
JAPANESE COOPERATIVE R&D PROJECTS
IN SOFTWARE TECHNOLOGY

Michael A. Cusumano

October 18, 1989 WP #3087-89- BPS

JAPANESE COOPERATIVE R&D PROJECTS IN SOFTWARE TECHNOLOGY

Hitachi, Toshiba, NEC, and Fujitsu all launched factory efforts between the

late 1960s and late 1970s to promote internal process standardization and to

diffuse good tools and techniques among in-house personnel as well as at

subsidiaries and subcontractors. These companies also maintained R&D efforts

in central and division laboratories, as well as in factory departments, to study

or generate new capabilities, and refine process technology for application.

Software development, and the needs of Japanese customers, presented similar

problems to Japanese producers; not surprisingly, they tended to adopt similar

solutions, creating factory organizations that refined U.S. tools and techniques

while, as in other industries, seeking a tight integration among product

objectives and production management, in the broad sense -- tools, techniques,

controls, training, and components.

It is fitting that this working paper looks beyond the level of software

factories at individual companies to consider mechanisms for taking better

advantage of current knowledge as well as for moving the state of the industry

and the technology forward. Despite limited results, cooperative R&D projects

since the late 1960s in Japan provided a foundation for two major efforts in the

1980s sponsored by the Ministry of Trade and Industry (MITI) and carried out

mainly with personnel from private firms: Sigma (Software Industrialized

Generator and Maintenance Aids), which tried to make the tools, techniques,

standards, and reuse concepts refined in software factories more common

throughout the industry, especially at smaller software houses; and the Fifth

Generation Computer Project, which experimented with logic processing and

Toward the Future1

parallel computing, areas of artificial-intelligence technology, and the required

innovations in hardware and software architectures.

Comparisons with cooperative projects in the U.S. and Europe, as well as

with efforts at two other Japanese producers not covered in the cases, Nippon

Telegraph and Telephone (NTT) and Mitsubishi Electric, support conclusions

already proposed in the factory cases: The leading Japanese computer and

software manufacturers, on their own and in joint arrangements, were exploring

nearly all available technologies related to software development. Major

projects might not reach all their goals, and much of the technology being

disseminated in Japan remained a refinement of tools and techniques promoted

in the U.S. during the late 1960s and 1970s, rather than constituting a radical

leap forward. Nonetheless, the Japanese demonstrated the skill and commitment

to stay close to the forefront, if not in the lead, in managing the process of

large-scale software development. Nor did this position come easily, as a

relatively long history of failures in joint research preceded the modest

achievements of projects in the late 1980s.

A MIXED HISTORY OF COOPERATIVE PROJECTS

In computer hardware, several government-sponsored projects dating back

to the FONTAC effort of the early 1960s contributed to advances in the skills

of Japanese firms in areas such as processor design, architectural

standardization, graphics processing, and various topics in basic research. In

semiconductors especially, during the late 1970s, several Japanese firms joined

together under MITI sponsorship to develop better capabilities in VLSI

fabrication and design. In software product and process technology, however,

most cooperative efforts led to embarassing failures (Table 8.1).1 Each attempt

Toward the Future

III

2

floundered for slightly different reasons, although common themes emerged:

poor planning, disagreements on objectives, and poor results, all affected by the

difficulties of dealing with still-evolving technologies and markets.

Japan Software Company (1966-1972): MITI organized Japan's first cooperative

effort in applied research not tied to hardware (as in the FONTAC) during 1966:

the Japan Software Company, a joint venture of Hitachi, Fujitsu, NEC, and the

Industrial Bank of Japan. The government provided a subsidy of 2 billion yen,

recruited 200 software engineers, and charged them with producing a common

development language that would allow firms to write basic software to operate

on currently incompatible computers.

The effort to devise a common language failed completely. The

architectures of Hitachi, Fujitsu, and NEC machines differed at this time, and

the state of knowledge on portable computer languages remained primitive.

Aside from these formidable technical hurdles, the members became distracted

with different product strategies that, to a large degree, made a common

language unnecessary. Hitachi and Fujitsu decided to adopt IBM-compatible

architectures and thus use IBM as a standard (although Hitachi eventually

varied its domestic architecture slightly). NEC, meanwhile, continued to support

the incompatible architecture inherited from Honeywell. MITI dissolved the

joint venture in 1972, after ending subsidies.2

IPA Package Project (1970-78): Despite problems with the Japan Software

Company, MITI established the Information Processing Promotion Agency (IPA)

in 1970 to promote the software industry in several ways. It provided billions

of yen in operating expenses and loan guarantees for fledgling software

producers, funds for research in software engineering, and money, as well as an

Toward the Future3

organization, to develop application packages for general use and register or

buy existing packages for distribution. A major concern of the agency was to

offset the growing, and labor-intensive, demand for custom programs. To

alleviate this problem, the agency allocated 10 billion yen during 1970-1978 for

package development and acquired 70 programs.

While software houses probably welcomed financial assistance in any form,

neither the RD work nor the package initiative proved useful. One problem

was that IPA distributed funding over a large number of small firms that had

insufficient expertise to develop general-purpose tools or programs. Several

other factors severely limited the appeal of the packages: poor planning to

insure that a program had more than one or two users, continued

incompatibility in hardware architectures and operating systems, the strong

preference among Japanese customers for tailored systems, and the insistence of

many Japanese customers that computer manufacturers provide software free of

charge. On the other hand, IPA itself survived into the 1980s and appeared to

be a relatively useful agency, organizing a Software Technology Development

Center in 1981 to conduct RD in areas such as language compilers, CAD/CAM,

database systems, and process methodologies and tools, and assisting in

administering joint projects, including Sigma. 3

PIPS Project (1971-1980): Another MITI and IPA initiative during the 1970s had

a more positive impact on the technical capabilities of individual firms, although

not process technology specifically: the Pattern Information Processing System

(PIPS) project, begun in 1971 with about 22 billion yen in funding over 10

years. This focused on graphics technology needed for Japanese character

(kanji) recognition -- an important topic because of the difficulty involved in

entering and processing Japanese characters on a computer.

Toward the Future4

Project members included the major computer manufacturers as well as

MITI's Electro-technical Laboratory, which integrated subsystems developed at

individual firms. Although work done under the auspices of PIPS tended to

merge with initiatives underway at individual firms, companies clearly utilized or

built on some of the technology generated through the project funding. In

particular, both Toshiba and Fujitsu introduced several products, including

machines for the post office that read addresses automatically, and graphics

displays with high resolutions. In addition, much of the experience IPA and

member firms gained in managing and disseminating cooperative R&D, as well as

some of the image-processing technology, they channelled into subsequent

projects, especially Sigma and the Fifth Generation.

Software Module Proiect (1973-1976): MITI in 1973 started a 4-year effort

known as the Software Module Project, channelling 3 billion yen in government

funds to 40 independent software houses organized into five groups to develop

standardized modules for applications programming. The major manufacturers

did not appear to participate at all, however, and this initiative met the same

fate as the IPA package project. The five groups produced little or no

software that customers found appealing, reflecting poor planning and little

coordination among participants regarding the content of the software

developed, languages used, and portability strategies. On the other hand, this

project seemed to generate interest in the concept of reusable modules as well

as the need for standardization in products as well as tools and techniques. IPA

quickly turned its attention to these issues and expressed them as part of a

broader objective -- the software factory.4

Software Production Technology Project (1976-1981): MITI first directly

Toward the Future5

III

promoted the concept of a software factory in its very next initiative, started

in 1976 -- the Software Production Technology Project (also known as the

Program Productivity Development System Project). In the first stage, 17

Japanese firms, with 7.5 billion yen in funding over 5 years, came together to

form the Joint System Development Corporation (JSD) and dedicate themselves

to the creation of an "automated software factory system based on the concept

of application software modularization." Initial objectives included the

development of better languages to describe application systems and program

components in a structured, modular fashion, as well as a module database. The

members also hoped to build and disseminate general-purpose tools to support

modular design, program generation, and testing. JSD itself built nothing but

channelled R&D work to member firms through a series of projects.

Again, despite lofty goals, the project produced few concrete results. No

group seemed to make progress during the first two years at all, prompting the

directors of JSD to change course. Beginning in the third year, rather than

working on centrally designed projects, JSD encouraged participants to use the

government funding to devise support tools geared toward their specific needs,

though still utilizing a base technology, such as a common programming

language. Members completed approximately 20 tools, and individual firms used

some in their facilities. Nevertheless, JSD failed to integrate the tools or

disseminate them widely.

A major cause for this failure stemmed from technical judgments that,

given changes in the technology and industry practices, proved unwise. First,

especially during the initial two years, projects set out to devise tools that

operated in a batch mode. By the late 1970s, however, more powerful hardware

and basic-software capabilites made interactive programming and debugging

through on-line terminals or work stations (rather than writing a program and

Toward the Future6

then running it later on) much more efficient and preferable for most

applications. Batch-processing tools thus had limited usefulness by the end of

the project.

Second, members chose to develop tools that supported programming in an

uncommon language -- PL/I. They selected this because it seemed more neutral

than FORTRAN (heavily tailored for engineering applications) or COBOL

(dominant in business applications). In fact, PL/I combined features of

FORTRAN and COBOL as well as ALGOL, an "algorithmic" language for

scientific computations developed in the early 1960s designed specifically to be

independent of hardware architectures and to facilitate automatic code

generation -- important goals of the project.

PL/I thus had many good features and was extremely rich functionally. It

even gained temporary popularity in some segments of the industry (such as

basic-software groups in IBM), and Japanese mainframe producers continued to

use it (or in-house variations) for operating-system development until the mid-

1980s. But PL/I never became accepted as a general programming language. It

proved too time-consuming to learn and difficult to use (in essence, almost

requiring knowledge of all the features of three very different languages). The

difficulty and lack of acceptance for PL/I in most applications limited the

usefulness of the tools, most of which, in any case, supported batch processing.

The project could have changed course with more flexible planning and

foresight, but did not. Company teams carried out plans established in the

early days of the project, so that Japan's cooperative software-factory initiative

consisted merely of a few batch-processing tools for programming in PI/1. 5

SMEF Project (1981-1986): Japanese government planners and company

engineers continued to learn from past mistakes and, in 1981, launched a

Toward the Future7

III

follow-up initiative under the Joint System Development Corporation with 5

billion yen more in funding, called the Software Maintenance Engineering

Facility (SMEF) Project. Not only did this attempt to build a UNIX-based

(Berkeley version) integrated environment for maintaining and developing

software in an interactive (rather than batch-processing) mode, but project

members spent more time in planning, coordination, and reflection, while

achieving more freedom to determine what tools to build. While SMEF

constructed 10 maintenance environments and tool sets, including 8 that relied

on UNIX, this project failed to produce tools considered good enough for broad

dissemination. Still, Japanese companies learned a lot about the UNIX

environment and support tools. In this regard, SMEF proved to be a useful

preparation for Sigma (which followed directly in 1985) as well as for individual

company efforts aimed at utilizing UNIX. 6

Interoperable Database System Project (1985-1989): Once again under IPA

sponsorship, the leading Japanese computer manufacturers, as well as

Matsushita, Sharp, Oki, Sumitomo Electric, and several other firms, formed the

Interoperable Database System Project in 1985. This 5-year program, with a

budget of 1.5 billion yen, adopted the internationally recognized OSI (Open

System Interface) protocols in order to promote communications or data

transfers among various types of hardware (computers and peripherals, office

equipment) from different manufacturers. 7

OSI clearly represented a positive development toward standardization on a

limited but important dimension. As of late 1989, most of the major computer

and peripherals producers in the U.S. and Europe, including IBM, had adopted

the OSI standards along with Japanese firms, and several producers worldwide

had introduced products utilizing these specifications. OSI thus promised to

Toward the Future8

ease machine interconnections and simplify the building of networks, although

these standards did not directly address issues such as software reusability or

automation .8

FASET Project (1985-1989) The Joint System Development Corporation took

another bold step in 1985 by launching the Formal Approach to Software

Environment Technology (FASET) Project, with funding of 2.2 billion yen over 5

years, 80% provided by IPA and 20% from industry. JSD staff researchers, as

well as personnel from several JSD member firms -- Case Cachexia Engineering,

Software Research Associates, Kanri Kogaku, Mitsubishi Research Institute, NEC

Software, Japan Information Service Company, and INTEC -- conducted the

research.

As a first objective, FASET members evaluated existing specification tools

and techniques prior to establishing a better methodology for generating

executable code from formalized descriptions of system requirements. As a next

step, they worked on creating a knowledge database of requirements or designs

that developers could draw on in conjunction with tools to support specification

of a software system. The last set of goals proved to be the most ambitious:

to devise a practical but formalized (mathematical or algebraic) methodology for

describing requirements, and then tools for optimization and transformation of

the requirements into executable code (Figure 8.1). The FASET environment also

assumed distributed development over a network of linked work stations and

databases. The project schedule called for completion by 1989 of support tools

for requirements analysis and description, database management, documentation

generation, design retrieval, optimization, and maintenance. Other areas of

research included tools and techniques to detect design errors, software

standards, and methods for transferring specifications to different systems.

Toward the Future9

At the least, FASET brought more attention to the important goal of

devising ways to generate computer programs from requirements -- thus

eliminating the need to write detailed system, program, and module designs, as

well as code. Executable requirements also eliminated the need to worry about

reusability, although recycling specifications still seemed a useful way to reduce

time required for developing new systems. Yet the FASET Project appeared to

have little impact. The objective remained technically difficult to achieve

except for very restricted applications, which limited the usefulness of the

tools. Furthermore, the major Japanese software producers -- Fujitsu, Hitachi,

NEC (except for a subsidiary), Toshiba, NTT, and Mitsubishi -- did not directly

participate, limiting the technical skills available to the FASET researchers.

This lack of participation did not mean that the major Japanese computer

producers saw no merit in FASET's agenda. To the contrary, as noted in the

cases and later in this chapter, most of these companies had similar R&D

efforts underway on their own, and probably saw no benefits to participating

actively in this relatively small-scale project. 9

The TRON Project (1984-1990s) Although not a software-engineering effort in

the sense of developing support tools and techniques, or reusability techniques,

a cooperative effort in Japan of rising attention was The Real-time Operating-

System Nucleus (TRON) Project, started in 1984.10 Unlike prior projects, TRON

started as and remained an independent initiative not sponsored by the Japanese

government but conceived by a professor at the University of Tokyo, Ken

Sakamura. Individual firms or researchers then agreed to carry out the work

needed to meet Sakamura's objective: to construct an open family of computer

architectures built around a 32-bit microprocessor, with a high-performance

operating system able to perform multi-tasking and real-time applications.

Toward the Future10

The unique feature of the architecture consisted of its design in well-

planned layers, from the lowest level, the instruction-set processor, through the

operating system and applications interfaces. Although developers had yet to

complete all the components, standardized interfaces for each layer would make

it possible for vendors to sell different types and sizes of computers as well as

link them far more easily than most existing operating systems. The

architecture would also greatly simplify communications and data transfer, as

well as portability or reuse of software programs and tools. The ambitiousness

of the effort can be seen in the sub-projects, which targeted embedded

industrial systems (ITON), business-oriented work stations (BTRON), networking

environments (CTRON), and interconnecting software objects (MTRON).

Despite MITI's support of UNIX through the Sigma Project, and TRON's

origins as a private initiative, by 1988, scores of firms had joined the TRON

association, including all the major Japanese computer and software

manufacturers as well as foreign companies such as AT&T and IBM. The

Japanese firms, led by Mitsubishi, Hitachi, Fujitsu, Matsushita, NEC, Toshiba,

and NTT, had already introduced TRON VLSI processors and operating systems,

as well as announced research results and concrete product plans. The Japanese

Ministry of Education in 1987 provided a huge boost by adopting TRON as the

operating-system standard for new computers introduced in Japanese schools,

inspired in part by a useful feature of the standard TRON keyboard -- an

electronic pen and tablet that made it relatively simple for users to input

Japanese characters. Some TRON work stations also ran more than one

operating system (such as UNIX as well as TRON), and this seemed likely to

improve the diffusion of the new standard and TRON hardware.

Nevertheless, and despite the technical excellence of the TRON

architecture, this project faced major obstacles in the marketplace. Computer

Toward the Future11

producers and, perhaps more importantly, computer users had enormous

investments in existing hardware and software; to rewrite programs to work on

TRON systems presented a daunting task few firms seemed likely to undertake

without excellent reasons. In addition, most computer manufacturers were

currently trying to link the interfaces among their incompatible machines, and

making slow but steady progress. TRON presented a technically better but

radically different solution that essentially involved discarding existing systems.

For new users, TRON offered potential benefits, although software

producers still had to write programs to make the hardware and operating

systems useful. On the other hand, TRON seemed likely to grow in popularity.

At the least, Japanese school children would become widely exposed to TRON

hardware and basic software, and this generation might disseminate the standard

more widely. As the 1990s approached, however, TRON seemed most likely to

remain one of many standards, probably used mainly in Japanese schools and

specific real-time applications in industry where benefits were obvious and firms

did not have major investments in other systems.

THE SIGMA PROJECT (1985-1990)

The Sigma Project, begun in 1985 and slated for completion in 1990, had

about 25 billion yen in funding from government and private sources.11 In

terms of key personnel and goals, it represented considerable continuity with

previous projects the Joint System Development Corporation sponsored,

especially the Software Production Technology and the Software Maintenance

Engineering Facility (SMEF) projects. Also in common with previous

cooperative efforts, Sigma faced organizational hurdles and competition from

still-evolving standards or technologies. Yet it was likely to affect the industry

Toward the Future12

positively because of modest goals: Sigma promised not to generate radically

new tools or techniques, but to refine, standardize, and disseminate existing

useful technology based on UNIX and closely resembling the tools used at

Toshiba and other firms. Sigma thus supported a rising trend in that, while

proprietary operating systems still dominated UNIX in market share, many

Japanese firms were independently adopting this for their development

environments and customers. One estimates held that UNIX would constitute

about 25% of the world market for operating systems by 1990, including

Japan. 12

The center of activities for the Sigma Project, the Sigma Development

Office, existed as part of the IPA structure. The staff, consisting of about 50

engineers on loan from 38 companies, took charge of planning, design, and

management of the system. Private contractors building tools numbered at least

50 companies and 300 engineers. In total, as of 1989, 189 companies

participated in the effort in some form. These included the major Japanese

computer hardware and software manufacturers, producers of consumer

electronics, and subsidiaries of U.S. computer makers operating in Japan (AT&T,

Fuji Xerox, IBM Japan, NCR Japan, Nihon DEC, Nihon Sun Microsystems, Nihon

Unisys, Nippon Data General, Olivetti of Japan, Yamatake Honeywell, and

Yokogawa Hewlett-Packard).13

The director of Sigma's planning division, Noboru Akima, and a staff

member, Fusatake Ooi, in stating their objectives in a 1989 article, made it

clear that Sigma relied on concepts directly borrowed from previous factory

efforts and other attempts to structure and automate software development:

"Sigma will industrializethe software-production process by using computerized

development facilities and a nationwide communications network....The ultimate

goal of the project is to produce software through manufacturing instead of

Toward the Future13

III

manual labor, moving the software industry from a labor-intensive to a

knowledge intensive industry."14 While Japanese companies pursued similar

goals on their own, Sigma's potential contribution went beyond the individual

firm: creation of a platform on which to integrate tools and hardware or reuse

code from various vendors, and then make these tools and software available

through an open network.

The project proceeded in two stages. In the first (1985-1987), researchers

designed a prototype platform to evaluate user responses. This consisted of a

hardware system, operating-system specifications, software tools, and a network

to share tools, computer programs, and other information. In the second phase

(1987-1990), they enhanced and finished the prototype systems. Beginning in

spring 1990, the Sigma hardware platform and software were to become

commercially available from several vendors. Customers also had to pay a fee

to operate the system and support R&D to improve the network as needed.

The system contained three major components: the Sigma Center, the

network, and the user sites, expected to number about 10,000 (Figure 8.2). The

Sigma Center, located in downtown Tokyo, assisted users who were building

Sigma environments and then producing software. The Center provided database

services and demonstrations of tools, rather than time-sharing or remote job-

entry services. The database services included information on existing software,

such as applications and basic-software packages (although few were available,

because of limited funds), tools, and database-management systems; software

firms, such as what services companies offered; the Sigma system itself;

available hardware; software standardization, such as technical articles, and

Japanese as well as international practices; and other systems.

The network, the high-speed Digital Data Exchange-Pack Switching (DDX-

PS) system leased from NTT, connected the Sigma Center to user sites and

Toward the Future14

external networks as well as user sites to each other. It handled Japanese

characters and functions for message communication (electronic mail, bulletin

boards, conferences) and file transmission (data, programs, documents), and let

users access computers from remote locations, allowing them to test how a new

program ran on a particular machine.

User sites came with Sigma work stations, a local area network (LAN), and

the Sigma Gateway, which facilitated communication and converted protocols

between the system and different hardware. The work stations were 32-bit

machines with a high-resolution display, graphics support, and use of a mouse.

While initial target prices came in at over $20,000, inexpensive versions

appeared by 1989 for the equivalent of about $12,000. These probably would

drop further since nearly a dozen firms had agreed to make the work stations

and operating systems (Fujitsu, Hitachi, Matsushita, Mitsubishi, NEC, Oki,

Omron, Sharp, Sumitomo Electric, Toshiba,and Yokogawa), all according to

common specifications so they could run the Sigma operating system and have

the same communication protocols. Users, therefore, would be able to assemble

equipment of varying capabilities and deploy the machines in different ways, but

still be able to communicate with other Sigma sites and the Sigma Center, as

well as exchange tools and programs.

The external specifications of the Sigma operating system, designed by the

Development Office staff, combined the better features of two versions of UNIX

-- AT&T System V and Berkeley Software Distribution Version 4.2 -- while

adding capabilities forJapanese-language processing, graphics, multiplewindows,

and databases. Individual manufacturers had to write the internal designs and

actual code to complete their specific version of the operating system, tailored

to different hardware systems.

The Sigma network provided approximately 30 support tools for each

Toward the Future15

development phase (Figure 8.3). The Sigma Development Office made and

contracted for the tools, while member firms could put additional tools onto the

network that met the interface specifications. Tools supported software

development in COBOL as well as in FORTRAN and C, as well as assembly

languages. Several tools also specifically supported engineering applications.

As of late 1989, Sigma was completing its testing phase, with more than 50

companies assisting in the evaluation of tools. There remained gaps, such as

the shortage of applications packages and no good tools to support testing or

designing the internal specifications of modules (which FASET was attempting).

However, a few research groups were working on advanced tools for higher-

level language processing and graphics-based prototyping. Future plans also

called for Sigma to continue as a private company after 1990, jointly owned by

the members, not only to maintain the system and the network but also to

continue upgrading tools and network capabilities.

In addition to standardization of external specifications to facilitate tool

portability, the open nature of the system allowed users to modify tools ordered

through the Sigma office, again following the practice in Japanese software

factories of tailoring tools to particular applications. To facilitate modification,

when Sigma asked a vendor to develop a particular tool, rules called for the

data architecture and source code that implements the tool to be available to

users. The original tools ordered by Sigma become the joint property of Sigma

and the vendor, and if a user desires to modify the tool, then negotiations must

take place to determine royalties. Manufacturers of work stations who offered

a tool might pay another firm to modify it to run on its work station or

perform the modifications itself, paying only a licensing fee for the tool as

determined by negotiations with the Sigma office. Firms that placed their

proprietary tools on the Sigma network did not have to share source code. 15

Toward the Future16

The objective of the tools and the overall support environment, again

similar to factory approaches, was to provide support technology to reduce the

need for highly skilled programmers, while still allowing users to tailor process

technology, within limits that respected the network specifications and the

rights of tool inventors. As Akima and Ooi asserted: "Sigma ... supports all

development phases and reduces the dependency of development efficiency on

the skills and experience of each engineer. However, different software

projects require different development environments. Furthermore, the

development environment should keep growing and improving as advanced tools

are introduced into the market. The Sigma system lets the development-

environment designers customize the basic system to create an optimal

development environment of their own. "16

Another feature of Sigma, shown in Figure 8.2, is the integration of a

software parts library onto the network. Similar to the systems at Toshiba and

other Japanese software factories, the library contained documentation, program

skeletons, and executable subroutines. A program-composition tool also

generated source code from the design skeletons. As in the case of Toshiba

and other firms emphasizing reusability, however, the value of this library

depended on how well its contents matched customer requirements, and how

systematic management promoted development of code for reuse and

construction of new programs from reusable modules.

Individual Japanese firms were modifying some in-house tools for the

Sigma network. Hitachi, for example, created a version of SDL/PAD to run on

UNIX so that it would qualify as a Sigma tool. Other manufacturers, ranging

from computer firms already heavily in the tool-development business to

consumer-electronics manufacturers just entering the computer or peripherals

markets, found Sigma attractive as a way to sell or lease tools. NTT, Hitachi,

Toward the Future17

Fujitsu, NEC, Data General, and Digital Equipment also benefitted by providing

computer hardware and other systems for the Sigma Center. For many

potentially useful tools already commercially available in Japan, however, Sigma

provided no assistance. These included EAGLE, SEA/I, and an array of Fujitsu

tools that ran on large computers incompatible with UNIX.

Sigma offered perhaps the most promise for small firms wishing to improve

their level of support technology, although several issues remained unresolved

for the government and tool developers. One obvious topic related to tool and

code ownership, including network security. While the project set up an

arbitration mechanism to settle disputes, tool modification and negotiated fees

presented areas ripe for disagreements, especially if the open structure of the

UNIX network allowed users to tap into databases and get access to tools and

source code without the knowledge of the owners. 1 7

Debates also continued in the U.S. and Europe regarding what versions of

UNIX should become the international standard. This controversy positioned

AT&T, which held the rights to UNIX and promoted Version V, against other

firms that did not want AT&T to control the future of the system. While

Japanese firms and Sigma might pursue an independent course, conflicts seemed

likely over the evolution or international standardization of UNIX as well as

over who owned the copyright to software based on the Sigma version of

UNIX. 18

Maintaining compatibility as well as harmony within Sigma presented

another set of challenges, even putting aside the fact that member companies

continued to support other versions of UNIX and many different operating

systems for their individual product lines. Though they remained compatible

with tools and programs on the network, Sigma in 1989 already had

approximately a dozen firms creating different versions of the Sigma operating

Toward the Future

III

18

system. Most expressed dissatisfaction with aspects of the existing standards

and tried to introduce improvements, thus keeping the Sigma staff constantly

concerned with standardization and compatibility.19

A related dilemma was how competitive and popular the Sigma work

stations would prove to be with Japanese users. The Japanese were accustomed

to using time-sharing terminals and proprietary work stations connected to

mainframes. They also had the option of buying many other types of less

expensive hardware, including proprietary work stations from the major vendors

as well as NEC, IBM-compatible, and Apple personal computers, and even new

machines running the TRON operating system. In software factories, managers

eliminated this issue of choice by determining what hardware their developers

would use. The Sigma staff, in contrast, had no control over users.

Every producer also faced a tradeoff between standardization and progress.

While Sigma promised to disseminate practical tools and techniques, as in

Japan's software factories, standardization also constrained technological

evolution. Producers of the Sigma operating system had already voiced

objections to the common specifications because they saw better ways to design

the system. In addition, Sigma had no choice but to evolve within the confines

of UNIX, a product of the late 1960s with a variety of limitations. More

radical product and process innovations, such as represented by TRON, the Fifth

Generation Project, and numerous efforts in the U.S. and Europe, would be

difficult for Sigma users to assimilate.

Nor did Sigma, in contrast to individual software factories, provide users

with a management structure to accompany tools and further objectives such as

effective project management or reusability. In its early phases, Sigma also

suffered from weaknesses similar to preceding cooperative projects. A few eager

government officials, managers, and academics took the lead without

Toward the Future19

III

incorporating adequate input from sophisticated users and producers, such as

organizations in Japan of software engineers, UNIX users, and university

departments in information technology, although the project directors seem to

have realized this and allowed their plans and objectives to evolve.

A final issue with regard to the value of Sigma tools and hardware

remained: As in the case of SDC and other factories, tools always proved to be

of limited value in software development. Individual firms and managers had to

add the critical elements Sigma lacked -- such as the management and training

infrastructures needed to use the tools effectively or produce reusable software

and high-quality products systematically. There were no guarantees that small

software houses would make the necessary investments in their organizations

and people, although, based on the historical record established in other

sectors, it seemed unwise to underestimate the determination and capabilities of

Japanese companies in any industry.

OTHER EFFORTS: NTT AND MITSUBISHI

Japanese companies other than those discussed in the cases also had

underway important efforts in software support technology, some comparable to

Sigma and others attempting to move beyond this to more advanced

technologies. After Hitachi, Toshiba, NEC, and Fujitsu, the two most important

companies in terms of market shares and technical skills were NTT (Nippon

Telegraph and Telephone), the largest firm in the world measured by the value

of outstanding shares and Japan's biggest systems integrator; and Mitsubishi

Electric, a diversified electrical and electronics equipment producer that made

commercial and industrial computers as well as software, primarily for the

Japanese market.

Toward the Future20

Nippon Telegraph and Telephone: As noted in previous chapters, NTT had for

years played an important role in promoting quality control and standardization

among Japanese computer manufacturers through its procurement of hardware

and software for telephone and data-processing systems. Of particular

significance has been DIPS (Distributed Information Processing System), begun

in 1969 as Japan's domestic telephone switching network.2 0 Although NTT

produced some actual code in house or at newly formed subsidiaries, primarily

for information systems it used internally, for much of the software it used,

NTT personnel (about 6000 were involved in software development during 1989)

completed only requirement specifications and functional designs, and then

transferred documentation to subcontractors (including Hitachi, NEC, Fujitsu,

and others) to build the actual software. NTT followed the same process with

hardware, issuing designs only and contracting out for manufacturing.2 1

Channelling programing tasks to several organizations required

standardization of specifications, designs, coding, and documentation, as well as

an excellent mechanism for quality control to assure comparability and

compatibility. NTT thus cultivated various standards and controls since the

1960s, and these had an impact on the practices of its suppliers. For example,

its encouragement of the use of structured flow-charts for detailed design,,

which it called Hierarchical Compact Charts (HCP), contributed to their

acceptance at other Japanese firms during the 1970s. 22 NTT's rigorous quality

standards also provided a model for other firms to improve their commercial

operations.

As NEC, Fujitsu, and Hitachi became large-scale software producers during

the 1970s and 1980s, they appeared to advance beyond NTT in technical skills

and support technologies for program design and construction. However, along

Toward the Future21

III

with becoming a private firm in 1985, NTT introduced several initiatives that

promised to improve its capabilities in software. These included the

establishment of a centralized Software Development Division (SDD) and a new

subsidiary, NTT Software, which adopted factory organizational concepts and

technologies similar to the Sigma system, as well as an extensive RD network,

much of it devoted to software tool and methodology development.

The Software Development Division employed several hundred personnel at

two main sites in Tokyo, with other groups linked through networks and on-line

tools. 23 NTT had formerly dispersed these personnel throughout the Data

Communications Sector and other groups developing basic software and videotext

programs (Figure 8.6). Management assigned the new division four roles:

(1) Program Production Process Standardization: standardize the way groups

designed modules, module interfaces, and functional procedures, and did

coding, in order to improve reusability of software across different

projects. As in the other major Japanese firms, NTT relied heavily on

structured design charts and code generators.

(2) Program Production: implement specifications produced by industry-related

or functional divisions in the Data Communications Sector utilizing a

standardized process and tool set to serve as a software factory, focused

on program construction rather than only design.

(3) Enhancement and Maintenance of Debugging System: maintain the

debugging system NTT had developed for use by most software developers

within the company.

Toward the Future22

(4) Production Support System R&D: conduct applied process R&D, including

tools and techniques for automating program generating and reusability.2 4

The NTT Software Laboratories, part of the company's central R&D

organization, conducted advanced R&D in language processing and design

support, integrated software-development support and reuse systems, and

systematization of production techniques and standards. The integrated

production and reuse-support systems came in several versions, apparently for

different product types, although they relied on NTT's communications network

and the UNIX V operating system, as did Sigma.

For example, NTT introduced a major tool set for switching-systems

software design during 1985-1988, called INSTEP. After noting a doubling of

productivity over a large number of projects, NTT began moving much of its

software design and in-house programming operations onto integrated support

systems that provided a unified interface between the operating system and

various tools. 2 5 Other versions of this concept included NAPSE (NTT Advanced

Programming Support Environment) and SPACE (Software Production and

Circulation Environment), which supported Ada, C, and COBOL. 26

Most of the tools and techniques under development in NTT laboratories

had counterparts in other Japanese firms, although NTT's researchers

demonstrated particularly broad interests. Projects ranged from an Ada

compiler that operated on different computers and target machines, to an

automatic remote-testing system that made it possible to test switching and

communications software from dispersed locations and without direct human

intervention. 27 In the design area, NTT offered several promising tools: HD

(HCP Design), a prototype of a CAD system, helped users write designs in HCP

charts, even if they did not understand all the HCP conventions, as well as

Toward the Future23

III

reuse existing designs and automatically generate code. 28 SoftDA, another

chart-based design system, supported reuse of designs and code as well as

allowed users to execute and correct designs in a dynamic mode, among other

functions. Adam, a module management system, supported reuse of flow-chart

designs, code, and specifications. SDE (Software Design Environment), another

experimental tool, facilitated design and maintenance of communications

software, with a specialized language that described communications functions

and a subsystem that automatically translated specifications into executable

code. The laboratories also worked on various Al and knowledge-processing

technologies .29

Mitsubishi Electric: Mitsubishi had only a small market share in the Japanese

data-processing industry (see Table 4.1) and many of its customers came from

the Mitsubishi group. Among users of its hardware, however, the company

scored well in various areas related to systems and applications programming

(see Chapter 1 and Appendix C). Mitsubishi also experimented with a factory

organizational approach as well as conducted advanced RD on software tools

and methodologies.

Mitsubishi's main center of software development, the Computer Works,

located in Kamakura, nearby Tokyo, developed hardware as well as basic

software and applications programs. In late 1987, it had approximately 700

personnel in applications and basic software serving 300 systems engineers (the

later remained organizationally outside the Computer Works). The structure

introduced in 1987 separated systems engineering from applications development.

Mitsubishi then combined applications with basic software, and systems

engineering with computer sales, and operated each of these two groups as a

set of independent profit centers by product (machine) line. Management did

Toward the Future24

this to make both the systems-engineering and basic-software groups more

conscious of costs and profits, as well as to provide more opportunities for

streamlining software production. 3 0

The tools in use at the Computer Works and under development closely

resembled those in the Sigma Project and other Japanese firms that utilized

UNIX. Mitsubishi built an integrated UNIX work bench (also offered through

Sigma) for technical or embedded engineering software, called SEWS (Software

Engineering Work Station). This operated with Mitsubishi's SOLON (Software

Engineers Land-On Network) for distributed development across multiple sites.

The system supported NTT's HCP structured charts and automatic code

generation in C and assembly language, as well as object-oriented interfaces

among modules, high-speed graphics and text displays, and use of a mouse to

point to objects on screens to reduce the need to input text or commands on a

keyboard 31

Mitsubishi's Information Systems and Electronics Development Laboratory,

located next to the Computer Works, also established an experimental software

factory on one floor of its facility in 1985, to serve as a working area for

software engineers in the laboratory and as a pilot model for an integrated

software development environment. This included common facilities (review

rooms, terminals), work stations linked by local-area networks, standardized

development and management procedures, and a formal system for program

registration and reusability promotion.32

Reuse promotion also resembled the approaches of other Japanese firms as

well as Sigma. Mitsubishi defined frequently reusable black-box parts,

consisting of general-purpose executable subroutines, and specialized white-box

parts, in the form of designs or executable code and intended for specific

applications. Mitsubishi departed somewhat from other firms in its use of a

Toward the Future25

separate group of "reuse engineers," for both basic and applications software,

whose job consisted of reviewing existing designs and code as well as newly

written software for potential reuse or modification for reuse (Figure 8.7).

Other Japanese firms utilized reuse engineers probably as much or more than

Mitsubishi, although none made this function quite so explicit. Other Japanese

software factories tended to allocate engineering time either to building

reusable packages, patterns, or subroutines, or to reviewing existing or newly

written software for potential reuse, but without creating a special group for

33re-engineering.33

THE FIFTH GENERATION COMPUTER PROJECT (1982-1991)

Although publicity waned after the initial years, Japan's Fifth Generation

Computer Project had already made an important impact on the world's artificial

intelligence community by the late 1980s, stimulating research in Japan as well

as in the U.S. and Europe. 3 4 Since the project architects hoped to develop a

new type of hardware and software that would revolutionize the way people

interacted with and used computers in the future, its broad goals made the

Fifth Generation Computer Project both intriguing and unlikely to fulfill its

more dramatic expectations. In addition to encouraging basic research in an

important area of computer technology, the project settled on a few specific

technical targets and promised limited but concrete results by the termination

date in 1991. As of late 1989, however, Japan had announced no plans to

continue the venture, suggesting some dissatisfaction with the results so far.

MITI initiated the project in 1982, after two years of study, as a 10-year

program starting with 50 researchers (90 in 1989) and housed in the newly

created Institute for New Generation Computer Technology (ICOT) near

Toward the Future26

downtown Tokyo. The schedule called for three phases: study of existing

knowledge in the fields of logic processing and parallel computing, and the

development of prototype hardware and software systems (1982-1984);

construction of small-scale subsystems for logic processing and parallel

computing (1985-1988); and completion of a full-scale prototype (1989-1991). 3 5

The finished computer was expected to build both inference and knowledge-

based functions into the hardware, thus facilitating extremely fast processing

speeds, while the basic software controlled the hardware and provided a

platform for a knowledge database-management program and applications.

The term "fifth generation" referred to the evolution of circuit

components, although the major difference with the new computer lay in its

architecture -- how it processed data, instructions, and other information. The

first four generations consisted of computers built with vacuum tubes (1950s),

transistors (1960s), integrated circuits (1970s), and then very large-scale

integrated (VLSI) circuits (1980s), that processed data or instructions one at a

time in a sequential fashion, following the design of the mathematician John

von Neumann. The fifth generation would also use VLSI chips (of the latest

variety) but deploy them in a different way.

The premise of the research held that von-Neumann architectures limited

the capabilities of computers and that significant progress in artificial

intelligence, expert systems, knowledge processing, automatic programming, and

other advanced applications required moving away from conventional algebraic,

sequential instructions and data sets. ICOT worked to perfect a machine that

processed information in the form of "predicate logic" statements or inferences,

and did this in a parallel rather than a sequential fashion (i.e. parcelling out

pieces of a program to different processors that acted on the instructions or

data simultaneously and then combined the results), much as the human brain

Toward the Future27

appeared to funciton. Existing computers already used forms of parallel

processing, but primarily with a small number of processors and with

conventional data and instructions merely broken down into pieces. The new

hardware would incorporate a thousand parallel processors and process

information at a calculation speed considerably faster than existing computers.

The software specifications called for several complementary functions:

problem-solving inference capabilities, to perform deductive and inductive

inferences; knowledge-base management technology, to express, collect, store,

and retrieve various types of information required by the inference functions;

intelligent interfaces, to allow people and the computer to converse in natural

languages; and intelligent programming capabilities, to enable "persons without

specialized knowledge to write programs easily" (Figure 8.4). Each of these

objectives constituted a modular subsystem of the basic software. Working

groups, organized under several larger laboratories, conducted research in each

area (Figure 8.5).

Pioneering such technology was expensive and, not surprisingly, the Fifth

Generation had the largest budget among Japan's cooperative efforts in

computer technology, with approximately 50 billion yen allocated over ten years,

paid for entirely by the Japanese government. This amount constituted merely

half MITI's original proposal, since MITI had anticipated (but did not receive)

contributions from private firms. Hitachi President Katsushige Mita accepted

the presidency of the venture and eight companies -- Fujitsu, Hitachi, NEC,

Toshiba, Mitsubishi, Oki, Matsushita, and Sharp -- eventually agreed to send

researchers to the project, at the government's expense. Companies declined to

contribute financially, and only the company that agreed to build the hardware,

Mitsubishi Electric, seemed to display much enthusiasm for the project.

The lack of enthusian reflected several factors. The risky and difficult

Toward the Future

III

28

nature of the research presented a major difficulty in that it seemed to have

no immediate commercial applications. Another characteristic of ICOT that

probably made the effort uncomfortable for the participants was that, unlike in

previous cooperative arrangements, which tended to have a small staff

developing plans and then contracting work out to individual firms, the Fifth

Generation called for most research to occur in common laboratories with

personnel on full-time assignments. ICOT sponsored some important research at

individual firms, but the structure required strict and common technical targets,

and this made it difficult for any one firm to use funds to subsidize internal

R&D or seize the advantage in capitalizing on research results, if any proved

commercially viable.

In the initial phase during 1982-1984, ICOT researchers examined existing

technologies on knowledge processing, synthesized the results, and successfully

built a personal sequential inference (PSI) machine to serve as a tool and work

station for research. This had approximately 100 processing elements, about

one-tenth the number of the envisioned final system. They also experimented

with a design for an operating system utilizing a logic language rather than a

conventional computer language.

During 1985-1988, the researchers studied how to use and control groups

of the PSI machines (Multi-PSI) for the actual goal -- knowledge and inference

processing in a parallel mode. This required creation of a parallel hardware

architecture as well as extension of an existing logic language to make it

suitable for programming in a parallel fashion. The researchers also began work

on basic tools and techniques for building a knowledge-processing system (KIPS)

and a knowledge-base subsystem (an advanced relational database called Delta)

that took advantage of the parallel architecture.

The basic software consisted primarily of parallel control functions as well

Toward the Future29

as logic or inference rules that allowed programs to act upon information stored

in the relational database. To write the core software, ICOT initially chose

PROLOG, a language developed in the early 1980s to support programming in

mathematical logic. Writing a program in PROLOG requires constructing rules

or hypotheses, as well as objectives or conditions, that a programmer wants to

test, and providing data on which the rules can operate. It is a powerful

language but proved difficult to learn and few programmers had experience with

it.3 6 In addition, the authors of PROLOG had designed it for sequential rather

than parallel processing.

After some criticism and reflection, ICOT explored alternatives to PROLOG

and developed an extended low-level version specifically for parallel processing

called Flat Guarded Horn Clauses (FGHC). This proved suitable for specifying

the interface between the hardware and the software needed to process

information in parallel. Using the computer then required the development of

problem-solving inference programs and knowledge-base management software.

ICOT employed a system description language developed in the first stage,

Extended Self-Contained PROLOG (ESP), to create object-oriented modules and

subroutines (macros) for applications that could run in a sequential mode. The

relational database used predicate-logic inferences (rules) to perform particular

functions or carry out specific instructions, rather than processing data

sequentially or simply finding and matching identical words or pieces of data.

The pilot tool for software development consisted of a sequential inference

machine that used a version of sequential instruction processing, as in von-

Neumann architectures, modified for parallel processing. But, as of late 1989,

ICOT had made only limited progress toward building tools that assisted in

intelligent programming or automating software development. Some advances

came in methods for object-oriented modular programming using ESP and

Toward the Future

III

30

parallel-programming languages, and early experimental work on a software-

development consultation system for parallel programming found some interest

among developers of telephone switching systems. But most tool work centered

on limited goals, such as theorem proving and mathematical verification

techniques, including a computer-aided proof system. Still under development

were Argus, a tool for program synthesis from high-level descriptions, as well

as a software knowledge-management system to support library management,

program and document generation, and other functions involved in developing

logic programs. Work on intelligent interface software concentrated on studies

of Japanese grammar and syntax, as well as semantic and contextual analysis,

fwith most of this RD located at a subsidiary project, the Japan Electronic

Dictionary Research Center.

A few groups outside ICOT proper pursued applications. One potentially

useful tool consisted of a programming-support system produced at Fujitsu.

This included an English-like specification language mechanically translated into

predicate logic formulas, and a logic-based system to retrieve reusable software

modules, stored by function, from a modules library. The library also stored

specifications for each module, coded in PROLOG, which the tool compared with

requirements to identify functionally equivalent modules reusable for particular

parts of a new program. These capabilities resembled conventional reuse-

support systems in use for several years but added superior retrieval and

verification capabilities. Earlier reuse-support methods located modules by

matching specifications or code, whereas the PROLOG system made it possible

to identify modules with similar functions even if the specifications did not

match in a conventional search process. In addition, another capability of the

tool, which supported reuse as well as maintenance, was an "explanation

generator." This analyzed code and produced English-like explanations of the

Toward the Future31

III

program logic by comparing the code with preexisting templates (skeletons) of

explanations stored in a separate database. 3 7

Plans for ICOT's final stage of research during 1989-1991 remained vague,

in part because work had not proceeded as quickly as desired. In particular,

hardware development remained one or two years behind schedule, although

researchers still expected to finish the hardware and the basic software by

1991, in addition to exploring techniques for knowledge processing, natural-

language processing, and a few experimental applications, such as expert

systems.

Unlike Sigma, ICOT did not distribute or license technology as commercial

products. Rather, the Fifth Generation Project was in the business of basic

research. Individual participadnts had to transfer technology to their parent

organizations and pursue commercial applications. Some companies did introduce

tools that processed or utilized PROLOG, as in Fujitsu's case, although their

market remained unclear. In fact, many Japanese laboratories now contained

PSI machines made by Mitsubishi Electric, although few researchers outside of

ICOT projects appeared to utilize them. Perhaps the major benefits of ICOT

would not exceed the stimulation of basic research. In fact, the project's

directors encouraged this within and outside its membership by establishing an

Al Center in 1986 to monitor activities of Japanese and foreign firms in the

field and by organizing annual conferences to disseminate research results and

promote information sharing.

U.S. experts who examined the progress of ICOT through 1987 as part of

the Japanese Technology Evaluation Program (JTECH), an effort supported by

the U.S. National Science Foundation, made several observations regarding the

project's objectives and achievements. 3 8 Most important, they concluded that

the researchers had made significant progress in areas of Al such as speech and

Toward the Future32

image processing, language translation, and expert systems, at least matching

U.S. efforts in these areas and "even teaching us a lesson in the speed of

development and smooth industrial coupling of these commercially-directed

efforts." This seemed true even though many of the results required special

hardware, Japanese did not use the machines widely, and many results remained

far from commercial application without much more RD.

The evaluation team expressed a concern that the reliance of the project

on logic programming, even with the invention of a new version of PROLOG for

parallel processing (FGHC), presented both benefits and limitations. On the one

hand, this focus gave the project clear direction and made it likely to meet

basic technical targets (even if society did not quickly advance to new uses of

computers). On the other hand, ICOT did not directly address promising areas

of Al research, such as programming in LISP (a more common language than

PROLOG that processes data and functions in the form of lists of symbolic

expressions) or experimenting with neural networks (groups of many small-scale

parallel processors that mimic how the human brain processes information).

While Japanese companies pursued these and other technologies in their own

laboratories, the Fifth Generation represented a significant effort and potential

diversion from more practical technologies. The eventual value of ICOT thus

depended heavily on how useful logic programming turned out to be, and this

remained difficult to predict.

Nevertheless, and despite uncertainties over the future of logic

programming, the U.S. experts appeared unanimous in their praise for the

project's "superb software engineering design work." In the related area of

super-computer hardware and software development, the panel found the

hardware to be "world-class" and "the software work competitive with, if not

superior to, the best quality output in the United States," even though project

Toward the Future33

III

planners dropped initial plans to develop new VLSI technology to go along with

R&D in parallel architectures, programming, and Al.

COMPARABLE U.S. AND EUROPEAN EFFORTS

Comparisons with U.S. and European cooperative projects reinforce the

conclusion that Japanese software producers and researchers were not only in

the mainstream but at least close to the forefront in research on standards as

well as advanced technologies related to software development. In the U.S., the

most prominent example of a cooperative effort was the Microelectronics and

Computer Corporation (MCC), founded in 1983 and located in Austin, Texas.3 9

This R&D consortium had a staff of about 400 in 1989, an indeterminate

lifespan, and a budget of $70 million per year. Membership (the shareholders)

included leading U.S. producers of electronic equipment, components, and

materials: 3M, Advanced Micro Devices, Bell Communications Research, Boeing,

Control Data, Digital Equipment Corporation, Kodak, Harris, Hewlett-Packard,

Hughes Aircraft, Lockheed, Motorola, National Semiconductor, NCR, General

Electric, Rockwell, and Westinghouse. Research centered on four broad areas:

(1) software technology (productivity and quality enhancement tools and

methods); (2) semiconductor packaging and interconnection technologies

(substrate materials, chip attachment, cooling and manufacturing methods); (3)

VLSI/CAD systems (design support for very large integrated circuits); and (4)

advanced computer architectures (divided among three laboratories--

Al/Knowledge-Based Systems, System Technology, and Human Interface).

In software production, the specific R&D topics resembled work in Sigma,

ICOT, FASET, and other Japanese projects as well as the laboratories of NEC,

Toshiba, Fujitsu, Hitachi, NTT, and Mitsubishi. All were trying to create tools,

Toward the Future34

methods, and concepts to support an integrated design environment that

included a full range of tools, including reuse support and automatic code

generation. But its combination of theoretical studies, such as on the design

process, knowledge processing, and coordination among large teams, with

empirical research on projects at member companies, distinguished MCC's

research.

Much of the effort in software technologies research at MCC concentrated

on requirements specification, which usually required a great deal of time and

expertise. Work on this theme included examining design decisions, rapid

prototyping and simulation technologies, traceability of design steps, knowledge

representation schemes (especially for "fuzzy" knowledge not easily expressible

as, for example, Os or s), and reuse of designs. The reuse work included tools

incorporating expert-system techniques to analyze existing code and

specifications in order to extract the underlying architecture, which could then

be deposited in a database as design components for future reuse or

maintenance. Other areas of research covered generic design representations,

which could be compiled into different languages, as well as tool integration

through platform standardization, and group coordination and management,

through highly integrated and automated project-management tools and

databases. These appeared especially useful for building distributed, embedded

systems (software encased in hardware, with the hardware spread in more than

one location) in multiple teams. 4 0

As with any cooperative effort, where members were likely to have

disparities in skills, objectives, and resources, MCC encountered problems.

Member companies have disagreed on research agendas and thus supported

different projects, with licensing rights to research results dependent upon what

work each funded. This structure restricted coordination and technical sharing,

Toward the Future35

even in areas developing complementary technologies, such as VLSI and

software.41 Members were also supposed to provide many of the personnel but

they did not always send their best researchers to the venture, leading MCC

management to hire its own staff. In 1988, for example, only about 30% of

researchers came from member firms. The drawback was that MCC researchers

had to market their organization to shareholders on a continual basis, while

shareholders had to make extra efforts to transfer technology back to their

organizations.

The U.S. Department of Defense had a longer history of promoting

research on computer hardware and software. Many of the results have

benefitted the world industry -- the Multics time-sharing system, the Ada

language, very-large scale integrated circuits, and various other tools and

techniques, as well as basic research. In contrast to Japan and MCC, however,

a common theme in defense research has been the focus of research and

applications on military uses, thus limiting the total impact of cooperative

ventures on the U.S. commercial sector. Nonetheless, in the 1980s, the defense

department seemed to shift somewhat and exhibited more interest in basic

problems in software engineering and potentially general solutions, in response

to the growing complexity and expense of software for modern weaponry and

other defense as well as informaiton systems.

For example, the Department of Defense in 1982 initiated STARS (Software

Technology for Adaptable, Reliable Systems) as a multi-year industry,

government, and university effort, with annual budgeting of around $60 million.

This included the establishment of a Software Engineering Institute at Carnegie-

Mellon University in 1985, where a staff of 250 researched new software tools

and methods as well as evaluated factory concepts, much like the Sigma Project.

In addition, the U.S. Department of Defense Advanced Research Projects Agency

Toward the Future36

(DARPA) directly sponsored several projects that overlapped with the technical

themes being explored in the Fifth Generation Project and FASET, as well as

Japanese corporations, besides making grants to U.S. universities for research in

every major area of computer hardware and software technology.

Of particular prominence among the DARPA projects was the Strategic

Computing Initiative, a $600-million, 5-year effort begun in 1983-1984. This

brought together university, government, and industry researchers to study

parallel architectures for symbolic computing, advanced microelectronics, and

new hardware, with the objective, to an extent inspired by the Japanese Fifth

Generation Project, of integrating vision, speech recognition and production,

natural-language understanding, and expert systems, especially but not

exclusively for military applications.4 2 Compared to ICOT, however, progress in

meeting research targets seemed slow, except for parallel-processing

architectures .43

Major European electronics firms and governments had their equivalents of

Sigma and the Fifth Generation, as well as the Strategic Computing Initiative

and STARS. In all cases, similar to the Japanese and U.S. programs, the

Europeans hoped to advance and diffuse basic knowledge in Al and other

technologies, as well as make tools and methods available to a broad range of

producers. In contrast to the recent Japanese initiatives, the European efforts

seemed less focused, in part because the Europeans tended to fund efforts

promoted by individual firms and give companies the right to commercialize the

results of their R&D, rather than allowing firms to work, in effect, as

subcontractors under a joint project. 4 4

The European Strategic Program for Research and Development in

Information Technologies (ESPRIT), begun in 1984, probably attracted the most

attention in Europe, spending $1.5 billion on more than 200 projects. The

Toward the Future37

research included 47 projects devoted to software technologies -- knowledge

engineering and expert systems, advanced computer architectures, and improved

user-machine interfaces, similar to the Fifth Generation, as well as applied tool

and methodology development, similar to Sigma. Several groups worked on

method and tool integration as well as reuse technology for a software-factory

environment, with an analogue to the Sigma tool set, PCTE (Portable Common

Tools Environment), based on UNIX V. The main firm behind this initiative,

Bull of France, offered PCTE on its work stations. Other firms followed,

including GEC and ICL in the United Kingdom, Nixdorf and Siemens in

Germany, Olivetti in Italy, and Sun Microsystems in the U.S.

Another cooperative program, the EUREKA (European Research

Coordination Agency) Software Factory Project (ESF), worked on developing a

tool set and integrated environment resembling PCTE but tailored for specific

applications such as real-time software development and complex business

programming. The development group consisted of Nixdorf, AEG, ICL, and

several other firms in Germany, the U.K., Norway, and Sweden. Individual

countries had other efforts exploring similar tools and techniques, with perhaps

the largest consisting of Britain's Alvey program, modeled after the Fifth

Generation in objectives but resembling ESPRIT in organization, with 2000

researchers from universities and companies working on 200 separate projects.4 5

SUMMARY AND EVALUATION

In contrast to the technology and the market, government direction and

subsidies, including cooperative inter-firm projects, played a very small role in

promoting the factory approach and supporting technologies in Japan. This is

not to say that the Japanese government did not try to do more. Various

Toward the Future

III

38

agencies sponsored cooperative efforts between the 1960s and early 1980s aimed

at promoting tools, techniques, and concepts effectively used in factory

environments. Yet none of the government-led projects seemed to have

anywhere near as much impact on practice as the initiatives started and

completed at individual firms. By the mid-1980s, the situation had begun to

change slightly. Old and new standards still competed for acceptance, and

software continued to come in many sizes and shapes -- maintaining a complex,

fragmented industry of uncertain dimensions. But it seemed clearer what

constituted good practice and where the key challenges in standardization or

R&D remained. As a result, Japanese and other firms started to cooperate more

actively and, as it seemed in the case of Sigma, more effectively.

Cooperation clearly proved necessary to further standardization. Japan

especially exhibited a great need to spread good tools and techniques to the

hundreds of small software houses that did programming work for larger

software producers and other customers. Standardization and networks, such as

with Sigma, helped make this possible. Even projects that failed to meet

objectives at least familiarized companies with software-engineering concepts

and tools, as well as with packages and operating systems such as UNIX. But,

while Sigma appeared likely to be an effective environment for software

development, firms still had to experiment with more advanced technologies, and

cooperation seemed useful to complement to efforts at individual firms. FASET,

TRON, and the Fifth Generation, in addition to company laboratories, provided a

mechanism to explore basic technologies as well as potential applications.

In the short term, standardization around UNIX and Sigma work stations

promised to help small firms raise their level of tool support. At the same

time, these or other standards would probably delay the Japanese from moving

to newer technologies as they appeared. TRON provided a good example, since

Toward the Future39

it offered a higher level of integration for different types of hardware and

software. But while Japanese companies were introducing TRON products,

particularly for industrial real-time settings and educational applications, they

also maintained much larger commitments to UNIX, proprietary operating

systems, or IBM-compatibility.

In parallel computing and logic processing, Japanese government officials

and researchers focused their efforts and created a fascinating project for a

fifth-generation computer, but bet perhaps too heavily on a narrow aspect of

artificial-intelligence technology and had difficulty maintaining the interest of

major Japanese firms. FASET seemed more ambitious than Sigma technically

and more practical than ICOT in pioneering a critical area -- producing

executable requirements -- but lacked strong participation from key companies,

who had their own RD projects on the same theme.

One might also argue that the sheer variety of activity in Japan served as

much to fragment precious engineering and financial resources as it helped push

forward the state of computer technology and the capabilities of individual

firms. But Japanese managers appeared to recognize this, and companies tended

to limit their participation in government-sponsored projects. In the long term,

however, as international comparisons indicate, Japanese firms seemed well

prepared for present and future competition, covering nearly all major areas of

standardization, management, and research, and exploring these areas relatively

thoroughly.

Toward the Future40

Table 8.1:Japanese Cooperative R&D Projects in Software Technology

Note: In 1989 currency, 1 Billion Yen = Approximately $7 Million

Period Project/Organization Objectives and Outcomes
(Total Yen Funding)

1966-72 Japan Software Company Common development language and
(2 billion) basic software for different

architectures. Complete failure.

1970-82 IPA Package Effort 70 packages developed. Very limited
(10 billion) usage.

1971-80 PIPS Project Pattern-information (graphics)
(22 billion) software, mainly for Japanese

language processing. Several
products commercialized. Links with
Fifth Generation Project.

1973-76 Software Module Project Applications development. Little
(3 billion) coordination. Complete failure.

1976-81 Production Technology Automated and integrated factory
Project (7.5 billion) tool set and modularization

techniques for batch environment.
20 discrete tools finally developed
by individual firms.

1981-86 Software Maintenance Interactive, UNIX-based tool set
Engineering Facility for maintenance and development.
Project (5 billion) Improved experience level of

Japanese firms with UNIX.

1984- TRON Project Development of a standardized
(Company Funds) architecture and operating system

for multiple levels and types of
computers. Some products
announced. Promising idea despite
competition from other standards.

1985-89 Interoperable Database Network to link work stations
System Project using OSI protocols. Improvement
(1.5 billion) of interface standards likely.

1985-89 FASET Project Development of CASE tools for
(2.2 billion) automated code generation from

formalized specifications. Promising
goals but limited participation.

Toward the Future41

III

1985-90 Sigma Project Development of UNIX-based support
(25 billion) tools as well as reusable code and

packages, for a national network.
Major dissemination of existing
practical technology.

1982-91 Fifth Generation Project Development of knowledge
(50 billion) (logical-inference) processing and

parallel computing hardware and
software. Major long-term advances
possible in Japanese Al capabilities.
Short-term potential for software
automation and reuse support.
Limited commercial applications,
however, and lukewarm support
from major companies.

Source: See citations in Chapter 8.

Toward the Future42

Figure 8.1: FASET PROJECT DEVELOPMENT ENVIRONMENT

KnowLcug cataca

CD : tcols

tJ r--- : I/O of tols
___ : acn of anr,'worna

Source: "FASET -- Formal Approach to Software Environments Technology--
Overview of FASET Project," p. 3.

Toward the Future43

Figure 8.2: SIGMA SYSTEM CONFIGURATION

Source: Akima and Ooi, p. 15.

Toward the Future

I

44

-CI..

o .,

ECE
· aI(u ' cE EY a)

0

4

L.

_ 0

C. C vD
,) a), C

~ V.> E > .
· 4 .. >, . 4(V (V - >

a)sC:0 a

a)
V)

Co

-C0-

CV

E
a)Q
a
E

0
% /I

a) U 0(V

C
cn((
m
3 Z
c.>

I~~~~~~~~~~~a

L

a) Q C

L. (V+L*.. W CL Co

. V,
C

,..-

0 N

=-.7-5l0 a)a)V

Z-- IVosO)~ t,0 I - 0 E

&- S &- a; "

a. a . a.a0 0 V 0

@ 05 *
- I/IO *0
0 >%

.c (0
C + -

mE (VC

- C a) 4.-.- 'E
WV :3--

& a)- a)°5 = n w
Q z C

kA

On
-

C c
0

. ... F ..2 a):'

..2

.-

-

-- .. . 'v. ' .I . t. .

_

......: : ;.... . .
(V)

..:_:::: .'::.:: ::.'

......-

::::::::: . . ,-...

..:._ . , -
.. . ..:'.... . -,:

..

:-::.:.:: ::. -

..'..... :..
...

.. . .. -.-.'
..
..

.-..
...

........

....... (V :-- L.... -.
-.-..--- -. ..0

a)
(V

0-

a)c

(3)C

.4

C
(V;

w
V/I
m

V

a)
V[2.S-£

a)..

(V-: m :..
' 4- -

. ...-

C" :

a)
:-' C-..

: C -.
- i :-

U ,

*.:.:..::. (- V , ::.. E _.
C

":,. V'''

H
EI--

::>zH
0
04

1 zX
l:::E-I

o
..,
Uz

CUa)

C
c

._7

a)0Q

a)

-0

C
._McCE

$1

- III II

: : I ' II

- -

.....:: ···...iiiiiiiI P
l. _

- :....: :.-.: ·- . .: -. . -..:- ..-....... --- --
IIIIIli

i i::..

I

..........
............
.................................

...........

I

............. -

...................

...

...

..
.......

.....:.:::
..........
..................

............. -
............

............

..

Figure 8.4: FIFTH-GENERATION COMPUTER SYSTEM CONFIGURATION

~I ~~~~I (EX'EWr SYS'IEH/CONSUI.TATION SYSTLFII I

FZV-ff1
I Appl icati is

specific dictiunary

I __C

Semant ic (;ene ral I
I dictionary knowledge
I dict ionary

I Common Knuwl edge Bases
L _…. . . __ _ _-_

r----- - -- ---- IF … ~~~~~1I I
I I
I I

tI eh ol, I
I II SI

I 1I

I II I

Il… !II -

Ii

lt Mied ca HaichiieI
I xi--rt (xpert VI.SI-CAD _______ iTrllSIat OIl I
I System System Syste-m I

I I

…-- -- - - - -

Cellia

[Fifth Generation Compnlter Systen
Key Teehisology &ID

Pito a aci teIo ai aral let
ott are

Development

.s ic Solftware
Sy s tem

Hardware System

I Dcvcolmen t
Sllappor t System.

Source: ICOT 1986, p. 24.

Toward the Future

l

II
III

l

II
II
II
III

46

. [

Figure 8.5: FIFTH-GENERATION PROJECT WORKING GROUPS

Parallel Software

Artificial Intelligence Foundations

Computer Games (Go, Shoji)

Natural Language Processing System

Japanese Generalized Phrase Structure Grammar

Speech Understanding System

Computer-Aided Proof

Term Rewriting System

Japanese Specification Language

Intelligent Programming System

Knowledge Base Machine

Parallel Inference Machine and Multi-PSI
(Personal Sequential Inference) Machine

Knowledge System Shell

Knowledge Acquisition Support System

Source: ICOT 1986, p. 30.

Toward the Future47

Figure 8.6: NTT ORGANIZATIONAL CHART

Corporate
Stra tegy
Planning

Corporate Headquarters
anagement

Committee
Engineerinz
Strategy
Planning
Headquarters

I ... F- I)

Telephon Service
Development Headquarters

Customer Equipment Division

telecommunications Directory Division

TeIPhon Service Telecomunica- _
Resion tions District

Regional Tele-
communicat ions --
ODi rectory
Division

Integrated Communications 1
System Division

U SIec

-Adinis t ra tion
I System Division

Financial Syste
ivsion

Industrial
System Division

Business Infor-I
ation System Div

-Custoaer Engine-
ering Division
I~~~

-f'Regional Divisi-
on (9)

Telephonq
Office

General Affairs Public Relation , Personnel,
Industrial Relations , Accounts and Finance,
Building Engineering INS odel System,
Telecommunications Laboratories Training Institute,
,Hospittal

Source: Nippon Telegraph and Telephone Corporation, "Software Development
Division Outline," July 1986, p. 4.

Toward the Future

.. --- `��-�"-�'------`�-------------

telecolrunications

I 6" % z """" II

Le-s-eq Circuit
I iviSion

Advanced Telecom Video Rec:unic s S N' �- Ord C nuation ervice O:nd nica -
Sector I tions Division

MO bile Coemun-ica�ions
Divisi0 n

I na-- n- r-- t-iin-

48

Figure 8.7: MITSUBISHI'S SOFTWARE REUSE SYSTEM

Source: Mitsubishi Electric Corporation, "Software Reuse -- Our Approach,"
Kamakura, Computer Works, 1986.

Toward the Future49

III

NOTES

1. A comprehensive discussion of these various efforts, especially in hardware,

is Marie Anchordoguy, Computers Inc.: Japan's Challenge to IBM, Cambridge,

MA, Harvard University Press/Council on East Asian Studies, 1989.

2. Anchordoguy, Chapter Two.

3. Robert Arfman, "The Japanese Software Industry: A Comparative Analysis of

Software Development Strategy and Technology of Selected Corporations,"

Cambridge, MA, Unpublished Master's Thesis, M.I.T. Management of Technology

Program, May 1988, pp. 32-36.

4. Anchordoguy, Chapter 4.

5. Kouichi Kishida, "Technology Transfer Aspects of Environment Construction,"

Tokyo, Software Research Associates, unpublished and undated manuscript (ca.

1986), pp. 4-6. See also Anchordoguy, Chapter 4.

6. Kishida, pp. 6-9; Arfman, pp. 35-36, 60.

7. Arfman, p. 37.

8. See Joho Sabisu Sangyo Kyokai, ed., Joho sabisu sangyo hakusho 1987

(Information services industry white paper 1987), Tokyo, 1987.

9. Thomas R. Howell et al., "Japanese Software: The Next Competitive

Challenge," Arlington, VA., ADAPSO, the Computer Software and Services

Industry Association, January 1989, p. 38; Joint Software Development

Corporation, "FASET -- Formal Approach to Software Environments Technology

-- Overview of FASET Project," unpublished outline, January 1987.

Toward the Future50

10. The best source of technical information on TRON, and the basis for the

discussion in this section, is a special issue of IEEE Micro, April 1987, edited

by Ken Sakamura. Particularly useful is the lead article, Ken Sakamura,

"TRON," IEEE Micro, April 1987, pp. 8-14. The April 1988 issue of IEEE Micro

also contains two articles describing further technical progress. For general

discussions of the TRON Project, see Anchordoguy 1989, Chapter Five; Ken

Sakamura, "Japan's New Strategy in Computer Software," Electronic Business, 15

November 1986, pp. 82-84; Miyoko Sakurai, "Support Swells for TRON Realtime

OS Project in Japan," Electronic Engineering Times, 1 December 1986, p. 27.

11. This section is based primarily on Noboru Akima and Fusatake Ooi,

"Industrializing Software Development: A Japanese Approach," IEEE Software,

March 1989, pp. 13-21. Other sources include Arfman, pp. 43-61; Information

and Technology Promotion Agency, Sigma News, Vol. 1, April 1986; and

Anchordoguy, Chapter 5.

12. Arfman, pp. 60-61.

13. Information Technology Promotion Agency, "Sigma Project," Tokyo, 1989, p.

7.

14. Akima and Ooi, p. 13.

15. Interview with Fusatake Ooi, Senior Engineer and Director, Project

Management Division, Sigma System Project, 7/18/89.

16. Akima and Ooi, p. 17, 19.

17. Arfman, pp. 52-58.

18. Anchordoguy, Chapter 5.

Toward the Future51

III

19. Ooi interview.

20. See Shimoda Hirotsugu, Sofutouea kojo (Software factories), Tokyo, Toyo

Keizai Shimposha, 1986, pp. 50-64.

21. Interviews with Rikio Onai, Senior Manager, and Ryoichi Hosoya, Executive

Manager, NTT Software Laboratories, Nippon Telegraph and Telephone

Corporation, 17 July 1989; and Kenshiro Toyosaki, Department Manager,

Software Division, Nippon Telegraph and Telephone Corporation, 9/3/87.

22. Mikio Aoyama et al., "Design Specification in Japan: Tree-Structured

Charts," IEEE Software, March 1989, pp. 31-37.

23. Toyosaki interview.

24. Nippon Telegraph and Telephone Corporation, "Software Development

Division Outline," July 1986.

25. Takenaka Ichiro et al., "Kokan sofutouea-yo sogo seisan shien shisutemu"

(Integrated support system for switching systems software production," Kenkyu

iitsuvoka hokoku, Vol. 36, No. 6 (1987), pp. 799-809.

26. Shimoda, pp. 198-204; Nippon Telegraph and Telephone Corporation, NTT

Software Laboratories, Tokyo, 1989.

27. Nippon Telegraph and Telephone Corporation, "NTT Electrical

Communications Laboratories," Tokyo, NTT Public Relations Group, 1987, pp. 18-

19.

28. NTT Software Laboratories, "HD System," Undated document (received July

1989).

Toward the Future52

29. NTT Software Laboratories.

30. Interviews with Naoharu Miyakawa, Manager, Software Engineering Strategy,

Engineering Department, Mitsubishi Electric; and Kenzaburo Akechi, Manager,

Software Engineering Section, Production Administration Department, Computer

Works, Mitsubishi Electric, 10/28/87.

31. Akira Takano et al., "A Software Development System: Solon," Kamakura,

Information Systems and Electronics Development Laboratory, Mitsubishi Electric

Corporation, July 1987.

32. "Tsutomu Ohkawa and Naoharu Miyakawa, "Software Development Office

Environment in Mitsubishi Electric Corp.," Mitsubishi Electric Corporation, 1987.

33. Mitsubishi Electric Corporation, "Software Reuse -- Our Approach,"

Kamakura, Computer Works, 1986; and interviews with Miyakawa and Akechi.

34. One of the first publications to bring wide attention to the project was

Edward A. Feigenbaum and Pamela McCorduck, The Fifth Generation: Artificial

Intelligence and Japan's Computer Challenge to the World, New York, Signet,

1983, 1984.

35. This discussion is based primarily on the following sources: Institute for

New Generation Computer Technology, "Fifth Generation Computer Systems

Project," Unpublished manuscript, Tokyo, October 1986; Kazuhiro Fuchi, "Hop,

Step, and Jump," Fifth Generation Computer Systems Project: Report on ICOT's

Research and Development in the Intermediate Stage, Tokyo, Institute for New

Generation Computer Technology, 1988, pp. 1-5; Takahashi Kurozumi, "Present

Status and Plans for Research and Development," Fifth Generation Computer

Systems Project: Report on ICOT's Research and Development in the

Toward the Future53

III

Intermediate Stage, pp. 7-19; and interviews with Dr. Koichi Furukawa, Deputy

Director, Research Center, and Dr. Kazunori Ueda, Senior Researcher, Institute

for New Generation Computer Technology, 19 July 1989.

36. For a non-technical but useful description of Prolog and comparisons with

LISP and other languages, see John E. Savage, Susan Magidson, and Alex M.

Stein, The Mystical Machine: Issues and Ideas in Computing, Reading, MA,

Addison-Wesley, 1986, Chapter Nine.

37. Hideki Katoh, Hiroyuki Yoshiba, and Masakatsu Sugimoto, "Logic-Based

Retrieval and Reuse of Software Modules," Unpublished and undated manuscript,

Kawasaki, Fujitsu Ltd.

38. M. Denicoff et al., "Japanese Technology Evaluation Program: JTECH Panel

Reporting on Advanced Computing in Japan," McLean, Va., Science Applications

International Corporation, December 1987, pp. 3-5. The chairman of this panel,

M. Denicoff, was on the board of directors of Thinking Machines Corporation, a

leading Al firm. Other panel members included faculty and staff members from

M.I.T., SRI International, Stanford University, and New York University.

39. This discussion of MCC is based primarily on Janet Marie Kendrick,

"Managing Cooperative Research for Fifth Generation Computer Development: A

Comparison of Japan's M.I.T.I. and U.S. Microelectronics and Computer

Technology Corporation Projects," Cambridge, MA, Unpublished Master's Thesis,

M.I.T. Management of Technology Program, May 1988. Other major sources on

MCC include William H. Murphy, "The Micro-Electronics and Computer

Technology Corporation," Boston, MA, Unpublished Doctoral Dissertation,

Harvard Graduate School of Business Administration, May 1987; and Merton J.

Peck, "Joint R&D: The Case of Microelectronics and Computer Technology

Toward the Future54

Corporation," Research Policy, Vol. 15, May 1986, pp. 219-231.

40. This overview of MCC efforts in software is based on Microelectronics and

Computer Technology Corporation, "Software Technology Program," Technical

Report # ILO-008-89, Spring 1989, Video Tapes 1 through 3. The presentations

on which this discussion is based were by Les Belady (Software Technology

Program -- Research Overview), Ted Biggerstaff (Overview, Information

Representation-Reuse/Recovery), and Bill Curtis (Process, Methods, Tools).

41. Karen Fitzgerald and Paul Wallach, "Next-Generation Race Bogs Down,"

IEEE Spectrum, June 1987, p. 32.

42. Kenneth Flamm, Targeting the Computer: Government Support and

International Competition, Washington, D.C., Brookings, 1987, pp. 72-75;

Feigenbaum and McCorduck, pp. 91-92, 271-276.

43. Fitzgerald and Wallach, p. 31.

44. This discussion is based on Gregory Michael Toole, "ESPRIT and European

Software Capability: An Analysis of Cooperation in Software Technology R&D,"

Cambridge, MA, Unpublished Master's Thesis, M.I.T. Sloan School of

Management, May 1989.

45. Fitzgerald and Wallach, p. 33.

Toward the Future55

