattern of errors of human listeners, indicating that the types of acoustic variability
which confuse the classifier may be similar to the types of variability which confuse human
listeners.

Thesis Supervisor: Kenneth N. Stevens
Title: Clarence J. LeBel Professor of Electrical Engineering
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Chapter 1

Introduction: The Acoustic
Correlates of Place

The sounds of English can be classified in terms of the quantized rotations, translations,
and stiffnesses of about six articulators: the lips, tongue blade, tongue body, soft palate,
pharynx, and vocal folds (Chomsky and Halle, 1968). Every phonetic distinction which
enters the acoustic signal is placed there by the actions of these six or so articulators.
It follows that a computer which is capable of tracking the salient changes in these six
articulators over time should be capable of recognizing most of the linguistic content of an
utterance.

Not all changes in the vocal tract shape, however, are linguistically salient. A listener
(who can’t see the speaker) has no information about tongue and lip positions except what
he can get from the formant frequencies and amplitudes during a vowel or glide, or the front
cavity resonances during a stop release or fricative. Since this is the only information about
the tongue and lips available to the listener, it follows, again, that a computer capable of
tracking the formants and front cavity resonances over time should be capable of recognizing
most of the linguistic information carried by the tongue and lips, including consonant place
and vowel quality.

The prospect of a compact. complete representation of the linguistic information in the
signal prompted the development. in the 1970s and 1980s, of several speech recognizers
based partly on formant analysis (see e.g. Klatt, 1977). All of these recognizers failed,
in part, for the same reason: the formant tracking algorithms made mistakes, and the
higher-level knowledge sources were unable to recover from the low-level mistakes. More
recently, several phonetic studies have explored the possibility of using formant tracks to
discriminate consonant place (Kewley-Port, 1982, Sussman et al., 1991) and vowel quality
(Hillenbrand et al., 1995). These phonetic studies almost without exception rely on human
judges to measure the formant frequencies, because automatic formant tracking algorithms
are considered unreliable. Both the early recognition studies and the more recent phonetic
studies assume that formant measurements must be perfect in order to be useful. Since the
formant measurements produced by a tracking algorithm are never perfect, the algorithms
have been judged to be useless.

This thesis proposes the use of imperfect automatic formant and front cavity reso-
nance measurements as a tool in the analysis of phonetic variability. Phonetic classification
(specifically, classification of consonant place) is used in this thesis as an experimental tool
for analysis of the variability in automatic formant and burst spectral measurements, but
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Figure 1-1: F2 onset (first measurable F2) as a function of F2 target (40ms after consonant
release), measured by human judges in 131 stop tokens from TIMIT.

phonetic classification is not the primary goal of this thesis. Rather, this thesis seeks to
demonstrate that acoustic variability. acoustic measurement error, and phoneme classifica-
tion error can all be interpreted as the product of articulatory variability, and that the most
useful analysis of any one of these manifestations of speech variability is often an analysis
which considers all four.

This thesis seeks to develop methods of analysis which draw on the accumulated knowl-
edge of both acoustic phonetics and speech recognition. First, a series of speech production
models are drawn from the field of acoustic phonetics, which describe in detail the articula-
tory sources of all of the types of acoustic variability considered later in the thesis. Second,
the field of speech recognition contributes several useful statistical models, including mix-
ture Gaussian error models and a hidden Markov formant tracking algorithm. Finally. the
production and the statistical models are used jointly, together with a few results from
speech perception studies, to study and interpret the results of three phoneme classification
experiments,

1.1 Measurements Used in this Thesis

Before we try to model measurement error, we first must decide what to measure. Following
the philosophy set out above, we will try to measure formant and front cavity resonance
information at consonant releases. This section will explore what that might mean in a
little more detail.

Sussman et al. (1991) have demonstrated discrimination of consonant place on the basis
of “locus equations,” that is, by modeling the onset frequency of the second formant (F2) as
a linear function of its frequency at the center of the vowel. Figure 1-1 is a plot of onset F2
versus vowel center F2, measured by human judges on 66 voiced and 65 unvoiced stop-vowel
syllables from the TIMIT database (Zue et al., 1990). (The labeling of these 131 syllables
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Figure 1-2: I3 onset first measurable F3) as a function of F3 target (40ms after consonant
release), measured by human judges in 131 stop tokens from the “test” subdirectory of
TINIT.

will be described in more detail in chapter 3 of this thesis). This plot is not nearly as clean
as the plots in Sussman’s study, but it includes a lot of variation specifically excluded in
that article: these tokens are extracted from a variety of word contexts, and are produced
by more than 100 different speakers, with no preliminary averaging of tokens. Despite the
extra variability, there is potentially useful information in this plot. Labial and velar onset
frequencies seem to rise in parallel as a function of the vowel target, while alveolar onsets
are entirely confined between 1500 and 2500 Hertz {except one /duh/ ! with an onset at
1200 Hertz). Labial onsets, in fact, are mostly separate from the other two clouds, with the
lowest onset frequencies for almost every possible target.

Figure 1-2 is a plot of F3 onset frequency versus vowel center 3, for the same 131 stop
releases. The three places of articulation are not as well separated in this plot as they were
in figure 1-1, but there is at least a tendency for the F3 onset of labial stops to be lower.
for each F3 target, than the onset frequencies of alveolar and velar stops. Perhaps if we
combine information from figures 1-1 and 1-2, we can do a little better at separating out
the labial stops.

Figure 1-3 displays information from the two previous plots, compressed into two di-
mensions using linear discriminant analysis. Linear discriminant analysis (LDA) is generally
considered a bad algorithm for phonetic classification, because it ignores all information ex-
cept the means of each cloud, and the total average covariance. One of the main points of
Sussman'’s study, in particular, was that inter-phoneme differences in covariance, which are
not modeled by LDA, are important in classifying stops. Despite the obvious drawbacks of
LDA, it will be used extensively in this thesis for simple, preliminary classification tasks.

'Phonetic quality is represented, in this thesis, using TIMIT notation, For example, /d/ is the voiced
alveolar stop release, and /uh/ is the lax high back vowel.
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Figure 1-3: Composite F2 and F3 measurements, designed to differentiate lip and tongue
places of articulation.

Reasons for this choice will be discussed in section 1.5.

In figure 1-3, the abscissa is an LDA composite of F2 measures, and the ordinate is an
LDA composite of F3 measures. Both composite measurements were designed to separate
the data into two clouds, one cluud consisting of labial stops, the other consisting of alveolar
and velar stops (which we can collectively refer to as “lingual” stops). In this figure, by
combining the ¥2 and F3 locus plots, we have vastly improved the separation of labial and
lingual stops. In fact, figure 1-3 may represent the best labial/lingual separation we can get
(on this data set) using measurements of F2 and F3. It is time to add another measurement.

Blumstein and Stevens (1979) suggest a classification scheme which takes advantage of
the fact that alveolar and velar stops are released into a resonant front cavity, while the
turbulent burst of a labial stop is released directly into open space. The resonant shaping
of an alveolar or velar stop can add 10 to 20 dB to its amplitude, making alveolar and velar
stops typically more intense than labials. Figure 1-4 plots the amplitude of the largest peak
in the F2-FG range of the burst spectrum, as measured by human judges on the same 131
stops, against an LDA composite of the four formant measurements introduced previously.
Amplitudes are measured in decibels, with reference to an arbitrary constant. TIMIT
recording levels are normalized (Zue et al., 1990); observations by the judges suggest that
variation in the recording level probably accounts for no more than 6-10dB of the range of
variability in each cloud.

The separation in figure 1-4 is quite good. A reasonable curved boundary between the
labial and lingual clouds would result in six or seven errors, or an error rate of about 5%. A
linear boundary, calculated, for example, using LDA, would result in at least eight errors.

Now that we’ve identified most of the labial stops, we need measurements to separate
the velar and alveolar stops. Figure 1-5 shows the front cavity resonance, at release of the
alveolar and velar stops from the previous figures, plotted as a function of F2 onset. The
separation is almost total: the front cavity resonance of velar stops only rises above 2500
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Figure 1-4: Amplitude of the highest peak in the F2-F6 range of the burst spectrum, plotted
against a composite formant measurement designed to separate lip and tongue stops. 131
tokens, measured by human judges, from the “test” subdirectory of TIMIT.
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Hertz in front vowel context, that is, when the F2 onset is high, and there is only one
alveolar token with a front cavity resonance below 3000 Hertz. In fact, the phonemically
alveolar token at 2000 Hertz is not phonetically alveolar: the preceding vowel, an /er/, has
pulled the tongue blade back to a retroflex place of articulation. A linear boundary between
the alveolar and velar stops in this figure results in complete separation of alveolar and velar
tokens: the retroflex alveolar should perhaps receive special handling, because of the novel
place of articulation. 2

To summarize: with only four formant measurements and two burst spectral measure-
ments, we have succeeded in separating all but 6 or 7 out of 131 manually labeled utterances.
As a classification argument, of course, this reasoning is somewhat circular. First, we are
testing on the training data. Chapter 5 will demonstrate that a simple pairwise LDA
classifier, trained on a separate training set, classifies this data with 89% accuracy.

Second, the argument in this section is somewhat circular because the human judges,
who had access to the orthography, may have introduced some bias into the measurements.
The question of measurement bias is an important one, which is difficult to avoid when
asking human transcribers to make complex measurements. The only way to directly ad-
dress the question of measurement bias is by coding the measurement procedures into an
algorithm. and testing for differences between the algorithm and the measurements it is
supposed to imitate. If human measurements can be used to classify speech, and if al-
gorithms can imitate human measurements, then it should be possible to classify speech
automatically using the algorithms. The problem of classifving speech using human mea-
surements has been addressed here briefly: the problem of writing algorithms to imitate
human measurements will be the subject of this thesis.

1.2 Previous Studies: Automatic Formant Tracking

Many high quality automatic formant trackers have been developed over the years. This
section will discuss only the two which have contributed most directly to the work in this
thesis: an LPC-based tracker, which was used to provide inputs for the rule-based system
described in chapter 3 of this thesis, and an earlier hidden Markov model (HMNMI) tracker.
the design of which provided much of the foundation for the tracker developed in chapter 4.
This section will discuss these two formant trackers in chronological order, beginning with
the HXINI tracker.

1.2.1 An HMM formant model

One of the first formant trackers to make use of a global dynamic programming search
algorithm was the HMM formant tracker developed by Kopec (1986).

In Kopec’s HMM formant tracker, the formant frequencies are viewed as hidden “states”
of the speech production mechanism, which condition the production of output spectra.
The search space consists of the set of possible formant frequency combinations, simplified
by either vector or scalar quantization, in order to reduce the computational load. The
transition probabilities are trained on data, and are generally monotonically decreasing as
a function of the absolute change in frequency.

2Stops with retroflex and lateral right contexts were omitted from this database, specifically to avoid
confounding alveolar, retroflex, and lateral places of articulation. The retroflex stop shown in figure 1-5
assimilated retroflex articulation from its left context, which was not examined prior to analysis.



Kopec's tracker uses a discrete output model. The spectrum of a speech frame being
examined is first vector quantized using an LPC distance metric, and the local probability
of affiliation with each candidate formant is determined by table lookup. These local output
probabilities are then combined with the transition probabilities using the forward-backward
algorithm, and the resulting a posteriori formant probability distribution is used to calculate
the conditional expected value of the formant.

The formant frequencies generated by Kopec’s algorithm were tested as additional fea-
tures in an HMM digit recognizer with explicit duration models, whose other acoustic
features included the LPC spectrum, and the low-pass and total spectral energies (Bush
and Kopec, 1987). As with all previous attempts to use formants in speech recognition,
there was no attempt to explicitly model the measurement uncertainty of the formants,
and the recognition algorithm may therefore have suffered from formant tracking errors.
Since the recognition algorithm was given the same LPC spectra from which the formant
frequencies were calculated, the authors argue, the possibly erroneous formant frequencies
were effectively a corrupted version of information already available to the recognizer. Even
so, the first derivative of F'2 was found to increase digit recognition scores. First derivatives
of F1 and F3 decreased recognition scores very slightly, while static information about any
formant significantly decreased recognition scores.

1.2.2 Finding the roots of the LPC polynomial

Linear predictive coding (LPC) was first proposed as an algorithm for efficiently finding the
resonant frequencies of the vocal tract (Atal and Hanauer, 1971), and is still used for that
purpose. The formant tracker developed by Talkin (1987) and distributed by Entropic Signal
Processing (1993) consists of two stages: a signal processing stage, which generates formant
candidates by solving for the roots of an LPC polynomial, and a dynamic programming
stage, which finds the most likely sequence of formants from the set proposed by LPC.

In his 1987 presentation, Talkin suggests several technical guidelines for LPC analysis.
Perhaps the most interesting of these is his discussion of window choice. Talkin suggests
that a window with high spectral sidelobes can significantly degrade a spectrum with a
large dynamic range. The formant tracker distributed by Entropics uses, by default, a
49ms cosine-to-the-fourth (cos**4) window. This window has a temporal and frequency
resolution similar to that of a 16ms rectangular window or 32ms Hanning window, but has
much lower spectral sidelobes than either.

In the second stage of the formant tracking algorithm, all possible mappings between
the LPC roots and the desired formants are enumerated, and a Viterbi algorithm is used
to find the optimum alignment. Local formant assignment costs are proportional to the
bandwidth of the LPC root, and to the absolute deviation between the root frequency
and an average formant value. Transition costs are proportional to the change in formant
frequency, divided by an estimate of overall spectral change.

1.3 Previous Studies: Acoustic Cues for Place Classification

In deciding what to measure, this thesis will depend on several previous acoustic phonetic
studies which have explored the acoustic correlates of consonant place. Most of the acous-
tic correlates of stop consonant place proposed in the literature fall into three categories:
descriptions of the spectral shape of the onset, measurements of formant motion, and time-
frequency spectral plots, commonly referred to as dynamic spectra. Of the various acoustic



correlates of place proposed for nasal consonants, formant and dynamic spectral measure-
ments are the only acoustic features which have been proven to be useful for classification.

1.3.1 Onset spectral measurements for classification

One of the first studies investigating the use of onset spectra to classify the place of stop
consonants was published by Halle, Hughes, and Radley in 1957. In this study, the authors
gated twenty milliseconds from the releases of 99 stops (11 contexts, 3 places of articulation,
3 speakers). The authors noted first that velar stops in front vowel contexts were “acute,”
with strong peaks above 2000 Hertz, while velar stops in back vowel context were “grave,”
with spectral peaks at much lower frequencies. The authors therefore adopted a two-tiered
classification system. A stop was first classified as either acute or grave, on the basis of a
ratio of high-frequency to total spectral energy. Acute stops were then judged to be velar if
most of the energy was concentrated between 2000 and 4000 Hertz, and alveolar otherwise.
Grave stops were classified as labial or velar based on measurements of the peak frequency.
and of the dominance of the largest spectral peak. These measures resulted in about 79%
correct classification of place.

Blumstein and Stevens (1979) classified the onset spectra of stops (band-limited to 5000
Hertz) by fitting them to fixed templates. The templates were developed in part based on
speech production theory, and in part based on the analysis of 30 training tokens produced
by two speakers. The templates were then tested using pre-emphasized LPC spectra with
a 26 millisecond window, band-limited at 5000 Hertz. from the onsets of 450 stops uttered
by six speakers. The labial template was characterized as “diffuse falling,” and required
the largest high frequency peak and the largest low frequency peak to fall within 10dB
of each other, with variability allowed below about 1500 Hertz. The alveolar template
was characterized as “diffuse rising,” and required the largest two spectral peaks, with the
exception of a possible F2 peak near 1800 Hertz. to fit within a pair of reference lines
separated by 10dB and rising at about 10dB per kiloHertz. Finally, the velar template was
characterized as “compact,” and effectively required a single peak between 1200 and 3500
Hertz to be about 10dB larger than all other peaks in this range. Using these templates,
the authors were able to classify the test tokens with about 85% accuracy.

1.3.2 Formant frequency information

It has been known, since the perceptual work of Delattre, Liberman, and Cooper in 1955,
that formant frequencies may signal the place of a stop, but the degree to which formant
frequencies are actually used for this purpose in naturally occurring consonants has been
the subject of considerable controversy.

In 1961, Lehiste and Peterson measured formant transitions at the release of 1263 conso-
nants (one speaker), and found so much overlap between the different consonants that they
declared formants to be useless for the classification of naturally occurring stops. Their
conclusion was quantified in 1982 by Kewley-Port, who measured, by hand, three-point
approximations to the formant trajectories in 120 test tokens uttered by a single speaker.
She found that the onset frequencies of F2 and F3, taken together, correctly classified 97%
of the tokens given a known vowel context (and given a classifier trained on the test data),
but stop place identification independent of vowel context was only 68% correct.

Sussman, McCaffrey, and Matthews (1991) modeled vowel-dependent formant coarticu-
lation as a simple linear relationship between the formant at voice onset and the formant at



vowel center. They found that the degree of coarticulation — the correlation between these
two measures — varied significantly depending on the place of articulation, and that correct
modeling of this correlation was essential to correct classification. They used a quadratic
discriminant to classify the average of five repetitions of each of 600 test syllables (3 stops,
10 vowels, 20 speakers), and achieved 77% correct classification of these average utterances.

1.3.3 Dynamic spectral information

Most recent classification studies have used dynamic spectral information as input, typically
computed as a simplification of periodic spectra in the first 40 to 70 milliseconds after
consonant release. Kewley-Port (1983) classified the three voiced stops with 88% accuracy
by using a template method, based partially on the templates of Blumstein and Stevens, with
40 millisecond sequences of LPC spectra (step 3ms) as input. Waibel et al. (1989) used
highly-trained speaker-dependent neural networks (three speakers; training and test sets
each contained 2620 tokens per speaker), with 150 millisecond mel-frequency spectrograms
as input (step 10ms), to classify the three voiced stops with 98.5% accuracy.

In a study comparing several acoustic feature sets, Nossair and Zahorian (1991) realized
their best classification performance using a 60 millisecond smoothed cepstrogram (step
10ms) on training and test databases which each consisted of 1260 tokens from 15 speakers
(5 male, 5 female, 5 children). The first seven cepstral coefficients (including the spectral
mean) were temporally smoothed using a third-order discrete cosine representation, and
then modeled using a Gaussian classifier. The six English stops were classified with 94%
accuracy; place classification given the voicing of a stop was also roughly 94% correct.

Nossair and Zahorian compared their results with a dynamic spectral representation,
described above, to the results achieved with a static onset cepstrum, and with formant
frequency and amplitude tracks. The static onset cepstrum was calculated with a 26ms
window (meant to imitate the window used by Blumstein and Stevens) and bilinear fre-
quency warping, and yielded 82% correct place classification. Formant frequencies and
amplitudes were calculated using an automatic formant tracker; the first three formant
frequencies alone vielded 63-70% correct classification. while the combination of formant
frequencies and amplitudes yielded 80-85% correct classification.

1.3.4 Classification using TIMIT

All of the published studies reviewed above report classification scores using isolated or
stressed monosyllables. In contrast, the speech heard by humans in normal conversation
contains stop releases in a wide variety of phonetic and prosodic contexts, and this added
variability presumably makes identification of the place of a stop somewhat more difficult.

All of the experiments reported in this thesis rely on data from the TIMIT database
(Zue et al., 1990), a national standard for the development of phonetic classifiers. TIMIT
consists of transcribed sentences read by 630 speakers. Stop release tokens in TIMIT occur
in a wide variety of phonetic and prosodic contexts.

One of the first classification studies using data extracted from TIMIT was published
by Lamel (1988), who classified stop consonants using a rule-based classification system.
Based on manual transcriptions of formant frequency, burst information, and voice onset
time, Lamel reported 90% correct classification of stop consonant place.

Most state of the art classifiers depend on a sort of dynamic spectral representation,
usually consisting of mel frequency cepstral coefficients (MFCCs) and their temporal deriva-



Classified As:

Place | of Tokens || labial alveolar velar
labial 530 90% 6 4
alveolar 652 3 91 6
velar | 303 2 6 92

Table 1.1: Stop place classification scores derived from the data of Chun (1996). The
classifier is trained using the TIMIT TRAIN database (3696 sentences), and classification
scores are reported for the TIMIT DEV database (400 sentences).

tives. Chun (1996) reported classification results using 36 time-averaged MFCCs (12 coeffi-
cients x 3 frames), 24 MFCC derivatives (12 x 2), and the logarithm of segment duration.
Results for the classification of place of unvoiced and voiced stops have been extracted from
his data, and are shown in table 1.1; overall classification of stop place is 91% correct.

1.4 Discussion: Acoustic Correlates of Place

The available studies show remarkable agreement on the sufficiency for place classification of
the three reviewed types of acoustic correlates. Burst spectral cues are apparently sufficient
to classify place with 80-85% accuracy. Formant frequencies, taken alone, are sufficient to
classify place with about 65-70% accuracy (Sussman et al. apparently achieved higher rates
by averaging out some of the relevant variability). Dynamic spectral cues are sufficient to
classifv place with greater than 90% accuracy across speakers, and with 98.5% accuracy
using Waibel’s highly trained speaker-dependent model.

This thesis proposes to study formant frequencies and burst spectral cues for use in the
cleosification of consonant place. Our experiments in section 1.1, and in chapter 3, support
the conclusions of Lamel (1988), who found that a combination of formant frequencies and
burst spectral information measured by human judges can be used to classify the place of
TIMIT stop consonants with about 90% accuracy. Since the best reported classification of
stop place in TIMIT is about 91% correct (Chun, 1996), we can conclude that burst spectral
measurements and formant frequencies measured by human judges are sufficient to classifv
stop place with an accuracy roughly equal to the state of the art.

Duplicating the measurements of human judges automatically, however, is difficult. Au-
tomatic measurements of formant frequencies and burst spectral measurements do not seem
to have been used together for classification in the past, but Nossair and Zahorian’s (1991)
automatic measurements of formant frequency and amplitude provided significantly worse
classification than a periodic cepstral measurement. Formant and burst spectral measure-
ments, it seems, suffer degradation caused by acoustic measurement error, while a dynamic
cepstral representation does not. If the primary goal of this thesis were classification, there-
fore, it would be logical to begin with a state of the art dynamic cepstral representation.

In this thesis, phonetic classification is not the primary goal. Instead, classification is
used here as a tool for the analysis of speech production variability, and the primary goal
is an integrated analysis of variability in production, acoustics, and phonetic classification.
The goal of an integrated analysis is most easily reached if the acoustic measurements reflect
known relationships between articulation and acoustics.

Formant frequencies, and the front cavity resonance of a burst spectrum, can be defined
in either articulatory or acoustic terms. In this thesis, both measurements are defined in



articulatory terms (as the eigenfrequencies of the vocal tract, and of specified vocal tract
cavities, respectively), but the acoustic definition (as a particular set of ordered spectral
peaks) is closely related, and often results in almost identical parameter values. Since
formant frequencies and the front cavity resonance can be defined in either articulatory or
acoustic terms, they are not strictly either articulatory or acoustic measurements. Rather,
the measurements of formants and front cavity resonance at a particular stop release can be
defined as a physical instantiation of aspects of the theory of acoustic speech production,
effectively serving as a bridge between uniquely articulatory and uniquely acoustic measures.

As a bridge between articulation and acoustics, formant frequencies and the burst front
cavity resonance are uniquely suited for the integrated analysis of variability proposed in
this thesis. All error analysis and classification experiments in this thesis are therefore based
on acoustic measurements of formant frequency and burst spectral characteristics.

1.5 Discussion: Classification as a Tool for the Analysis of
Variability

The goal of this thesis is an analysis of acoustic speech variability in terms of the known
relationships between articulation and acoustics. In order to make the results as accessible
as possible to other researchers, the experiments in this thesis use data from a large speech
database (TIMIT) which is available to all interested researchers from the Linguistic Data
Consortium, a broad consortium of companies, universities, and government agencies based
at the University of Pennsylvania. The choice of a purely acoustic database, however, limits
the degree to which articulatory explanations of variability can be confirmed using statistical
methods.

Two types of variability are the focus of most of the analysis in this thesis. First,
measurement errors are analyzed extensively: production models are developed to analyze
the sources of measurement error, and statistical tools are used to describe the distribution
and context dependence of error. Second, variability in formant frequencies and burst
spectral measurements is analyzed as a function of consonant place, and of phonetic context.

Acoustic measurement variability as a function of phonetic category is generally ana-
Ivzed, in the literature, using one of two types of statistical tool. Analysis of variance (and
other similar tools) seeks to determine whether the difference between categories, compared
to the variation within a category, is too large to have been produced by random variation.
Classification analysis, on the other hand, seeks to determine whether there is any overlap
between categories, that is, whether the difference between categories is sufficiently large to
completely separate the categories.

Variation of acoustic measures as a function of consonant place, and the interaction
between measurement error and consonant place, are primarily analyzed in this thesis using
the tools of phonetic classification. Classification analysis is chosen as a more useful tool
than analysis of variance for three reasons.

First, classification analysis is, in a sense, less forgiving than analysis of variance. Anal-
ysis of variance seeks only to find out whether the phonemes are separated; classification
analysis attempts to find measurements which separate them with no overlap.

Second, classification analysis using formant and burst spectral measurements can be
easily compared to results published in the literature. Thus, for example, the effect of mea-
surement error is characterized in chapter 5 of this thesis as a drop in a phonetic classification
score, from 89% using manual measurements, to 76% using automatic measurements. Both
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numbers can be compared, with reasonable confidence that the comparison is warranted,
to the classification scores obtained by other researchers using the TIMIT database.

Third, the separation of consonant place using classification analysis can be compared to
the ability of human listeners to discriminate stops. Variability in the acoustic production of
speech sounds is easily measured, but it is often more difficult to characterize the relationship
between acoustic variability and perceptual errors. Chapter 5 will compare the error pattern
of a phonetic classifier, as a function of phonetic context, to the error patterns of human
listeners. This analysis is intended to suggest that the sources of perceptual error may be
modeled by analyzing the sources of classification error, although any more rigorous pursuit
of this suggestion is beyond the scope of this thesis.

For the reasons given above, phonetic classification is used extensively in this thesis as
a tool for the analysis of speech production variability. Before proceeding, however, we still
need to discuss the choice of a classifier structure.

In this thesis, acoustic measurement error and phonetic classification error are treated
as manifestations of acoustic variability. It turns out that the relationship between classifi-
cation error and acoustic variability can be modeled very precisely by feeding a parametric
model of the acoustic measurement distribution to the classification rules of a parametric
classifier. This method for modeling classification error will be described in section 3.1.

Of the available parametric classifiers, a classifier based on linear discriminant analysis
(LDA) is perhaps the easiest to visualize, and to analyze numerically. In an LDA classifier.
a set of acoustic measurements is first weighted and summed to produce a one or two dimen-
sional linear discriminant representation, and then the linear discriminant representation
is classified using a fixed classification threshold. The linear discriminant representation of
the data can be plotted for visual inspection (as in section 1.1), and the probability of a
measurement crossing the threshold and being misclassified can be expressed in closed form
as the integral of the acoustic measurement distribution (as shown in section 5.1).

Linear discriminant analysis is not the best structure for phonetic classification, as
discussed in section 1.1, but it lends itself well to an analysis of classification error as a
function of acoustic variability. In this thesis, classification is a tool, used in the pursuit
of better models of variability. Since LDA classification lends itself to the more important
analysis goals, it is used in most of the reported classification experiments in this thesis.

1.6 Thesis Outline

The goal of this thesis is an integrated analysis of speech production variability, in which the
descriptive power of statistical models is combined with the explanatory power of speech
production models. The organization of the thesis is designed to build the reader’s under-
standing of speech variability in three stages. First, chapter 2 describes variability in models
of speech production, and the link between articulatory and acoustic variability. Second.
chapters 3 and 4 describe the link between acoustic variability and acoustic measurement
error. Finally, chapter 5 describes the dependence of classification error on acoustic mea-
surement error, and chapters 5 and 6 discuss the extent to which the relationship between
acoustic variability and phonetic classification can be used as a model of the relationship
between variability and human speech perception.

Chapter 2 demonstrates that models of speech production can be used to explain, and
under certain circumstances to predict, characteristics of acoustic variability. A model of
turbulence noise is developed to show that in some cases, the form of variability in the speech



spectrum can be derived entirely from physical principles, without considering variations in
speaker anatomy or speaking style. The more common case, in which anatomy and speaking
style play an important role in the form of variability, is exemplified by a discussion of the
transfer function amplitudes of front and back cavity resonances during frication. In this
case, it is argued that physical principles can set useful limits on the range of variability,
but that more detailed knowledge of the form of variability must be gathered empirically.
A method for the empirical study of variability is proposed, in which variability in acoustic
phonetic measurements is described using statistical models, and explained using speech
production models.

Chapters 3 and 4 describe procedures for combining production knowledge and empirical
observation in the design of acoustic measurement algorithms. In chapter 3, a knowledge
engineering approach is attempted, in which a trained phonetician designs rule-based algo-
rithms to imitate his own formant and burst spectral measurements on a training corpus.
The size and frequency of measurement errors produced by the finished algorithms are then
evaluated on an independent test set, and aggregate statistical models of the distribution
of error are developed. Finally, the usefulness of aggregate models of measurement error in
studies of speech production variability is discussed. It is argued that many acoustic mea-
surement errors can be predicted by the presence of ambiguities in the acoustic spectrum,
that this information is useful, and that the aggregate error models developed in chapter 3
ignore this information.

Chapter 4 demonstrates that the uncertainty in a given formant measurement can be
predicted from the presence of measurable ambiguities in the acoustic spectrum. A novel
procedure for combining production knowledge and empirical observation is suggested, in
which production knowledge guides the design of an HMM formant tracking algorithm,
which is then trained on empirical data. It is shown that in formant tracking applications,
an HMM formant tracker is able to generate a poster.or: estimates of the measurement
uncertainty for each formant, based on the information about acoustic cues contained in
the model structure and parameters. The a posteriori uncertainty estimates generated by
the proposed formant tracker are evaluated by comparison to the known measurements of
two human judges on a test set.

Finally, chapter 5 describes several phonetic classification experiments which explore
the relationships among acoustic variability, acoustic measurement error, and classification
error. First, linear discriminant classification of place is tested using both manual and
automatic acoustic measurements. The difference between the performance using manual
measurements and the performance using automatic measurements is taken to be the effect
of measurement error, and it is shown that the difference in classification performance is
well predicted by the aggregate error models of chapter 3. Second, both rule-based and
HMM measurement algorithms are used in context-dependent classification of place over a
large database. While the total classification score is somewhat disappointing, the pattern
of errors as a function of phonetic context is shown to be similar to the pattern of errors
of human listeners, indicating that the kinds of acoustic variability which most confuse the
classifiers may be the same kinds of variability which confuse human listeners.

Chapter 6 summarizes conclusions, and suggests future work.



Chapter 2

Speech Production Theory

The speech production mechanism can be modeled as the filtering of a variety of high-
impedance, nonlinear sources through two linear filters (Fant, 1960). The first filter, T'(f),
represents the vocal tract transfer function from a source flow S(f) to the volume velocity
at the mouth,

Un(f) =T(F)S(f) (2.1)

The second filter is the radiation characteristic R(f), which models the conversion from
mouth flow to radiated sound pressure,

Pr(f) = R(f)(/vm(f) (2.2)

In this thesis, the radiation characteristic is assumed, throughout, to be the characteristic
of a simple point source,
R(f) = j2L e rrie (2.3)
2r
where p is the density of air (approximately 0.00112g/cm?®), and r is the distance between
the mouth and the microphone.

This chapter covers variability in the source spectrum S(f), variability in the transfer
function T(f), and finally, predicted correlations between T(f) and the place of articulation
of a consonant. The first two sections each conclude with a discussion of measurement issues
stemming from, respectively, source variability and transfer function variability; when work
in these sections is believed to be original, it is identified as such. Readers who are not
already familiar with speech production theory may find this review overly concise, and
may wish to refer to the more thorough presentations in Flanagan (1972) or Stevens (in
preparation).

Although this chapter is intended to serve as a review of speech production theory, it is
also intended to contribute to our understanding of speech variability. This chapter begins
by reviewing standard acoustic phonetic models of average speech production, of the type
which are often used in speech analysis and speech synthesis. After establishing models
of average production, however, some of the sections in this chapter proceed to develop
acoustic phonetic models of the range, or even of the probability distribution, of speech
production variability. Some of these models will be used in chapter 3 as background for
the design of acoustic correlate measurements, but all of them are also intended to serve
as examples in support of one of the hypotheses central to this thesis. The discussions of
variability in this chapter are intended to support the hypothesis that speech production
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Figure 2-1: During the release of an unvoiced stop, four distinct acoustic sources are ac-
tivated. The source contributions overlap in time; for example, ringing of the transient
continues past the onset of frication.

models, which have been used successfully in the past to explain sample acoustic correlate
measurements, are also helpful in explaining the aggregate distribution of acoustic correlate
variability.

2.1 Speech Sources

During the release of a stop, three or four distinct acoustic sources are activated, in the
sequence shown in figure 2-1, with some temporal overlap between sources. First, when the
oral constriction is released. the pressure drop across the constriction is equalized with an
audible air flow transient, which may excite the transfer function with sufficient strength to
ring audibly for several milliseconds. During and after the ringing of the transient, turbulent
flow develops in the constriction. generating frication sources at the constriction for 5-20
milliseconds or more.

As pressure drops in the vocal tract, frication ceases, and the source of excitation shifts to
the glottis. If the stop is unvoiced and syllable initial, the vocal folds are actively held open
for 40-100 milliseconds after release, during which time the turbulent glottal jet generates
audible aspiration noise. If the stop is voiced, on the other hand, regular sonorant voicing
begins as soon as the oral pressure is low enough. and usually within 25 milliseconds after
release.

This section reviews the spectral shapes of transient, turbulent, and voicing sources.

2.1.1 Transient source

When the oral constriction is first opened during release of a stop, the pressure drop across
the constriction is equalized with an audible air flow transient.

Given an adequate model of the variable resistor in figure 2-2, it is possible to ap-
ply standard transmission line theory to predict the shape of the acoustic transient. The
relationship between pressure and flow across most vocal tract constrictions can be ap-
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Figure 2-2: Transmission line model of the vocal tract configuration immediately after
release of a stop. The characteristic impedance of the vocal tract is Zp, the constriction
resistance is R.(t), the glottal impedance is set to infinity, and the radiation impedance is
set to zero. The back cavity is charged to a non-zero pressure, which is equalized quickly
as the admittance of the constriction grows.

proximated using a conservation of energy constraint, as follows. Assuming that the area
A¢ upstream from the vocal tract is much larger than the area A, of the constriction, the
average velocity of individual air particles v needs to increase considerably upon entering
the constriction in order to maintain a constant volume velocity Uy = vA. By equating the
increase in kinetic energy to a corresponding loss in potential energy, we derive Bernoulli's
equation (Flanagan, 1972):

n _ ke ( UO\)2

T2 A/
where & &~ 1 is a constant which depends on the shape of the constriciion. The equivalent
acoustic resistance of the constriction can be derived by linearizing equation 2.4 for small-
scale perturbations to a relatively steady-state gross flow, U = Uy + dU:

(2.4)

1{[)[/'0
42

P=Fy+ RAdU, R.= (2.5)

Based on equation 2.4 and standard transmission line theory, Massey (1994) has shown
that the flow through the constriction initially grows in direct proportion to the constric-
tion area. Assuming that the area of the constriction at the moment of release is well
approximated by some power of £, 4.(t) & aot®, the initial flow transient spectrum (before
consideration of the radiation characteristic) is proportional to agf~{@*1) at higher frequen-
cies. Empirically, Massey has shown that the transient spectrum typically shows an f 2
dependence.

2.1.2 Turbulent sources

Stevens (1971) has described two types of sources which are important in the production
of what we perceive as turbulence noise. Figure 2-3 shows schematized circuit models for
these two sources.

The first source, called a “monopole source,” consists of random fluctuations in the flow
through the constriction. These random fluctuations can be modeled as a flow source in
parallel with the constriction impedance, as shown in figure 2-3a. The spectrum of the
flow source has a low-pass characteristic, as shown in figure 2-4a. The amplitude of this
source may vary considerably, depending on the length of the constriction, and depending
on whether or not there are any flow obstacles upstream from the constriction.
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Figure 2-3: Circuit models for the monopole and dipole turbulent acoustic sources. Radia-
tion impedance and impedance of the back cavity are ignored; the mouth flow Uy, (%) is just
the flow through a short circuit at one end of the transmission line. The monopole source
U.(t) is in parallel with the constriction impedance; the dipole source P,(t) is connected in
series. typically 1-3cm downstream from the constriction.

(a) Monopole Turbulent Source Spectrum (after Pastel, 1987)
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(b) Dipole Turbulent Source Spectrum (after Shadle, 1985)
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Figure 2-4: (a) Monopole turbulent source spectrum, based on the radiated spectra reported
by Pastel (1987). (b) Flow source spectrum composed of the product of a dipole turbulent
source, based on spectra reported by Shadle (1985), and a coupling factor G.(f) which
assumes a vocal tract area of 5cm? and a distance of 2cm between constriction and source.
Amplitudes reported by Pastel and Shadle have been adjusted to represent 300Hz bands, a
flow of 420 cm3/s, and a constriction area of 0.08 cm?.



The second source, called a “dipole source,” is caused by the collision of turbulent
vortices with obstacles downstream from the constriction. These collisions cause random
pressure fluctuations, which can be modeled as a series pressure source as shown in figure 2-
3b. The amplitude of this source depends on several factors, including at least the shape
and angle of the flow obstacle (Gordon, 1969). The shape of the obstacle, and therefore
the shape of the total turbulent source spectrum, depends significantly on the location and
shape of the constriction.

The transfer function between the dipole pressure source, Ps(f), and the mouth flow
U (f) contains zeros at frequencies approximately equal to nc/2z, where z is the distance
from the constriction to the flow obstacle. and n = 0,1,2,.... For most acoustic purposes,
these zeros in the transfer function can be combined with the source spectrum to form an
equivalent flow source spectrum Ug(f):

(2.6)

where Z; is the characteristic impedance of the vocal tract. For an obstacle about 2cm
downstream from the glottis, the spectrum of the equivalent flow source has roughly the
frequency dependence shown in figure 2-4b.

Aspiration

The jet of air coming through the glottis is always turbulent, and therefore always produces
turbulent noise. During modal voicing, however. this turbulence noise is usually hidden
by the voicing spectrum. Aspiration usually becomes audible when the glottis is actively
opened in order to produce an /h/, or the aspirated onset of an unvoiced stop.

In aspiration. the dipole source dominates most of the spectrum. Since the coupling
function G.(f) has a zero at low frequencies, and because the radiation spectrum is propor-
tional to f. aspiration only strongly excites poles with frequencies above about 1000 Hertz.
In particular, during the early part of aspiration after a stop release, the first formant is
usually below 500 Hertz, and is therefore only weakly excited by the aspiration source. Since
the bandwidth of the first formant is also quite wide during aspiration (see section 2.2.2).
it is often difficult to find any spectral evidence for the first formant during aspiration.

Frication

When an oral constriction, formed by the tongue or lips, is at least as narrow as the
glottal constriction, pressure builds up across the oral constriction, and flow through the
constriction becomes turbulent. This frication turbulence generates monopole and dipole
acoustic sources similar to the sources produced at the glottis during aspiration.

As with aspiration, the shape of the frication source spectrum depends on the relative
contributions of the monopole and dipole sources, and therefore, on the efficiency of the flow
obstacles which cause dipole sources. Since the efficiency of the flow obstacle is a function
of place of the consonant, it is possible that place of the consonant may be reflected in
the shape of the source spectrum. During release of a velar stop, for example, Stevens (in
preparation) has calculated that the dipole source dominates the spectrum above 2000-3000
Hertz, and the monopole source dominates the lower-frequency spectrum. During release of
an alveolar stop, the dipole spectrum is typically 5-10dB more intense than that of a velar,
giving the source spectrum a high-pass characteristic. During release of a labial stop, the



Schematized glottal flow pulses and spectrum
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Figure 2-3: Schematized glottal flow waveform and spectrum.

dipole spectrum is typically 5-10dB less intense than the dipole spectrum of a velar, giving
the source spectrum a low-pass characteristic. Stevens notes, however, that these relative
amplitudes are quite variable, and may depend on both speaker and phonetic context.

2.1.3 Glottal vibration

In normal glottal vibration, the pressure drop between the trachea and the vocal tract
drives a jet of air through the glottis. which in turn drives the vocal folds to vibrate, much
like a flag flapping in a strong wind (Titze, 1994) . The opening and closing of the glottis
modulates the glottal jet into a series of somewhat triangular flow pulses. This pulse train
excites the vocal tract transfer function. and a delayed, filtered version of the pulse train is
radiated from the mouth.

Figure 2-5 shows a schematized glottal flow waveform and spectrum, based on the
parametrized model of Fant, Liljencrants, and Lin (1986). The waveform is periodic with pe-
riod T0, and the spectrum is only non-zero at frequencies which are multiples of FO = 1/T°0.
The waveform is roughly triangular, and there is a slope discontinuity at the instant of glot-
tal closure. The slope discontinuity in the waveform transforms into a magnitude DFT
proportional to 1/f? at high frequencies, equivalent to a log-magnitude DFT with a slope
of -12dB/octave.

2.1.4 Measurement issues: time-averaged power spectrum

Glottal vibration and transient sources are deterministic: a model of a voicing or transient
source, adequately fitted to the data, tells us exactly the form of the Fourier transform
S(f). Given the form of S(f), and a measurement X{f) of the spectrum of speech radiated
from the mouth, it is possible to estimate the transfer function (at frequencies where S(f)
is non-zero) by just dividing, T(f) = X(f)/(R(f)S(f))-



Turbulent sources are stochastic: the Fourier transform X (f) of any finite length turbu-
lent signal is a random vector. A model of a turbulent source can describe the expected value
of the source spectrum, and perhaps even the distribution of its components, but no model
will ever predict the exact value of an observation of X(f). There is a tendency, in speech
analysis, to assume that any observation of the Fourier transform of the radiated speech
waveform is approximately equal to its expected value, E[X(f)] = R(f)T(f)E[S(f)]. This
section sketches an original derivation of the probability density of the squared spectrum
X(f)|?, and demonstrates that | X (f)|? is often quite different from its expected value. The
time-averaged power spectrum (discussed in, for example Shadle 1985) is then presented
as a better estimate of the expected value E[|X(f)|?], and, by way of proof, an original
derivation of its probability density is presented.

If a turbulent acoustic signal is modeled as a stationary Gaussian random process, and
assuming that the radiation characteristic has removed any mean flow, the acoustic signal
z(t) is completely characterized by its power spectrum (Papoulis, 1984), that is, by the
Fourier transform of the autocorrelation:

oc
PR = / E [z(0)z(7)] eI T4, (2:7)
-0

where the operator E[] denotes expectation, and E [z(0)z(7)] is the autocorrelation of z.
Linear system theory tells us that the power spectrum of radiated speech is calculated by
multiplyving the power spectrum of the source, P,(f). by the squares of the transfer function
and radiation characteristic:

P:(f) = |R()PIT(f)I2Ps(f) (2.8)

Thus, if we know the power spectrum of the source, and given a good estimate of the
radiated power spectrum, the vocal tract transfer function can be estimated by simple
division. The shape of the source power spectrum has been described in section 2.1.2.
This section considers the problem of accurately estimating the power spectrum of radiated
speech.

The power spectrum is often estimated using a magnitude-squared short-time Fourier
transform (squared STFT):

/2 N

Py =2l X(NF, X() = [ wita(e i ar (2.9)
J=T12

where w(t) is some window function which is zero for |t} > T/2, and z(t) are samples of

the radiated speech signal. The squared STFT is a biased estimator of P,(f), but it is an

unbiased estimator of the smoothed power spectrum

2nE [|X(f)?] = Pa(f) « W2(f) (2.10)

where W(f) is the transform of w(t), and x indicates convolution.

The real part Re{X(f)} of the Fourier transform is just a weighted sum of zero-mean
Gaussian random variables, and is therefore itself a zero-mean Gaussian random variable.
The square of any zero-mean Gaussian random variable is a scaled first order x? random



variable, where the order of the x? variable can be denoted with a subscript:

Re{X(f)}*?
E[Re{X(f)}?]

where the probability distribution of a x2 variable can be found in, for example, (Drake,
1988). If Re{X(f)} and Im{X(f)} can be assumed to be have the same variance,

=x3 (2.11)

E [Re(X(NY*] = E [Im{X(N)}*] = 3B [IX (DI 2.12)

then their squares can be added to produce a scaled second order x? random variable:

IX(f)2 = Re{X(H)}? + Im{X(f)}? = @E [1X()1P] = %E[

XN 13)

The variance of x3 is 4, so

Var(IX(1)P) = (E[ix(nP])° (2.14)
In other words, the squared STFT is a particularly inefficient estimator of the power spec-
trum: the ratio of the standard deviation of the estimate to its expected value is 1.0. !

The inefficiency of the Fourier transform as an estimator of the power spectrum is well
known. Papoulis suggests reducing the estimator variance by smoothing the spectrum. This
thesis makes use of a time-averaged power spectrum (see for example Shadle, 1985) which
is functionally equivalent to power-spectral smoothing (using appropriate windows), but
requires significantly less computation.

A time-averaged power spectrum P.(f) is the average of several squared STFT spec-
tra, computed using temporally sequential windows. If the signal is considered station-
ary, and the windows do not overlap. then each squared DFT | X, (f)|>. n = 1...... N, is
an independent, identically distributed estimate of the power spectrum. In particular, if
Var(Re{X})=Var(Im{X}), samples of the average squared spectrum are x? variables of
order 2.V:

N 2
— | . X 5N . . (9 1=
P(P) = 5 2 a1 = 2B [|X ()] (2.15)

n=1

By taking logarithms. we can separate P,{f) into a purely deterministic mean component.
and a zero-mean random component:

—_— (o Z
101ogyg P+(f) = 101ogyo E [|X(£)[?] + 101og;o 32 (2.16)
Based on equation 2.16, it is possible to calculate confidence limits on the amplitudes
of spurious peaks and valleys in a time-averaged power spectrum. For example, a spectral
estimate composed of the average of two consecutive spectra is distributed as a x3/4 random

'The assumption that Var(Re{X})=Var(Im{X}) is satisfied by white noise filtered by an LTI system,
but may not be satisfied for other stochastic signals. Without using this assumption, Papoulis (p. 494)
derived an inequality stating that the standard deviation of {X(f)|? is greater than or equal to its expected
value. Equation 2.13 can be viewed as a special case of his result, in which the more restrictive assumption
allows us to derive the probability distribution exactly.



variable. Based on standard y? tables, we can calculate that about one percent of all such
spectral samples are more than 11dB below their expected values, and one percent are more
than 5.2dB above. Notice the imbalance between positive and negative variation: random
spectral nulls are much more likely than random spectral peaks.

If neighboring frequency components are indepe/n\dent (as is true of Gaussian white

noise processes), a random spectral null or peak in Pr(f) almost always has the shape and
width of the transformed window, W?(f). Using a 6ms Hanning window, for example, any
grid of spectral samples separated by frequencies of 2/0.006 ~ 330Hz can be viewed as
independent. If the spectrum is computed as the average of two consecutive 6ms Hanning
windows, the analysis of the previous paragraph suggests that about one out of every
hundred 330Hz bands measured in running speech (with non-overlapping windows) contains
a randomly generated spectral peak of 5.2dB or more, while an equal number contain
a randomly generated spectral null of 11dB or more. The half-power bandwidth of these
spectral peaks and nulls is equal to the half-power bandwidth of W (f), which, for a Hanning
window, is slightly less than the 330Hz band spacing.

In reality. time-averaged power spectra are almost always computed using overlapping
temporal windows. If rectangular windows are used, it is possible to prove linear dependence
between STFT transforms computed using overlapping windows, so there is no theoretical
advantage to using overlapping windows. If non-rectangular windows are used, the spectral
samples computed using overlapping windows are correlated, but not linearly dependent, so
using overlapping windows may improve the spectral estimate. Windows with tapered edges,
for example, are minimally dependent on waveform samples at the edges of the window:
heuristically speaking, therefore, a spectral estimate P,(f) computed using windows which
overlap by about 7/2 should contain more information about the power spectrum than an
estimate computed using non-overlapping windows.

2.2 Speech Filters

This section discusses the relationship between positions of the articulators and the vo-
cal tract transfer function. Factors which may make formants or front cavity resonance
peaks difficult to measure, including pole-zero pairs and changes in formant bandwidth, are
discussed in some detail.

2.2.1 All-pole models

The vocal tract during a vowel is often modeled as an acoustic transmission line, with no
side branches, and with no coupling through the glottis between the vocal tract and the
trachea. To the extent that this model is correct, the vocal tract transfer function can be
modeled with an all-pole spectrum:

00
Sns
Tap(f) = H 1 7‘1 _ (2.17)

where s = j27 f is the complex radial frequency in Hertz, s, = j2nF'n — 7 Bn is the complex
pole frequency, composed of the formant frequency Fn and bandwidth Bn, and s is the
complex conjugate of s,. For example, if the vocal tract is modeled as a uniform tube of



length [, the formant frequencies are quarter-wave resonances of the tube:

(2n —1)c

Fn =
T 41

(2.18)

During the frication burst of a velar or alveolar stop, the cavity in front of the constriction
can be productively modeled as a short uniform tube of length I, with no coupling through
the constriction to the back cavity. According to this model, the transfer function T'(f) is as
given in equation 2.17, but with resonant frequencies F 'rn Which are quarter-wave resonances

of the front cavity
I
Fpp = %fli (2.19)
The frication burst of a labial stop is not shaped by a resonant cavity. If there is no coupling
to the back cavity, the source flow spectrum S(f) of a labial burst is radiated directly, with
a transfer function of T(f) = 1.

Note that we use a different notation for front cavity resonances Fy, than for formants
Fn. In this thesis, an indexed formant frequency F'n always refers to the nth resonance of
the entire vocal tract, and front cavity resonances are differentiated by the subscript f. Since
the front cavity is part of the vocal tract, the front cavity resonances are always a subset of
the formants, {Fy;, Ff,...} € {F1,F2,...}. The correspondence between the sets {Fy,}
and {Fn} depends on the location of the consonantal constriction; this correspondence is
discussed in more detail in section 2.3.

At the frequency of a vocal tract resonance, equation 2.17 can be approximated as

Fn (2] Fj*

T (Fn)| = — Fn 2.20)
ap(Fn)] Bn kjl—ll Fn? — Fg2 H(Fn) el

In circuit theory, the first term on the right. Fn/Bn, is called the @ of the pole. The sec-
ond term reflects the influence of lower-frequency formants, and the higher-pole correction
H{Fn) reflects the influence of higher-frequency formants.

The higher-pole correction can be large. If the vocal tract is uniform, circuit theory
suggests that the higher pole correction is sufficiently large to make the amplitude of a
formant peak |T(Fn)| independent of the formant frequency F'n, and dependent only on
the bandwidth Bn. Stevens (in preparation)} has shown that the amplitudes of resonances
in the transfer function of a uniform tube are approximately
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where S is the average formant spacing. If the vocal tract is not uniform, however, formant
amplitudes depend significantly on the relative formant spacing. For non-uniform tubes,
therefore, equation 2.21 may not be a good approximation, and equation 2.20 may be used
to represent the influence of relative formant frequencies on amplitude.

2.2.2 Factors which influence formant bandwidth

Flanagan (1972) lists five sources of loss which contribute significantly to the formant band-
widths Bn, and therefore to the formant amplitudes: losses caused by viscosity, heat con-
duction, non-zero wall admittance, non-zero glottal admittance, and non-zero radiation



Figure 2-6: Circuit used for calculating the contribution of constriction losses to bandwidth.
Resistance R, and inductance L. are shown in parallel with a constriction source flow Us;
vocal tract is shown as a transmission line with characteristic impedance Zj.

impedance. Of these losses, only radiation losses and glottal losses (and constriction losses,
which have the same form as glottal losses) will be important in this thesis.

The impedance of any constriction in the vocal tract, including a constriction at the
glottis, can be represented by a resistance and inductance in parallel with a source flow U,
as shown in figure 2-6. The resistance R, and inductance L. can be calculated, based on
Bernoulli’s equation and Newton’ law, to be
kpUs _ ple

, Lg=
A2 = A

R, = (2.22)

where [, and A, are the length and area of the constriction, Up is the average flow through

the constriction, and k is a constant that depends on the constriction shape, but is usually

close to unity. If the vocal tract is modeled as a uniform tube, with a constant characteristic

impedance Zg, the contribution of constriction losses to the bandwidth of each formant is
RCZOC

Bn. = ‘ : : 2923
"™ TL(RZ + (27FnLe)?) (2.23)

where [, is the length of the vocal tract.

Flanagan (1972) estimates that glottal losses typically add about 60Hz to the bandwidth
of F1, and are less important for the higher formants. Klatt and Klatt (1990) suggest, how-
ever, that differences in glottal configuration from speaker to speaker may cause considerable
variation in glottal losses; their measurements, as well as those of Hanson (1995), show a
range of about 12dB in the implied bandwidth of F1. Phoneme-dependent differences in
glottal configuration can also cause different amounts of loss. Equations 2.22 and 2.23
suggest that the contribution of glottal loss to the bandwidth of low-frequency formants
is proportional to the square of the glottal area, so that if the glottal area doubles in size
during aspiration, the bandwidth of F1 will quadruple.

The radiation impedance can also be represented by a series resistance and inductance,
as shown in figure 2-7, but the radiation resistance turns out to be a function of frequency.
If the mouth is modeled as a circular opening in a sphere, the radiation resistance is

_ K(Nmpf?

c

R-(f) (2.24)
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Figure 2-7: Circuit used for calculating the contribution of radiation losses to bandwidth.
Radiation inductance L, and resistance R,(f) are shown in series with the vocal tract
transmission line.

where the correction term K (f) is approximately 1.5 between the frequencies of 2000 and
6000 Hertz (Stevens, in preparation). If the vocal tract is modeled as a uniform tube. with a
constant cross-sectional area A4, and characteristic impedance Zg = pc/A4;, the contribution
of the radiation impedance to each formant bandwidth is

R.c  K(f)(Fn)?A,
7Zl; cly

(2.25)

Given a 17cm vocal tract with an average area of 3cm?, the contribution of radiation losses
to bandwidth is roughly (Fn/350)? Hertz.

When the vocal tract is not uniform, the contribution of wall losses, glottal impedance,
and radiation impedance to the bandwidth of each formant depends on details of the vocal
tract shape. For example, consider the three-tube model of /i/ shown in figure 2-8a. The
second resonance of this configuration is a half-wave resonance of the back cavity. The
energy distribution of this resonance is strongly coupled to the glottal impedance, but almost
completely decoupled from the radiation impedance: the bandwidth might be calculated
using the circuit model shown in figure 2-8b, where the four-pole network includes models
of wall losses in the pharynx region. The third formant is a quarter-wave resonance of the
front cavity. and is therefore strongly coupled to the radiation impedance. The third formant
is largely decoupled from the glottis, but instead of a glottal impedance, the bandwidth of
the third formant is influenced by the constriction impedance, which can be modeled with
the lumped element representation shown in figure 2-8c.

There is little recent work available on the relationship between vocal tract shape and
formant bandwidths. The effect of vocal tract shape on formant bandwidth can be mod-
eled quickly using available articulatory synthesizers (Maeda, 1982, Lin, 1990) , but these
synthesizers have apparently never been used for a comprehensive study of bandwidth. Lin
(1990) suggests that a comprehensive model of lower formant bandwidths would be difficult,
given our current lack of knowledge about the distribution of wall losses inside the vocal
tract. Higher formant bandwidths. on the other hand, depend primarily on the radiation
impedance, for which we have fairly precise models (Flanagan, 1972), and should therefore
be more susceptible to analysis by svnthesis.

2.2.3 Pole-zero pairs

Often during the release of a consonant, the constriction at which acoustic sources are
produced becomes large enough to allow coupling between the cavities in front of and
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Figure 2-8: Three-tube model of the vocal tract, and circuit models of the back and front
cavities, during production of an /i/. Ly and Ry are the glottal resistance and inductance.
L. and R, are the constriction resistance and inductance, and L, and R, (f) are the radiation
resistance and inductance.
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behind the source. When this happens, the spectrum is colored by local perturbations near
the resonance frequencies of the back cavity.

Every resonance of a cavity upstream from the acoustic source contributes a complex
pole pair and complex zero pair to the transfer function. A pole-zero pair can be modeled
as a local multiplicative perturbation to the transfer function: at frequencies far from the
pole-zero pair, the effect of the zero cancels the effect of the pole, and the total amplitude
of the perturbation Ty, (f) is a constant.

SpSp (s — 52)(s — s7)

T,.(f) = (2.26)
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When the constriction is completely closed, there is no coupling between the back cavity
and the front cavity, and the pole frequencies s, = —nBy, 4 j27F, and zero frequencies
s; = —wB, + 727 F, are exactly equal. When the constriction is slightly open, the back
cavity pole and zero frequencies separate, and the pole, in particular, becomes more visible
in the radiated spectrum.

The peak amplitude of the pole-zero perturbation can be approximated by assuming
that the frequencies of the pole and zero are much larger than their bandwidths. Under
this approximation, the peak amplitude of the perturbation is the @ of the pole, multiplied
by a factor which depends on the separation of the pole and zero:

\ Fpl F}Z [ .
| Tp=(Fp)| = B, l= (ﬁ%)l (2.27)
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The following sections discuss the frequencies and amplitudes of pole-zero pairs which
may color the transfer function during aspiration and frication, respectively.

Subglottal resonances in aspiration

Ishizaka et al. (1976) measured the input impedance of the subglottal system on Japanese
tracheotomized subjects. They found the first two resonances of the subglottal system to
be at roughly 640 and 1400 Hertz, with @s of roughly 10 and 18dB.

For a volume velocity source at the glottis, zeros in the transfer function occur at peaks
of the subglottal impedance, which are usually very close to the measured resonance fre-
quencies of 640 and 1400 Hertz. Poles of the transfer function occur at frequencies for which
the sum of the subglottal, glottal, and supraglottal impedances is zero. In particular, it can
be shown that the frequencies of the first two subglottal zeros are below the corresponding
pole frequencies for any reasonable F1 and F2 (see Fant et al. 1972 for a discussion).

Given the pole and zero frequencies, the peak amplitudes of subglottal pole-zero per-
turbation functions {T,,(f)| can be calculated using the subglottal Qs found by Ishizaka et
al., and the formula in equation 2.27. For example, if the first two pole-zero pairs in the vo-
cal tract transfer function are at (800Hz,640Hz) and (1500Hz,1400Hz), as in the aspiration
spectra of one of the subjects of Fant et al. (1972), the amplitudes of the transfer function
perturbation Ty, (f) at the frequencies of the two poles are roughly |7;.(800)| =5dB and
|T,.{1500)| =1.5dB.

Under normal circumstances, an LPC formant tracker ignores subglottal resonances, be-
cause the poles do not contribute to the global shape of the spectrum. Section 2.2.5 considers
circumstances under which subglottal resonances may interfere with LPC measurement of
the vocal tract formants.
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(b) Alveolar/Velar frication: Front and back cavities

Figure 2-9: Source-filter models of frication at the lips, and of frication at a tongue con-
striction.

Back cavity resonances in frication

We have previously described the transfer function of a frication burst, from equivalent
source flow Us(f) to mouth flow Uy, (f), as being an all-pole spectrum, with peaks at the
front cavity resonant frequencies Fy, (section 2.2.1). Often, however, the constriction is
large enough to allow coupling to the back cavity, and resonances of the back cavity cause
pole-zero perturbations in the transfer function.

In a model which allows coupling to the back cavity, the transfer function of a labial stop
is entirely composed of pole-zero pairs, as shown in figure 2-9a. There is no front cavity,
but there are back cavity resonances at every formant frequency.

Frication produced at a tongue blade or tongue body constriction is filtered by poles
and zeros associated with the back cavity, and also by poles associated with the front cavity
(figure 2-9b). Zeros occur at peaks of the back cavity impedance, that is, at resonant
frequencies of the back cavity. Poles occur at frequencies for which the sum of the back
cavity, constriction, and front cavity impedances is zero, that is, at the resonant frequencies
of the vocal tract-—the formant frequencies.

The amplitude of the spectral peaks corresponding to each back cavity resonance depend
on Q = Fpn/Bpn, and the ratio Fy,/F,p of the frequencies of the spectral pole and zero.
Empirically, labial and velar stops produced with a palatal constriction (in syllables like
“keel” and “pyew”) often have well-separated pole-zero pairs near the frequency of the
constriction resonance, which is typically F3 or F4. Alveolar stops which are released
quickly may have strong pole-zero pairs at the frequencies of F2 and F3.

2.2.4 Nasalization

In order to pronounce a nasal consonant with no loss of sonorant voicing, the velopharyngeal
port must be opened prior to oral closure, and kept open until after the oral constriction
is released. During closure, or when the oral constriction is smaller than the opening
of the velopharyngeal port, the transfer function is dominated by resonances of the nasal-



pharyngeal system (Fujimura, 1962). When the velopharyngeal port is smaller than the oral
constriction, but still open, the transfer function is dominated by the oral formants, but
there are still pole-zero pairs near the frequencies of the nasal-pharyngeal resonances. Chen
(1991) has documented the presence of pole-zero pairs at about 300 Hertz and 1000 Hertz
in the speech of hearing impaired subjects, corresponding to the first two nasal resonances
reported by Fujimura.

The spectrum of a vowel immediately after release of a nasal consonant can be approxi-
mately modeled as an all-pole transfer function T,,(f), modified by pole-zero perturbations
T,.(f) at approximately 300 and 1000 Hertz. The pole-zero perturbations continue to color
the spectrum until the velopharyngeal port closes. Typically, the velopharyngeal port closes
within 10-20ms after release of a nasal consonant, but there is considerable variability, de-
pending primarily on segmental and prosodic context.

After release of a nasal consonant, pole-zero perturbations may interfere with the mea-
surement of formant frequencies. Specifically, the large pole-zero perturbations at about
300Hz and 1000Hz are likely to interfere with measurement of F1, and possibly of F2 as
well. This interference will only affect formant measurements while the velopharyngeal port
is open, and therefore typically only for the first 10-20ms following release.

2.2.5 Measurement issues: LPC

Linear predictive coding, or LPC (Atal and Hanauer, 1971) is the commonly used name for
a group of algorithms which efficiently compute the poles of an all-pole spectrum. If any
spectrum can be modeled as the product of a flat source spectrum and an all-pole transfer
function, X (f) o T(f), LPC can be used to estimate the resonances of the transfer function
T(f).

LPC assigns pole frequencies in order to minimize an error term. This section analyzes
the error term as the product of a local term representing the fit to an individual peak,
and a global term representing the global spectral fit. Based on this analysis, an original
qualitative analysis is given of the conditions under which large formant frequency errors
are expected to occur.

Local and global spectral error terms

Rabiner and Schafer (1978) show that the LPC algorithm finds a unity-gain, all-pole esti-
mate T'(f) of the spectrum X (f) which minimizes the error term
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The error term in equation 2.28 is a global spectral error, but since the radiated spectrum
is in the numerator, a given fractional error near a peak of X(f) is weighted more heavily
than the same fractional error near a valley. The result is that each pole estimated by LPC
is a compromise between a global spectral fit, and a local fit to a single spectral peak.



If the order of the model is chosen correctly, the estimated formant frequencies Fn are
usually close to the true formants F'n. In evaluating the possibility of a formant frequency
error, it is instructive to evaluate the LPC error term at the formant frequencies. If T(f) is
all-pole with the form given in equation 2.17, the integrand in equation 2.28 near a formant
frequency is approximately

[T(Fn)2 <\/7F71—Fn +Bn\ (H (Fy 2_ Fj°) 2<H(/€”))2 (2.30)
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Here, the error integrand has been separated into a local error term, expressing the depen-
dence of error on bandwidth, and two global error terms, expressing the dependence of error
on the relative formant frequencies. The first term on the right hand side of the equation
shows the local constraint: the estimated formant frequency is loosely constrained within
about half a bandwidth of the true formant, but if the difference |F'n — F'n| is larger than
about half a bandwidth, the error increases sharply. The secorlgl\ and third terms show the
global constraint: the relative formant positions of the model T'(f) must be similar to those
of the observed spectrum.

Subglottal resonances

Equation 2.30 shows that LPC usually ignores a pole-zero perturbation in the spectrum,
even if the amplitude of the pole is large, because if LPC assigns too many complex pole pairs
to any given frequency band, the relative spacing of the formant frequencies will be incorrect.
According to this reasoning, LPC only assigns a complex pole pair to a spectral perturbation
if it also fails to assign a pole pair to a nearby formant. Since the LPC error metric weights
spectral errors by the amplitude of the DFT spectrum, a spectral perturbation usually does
not “steal” a complex pole pair in this manner unless the perturbation amplitude is greater
than the amplitude of the neighboring formant peak.

We have seen in section 2.2.3 that under normal circumstances, the amplitude of a
pole-zero spectral perturbation is usually considerably less than the amplitudes of nearbyv
formants. For a perturbation to have a higher amplitude than a nearby formant, the
formant must be unusually weak. There are several reasons why this might happen; this
section discusses three.

First, during aspiration, a formant may be temporarily wiped out by a spectral null
caused by random variation in the source spectrum. According to the calculations in sec-
tion 2.1.4, roughly one out of every 100 independent samples of the time-averaged power
spectrum is affected by a random spectral null of -11dB or more. If the spectrum is cal-
culated using a 6ms Hanning window, the bandwidth of the spectral null is 2/0.006 ~ 330
Hertz, which is sufficiently wide to temporarily wipe out a formant.

Second, the bandwidth of the formant may become so large that there is no resonant
peak at the frequency of the formant. This is most often a problem with the F1 peak
during aspiration, because of the large glottal area. If, for example, the average glottal area
doubles during aspiration, then the glottal inductance Ly and resistance Ry in equation 2.23
decrease by factors of 2 and 4, respectively. Decreasing Ry by a factor of 4 increases the
first formant bandwidth B1 by a factor of 4, to more than 200 Hertz, which is sufficiently
large to nearly wipe out the F1 resonant peak in the spectrum. The enlarged glottal area
in aspiration also provides increased separation of the first subglottal pole and zero, with
the result that the first subglottal pole is often more prominent than F1 in the aspiration



following release of an unvoiced stop.

Third, two formants which are close together may merge into a single spectral peak. The
resonance curve of an excited formant always contributes to the spectrum, but a nearby
formant with a higher amplitude (and narrower bandwidth) often tilts the resonance curve
so severely that there is no convex peak at the frequency of the lower-amplitude formant.
For convenience, this phenomenon can be referred to as “formant merger,” where the lower-
amplitude formant is said to merge with the higher-amplitude formant. If there is a sub-
glottal resonance near the merged formants, or if the global spectral shape is ambiguous.
LPC occasionally assigns a single complex pole pair to the merged formants. Hillenbrand,
Getty, Clark and Wheeler (1995) found that about 3% of their vowel nuclei contained an
F2-F3 merger which could not be resolved by interactively changing the LPC analysis order,
while about 1% of tokens contained an unresolvable F1-F2 merger.

A subglottal resonance which is ignored by LPC analysis may still cause problems for
formant tracking. If a moving formant frequency crosses the frequency of a pole-zero pertur-
bation. linear system theory predicts that the frequency of the formant skips discontinuously
across the frequency of the subglottal resonance (Hanson and Stevens, 1995). The size of
the discontinuity depends on the relative amplitudes of the subglottal and supraglottal
impedance, and is typically between about 200 and 300 Hertz.

2.2.6 Measurement issues: frication spectrum

The burst spectrum often contains spectral perturbations at the frequencies of back cavity
and even subglottal resonances, as well as peaks corresponding to the front cavity reso-
nances. This section discusses and compares factors influencing the amplitudes of front
and back cavity resonances in a frication spectrum. As part of this discussion. original
quantitative limits on the amplitudes of front and back cavity resonance amplitudes are
derived.

The discussion below focuses on amplitudes of the transfer function between an equiv-
alent source flow Us(f) and the mouth flow Un,(f). To compute actual radiated spectral
amplitudes, the transfer function amplitudes discussed below must be multiplied by the
amplitudes of the equivalent flow source U (f) and the radiation characteristic R(f). As
discussed in section 2.1.2, there is usually a downward tilt in the spectrum U,{ f)R( f) at high
frequencies, but the tilt depends significantly on the relative amplitudes of the monopole
and dipole frication sources. and therefore on the shape and position of the constriction.

At very low.frequencies, the frication spectrum is dominated by the monopole source,
and is not at all well modeled by a simple spectral tilt. Figure 2-4a indicates that the
monopole frication spectrum has a concentration of energy below about 700Hz (although
this is difficult to see, because the figure only shows frequencies above 500Hz). Empirically,
radiated frication spectra often contain one or more large peaks at low frequencies, typically
below about 700Hz.

Front cavity resonances

Transient and frication sources at the release of a stop excite the resonances of the front
cavity. with local perturbations caused by resonances of the back cavity and constriction.
If the front cavity is modeled as a uniform tube, the resonance frequencies are as reviewed
in section 2.2.1:
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where Sy = ¢/2l; is the average front cavity resonance spacing, and Ty,(Fn) is the all-pole
component of the transfer function.

The bandwidths of high-frequency front cavity resonances depend largely on radiation
losses, while the bandwidths of low-frequency resonances may be controlled by losses at the
constriction. Since radiation losses are proportional to Ff2n, equation 2.31 predicts that the
transfer function amplitude of a high-frequency front cavity resonance should fall as 1/ Fj?n.
If we ignore the constriction inductance, the contribution of the constriction to bandwidth
can be approximated as a fixed constant,

v
R

s (2.32)
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where Z; is the characteristic impedance, and R, is the constriction resistance. With this
approximation, the amplitude of resonance peaks in the transfer function can be written:
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The cutoff frequency f. varies considerably depending on the area of the constriction and
the area of the front cavity, but is typically in the mid-frequency range. If, for example.
R =~ 100 acoustic ohms, and Ay = 5¢em?, f, is approximately 2000Hz.

If the front cavity is modeled as a uniform tube. equation 2.31 specifies that all of
the front cavity resonances are odd multiples of the first resonance frequency Fy;. In this
case, equation 2.33 can be used to compute the relative amplitudes of transfer function
resonance peaks in different frequency bands, regardless of the exact resonance frequencies.
If Fy; is much larger than f, for example, equation 2.33 predicts that |T,,(Ffo)|, the
transfer function amplitude of the second front cavity resonance, is 20log(9) =19dB below
|T'(Fy1)|. If the cutoff frequency f. is somewhere between Fy; and Fyo, as might be true
at the release of a velar stop, the difference between their transfer function amplitudes will
be somewhere between 0 and 19dB. The differences in amplitude of the radiated spectral
peaks will typically be somewhat less, because the product R(f)U,(f) usually has a slightly
positive tilt during frication.

Back cavity resonances

Resonances of the subglottal system, the back cavity, and the oral constriction often con-
tribute multiplicative pole-zero perturbations to the transfer function. The amplitude of
the transfer function at the frequency F, of a back cavity resonance is approximately the
amplitude of the pole-zero perturbation T,,.(f), as given in equation 2.27:

F, { (F,\?

The amplitude of the perturbation can be estimated if we recognize that, as discussed in
section 2.2.3, the poles are at formant frequencies of the entire vocal tract, while the zeros
are at resonant frequencies of the back cavity. For poles and zeros below the frequency
of the first front cavity resonance, it can be shown that the pole and zero frequencies are
interleaved, F;) < Fp < Fi2 < Fpp < ..., so that the spacing between a pole and zero will
never be larger than half the spacing between adjacent formants. If the average spacing of



vocal tract formants is S, we can use the inequality F, < F, +5/2 in equation 2.34 to get
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Section 2.2.1 mentions that the amplitude of a formant peak in a vowel transfer function,
assuming a uniform vocal tract, is approximately 2S/7B. Essentially, then, equation 2.35
shows that the transfer function amplitude of a back cavity resonance should be less than
or equal to the transfer function amplitude of the corresponding formant in the following
vowel.

The relative amplitudes of back cavity and front cavity resonances can be computed by
combining equations 2.35 and 2.31:
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Since the vocal tract formant spacing S is much less than the front cavity spacing Sy for
most consonantal configurations, equation 2.36 demonstrates that the amplitude of a back
cavity resonance will be much less than the amplitude of any front cavity resonance with a
similar bandwidth.

The bandwidth of a low-frequency front cavity resonance is controlled by constriction
losses (see equation 2.33), and is therefore similar in size to the bandwidths of back cavity
resonances. The bandwidth of a high-frequency front cavity resonance, however, is con-
trolled by radiation losses, and, at very high frequencies, may be significantly larger than
the bandwidths of some back cavity resonances. Thus we find that the transfer function
amplitude of a front cavity resonance is larger than the transfer function amplitudes of any
back cavity resonances, unless tle front cavity resonance is at very high frequency. The
words “very high frequency” will be made slightly more quantitative in the empirical study
of section 3.3.3.

2.3 Evolution of Vocal Tract Resonances at Release of a Con-
sonant

This section describes, for each class of consonants, the theoretical basis for predicted
correlations between consonant place and measurements of the vocal tract resonances. This
section describes the correlations we expect to see in the measurements later in this thesis,
but it is not strictly necessary as background reading for the thesis.

2.3.1 First formant trajectory

For all three places of articulation, the first vocal tract resonance at release is a Helmholtz
resonance, which can be calculated by modeling the back cavity as an acoustic capacitor,
and the front cavity as an inductor in parallel with the inductance of the vocal tract walls
(figure 2-10). Given the length and area of the constriction [, and Ac, and the volume of
the back cavity Vj, the first formant frequency can be approximated as

L i\/—l— 5 (2.37)
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Figure 2-10: Low-frequency lossless circuit model of the vocal tract after release of a stop,
used for calculating the first formant frequency. The back cavity is treated as a lumped
capacitor Cy, which resonates with the parallel inductances of the yielding wall, Ly, and
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(a) Labial release, uniform VT (b) Labial release before an /i/

Figure 2-11: Simplified tube models of the vocal tract immediately after release of a labial
stop, with different shapes of the back cavity.

where. in the second step. the lumped element values L, = pl./Ac and Cy = pc?/Vy have
been used. The resonant frequency of the closed vocal tract, 1/27/L,,Cp, has been mea-
sured at about 220 Hertz.

Equation 2.37 predicts that, after F1 begins to rise away from the closed-tract reso-
nance. the frequency of F1 rises in proportion to the square root of the constriction area.
The constant of proportionality depends on the shape of the constriction. Labial and alve-
olar consonants, for example, have short constrictions (typically 1-2cm), so equation 2.37
predicts that F1 should rise quickly at release of a labial or alveolar consonant. The con-
striction of a velar consonant is typically 3-5 times as long as that of a labial or alveolar,
so equation 2.37 predicts that F1 should rise about half as fast. Empirically. most of the
F1 transition usually occurs within about 20 ms following the release of a labial or alveolar
stop, and within about 50 ms following the release of a velar stop.

2.3.2 Labial releases

The resonances of the vocal tract immediately after release of a labial consonant can be
estimated using a model similar to that shown in figure 2-11a. The back cavity, consisting
of the entire vocal tract, is nearly closed at both ends; there is no front cavity.

If the back cavity is modeled as a uniform tube, the formants F2,F3,... immediately
after release take the values ne

Fn= (2.38)

If the vocal tract length [ is about 17cm, the formants at onset are roughly F2=1040 Hertz,
F3=2080 Hertz, etc. As the constriction area increases, these formant frequencies rise
toward the vowel target formants.

During labial closure, the tongue often moves toward the configuration of the following
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Figure 2-12: Simplified tube models of the vocal tract immediately after release of a velar
stop, with backed and fronted tongue positions.

vowel, so that the back cavity may be significantly non-uniform at release. Changes in the
back cavity shape can affect both the onset frequency and rate of change of formants at
release of a labial stop.

Manuel and Stevens (1993), for example, have modeled a labial stop followed by a high
front vowel using a model similar to that shown in figure 2-11b. In this model, the palatal
constriction resonance starts at ¢/4x, where z is the length of the constriction. By the time
the lip area is the same as the constriction area (typically about 10ms after release), the
palatal constriction resonance doubles in frequency to ¢/2x, while the resonance of the back
cavity remains nearly unchanged. If the constriction is 7cm in length and the back cavity is
10cm. for example, the constriction resonance rises from about 1300 to about 2500 Hertz,
while the back cavity resonance is constant at about 1800 Hertz.

2.3.3 Velar releases

At release of a velar consonant, the vocal tract resonances can be divided into resonances
of the front cavity, back cavity, and constriction. The actual lengths of the front cavity
and constriction depend significantly on the tollowing vowel. This section describes velar
stops using the traditional distinction between backed and fronted constrictions (e.g. Halle,
Hughes. and Radley, 1957), because this traditional distinction is a useful predictor of the
cavity affiliations of F2 and F3 (see below). Lehiste and Peterson (1961), however, argue
that the location of an English velar closure varies continuously depending on the following
vowel, and that the front and back allophones described below should be considered as
points on a continuum, rather than well-separated phonetic categories.

If the consonant is followed by a typical back vowel (e.g. /aa/ or /ah/), the stop closure
can be modeled using a tube model similar to the one shown in figure 2-12a. In this model,
the front cavity is roughly 6-8cm long, and the first two front cavity resonances are at 1100-
1500 and 3300-4500 Hertz. The transfer function amplitude at the frequency of the first
resonance is controlled by constriction losses, while the amplitude of the second resonance
is controlled by radiation losses, as discussed in section 2.2.6. The relative amplitudes will
vary considerably depending on the areas of the front cavity and of the constriction. As a
representative example, if the front cavity area is 5cm?, and the constriction resistance is
about 80 acoustic ohms, then the transfer function amplitudes of the first two resonances
are roughly 20dB and 6-10dB, depending on frequency. The peaks in the radiated sound
spectrum are at these amplitudes, scaled by the radiation characteristic, and by a linear
combination of the monopole and dipole frication sources discussed in section 2.1.2.

In back vowel context, F2 usually starts at the frequency of the first front cavity res-
onance, while F3 starts at the half-wave resonance of the back cavity. If the constriction
is about lcm long, for example, and for a 17cm vocal tract, the front cavities given above
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Figure 2-13: Simplified tube models of the vocal tract immediately after release of alveolar
and retroflex stops.

would correspond to back cavities of 8-10cm in length, with F3 onset frequencies of roughly
1800-2200 Hertz.

A model of a velar release before a front vowel is shown in figure 2-12b. Before a front
vowel, velar stops in English tend to become palatalized, with a long palatal constriction
(typically 4-5cm) and a short front cavity (typically 3-4cm). The first front cavity resonance
is typically 2000-3000 Hertz. and has a transfer function amplitude of 17-23dB. Because of
the high impedance of the constriction, the separation F,,/F; of the zero and pole associated
with the first constriction resonance-is often large, and the pole (typically at about 4000
Hertz) is often prominent in the frication spectrum.

In front vowel context, F3 usually starts at the frequency of the first front cavity res-
onance, and F2 starts at the half-wave resonance of the back cavity. Empirically. the first
back cavity resonance is in the same range (roughly 1800-2200 Hertz) regardless of whether
the velar is backed (in which case the resonance becomes F3) or fronted (in which case it
becomes F2).

2.3.4 Alveolar, retroflex, and lateral releases

Production of an alveolar constriction (figure 2-13a) constrains the position of the tongue
more than does production of a velar and labial constriction. The length of the front cavity,
between the tongue tip and the lips, is usually 1-2cm in length (depending on the degree
of lip rounding); if the radiation inductance is taken into consideration, the effective front
cavity length is roughly 1.5-2.5cm. The tongue body is always fronted to support the tongue
tip. At the release of an alveolar, F2 is approximately a half-wave resonance of the back
cavity. Constraints on the tongue body position (Manuel and Stevens, 1995) cause the onset
frequency of F2 after an alveolar stop to be considerably less variable than the F2 onsets
of velar and labial stops: this frequency is typically 1500-1900 Hertz for male speakers, and
1900-2200 Hertz for females (Sussman et al., 1991).

The onset frequency of F3 is approximately a full-wave resonance of the back cavity.
Basic acoustic theory predicts that the frequency of a full-wave back cavity resonance should
be twice that of the half-wave resonance. Empirically, the onset frequency of F3 after
alveolars is higher than it is at labial and velar releases, but is usually less than twice the
frequency of F2. ,

Assuming a front cavity of 1.75-3cm in length, the first front cavity resonance in the
frication transfer function is between 3000 and 5000 Hertz (usually the onset frequency of
F4 or F5). If the cross-sectional area is about 3cm?, the transfer function amplitude at
the resonant frequency is between 12 and 21dB. When an alveolar stop is released quickly,
transient ringing or back cavity coupling often introduces large perturbations in the burst
spectrum. Stevens and Blumstein (1979) found large back cavity resonances at the frequency



of the first subglottal resonance (700-1000 Hertz), and at the onset frequency of F2.

The shape and position of an alveolar constriction is rarely influenced by the features
of a neighboring vowel, but a neighboring phoneme which requires a specific tongue blade
configuration often dramatically changes the shape of an alveolar consonant. \When an
alveolar consonant is followed (or sometimes preceded) by a retroflex glide or vowel (/r/
or [er/), the tongue blade closure during the consonant moves back behind the alveolar
ridge, effectively adopting the retroflex place of articulation. When an alveolar consonant
is followed by a lateral phoneme (/1/ or /el/), the closure is often released on one side of
the tongue, rather than at the tip, effectively adopting the lateral place of articulation.

A retroflex stop (figure 2-13b) has a much longer front cavity than an alveolar stops. In
the neighboring retroflex vowel or liquid, F3 is usually a front cavity resonance, often with
a frequency below 2000 Hertz (Peterson and Barney, 1952), corresponding to a front cavity
length of about 4.5cm. At the release of a stop or nasal which has assimilated retroflex
articulation, the front cavity may be slightly shorter than 4.5¢m; empirically, the front
cavity resonance of a retroflex stop tends to be between 2000 and 3000 Hertz. The onset
value of F'3 tends to be associated with the front cavity resonance, while the onset frequency
of F2 is associated with the back cavity.

Lateral vowels and liquids are characterized by a low F2, a possible pole-zero pair at the
usual frequency of F3, and a cluster of resonances near the usual frequency of F4 (Stevens,
in preparation). If an alveolar stop is released directly into a lateral configuration, the
formant frequencies at onset usually match the formant frequencies of a typical lateral, and
may have little relationship to the typical onset formants of an alveolar.

2.4 Summary and Discussion

This chapter has developed production models to explain, first, the correlation between
resonant frequency measurements and the place of articulation of a consonant, and second,
the types of source and filter variability which make resonant frequencies difficult to measure.
These discussions have been intended to serve two purposes. First, discussions in this
chapter provide specific background for the design of acoustic correlate measurements in
chapter 3. Second, the models of variability in this chapter are intended as general examples
of the power of speech production modeling to explain acoustic variability.

2.4.1 Acoustic correlates of place

In the design of algorithms to measure formant and front cavity resonance frequencies,
chapter 3 will refer to several of the speech production models developed or reviewed in this
chapter. This section reviews briefly some of the important results from this chapter which
will be used again in chapter 3.

Burst spectrum

The burst spectrum of a stop is primarily shaped by the resonances of the front cavity.
if there is one. The burst for a labial stop, with no amplification from front cavity res-
onances. is usually lower in amplitude than that for an alveolar or velar stop. The front
cavity resonance frequency of an alveolar or velar stop, if measured correctly, almost always
determines the place of the stop.



Errors in measurement of the front cavity resonance may be caused by back cavity
resonances, which appear as pole-zero pairs in the transfer function of a fricative burst. In
general, the burst spectra of quickly released stops, usually labials and alveolars, contain
more evidence of back cavity resonances than the spectra of more slowly released stops,
usually velars, although there is considerable variability depending on phonetic context.

The transfer function amplitude of a front cavity resonance is usually higher than that
of back cavity resonances in the same spectrum. Because of radiation losses, however, the
bandwidth of a high-frequency front cavity resonance can be quite wide, with the result
that very high frequency front cavity resonances will occasionally be lower in amplitude
than back cavity resonances in the same spectrum.

The spectrum of a fricative burst is also shaped by variation in the source spectrum. The
relative amplitudes of high-frequency and low-frequency peaks vary considerably depending
on the relative amplitudes of the monopole and dipole turbulent sources. Often, there will
also be a large peak below about 700 Hertz. corresponding to low-frequency energy in the
monopole turbulent source.

Formant motion

Knowledge of formant motion into the following vowel can provide information about con-
sonant place.

During aspiration, the first subglottal resonance is often mislabeled as F'1, so that mea-
surements of F1 in aspiration are often meaningless. F1 may also be obscured at the release
of a nasal consonant. because of pole-zero pairs corresponding to resonances of the nasal-
pharyngeal system.

Higher formants are also difficult to track during aspiration. Variations in the source
spectrum may occasionally zero out a formant with a randomly generated spectral null.
Subglottal resonances may contribute pole-zero pairs to the spectrum, which may, under
certain conditions, be mistakenly identified as formants. Finally, even if a formant is tracked
correctly, the spectral peak corresponding to a formant which crosses the frequency of a
subglottal pole will occasionally skip discontinuously across the pole, with an instantaneous
discontinuity of 200-300 Hertz.

2.4.2 Production models of variability

This chapter has developed or reviewed production models of variability in the turbulent
source spectrum, of bandwidth variation and subglottal resonances in aspiration, and of
front and back cavity resonances in frication.

The introduction to this chapter proposed the hypothesis that speech production models
can help to explain the aggregate statistical distribution of acoustic correlate measurements.
Based on the examples in this chapter, it is now possible to discuss limitations and impli-
cations of the hypothesis in more detail.

Production models can be used with different degrees of success to model different
kinds of variability. Random or chaotic variation in the source spectrum, for example, is
caused by a nonlinear physical process which varies little from speaker to speaker. In this
case, since variability is generated by a known physical process, it is possible to derive
an explicit probability density based entirely on physical models of turbulent flow (the y?
model developed in section 2.1.4).



Variability in the transfer function amplitude of back cavity resonance peaks, on the
other hand, was shown to depend on the separation of the associated pole and zero fre-
quencies, which, in turn, depends on the speed of stop consonant release. It is therefore
only possible to derive a theoretical distribution of back cavity spectral amplitudes if we
already happen to know the distribution of stop consonant release rates. The distribution
of release rates, however, depends at least partly on decisions and physical characteristics
of the speaker.

With the exception of turbulent source variation, all of the acoustic correlate variability
discussed in this chapter depends on anatomical and stylistic differences between speakers.
The bandwidth of F1, for example, depends on the area of the glottis, which is governed
by both anatomy and speaking style. The bandwidth of front cavity resonances depends
on the area of the constriction and the area of the lip opening, both of which are under the
stylistic control of the speaker.

When the distribution of an acoustic correlate is under the control of the speaker, the
predictive power of theoretical models is limited. A detailed probability distribution can
only be obtained from empirical measurements of either the acoustic correlate (e.g. back
cavity spectral peaks) or the articulatory correlate (e.g. stop consonant release rate). In
most cases, the acoustic correlate is easier to measure than the articulatory correlate.

Production models can help to explain the variability of speaker-controlled parameters
in two ways. First, a production model can predict physical limits on the range of variability.
Sometimes these limits are extremely weak, but chapter 3 will demonstrate that even an
extremely weak bound on the expected variability can be helpful in the design of acoustic
correlate measurements.

Second, a production model can be used to evaluate measured acoustic correlate dis-
tributions, by defining a relationship between acoustic and articulatory parameters. Since
acoustic correlates are usually easier to measure than articulatory correlatus, it is probably
easier to predict the distribution of the articulatory measurement from the distribution of
the acoustic correlate, rather than the other way around. If predictions of articulatory
variation based on one acoustic correlate are confirmed by predictions from other acoustic
correlates, or by direct articulatory measurements, this confirmation then helps to develop
our knowledge of speech production.

The development of models of variability in this chapter, therefore, leads to the sug-
gestion of a particular methodology for learning more about speech production, in which
measured distributions of acoustic parameters are combined with speech production knowl-
edge to predict equivalent articulatory distributions. If the acoustic measurements can be
automated, the proposed method promises rapid collection and confirmation of detailed
descriptions of speech production variability.

The next chapter describes the development and evaluation of rule-based algorithms for
the measurement of certain acoustic parameters related to the place of a consonant release.
In the original plan for this thesis, these algorithms were designed for the purpose of learning
about speech variability, using the methodology described above. Unfortunately, it turns
out that the measurement algorithms developed in chapter 3 are prone to measurement
error. Rather than predict articulatory distributions on the basis of erroneous acoustic
measurements, chapter 3 turns instead to the more conservative task of modeling the dis-
tribution of measurement error, using both statistical and speech production knowledge to
help build our understanding of the sources and characteristics of acoustic measurement
error.



Chapter 3

Rule-Based Measurement
Algorithms

This chapter describes a knowledge-based approach to minimizing and characterizing error
in the measurement of formants and front cavity resonances near the release of a stop
consonant. The output of a commercial formant tracker, and time-averaged power spectra
of the burst, are modified and searched. by rule, to imitate the measurements of a human
judge on a training set: the resulting algorithms are referred to in this thesis as rule-based
algorithms. The measurement error of the algorithm, as compared to a human transcriber,
is then modeled in the same way that differences between two human judges are measured:
errors on a test set are measured, and, depending on the number of tokens in the test set,
confidence limits are computed for the error mean, error variance, and probability of large
errors.

The explicit goal of this chapter is to design formant and burst spectral measurements
which imitate, as closely as possible, the measurements made by a human judge. The
implicit goal is to create algorithms which can be used in every application for which
manual measurements have previously been used, specifically, in speech sound classification
(introduced in section 1.1, and covered in more detail in chapter 5) and for inference of the
distribution of articulatory variables (introduced in section 2.4.2).

Phonetic classification and articulatory inference require detailed knowledge about any
possible errors in an acoustic measurement. This chapter will develop four types of error
model. First, the mean and standard deviation of a simple additive Gaussian error model
will be calculated. Errors in the measurement of frequency parameters will be shown to
contain outliers not well modeled by a Gaussian; these outliers will be modeled using mixture
Gaussian models, and using a non-parametric analysis of the phonetic contexts in which
they occur. Finally, errors in the measurement of amplitude parameters, and of F1 at stop
release, will be shown to be correlated with the correct value of the measurement, and
therefore to require a heteroskedastic error model.

3.1 Signal Representation

In order to draw as much as possible on the prior experience of the judges, the measurements
in this chapter are formulated in terms of signal representations typically used in interactive
phonetic analysis.



3.1.1 LPC-based formant frequencies

In many experiments in this thesis, estimated formant frequencies during aspiration and
voicing are based on the roots of an LPC polynomial, as computed by the Entropic Signal
Processing System formant tracking algorithm discussed in section 1.2.2.

The order of LPC analysis is based on speaker gender. It is generally agreed that LPC
analysis is most useful if one complex pole pair is allocated to each expected formant, plus
two complex pole pairs to represent variations in the spectral tilt. In the Entropic formant
tracker, speech is downsampled to a 10000 Hertz sampling rate before LPC analysis. Males
and females are expected to have five and four formants, respectively, in the first 5000 Hertz,
so male voices were analyzed using fourteenth order LPC analysis (7 complex pole pairs),
and females were analyzed using twelfth order analysis.

3.1.2 Time-averaged power spectrum of the burst

During transient and frication excitation, the transfer function is not well modeled by an
all-pole model. The speech production theory sketched in chapter 2 suggests that measure-
ments of the frequency and amplitude of the front cavity resonance, and of the number of
measurable back cavity resonances in the spectrum. may be useful for classification.

In this chapter, burst spectral information is measured from a time-averaged power
spectrum Py(f), computed using the algorithm discussed in section 2.1.4. DFT spectra are
first computed using 6ms Hamming windows, and with zero preemphasis. DFT amplitudes
are squared to provide an estimate of the power spectrum, and 7-10 consecutive overlapping
power spectra are averaged to form a smoothed spectral estimate (step 1ms; number of
spectra to average depends on the experiment). The Hamming windows are located as
late as possible in the signal, provided that the first window is centered on or before the
transcribed release, and the last window is centered no less than 2ms prior to the transcrived
voice onset.

3.2 Knowledge Representation and Algorithm Design

This section describes the knowledge-based development of algorithms for accurate measure-
ment of formants during aspiration and voicing, and of front cavity resonance information
during frication. In this section, the prior knowledge of a human transcriber is formalized
using Bayesian a priors distributions. These a priori distributions, combined with some
knowledge of the randomness in the signal representation, are used to derive measurement
algorithms which maximize an a posteriori probability of correctness. It should be noted
that human judges are more likely to think in terms of measurement algorithms and rules
than they are to think in terms of Bayesian priors; the Bayesian analysis pursued here is
merely an attempt to formalize the knowledge representation.

3.2.1 Burst front cavity resonance

Both speech production theory and articulatory measurements suggest that the place of
articulation of a stop is almost uniquely specified by the length of the front cavity. In almost
all cases, the first front cavity resonance frequency Fy; is related to the front cavity length
I by the simple formula Fy; = ¢/4ls. so that a correct measurement of the first front cavity
resonance frequency almost always specifies place of articulation. This section presents
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Figure 3-1: Schematized a priori distribution of possible front cavity resonance frequencies.
F2(t+20) and F3(t+20) are the F2 and F3 measurements 20 milliseconds after release.
which are assumed to be the first reliable formant measurements. With no knowledge of
the stop or vowel identity, the most we can say is that the front cavity resonance must be
between the vicinity of F2(t+20) and some fixed upper bound.

Bayesian models of theoretical and empirical knowledge about front cavity resonance peaks.
and shows how the models can be used to specify a measurement algorithm.

A priori distribution

Prior studies indicate that the front cavity resonance of a velar stop usually equals the onset
frequency of F2 or F3 of the following vowel, while the front cavity resonance of an alveolar
stop usually equals the onset frequency of F4, F5, or perhaps F6 (e.g. Stevens, 1996). With
no other a priori information about the placement of the front cavity resonance. it seems
reasonable to assume that the front cavity resonance is equally likely to be at any of these
formant frequencies.

Unfortunately, formant measurements at release are unreliable, and an estimate of the
front cavity resonance range based on erroneous formant measurements might, in the worst
case, not include the real resonance peak. There are two solutions: we can use measurements
from aspiration or voicing (at least 20 ms after release), or we can use a constant frequency
threshold representing the most extreme expected formant.

Measurements of F4, F5, and F6 are likely to be erroneous, even if measured in clear
voicing, so it is probably most useful to assume that the front cavity resonance of an alveolar
is equally likely to take any frequency below some reasonable constant upper bound. The
value of this upper bound will be determined empirically in section 3.3 to be roughly 6300
Hertz.

F2 and F3 can usually be measured with some accuracy within 20-30 milliseconds after
release, but the formant frequencies 20-30 milliseconds after release may be different from the
onset frequencies at the moment of release. In order to make use of a delayed measurement
of F2, we will have to make allowance for a reasonable amount of formant motion at onset.

This chapter assumes the simplified a prior:i distribution shown in figure 3-1. In this
distribution, the front cavity resonance is assumed to be equally likely to take any frequency
between the F'2 onset region and about 6300 Hertz. The F2 onset region is defined as the



set of frequencies within some maximum distance of a post-frication F2 measurement. This
maximum distance will be determined empirically in section 3.3 to be roughly 200 Hertz.

Variance in the signal representation

In looking for front cavity resonances, we begin with the assumption that a front cavity
resonance always appears as a convex peak in the DFT spectrum. This assumption greatly
simplifies analysis, and is almost always true. According to human judges, the front cavity
resonance was marked by a peak in all of the 84 alveolar and velar training tokens, and 143
of the 144 alveolar and velar test tokens.

According to the model, then, if there is a front cavity resonance, there are always one or
more convex peaks in the burst spectrum between the F2 onset frequency and 6000 Hertz,
one of which must be associated with the front cavity resonance. Of the other peaks, some
may be caused by random fluctuations in the source spectrum, some may be caused by
back cavity or constriction resonances, and, if the first front cavity resonance is below 2000
Hertz, one may be the second front cavity resonance. If there is no front cavity resonance
(that is, if the stop is labial), there may be peaks caused by back cavity resonances and
random fluctuations, or there may be no clearly defined spectral peaks.

The amplitude distributions of front cavity resonances, back cavity resonances, and ran-
dom spectral fluctuations were explored in section 2.2.6. In that section, we concluded that
the first front cavity resonance is almost always the largest peak in a burst spectrum, with
the possible exception of some high-frequency alveolar resonances. In a Bayesian analysis,
the dominance of the front cavity resonance can be represented by a model in which the
probability distribution of front cavity resonance amplitudes is a monotonically increasing
function of amplitude. The simplest such model, assuming we begin with a log-magnitude
spectrum, is one in which the distribution of front cavity resonance amplitudes, P;(F1). is
logarithmic between an arbitrary minimum amplitude and an arbitrary maximum ampli-
tude, independent of the amplitudes of any other peak in the spectrum:

Pr(P () o log (o 20) . Xyurw < PalFp) < Xarax (3.1)

The theory in section 2.2.6 suggests that equation 3.1 should be modified slightly, to rep-
resent the negative correlation between amplitude P;(Fy;) and frequency Fy,. Section 3.3
will describe a simple empirical rule, in which the amplitude of a high-frequency front cav-
ity resonance is occasionally as much as 1dB lower than the amplitudes of lower-frequency
back-cavity resonance peaks in the same spectrum.

Algorithm design

Given the amplitudes and frequencies of convex peaks in a burst spectrum, figure 3-1 and
equation 3.1 can be combined to determine the a posteriori probability distribution of the
front cavity resonance. The resulting distribution is shown in figure 3-2.

According to the model, the probability of the front cavity resonance equaling any
frequency which is not a convex peak, or which is outside of the range shown in figure 3-1,
is zero. What remains is a discrete set of frequencies, corresponding to the convex spectral
peaks F,, in the range of interest. The a posteriori probability of the front cavity resonance
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Front Cavity Resonance Prob, Given DFT Peak Measurements
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Figure 3-2: Schematized a posteriori probability distribution of the front cavity resonance
frequency Fyy, given a particular burst spectrum. In the example shown, five convex spectral
peaks have been identified in the frequency range of interest, with log amplitudes of 74, 60,
74, 67, and 40dB, respectively (measured relative to an arbitrary minimum amplitude).
According to formulas specified in the text, the a posteriori probability of the front cavity
resonance being located at any of these five peak frequencies is proportional to the log
amplitude of the corresponding spectral peak.

equaling any peak in this set is proportional to the log amplitude of the peak:
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A maximum likelihood estimation algorithm based on equation 3.2 simply picks the
largest spectral peak in the range of interest. If two peaks have nearly the same amplitude,
further information is needed to differentiate the two. Empirical investigations in section 3.3
will suggest that, for the particular microphone and analysis conditions used here, if two
peak amplitudes differ by less than 1dB, the peak which is higher in frequency should be
preferred.

3.2.2 Other burst spectral measurements

Other burst spectral measurements may also be useful in distinguishing between the three
stop places of articulation. This section briefly discusses measurements of burst spectral
amplitude, and of the number of back cavity resonances.

In addition to the front cavity resonance measurement described above, there should also
be some way of identifying bursts which have no front cavity resonance, since in these cases,
the peak-finding algorithm described above produces a meaningless answer. According to
the production theory in section 2.3, the front cavity resonance of an alveolar or velar stop
gives the burst spectrum a 10-20dB boost at the resonant frequency. This implies that
velar stops are 10-20dB more intense than labial stops in the F2-F3 region of the spectrum,
and alveolar stops are more intense than labials in the F4-F5-F6 region of the spectrum
(provided that the recording levels are similar). Amplitude measurements in these two
frequency ranges are therefore used to discriminate labial stops from each of the other two



places of articulation, with the exact frequency ranges determined empirically in section 3.3.

According to section 2.2.2, stops which are released quickly have a lower constriction
impedance, and therefore more coupling between the front and back cavities, than stops
which are released slowly. Section 2.3 suggests that labial and alveolar stops are released
more quickly than velars. To the extent that this is true, there should be more back cavity
resonances visible as pole-zero pairs in the burst spectra of labials and alveolars than in the
burst spectrum of a velar. If this distinction exists, it should be possible to take advantage
of it by simply counting the number of significant peaks in the burst spectrum, where the
definition of “significant” will be determined empirically in section 3.3.

3.2.3 Formant frequencies above F1

The roots of a carefully measured LPC polynomial provide a good estimate of formant
frequencies during voicing, and an LPC root-finding algorithm, such as that used by the
Entropic formant tracking algorithm, is a good place to start when looking for formants.
During aspiration, however, LPC may occasionally mistakenly find a tracheal resonance
instead of a formant, while during frication, production theory predicts that only front
cavity resonances show up as roots of the LPC polynomial. Human transcribers are very
good at making use of their knowledge of formant continuity to fill in sections of a formant
track which are missing from the signal. This section presents a Bayesian model of human
knowledge about formant tracking, and then apply the model to derive an algorithm for
smoothing the poles of an LPC formant tracker.

A priori distribution

Formants are the natural frequencies of a given physical system (the vocal tract, between the
glottis and the lips), and as such, they are constrained to change continuously as a function
of time, except occasionally when a formant crosses the frequency of a subglottal resonance
(see section 2.2.5). We can model this constraint by modeling the a priori likelihood of a
formant’s location at each time as a bell-shaped curve, centered on the formant value which
would be predicted using continuity constraints.

Figure 3-3 shows a simple a priori distribution, in which the formant prior at time ¢
is a function only of the measured formant at time i + At, for some suitable step size At.
The width of the bell-shaped curve should be determined empirically, but it should also
be made large enough to allow for occasional discontinuities of 200-300 Hertz as a formant
crosses the frequency of a subglottal resonance. Section 3.3 will determine a general width
parameter which is a function of the width of this curve.

Signal variance

Careful LPC analysis can generally be assumed to produce accurate formant measurements
during modal voicing, that is, beginning one or two pitch periods after the transcribed voice
onset. LPC analysis of an aspiration spectrum produces occasional errors, as discussed in
section 2.2.5. LPC analysis of a frication spectrum, during the first 20 milliseconds or so
following a stop release, is generally expected to measure only formants which happen to
be associated with the front cavity, and to largely ignore back cavity resonances.

Formant tracking errors can be small errors, in which the frequency of a peak is shifted
slightly because of a random spectral null, or large errors, in which the LPC polynomial
models entirely the wrong peak. Formally. we can assume that measurement errors ¢ are
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Figure 3-3: Schematized a prior: distribution of a given formant frequency, as a function of
a later measurement of the same formant. With no information about the consonant or the
vowel, we can only predict that the formant is continuous, hence a bell-shaped distribution.

normally distributed over a narrow region with probability 1 — P, and normally distributed
over a much broader region with probability P:

P(e) = (1 - P)N(—) + PN(—), 02> oy (3.3)

where N (z) is the unit normal distribution.

Our knowledge that formant errors are more likely during frication than during voicing
is easily incorporated into equation 3.3 by making P a function of time. The likelihood o/
formant errors during frication can be represented by a large P during the first 20ms after
release. Formant errors during aspiration are less likely, so P can be slightly lower during
aspiration. Finally, if formant errors during modal voicing are judged to be impossible, P
can be set to zero beginning 10-20ms after the onset of voicing.

Measurement design

Equation 3.3 and figure 3-3 can be combined to specify an algorithm which smooths each
formant track backward from the vowel toward consonant release. The empirical study
discussed in section 3.3 will determine that LPC formant measurements after about 20ms
of voicing can be considered to be reliable. Working backward from the vowel, the a
posteriori probability distribution of a formant at time ¢, given the formant measurement
at time t + At, can be calculated by multiplying the error model of equation 3.3 by the
continuity model shown in figure 3-3.

Figure 3-4 shows two examples of a posteriori distributions which might be used in the
extension of a formant Fn(t 4 At) backward in time to F'n(t). In the top part of the figure,
the LPC polynomial at time ¢ has a root which is close to Fn(t + At), and this root is
therefore judged to be the most likely extension of the formant. In the bottom part of the
figure, the closest LPC root at time ¢ is far from Fn(¢ + At), and is therefore judged to be
an unlikely extension of the formant. Since the LPC polynomial provides no other formant
candidates, the maximum likelihood estimate of the formant is just Fn(t) = Fn(t + At).
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Figure 3-4: Schematized a posteriori probability distributions for two formant frequency
tracks. In the upper plot, the LPC root at time ¢ is close to the formant at ¢ + At, and is
therefore judged to be a continuation of the formant. In the lower plot, the closest LPC root
at time ¢ is far from the formant at time ¢+ A¢, and is therefore judged to be a measurement
error.

3.2.4 First formant measure

The first formant is subject to the same continuity constraints as all of the higher formants.
but the first formant must also satisfy one additional constraint: at the release of a conso-
nant. the frequency of the first formant should aiways rise. Transient ringing and subglottal
resonances at release of a stop, and nasal resonances at release of a nasal, often introduce
strong peaks between roughly 600 and 1000 Hertz which hide the rise of the first vocal tract
formant.

Figure 3-5 shows an a prior: distribution of F1(¢). as a function of F1(t + At), which
represents both the continuity of F1 and the fact that F1 is expected to rise as a function
of t. The distribution is bell-shaped, but asymmetric. F1 is expected to rise: the expected
value of F1(t) is lower than F1(t+At). Given no other information, however, the maximum
likelihood estimate of F1 at time t is still F1(¢t) = F1(t + At).

The model of measurement uncertainty for F1 should be the same as it is for other
formants, although the probability of an erroneous measurement P may be higher for F1
during aspiration than it is for other formants.

If P = 0 during modal voicing (i.e. beginning 10-20ms after voice onset), F1 can be
smoothed backward in time from the vowel, just like the other formants. Tracing backward
into the release, F1 at time t + At is connected backward to the lowest root Fy;(t) of the
LPC polynomial at time ¢. If F;(¢) is lower than F1(t + At), as shown in figure 3-6a, then
F, is usually the most probable formant at time ¢. If F;1(¢) is higher than F1(t + At) by
more than some threshold value, F;1(t) is judged to be a subglottal or nasal resonance, and
the maximum likelihood estimate of the formant is F1(t) = F1(t + At).
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Figure 3-5: Schematized a priori distribution of F1 at time ¢, given a measurement of
F1(t+ At). Distribution is skewed, representing our expectation that F1 rises as a function
of 1.
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3.3 Imitating Human Performance on a Training Set

The presentation in section 3.2 describes the algorithm design process as an exercise in the
application of speech production theory. In fact, speech production theory allows many
variations on each of the described algorithms. This section describes experiments in which
the precise forms of the algorithms described above, and the values of their temporal and

frequency thresholds, are adjusted by a human judge to meet an empirical performance
criterion.

3.3.1 Training data

The algorithms outlined in section 3.2 were adjusted by a human judge (the author of
this thesis) so that the algorithms would imitate his measurements on a training set of
consonant releases, with as few large measurement errors as possible. The training set
consisted of 20 tokens of each consonant, split evenly by speaker gender, with right contexts
drawn at random from the vowels, glides, and liquids in TIMIT (including 11 alveolar
tokens in retroflex context, but none in lateral context). This database is referred to in this
thesis as the KB Train (knowledge-based training) database; a list of tokens is provided in
appendix A, section A.l.

The judge attempted to produce measurements of the true vocal tract resonances 20ms
and 50ms after consonant release, and of the true front cavity resonance at the instant
of release. In addition to measurements of the vocal tract resonances, two burst spectral
amplitudes and a convex peak count were measured. Measurements of low-frequency and
high-frequency spectral amplitude are designed to represent, as much as possibie, the ampli-
tudes of front cavity resonances in velar and alveolar stop spectra, respectively. The convex
peak count is defined as the number of convex peaks in the spectrum within some thresh-
old distance of the spectral maximum; the amplitude threshold was adjusted to represent.
as accurately as possible, the distinction between “compact” velar spectra and “diffuse”
alveolar spectra.

All measurements were performed non-interactively, using a spectral representation sim-
ilar to that available to the automatic measurement algorithms. Burst spectral information
was measured from a single time-averaged power spectrum, consisting of the average of
seven consecutive squared DFT spectra (step lms). Formant frequency measurements were
based on a list of candidate formants generated by the ESPS formant tracker, combined
with time-averaged power spectra 20ms and 50ms after consonant release. The judge was
given the identity of each consonant, and its phonetic context.

3.3.2 Formant measurement algorithms

An algorithm for automatic measurement of onset and vowel target formants is defined by
the application of simple smoothing rules. All automatic formant measurements are based
on roots of the LPC polynomial, as calculated by the formant tracker packaged with the
Entropic Signal Processing System. No gross formant measurement errors were found in the
training data more than 10ms after the transcribed voice onset, so formant tracks proposed
by the ESPS tracker are assumed to be 100% correct beginning 20ms after the transcribed
voice onset. Earlier formants are smoothed backward from the vowel toward the release,
with a 5ms step between analysis frames.



First formant measures

At each time ¢, the first formant F'1(t) is estimated on the basis of the first root of the LPC
polynomial, Fy(t), and of the known first formant at time t + 5ms, F1(t + 5). If F(¢)
is too high, it is judged to be a subglottal or nasal resonance, and the formant estimate
is F1(t) = F1(t + 5). If Fy1(t) is sufficiently low, it is judged to be a continuation of the
formant track: F1(t) = Fy1(t). A threshold specifying that Fy;(¢) < Fy1(t 4+ 5) + 50 Hertz
was determined to divide these two cases for almost all training tokens.

Second and third formant measures

At each time ¢, the nth formant Fn(t) is estimated on the basis of its known value at time
t + 5ms, Fn(t + 5), and of the root of the LPC polynomial F;;(t) closest in frequency to
Fn(t +5). The formant track Fn(t) must be allowed to jump discontinuously across the
frequency of a subglottal pole, but should otherwise be constrained to be as continuous
as possible. In the KB Train database. a small number of measured formant tracks were
discontinuous by more than 300Hz in 5ms, but none were discontinuous by as much as
400Hz, so a rule was implemented requiring formant frequency discontinuities to be less
than 400Hz. If the absolute difference between Fn(t+ 5) and Fy;(t) is less than 400 Hertz,
then Fn(t) = Fy;(t), else Fn(t) = Fn(t +5).

3.3.3 Burst spectral measurement algorithms

All burst spectral measurements depend on the definition of a frequency band of interest.
corresponding to the frequency band in figure 3-1 in which the front cavity resonance has a
non-zero a priori probability of occurrence. This band-limited spectrum will be referred to
as the front cavity resonance spectrum.

The front cavity resonance spectrum, and the four burst spectral measurements derived
from it, are defined by a small number of rules. Application of these rules to the convex
peaks of the burst spectrum produced measurements similar to those transcribed by the
human judge.

Front cavity resonance spectrum

The front cavity resonance spectrum is defined to be a band-limited portion of the time-
averaged power spectrum of the burst, where the power spectrum was computed, in this
experiment, as the average of 7 consecutive squared DFT spectra (step 1ms), with zero
preemphasis.

A high-frequency boundary at 6300 Hertz was found to be high enough to include all
alveolar front cavity resonances in the training data. The low-frequency boundary was
defined as being 200 Hertz below a measurement of F2. The measurement of F2 20ms after
release was determined to be early enough to reliably indicate the frequency of a velar front
cavity resonance, but late enough to be rarely influenced by frication noise.

Front cavity resonance frequency

The highest-amplitude peak in the front cavity resonance spectrum was found to correspond
to the front cavity resonance in almost all cases.

In three cases, the front cavity resonance spectrum of a non-retroflex alveolar stop
contained a back cavity resonance, at the frequency of F2, with an amplitude equal to or
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Figure 3-7: Amplitudes of the highest peak in the F2/F3 and F4/F5/F6 range, velar (top)
and non-retroflex alveolar (bottom) tokens only.

1dB higher than that of the front cavity resonance (figure 3-7). In order to correctly identify
the front cavity resonances of these three training tokens, a rule was implemented favoring
the highest in frequency out of any set of peaks with amplitudes within 1dB of each other.

In the burst spectra of the 11 retroflex alveolar stops in the KB Train database (not
shown in the figure), the front cavity resonance frequency was always the largest peak in
the spectrum, with no peaks of similar amplitude at higher frequency. All but one of the
11 retroflex stops had front cavity resonance frequencies between 2000 and 3500 Hertz.

Number of peaks

As a measure of compactness, the number of “significant” peaks in the front cavity resonance
spectrum is counted. A definition of “significance™ in terms of relative amplitude was found
to provide a reasonable measure of compactness: a “significant” peak is defined to be a
peak whose amplitude is no more than 10dB below the amplitude of the largest peak in the
front cavity resonance spectrum.

Amplitude measures

Burst amplitude measurements were designed to discriminate between labial stops, which
do not have a front cavity resonance peak, and alveolar and velar stops, which do. It
was discovered that, in the KB Train database, the best discrimination between these two
classes is provided by a pair of frequency bands which, combined, cover a range slightly
larger than the front cavity resonance spectrum. Low-frequency amplitude is measured
to be the amplitude of the highest peak in the band between 1000 and 3400 Hertz, and
therefore often includes strong back cavity resonances at the release of an alveolar stop.
The high-frequency amplitude is measured to be the peak amplitude in the band between



2700 Hertz and 7400 Hertz.

If there is no peak in a band, it is not clear how the “peak amplitude” should be defined.
In classification experiments, it is useful to assign bands without peaks a “peak amplitude”
measure which is lower than any peak amplitude observed in the same band in tokens
which do have peaks, but not too much lower. In experiments in this thesis, two alternate
and equally arbitrary conventions were adopted: the “peak amplitude” measure of a band
with no peaks was sometimes set to 15dB below the overall DFT peak amplitude, and
was sometimes set to the amplitude of the lowest in-band spectral valley. Neither of these
performed better than the other in classification experiments.

3.4 Statistical Models of Measurement Error

An automatic measurement algorithm is not useful for phonetic studies without reliable
estimates of the aggregate measurement error. This section describes experiments in which
the performance of the algorithms described above was compared to the transcriptions of
human judges on a test set. The distribution of measurement errors was then modeled using
several statistical models, and confidence limits on the error were computed.

3.4.1 Reference measurements

The algorithms described in section 3.3 were tested on a database consisting of 324 con-
sonant releases: nine consonants (six stops. three nasals) x two genders x eighteen right
contexts. This database is referred to in this thesis as the Error Modeling database; a list
of tokens is given in appendix A, section A.2.

Two human judges, each with at least five years of phonetic training, attempted to
measure vocal tract resonances at the given stop releases (one of the judges was the author
of this thesis). Judges were given full information about each sentence, including the tran-
scription, and were allowed to use any spectral representations which they found useful in
estimating the requested measurements.

The judges were instructed to measure vocal tract resonance frequencies as accurately
as possible at six specified times in each waveform (at ten millisecond intervals, from 5 ms
to 55 ms after the transcribed release). One of the judges relied primarily on DFT spectra
computed with a 14 ms Hamming window, supplemented by LPC spectra computed with a
20 ms window; the other judge chose to use time-averaged DFT spectra with a 10 millisecond
averaging window.

In addition to the vocal tract resonance measurements, judges were asked to make
several measurements on the burst spectra of the stop releases. First, for velar and alveolar
stops, judges were asked to measure the first front cavity resonance frequency. Second,
judges were asked to measure the amplitudes of the highest peaks in two bands, which were
defined in terms of formants: the “low-frequency” band was defined as the band containing
the speaker’s typical F2 and F3, while the “high-frequency” band contained the speaker’s
typical ¥4, F5, and F6. Finally, the judges were asked to estimate the “diffuseness” of the
spectrum, on a scale from 1 (most compact) to 5 (most diffuse).

Roughly one-third of the consonants were transcribed by both judges. After transcrib-
ing these syllables individually, the judges compared their measurements to make sure that
they were choosing the same peak for each frequency measurement. Remaining differences
between the judges should therefore be entirely caused by differences in the signal repre-
sentations used.



I \'Ieasure H N | Tq ﬂMean l Std Dev ‘ Min | Max |
1 (Hertz) 561 | 0.99 || -13 36 -158 | 100
F2 (Hertz) 700 | 0.98 || 1 47 -257 | 237
F3 (Hertz) 662 | 0.99 || 6 55 -220 | 225
Resonance (Hz) 63 | 0.97 | 10 50 -170 | 131
Low Freq Amp (dB) | 86 | 0.97 || 16.0 | 3.2 34 | 270
High Freq Amp (dB) || 87 | 0.96 || 15.5 | 3.1 6.2 | 21.5
| Diffuseness 88 [ 0.93 || 0.3 1.0 -2 3

Table 3.1: Signed differences between the two human judges on tokens which were tran-
scribed by both. F1, F2, and F3 include six measurements per token, for more than 100
tokens. The burst spectral measures are the front cavity resonance frequency, low frequency
and high frequency amplitudes, and relative diffuseness.

The difference between the judges’ scores on each measurement are presented in table 3.1.
In this table, ry is a test of the goodness of fit of a Gaussian model, which will be described
in the next subsection. The high values of r, in table 3.1 indicate that all differences are
relatively well modeled by a Gaussian distribution, except that differences in the diffuseness
measure are always small integer values {usually 0 or 1), and are therefore not well modeled
by a Gaussian. Since each judge was allowed to choose his own spectral representation,
there is a large mean difference in the amplitude measurements.

3.4.2 Confidence limits for a« Gaussian error model

Measurements of the two judges were combined to form a reference set, against which the
algorithn. was tested. For all tokens transcribed by both judges, the two sets of measure-
ments were averaged. Amplitude measurements of one judge were linearly shifted by the
amount of the average difference before averaging; frequency and diffuseness measurements
were averaged with no prior adjustment.

The algorithms described previously were used to automatically measure formant fre-
quencies, burst front cavity resonance and amplitudes, and diffuseness (measured as the
number of large peaks in the burst spectrum). These measurements were compared to the
reference measurements produced by human judges, and the difference will be referred to
as the "measurement error” of the algorithm.

Table 3.2 gives estimates, and 99% confidence limits, for the error mean and error
standard deviation of each measurement. In this table, the large average difference be-
tween automatic and manual measurements of spectral amplitude is caused by the different
spectral representations used by humans and machine. There are also significant differences
between the automatic and manual measurements of F1, F3, and the front cavity resonance,
which can not be easily explained in terms of differences in spectral representation.

Differences shown as significant in table 3.2 should be interpreted with caution, because
of the low quantile correlation coefficients 7y listed in the table, and the obvious nonlinearity
of the Q-Q (quantile-quantile) plots shown in figure 3-8. A Q-Q plot (Johnson and Wichern,
1992) displays the measurement errors, sorted in increasing order, plotted against an equal
number of samples drawn uniformly from a Gaussian distribution. If the measurement errors
are also drawn from a Gaussian distribution, the Q-Q plot should be a straight line, and the
normalized correlation r4 between the ordinate and abscissa should equal 1.0. Instead, all
of the r, coefficients in table 3.2 are significantly less than unity (p < 0.01), although errors



Formant Measures

Measure N |rg Mean (99% Limits) || Std Dev (99% Limits)
Onset F1 (Hz) 594 | 0.91 -43 (-55,-31) 114 (106,123)
Vowel F1 (Hz) 827 | 0.84 -26 (-34,-18) 86 ( 81, 92)
Onset F2 (Hz) 871 | 0.85 -1 (-20, 18) 214 (201,228)
Vowel F2 (Hz) 925 | 0.73 6 (-10, 22) 188 (177,200)
Onset F3 (Hz) 864 | 0.91 40 ( 21, 59) 216 (203,230)
Vowel F3 (Hz) 919 | 0.78 38 ( 21, 54) 193 (182,206)
Burst Spectral Measures

Resonance (Hz) 142 | 0.77 -156 (-304,-8) 674 (584,794)
Low Freq Amp (dB) || 214 | 0.98 | -51.5 (-52.8,-50.2) 7.3 (6.5,8.3)
High Freq Amp (dB) || 214 | 0.99 | -56.6 (-57.5,-55.6) 5.3 (4.7.6.1)
Diffuseness 214 {097 || -0.2 {-0.5.0.0) 1.5 (1.3.1.7)

Table 3.2: Mean and standard deviation of differences between automatic measurements and
measurements transcribed by human judges, with bilateral 99% confidence limits. *
includes measurements 0, 10, and 20ms after release,
30. 40. and 50ms after release.
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Figure 3-9: The cumulative probability of finding a measurement error greater than any
given frequency, with 95% confidence limits. Plots have been truncated at 500 Hertz, in
order to make the threshold behavior near 150 Hertz more visible.

in the measurement of spectral amplitudes and number of peaks (not shown) can probably
be considered Gaussian for most practical purposes.

The reason that the errors do not fit a Gaussian model is clearly displayed in figure 3-8.
In this figure, the smaller errors fit the normal error model quite well, but the larger errors
(both positive and negative) are much larger than the errors that would be produced by a
Gaussian model.

Measurement errors which are too large to come from a normal distribution are often
called outliers, and often result from the amplification of small errors by a nonlinear process.
In this case, the process of peak picking is decidedly nonlinear: a slight change in the relative
amplitudes of formant and subglottal resonances. for example, can cause LPC to choose the
wrong peak. These large outliers are qualitatively different from the low-amplitude errors,
which are caused by more normally distributed sources of error, including possibly peak
centering strategies, and differences in signal representation.

The next two subsections consider approaches to the modeling of these outliers.

3.4.3 Explicit modeling of outliers

In experimental situations, a useful model of measurement error should include, first, an
estimate of the likelihood of the outliers, and second, an estimate of their size. This section
considers techniques for explicitly modeling measurement outliers using nonparametric tools
and mixture Gaussian distributions.



Outlier Tq
Measure Threshold || All Errors | Small Errors | Large Errors
F1 121 Hz 0.872 0.991 0.954
F2 156 Hz 0.799 0.997 0.954
F3 169 Hz 0.853 0.997 0.976
Resonance || 180 Hz 0.768 0.985 0.979

Table 3.3: Separation of measurement errors into low-amplitude “normal errors” and high-
amplitude “outliers.” Measurements are F1, F2, and F3 (six measurements per consonant
release) and the front cavity resonance (one measurement per stop release).

A non-parametric model

Figure 3-9 shows, for the front cavity resonance and all three formants, the probability
of encountering an error larger than the given threshold. 95% confidence limits for each
measurement are shown using dotted lines. The confidence limits were calculated to three
decimal places by iteratively testing the parameters of a binomial distribution. Notice that.
for each measurement. the probability of an error drops off steeply until a sort of threshold
is reached, and drops off more slowly thereafter. For practical purposes, errors above this
threshold can be considered outliers. and errors below this threshold can be considered
relatively normal.

Table 3.3 lists approximate values of the threshold for each measurement. The three
formant thresholds are each calculated as the inverse of the decay constant in an expo-
nential probability modcl, where the models were estimated by fitting straight lines to the
logarithms of the curves shown in figure 3-9. The exponential probability model does a poor
job of modeling details of the distributions, but the estimates of the thresholds for formant
outliers were considered reasonable, and are therefore used in table 3.3. The front cavity
resonance threshold. on the other hand, was read directly from figure 3-9: the threshold.
180 Hertz, is the start of the long flat section in figure 3-9, and seems to represent a natural
boundary in that distribution.

As a measure of the normality of each subset of the errors, table 3.3 lists Gaussian
quantile correlations r, separately for both low-amplitude and high-amplitude errors. Our
previous characterization of the low-amplitude errors as “normal errors” seems to be justified
by the rg statistics, which rise when high-amplitude errors are removed. Surprisingly, the
degree of normality also seems to rise when the low amplitude errors are removed. This
seems to imply that the “outliers” may also be normally distributed, but with a much larger
variance than that of the low-amplitude errors.

A concentric mixture Gaussian model

The idea that low-amplitude and high-amplitude errors are independently Gaussian, with
similar means but different variances, can be modeled using mixture Gaussian models. We
can define a “concentric mixture Gaussian model” to be a model composed of two Gaussians
with the same mean:
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Figure 3-10: Mixture Gaussian models of the formant and front cavity resonance measure-
ment errors (shown: log probability density). Formant mixtures were constrained to have
the same mean; the front cavity resonance model was not so constrained.

where N(z) is the unit normal distribution, € is the error, and g, 0}, 09, and P are trainable
parameters.

Concentric mixture Gaussian models trained for the three formant measurement errors
are shown in figure 3-10. The front cavity resonance is very poorly modeled by a concentric
mixture Gaussian, so the means of the two Gaussian elements were allowed to diverge,
creating the slightly skewed distribution shown in the figure.

The parameter P. for each mixture Gaussian model, is slightly higher than the corre-
sponding probability of an outlier shown in figure 3-9. This is a natural consequence of
the form of the mixture Gaussian model., which explains almost all outliers using the wide
Gaussian element, but adds both Gaussian elements together to explain tokens toward the
center of the distribution.

3.4.4 The effect of context on outlier probability

The test set contains nine consonants (three nasals and six stops), and a wide variety of
right contexts, including two glides, three retroflex sounds, two lateral sounds, two types of
schwa. and nine unreduced vowels. Speech production theory suggests that some of these
syllables have clear, easy to measure formants, and others are subject to more frequent
errors.

Contexts likely to cause large measurement errors were identified by visual clustering
of the test data, with guidance from speech production theory. The resulting definitions of
“high-error” and “low-error” contexts are given in table 3.4.

The best predictor of error in an F'1 measurement is found to be identity of the conso-
nant. Nasal and aspirated consonants cause frequent peak-picking errors near the consonant
release, while only the aspirated consonants with longer voice onset times (/t/ and /k/)
cause a noticeable increase in error rate between 30ms and 50ms after release.
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Time High-Error Number of Measurements
Measurement after Release | Contexts High-Error | Low-Error
Vowel F1 30-50ms 130 697
Onset F1 0-20ms same, plus /m,n,ng,p/ 379 215
Vowel F2 30-50ms Jw,rly/ 209 716
Onset F2 0-20ms same, plus /g,p,t.k/ 503 368
Vowel F3 30-50ms /w,r,er,axr,lely/ 357 562
Onset F3 0-20ms same, plus /g,p,t,k/ 571 293
Peak Frequency | 0 Velar + [y/ 27 115
Alveolar + /w,aa,ae,r.er/

Table 3.4: Definitions of seven frequency measurements, and of contexts in which the mea-
surements are more likely to suffer peak-picking errors. High-error contexts were chosen on
the basis of speech production theory, and of observation of the measured errors.
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Figure 3-11: Cumulative histograms, showing the probability of finding an error larger
than the abscissa coordinate. The solid lines are the measured probabilities for low-error
and high-error contexts; the dotted and dashed lines show 95% confidence limits for the
low-error and high-error contexts, respectively.



Figure 3-11 shows the probability of finding outliers greater than any given frequency,
for both high-error and low-error contexts, with 95% confidence limits. Apparently, most
F1 errors larger than about 100 Hertz can be attributed to the effect of the consonant,
although a small number of very large errors (400-500 Hertz or more) are also found in
low-error contexts.

Errors in F2 and F3 near consonant release are influenced by identity of both the conso-
nant and its right context, but beginning about 30ms after release, it appears that only the
right context strongly influences error rate. Both F2 and F3 are frequently mis-identified
during glides and liquids, because of frequent mergers between neighboring formants (/y/
and /r/ show frequent F2-F3 mergers, /w/ shows frequent F1-F2 mergers, and F3 is often
weak or ambiguous in /1/). F3 is also often lost during syllabic liquids: during retroflex
sounds, F'3 often merges with F2, while during lateral sounds, F3 is often extremely weak.

As shown in figure 3-11, the context classes in table 3.4 are relatively effective at pre-
dicting the frequency of errors in all F3 measurements, and in F2 measurements at least
30ms after release. The F2 onset measurements in high-error and low-error contexts are
not significantly different, indicating that the selected contexts are not a good predictor of
F2 onset measurement errors.

The front cavity resonance measurements show a clear division, at about 200 Hertz,
between small amplitude “normal errors” and large amplitude outliers. Of the 27 “outliers,”
12 occur in the contexts specified in table 3.4. Alveolar bursts in low context (/aa/ and
/ae/) often contain strong back cavity resonances which are mistaken for the front cavity
resonance. The front cavity resonance of a retroflex stop, and of a velar in /y/ context,
often appears as a broad mass of energy composed of several smaller peaks; the measurement
algorithm and the human transcribers often choose peak locations which differ by several
hundred Hertz. Finally, the burst in the syllable /dw/ is often weak, with no clear front
cavity resonance: this was the only context in which voicing of the stop was useful in
predicting front cavity resonance measurement errors.

3.4.5 Correlations between measurements and measurement errors

The discussions in sections 3.4.2 to 3.4.4 assume that the error in measuring a formant
frequency is uncorrelated with the true underlying value of the formant. This assumption.
called the homoskedasticity assumption, is common in statistical analysis, and it allows
us to build powerful error models, as described above. Real-world measurement processes.
however, are often heferoskedastic, that is, measurement errors are often correlated with the
correct value of the thing being measured (Kennedy. 1992). Section 5.1 will show that, if
an error model is to be carried forward into any further analysis of the data, it is important
to correctly model the correlation between measurement and error.

If we assume that the measurement and measurement error are approximately Gaussian,
it is possible to test the assumption of homoskedasticity using standard linear regression
analysis. Let zg be a correct formant or burst spectral measurement, x the corresponding
automatic measurement, and ¢ the measurement error:

r=1x9+€ (3.5)

The joint distribution of normally distributed x¢ and € is completely specified by their means
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Normalized correlation between measurement and error

| Measure Correlation (99% Limits) || Measure | Correlation (99% Limits)
Resonance -0.19 (-0.4,0.0) F1, 50ms -0.27 (-0.5,-0.1)
Diffuseness -0.31 (-0.5,-0.1) F2, 10ms -0.23 (-0.5,0.0)
Low-Freq. Amp ~0.55 (-0.7,-0.4) F2, 50ms 20.26 (-0.5,0.0)

| High-Freq. Amp -0.58 (-0.8,-0.4) F3, 10ms -0.29 (-0.5,-0.1)

(F1, 20ms 0.48 (-0.7,-0.3) F3, 50ms 20.20 (-0.4,0.0)

Table 3.5: Normalized correlation between human transcriptions of the test data and mea-
surement error of the automatic algorithm. 99% confidence limits are calculated using the
Student’s ¢ distribution with 120 degrees of freedom.

1o and p, their standard deviations o and o, and the normalized correlation coefficient

i E[(zo — po) (€ — pte)] (3.6)

On0¢

The assumption of homoskedasticity is exactly the assumption that p = 0.

If we are given N tokens of the correct measurement zy and the measurement error . it
is possible to estimate p by normalizing both zo and ¢, and performing a one-tap, zero-mean
linear regression:

5o %im(z;—ﬁo)(eu)—mn (3.7)

=0 508£
where [ig, G, [ie, and &¢ are the sample mean and sample standard deviation of xg and e,
respectively.

The estimate 5 is nermally distributed with mean p, and the square of the residual
(€ — pxo)? is distributed as a scaled x? random variable (Johnson and Wichern, 1992). By
appropriate calculations, we can derive 100(1 — a)% confidence limits on the value of the
true correlation coefficient p:

L (/’)\)2 (
N—1 :

) 3.8)

e
lp—pl < /4\'—1(‘2“
where ty_1(a/2) is the a/2 critical point of a Student’s ¢ statistic of order N — 1.

Table 3.5 shows the normalized correlation between several manually transcribed mea-
surements and the corresponding measurement errors of the rule-based algorithm, estimated
over the Error Modeling database. The hypothesis of homoskedasticity is rejected with 99%
confidence for 6 out of the 10 measurements. Three measurements are much more strongly
heteroskedastic than the others: the low-frequency and high-frequency burst amplitudes,
and the measurement of F1 20ms after consonant release.

Figure 3-12 compares human and automatic transcriptions of the two burst amplitude
measurements. According to the analysis in section 3.4.2, the standard deviation of the
measurement error € is 5-7dB for both measurements. If measurement error were uncorre-
lated with the correct measurement value, the lower plot in figure 3-12 should be a smeared
version of the upper plot, with 5-7dB of variation added to the edges of the token cloud.
Instead, the lower plot is slightly more compact than the upper plot. Low burst amplitude
measurements have been increased, and, to a lesser extent, high burst amplitude measure-
ments have been reduced. The error in this plot is clearly correlated with the measurements.



Burst Spectral Amplitudes, Human Transcription: o=labial, *=alveolar, x=velar
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Figure 3-12: Burst spectral amplitudes, as measured by human transcribers, and by the rule-
based measurement algorithm. Measurements by human transcribers have been shifted by a
constant in order to make the plots comparable. The rule-based measurement algorithm has
a significant tendency to reduce high-amplitude measurements, and increase low-amplitude
measurements.

3.5 Discussion

This chapter develops and evaluates rule-based algorithms for the measurement of certain
acoustic correlates of stop consonant place.

3.5.1 Algorithm training

The exact form of the algorithms developed here. and the values of various frequency and
amplitude thresholds, were adjusted to imitate the performance of a human judge on a
database consisting of 20 releases of each of the 9 stop and nasal consonants. The judge
was given the identity and context of each stop, but did not use interactive spectral analysis
to verify measurements, relying instead on spectral representations (time-averaged power
spectrum, LPC roots) similar to those used by the automatic algorithms.

The performance of the algorithms on test data suggests that the algorithms were in-
sufficiently trained. Compared to the measurements of judges on test data (generated
interactively by judges using multiple spectral representations), the algorithm picks the
wrong formant peak 10-20% of the time, and the wrong front cavity resonance 20% of the
time.

Three reasons for the apparent fragility of the algorithms presented in this chapter can
be suggested. Correction of these three problems is likely to lead to much more robust
algorithms than those developed in this chapter.

First, the algorithms developed here use extremely simple statistical and speech produc-
tion models, and as a direct result, the models are tuned quite closely to the distribution



of the training data, and are therefore fragile to small variations. For example, the front
cavity resonance measurement, which chooses the highest-frequency peak out of all those
within 1dB of the spectral maximum, might be made more robust by the use of a more
detailed model of the frequency dependence of the front cavity resonance. Similarly, the
formant measurement would probably be more robust if it used a more global continuity
constraint.

Second, the training data in this chapter are measured non-interactively, using the same
spectral data used by the algorithm, while the test data are measured interactively, in order
to encourage the best possible accuracy. As a result, it is possible that the training data
measured by the human judge contain errors resulting from a poor spectral representation,
some of which might have been corrected using interactive analysis. Apparently, limiting
the human judge to the spectral representations of the algorithm is a mistake. Instead, the
judge should be allowed to use as many different representations as he finds useful. If the
algorithm is then unable to imitate the judge’s measurements using a more limited spectral
representation, then the input to the algorithm should also be supplemented, in order to
obtain the most accurate measurements possible.

Finally, the training data set should be more closely matched to the test set. In this
chapter, the training set consisted of only 20 releases of each consonant, in arbitrary and
unbalanced phonetic contexts. As a result, unusual right contexts for each consonant were
not considered in the algorithm design, and some of these contributed extra error to the test
set. For example, /ky/ and /dw/ were not represented in the training data, and were found
to contribute more than the average number of front cavity resonance errors in section 3.4.4.

Enthusiasts of speech production knowledge in the speech recognition community some-
times suggest that constraints based on speech production knowledge can be used as a
substitute for additional training tokens. This may be true when the training database
already consists of several thousand tekens, but when the training database is only a few
hundred tokens, it is slightly misleading. In this chapter and the previous chapter, we have
demonstrated that the e priori constraints imposed by speech production knowledge are
often not very restrictive, but that the application of speech production knowledge as a
continuous guiding principle in the development of measurement algorithms can be useful.
Based on the development of measurements in this chapter, it might be suggested that
speech production knowledge is most accurately characterized as knowledge which guides
the interpretation of the available training tokens, helping us to better generalize the infor-
mation available.

3.5.2 Agpgregate error models

The introduction to this chapter suggests that automatic measurements are only useful if
we have detailed models of the measurement error. This chapter has developed several
detailed models of the aggregate statistical distribution of measurement errors. Aggregate
models, however, have an important shortcoming: an aggregate error model makes the
same error prediction for every utterance, with no regard for the huge range of spectral
differences between utterances. This section discusses the extent to which aggregate error
models might be useful in the applications of speech sound classification and inference of
articulatory correlates. The discussion here concludes by proposing a tighter link between
the measurement algorithm and the error model; this link will be developed further in the
next chapter.



Classification

Most parametric classifiers, including linear discriminant and mixture Gaussian classifiers,
use a feedforward classification algorithm: all relevant measurements are presented to the
classifier as a single measurement vector, and a classification score is computed as an
algorithm-specific function of the given measurements. There is no way to incorporate
an aggregate model of measurement error directly into a parametric classifier, since ev-
erything the classifier knows about variability in the measurements is represented in the
(algorithm-specific) classifier weights.

It is possible, however, to combine parametric classifiers and error models under the su-
pervision of a higher-level program. Carver and Lesser (1992), for example, have developed
a non-speech sound recognizer using an expert system. In their system, signal processing
“knowledge sources” contribute knowledge about the error inherent in different signal rep-
resentations, and the expert system uses this knowledge to decide which representations to
use for a given classification task. Johnson (1994) proposed selecting the best measurements
for a given classification task on the basis of phonetic context, using a table lookup scheme,
and Chun (1996) developed a system which selects measurements using a decision tree; both
of these systems could be modified to incorporate knowledge about measurement error.

In all of these systems, spectral representations are not measured until they are re-
quested by the supervisor program. If measurement errors are compactly distributed (for
example, if errors are Gaussian), and if the error standard deviation is small compared to
the range of measurements characterizing a phoneme, this kind of on-demand measurement
allows significant computational reduction. An expert system classifier using Gaussian error
models, for example, might proceed as follows. First, an acoustic measurement is requested,
and the value of the measurement is classified. If the value of the measurement is sufficiently
close to a category boundary that it might have been pushed across by measurement er-
ror, another measurement is requested. The process continues, with more measurements
performed and classified, until the possibility of a misclassification caused by measurement
error reaches an acceptably low level. In this way. time-consuming acoustic measurements
are only used in the classification of tokens very close to a category boundary.

If error is not compactly distributed — that is, if there are many outliers — aggregate
error modeling is not as useful. For example, in the concentric mixture Gaussian models of
section 3.4.3, any frequency measurement has a 10-20% chance of being an outlier. Outliers
are often large enough to cause classification errors; even a measurement which is far from
any category boundary can be shifted across the boundary by a sufficiently large measure-
ment error. Thus, an expert system using a concentric mixture Gaussian error model is
forced to assume that any measurement, regardless of how close it is to a category boundary.,
has a 10-20% chance of being misclassified because of measurement error.

Measurement of probability distributions

Section 2.4.2 suggests that it may be possible to infer the statistical distribution of an artic-
ulatory parameter from the measured distribution of its acoustic correlates. If a measured
acoustic distribution contains errors, however, the inferred articulatory distribution will
contain similar errors. The power of automatic acoustic measurements to predict articula-
tory measurements therefore depends critically on the reliability of the measured acoustic
distribution.

Suppose o is the true value of an acoustic correlate measurement, and z = zo + €



is a possibly erroneous automatic measurement of the same acoustic correlate. If e is
independent of zg, ! the probability density pL(€) is the convolution of the densities px,(£)
and pe(€), where convolution is denoted by *, and & is a dummy variable:

Pz (&) = pzo(&) * pe(§) (3.9)

If the error distribution pe(£) is compact (e.g. Gaussian), the convolution in equation 3.9
is just a smoothing operation, and the distribution p;(¢) of the automatic measurement is
just a smoothed version of the distribution pz,(£) of the correct measurement. Suppose yo
is an articulatory parameter related to zy by a differentiable function zo = f(yo). Then the
probability distribution p,, (Zwillinger, 1996) is

; : {
Pil€) = peo(1(6) L (3.10)

If the smoothed distribution p, is used in equation 3.10 in place of p.,, the estimated
articulatory distribution py(€) is just a nonlinearly smoothed version of the true distribution
Pyo(§)-

If the error distribution p.(£) contains outliers (e.g. a concentric mixture Gaussian),
then equation 3.9 no longer represents a local smoothing operation. For example, if the
error distribution is a concentric mixture Gaussian composed of a compact Gaussian distri-
bution p.(£), chosen with probability 1 — P, and an outlier distribution p,(€). chosen with
probability P. then the distribution pz{£) is

pz(€) = (1 = P)(Pzo (&) * e(§)) + P(po(§) * po(£)) (3.11)

The first term on the right in equation 3.11 represents a locally smoothed version of p,.
similar to the distributions considered above. The second term is also a smoothed version
of pg,. but the smoothing is over such a wide range that most features of p,, are lost, and
the result looks something like a constant noise floor added to the total distribution p(£).
Thus we find that, if errors are compactly distributed, the distributions of acoustic and
articulatory parameters estimated using erroneous measurements are just smoothed copies
of the actual distributions. An error distribution containing outliers, on the other hand, adds
a sort of “noise floor” over a broad parameter range to both the acoustic and articulatory
parameter distributions, which may mask details of the true parameter distribution.

Aggregate versus individual error distributions

Up to this point, this section has discussed the combination of automatic measurements and
aggregate error models for use in the applications of phonetic classification and articulatory
parameter estimation. Compact (e.g. Gaussian) error distributions have been shown to
produce a locally smoothed measurement distribution, corresponding to a local band of
possibly misclassified tokens near the category boundary of a phonetic classifier. Error
distributions with outliers, on the other hand, have been shown to add a roughly constant
noise floor to the measurement distribution, and to add a corresponding roughly constant
probability of misclassification to all tokens considered by a phonetic classifier. Since all of
the frequency measurements considered in this chapter have significant outliers, it must be

' A heteroskedastic error term requires a few extra calculations, which are not reproduced here.



concluded that classification and articulatory inference based on these measurements would
suffer from a relatively constant noise floor, which would presumably limit the usefulness
of these measurements in either application.

All of this discussion assumes that the only thing known about a given measurement
error is that it is randomly drawn from a particular distribution. To anyone who has
ever attempted manual phonetic transcription, however, this assumption is absurd. When
a human attempts to measure formant frequencies or a front cavity resonance, most of
the measurements he makes are easy, because the formant or front cavity resonance peak
is clearly visible in the expected frequency band. Most of the errors made by a human
transcriber come from a small number of atypical spectra, in which there are either multiple
candidate formant peaks, or no candidate formant peaks. Furthermore, a human transcriber
can usually tell which tokens are difficult to measure, and provide a rough estimate of the
probability that any given formant or front cavity resonance measurement contains a gross
error.

Token-by-token estimates of the probability of error would be tremendously useful in an
expert system speech classifier, and possibly in the inference of articulatory measurements.
If most formants can be measured with little probability of gross error, an expert system
classifier can focus resources (in the form of additional measurements) on the tokens which
are most likely to contain errors. Likewise, an algorithm estimating the histogram of an
articulatory parameter can weight the acoustic input tokens by their probability of correct-
ness. so that a single gross measurement error has less influence on the estimated parameter
distribution.

Although automatic measurement algorithms are more susceptible to error than human
transcribers, most gross automatic measurement errors seem to come from the same kind of
ambiguous spectra that produce human errors. Furthermore, estimation of the probability
of error for each measurement seems to require spectral information which is similar to the
kind of information used to make the measurement in the first place: for example, knowledge
of the frequencies and amplitudes of convex peaks in a burst spectrum is important for both
measuring the front cavity resonance, and for estimating its probability of error. Processing
this information in order to produce an estimate of error, however, requires a degree of
self-supervision which the algorithms developed in this chapter do not possess.

The next chapter develops a formant tracker which uses hidden Markov modeling
(HMM) technology to estimate the spectral uncertainty inherent in each formant mea-
surement.

The introduction of HMM formant tracking into an otherwise knowledge-based thesis
has sparked philosophical complaints from a few reviewers. Historically, the field of speech
recognition has occasionally been divided into the camps of knowledge-based and HMM-
based recognition, where the two camps can be caricatured by saying that engineers using
HMMs want the biggest possible training database, while engineers using knowledge-based
systems think that production knowledge obviates the need for extra training data. The
author of this thesis strongly believes that the historical division of speech recognition into
these two camps is an anachronism, which only serves to keep engineers from seeking the
best solutions to speech recognition problems.

Section 3.5.1 proposes that speech production knowledge is best characterized not as
a substitute for training data, but rather as an aid in the interpretation of training data.
Continuing this line of reasoning, chapter 4 uses HMMs, trained on data, to develop a for-
mant tracker capable of estimating its own measurement uncertainty. This trained HMM
formant tracker is not a substitute for knowledge-based formant trackers; it s a knowledge-



based formant tracker. Speech production knowledge contributes to the choice of formant
frequencies as production states, to the choice of a bell-shaped formant transition probabil-
ity, and to the design of the spectral input parameters. In fact, it might be argued that the
HMM formant tracker in the next chapter incorporates more speech production knowledge
than the rule-based tracker developed in this chapter, because the HMM formant tracker
uses a global rather than a local continuity constraint.



Chapter 4

Stochastic Formant Modeling

This chapter demonstrates a hidden Markov formant tracker which allows us to model the
uncertainty in each formant measure, individually., as the formant is measured. Several
examples of formant uncertainty are presented, caused, for example, by multiple peaks
in the expected formant range, or by the disappearance of a formant peak. Methods for
evaluating the uncertainty model are discussed.

4.1 Phoneme-Dependent HMM Formant Tracking

A strictly bottom-up measurement algorithm. like those described in the previous chapter,
can only make use of context information which is already known. In contrast, a Bayesian
approach. such as a hidden Markov model (Kopec, 1986), can be used to explicitly test
different hypotheses about the unknown information. If the goal is an estimate of the
formant frequencies, we can identify the formant frequencies which are most likely given
the phonetic transcription. If the goal is recognition of consonant place, we can measure
the formants that best fit the model of each consonant place, and then pick out the model
which best explains the data.

This chapter describes a phoneme-dependent hidden Markov model formant tracking
algorithm. In the classification experiments of chapter 5, this model includes a two-level
search space, in which the formant measurements and the phoneme sequence are identified
simultaneously, as shown in figure 4-1. In contrast, all of the experiments in this chapter
assume that the identity and release time of the consonant are known perfectly, and formant
tracking will make use of that knowledge.

4.1.1 A phoneme-dependent transition model

In an HMM formant tracker, the formant frequencies are treated as hidden states of the
production mechanism, rather than explicitly observable features of the spectrum (Kopec,
1986). In the model developed here, as in Kopec’s model, the frequency scale is divided
into discrete formant states, and formant continuity over time is regulated by a bell-shaped
transition probability. Unlike Kopec’s model, the model developed here does not allow
formants to “disappear” occasionally. Instead, formants are required to exist at some real
frequency at all times, and occasional disappearances of the corresponding spectral peak
are handled by the output model. This change has little practical consequence, but follows
naturally from the philosophical view that a formant, as a natural frequency of the physical
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vocal tract, must have a real value at all times, whether or not it is represented in the
acoustic spectrum.

The most important difference between the model proposed here and Kopec’s model is
the introduction of phonemic information. In the model proposed here, formant transition
probabilities are a function of time (relative to the consonant release), and of the underlying
phoneme sequence. This modification is appropriate in two applications: formant tracking
with a known phonemic transcription, and phoneme classification with a known release
time. Formant tracking with a known transcription is considered in this chapter. Phoneme
classification, using the two-level search space shown in figure 4-1, is considered in chapter 5.

A formant tracker with transition probabilities conditioned on both time and phoneme
label is much more complex than a phoneme-independent tracker. In order to be trainable,
the basic transition model must be as simple as possible. In the simplest appropriate model,
each formant is modeled as an independent continuous-state discrete-time Gauss-Markov
process. The parameters of this process are the mean formant frequency as a function
of time (¢, .S), the formant variance af,(t, S), and the inter-frame normalized correlation
coefficient p(t,S), all of which may be functions of time ¢ and of the underlying phoneme
string S:

, Fo(t) — pys(t,S) Fo(t=1)—pp(t-1,5)
Fn t Fn t—1 =."\ - ,S
PRI = 1) (01(?5,5)\/1—/)3(&5) Pt )Uf(t"l’s) 1—03(7&5))

(4.1)
where N () is the unit normal distribution.

4.1.2 A DFT-based output model

In recognition using a hidden Markov model, state variables are identified by inverting a
hypothetical “production model” which specifies the contingent probability of a spectral
sequence given the state. In the model proposed here, the state variables are formant fre-
quencies; phoneme identity and release time are implicit state variables, which are assumed
to be known. The observation sequence consists of the amplitude A(f,t) and convexity
C(f.t) of a time-averaged power spectrum. This section defines the amplitude and convex-
ity, and describes a model of the output probabilities.

To reduce complexity, the output model used here adopts two important simplifications.
First, spectra are calculated using a linear frequency axis, because a linear axis simplifies
modeling and analysis of formant motion, and despite the fact that there is considerable
evidence supporting the use of mel-scale or bilinear frequency warping in speech recognition
(e.g. Davis and Mermelstein, 1980). Second, the influence of a formant is assumed to be
strictly local: the influence of a formant F,(t) on the output spectrum O(t) is limited to
changes in the local amplitude A(Fy,t) and convexity C(F3,t), so that

p(Fn(t). O(t)) = p(Fn(t). A Fust)s Cn(Fm t)) (4.2)

The spectral amplitude at frequency f is defined as the ratio of the time-averaged
power spectral amplitude P.(f,t) to the total DFT energy E(t) = [* Pz(f,t)df. Since
ratio variables are not well modeled by a Gaussian distribution, the ratio Py(f.t)/E(t) is
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Figure 4-2: Lifter used to estimate spectral convexity. The lifter is a seven-sample match to
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transformed using the logistic transform,

Pr(f,t

where the normal formula for the logistic transform (e.g. Johnson and Wichern, 1992) has
been scaled to return an output in decibels.

The convexity measurement C(f,t), computed using the lifter shown in figure 4-2, is an
approximation of the second derivative of the log spectrum as a function of frequency. Even
when two formants merge (section 2.2.5), it is often possible to find the hidden formant by
convolving the spectrum with a short FIR lifter designed to pick out the hidden formant
resonance curve. The lifter used in this chapter, and its cepstrum, are shown in figure 4-
2. The FIR lifter, shown in the upper panel, was designed by using a 400Hz rectangular
window to truncate the spectrum of a 125Hz-bandwidth complex pole pair; the resulting
seven-sample lifter was normalized to have zero mean and unit energy. The lifter has a
band-pass cepstrum, shown in the lower panel of figure 4-2, which amplifies spectral features
with half-periods between roughly 67 and 167 Hertz (roughly the bandwidth of a formant,
although high frequency formants may have larger bandwidths).

For simplicity, we would like to model the distribution of convexity measurements C(f,t)
using a Gaussian distribution. A Gaussian model, however, has the undesirable character-
istic of symmetry: convexity measurements larger than the mean are as unlikely as meca-
surements smaller than the mean. When human judges measure formant frequencies, they
usually locate a formant frequency near a local maximum of C(f,t), implying that the
convexity likelihood function should be non-decreasing. The experiments described in this
chapter model convexity using a “half-Gaussian” distribution, in which all convexity values
above a trained mean parameter are considered equally likely. The half-Gaussian is not re-
ally a probability density, since it does not integrate to unity; in chapter 3, when normalized
probabilities become important, a different model will be introduced.

To summarize, the output model used in this chapter is local, in the sense that a formant



at frequency F;, is assumed to affect only the amplitude A(Fy,t) and convexity C(F,,t)
at the same frequency. The amplitude, after normalization and a logistic transform, is
modeled using a Gaussian distribution; the convexity is modeled using a half-Gaussian.
The mean p(t,S,n) and standard deviation o(t,S,n) of both of these distributions are
allowed to depend on time ¢ (relative to the landmark), the phoneme string S, and the
formant number n (but not the formant frequency):

p(O(t)|Fu(t)) = N (‘A(F” ;i(; ’;’.‘7(3’ 2 ”)> N <min (C(F”ﬁ(; ’;‘:f) 5n) 0>> (4.4)

4.2 Estimating Parameters from a Reference Transcription

The simplified formant model developed above consists of a Gauss-Markov continuity model,
with three trainable parameters, and two Gaussian output distributions, with two trainable
parameters each. A consonant release model consisting of six spectral frames, matched to
three formant models, requires training or interpolation of 6 x 3 x 7 = 72 parameters.

The parameters of 18 consonant release models (9 consonants x 2 speaker genders)
were trained based on human transcriptions of a small training database. The SFM Train
database (described in appendix A.3) consists of 4 tokens of each of 9 consonants, released
into the vowels /aa/ and /ah/. Data from these two vowels were pooled for training, on
the assumption that their formant frequencies within 50ms of consonant release should be
similar.

In order to make the trained model parameters as reliable as possible, given the limited
training data, the data were grouped according to relevant features before training. The
grouping for each trainable parameter was slightly different, as described in the following
two sections.

4.2.1 Means as a function of time

According to the speech production theory sketched in chapter 2, the vocal tract formant
frequencies at release of a consonant should depend little on the manner of the consonant.
The manner of the consonant may affect the excitation of a formant, and therefore its
amplitude and convexity, but the underlying vocal tract resonant frequencies should depend
only on consonant place. Conversely, gender of the speaker is unlikely to affect the amplitude
and spectral convexity of a formant, but it certainly affects the formant frequency.

Mean formant frequencies were trained by grouping together tokens with the same place
of articulation and the same speaker gender: a total of six training tokens for each of six
independent training cells. Mean amplitudes and convexities were trained separately for
each of the nine consonants, regardless of speaker gender, with a total of four training
tokens for each consonant.

For training sets of this size, the possibility of incorrect training is significant. Assuming
that the training tokens for each consonant are drawn from an underlying Gaussian distri-
bution, the standard error of the frequency parameter estimates is 1/ v/6 times the standard
deviation, and the standard error of amplitude and convexity parameter estimates is 1/2
the standard deviation.

Fortunately, the number of models trained in this section is sufficiently small to allow
visual confirmation. The mean formant frequencies, as trained on the 36 training tokens,
are shown in figure 4-3.
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Figure 4-3: Mean formant frequencies for three places of articulation, for each gender,
trained on 36 tokens. Solid=labial, dashed=alveolar, dot-dash=velar.

Random variation of the formant tracks in figure 4-3 appears to be less than about
100Hz in most cases, and most large-scale features are as they should be. Perhaps the only
unusual feature of both the male and female distributions is the large gap between the velar
F2 onset and the velar F3 onset. Visual examination of the training tokens indicates that
most velar tokens had relatively low F3 onsets, but that a few tokens with unusually high
onsets pulled up the means. Perhaps, with more training data, a mixture Gaussian model
would be a more appropriate representation of the velar F3 onset than a simple Gaussian.

Figure 4-4 shows amplitude and convexity means, averaged across both voiced and
unvoiced stops. There is quite a bit of random variation in this plot. As expected, the
onset of A2 is highest for velar stops, because of the velar front cavity resonance at the
frequency of F2. Also as expected, the convexity Cl rises as a function of time for all
places of articulation. An unexpected feature of the amplitude tracks is the high Al onset
of both alveolar and velar stops, which can be attributed to strong subglottal resonances
and/or voicing information in the vicinity of F1 for several of the stops. Place-dependent
differences in convexity are apparently not significant, and are generally much less than the
standard deviation.

4.2.2 Variance and covariance

It is impossible to train reliable variance estimates on the basis of four to six training tokens;
assuming an underlying Gaussian distribution, the variance estimate is a scaled y? random
variable with a standard error equal to 1/v/2 to 1/1/3 times its expected value.

Estimated variance parameters were therefore not allowed to vary with time. The vari-
ance as a function of time of each parameter was estimated using the groupings previously
described, and then these variance tracks were averaged over the six time frames in each
token. The standard deviations of the spectral amplitude calculated in this way were be-



Normalized Amplitude Means Convexity Means

6

-4 PR W
— 2 i | BBl P~ a e e o
GED_e ,’// % - = = \‘i
2 < B 5

-8 45

0 10 20 30 40 0 10 20 30 40

-2/~
B-dp o e
B 7
g8 -7

-8t -~

— 6 P
) ) il o
B = Doz
z 5o~
4
0 10 20 30 40 0 10 20 30 40
Time (ms) Time (ms)

Figure 4-4: NMean amplitude and convexity, averaged across all stop tokens, for three places
of articulation. Solid=labial, dashed=alveolar, dot-dash=velar.

tween 2.4 and 6.5dB, and were usually larger for unvoiced stops than for either voiced stops
or nasals. The standard deviations of the spectral convexity were between 0.9 and 1.8,
with large and small values apparently distributed at random among the phonemes and
formants.

After being averaged over time, the variances of the formant frequencies were, finally,
averaged over both place and gender, in order to produce global formant variance estimates.
The model standard deviations of F1. F2. and F3 are, respectively, 184, 221, and 303 Hertz.

The temporal correlation coefficient, ps. was set to a single constant for all formant
frequencies. The HMIM formant tracking algorithm was tested on the 36 training tokens
with several values of this parameter, and the value p; = 0.88 was found to produce the
best fit between the a posteriori formant distributions, described below, and the transcribed
formant frequencies.

4.3 Real-Time Estimation of Measurement Uncertainty

The search space of a hidden Markov model is usually explored using one of two standard
dynamic programming algorithms (Rabiner, 1993): the Viterbi algorithm, and the forward-
backward algorithm. In an HMM formant tracker, the Viterbi algorithm might be used
to identify the single most likely set of formant tracks for a given utterance. The forward-
backward algorithm, on the other hand, can be used to calculate the a posteriori probability
of every possible formant frequency in each time frame, given an utterance and a trained
model.

The a posteriori state probabilities produced by the forward-backward algorithm can
be viewed as frame-by-frame models of the measurement uncertainty of the algorithm. If
a formant has a clearly defined spectral peak at the expected frequency, the a posteriors



probability distribution is well localized. Conversely, if there are no formant-like peaks in
the expected frequency range, or if there are several, the location of the formant is uncertain,
and the a posteriori probability is more diffuse (see the examples in section 4.3.2, below).

4.3.1 Finding a posteriori formant distributions

The a posteriori probability of a formant frequency Fy(t), given a vector of model parameters
A and a finite sequence of observed spectra O(0)...O(T), is defined to be

‘ (f,0(0),...,0(T)|\ ¢
pUED) = F10,00),...,0(1) = LLOD)e DT
g g SR ]

In the forward-backward algorithm, the joint probabilities p(f, O) on the right hand
side of equation 4.5 are divided into two factors, and these factors are computed recursively
using an efficient algorithm. The two factors are called the forward probability o, (f,t) and
the backward probability 8, (f,t):

(4.5)

P(Fn(),0(0). ..., O(T)|A) = an(Fp.t)Bn(Fn,t) (4.6)

The forward and backward probabilities can be computed recursively according to the
forward-backward algorithm. If we use a strictly loca! output model, as described in equa-
tion 4.2, the forward-backward recursion formulas are;

an(Fot) = p(AnlFu )p(Cal Fnit) S p(Falt)|Folt — 1))an(Fa, t — 1) (4.7)
Fn(t—1)

‘/))II(FH~t) = Z I)(Fll(f+1)‘FII(T>)[)(-4H'FHf+1>1)<C‘II|F1I.t+1)371(F71‘1‘+1)
Fn(t+1)

4.3.2 Examples

Figure 4-5 shows the spectrum, spectral convexity, and posterior formant probabilities at
10ms and 50ms after the /b/ release in the word “Barb” spoken by a female speaker. A
posterior: formant probabilities are calculated with the forward-backward algorithm, using
an observation sequence consisting of six spectra between the release and 50ms after release.

Notice that when there is a clear, narrow formant peak in the spectrum, the a posterior:
distribution of the corresponding formant is tightly confined. As F1 moves up from the first
spectrum to the second, it obscures the location of the F2 peak, and as a consequence, the
a posteriort distribution for F2 at time 50ms is more diffuse.

A different kind of uncertainty is visible in the F3 region at time 10ms. Here, there
are two peaks close together (possibly F3 and F4). The forward-backward algorithm tests
both peaks, to see how well they fit into the global F3 track being developed throughout
the syllable, and assigns them a posterior: probabilities on this basis.

Figure 4-6 shows the spectrum, spectral convexity, and a posterior: formant probabilities
10ms and 50ms after release of the /d/ in “dark,” spoken by a different female speaker.
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Figure 4-5: Spectrum, spectral convexity, and a posterior: formant probabilities, as calcu-
lated by the formant tracker, 10ms and 50ms after release of the first /b/ in “Barb.” A
posteriori probability distributions of all three formants are shown on the same plot, because
there is no significant overlap between the distributions.
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Notice, again, that the a posterior: probability is more diffuse when there is more than one
possible formant location.

The a posteriori distribution of F3 in this figure demonstrates two problems with the
formant tracker. First, at 10ms after release, the formant tracker seems to split the prob-
ability density of F3 between two distinct frequencies, at about 3050 and 3250Hz. These
two peaks in the a posteriori distribution correspond to distinct peaks in the convexity
measure, but the DFT spectrum itself seems to have only one peak, centered at about 3200
Hertz. Apparently, the single DFT peak is too broad to be identified as a single peak by the
convexity lifter, indicating that possibly the passband of the convexity lifter is too narrow.

The second tracking difficulty in figure 4-6 occurs at 50ms after release. F3 is at about
2700 Hertz in this spectrum, and continues to fall into the /r/ as the syllable progresses.
The formant tracker, however, only has information about spectra between the release and
30ms after release. Since the formant tracker has no way of knowing that F3 will continue
to fall, it also has no reliable way of distinguishing between the peaks at 2700, 3000, and
3200 Hertz. The peaks at 3000 and 3200 Hertz are both continuous with apparent peaks in
the release, but 3200 Hertz is an unusually high frequency for F3, so the algorithm assigns
most of the a posteriori F3 probability to the peak at 3000 Hertz.

4.4 Evaluating the Error Models

The «a posteriori formant uncertainty models described above were tested using the 36 tokens
containing /aa/ and /ah/ in the Error Modeling database, described in appendix A.2.

4.4.1 Cumulative-probability representation of reference measurements

Since the uwucertainty model varies from token to token, its ability to predict true formant
location must be evaluated on a per-token basis. Since the uncertainty model is not a
parametrized function of frequency, the method of evaluation should be non-parametric.
This section describes a non-parametric, token-by-token extension of the standard Q-Q
plot (Johnson and Wichern, 1992) which can be used to evaluate a real-time uncertainty
model.

To the extent that a measurement uncertainty model is correct, the model should pre-
dict the distribution of possible frequencies of the true formant. Thus, regardless of the
shape of an a posterior: distribution. the true formant should fall in the bottom N% of the
distribution roughly N% of the time.

For a given observation sequence O(0),...,O(T), the degree of correspondence between
the uncertainty models p(F,(t) = f]O(0)....) and a reference transcription containing the
true formants F,(t) can be characterized by a cumulative probability:

Fn(t)
Pr<(Fa(0]0),..) = [ p(Fu(t) = £10(0),...)df (4.8)

Equation 4.8 contains a continuous integration, but the uncertainty model generated by an
HMM formant tracker is discrete. The experiments reported here approximate equation 4.8
by integrating a trapezoidal interpolation of the discrete HMM uncertainty model.

The conversion from formant measurement to cumulative probability is shown in fig-
ure 4-7. In the figure, the reference formant measurement transcribed by a human judge
is F2=1616 Hertz. The a posterior: probability distribution generated by the forward-
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Figure 4-7: Comparison of a known formant frequency to the uncertainty model generated
by an HMM formant tracker. F2 is located at 1616 Hertz, according to the measurements
of a human transcriber. In the uncertainty model generated by the HMM, the probability
of an F2 measurement less than or equal to 1616 Hertz is 35.7%; thus we can say that the
cumulative probability representation of the human transcription is P = 0.357.

backward algorithm predicts that there is a 35.7% probability that F2 is less than or equal

to 1616 Hertz, so the cumulative probability representation of the human transcription is
Pr<(1616]0(0),...) = 0.357.

4.4.2 Evaluation using a binomial distribution

To the cxtent that the uncertainty models are correct, the cumulative probability measure-
ments Pr<(Fp(t)]O(0),...) should be uniformly distributed between 0 and 1.

The uniformity of distribution of a large number of samples can be tested by sorting
them into the bins of a histogram. If the bins are uniformly spaced, there should be an equal
number of tokens in each bin. Specifically, if N tokens are uniformnly distributed into M/
bins between zero and one, the number of tokens n; in bin number j is a binomial random
variable, with mean N/M and variance N(M — 1)/M2.

Given M bins and N tokens, the last bin count nps is a linear function of the other
variables:

M-1
nr=N-= Y n (4.9)

i=1
If we arrange the bin counts into a vector, na; = [ng,...,np]7, the covariance matrix

Car = E[npnl] is singular. The largest non-singular submatrix of Cys is the A — 1-
dimensional submatrix Car_1, formed by eliminating the last row and column of Cj;:

N U
)
M M

Cr—1 = Enp_nd;_ ] = (4.10)
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Figure 4-8: Cumulative probability representations of the human formant measurements
used to train the formant tracker (F1, F2, and F3). Deviation from a uniform distribution
indicates that the formant tracker is not adequately representing variation in the training
data.

where I is the identity matrix, and U is an Af — 1 x A/ — 1 matrix of ones.

The binomial distribution approaches the Gaussian distribution rapidly as N increases.
To the extent that the Gaussian approximation holds, we can evaluate the fit between the
transcribed formant measurements and the a posteriori model distributions by using stan-
dard statistical tools to compare nps_; to its expected value, E[n] = (N/M,... N/AM)T

Figure 4-8 shows the actual distribution of cumulative probability measurements for all
formants in the training data. The top panel is a Q-Q plot, in which the 627 sorted data
points are plotted against 627 equally spaced quantiles from a uniform distribution. The
bottom panel is a histogram with M = 50 bins. A T? test using the covariance matrix in
equation 4.10 shows that this histogram is significantly different from a uniform distribution
(F =2.209,p < 0.01). The most important difference seems to be that the distribution is
tilted: actual formants are likely to be lower in frequency than the formants predicted by
the a posteriori formant models.

Figure 4-9 shows the distribution of cumulative probability measurements for all for-
mants in the test data. As shown by the large bar in the leftmost histogram bin, about
10% of the test formants fall within the lowest 2% of the a posteriori formant probability
distributions: in other words, in about 10% of the test tokens, the human transcriptions
are lower in frequency than any value considered possible by the HMM. Informal analysis
of the data indicates that these overshoot errors are found more or less equally in all three
formants. The remaining 90% of the cumulative probability measurements are relatively
uniform. although still significantly different from a true uniform distribution.
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judges on an independent test set (F1, F2, and F3). Deviation from a uniform distribution
indicates that the formant tracker is not adequately predicting variation in the new corpus.

4.5 Conclusions

The HMDI formant tracker developed in this chapter, despite its simplicity, provides useful
token-by-token models of the formant measurement uncertainty.

The uncertainty models were found to be significantly different from the distribution of
true formant measurements. Specifically, the uncertainty models predicted formants which
were higher in frequency. on average, than the formants measured by human transcribers.
Although this effect is significant, it is not large: only 10% of the test measurements were
below the range predicted by the formant tracker.

It should be noted that the fact that we were able to perform this analysis at all is proof
of the value of Bayesian formant tracking. The performance of formant tracking algorithms
is often rated in terms of an aggregate error rate, but apparently no other formant tracking

algorithm has ever attempted to report its own measurement uncertainty for each token,
individually.



Chapter 5

Classification of Place

In section 1.1, we argued that perfect formant and burst spectral measurements can be
used to identify the place of a stop consonant. This chapter describes one modeling exper-
iment and two classification experiments which explore the effect of measurement error on
classification.

The rule-based measurements developed in chapter 3 are explored here in some detail.
First, a model is developed which predicts the effect of measurement error on the error rate
of a linear discriminant analysis (LDA) classifier, and this model is tested using a database
with both manual and automatic measurements. Second, the measurements are evaluated
in a context-dependent LDA classifier. in which the test data consists of the entire TEST
subdirectory of TIMIT (Zue et al., 1990). Context-dependent LDA classification of place
is shown to be 84% correct (in vowel and glide contexts) using automatic measurements of
formant frequency and burst spectral shape.

In the third experiment in this chapter, the stochastic formant model (with some mod-
ification of the design in chapter 4) is tested in context-dependent classification of voiced
stops from the TEST subdirectory of TIMIT. The stochastic formant model classifies con-
sonants on the basis of formant frequency and amplitude in the first 50ms following release,
and results in an 83% correct classification rate in vowel and glide contexts.

Most of the experiments in this chapter report the result of classifying the place of
articulation of voiced and voiceless stop consonants. Section 5.2.2 reports linear discriminant
classification of nasal releases, using automatic formant frequency measurements. In the
HM M classification experiment in section 3.3, only voiced stops are classified.

5.1 Effect of Measurement Error on the Linear Discriminant

This section discusses the effect of measurement error on linear discriminant analysis. The
database to be analyzed in this section consists of manual and automatic formant and burst
measurements of 131 voiced and voiceless stops in vowel and glide context, extracted from
the Error Modeling database (appendix A.2). The difference between LDA classification
of human and automatic measurements is taken to be the effect of measurement error.
Attempts are made to predict the effect of measurement error on the linear discriminant
using an aggregate error model.

LDA is used in these experiments because the algorithm is fast, and because it provides
a simple parametric form which can easily be combined with a quantitative error model.
It should be emphasized, as noted in chapter 1. that LDA is known to be suboptimal
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Figure 5-1: LDA summary of measurements by human judges on 131 stop releases. The
abscissa is a linear discriminant trained (on independent training data) to represent the
labial/alveolar distinction: the ordinate is a discriminate trained to represent the labial/velar
distinction.

in phonetic classification tasks. The experiment in this section demonstrates 89% correct
LDA classification of exactly the same numbers (manual formant and burst measurements
extracted from the Error Modeling database) which are separated with approximately 95%
accuracy in section 1.1. There are two differences between these two experiments: the
tyvpe of the classifier (LDA in this section, vs. a knowledge-based design in section 1.1),
and the training of the classifier (the classifier in section 1.1 is trained on the test data.
while the classifier in this section is trained on an independent data set). Without another
experiment, it is impossible to separate these two effects. Based on a comparison of these
two experiments, then, we are limited to the rather weak claim that LDA classification
increases error rate in this experiment by up fo six percentage points.

5.1.1 Measuring the effect of error

In order to test models of the linear discriminant error, three context-independent bi-
nary LDA classifiers were trained on manual transcriptions of the KB Train database
(appendix A.1). Each classifier represents one binary place distinction: labial/alveolar,
labial/velar, or alveolar/velar. The labial/alveolar and labial/velar discriminants make use
of nine measurements: two burst spectral amplitudes and a peak count, and measurements
of the first three formants at 20ms and 50ms after the consonant release. The alveolar/velar
distinction makes use of a tenth measurement, the burst front cavity resonance, which is
not available to the other two discriminant vectors.

Classifiers were tested using 131 stop releases in vowel right context from the Error
Modeling database (appendix A.2). Figure 5-1 shows the labial/alveolar and labial/velar
discriminant representations of manual transcriptions of this database. Figure 5-2 shows
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Figure 5-2: LDA summary of automatic measurements of burst amplitude, burst peak
count, and formant motion at 131 stop releases. The abscissa and ordinate are computed
using the same linear discrimant coefficients applied to the data in figure 5-1.

Spoken Manual Measurements Automatic Measurements
Place lips blade body | unknown | lips blade body | unknown
lips 80 O 11 9 66 2 20 11

blade 2 95 2 0 0 82 11 7

body 2 0 93 5 2 7 81 9

Table 5.1: Percentage confusion matrices showing classification of vowel context stops in
the Error Modeling database. The first confusion matrix shows classification using manual
transcriptions; the second shows classification using automatic measurements.

the same two-dimensional representation of an automatic transcription of the same data.
using the algorithms developed in chapter 3.

Table 5.1 describes the classification performance of the LDA classifier, using the mea-
surements shown in figures 5-1 and 5-2. This table uses a round-robin classification strategy:
each token is separately classified by all three binary classifiers, and the three classifiers vote
to determine the final place label. If there is no majority, the token is marked as “unknown.”

Classification using manual measurements in table 5.1 is relatively good, at 89% correct
classification. This is comparable to the results reported by Lamel (1988), who found that
manual transcriptions of formants, burst measures. and voice onset time could be used to
classify stops with roughly 90% accuracy. Classification using automatic measurements is
worse by 12-14% for every place of articulation, at an average of 76% correct classification.



5.1.2 The form of the discriminant error term

Suppose that x = xg+e is a possibly erroneous, known measurement of an unknown formant
frequency x. A linear discriminant statistic £ is a linear combination of the elements of x
which is intended to be useful for classification:

£ =2'x =2'x¢0 + 7z'e (5.1)

This discussion will assume that the coefficients z, and the linear discriminant classification
threshold, have been previously trained on a data set which does not contain Xg, and that
the coefficients and threshold can be considered fixed.

If the mean Ele] and covariance matrix C, of e are known, the mean and variance of
the linear discriminant error term, ¢ = z’e, are easily calculated.

Ele] = ZEle], o?=12'C.z (5.2)

If e is Gaussian, ¢ is also Gaussian, and as such, is completely described by its mean and
variance.

If e is mixture Gaussian, € is also mixture Gaussian. Specifically. if each element e; of
the measurement error is well modeled by n; mixture elements, then the number of mixtures
required to fully model € is

Te =Hni (5.3)

The n, different mixture elements describing € can be conveniently indexed by the vector
k = (ky,ko,...). Suppose that mixture k; of element e; from the error vector is described
by a mean p;(k;) and a variance o?(k;), that the probability of choosing this mixture is
P;(k;), and. finally, that all of the elements of e are independent. In this case, the mixture
elements describing ¢ have the following mean, variance, and probability of occurrence:

(k) =3 zipi(ki), ol(k) = 2ol (ki) (5.4)

P.(k) = [ P.(ky)

The above expression for P,(k) can be used in more general, nonparametric models of
the discriminant error. For example, if each element e; of the error is known to be large
with probability P;(+) independent of every other element e;, and if € is known to be large
whenever any of the individual measurement errors is large, then ¢ is large with probability

P(+)=1-[]0-P(+) = X A(+) (5.5)

i

5.1.3 Estimating confusion matrices from the discriminant error

Given quantitative models of the manual measurements, and of the measurement error, it
is possible to predict a confusion matrix for the automatic measurements. This section
demonstrates prediction of the automatic measurements confusion matrix using Gaussian
models of each phoneme class, and of the measurement error.

Binary discriminant classification of two Gaussian distributions is shown schematically
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Figure 5-3: Binary classifier. If both distributions are Gaussian as shown, the shaded area
of the category 1 distribution is the probability that a category 1 token will be misclassified.

in figure 5-3. In this figure, multivariate Gaussian distributions have been reduced to
univariate Gaussians by multiplication with the discriminant vector z;2. The univariate
measurements £ = zj,x are classified in category 1 if £ < 69, and category 2 if £ > 69,
where the threshold 812 and discriminant vector zi2 have been previously trained on an
independent data set. If the tokens in category 1. £ C G, are distributed normally with
mean f¢; and variance agl, the probability that a token from G, will be classified as G is

oo

Pia(GaiGy) = / N(t)dt (5.6)

12~ Hg)
————

7L

where N'(¢) is the unit normal distribution.

In a round-robin classification scheme, the classifier in figure 5-3 is given tokens from all
three groups, G1. G2, and G3, and asked to label each token as Gy or Gy. Tokens from G3
are necessarily misclassified, since the classifier in figure 5-3 doesn’t know about G3. We
can characterize the behavior of the classifier in figure 5-3 with respect to G3 tokens using
the complementary probabilities Pj2(G1|G3) and Py2(G2|Gs):

612—1¢3 -
Pu(GilGs) = [ 7% NWdt, Pu(GalGs) = [y NO (57)

T¢e3

If the three binary classifiers are assumed to be independent, the entries in a confu-
sion matrix can be calculated by multiplying the classification probabilities of each binary
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Spoken Homoskedastic Model

Place lips blade body | unknown

lips 54 7 18 21

blade 7 76 5 12

body 6 6 73 15
Heteroskedastic Model

lips 60 5 15 20

blade 4 83 4 9

body 4 3 78 13

Table 5.2: Automatic measurement confusions predicted based on statistics of the manual
measurements, and of the measurement error, using homoskedastic and heteroskedastic
models.

classifier, thus

Pr(G1/G1) = (1 — P12(G2|G1))(1 — Pi3(Gs|Gh)) (5.8)
Pr(Go|G1) = Pi2(G2|G1)Py3(G2|Gy) (5.9)
Pr(G3|G) = Pi3(G3|G1) P23 (G3|Gh) (5.10)

and the probability of a token being marked unclassifiable is the complement of the three
probabilities shown.

Using equations 5.8 to 5.10, it is possible to predict the classification of one set of
measurements using information from another set. For example, if the means and variances
of the automatic discriminant measurements £, are related to the means and variances of
the manual measurements &, by the addition of measurement error,

El&) = E[tm] + pe, 0F, =0} +0? (5.11)

then classification of the automatic measurements can be predicted from classification of
the manual measurements.

Table 5.2 shows confusion matrices for the automatic measurement set, predicted using
homoskedastic and heteroskedastic models of the measurement error. In computing this
table, the reference measurement vector xo was assumed to have full covariance, while the
measurement error e was assumed to have diagonal covariance. The mean and covariance of
xp were measured directly on the 131 stop releases analyzed in this section. The mean and
variance of the measurement error were copied from models developed in section 3.4 based
on the full Error Modeling database, a superset of the current test data. The correlation
between measurements and measurement error in the heteroskedastic model was copied from
table 3.5. Extending equation 5.11 for a heteroskedastic error model and a full-covariance
measurement vector required a somewhat lengthy but straightforward derivation, which is
not reproduced here.

The classification of automatic measurements is much more accurately predicted by a
heteroskedastic than a homoskedastic error model. Apparently, correlations between the
measurement values and measurement error, reported in section 3.4.5, are carried through
into the linear discriminant statistics. In fact, the heteroskedasticity of the discriminant
statistics is visible in figures 5-1 and 5-2. In these figures, the automatic measurement
distributions are more compact than the manual measurement distributions, implying that



Error Model
lips blade body | unknown

Table 5.3: Average magnitude difference, in each column, between the classification of
automatic measurements, shown in table 5.1, and the predicted classification using ho-
moskedastic and heteroskedastic error models, shown in table 5.2.

the measurement algorithm is selectively increasing low amplitude discriminant statistics,
and decreasing high amplitude statistics, as is characteristic of heteroskedastic error.

Section 3.4.5 concludes that the most heteroskedastic measurements are the two burst
amplitudes, and the frequency of F1 near onset. According to the speech production the-
ory sketched in chapter 2, these three measurements are all useful in distinguishing labial
from lingual tokens. This prediction from theory is empirically confirmed by the linear dis-
criminant vectors trained in section 5.1.1: the labial/alveolar and labial/velar discriminant
vectors weight burst amplitude four times as heavily, and F1 onset ten times as heavily, as
does the alveolar/velar discriminant vector.

Since the labial/alveolar and labial/velar discriminants weight burst amplitude and F1
onset heavily, the classification of tokens as labial {that is, the first column of the confusion
matrix) should be affected more by the difference between homoskedastic and heteroskedas-
tic models than the other columns. Table 3.3 shows that this is in fact the case. In this
table, the actual classification of automatic measurements, in table 5.1, has been subtracted
from the predictions made by homoskedastic and heteroskedastic error models, shown in
table 5.2, and the magnitude differences have been averaged for each column of the con-
fusion matrix. As shown, the average error of the homoskedastic model in preaicting the
actual classification performance in table 5.1 is worst in the first column, which reports
the percentage of stops classified or misclassified as labial. The first column also shows the
greatest total improvement between the homoskedastic and heteroskedastic models.

5.2 Classification using Rule-Based Measurements

This section describes an experiment in which the rule-based measurements described in
chapter 3 are optimized in order to give the best possible context-dependent linear dis-
criminant classification of consonant place. For each right context, speaker gender, and
consonant class, specific parameters of the measurements are optimized using all of the
relevant consonant releases in the TRAIN subdirectory of TIMIT, excluding those which
cross a word boundary. The resulting measurements are then tested, again using linear dis-
criminant classification, on all of the relevant consonant releases in the TEST subdirectory
of TIMIT, again excluding those which cross a word boundary.

The TIMIT database is transcribed with a sampling period of five milliseconds, which
is close to the duration of a short frication burst. In order to ensure measurement of
the entire frication burst, the release times of all stops in the training and test databases
were re-transcribed with a sampling period of one millisecond. Nasal releases were not
re-transcribed.

102



tongue height

tongue syllable | advanced lax lax | constricted | reduced
position | on-glide | tongue root | high | low pharynx
front /y/ Jiy,ux/ /ih/ | Jeh/ Jaef /ix/

back /w/ [uw/ /uh/ | Jah/ /aa/ Jax/
retroflex /r/ /er/ Jaxr/
lateral /1/ /el/

Table 5.4: Context-dependent measurement parameters were optimized independently for
each combination of a speaker gender, a consonant manner class, and a right context. The
18 analyzed right contexts are shown here. Phoneme notation is ARPABET, as used in the
TIMIT database.

5.2.1 Optimizing free parameters

For each right context, speaker gender, and consonant class, specific parameters describing
the measurement algorithms were trained, in order to minimize classification error, on all
applicable syllables from the TRAIN subdirectory of TIMIT.

Grouping similar contexts for training

Parameters describing each measurement algorithm were optimized in order to minimize
error in the classification of place using a context-dependent LDA classifier. Each set of
context-dependent measurement parameters was optimized independently for 108 context
cells, where the 108 cells included every possible combination of 2 genders, 3 consonant
classes, and 18 right contexts. The 18 right contexts are given in table 5.4.

For many of the context cells defined in this way, the TRAIN subdirectory of TIMIT
does not contain enough tokens to allow reliable training of the classifier. In order to improve
parameter training, sparse cells were supplemented by tokens having similar right contexts,
in order to maintain a minimum of 5 tokens of each consonant per linear discriminant
coefficient. Similarity of right contexts was measured separately for each consonant and
each gender. The similarity metric was a simple Euclidean distance metric, measured
between average formant frequencies (linear scale) and amplitudes (logarithmic scale) at
10ms intervals during the first 80ms following consonant release.

Frequency band definitions for burst spectral measurements

Chapter 3 defines four burst spectral measures in terms of three frequency bands: a low-
frequency band, a high-frequency band, and a front cavity resonance spectrum. In the
experiment described here, the low and high edge frequencies for each of these bands were
optimized for each context cell, independently, in order to minimize classification error using
a context-dependent LDA classifier.

Band edge frequencies were optimized using a discrete gradient search algorithm. Each
edge frequency was initialized to the frequency specified in section 3.3.3, and the initial
frequency values were used to estimate an LDA classification error using the training data.
The frequency parameters were then modified iteratively, in steps of one DFT bin (62.5Hz).
with the single frequency parameter providing the greatest classification improvement mod-
ified at each step. During optimization, frequency parameters were not allowed to leave the
bands specified in table 5.5.



Frequency Bands in the Burst Spectrum

low-frequency amplitude (I, €880,1440]) to (hy € [2250,3440))
high-frequency amplitude (I2 € 12250, 3440]) to (hg € [5690,7440])
front cavity resonance (I3 € [880,1440]) to (h3 € [5690,7440])

Table 5.5: The six band-edge frequencies shown were optimized, within the ranges shown, in
order to minimize consonant place classification error in context-dependent LDA classifiers.

Timing of formant frequency samples

The formant smoothing algorithm described in chapter 3 was used, without modification,
to smooth measurements of F1, F2, and F3 between 0 and 80ms after release (step 5ms).

Samples were then chosen from each formant frequency track, for each context cell,
in order to minimize the context-dependent LDA classification error. Voiced and unvoiced
stops were first classified using the optimized burst spectral measurements, and then formant
samples were added, beginning with the single sample which most decreased classification
error. Formant selection for nasal consonant classes was similar, but with no burst spectral
measurements to initialize the algorithm.

In this way, the classifier for each context cell was assigned five formant samples, in-
cluding at least one from each of the three formant tracks.

5.2.2 Linear discriminant classification

Burst and formant measurements, trained as described above, were combined using lin-
ear discriminant analysis in order to classify the place of consonant releases in the TEST
subdirectory of TIMIT.

The test database consisted of all stop and nasal releases in the 18 right contexts listed
in table 5.4, in the TEST subdirectory of TIMIT. which do not span a word boundary (that
is, the consonant is not word-final): a total of 2804 stops, and 1461 nasals. The following
two subsections discuss the classification of stop releases and the classification of nasals.
respectively.

Classification of stops

Table 5.6 describes the results of context-dependent LDA classification of stops. Classifi-
cation scores for male and female utterances of both voiced and unvoiced stops have been
pooled. The three retroflex contexts have been pooled under the heading “retroflex,” the
two lateral contexts under the heading “lateral,” and all other contexts under the heading
“vowels and glides.” In the table, labial. alveolar, and velar stops have been labeled with
the name of the primary articulator: lips, tongue blade, and tongue body, respectively.

In classification, the three places of articulation were assumed to be a prior: equally
likely, despite the obvious differences in number of tokens (NT). In vowel and glide contexts,
classification using formant measures is 72% correct, classification using burst measures is
80% correct, and classification using both formant and burst measures is 84% correct.

Regardless of the measurements used, alveolar and velar stops are more likely to be con-
fused with each other than with labial stops. This is somewhat surprising, since labial classi-
fication is significantly worse than velar or alveolar classification in the context-independent
classifier of section 5.1 (table 5.1). Apparently, context information improves classification
of labial stops, but has little effect on classification of alveolar and velar stops.
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Linear Discriminant Classification of Stops

Spoken Formants Burst Both
\% C NT || lips blade body | lips blade body | lips blade body
Vowels lips 771 | 80% 13 83 89
and blade | 632 || 14 70 16 12 77 11 82
Glides body | 602 || 15 20 65 12 79 13 81
Retroflex | lips 209 || 76 16 86 86
blade | 194 71 22 23 61 16 14 70 16
body | 128 || 31 23 45 14 81 16 81
Lateral lips 127 || 75 20 80 16 90
blade | 30 33 40 27 27 67 23 70
body | 111 || 39 13 49 86 88 |

Table 5.6: Confusion matrices using context-dependent formant and burst spectral mea-
surements, categorized using a context-dependent LDA classifier. Stop tokens only, from
the TEST subdirectory of TIMIT. All entries of 10% or less have been omitted.

Linear Discriminant Classification of Nasals

Spoken Formants

Y C NT | lips blade body

\owels | lips | 576 | 8% 16

and blade | 563 || 16 71

Glides body | 30 36 58

Rerroflex | lips 53 72 17
blade | 70 47 39
body | 9 22 44 33

Lateral lips 25 28 32 40
blade | 95 20 51 29
body | 20 || 30 45 25

Table 5.7: Confusion matrices: linear discriminant classification of nasal consonants, using
automatic formant measurements. TEST subdirectory of TIMIT. All entries of 15% or less
have been omitted.

Formant classification degrades significantly in both lateral and retroflex contexts: the
neighboring lateral or retroflex sound apparently dominates the evolution of formant fre-
quencies, reducing the distinction between different places of stop articulation. Classifica-
tion scores which make use of burst spectral measures, on the other hand, are not signifi-
cantly degraded: classification in retroflex context using both burst and formant measures
is 79% correct. and classification in lateral context is 87% correct.

Classification of nasals

Table 5.7 describes the results of context-dependent LDA classification of nasal releases.
Velar nasal releases (/ng/) are quite poorly recognized. There are not very many of
these. The phoneme /ng/ can never begin a syllable in English; since releases which span
a word boundary were excluded from both training and test data, all of the /ng/ releases
in both data sets come from word-internal syllable boundaries. Automatic combination of



Humans, Two Syllables (Lamel, 1988)

Spoken || Vowel context Semivowel context

C NT | lips blade body || NT | lips blade body
lips 219 | 99.4% 0.5 92 |989 0.7 04
blade 210 99.2 0.6 59 99.6

body 204 | 0.3 99.6 | 97 99.9

Table 5.8: Classification of consonant place by human listeners, given full closure and release
information (Lamel, 1988). Entries below 0.3% have been omitted.

Classification, Human Listeners (Nossair and Zahorian, 1991)

Spoken Burst+50ms Burst+Transition Burst+Full Vowel
C NT || lips blade body | lips blade body | lips blade body
lips 756 || 97.9% 2.0 99.2 99.2
blade | 756 || 1.4 93.7 5.0 1.1 95.2 3.7 96.4 3.2
body | 756 || 1.9 1.4 96.8 99.0 99.0

Table 5.9: Classification of consonant place by human listeners, given release waveforms of
varying length (Nossair and Zahorian, 1991). Entries less than 1% have been omitted.

similar context cells was used to guarantee that no classifier was ever trained with fewer
than 25 /ng/ release tokens, but in many cases the number of labial and alveolar tokens
was much larger than 235. Measurement definitions were trained to minimize a total error
rate; since there are so few velar tokens, it is possible that the measurement parameters
were automatically adjusted to minimize labial and alveolar errors, with little concern for
velar errors.

Classification of all nasal releases in vowel and glide context is 74% correct, which is
quite close to the classification rate of stops if only formant frequencies are used. In retroflex
and lateral contexts, nasal classification degrades more than stop classification, to about
56% correct in retroflex contexts, and 43% correct in lateral contexts.

5.2.3 Comparison to the performance of human listeners

It is difficult to compare the results of the current study to the classification ability of
humans. since human listeners can identify consonant place in nonsense words with better
than 99% accuracy. Table 5.8, for example, describes the ability of human listeners to clas-
sify stop place of articulation, as measured by Lamel (1988) (voiced and unvoiced cognates
listed in her confusion matrices have been combined). In this study, listeners were given an
entire natural vowel-consonant-vowel sequence, extracted from a continuous read sentence.
and asked to identify the consonant.

The ability of listeners to make use of burst information exclusively, or of burst and for-
mant information together, can be measured by gating the signal, so that listeners hear only
the desired portion of a stop release. Table 5.9 compares the ability of listeners to classify
stops given three successively larger sections of a stop release, extracted from a monosyl-
labic word recorded in isolation, as measured by Nossair and Zahorian (1991) (voiced and
unvoiced cognates listed in their confusion matrices have been combined). Given a full
release syllable through the end of the following vowel, listeners were able to classify stop
place with 98.2% accuracy. Given only the burst and the formant transition, classification



accuracy dropped very slightly to 97.8%. Finally, given only a 50ms waveform beginning
at release, listeners were only able to correctly identify 96.1% of the stops.

In the 50ms condition, Nossair and Zahorian report that unvoiced stops were classified
much more accurately (93.6%) than voiced stops (86.4%), indicating that voiced stops may
be more difficult to classify on the basis of the burst and formant onsets than are unvoiced
stops. Since the burst was apparently less effective for classification of voiced stops, they
tried an additional experiment in which subjects classified voiced stop syllables, including
the entire vowel, but with the frication burst removed. Subjects were completely unable to
classify stops without the burst: average classification was only 74.5% correct. Apparently,
a voiced stop can only be classified given both burst and formant transition information.

5.2.4 Effect of right context

The effect of retroflex and lateral right contexts has been discussed above, in connection
with tables 5.6 and 5.7. In those tables, we saw that classification of stops or nasals on the
basis of formant frequencies degrades significantly in retroflex or lateral context, but that
stops can still be classified relatively well given burst spectral information. Given burst
spectral information. there is a significant difference between retroflex and lateral contexts:
in retroflex contexts. confusions between alveolar and velar stops increase, while in lateral
context, confusions between alveolar and labial stops increase.

The classifier performance can be compared to the human performance reported by
Lamel. and given in table 5.8. In this study. all phonotactically possible combinations of a
stop plus a semivowel /l.r,w/ were presented to listeners (i.e. no alveolars in lateral context),
along with all of the affricates, and listeners were asked to identify the phoneme. Affricates
and stops identified as affricates have been omitted from table 5.8. The error pattern on the
right-hand side of table 5.8 shows increased misclassification of labial stops, which is similar
to the error pattern of the LDA classifier in lateral context. The increased alveolar/velar
confusion of the LDA classifier in retroflex context, however, was not observed in Lamel’s
data; instead, listeners in Lamel’s study tended to misclassify alveolars as affricates in
retroflex context.

Another study which has published an analysis of human stop identification errors as a
function of right context was produced by Winitz et al. in 1971. In this study, subjects were
presented with unvoiced stop releases in /aa.iy,uw/ context, and asked to identify the stop.
In the first listening condition. subjects were provided with only the unvoiced portion of
the release; in the second condition, subjects were given the unvoiced portion. plus 100ms
of the following vowel. The results are summarized in table 5.10, and compared to the
classification performance of the LDA classifier in similar contexts (tense, lax, and glide
contexts are grouped together in the LDA classifier results).

The classification scores reported by Winitz et al. are significantly lower than the scores
reported by Nossair and Zahorian, despite the fact that the two windows used by Winitz et
al. were apparently longer than the 50ms and burst+transition windows used by Nossair
and Zahorian. The difference between these two studies can probably be attributed to
distortion of the tokens used by Winitz et al., which were recorded, gated, re-recorded, and
played back to subjects using analog equipment.

Despite the unreasonably high average error rates in the Winitz et al. study, some of the
distributions of errors may be roughly correct. For example, Ohala has argued (1989) that
the tendency of listeners to identify labial and velar stops as alveolar in high front (/iy/)
context is correlated with cross-language patterns of historical sound change, in which labials



Linear Discriminant Classification. All Stops

Spoken Burst Burst and Formants
V C NT || lips blade body | lips blade body
LB lips 126 || 90 97
/aa., blade | 68 16 75 82
ah/ body | 176 14 77 15 80
HF lips 311 || 82 89
/iv.ih, | blade | 224 79 13 84
v,ux/ | body | 120 16 74 19 74
HB lips 47 72 19 81 17
Juw, | blade | 84 | 11 76 13 83 12
uh,w/ | body | 84 13 83 87

Human Classification (Winitz et al.. 1971)

Jaa/ | /p/ 52 || 35 32 88
/t/ |32 || 22 73 75
[ /k/ 152 |24 46 30 37 49
CJiv/ 1 /p/ 132 64 19 16 55 34
/t/ |32 [ 20 65 85
/k/ 152 |32 46 22 27 32 41
Juw/ | /p/ |52 [[69 21 72 16
. /t/ 152 |20 64 80
/k/ 132 |34 23 43 27 23 50

Table 5.10: Percentage classification of place as a function of right context. LB=low back
vowels, HF=high front vowels and glides, HB=high back vowels and glides. Entries below
10% (LDA classifier) and 15% (human subjects) have been omitted.
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and velars in this context tend to become tongue blade consonants. This can be compared
to the pattern of errors of the LDA classifier. The classifier frequently mis-labels velars as
alveolar in high front context, but seems to have little trouble with labials.

Both the LDA classifier and the human listeners achieve their best classification scores
in low back contexts (/aa/ and /ah/). In this context, the most likely confusion, for both
the LDA classifier and human listeners, is the labeling of a velar stop as alveolar.

In high back context, the linear discriminant classifier tends to misclassify labial stops as
velar, while human listeners tend to misclassify velar stops as labial. It is possible that this
difference is caused by differences in the number of tokens. The measurement training data
contains 243 velar releases in these contexts, compared to only 99 labial releases, so it is
possible that the minimume-error training algorithm adjusted the measurement parameters
to minimize velar errors at the expense of additional labial errors.

5.3 Stochastic Formant Modeling

This section describes an experiment in which two-level phoneme-dependent HMMI formant
models. described in chapter 4. are trained based on automatic transcriptions of all of the
voiced stop tokens in the TRAIN subdirectory of TIMIT, and tested using spectra from all
relevant tokens in the TEST subdirectory, excluding releases which span a word boundary.
All release times are given by the transcription with a precision of one millisecond, as
described at the beginning of section 5.2.

5.3.1 Modifications to the model

In order to allow use as a phoneme recognizer, the HMMI formant trackers described in
chapter 4 are modified in several ways.

Implementation of a two-level search space

First, the two-level search space shown in figure 4-1 is implemented. Phoneme classification
proceeds according to a maximum likelihood rule: the possible phoneme models are tested.
and the model which is most likely to have produced the observed spectrogram is chosen as
the correct label.

The probability of an observed spectrogram, given a particular phoneme model X, can
be written

Pr(0(0),....0()N) = 3 3= " Pr(0(0),...,0(T), Fi(t), Fa(t), Fs(D)A)  (5.12)
F1(t) F2(t) F3()

where the sum on the right-hand side can be carried out at any time t.

If the formant frequencies are assumed independent, the right-hand side of equation 5.12
can be factored into three independent formant probabilities, which can be computed using
the forward-backward algorithm, as discussed in section 4.3.1:

p(Fn(t),0(0),...,0(T)|A) = an(Fu(t),t)Bn(F, (), 1) (5.13)



Recoding the output model in terms of convex peaks

In the classification experiments described here, the stochastic formant model was trained
and tested several times on the entire TRAIN subdirectory of TIMIT, using various combi-
nations of parameters. In order to expedite retraining of the model, each training and test
spectrogram was reduced to a representation consisting of a list of convex peak frequencies
and their amplitudes, and this representation was pre-computed for all tokens, and stored
on disk.

This simplified spectral representation entails several modifications to the DFT output
model described in section 4.1.2.

First, the spectral convexity C(f,t) is quantized to a binary “peak/not-peak” distinc-
tion. The half-Gaussian model of spectral convexity described in section 4.1.2 is eliminated.
Instead, the binary convexity of a formant is modeled as a simple Bernoulli random process,
in which the probability of a formant F;,(t) landing on a convex spectral peak at each time
t is a trainable parameter, Py (t),

Py(t) = Pr(C(F,,t) = 1) (5.14)

The logistic spectral amplitude model described in section 4.1.2 is maintained without
change when evaluating the frequency of a convex spectral peak. At frequencies between
spectral peaks, the output representation does not specify a spectral amplitude A(f.?). In
the experiments described in this chapter, the forward-backward algorithm automatically
assigns the amplitude probability a low constant value & for all frequencies between spectral
peaks.

PLA(f,.DIC(f, 1) =0) =k (5.13)

The value of this fixed output probability is chosen to be low enough to cause the maximum a
posteriori probability of a formant to always occur at the frequency of a convex peak, unless
the nearest convex peak is several standard deviations away from the expected formant
frequency.

Temporal correlation in the output model

The normalized amplitude of a formant may be temporally correlated, just as the frequency
is. In the experiments described in this chapter. the temporal correlations of formant ampli-
tudes (normalized by the spectral energy) are modeled by a trainable correlation coefficient
pan(t), analogous to the formant frequency correlation parameter prn(t) described in sec-
tion 4.1.2. In training, pan(t) was generally found to be much less than ppp(t), for each
formant; typical values of pan(t) vary between 0.0 and 0.5. A few informal experiments in-
dicated that classification with pa,(t) is not significantly better or worse than classification
without it.

Because of the large quantity of training data, all model parameters (including means,
variances, correlation coefficients, and Bernoulli probabilities) were trained independently
for every time ¢.

Additional spectral measurements

In order to improve place classification, the model in this chapter uses two additional spectral
measurements which are not described in chapter 4.
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Figure 5-4: Example of three convex peak traces at the release of a /d/ by a female speaker.
The left-hand plot shows the convex peak frequencies closest to expected values of F1, F2,
and F3. The right-hand plot shows the amplitudes of these three peaks, and the amplitude
AH of the largest peak higher in frequency than F3.

First, the overall spectral energy E(t) is modeled as an independent output variable.
The spectral energy in decibels is modeled as a Gauss-Markov process, independent of any
of the formants. The mean, variance, and temporal correlation of the energy as a function
of time are trained separately for each context-dependent phoneme model.

Second, the amplitude of the largest spectral peak above F3 is measured for each possible
value of F3, and the probability distribution of this high-frequency amplitude measure,
Ay>(f), is used in the output model for F3. For example, at frequencies F3(¢) which are
convex peaks,

Pr(O(8)| Fy(t), A) = Py(t) Pr(A(Fs, )| Fy(£), A) Pr(Ays (Fs, )| Fy (1), A) (5.16)

where P3(t) is the trained probability of F3 landing on a convex peak, as discussed in sec-
tion 5.3.1. The Ay> measurement was added to allow some modeling of the high-frequency
tilt of an alveolar burst spectrum. In informal experiments, the addition of A;5 to the
model noticeably increased the correct classification of alveolar stops.

5.3.2 Example

Figure 5-4 shows the three lowest convex peak frequencies as a function of time, with their
amplitudes, at the release of a /d/ by a female speaker. The three peak traces have been
labeled F1, F2, and F3, but it is likely that the lowest peak does not follow the first vocal
tract formant until at least 10ms after release.

Table 5.11 shows a series of log-ratios comparing the probability that figure 5-4 is the
syllable /dah/ to the probability that it is /gah/. Each row of the table compares the
probabilities of the /dah/ and /gah/ models producing a frequency or amplitude track



Difference in Log Likelihood between /dah/ and /gah/ models

| Time (ms) [ 0 |10 20 [30 T[40 ]
F1 -0.06 | -0.02 [ 0.26 [ 0.94 | 1.56
Al -0.02 [ 0.35 | 0.12 | 0.62 | 0.59
F2 0.22 [-0.39 [ 0.05 | 0.06 |0.11
A2 451 |4.21 [3.88 [3.52 | 3.54
F3 -0.17 [ 0.34 [ 0.69 | 1.08 | 1.32
A3 0.36 | 0.17 [0.25 [0.15 [ 0.10
Ags 0.34 |0.26 [-0.05|-0.17 | -0.40
Energy -0.05 [ 0.17 [0.35 | 0.67 | 0.73
| Total [5.13 [5.10 [5.54 [6.86 | 7.54 ]

Table 5.11: Log-likelihood scores used to decide whether the token in figure 5-4 is a /d/ or
a /g/. The table shows the difference in log-likelihood between /dah/ and /gah/ models
for each formant frequency model and each formant amplitude, computed independently.

equal to the corresponding convex peak frequency or amplitude shown in figure 5-4. These
probabilities are calculated cumulatively, from left to right, using the forward algorithm,
with each frequency and amplitude computed independent of the others.

Notice that some of the parameter tracks match the model for /d/, some match the
model for /g/, and most are rather ambivalent. The Ay> parameter favors the alveolar
model toward the beginning of the syllable, but as the parameter As> drops, so does the
probability of an alveolar interpretation. The low values of A2 appear to be strong evidence
for an alveolar interpretation: if this syllable were velar, there would be a strong peak in the
burst at the frequency of F2, and A2 would therefore be much higher early in the syllable.

The total log-likelihood of /dah/, as opposed to /gah/, can be estimated by adding
all of the component log-likelihoods. ! As shown, the addition of several component log-
likelihoods strongly favors the /d/ interpretation over the /g/ interpretation. The ratio of
the two probabilities is exp(7.54) = 2000.

5.3.3 Training from a large speech corpus

The parameters of the modified formant model described above were trained using all voiced
stop releases in the 18 right contexts described in table 5.4 in the TRAIN subdirectory of
TIMIT. and excluding releases which cross a word boundary: a total of 3141 stops. Since
manual transcription of this many stop releases was judged to be impractical, the model
parameters were trained on the basis of automatic formant measurements, generated by
the Entropic formant tracker, and smoothed using the rule-based algorithm described in
chapter 3. These formant frequencies were matched to peaks in the corresponding DFT
spectra, and missing information was estimated simultaneously with the model parameters
using an iterative expectation-maximization algorithm.

!The sum of independent component log-likelihoods is not quite equal to the total log-likelihood which
would be computed by the complete stochastic formant model. In the complete model, the amplitude and
frequency of a formant are not independent, so it is not possible to separate the cumulative log-likelihoods
as shown in table 5.11.
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Speech data (merging similar contexts)

The mean, variance, and temporal correlation of each modeled variable were trained inde-
pendently for each of the context cells defined in section 5.2.1. As noted in that section,
many of the context cells in the TRAIN subdirectory of TIMIT are too sparse to allow
reliable training of parameters.

In order to improve parameter training, context cells were collected into groups which
make sense for the training of each parameter. For example, the model of each formant
frequency was trained using data from all consonants with the same place of articulation,
regardless of the consonant manner. Formant amplitude, spectral energy, and high fre-
quency amplitude models were trained using all tokens with a given phonetic transcription,
regardless of the speaker gender.

Even after collapsing irrelevant dimensions as described above, some of the training cells
were still too sparse for reliable model training. These sparse cells were supplemented by
tokens with similar right contexts, as discussed in section 5.2.1.

Matching LPC and DFT peaks

The training database included 3141 voiced stop releases, extracted from the TRAIN sub-
directory of TIMIT. Since manual transcription of this many stop releases was judged to
be impractical, the model parameters were trained on the basis of automatic formant mea-
surements.

Formants were first measured, for each training token. using the Entropic LPC-based
formant tracker, and the resulting LPC roots were smoothed using the rule-based algorithm
developed in chapter 3.

Since the HMAI output model looks only at the DFT spectrum, all formants proposed
by the LPC-based algorithm were matched with peaks in the DFT spectrum, and formant
means and variances were computed using the peak frequencies and amplitudes of the
corresponding DFT peaks. Each formant was matched one-to-one with the closest DFT
peak, provided that the closest peak was within 400 Hertz.

Any formant sample at any point in time which could not be matched with a DFT peak
was marked as missing. Approximately 12% of the formant samples in voiced stops, 20%
of the formant samples in unvoiced stops, and 11% of the formant samples in nasal release
syllables could not be matched to a DFT peak, and were marked as missing.

Estimating missing information

The contribution to the model parameters of formants missing from the DFT spectrum
was estimated using an iterative expectation-maximization algorithm, due to Johnson and
Wichern (1992). Like the Baum-Welch re-estimation algorithms usually used in HMM
training, the algorithm used here can be viewed as a gradient maximization of the expected
log-likelihood of the training data (Rabiner, 1993). Unlike the Baum-Welch algorithm,
however, the algorithm used in this section treats all formants as known, except those
which have no corresponding DFT peak.

In the algorithm used here, the mean, variance, and temporal correlation of a frequency
or amplitude parameter are first initialized using the statistics of the known, measurable
formants in the training data. The initial values of the mean and covariance are then used
to predict the contribution to mean and variance of the missing formant frequencies and



Classification using an HMM formant tracker

v C |[NT | /b/ /d/ /g/
Vowels /b/ | 771 || 91

and /d/ | 63213 74 13
Glides | /g/ | 602 12 81

Retroflex | /b/ | 85 | 96

/d/ |81 |19 62 20
/e/ | 60 | 13 80
Lateral | /b/ | 69 || 80 12

/d/ |11 || 18 82

g/ |42 || 24 67

Table 5.12: Confusion matrices for voiced stops, classified using the stochastic formant
model. Entries of 10% or less have been omitted.

amplitudes, and the predictions are used to update the model statistics. This process is
iterated until the parameter statistics stabilize.

In general, the initial mean, variance, and temporal correlation parameters changed
little during re-estimation.

5.3.4 Classification of place

The two-level HMNMI formant models of each svllable, trained as described above, were used
to classify the place of all vuiced stop releases in the 18 right contexts of table 5.4 in the
TEST subdirectory of TIMIT, excluding releases which span a word boundary: a total of
1253 stops. The three places of articulation were treated as being a priori equally likely.

Classification in vowel and glide context

Table 5.12 describes the result of classifying voiced stop releases using the modified stochas-
tic formant algorithm. In vowel and glide contexts, classification is 83% correct. This result
is similar to the 84% correct classification achieved by Nossair and Zahorian (1991) us-
ing similar measures (automatically measured formant frequencies and amplitudes). In
their study. Nossair and Zahorian used a context-independent classifier, which presumably
made their classification task more difficult, but their speech data was composed of isolated
monosyllables, which presumably made classification less difficult.

The stochastic formant model was intended to improve on the performance of standard
formant-based classifiers, by allowing “hidden” formant frequencies to evolve even when
there is no corresponding spectral peak in the output. In training on a large database, how-
ever, several simplifications were made, which tied the “hidden” formants of the stochastic
formant model much more closely to observed peaks in the spectrum. Perhaps as a result of
these changes, the classification performance of the modified stochastic formant model does
not exceed the classification performance reported by Nossair and Zahorian on a context-
independent (and therefore more difficult) task.

Dependence of classification on right context

The LDA classifier in section 5.2 performs poorly in retroflex and lateral contexts if only
formant frequencies are available, but does reasonably well if measurements of the burst



\Y% spoken | NT |b d g
LB /b/ 63 |92

faa, | /d/ |29 83
ah/ | Jg/ | 64 17 81
HF | /b/ | 216 | 94

/iy, /d/ 102 76 14
ihux/ | /g/ 33 15 79
HB | /b/ |18 |83 11
Juw,w, | /d/ 25 88 12
uh/ /g/ 31 84

Table 5.13: Stochastic formant model classification of voiced stops, as a function of right
context. Entries of 10% or less have been omitted.

spectrum are available. As shown in table 5.12, the stochastic formant model does reason-
ably well in retrofiex and lateral contexts: 80% correct in retroflex context, 76% correct in
lateral context. Apparently, the formant amplitudes measured by the stochastic formant
model carry enough information about the burst to allow reasonably good place classifica-
tion in liquid context. The pattern of errors in retroflex context is slightly different from
that of the LDA classifier: alveolar stops are almost equally likely to be called labial or
velar, and velar stops are more likely to be called labial than alveolar.

Voiced stop classification as a function of vowel context is shown in table 5.13. The data
show most of the same patterns seen previously with the linear discriminant classifier, and
with Winitz’ human subjects.

5.4 Summary

This chapter has reported context-independent and context-dependent LDA classification
of place using rule-based formant and burst spectral measurements, and context-dependent
maximum likelihood classification using a stochastic formant model.

Linear discriminant classification of automatic formant and burst spectral measurements
results in 76% correct context-independent classification (section 5.1), and 84% context-
dependent classification (section 5.2). Experiments in section 5.1 suggest that, of the 24%
error in the context-independent classifier, more than half is the result of measurement
error, and up to one fourth is caused by use of LDA classification, which is suboptimal.

If these sources of error can be eliminated, the experiments in sections 5.1 and 5.2 suggest
very speculatively that context-dependent classification using formant and burst spectral
measurements may result in better than 96% correct classification of place. This speculation
is supported by the work of Kewley-Port (1982), who found that formant frequencies alone
were sufficient to classify place of a stop with 97% accuracy, given context information.

It is not easy to eliminate the error in automatic formant measurements. Having failed
to eliminate measurement error, this chapter suggests two other methods for working around
it.

First, section 5.1 suggests analyzing the effect of error using an aggregate error model.
An aggregate error model might be appropriate in a phonetic study, or in a speech recognizer
based on an expert system. In either of these applications, a detailed error model can be
used to predict the reliability of composite statistics, such as the linear discriminant statistic



analyzed in section 5.1.

Second, section 5.3 suggests the use of a stochastic formant model, which may avoid
some of the effects of measurement error by refusing to explicitly measure the formant
frequencies. Unfortunately, simplifications described in this chapter apparently force the
“hidden” formant models to follow explicit convex peaks in the DFT spectrum, in effect
forcing the stochastic formant model to track explicit estimates of the formant frequencies.
The resulting 83% correct classification of the stochastic formant model is similar to the
classification performance of an LDA classifier using explicit formant and burst spectral
measurements.
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Chapter 6

Conclusions

This thesis demonstrates, in several stages, the relationships by which articulatory variabil-
ity entails acoustic variability, and by which acoustic variability is manifested in the forms
of acoustic measurement error and phonetic classification error.

As predicted in chapter 1, automatic measurements of formant frequencies and burst
spectral measurements have not proven optimal in phonetic classification experiments, be-
cause of the effects of measurement error. Although these measurements are not optimal
for classification. however, they have proven quite useful in demonstrating the links between
articulatory variability, measurement error, and classification error. The Bayesian uncer-
tainty models considered in chapter 4, for example, are reasonably successful in predicting
measurement error based on measurements of the ambiguity in the acoustic spectrum. Clas-
sification error, in turn, is shown in chapter 5 to be well predicted by the aggregate statistical
error models developed in chapter 3.

Section one of this chapter discusses the classification results from chapter 3, and com-
pares them to the results obtained in previous classification studies. Section two discusses
the error modeling results, and explores possible applications. Finally, section three dis-
cusses possibilities for future development of a stochastic formant model of human speech
perception.

6.1 Classification of Consonant Place

The context-dependent classification results reported in chapter 5 are, for every type of
acoustic measurement classified, very similar to previously reported results using context-
independent classifiers, while the context-independent results reported in chapter 5 are
slightly worse. Two factors seem to contribute to the difference in results. First, most of the
published studies in chapter 1 are based on recordings of isolated or stressed monosyllables,
while the experiments in chapter 5 are based on speech data excised from TIMIT, which
presumably contains much more prosodic and contextual variability. Second, the failure
of the context-dependent classifiers in chapter 5 to surpass previously published context-
independent results can perhaps be attributed to the training procedure, which may not
have allowed the trained classifiers to make full use of context information.

6.1.1 Context-independent classification

Section 1.3 reports a rather remarkable fact: most previous studies of context-independent
classification of consonant place agree, to within about 5%, on the amount of place in-



formation contained in various acoustic cues. According to this consensus of researchers,
burst spectral measures can be used to classify place with roughly 80-85% accuracy, formant
frequencies can be classified with 65-70% accuracy, a combination of formant frequencies
and amplitudes can be classified with 80-85% accuracy (Nossair and Zahorian, 1991), and
dynamic spectra can be classified with greater than 90% accuracy.

In this thesis, vowel context stop release tokens in the Error Modeling database (ap-
pendix A.2) are classified in several context-independent classifiers. Formant and burst spec-
tral information measured by human judges on this database are used to classify place with
89% accuracy, depending on the classifier design. This result matches the results of Lamel
(1988), who obtained approximately 90% correct classification of place using knowledge-
based classification of similar measurements by a human judge. Automatic measurements
of formant frequency and burst spectral information in this thesis are substantially less
reliable, with only 76% correct classification.

The 89% correct classification of manual transcriptions reported in this thesis is roughly
comparable to the best speaker-independent classification reported by any study using any
set of measurements. We can therefore tentatively conclude that the combination of formant
frequencies and burst spectral information, if measured as human judges measure it (and
provided that the recording level is appropriately controlled or normalized), is a complete
representation of the consonant place information available in the release waveform.

Unfortunately, errors in the automatic measurement of formant and burst information
are apparently so frequent that they make classification difficult. The 76% classification
rate reported in section 5.1 is no better than the classification rates reported previously
using onset spectral measures alone (e.g. in Blumstein and Stevens, 1979), even if we allow
a margin of error to account for the suboptimal classifier structure.

Section 5.1 demonstrates that the difference between the 89% correct classification of
manual measurements and the 76% correct classification of automatic measurements can be
attributed to measurement error. A listing of the measurements which are most responsible
for classification error is difficult to provide in a formal experiment, but can be provided
heuristically through an analysis of section 3.4. For example, it might be speculated that a
classification error occurs whenever a measurement of the onset of F2 or F3, or of the front
cavity resonance in any alveolar or velar token, is mistaken by more than about 300Hz.
By multiplying probabilities complementary to those shown in figure 3-11, we find that
300Hz errors in these three measurements would cause classification errors in about 28%
of tokens. This is slightly larger than the 24% error rate actually observed, implying that
measurement redundancy helps to reduce the error rate somewhat.

6.1.2 Context-dependent classification

Context-dependent classification rates in this thesis are generally similar to the context-
independent classification rates reported elsewhere. In section 5.2, formant frequencies are
classified correctly 72% of the time (compare to 65-70% in context-independent studies),
burst spectral measures are classified correctly 80% of the time (compare to 80-85% in
context-independent studies), and a combination of both is classified correctly 84% of the
time. In section 5.3. formant frequency and amplitude information is classified correctly
83% of the time, which is comparable to the 84% achieved by Nossair and Zahorian (1991)
in a context-independent study.

It is not at all clear why context-dependent results in this thesis match previous context-
independent results so closely, for all types of measurements. Of the studies reviewed in
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section 1.3, the only study which examined context-dependent classification (by Kewley-
Port, 1982) found that context information improved classification using manually tran-
scribed formant frequencies by about 30%, from 68% correct to 97% correct. In contrast.
the context-dependent LDA classifier in section 5.2 of this thesis performs only 8% better
than the equivalent context-independent classifier in section 5.1.

Speculatively, it seems possible that the training attempted in chapter 5 does not make
effective use of context information. In that chapter, sparse context cells are supplemented
by tokens with similar right contexts, so that many of the classifiers are trained using tokens
from 2-4 right contexts. Perhaps this pooling of tokens during training eliminates some of
the benefit of context information.

If we assume that all of the context-dependent classifiers in chapter 5 are only about
8% better than equivalent context-independent classifiers would be, the data in chapter 5
can be taken as approximate confirmation of the previously reported results. Classification
of formant frequencies is roughly 60-70% correct, and the classification of either burst
spectral measures, alone, or formant frequencies and amplitude, together, is 753-85% correct.
depending on the variability of the speech data. Classification of formant frequencies and
burst spectral measures, taken together, is also 75-85% correct.

6.2 Predicting the Effect of Measurement Error

Although this thesis is unable to eliminate measurement error. it demonstrates repeatedly
that it is possible to characterize and predict measurement error using quantitative models.

Three rather different modeling methods are presented. First, production models devel-
oped in chapter 2 are used to help design the knowledge-based measurement algorithms in
chapter 3. Second. aggregate error models developed in chapter 3 are used to predict the
confusion matrix of a context-independent linear discriminant classifier in chapter 5. Fi-
nally, an HMM formant tracker is used in chapter 4 to develop novel real-time measurement
uncertainty models.

6.2.1 Production models of the sources of error

Chapter 2 reviews and extends several production models which, in combination with em-
pirical data from previous studies, are used to make rough quantitative predictions of the
form and range of formant and front cavity resonance measurement error. The sources of
error examined include random variation of a turbulent spectrum, increased bandwidth of
formants during aspiration, and the presence in the spectrum of back cavity and subglottal
resonances.

By modeling turbulence noise as a Gaussian random process, and assuming a uniformly
distributed phase spectrum, section 2.1.4 derives a x2 model of the probability distribution
of the time-averaged power spectrum. Based on this model, random spectral nulls are shown
to be much more likely than random spectral peaks. In an example spectrum, consisting
of independent 330Hz bands (measured as the average of two 6ms Hanning windows), the
x? model predicts that one out of every 100 measured bands contain a randomly generated
spectral peak of 5.2dB or more, while the same number of measured bands contain a null
of at least 11dB.

Based on a simplified model of the contribution of glottal losses to formant bandwidth,
chapter 2 demonstrates that a doubling in average glottal area can lead to an increase by
four in the first formant bandwidth. It is argued that such a large increase is sufficient to



reduce the Q of F1 during aspiration to nearly unity, making the formant difficult to find
in the spectrum.

The influence of subglottal resonances on LPC is predicted through analysis of the LPC
prediction error at the frequency of a formant peak. Based on this analysis, it is predicted
that LPC will usually only track a subglottal resonance if a nearby formant is hidden by
formant merger, or if the amplitude of a nearby formant is less than the amplitude of the
subglottal resonance. Data from a study by Ishizaka et al. (1976) are cited to show that
a subglottal resonance is unlikely to have a larger amplitude than any nearby formant,
unless the formant amplitude is reduced by glottal losses during aspiration, or by a random
spectral null.

Finally, the transfer function amplitudes of front and back cavity resonance peaks in
frication are derived. It is demonstrated that the amplitude of a high-frequency front
cavity resonance is inversely proportional to the square of the resonance frequency, while
the amplitude of a back cavity resonance depends primarily on the separation of the pole
and zero. Based partly on empirical data and partly on the models, it is argued that
the transfer function amplitude of a front cavity resonance peak is usually larger than the
transfer function amplitude of a back cavity resonance peak, but that this is not always
true if the front cavity resonance frequency is sufficiently high.

6.2.2 Predicting classification on the basis of aggregate error models

After developing knowledge-based algorithms for the measurement of formant frequencies
and burst spectral information, chapter 3 addresses the issue of measurement error in these
algorithms. Several models of the measurement error are developed. A simple additive
Gaussian error model is shown to be insufficient, for two reasons. First, measurements of
formant and front cavity resonance frequencies are affected by occasional nonlinear peak-
picking errors, which typically show up as “outliers” which are too large to be predicted
by a Gaussian distribution. Second, measurements of burst amplitude, and of the onset
frequency of F1, are heteroskedastic, that is, the measurement errors are correlated with
the correct value of the measurement.

Section 5.1 demonstrates the use of quantitative error models in predicting the per-
formance of a linear discriminant classifier. A simple additive Gaussian error model is
insufficient for accurate prediction of the confusion matrix, but a heteroskedastic Gaussian
model predicts the confusion matrix reasonably well.

The prediction of discriminant error from measurement error in section 5.1 shows one
way in which aggregate error models, of the sort developed in chapter 3, might be used
in a larger knowledge-based speech recognizer. A knowledge-based recognizer built, for
example, using a blackboard expert system (e.g. Carver and Lesser, 1992) usually depends
on quantitative estimates of the reliability of various competing recognition hypotheses.
Section 5.1 demonstrates the use of quantitative error models to predict the reliability of
several binary classifiers, and of the round-robin classifier built from them; similar prediction
based on quantitative error models might be useful in judging the reliability of hypotheses
in a blackboard-based speech recognizer.

Simple quantitative models are currently used to describe the difference between tran-
scribers in large acoustic phonetic studies. In their study of vowel formants, for example,
Hillenbrand et al. (1995) qualified their formant frequency measurements with a table de-
scribing the mean absolute difference between the measurements of different transcribers.
Sections 3.4 and 5.1 suggest that such simple models may not be sufficient for all purposes,



because of error outliers or heteroskedasticity. In particular, section 3.4 suggests that stud-
ies which rely on automatic measurements of any kind should qualify their results with a
carefully tested error model.

6.2.3 Real-time predictions of measurement uncertainty

Section 6.2.2 suggests that aggregate error models of the type developed in chapter 3 might
be useful in predicting the reliability of competing hypotheses in a blackboard-based speech
recognition system. An aggregate error model, however, only contains general information
about the type of measurement being made. A blackboard expert system might get more
benefit from an error model which includes information about quirks of the specific token
being recognized, including the distribution of spectral peaks in each band of interest.

The stochastic formant model developed in chapter 4 generates specific uncertainty
models which predict the possible errors in each and every formant measurement, as it is
made. These uncertainty models are designed to pass on information about the quirks of
the token under study, including the distribution of peaks in each band of interest, to any
higher level recognition algorithm which might employ the model.

The stochastic formant model can also be used to classify speech sounds by itself, without
being fitted into a larger speech recognizer. Section 3.3 implements a classification model
in which formants are viewed as production states, which may or may not match peaks in
the acoustic spectrum at any given time. This model is designed to avoid the problem of
measurement error by avoiding measurements: stochastic models of the formants associated
with each place of articulation are used to classifv a stop release waveform, without ever
explicitly measuring the formant frequencies of the waveform being classified.

The classification performance of the stochastic formant model in section 5.3 is almost
exactly equal to the classification performance obtained using LDA classification of explicit
formant and burst spectral measurements. There are two likely reasons for the similarity in
performance between these two algorithms. First, the stochastic formant model is modified.
in chapter 5. to accept a list of convex peak frequencies and amplitudes as input in lieu of
the entire DFT spectrum. Speculatively, it may be that the reason the stochastic formant
model is unable to beat the performance of an LDA classifier is that the input to the
stochastic formant model and the input to the LDA classifier contain similar lists of spectral
peak frequencies and amplitudes. Second, the stochastic formant model in chapter 5 is
trained on data generated by the knowledge-based formant measurement algorithm, so it is
entirely possible that the formant models trained in chapter 5 are only able to learn spectral
distinctions which are also already captured in the knowledge-based formant frequency
representation.

Apparently, we do not yet have enough information about the stochastic formant model
to judge its usefulness in speech classification. The next section will describe future work
which might help to evaluate the usefulness of stochastic formants in a speech classifier.

6.3 Future Work: Stochastic Formant Models of Perception

Perceptual studies indicate that listeners can hear cues offered via formant frequencies
(e.g. Delattre, Liberman, and Cooper, 1955). On the basis of these perceptual studies,
phoneticians have occasionally argued that human speech perception includes some kind of
low-level formant tracking module, which passes information about the formant frequencies
of a signal up to higher-level classification modules.



Unfortunately, nobody has ever been able to build a formant tracking algorithm which
is sufficiently free of errors to be a plausible model of a low-level perceptual process. When
a formant tracker misses a formant, it usually proposes a pattern of formants which is quite
different from the correct formant pattern. When human listeners make vowel identification
mistakes, on the other hand, the formant patterns of the proposed vowel are usually similar
to the pattern of the correct vowel (Huang, 1991). Formant trackers always make mistakes,
but human listeners almost never make the kinds of mistakes that they would make if
perception depended on a formant tracker. Therefore, most phoneticians today do not
believe that perception depends on a low-level formant tracker.

The stochastic formant model provides a completely new model of the way formant
tracking might be used in speech perception. In the stochastic formant model, there is
no formant tracker, and hence the algorithm is not affected by formant tracking errors (at
least as the model is presented in chapter 4; the convex peak representation in chapter 5
can be viewed as a kind of formant tracker). Instead of explicit formant measurements,
each phoneme model is composed of implicit formant models, each of which is tasked with
explaining the distribution of energy in its own frequency band. If a formant peak is missing
from the spectrum, the other formants are not shifted up or down to compensate. Instead,
the phoneme model adds together the uncertainty of the missing formant, the certainty of
those formants which are clearly measured, and the information available from non-formant
components (e.g. energy) to compute a total recognition score. Thus the stochastic formant
model is designed to make misclassification errors of one or two distinctive features, as do
human listeners, rather than making arbitrary complete phoneme errors, as do formant
tracking algorithms.

The stochastic formant model has not been aggressively portrayed as a model of per-
ception in this thesis for two reasons. First, the models proposed in this thesis use a linear
frequency scale. Before the stochastic formant model cun be credibly related to human
perception, it will have to be re-designed to accept an input similar to the input accepted
by the human perceptual system. The frequency scale should be warped to fit an auditory
criterion; some kinds of masking and gain control may also prove to be useful. A nonlinear
frequency scale may result in loss of formant frequency resolution at high frequencies; some
experimentation will be needed to determine whether this loss of resolution is a help or a
hindrance to correct phoneme classification.

Second, the stochastic formant model has not been aggressively portrayed as a model
of perception because the prototype classifier tested in chapter 5 did not work very well,
compared to existing speech recognition systems which use no explicit formant or sub-band
information of any kind. It was speculated, in section 6.2.3, that the algorithm’s poor
performance in chapter 5 is probably due to the reduced dimensionality of the input, and
to the dependence of the training procedure on possibly erroneous formant contours pro-
duced by the knowledge-based formant smoothing algorithm. These speculations should be
tested: the model should be trained directly on DFT spectra, using some kind of param-
eter re-estimation algorithm, and tested in a phoneme classification task using a complete
observation space.

Finally, if the model is to be convincing, it should be tested against a controi: a more
established speech classification algorithm, as much like the stochastic formant model as
possible, but with no knowledge of the formant structure of speech. If the observation
space consists of 50ms from a mel-frequency spectrum, for example, a suitable control
algorithm would be a frame-based continuous-density model of the mel-frequency spectrum
or cepstrum, with variation over time in the density means, perhaps something like the



nonstationary HMM proposed by Deng et al. {1994).



Appendix A

Speech Data

A.1 KB Train: Training tokens for knowledge engineering

The KB Train database is composed of 180 consonant releases selected from the TRAIN
subdirectory of TINIT. These 180 consonant releases include 20 releases of each consonant,
10 each spoken by male and female speakers, in arbitrary context. This is the only database
in this thesis which contains consonant releases which span a word boundary.

The tabulated lists below give the TIMIT filename of each sentence, the consonant
identity, and the release time. Release times were re-transcribed during acoustic analysis.
so the release times given may not correspond exactly to the release times transcribed
in TIMIT. Ten manual acoustic measurements are listed. For each token, the first three
formants 20ms and 50ms after stop release are shown. For stops, the low-frequency and
high-frequency burst amplitudes (Ifa and hfa) and number of peaks (np) are shown. Finally,
for alveolar and velar bursts, the burst front cavity resonance (fcr) is listed.
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b releases

Filename Time || fcr | np | Ifa | hfa F1 F2 F3

fbcgl /1982 1436 5 |-15]-20 || 607 | 733 | 1340 | 1508 | 2806 | 2764
fbegl /si982 838 3 |[-9 |-15 || 398 | 411 | 2576 | 2468 | 2995 | 3044
fcag0/si2133 1170 1 |-25|-29 || 378 | 517 | 2050 | 2189 | 2428 | 2587
fceg0/si618 611 6 | -21|-39 || 678 | 884 | 1830 | 1789 | 2797 | 2920
fclt0/si808 1210 4 | -14 | -17 || 375 | 365 | 2219 | 2300 | 2625 | 2625
fclt0/si808 2517 10 | -12 | -9 375 | 376 | 2219 | 2250 | 2781 | 2812
fdml0/sx339 1195 7 1-251]-26 || 469 | 443 | 2062 | 2031 | 2906 | 2844
fgmb0/si515 1928 3 | -3 |-10 | 535|377 | 1933 | 2094 | 2674 | 2953
fhlm0/si2190 1323 4 | -19 | -27 || 500 | 529 | 1469 | 2062 | 2781 | 3125
mapv0/sil293 | 1448 2 (-2 |-9 656 | 667 | 1125 | 1250 | 2312 | 2219
marw0/sx349 | 3268 1 | -3 |-15| 531 | 596 | 1344 | 1437 | 2187 | 2219
mbbr0/sil685 | 1115 1 |-23]-28 | 503 | 503 | 1298 | 1340 | 2136 | 2367
mbom0/sil014 | 1517 4 |-19|-28 || 594 | 681 | 1031 | 1000 | 2406 | 2344
mbom0/si1014 | 3085 7 |-17 1 -19 || 500 | 568 | 1562 | 1562 | 2125 | 2250
mbom0/si1014 | 134 4 | -10 | -12 || 344 | 425 | 1812 | 1875 | 2437 | 2469
mbsb0/si723 2576 8 | -7 |-11 || 469 | 562 | 1100 | 1312 | 2437 | 2375
mbsb0/si723 3088 2 1-22|-18 || 375 | 512 | 1281 | 1200 | 2250 | 2200
mcae0/si2077 | 2838 6 |-30|-35| 500 | 472 | 1219 | 1219 | 2312 | 2281
mctm0/si1980 | 1082 6 | -13|-14 || 562 | 646 | 1250 | 1281 | 2500 | 2344
mctm0/sil980 | 2319 5 | -1 |-7 562 | 532 | 1281 | 1437 | 2406 | 2875
d releases

Filename Time || fer np | lfa | hfa F1 F2 F3
fbmj0/sil776 | 754 3281 |2 |-10 | -8 406 | 424 | 2281 | 1719 | 2875 | 2719
fbmj0/sil776 | 2918 || 3250 | 3 | O 3 344 | 495 | 1906 | 1500 | 2625 | 2656
fcmg0/si1872 | 1596 || 6187 | 8 | -4 | -1 250 | 376 | 2687 | 2844 | 3062 | 3187
fdfb0/si1318 1164 || 5531 | 3 | -15 | -12 || 500 | 636 | 1969 | 1969 | 3125 | 3062
fdkn0/si1202 | 3162 || 3687 |5 | -5 | -4 375 | 496 | 1937 | 2000 | 2719 | 2750
fdml0/sx339 145 4523 | 4 | -10 | -16 || 250 | 330 | 2062 | 2156 | 2812 | 2875
fdnc0/si1278 | 3091 | 4219 |5 |-5 |4 375 | 518 | 2281 | 2531 | 3031 | 3250
mapv0/sil293 | 4488 || 3875 [ 4 |1 2 531 | 578 | 1469 | 1625 | 2437 | 2406
marw0/sx349 | 4476 | 3687 |3 | -6 | -5 344 | 455 | 1500 | 1562 | 2375 | 2469
mbbr0/sil685 | 886 4126 | 6 | -37 | -40 || 432 | 658 | 1995 | 1851 | 2612 | 2550
mbbr0/si1685 | 2211 || 3687 | 5 | -7 | -5 469 | 541 | 1812 | 1844 | 2437 | 2500
mcss0/s1688 329 4084 | 6 | -31 | -16 || 461 | 461 | 1759 | 1822 | 2681 | 2702
mdbp0/si528 | 1328 || 3435 |5 | -5 |1 411 | 482 | 1707 | 1571 | 2509 | 2471
mdbp0/si528 | 3411 || 4250 [ 3 | -8 | -1 281 | 352 | 2031 | 1969 | 2562 | 2594
madd0/sx178 | 1411 |[ 2062 | 2 | 10 | -17 || 312 | 463 | 1406 | 1469 | 1937 | 1850
mapv0/si1293 | 966 2719 {2 | 8 -1 344 | 384 | 1625 | 1500 | 2250 | 1500
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g releases

Filename Time || fer np | Ifa | hfa F1 F2 F3
fcag0/si2133 1411 || 2586 |2 | 5 -4 438 | 546 | 2110 | 1939 | 2627 | 2626
fdkn0/s11202 4080 || 2687 |1 | 8 -9 375 | 554 | 2750 | 2125 | 3125 | 2600
fdkn0/si1202 1844 | 2906 | 4 | 8 -1 375 | 439 | 2219 | 2156 | 2969 | 2656
fdml0/sx339 1421 || 2000 | 1 1 -10 || 281 | 399 | 1906 | 1562 | 2781 | 2781
fdtd0/si931 1121 || 3219 |1 | O 11 || 500 | 601 | 2650 | 2687 | 3125 | 3125
fecd0/sx338 1239 || 2031 |3 |12 | -2 400 | 469 | 2344 | 2400 | 2800 | 2687
fhlm0/si2190 2481 || 1406 |1 | 6 -10 || 406 | 508 | 1469 | 1469 | 2000 | 2187
fjen0/si2307 1382 1719 | 2 12 | 6 531 | 757 | 1781 | 1719 | 2469 | 2594
fjen0/si2307 3024 || 1656 | 1 13 | -8 375 | 616 | 1844 | 2000 | 2100 | 2000
mcae0/si2077 | 4503 || 1250 [ 2 | -3 | -20 || 437 | 568 | 1281 | 1281 | 2125 | 2500
mcae0/si2077 | 2141 | 1344 [ 1 | -5 | -20 || 312 | 405 | 1406 | 1344 | 2062 | 2062
mexm0/sil351 | 1064 || 1594 | 2 | -21 | -37 || 312 | 347 | 1656 | 1594 | 1656 | 1800
mdlc0/si1395 | 1762 [[ 937 |1 |6 -38 || 344 | 444 | 1031 | 1156 | 1875 | 1937
mdlc0/si1395 | 2170 | 1187 | 1 | -13 | -32 || 344 | 472 | 1219 | 1250 | 1600 | 1719
mdlc0/sil395 | 4547 || 875 |1 1 -33 || 375 | 404 | 1031 | 1062 | 1750 | 1875
mdrd0/si752 2589 || 2531 |3 |7 -2 406 | 517 | 2250 | 2031 | 2250 | 2531
mhjb0/si2277 | 1192 |[ 2094 | 1 | -3 | -15 | 344 | 450 | 2219 | 1937 | 2500 | 2375
p releases

Filename Time || fcr | np | Ifa | hfa F1 F2 F3

fbegl /51982 1642 2 -2 |-6 531 | 645 | 1000 | 781 | 2550 | 2700
fbegl /51982 2561 5 | -12 | -17 || 500 | 437 | 1719 | 1937 | 2281 | 3300
fbmj0/sil1776 3373 9 |-17 1 -21 || 406 | 455 | 1625 | 1250 | 2000 | 2500
fcrz0/s1793 434 6 1 -1 281 | 596 | 1375 | 1281 | 2625 | 2625
fear0/si1252 1949 6 |-10 | -13 || 600 | 724 | 1344 | 1250 | 2156 | 2300
fexm0/sil731 | 704 9 |-17 | -19 |l 625 | 555 | 1437 | 1969 | 2312 | 2656
fjk10/s1932 2520 2 | -2 |-18 594 | 614 | 1475 | 1531 | 2000 | 1800
fjk10/s1932 437 1 2 -11 || 312 | 545 | 1562 | 1844 | 2219 | 2281
fjlg0/s11506 594 2 4 -1 500 | 478 | 1406 | 1406 | 2125 | 1406
fjlr0/sx241 973 9 |-291!-29 | 250 | 351 | 1844 | 2031 | 3062 | 3156
fjrb0/s11302 2943 8 |-17 | -16 |} 187 | 473 | 1906 | 1875 | 2562 | 2437
marw0/sx349 242 4 -5 -23 || 312 { 372 | 1125 | 1125 | 1437 | 1600
mess0/si688 1456 4 1 -2 394 | 672 | 1156 | 1000 | 2406 | 2531
mcss0/si688 3600 5 |2 -2 562 | 578 | 1094 | 1437 | 2250 | 2344
mess0/s1688 1842 4 | -4 :-10 || 656 | 637 | 1687 | 1625 | 2969 | 2906
mess0/si688 750 8 | -6 |-11 | 350 | 391 | 1542 | 1748 | 1933 | 1995
mdbp0/si528 434 6 | -13|-20 j| 531 | 600 | 1125 | 1125 | 2500 | 2650
mdhs0/si2160 | 922 5 | -241-25 || 400 | 450 | 1625 | 1406 | 2625 | 2500
mdrd0/si752 144 8 | -20 | -21 || 250 | 354 | 1094 | 1200 | 1531 | 1406
mdwd0/si1890 | 3174 7 | -15{-17 || 500 | 574 | 1219 | 1281 | 2562 | 2687
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t releases

Filename Time || fer np | lfa | hfa Fl F2 F3

fapb0/si2323 | 4939 || 4781 {5 |0 0 469 | 601 | 1906 | 1781 | 2844 | 2875
fapb0/si2323 | 2079 || 5125 | 10 | -12 | -9 687 | 779 | 1750 | 2062 | 2594 | 2625
fapb0/si2323 | 1262 || 4281 [ 7 | -5 | -1 375 | 412 | 2100 | 2250 | 3156 | 2906
fbcgl /51982 2704 || 4906 | 7 | O 2 875 | 955 | 2094 | 2000 | 3406 | 3400
fbcgl /51982 133 5562 | 10 | -7 |1 531 | 710 | 2200 | 2250 | 3500 | 3125
fcag0/si2133 1073 || 4020 | 3 | -18 | -16 || 378 | 404 | 1811 | 1374 | 2368 | 2242
fceg0/si618 o17 4156 | 6 | 3 6 312 | 284 | 1781 | 1406 | 2687 | 2344
fceg0/si618 1568 || 2974 (4 |9 -5 500 | 460 | 1219 | 800 | 2437 | 2312
fceg0/si618 294 4219 |6 |3 8 625 | 800 | 1800 | 1406 | 3000 | 2844
fceg0/s1618 1325 || 4531 |7 | -1 |4 281 | 474 | 2250 | 2687 | 3219 | 3150
fceg0/si618 2126 || 5437 |8 |-1 |6 250 | 459 | 2100 | 2125 | 2937 | 2750
fclt0/si808 1735 || 5257 |5 | -1 |-8 437 | 468 | 1937 | 1812 | 2594 | 2406
fcmg0/s11872 | 1833 || 5156 |6 | -2 | -2 700 | 735 | 2625 | 2719 | 3312 | 3050
fdas1/si2091 372 4500 | 1 -20 1 -9 800 | 710 | 2400 | 2094 | 3400 | 3031
fdasl1/si2091 629 3219 | 4 -12 | -8 531 | 627 | 1900 | 2062 | 2900 | 2937
fdfb0/si1318 1478 || 5437 | 4 -35 | -21 || 375 | 431 | 1969 | 2281 | 3031 | 2844
fdfb0/si1318 139 4594 | 8 | -7 |0 187 | 432 | 1781 | 1100 | 3062 | 2875
fdkn0/si1202 | 2163 || 4687 | 8 | -1 | -2 250 | 450 | 2000 | 2200 | 2800 | 2906
fdkn0/si1202 | 534 5031 | 7 1 6 281 | 527 | 1900 | 1900 | 2875 | 2875
fdnc0/si1278 2225 || 4531 |2 |9 |4 500 | 515 | 2200 | 2156 | 3219 | 3219
madd0/sx178 | 3165 || 4031 | 4 0 3 344 | 417 | 1719 | 1719 | 2437 | 2281
madd0/sx178 | 1641 | 4500 | 8 |-3 |3 375 | 426 | 1800 | 1781 | 2594 | 2500
mapv0/sil1293 | 2972 [[ 3625 |5 | -6 | -4 437 | 619 | 1562 | 1562 | 2312 | 2437
mbsb0/si723 773 4562 | 4 4 8 500 | 550 | 1850 | 1250 | 2950 | 2812
mecew(/sx182 | 1548 || 3156 | 6 | 0 3 312 | 368 | 1700 | 1656 | 2437 | 2437
mctm0/sil980 | 757 3727 | 3 10 |1 514 | 535 | 1296 | 1069 | 3455 | 3002
mdbp0/si528 | 2279 || 4126 | 4 8 11 || 628 | 482 | 1780 | 1738 | 2660 | 2408
fbegl/s1982 2352 || 2187 | 3 i -6 531 | 597 | 1937 | 1719 | 1937 | 2187
fclt0/si808 1412 || 3031 | 2 1 10 || 687 | 720 | 1656 | 1406 | 2250 | 2050
fclt0/si808 3122 || 3281 (2 |6 |7 437 | 440 | 2281 | 1625 | 3406 | 3350
ferz0/si793 1897 || 2366 | 1 5 -12 || 531 | 605 | 2250 | 1906 | 2500 | 2062
fdkn0/si1202 | 2812 || 3250 | 6 1 2 437 | 492 | 1800 | 1844 | 2469 | 2100
fdnc0/sil278 | 4921 | 3187 |2 | -2 |4 450 | 573 | 1812 | 1750 | 1812 | 1750
mdbp0/si528 | 2278 || 3969 | 5 | -1 |2 312 | 404 | 1900 | 1750 | 2687 | 2406
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k releases

Filename Time || fer np | Ifa | hfa F1 F2 F3
fapb0/si2323 4155 || 2875 |6 | -9 | -14 || 312 | 595 | 2187 | 2187 | 2906 | 2812
fbcgl/si982 654 2312 | 1 3 -11 || 375 | 464 | 2450 | 2469 | 2812 | 3094
fbjl0/si2182 677 2062 |3 | -1 |-10 | 562 | 559 | 1844 | 1687 | 1844 | 2062
fbmj0/si1776 3205 || 2969 | 3 | 2 -5 250 | 331 | 3594 | 2600 | 3594 | 3812
fcmg0/s11872 | 303 2812 | 7 | -22 | -24 || 500 | 470 | 3031 | 2700 | 3531 | 3437
fdfb0/si1318 2527 || 1594 | 1 2 -10 || 469 | 591 | 1375 | 1469 | 1800 | 2094
fdjh0/si2195 1911 || 1469 | 1 | -1 | -12 | 437 | 480 | 1812 | 2094 | 1812 | 2094
fdkn0/si1202 903 2000 | 1 0 -15 || 469 | 558 | 2031 | 1937 | 2031 | 2375
fdml0/sx339 637 2687 | 1 | -13 | -25 || 281 | 685 | 2500 | 2500 | 2844 | 2844
fdnc0/si1278 676 2094 | 1 0 -13 || 1500 | 1422 | 1937 | 1687 | 3250 | 3062
fdnc0/si1278 971 1781 | 1 1 -15 || 450 | 496 | 1594 | 1687 | 1594 | 1687
madd0/sx178 | 2863 || 2750 | 7 | -5 | -7 781 | 670 | 1812 | 1469 | 2344 | 2156
madd0/sx178 | 556 1719 | 1 10 | -5 406 | 486 | 1750 | 1750 | 2500 | 2300
mapv0/si1293 | 436 1594 | 1 13 | -1 469 | 536 | 1625 | 1344 | 1625 | 1600
mapv0/si1293 | 3492 || 1625 | 1 9 -3 437 | 644 | 1656 | 1344 | 2150 | 2000
marw(/sx349 | 4314 | 1812 | 2 7 -4 344 | 293 | 1700 | 1656 | 2375 | 2344
marw0/sx349 | 963 2062 | 4 13 |9 281 | 473 | 1719 | 1406 | 2344 | 2250
marw(0/sx349 | 569 1656 | 1 -8 | -21 || 344 | 422 | 1687 | 1437 | 2312 | 2062
mbbr0/si1685 | 1726 || 1469 | 1 1 -11 || 531 | 612 | 1875 | 1562 | 2375 | 2187
mbbr0/si1685 | 138 1656 | 1 2 -15 || 719 | 909 | 1781 | 1375 | 2187 | 2125
mbef0/si651 2613 || 1500 | 1 0 -15 | 500 | 496 | 1344 | 1031 | 2150 | 1937
mbef0/si651 886 1406 | 1 | -16 | -31 || 844 | 553 | 1000 | 850 | 2187 | 2300
mbom0/sil014 | 2743 || 1156 | 1 -13 | -32 || 875 | 758 | 1100 | 1094 | 1906 | 2406
mcss0/si688 1268 || 2812 |3 | -2 | -6 312 | 366 | 2500 | 2031 | 3156 | 3125
mctm0/si1980 | 3108 || 1625 | 1 -1 | -13 || 719 | 676 | 1625 | 1406 | 2375 | 2031
mdbp0/si528 4097 || 1312 | 1 -1 | -20 || 719 | 706 | 1469 | 1437 | 2125 | 2937
m releases

Filename Time || fcr | np | Ifa | hfa F1 F2 F3
fapb0/si2323 3413 474 | 441 | 2001 | 2024 | 2817 | 2926
fbjlo/si2182 1740 777 | 774 1 1194 | 1353 | 3090 | 3136
fbmj0/sil776 3547 484 | 486 | 1754 | 1860 | 2737 | 2871
fclt0/si808 672 779 | 766 | 1879 | 2143 | 2591 | 2742
fcmm0/s1453 1137 431 | 409 | 1610 | 1661 | 2766 | 2795
fdjh0/si2195 2095 662 | 630 | 2086 | 2351 | 2779 | 3088
fdkn0/si1202 1593 616 | 484 | 1674 | 1698 | 2732 | 2766
fdxw0/s1881 2210 413 | 416 | 773 | 726 | 3193 | 3168
feeh0/si1112 3015 319 | 351 | 2676 | 2457 | 3167 | 3028
fitm0/si1700 1819 538 | 557 | 766 | 1014 | 3639 | 3034
madd0/sx178 | 1818 527 | 518 | 1731 | 1870 | 2602 | 2606
mapv0/si1293 | 4020 570 | 571 | 1486 | 1637 | 2192 | 2252
marw0/sx349 | 3732 582 | 566 | 1234 | 1269 | 1789 | 1827
mbbr0/sil1685 | 279 692 1 712 | 1076 | 1211 | 2321 | 2175
mbef0/s1651 485 514 | 556 | 724 | 864 | 2072 | 1975
mbom0/sil014 | 1058 570 | 598 | 1621 | 1661 | 2549 | 2521
mcae0/si2077 | 1285 393 | 387 | 1904 | 1964 | 2617 | 2648
mded0/sx155 | 1189 522 | 544 | 1089 | 1262 | 2264 | 2331
mdlc0/si1395 | 503 543 | 545 | 1310 | 1448 | 2468 | 2551
mdrd0/si752 1684 576 | 548 | 1942 | 2070 | 2706 | 2724
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n releases

Filename Time || fcr | np | Ifa | hfa F1 F2 F3
fapb0/si2323 | 1435 916 | 887 | 2344 | 2455 | 2912 | 3060
fbegl/s1982 395 565 | 560 | 2199 | 2135 | 3227 | 3148
fbjl0/si2182 183 756 | 821 | 2006 | 1923 | 2864 | 2841
fblv0/si1688 2830 555 | 573 | 1952 | 1813 | 2781 | 2679
fcag0/si2133 | 685 768 | 812 | 1642 | 1466 | 2932 | 2918
fceg0/si618 975 471 | 683 | 1050 | 1155 | 3473 | 3299
fcke0/sx121 1334 428 | 405 | 1999 | 1979 | 2792 | 2781
fcmg0/s11872 | 2180 836 | 796 | 1977 | 1969 | 3206 | 3238
fcrz0/s1793 880 684 | 693 | 1551 | 1167 | 2923 | 2992
fpaf0/si2314 1636 480 | 552 | 2422 | 2179 | 3029 | 2580
mafm0/sx309 | 1439 609 | 625 | 1352 | 1358 | 2557 | 2592
makb0/sx206 | 743 636 | 627 | 1114 | 798 | 2031 | 2238
mapv0/sil293 | 1985 512 | 538 | 1520 | 1560 | 2613 | 2542
mbgt0/si1841 | 1975 355 | 347 | 2022 | 2078 | 2641 | 2633
mcae0/si2077 | 4897 603 | 592 | 1321 | 1287 | 2528 | 2543
mcss0/s1688 2199 525 | 539 | 1307 | 1294 | 2808 | 2683
mdbp0/si528 | 2579 383 | 378 | 2282 | 2191 | 2833 | 2866
mdhs0/si2160 | 402 620 | 633 | 1795 | 1725 | 2703 | 2506
mfxs0/si2304 | 175 687 | 768 | 1893 | 1739 | 2658 | 2766
mmea0/si758 | 1075 354 | 369 | 962 721 2769 | 2430
ng releases

Filename Time || fcr | np | lfa | hfa El F2 F3
fblv0/si1688 699 625 | 696 | 2276 | 1842 | 2916 | 2925
fckeQ/sx121 709 419 | 436 | 2226 | 1959 | 2645 | 2609
fdxw0/s1881 2034 477 | 507 | 1612 | 1168 | 2883 | 3094
fetb0/sx248 547 577 | 283 | 2478 | 2003 | 3216 | 3013
fgmb0/si515 1633 767 | 775 | 2400 | 2201 | 3169 | 2910
fjdm2/sx142 1171 688 | 747 | 1447 | 1450 | 2929 | 2810
fjlg0/s11506 1144 764 | 736 | 2438 | 2455 | 3048 | 3061
flma0/si1873 2378 603 | 484 | 2028 | 1369 | 2957 | 2544
ftajo/si699 657 617 | 672 | 1780 | 1670 | 2806 | 2683
maeb0/si2250 | 1291 434 | 496 | 835 | 845 | 2137 | 2148
mafm0/sx309 1281 3504 | 434 | 1824 | 1575 | 2163 | 2261
makb0/sx206 635 643 | 651 | 1793 | 1537 | 2269 | 2269
mbgt0/si1841 1836 378 | 400 | 2076 | 1961 | 2631 | 2490
mdcd0/sx155 2265 502 | 500 | 1750 | 1670 | 2580 | 2469
mesj0/si997 2594 324 | 314 | 1758 | 1826 | 2340 | 2437
mjebl/si837 1185 300 | 330 | 2074 | 2011 | 2869 | 2686
mjwt0/sil291 2863 641 | 609 | 963 | 1069 | 2325 | 2413
mkah0/si1528 | 1604 426 | 437 | 2190 | 1925 | 2514 | 2525
mmsm0/sil106 | 785 509 | 504 | 2073 | 1567 | 2696 | 2698
mmwb0/si2249 | 2197 435 | 505 | 2220 | 1950 | 2673 | 2738
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A.2 Error Modeling: Data used to develop error models

The Error Modeling corpus is used for three purposes in this thesis. First, automatic
rule-based measurements of this corpus are compared to the manual transcriptions given
below, and the difference is used to train models of the measurement error in section 3.4.
Second, this database is used in section 4.4 to test the a posterior: uncertainty distributions
generated by the stochastic formant model. Finally, manual and automatic measurements
of the vowel context stops in this database are classified, using LDA and other classifiers,
in sections 1.1 and 5.1.

The tabulated lists below give the TIMIT filename of each sentence (the si/sx specifi-
cation has been omitted to save space), as well as the release time, right context (V), and
ten acoustic measurements. Release times of nasals are as indicated in the TIMIT tran-
scription; release times of stops have been re-transcribed. Most tokens are extracted from
the TEST subdirectory of TIMIT, but a few combinations of context and consonant which
did not exist in the TEST subdirectory were exiracted from the TRAIN directory. None
of the consonant releases in this database span a word boundary (according to the TINIT
transcription), but some span word-internal syllable boundaries.

Acoustic measurements listed are a combination of measurements by two human judges:
if both judges transcribed a given token, their measurements have been averaged. Listed
measurements include all three formants 10ms and 50ms after release, the burst front cav-
itv resonance (fcr), burst low-frequency and high-frequency amplitudes (Ifa and hfa), and
burst diffuseness (df). Blank measurements indicate a formant which did not exist in the
spectrum, or for some other reason could not be measured.



b releases

Filename Time | V fcr | df | lfa | hfa F1 F2 F3
fjsj0/404 139 aa 5 [ 37|36 | 440 | 775 | 1026 | 1089 | 2534 | 2492
fjas0/50 1633 | ae 5 | 54 | 57 508 | 672 | 1607 | 1787 | 2344 | 2557
fisb0/1579 2394 | ah 4 | 57 | 58 || 465 | 626 1778 2748
fdrd1/1566 714 ax 5 |42 | 29 | 404 | 505 | 1252 | 1212 | 2828 | 3353
filbw0,/1849 587 axr 5 | 34 | 32 || 485 | 485 | 1535 | 1737 | 2020 | 2222
fcmh1/1493 | 1587 | eh 5 | 53 | 48 || 525 | 788 | 1879 | 2101 | 2768 | 2828
fjwb0/992 3302 | el 3 | 52|50 || 343 | 424 | 808 | 990 | 3091 | 2869
fjsj0/134 502 er 4 |49 | 40 | 566 | 525 | 1111 | 1616 | 1737 | 1939
fjsj0/404 1528 | ih 5 | 51 | 52 || 303 | 465 | 1717 | 2000 | 2465 | 2606
fasw0/380 2324 | ix 4 | 44 | 38 546 | 525 | 1717 | 2101 | 2606 | 2606
fcmh0/14 137 iy 5 | 64 | 61 | 404 | 404 | 2101 | 2444 | 2647 | 2869
fdrw0/1423 1740 |1 3 | 41 | 49 465 | 1111 | 909 3050 | 3131
fgwr0/2208 2750 | r 5 |49 | 51 525 | 647 | 1354 | 1515 | 2062 | 2141
fhew0/223 469 uh 5 |26 |28 | 323 | 505 | 1374 | 1636 | 3172 | 3131
fpkt0/908 1550 | uw 5 | 56 | 57 444 | 525 | 1313 | 1333 | 2444 | 2667
fgmd0/143 1059 | ux 5 | 60 |59 || 242 | 384 | 1919 | 2182 | 2707 | 2970
fnlp0/408 1039 | w 3 | 61 | 53 || 525 | 586 | 990 | 1374 | 2869 | 2808
fjlm0/53 1329 |y 3 | 41 | 39 || 404 | 404 | 1960 | 2202 | 2788 | 2869
mwjg0/404 141 aa 4 |46 | 34 || 502 | 595 | 888 | 953 | 2233 | 2139
mljb0/50 2431 | ae 4 | 43 | 41 || 424 | 748 | 1172 | 1414 | 2082 | 2263
mpaml/576 | 135 ah 4 38 | 38 || 454 | 625 | 878 | 1241 | 2317 | 2307
mnjm0/230 1474 | ax 4 |39 | 38 || 492 | 554 | 1128 | 1205 | 2000 | 2046
mjvw0/1733 | 3089 | axr 5 | 51 [ 45 || 426 | 461 | 1082 | 1257 | 1801 | 1774
mmdb1/2255 | 1793 | eh O 47 | 45 || 451 | 554 | 1482 | 1533 | 2621 | 2656 ;
mrjm4 /319 1406 | el 5 | 40 | 48 446 | 405 | 830 810 2440 | 2554
mbpm0/317 | 510 er d | 37 | 31 || 436 | 518 | 1257 | 1360 | 1722 | 1764
mmwh0/279 | 1089 | ih S5 | 43 | 43 || 420 | 512 | 1338 | 1082 | 2312 | 2820
mhpg0/460 719 ix 4 | 42 | 38 || 456 | 554 | 1533 | 1605 | 2241 | 2615
mctt0/298 1781 | iy S5 | 49 | 47 || 343 | 317 | 1954 | 2117 | 2482 | 2713
mrjm4 /49 2223 | 1 4 | 32|40 | 404 | 369 | 1051 | 1149 | 2444 | 2482
mreb0/385 1392 |r 5 | 35 | 40 || 424 | 505 | 1010 | 1172 | 1475 | 1535
mplb0/2024 | 1086 | uh 5 | 37 | 38 || 451 | 456 | 836 | 810 | 2543 | 2610
mrcz0/911 1368 | uw 5 | 46 | 47 || 375 | 323 | 892 | 856 | 2407 | 2430
mrjm4 /859 806 ux 4 | 43 | 47 || 343 | 358 | 1596 | 1790 | 1923 | 2410
mroa0/1970 | 1273 | w 5 [ 39|33 || 707 | 748 | 1212 | 1535

mljb0/140 2881 |y 4 |42 | 38 || 283 | 297 | 1556 | 1743 | 1919 | 2354
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d releases

Filename Time | V fer df | Ifa | hfa F1 F2 F3

fdrd1/1544 1368 | aa | 4586 | 5 | 61 | 63 | 485 | 808 | 1919 | 1616 | 3091 | 2808
fjsa0/749 2959 | ae | 4525 |4 | 68 | 67 | 546 | 647 | 2061 | 2121 | 2990 | 3010
fmld0/822 412 ah 2162 |3 |59 |55 | 566 | 748 | 1737 | 1636 | 2335 | 2303
fcmh1/2123 1080 |[ax | 4081 | 5 | 46 | 48 | 424 | 950 | 2364 | 1960 | 3253 | 3152
fjcs0/1309 3878 | axr | 3434 | 5 | 58 | 60 | 303 | 424 | 1495 | 1556 | 2788 | 1899
fimg0/101 1477 | eh | 4323 |5 | 61 | 68 | 404 | 707 | 2283 | 2404 | 3131 | 3111
fjlm0/413 1321 | el 3264 | 4 | 60 | 62 | 497 | 605 | 1924 | 1189 | 2984 | 2832
fpas0/224 1021 [er | 3232 (3 (49 (61 | 444 | 505 | 1778 | 1758 | 2566 | 2081
finh0/224 529 ih | 4162 | 5 | 56 | 67 364 | 2303 | 2424 | 3192 | 3293
fjas0/2030 643 ix |4242 |5 | 58 | 61 | 283 | 404 | 2040 | 1980 2586
flbw0/1219 1438 | iy 4505 | 4 ) 63 | 71 | 283 | 444 | 2283 | 2101 | 2929 | 2808
fnmr0/319 1178 |1 4869 | 5 | 70 | 74 | 364 | 485 | 1475 | 1212 | 2929 | 2707
ft1h0/199 688 r 3292 | 5 | 56 | 62 | 384 | 586 | 1576 | 1596 | 2667 | 2121
fsjg0,/940 136 uh | 3494 | 4 | 74 | 77 | 283 | 404 | 2020 | 1879 | 2667 | 2303
futb0/34 598 uw | 3939 |3 |70 | 79 424 | 1879 | 1657 | 3232 | 2929
futb0/214 661 ux | 3757 |3 | 59 | 76 | 404 | 404 | 1980 | 1677 | 3010 | 2889
fjsa0/119 1433 | w 4990 | 5 | 52 | 55 | 263 | 384 | 1374 | 1071 | 3212 | 3192
fecd0/788 4199 |y 4586 | 2 | 44 | 56 | 222 | 404 | 2586 | 2606 | 3455 | 3010
mroa0/1970 2376 | aa | 2995 | 2 | 48 | 57 533 | 1495 | 1199 | 2485 | 2502
mpwm0/407 | 534 ae | 3815 |4 | 63 |68 | 539 | 580 | 1810 | 1908 | 2646 | 2564
mpgl0/1099 404 ah | 5717 | 5 | 38 | 51 | 407 | 467 | 1461 | 1374 | 2750 | 2574
msfh1/100 603 ax | 3337 |3 | 52 |60 | 476 | 467 | 1909 | 1600 | 2876 | 2564
mjes0/2014 3162 | axr | 2662 | 2 | 51 | 37 | 444 | 415 | 1657 | 1513 | 2283 | 1846
mgjf0/101 1466 | eh | 3805 )4 | 62 | 64 | 407 | 543 | 1732 | 1569 | 2662 | 2275
mrml0/251 1878 | el 2133 12 | 56 i 34 405 | 990 | 733 | 2505 | 2202
mbwm0/224 | 1015 |er | 2800 | 2 | 60 | 47 | 436 | 430 | 1559 | 1472 | 2245 | 1846
mrjr0/2313 4026 | ih | 4467 | 5 | 52 | 55 | 407 | 415 | 1974 | 1913 | 2785 | 2723
mfgk0/214 2890 | ix 4748 | 5 | 42 | 49 | 333 | 446 | 1780 | 1815 | 2744 | 2759
mmwh0/1301 | 139 iy 4677 1 4 | 58 | 66 | 297 | 317 | 2061 | 2241 | 2682 | 2943
mjfc0/1033 1235 |1 3010 | 4 46 | 48 262 | 236 | 1102 | 1118 | 2492 | 2523
mgjf0/191 291 r 3394 |4 | 61 {62 | 657 | 405 | 1507 | 1297 | 1939 | 1610
mjfc0/43 332 uh | 3969 | 5 |43 | 45 | 359 | 369 | 1211 | 1312 | 2870 | 2292
mcsh0/1549 1229 | uw | 3297 | 2 | 56 | 62 | 323 | 405 | 1754 | 1544 | 2543 | 2512
mjes0/214 633 ux | 416314 | 46 | 59 359 | 1733 | 1610 | 2621 | 2405
mrmsl/857 1924 | w 2803 | 1 50 1 35 424 | 430 | 828 810 1455 | 2087
mdwa0,/185 259 y 3466 | 4 | 53 | 61 317 | 333 | 1903 | 1887 | 2641 | 2420
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g releases

Filename Time | V fer df | Ifa | hfa Fl F2 F3

fsem0/1828 4286 | aa 2378 | 3 | 48 | 52 605 | 865 | 2356 | 1989 | 2919 | 3157
fsem0/28 2258 | ae 3157 | 4 | 66 | 68 541 | 670 | 2465 | 2249 | 3330 | 3178
fjwb0/365 1946 | ah [ 2909 [ 4 |73 | 70 || 566 | 808 | 1939 | 1657 | 2950 | 3071
flkd0/289 863 ax 1596 | 1 76 | 63 485 | 727 | 1616 | 1313 | 2929 | 3253
fcau0/227 1715 | axr || 1596 | 2 | 68 | 65 465 | 546 | 1697 | 1616 | 2404 | 1798
fpkt0/98 142 eh 2808 | 1 [ 69 | 63 | 364 | 727 | 2465 | 2040 | 2808 | 2687
felc0/1386 4142 | el 1293 [ 1 |62 | 61 |l 364 | 546 | 1374 | 1131 | 2667 | 2849
fcmh0/104 1712 | er 1717 | 2 | 48 | 52 364 | 546 | 1778 | 1616 | 2283 | 2040
ft1h0/379 465 ih 2009 [ 1 | 62 | 49 444 | 2748 | 2586 | 3030 | 3152
fcau0/317 1133 | ix 2505 |3 | 66 | 68 424 | 2343 | 2162 | 2707 | 2828
fsem0/208 2399 | iy 3438 | 3 | 68 | 64 432 | 2984 | 2789 | 3568 | 3524
futb0/214 1878 |1 1091 |1 | 65 | 53 343 1333 2626
fmml0/410 140 r 1576 | 1 69 | 60 546 | 1657 | 1959 | 2364 | 2323
fjsj0/224 334 uh 1737 |1 | 65 | 62 303 | 546 | 1879 | 1919 | 2465 | 2626
fetb0/338 1124 | uw || 1172 | 4 | 58 | 61 465 | 1859 | 1616 | 3010 | 3030
blv0/338 1368 [ ux || 1939 |2 | 58 | 59 || 303 | 384 | 1980 | 2020 | 2626 | 2444
frng0/95 731 w 1050 | 1 59! | 51 505 | 1051 | 889 2525
frng0/725 2933 |y 321211 |62 | 55 586 2343 | 3333 | 3232
mctt0/28 554 aa 1328 | 2 | 67 | 57 || 562 | 534 | 1425 | 1144 | 2121 | 2107
mjth0/396 685 ae 2517 | 4 47 | 48 359 | 425 | 2518 | 2430 | 3140 | 2830
majc0/205 2471 | ah 1790 | 1 58 | 56 404 | 543 | 1818 | 1400 | 2162 | 2133
mrjm4 /139 443 ax 1092 | 2 | 52 | 53 || 497 | 456 | 1061 | 979 | 2036 | 2200
mdwk0/2170 | 2436 | axr || 1877 | 1 60 | 50 430 | 1899 | 1523 | 2182 | 1984
mglb0/904 3060 | eh 2733 | 3 54 | 50 323 | 492 | 2162 | 1877 | 2586 | 2528
mrcs0/143 1427 |el | 1092 |2 |38 | 32 | 282 | 405 | 1134 | 918 | 1980 | 2518
mjfc0/223 1519 | er 1497 | 2 | 50 | 42 339 | 405 | 1404 | 1164 | 1635 | 1507
mpel0/379 501 ih 2327 1 1 57 | 54 375 | 405 | 1968 | 1800 | 2364 | 2364
mjes0/754 4422 | ix 2485 | 1 66 | 56 343 | 424 | 2061 | 1798 | 2667 | 2525
mmjr0/208 2933 | iy 2882 | 2 | 51 | 46 276 | 359 | 2222 | 2236 | 2960 | 2943
mmdbl/995 1699 |1 1118 | 1 61 | 53 394 | 1221 | 1272 | 2759 | 2753
mdbb0/1195 | 1356 | r 1374 | 1 | 68 | 46 343 | 1313 | 1253 | 1859 | 1616
mpgl0/469 2168 | uh 1701 | 3 | 52 [ 56 440 | 1657 | 1733 | 2263 | 2395
mjhi0/338 1128 | uw || 1266 | 1 | 63 | 55 333 | 523 | 1225 | 1123 | 2141 | 2436
mrms1/857 | 2337 |ux || 1559 | 1 | 59 | 45 405 | 1616 | 1558 2343
mjdm1/95 278 w 1071 |1 | 62 | 51 482 | 922 | 836 2027
mtab0/42 1538 |y 2472 | 2 | 58 | 61 303 | 317 | 2404 | 1953 | 2820 | 2355
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p releases

Filename Time | V fcr | Af | Ifa | hfa F1 F2 F3

fmah0/119 2009 | aa 5 | 45 | 47 || 869 | 909 | 1576 | 1677 | 2869 | 3091
fdhc0/929 1664 | ae 5 | 54 | 54 || 687 | 667 | 2182 | 2263 | 2667 | 3111
fjwb0/635 4122 | ah 5 139 |41 687 | 889 | 1111 | 1293 | 2667 | 2849
fcmh0/1454 | 3445 | ax 5 | 56 | 51 303 | 1677 | 1838 | 2808 | 2889
fpas0/404 1015 | axr 4 | 5349 444 1091 | 1313 | 1535
fdhc0/29 1270 | eh 5 | 52| 56 637 | 2020 | 1910 | 2727 | 2746
fjsj0/314 413 el 4 |47 | 48 444 | 1313 | 990 | 2626 | 2909
fnlp0/138 2855 | er 5 | 57 | 57 647 | 1515 | 1556 | 2465 | 2384
fdms0/138 1227 | ih 5 | 27 | 30 || 485 | 525 | 2040 | 1737 | 3051 | 3172
ftIh0/1390 1672 | ix 4 [ 72 |69 505 | 1737 | 1737 | 2869 | 3030
fdms0/1848 | 2259 | iy 5 | 56 | 57 343 | 2444 | 2849 | 3030 | 3252
fisb0/229 1385 |1 2 | 51|61 1151 | 1071 | 2889 | 2970
fmml0/140 1031 |r 3 | 58 | 46 1354 | 1313 | 2061 | 1576
fjre0/216 926 uh 5 | 54 | 54 485 | 1152 | 1495 | 2424 | 2707
fdrw0/383 1324 | uw 5 | 41 | 42 424 | 1455 | 1616 | 3131 | 3030
fpls0/330 1237 | ux 4 | 36 | 42 || 404 | 465 | 1535 | 1818 | 2586 | 2525
fasw0/200 1862 | w 5 | 44 | 49 || 525 | 606 | 748 | 1010 | 2788 | 2808
fhes0/299 1557 |y 2 155 |49 || 384 | 465 | 2101 | 1879 | 2950 | 2768
mglb0/364 3599 | aa 5 | 46 | 48 || 719 | 672 | 1118 | 1062 | 2312 | 2241
mpam0/379 | 137 ae 4 156 |59 || 875 | 656 | 1759 | 1722 | 2458 | 2502
mgwt0/1539 | 1021 | ah 5 | 38 | 42 875 | 1051 | 1067 | 2416 | 2436
mtls0/290 2447 | ax 5 |45 | 49 647 | 1455 | 1576 2101
mrjr0/102 3235 | axr 5 124 (30 487 | 1434 | 1333 | 2283 | 1515
mcmb0/278 | 836 eh 4 | 45 | 42 782 | 549 | 1569 | 1718 | 2154 | 2282
mdlf0/53 669 el 4 |46 | 44 || 444 | 502 | 946 | 759 | 2697 | 2765
mrtk0/373 1335 | er 5 | 45 | 44 518 | 1215 | 1236 | 1838 | 1635
mrgg0/29 923 ih 4 | 58 | 56 || 456 | 492 | 1712 | 1677 | 2405 | 2251
mrgg0/29 1608 | ix 5 | 50 | 52 || 528 | 369 | 1441 | 1533 | 2329 | 2395
mabw0/314 | 306 iy 3 |61 |64 |l 594 | 343 | 1944 | 2087 | 2779 | 2898
mrjm4/229 | 964 1 4 |43 | 48 || 750 | 518 | 1128 | 850 | 3111 | 2292
mkdr0/643 1560 | r 5 |42} 46 1143 | 1275 | 1466 | 1639
mjth0/216 991 uh 4 152150 477 | 1326 | 1520 | 3071 | 2933
mbns0/50 2622 | uw 5 |42 | 45 395 | 1082 | 918 | 2444 | 2446
mdrm0/383 | 1252 | ux 5 | 44 | 45 395 | 1410 | 1513 | 2456 | 2389
mjtc0/200 1475 | w 5 130128 626 | 657 | 990 | 2505 | 2272
mahh0/124 | 2149 |y 4 |59 (59 2141 | 2584 | 2723
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t releases

Filename Time | V fer df | Ifa | hfa F1 F2 F3
fjlm0/323 2371 | aa || 4849 |5 | 51 | 69 1778 | 1737 | 3212 | 3192
fjmg0/281 1666 | ae 5090 | 5 | 57 | 78 2546 | 2546 | 3414 | 3354
felc0/2016 2774 | ah |[ 3980 | 4 | 57 | 68 727 | 1859 | 1636 | 2849 | 2485
feft0/278 135 ax || 3131 |4 | 64 | 61 1758 | 1737 | 3131 | 2667
fslb1/284 2100 | axr || 2727 |4 | 72 | 70 424 | 1939 | 1737 | 2687 | 2303
fjre0/126 792 eh 4990 | 5 | 57 | 76 2061 | 3111 | 2990
fgmd0/683 418 el 5414 | 2 | 56 | 72 1798 | 1394 | 3091 | 3192
flas0/1026 1193 | er 4081 | 3 | 45 | 68 546 1899 | 2667 | 2283
fjre0/1116 548 ih 4869 | 5 |47 | 79 626 | 1879 | 1596 | 3051 | 2788
fmah0/29 657 ix 4626 | 5 | 60 | 63 | 323 2525 3192
fadg0/109 2259 | iy 4757 | 4 | 58 | T4 454 | 2119 | 2616 | 3027 | 3157
fcdr1 /376 1858 |1 3737 | 3 | 40 | 41 343 1333 | 2586 | 2444
fimg0/281 797 r 4061 (3 | 58 | 78 2828 | 2141
fasw0/1550 710 uh || 3697 | 2 | 68 | 81 2384 | 2121 | 3091 | 3091
fcmr0/205 2734 |uw || 3737 |4 |62 | 71 2162 | 2061 | 3152 | 2889
futb0/1204 2319 | ux || 4748 |4 | 57 | 78 2081 | 1879 | 3030 | 2950
flbw0/49 1006 | w 3556 | 4 | 66 | T4 1758 | 1556 | 2566 | 2384
ftaj0/699 790 y 2849 | 4 | 53 | 45 2081 | 2040 | 2869 | 2727
mdwa0/95 2142 | aa 3759 | 3 | 65 | 64 || 469 | 625 | 1708 | 1318 | 2333 | 2487
mpab0/1103 | 1993 | ae 3918 | 3 | 60 | 59 652 | 1815 | 1795 | 2744 | 2636
mbns0/590 520 ah 5030 | 4 | 42 | 58 672 | 1569 | 1441 | 2641 | 2564
mpaml/396 | 920 ax || 4533 | 5 | 52 | 55 || 782 | 467 | 1877 | 1232 | 2543 | 2415
mres0/137 142 axr || 2811 | 2 56 | 50 750 | 407 | 1702 | 1708 | 2444 | 2230
mjfc0/2293 2748 | eh 4465 | 5 | 58 | 64 505 | 1616 | 1535 | 2404 | 2323
mlnt0/1574 1973 | el 4728 | 5 | 54 | 64 750 | 1737 | 1220 | 2465 | 2286
mjtc0/830 748 er 4236 | 5 | 56 | 65 || 719 | 562 | 1859 | 1800 | 2723 | 2424
mpcs0/1359 | 1162 | ih 4528 | 4 | 53 | 68 456 | 1770 | 1728 | 2795 | 2713
mjmp0/365 1379 | ix 4081 | 5 | 67 | 73 566 | 1758 | 1636 | 2343 | 2444
mmwh0/279 | 1354 | iy 4169 | 5 | 53 | 62 343 | 1759 | 2061 | 2713 | 2573
mwvw0/396 | 1058 |1 3974 | 3 | 34 | 47 844 | 1650 | 1703 | 2973 | 2667
mjes0/394 1757 | r 2123 | 4 | 55 | 45 415 | 1576 | 1246 | 1835 | 1528
mcem0/2028 | 301 uh || 4141 | 5 | 46 | 68 1616 | 1434 2444
mdbb0/295 | 3795 | uw || 3626 | 4 | 59 | 68 750 | 1859 | 1682 | 2587 | 2590
majc0/295 3101 | ux || 4476 |4 | 54 | 63 || 782 | 750 | 1764 | 1728 | 2467 | 2600
mrjm3/368 889 y 3164 | 4 | 61 | 57 407 | 2202 | 1988 | 2648 | 2506
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k releases

Filename Time | V fer df | lfa | hfa F1 F2 F3
fslb1/891 1677 | aa | 2465 | 4 | 69 | 66 2323 | 2081 | 2889 | 2929
faks0/1573 808 ae | 2263 |4 | 72 | 72 889 2040 | 2444 | 2707
fgwr0/2208 | 672 ah | 3151 |2 | 58 | 54 546 | 2343 | 2162 | 2808 | 2788
fkms0/50 1001 | ax | 2767 | 2 | 59 | 56 606 | 2081 | 1677 | 2849 | 2768
fgwr0/948 3573 | axr || 1838 [ 1 | 75 | 64 465 | 1899 | 1535 | 2242 | 1899
fmem0/550 | 562 eh [ 2909 |1 |61 |51 2485 | 2626 | 3151 | 3252
fadg0/109 1646 | el 1313 |1 | 67 | 58 707 | 1333 | 1192 | 2586 | 3131
ft1h0/1009 738 er 2081 | 2 | 72 | 68 2162 | 1939 | 2768 | 2323
fgmd0/143 1478 | ih 2748 |1 | 73 | 70 || 303 | 465 | 2323 | 2020 | 2768 | 2505
faks0/133 1517 | ix 1758 | 3 | 73 | 74 444 | 2020 | 1737 | 2687 | 2707
fisb0/229 703 iy 2808 |1 | 75 | 66 505 | 2606 | 2626 | 3111 | 3051
flas0/138 251 1 1576 |1 | 70 | 55 808 | 1414 | 1273 | 3152 | 2970
finh0/941 2975 | r 1253 |1 | 74 | 61 1374 | 1495 2020
fasw0/290 1793 | uh | 2061 | 2 | 68 | 64 444 | 1960 | 1657 | 3252 | 3010
fsbk0/349 687 uw || 1212 |1 | 73 | 63 485 | 1333 | 1232 | 2970 | 2950
fhes0/1109 3016 | w 1576 | 1 | 65 | 59 303 | 1434 | 1071 | 2788
fimg0/191 1683 |y 3535 |4 |59 |55 2929 | 2687 | 3596 | 3657
mglb0/94 926 aa || 1595 |2 | 59 | 50 || 469 | 605 | 1657 | 1420 | 2246 | 2307
mrjs0/94 1237 | ae 2966 | 4 | 61 | 61 719 | 646 | 1937 | 1948 | 2868 | 2677
mrjo0/734 2996 | ah || 1657 | 2 | 35 | 56 562 | 1806 | 1420 | 2586 | 2236
mtmr0/133 | 942 ax | 1636 |1 | 56 | 55 || 721 | 467 | 1615 | 1338 | 2271 | 2071
mrpc0/933 1341 | axr || 1369 | 2 | 55 | 53 497 | 1523 | 1384 | 1697 | 1692
mmjr0/208 | 1981 [eh |[ 2518 | 2 | 58 | 56 497 1774 | 2513 | 2471
mjmp0/95 2058 | el 1287 | 1 | 67 | 62 440 | 1111 | 870 2121
mjbr0/101 1586 | er 1585 | 2 | 55 | 39 || 500 | 502 | 1482 | 1287 | 1818 | 1538
mmdm?2/102 | 2376 | ih 2733 | 3 | 58 | 54 395 | 2242 | 1851 | 2563 | 2369
mplb0/44 393 ix 2586 | 4 | 59 | 60 384 1677 | 2586 | 2465
mjln0/99 2453 | iy 3409 | 2 | 60 | 60 236 | 2444 | 2236 | 3273 | 3138
mcmj0/374 | 509 1 1215 |1 | 59 | 46 525 | 1118 | 1212 | 1778
msfhl/640 3548 | r 1738 1'1 | 63 | 50 594 | 1657 | 1497 2475
mctw0/2003 | 1223 [ uh | 1333 (1 | 69 | 53 500 | 1302 | 1241 2220
mjdm1/455 | 1309 | uw || 1701 { 4 | 55 | 56 || 469 | 389 | 1533 | 1041 | 2182 | 2451
mjvw0/113 | 450 ux || 2569 {2 | 53 | 50 || 907 | 385 | 2020 | 1738 | 2584 | 2354
mrjm3,/98 572 w 1066 | 1 | 57 | 44 354 | 1102 | 953 2311
mdab0/409 | 2243 |y 2667 | 4 | 53 | 38 327 | 1778 2404 | 2503
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m releases

Filename Time | V fcr | df | Ifa | hfa F1 F2 F3
felc0/756 1808 | aa 681 | 673 | 1128 | 1241 | 3219 | 3308
fcmh1/413 2215 | ae 849 | 970 | 2020 | 1980 | 2969 | 3071
fjmg0/551 547 ah 736 | 788 | 1795 | 1838 | 2849 | 2788
fedw0/274 2512 | ax 666 1495 | 1717 | 2889 | 3092
fnlp0/138 1492 | axr 546 | 485 | 1394 | 1717 | 2202 | 2222
fmld0/205 2427 | eh 626 | 707 | 1717 | 1838 | 2485 | 2869
fhlm0/120 3578 | el 497 | 497 | 908 | 887 | 2530 | 2595
fgwr0/138 1023 | er 626 | 606 | 1495 | 1515 | 1919 | 2020
fhes0/299 1083 | ih 606 | 465 | 2404 | 2020 | 3071 | 2990
fcft0/188 1272 | ix 566 | 485 | 1798 | 2040 | 2929 | 3111
fcrh0/1718 1367 | iy 485 | 485 | 2444 | 2687 | 3111 | 3354
fjem0/364 1618 |1 546 | 627 | 849 | 995 3049
fsms1/64 2007 | r 566 | 525 | 1859 | 2586 | 2384 | 2950
fblv0/1058 2105 | uh 505 | 546 | 1152 | 1354 | 3010 ; 3030
fksr0/397 1483 | uw 485 | 465 | 1434 | 1495 | 2909 | 2950
fram1/730 3429 | ux 364 | 384 | 2485 | 2424 | 2889 | 2929
fhes0/209 1446 | w 541 | 735 | 908 | 1060 | 2357 | 2314
fisb0/319 3693 |y 384 | 505 | 2465 | 2283 | 3394 | 2626
mdrm0/23 1758 | aa 525 | 656 | 785 | 902 | 1887 | 1887
mdsc0/1038 | 1136 | ae 554 | 625 | 1400 | 1472 | 2230 | 2333
mjvw0/113 | 219 ah 595 | 641 | 1005 | 1236 | 2605 | 2621
mdrb0/94 1245 | ax 631 | 219 | 1139 | 1407 | 2420 | 2282
mhpg0/280 | 1050 | axr 625 | 636 | 1005 | 1066 | 1420 | 1380
mnjm0/950 | 4784 | eh 683 | 728 | 1615 | 1579 | 2282 | 2375
mgwt0/1539 | 1282 | el 462 | 467 | 723 | 820 | 2677 | 2672
mjrf0/371 2300 | er 564 | 543 | 1189 | 1312 | 1820 | 1702
mcem0/768 | 3916 | ih 456 | 467 | 1780 | 1836 | 2256 | 2297
mkjl0/1100 2467 | ix 564 1507 2046
mnls0/1483 | 325 iy 405 | 333 | 1515 | 1960 | 2087 | 2329
mrjs0/364 862 1 477 | 525 | 1031 | 1487 | 2286 | 2261
mkcl0/1721 | 642 r 528 | 611 | 800 | 1011 | 1472 | 1621
mdhs0/180 | 270 uh 672 | 646 | 1031 | 1225 | 2091
mfrm0/345 1629 | uw 440 | 420 | 1425 | 1410 | 2109 | 2128
mctw0/23 434 ux 292 | 317 | 1924 | 1620 | 2364 | 2379
mrjo0/1364 | 919 w 446 | 508 | 1046 | 1236 | 1938 | 2061
mjvw0/23 598 y 313 | 297 | 1948 | 1818 | 2456 | 2451
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n releases

Filename Time | V fcr | df | Ifa | hfa F1 F2 F3
flbw0/1219 2825 | aa 828 | 849 | 1596 | 1374 | 2727 | 2849
fawf0/10 1698 | ae 566 | 566 | 2323 | 2525 | 2889 | 2950
fjsa0/389 392 ah 647 1636 2505
fhew0/223 1647 | ax 606 1919 3354
fjwb0/365 1622 | axr 707 | 707 | 1899 | 1778 | 2202 | 2222
fcmr0/25 1632 | eh 727 | 647 | 2323 | 2343 | 3010 | 2566
flbw0/1219 2240 | el 626 | 788 | 1495 | 1172 | 2687 | 2586
fjsj0/314 1162 | er 465 | 586 | 1697 | 1434 | 1980 | 1778
futb0/214 444 ih 566 | 546 | 2263 | 2343 | 2849 | 2828
flas0/408 1760 | ix 667 | 748 | 1960 | 1899 | 3091 | 3051
fgmd0/413 905 iy 444 | 404 | 2222 | 2101 | 3091 | 2748
finh0/404 1251 |1 606 | 505 | 1475 | 2263 | 3596 | 3394
fnlp0/678 992 r 485 | 465 | 1455 | 1434 | 2081 | 2121
flkd0/894 190 uw 346 | 626 | 2303 | 2202 | 3273 | 2950
fasw0/920 792 ux 485 | 525 | 2404 | 2202 | 3111 | 3152
fawf0/1630 1106 | w 444 | 546 | 828 | 990 | 3071 | 2849
finh0/134 1002 |y 707 | 525 | 2465 | 1980 | 3374 | 2626
mjjg0/373 710 aa 687 | 749 | 1462 | 1399 | 2518 | 2573
mpdf0/912 2092 | ae 564 | 677 | 1472 | 1585 | 2590 | 2492
mnjm0/320 877 ah 724 | 564 | 1338 | 1462 | 2038 | 1971
mrgg0/389 1365 | ax 503 | 369 | 1256 | 1092 | 2182 | 1533
mslb0/383 825 axr 611 | 528 | 1743 | 1677 | 2389 | 2153
mthc0/205 940 eh 590 | 600 | 1451 | 1538 | 2605 | 2533
mbdg0/833 997 el 621 | 611 | 943 | 903 | 2005 | 2073
mjmp0/5 757 er 621 | 590 | 1702 | 1580 | 2194 | 2011
mjvw0/203 915 ih 410 | 385 | 1636 | 1620 | 2543 | 2539
—mcemO/QOQS 3157 | ix 505 | 465 | 1636 | 1758 | 2606 | 2444
mrws1/500 2432 | iy 415 | 343 | 1968 | 2036 | 2467 | 2579
majc0/25 289 1 343 | 525 | 1108 | 1596 | 2312 | 2525
mbpm0/137 | 1125 |r 436 | 487 | 1400 | 1302 | 1615 | 1595
mimndh0/2286 | 2493 | uh 595 | 610 | 1384 | 1462 | 2759 | 2708
mccs0/839 2261 | uw 426 | 365 | 1948 | 1893 | 2585 | 2497
mcmj0/1094 | 662 ux 405 | 405 | 2026 | 1758 | 2389 | 2220
mint0/12 825 w 364 | 222 | 808 | 748 | 2283 | 2364
mtdt0/1994 2807 | v 263 | 303 | 2020 | 2000 | 2667 | 2303
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ng releases

Filename Time | V fcr | df | Ifa | hfa F1 F2 F3
fgmd0/323 1587 | aa 788 | 768 | 2121 | 2182 | 2849 | 2970
fclt0/268 1567 | ae 670 | 778 | 2249 | 2119 | 2746 | 2832
fpad0/176 459 ah 808 | 889 | 1657 | 1737 | 2909 | 3010
fgmb0/515 967 ax 444 | 606 | 2343 | 2162 | 2889 | 3091
fskp0/1728 799 eh 586 | 626 | 2141 | 1859 | 2727 | 2687
fdrw0/1283 402 ih 546 | 748 | 2626 | 2283 | 3192 | 3152
fmaf0/2089 1261 | ix 485 2444 2748
flas0/48 1694 | iy 525 | 707 | 2546 | 2566 | 2788 | 2788
ft1h0/379 1190 |1 606 | 808 | 1253 | 1434 | 2748 | 3313
fssb0/362 788 r 586 | 727 | 1071 | 1535 | 1899 | 2020
fsxa0/1108 2844 | w 505 | 485 | 707 808 2828 | 2808
fram1/730 2275 |y 505 | 606 | 2485 | 2020 | 3293 | 2525
mres0/593 1987 | aa 482 | 646 | 1754 | 1307 | 2543 | 2682
mpam1/576 1577 | ae 754 | 713 | 1867 | 1641 | 2379 | 2359
mkch0/2008 | 565 ah 666 | 713 | 1415 | 1277 | 2138 | 2333
mbjk0/2128 | 4124 | ax 693 | 303 | 1277 | 1313 | 2246 | 2141
mpam1/1029 | 1071 | axr 502 | 482 | 1216 | 882 2369 | 2564
mdab0/2299 | 2128 | eh 420 | 687 | 1994 | 1661 | 2297 | 2497
mrai0/432 1957 | el 467 | 502 | 1031 | 995 | 2482 | 2687
mmdb1/2255 | 560 er 677 | 652 | 1322 | 1256 | 2538 | 1677
mnls0/1610 2420 | ih 359 | 389 | 2149 | 1990 | 2415 | 2399
majc0/295 2917 | ix 525 | 579 | 2000 | 1770 | 2323 | 2456
mcem0/48 1892 | iy 456 | 497 | 2272 | 2077 | 2452 | 2425
mbpm0/47 683 1 533 | 523 | 1179 | 1812 | 2512 | 2590
mjln0/369 1480 | r 349 | 369 | 1495 | 1071 | 1984 | 2046
mrrk0/1918 1709 | w 451 | 430 | 963 929 1856 | 1897
mkdr0/13 ol2 ¥ 404 | 444 | 1778 | 1596 | 2222 | 1879
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A.3 SFM Train: Training data for the HMM formant tracker

In chapter 4 of this thesis, the stochastic formant model is trained as a formant tracker
using manual transcriptions of a small 36-token training set (9 consonants X 2 genders X
2 right contexts, /aa/ and /ah/). All of the 36 training tokens are taken from the TRAIN
subdirectory of TIMIT, and there is no overlap between this data set and the KB Train
and Error Modeling data sets. None of the consonant releases in this database span a word
boundary (according to the TIMIT transcription), but some span word-internal syllable
boundaries.

The list below shows the TIMIT filename, release time, speaker gender (f/m), conso-
nant (C), and right context (V) of each of the 36 training tokens, together with formant
measurements 10ms and 50ms after consonant release.



Filename Time || f/m | C | V F1 F2 F3

fjlr0/sx421 1833 || f b |aa | 687 | 812 | 1173 | 1236 | 3062 | 2937
fscn0/s11886 2267 || f b | ah || 406 | 687 | 1375 | 1375 | 2687 | 2687
mprt0/sx400 | 1883 | m b | aa || 482 | 687 | 1047 | 1068 | 2500 | 2500
mmaa0/si845 | 231 m b | ah || 500 | 562 | 1000 | 1437 | 2750 | 2687
fkdw0/si1891 | 812 f d |aa | 500 | 812 | 1687 | 1437 | 2687 | 2500
flac0/sx451 2419 || f d | ah || 687 | 687 | 1875 | 1687 | 2932 | 2687
mrws0/sx292 | 1064 || m d aa || 312 | 625 1500 | 1187 | 2375 | 2437
mbbr0/sx245 | 138 m d | ah | -256 | 500 | 1750 | 1687 | 2375 | 2437
fcaj0/si1479 334 f g |aa || -256 | 687 | 2125 | 1937 | 2492 | 2937
ftajO/sx159 240 f g | ah || 437 | 562 | 2000 | 1562 | 2562 | 2187
mrre0/si952 3042 || m g |aa || -256 | 562 | 1937 | 1375 | 2304 | 1937
mwsb0/sx366 | 1348 | m g | ah || -256 | 562 | 1500 | 1312 | 2062 | 1937
fmkf0/sx366 1618 | f p |aa || 625 | 1125 | 1812 | 1750 | 2937 | 2875
fmem0/si2007 | 728 f p | ah || 875 | 875 | 1625 | 1501 | 2500 | 2500
mdhl0/si809 1272 || m p |aa | -256 | 750 | 1312 | 1000 | 2241 | 2062
mtab0/sx132 | 747 m p | ah || 437 | 562 | 875 | 1125 | 1937 | 2312
fpad0/sx446 184 f £ aa || 750 | 875 | 1937 | 1173 | 3187 | 3187
fcyl0/si667 4395 || f t ah || 565 | 687 | 1750 | 1625 | 3125 | 2937
mppc0/sx332 | 138 m t aa || 437 | 937 | 1812 | 1312 | 3000 | 2437
mlel0/sx166 2727 || m t ah || -256 | 500 | 1625 | 1625 | 3062 | 2687
fgdp0/sx178 2906 || f k |aa || 562 | 937 | 1812 | 1687 | 3562 | 3250
fsls0/sx156 2058 || f k | ah || -256 | 937 | 1937 | 1687 | 2687 | 2812
mtwh1/si882 | 2002 || m k | aa || 625 | 1005 | 1437 | 1250 | 2187 | 2187
mclk0/sx40 1053 || m k | ah | 482 | 562 | 1906 | 1562 | 2312 | 2437
{sls0/sx426 381 f m ;aa || 650 ; 937 | 838 | 1213 | 3125 | 3187
femg0/sx162 1772 || f m | ah || 500 | 625 1250 | 1250 | 3125 | 3000
mbgt0/sil341 | 167 m m |aa || 461 | 699 | 687 | 843 | 2250 | 2125
mtrc0/si1623 | 427 m m | ah || 625 | 625 | 1131 | 1562 | 2312 | 2562
fpjf0/sx326 1254 f n aa || 625 | 812 1750 | 1500 | 3375 | 3375
fgmb0/si1145 | 1102 || f n | ah || 625 | 812 | 1687 | 1562 | 2937 | 2750
mpeb0/si1860 | 263 m n | aa || 461 | 625 | 1500 | 1187 | 2375 | 2187
mkjo0/si887 303 m n |ah || 500 | 625 | 1375 | 1187 | 2562 | 2750
fjdm2/sx142 1175 || f ng | aa || 875 | 1131 | 1437 | 1375 | 2937 | 2812
fmpg0/si2232 | 1086 || f ng | ah || 687 | 812 | 1875 | 1437 | 3187 | 3187
mrjm0/sx58 2987 || m ng | aa || 625 | 625 | 1750 | 1375 | 2178 | 2062
mrcw0/s12001 | 1138 || m ng | ah || 482 | 562 | 1562 | 1312 | 2312 | 2312
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