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Abstract

In order to develop implementation strategies for concurrent engineering, we study the

problem of decoupling decisions in a complex design project. Since true simultaneous engineering

involves high coordination costs, inherently coupled tasks must often be executed sequentially.

Furthermore, to keep on schedule, we assume that no backtracking is allowed. This paper

explores the ordering of such tasks in search of near-optimal solutions without iteration. To

formulate this problem, we introduce the notion of Quality Loss to quantify the loss of design

freedom incurred by the decision makers in the downstream stages of a cross-functional team. We

then define the optimal sequence as the decision order with the lowest quality loss. To do this

efficiently, we first partition the design variables into exclusive groups based on their

connectivities. Next, the sensitivities and connectivities are combined to characterize several types

of quality-invariant decisions. Sufficient conditions, relating exclusive group structure to invariant

decisions, are presented to reduce the complexity of identifying the optimal order. These ideas are

illustrated using a DC motor design example.

1. Cross-Functional Decision Making in Product Development

A cross-functional product development team brings together decision makers involved with

multiple product life-cycle issues: function, geometry, manufacturing, maintenance etc. In recent

years, many product development organizations have been restructured into cross-functional

teams, reflecting their resolve to improve product quality along multiple dimensions while reducing

the development lead time. However, as Clark and Fujimoto observe[2], use of cross-functional

teams alone does not guarantee effective development; the teams also need to be tightly integrated

and strongly coordinated. Simulations conducted by Gebala and by Pekar[5, 6] show that a

weakly coordinated cross-functional team can perform worse than functionally integrated teams.

This is because confusions arise from conflicting goals and cause iterations, delays, and rework of

the design tasks. Field studies conducted by Roodvoets at a U.S. automaker[7] also show that the
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change to a cross-functional team structure without proper understanding may result in an increase

in the development lead time.

A significant challenge facing cross-functional product development is the lack of

understanding of the team-based decision process. Since the decisions made by the various

functional decision makers are generally coupled and often in conflict, the absence of a proper

decision strategy for cross-functional teams can lead to poor designs and/or unnecessary iteration.

We have been studying how industrial groups perform product development and we have found

that most firms do not understand the fundamental coupling underlying their design problems. We

believe that the structure of this inherent coupling determines the decision strategy which must be

employed.

Naturally uncoupled problems, in which all decisions (variables) are independent, are quite

rare, and we have found none in our industrial field work. Rather, we find problems in which the

design decisions interact in interesting ways that are not usually understood by any one person on

the project. To assist, we are developing design representation and analysis tools to identify the

relationships among the various design tasks [4]. When decisions are tightly coupled, designers

have two choices: either they attempt to address the coupled issues simultaneously by negotiation

or iteration, or they can find ways to tackle the issues sequentially by "optimally" eliminating the

task coupling. In work with Smith, we have addressed the analysis of iterative design procedures

[9]. In this paper, we formulate the strategy of ordering cross-functional decision making that

helps to eliminate the need for iteration.

2. Ordering the Cross-Functional Decision Making Process

We model the cross-functional product design team as involving n designers, each entrusted

with a particular product functionl. We further assume that the individual product functions are

parametric design activities (e.g. sizing), not conceptual design (e. g. shape design) or detailed

design activities (e.g. storing and distributing drawings).

By (cross-functional) decision order, we mean the decision process in which each member of

the cross-functional team makes necessary decisions exactly once, in a predetermined sequence.

Although subsequent negotiation among the cross-functional team members may be needed in

improving the solution, ordering the team members for decision making is useful because

frequently the products can either be too complex or time-critical to indulge in negotiations.

lWe distinguish a cross-functional product development team in which the individual decision makers specialize in
particular disciplines, from an ideal multidisciplinary development team in which the designers are trained in
multiple disciplines.



This effect is illustrated by our study of the design procedures in two competing firms

developing a prototypical product (an electro-mechanical instrument). As shown in Figure 1, the

designers in one firm recognize three aspects of the product design (casing, wiring, and optics) to

be so tightly coupled that they must be designed simultaneously, requiring lengthy negotiation (five

to ten design iterations, taking up to six months) before enough detail can be settled to build the

first working prototype. The designers in the competing firm believe that a first prototype must be

delivered much more quickly and adopt a more sequential decision order where the wiring design

is left for last. The design is completed faster (in just a few weeks), and the prototype is built with

rather crude wiring, which is revised later for the second prototype.

Concurrent Situation Partly Sequential Situation

Figure 1. Concurrent and Sequential Decision Strategies

In this case, the sequential decision strategy greatly accelerated the project, despite the slight

loss in quality (poor wiring for the first prototype). It was wise to schedule the wiring design as

the last task, since the quality is affected in such a minor way. However in general, there exist

multiple decision orders by which the members of such a cross-functional team may make

decisions and in the absence of negotiation, the different orders differ substantially in the quality of

the designs that they produce. The primary difference among the different orders is in the degrees

of freedom decided in the upstream stages of the decision process. Decision orders that result in a

good quality product typically have the upstream decisions not causing too much of a quality loss

for the subsequent cross-functional decision makers. In bad decision orders, the decision-making

capability of the team members in the downstream stages is severely impaired due to the order

constraints imposed by the prior decision makers. For example, in a camera design project, a

decision to save cost by integrating several parts of a complex assembly may lead to increased

complexity, lead time, and cost in molding the integrated component. It is important to quantify the

loss in quality suffered by downstream decision makers due to the decisions made in the upstream

stages.



In the following section we introduce the notion of quality loss to capture the loss in quality

of the subsequent decision makers of a cross-functional team. In later sections, we will study the

decision order that involves the least quality loss for the design process.

3.1 Terminology

For this analysis, we use the following definitions, illustrated in the next subsection.

*P is a cross-functional product development process with n decision makers, entrusted with

executing n cross-functional decision making tasks T1, T 2, T3. ... , T, and thereby choosing the

values of m parametric design variables xl, x2, x3,..., x,. Let X be a set comprising of all the

design variables xl, x2, X3, . . xm.

* Each task or function Ti, upon execution produces a functional output Ji . Let Zi be the set (and

zi a vector) consisting of all the design variables that could possibly be decided by Ti. (Zi c X ).

The variables belonging to Zi, {zil, Zi2, ' " *, Zir,, are said to occur in task Ti .

* The decision process in which the task Ti is not subject to any order constraints is called the

independent decision process. Let Ji* represent the functional output of task T i in the independent

decision process; the value set by Ti for the design variables in the independent decision process

will be called independent decisions.

* A decision order po is a sequence of the n tasks, T., T2, T3, ... , T,, such that:

1) The tasks in the design process are executed in the order in which they occur in p .

2) Each task Ti upon execution decides on a value for all undecided variables belonging to

Zi. The output of task Ti in the order (p will be denoted by J'. Let Z i denote the

complement of Zi. Consider the order (p = T1 , T 2, T 3 , .. .Tn }. In this order, Ti

decides the values of all variables in Z ri Z 1I Z 2 .. u Zi-_ ). It faces order

constraints of the form, Ziq - Ziq(P = 0 for Ziq E Zi n (Z 1 u .. U Zi- 1). In other

words, Ti loses freedom in Z i {h (Z 1 u Z 2 U ... U Z i_ I.

* A design variable xk's value in the ordered design process is decided by the first task in the order

in which it occurs.

* A task Ti is said to lose the design freedom xk in the order (q, if Xk Zi and the value of xk in

the order p is decided by a preceding task.

Defn: Quality Loss incurred by task Ti in a decision order (p, QL', is defined to be the

nonnegative offset of the output of task Ti in (p, J, from Ji*
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QL/ = -J1
Defn: Quality Loss of an order P0, QLq°, is defined to be the weighted sum2 of quality losses

incurred by each task Ti in P.

n

QL= Wi wQL?
i= 1

Defn: A decision order p* is defined to be the optinmal decision order if its quality loss QL~ <

QL P for all possible p.

3.2 Framework

It would be difficult to understand the characteristics of cross-functional decision making in

the absence of any specific interpretations for design tasks. To focus on the problem, an individual

team member's task is interpreted as the optimization of a particular design criterion. This provides

a unified basis to model the behavior of the multiple decision makers in cross-functional product

design. Although in routine life, people may be satisficers rather than optimizers[8], in many

commercially competitive activities product developers are required to obtain optimal results. In

the design of complex and novel technologies such as hypersonic aircrafts, using the optimal

results may make the difference between "flying and staying on the ground"[10]. In this paper, we

further assume every functional design task has the form of a nonlinear program, as is the case

with several parametric design activities. In the next few subsections we relate the optimal order

(for execution of the cross-functional decision tasks) to the underlying structure of the design

interactions, illustrated through the example of the design of a dc (direct current) motor.

3.3 Design Problem

To decide on the order in which decisions should be made by the members of a cross-

functional team, whose members are concerned respectively with maximizing the torque generated

by the DC motor (performance), minimizing the area occupied by the stator (size) and minimizing

the cost of materials (sum of the area occupied by the steel portion of the rotor and area of copper).

The variables to be decided are given in Table 1.

The parametric design relations are shown in Table 2 (formulated using design constraints

from [3]. All design equality constraints have been explicitly eliminated or used in symbolic

propagation. The only inequalities given are lower and upper limit constraints). We will assume

that each team member operates with his/her own model of the design and objectives. Table 3

2It is noteworthy that Quality Loss of an order is defined here as a linear function of the individual quality losses.
We plan to investigate other definitions in future work.
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shows the results if the designers were to make decisions independently; the outputs under these

circumstances being the independent outputs and the decisions, independent decisions.

Table 1. Design

Table 2. Objectives

Variables for a DC motor

as Functions of Variables

Task Independent Decisions and Outputs

T1 dwl*= 0.2; cdi* = 50; J1*= -3.14

r. ad2 * = 12; od2 * = 20; dw 2* = 0.2; nw2* = 1500; J2* = 185.3

T3 ad3* = 10; id3* = 3; dw3* = 0.01; tm3* = 1.0; J3* = 50.4

Table 3. Independent Decisions and Outputs

One observes that designers executing tasks T 1 and T2 independently drive the variable dw to

its upper limit, while the designer entrusted with T 3 drives dw to its lower limit. When the

designers make their decisions in a particular order, only one of them can decide the value of dw;

subsequent decision makers are constrained by this value of the variable dw. An example of a

Decision Variable Symbol Bounds

Armature diameter ad 10 < ad < 12 (inches)

Motor inner diameter id 0.1 id _ 3.0 (inches)

Motor outer diameter od 20• od <24 (inches)

Diameter of windings dw 0.01 dw < 0.2 (inches)

Current density cd . 1 cd 50.0 (amp / in2)

No. of armature windings nw 1 nw < 1500 (turns)

Thickness of magnet used tm 0.05 tin 1.0 (inches)

Task Task Description Analytical Forms (Minimizations)

T1 Maximize Torque Generated J1 = - 1.57 cd dw2

T2 Minimize Space J2 = 0.785 (od 2- ad2) - 0.26 nw dw2

T3_I Minimize Material Costs J3 = 0.785 (ad2 - id 2) - 2.1 ad tmn + 0.785 dw2

.
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decision order is given below where the tasks are weighted 3 in the inverse ratio of the magnitude of

their independent solutions, i. e. wi = 1/ Ji* -

The order {T1, T3, T2 produces the following results:

Stage I Minimize JI = - 1.57 cd dw2

Decision: cd = 50; dw = 0.2; J1 =- 3.14; wl QL, = 0.0

Stage 2 Minimize J3= 0.785 (ad2 -id2 ) - 2.1 ad tm + 1.57 dw2

subject to dw = 0.2;

Decision: ad = 10; id = 3; tm = 1; J3 = 50.5; w3QL3 = 0.0012

Stage 3 Minimize J2 = 0.785 (od2 -ad2 ) -0.26 nw dw2

subject to ad = 10; dw = 0.2;

Decision: od = 20; nw = 1500; J2 = 219.9; w2 QL2 = 0.188

Total QL = w, QL 1 + w 2 QL 2 + w 3 QL 3 = 0.189

The straightforward method to determine the optimal order4, by explicitly considering all

orders and evaluating their quality losses, is shown in Table 4. Evaluating the quality loss of each

decision order requires the execution of every task because their results depend on their position in

the decision order. So in this case a total of 3! x 3 = 18 nonlinear programs need to be solved to

identify that (T 1, T3, T2 } is the optimal decision order with the lowest quality loss. In large

designs, determining the optimal order becomes tedious requiring Order(n! n) optimizations.

Evidently, even if the tasks may not be nonlinear programs, exhaustive enumeration is

prohibitively complex.

Inspection of Table 4 shows that the values of several design decisions (for example, cd) are

invariant from one order to another while some design variable values do not vary over a subset of

all orders (for example the value of ad is the same in three of the orders). These invariances can be

systematically utilized to relate the quality loss of a decision order to the design structure. Quality

loss of the individual tasks varies with the decision order because different degrees of freedom are

lost in different decision orders. However there exists a subset of decision orders over which a

particular task loses a particular design freedom. For instance, in four of the six orders T3 loses

3 Choosing weights for the design tasks is an issue not addressed in this paper. In the DC motor problem we scale
the different tasks in the inverse ratio of their independent decisions so as to normalize all quality losses; the methods
developed in this paper can accommodate any choice of weights.
4It is noteworthy that the multiobjective optimal solution that minimizes the total quality loss does not correspond
to a realistic cross-functional decision process solution in which knowledge of the design functions is localized.
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the design freedom, dw. In all these orders the design variable assumes the same value, dw = 0.2.

and T3 faces the same order constraint, perhaps resulting in the same quality loss. How could we

exploit invariant design variable values which translate into invariant order constraints? If we can

decompose the quality loss incurred by a task into components due to loss of individual design

degrees of freedom, then we can compute the order variant quality loss from order invariant terms.

Then the following questions arise: What is the general structure in such problems that leads to

order invariance? Can the quality loss of every order be decomposed into a certain small number

of order invariant quantities, calculated a priori?

Order Design Decisions made during the order QL

{ T, T2, T3} ad=12; id=3; od = 20; dw=0.2; cd= 50; nw=--1500; tm =1.0 0.603

({T, T3 , T2} ad=10; id=3; od = 20; dw=0.2; cd=50; nw=1500; tm =1.0 0.189

{T2 ,T1 , T3} ad=12; id=3; od = 20; dw=0.2; cd=50; nw=1500; tm =1.0 0.603

{T2. T3 , T1 ) ad=12; id=3; od = 20; dw=0.2; cd=50; nw=1500; tm =1.0 0.603

{T 3, TI, T2} ad=10; id=3; od = 20; dw=--O.O1; cd=50; nw=1500; tm =1.0 1.268

{T3, T 2, T} ad=10; id=3; od = 20; dw=O.01; cd=50; nw=1500; tm =1.0 1.268

Table 4. Results of All Decision Orders

3.4 Exclusive Groups

It is interesting to observe that in ordering cross-functional decision making, if two design

variables x and y occur in the same combination of design tasks, then the decision about the values

of both x and y will always be made by the same team person. Any subsequent member who loses

the design freedom x will also lose design freedom y to the same member that decided x. When

we compute the quality loss due to loss of x, we will also compute the quality loss due to loss of y.

So all variables that occur in the same combination of tasks can be grouped together as shown in

Figure 2. The quality loss incurred by a task needs only to be decomposed into components over

losses of such groups of design freedom. Any cross-functional team member possesses or loses

design freedom in groups. In the three task DC motor problem, design variables get partitioned

into seven groups. Because the combinations are exclusive to each other, the groups are called

exclusive groups.

III
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Figure 2. Exclusive Groups in the DC Motor Example

An exclusive group consists of variables that appear in the same combination of tasks. For a

n task design process there are M =

the complements given below 5.

Y1

Y2

Yi

YM

2n-1 groups, which correspond to the Boolean combination of

{Z1 2 n Z3 n ...... n 

(Z 1 r Z2 Z3 n ...... n

(Z 1 Z 2 n Z 3 ...... Zr )

(Z 1 Z2 r) Z 3 r) ...... ' * Z n ) Jr
The tasks in which the variables belonging to any exclusive group Yi occur will be referred

to as tasksforming Yi. For example, the tasks forming Y 7 are T1, T 2 and T 3. The tasks

themselves are said to be spanned by the various exclusive groups.

In Figure 2, T3 is spanned by Y 3, Ys, Y6 and Y7. Let yj be the vector of variables

belonging to Yj, tj be the set of tasks forming Yj. For the DC motor problem, we have:

Z =c ed ;Z2 - dI\ Z3 id )

Y) =(cd); =Y , ;3 =' Y4 = 0; ys =ad); 6 = Y6 = 0);7 =dw)

5In a real product design problem, n is about 5, while m may be 1000; n << m, making the grouping of variables
useful.
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tl= (Ti); t2 = (T2}; t3 = ({T3; t4 = T( };ts T ; t6 = T T

The decision made by a task T for the values of the variables in a particular exclusive groupT
The decision made by a task Tj for the values of the variables in a particular exclusive group

Yi is referred to as the exclusive group Yi decision by task Tj. The loss of design freedom in

deciding the values of all variables belonging to an exclusive group is referred to as loss of

exclusive group freedom. Notice that in the DC motor case, the values of all the design variables in

certain exclusive groups, such as Y3, do not vary from one order to another (Table 4). Such

groups are called order-invariant exclusive groups.

Defn: An exclusive group Yj is said to be order invariant if the value of each design variable

belonging to Yj is the same under every order.

Why are some exclusive groups not order invariant? There are two reasons why a certain

exclusive group decision may vary from one order to another. First, different designers may decide

the values of design variables in an exclusive group in different orders. For example, in the order
{T3, T 1, T2), the team member responsible for the first task (T3) makes the exclusive group Y7

decision and sets the value of variable dw to 0. 01, while in the order T, T3,T2 }, the designer

responsible for T1 makes the exclusive group Y 7 decision (sets dw to 0. 2). Secondly, even when

the same task makes an exclusive group decision, the value decided may vary from one order to

another, because the task may face different constraints in different orders (because of different

predecessors). If however, the order constraints do not affect the exclusive group Yi decision

made by Tj, then the exclusive group Yi decision by task Tj is the same as its independent

decision. What this means is that the exclusive group Yi is invariant over a subset of all orders,
the subset in which it is decided by the forming task T.

Defn: An exclusive group Yj is said to beforming task Ti invariant if the value decided by Ti for

the design variables belonging to Yj is the same in every order in which Ti makes Yj decision.

Notice that if an exclusive group is order invariant, its value does not vary under any order,

and so it is also forming task invariant. However, an exclusive group that is forming task invariant

is not necessarily order invariant. The motive behind pursuing these two invariances is to use them

to facilitate the identification of the optimal order. For instance, if all the exclusive groups

spanning a certain design task are forming task invariant, then the designer entrusted with the task

need not repeat the decision making process (after having identified the independent decisions).

Identifying order invariance impacts (by reducing the size of) every task in the design process. The

question arises as to how one may identify these two invariances. There are several situations

under which exclusive groups may be order invariant or forming task invariant. Towards



11

characterizing these properties, we focus in our research on identifying increasingly stronger

sufficient conditions. As a first step, we state the following propositions (proved in appendices)

for design problems where all design objectives are continuously differentiable and explicitly

expressible as functions of design variables (through serial constraint sets) and all inequality

constraints are range constraints.

Proposition 1 An exclusive group Yj is order invariant if C1 (C1.1 or C1.2) is satisfied.

C1.1a ap = 0 V Yk, (i k) spanning every Tp E tj.
aY aY

(i. e. the exclusive group is insensitive to other exclusive groups spanning every forming task)

and the independent decisions of all forming tasks equal the same value y j*.

C1.2 In the range of the design problem in question, each design variable in Yj is monotonic in

every forming task (partial of the forming task with respect to the design variable is sign invariant

in the range of the design problem); further, the monotonicity of a variable is of the same type

(increasing or decreasing) in all tasks:

V Xi E Yk, either JP > Tp E tj or P < Tp tjax, axi

Proposition 2 Exclusive group Yj is forming task Ti invariant if it satisfies C2. 1 or C2.2

C2.1 -a ai = 0 V Yk, ( k) spanning T. and not satisfying C1.CYk ayj

(i. e. yj decision by Ti is sensitive only to other provenly order invariant exclusive groups)

C2.2 V Xi E Yk, either > or aP < 0 (i. e. every Variable in yj is monotonic in Ti inax > axi
the range of the given design problem).

aS I-2.1 ad < 0
ay3 -1.57 idl

023aJ3 (1.5 7 dw) > O
ay 7

DJ3 J3a 3 = {1.57 ad- 2.1 tmin)-J (Y3, Y )
ay5 aY5

Table 5. Satisfaction of C2 by All Groups Spanning T3
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Table 5 lists the variables in the spanning exclusive groups of T3 and the partial of J3 with
respect to the exclusive group freedoms. Due to the positivity of design variables we can calculate
the ranges of partial derivatives in the given domain and we find that T 3 is monotonic with respect
to the variables in Y3 and Y 7 and these variables are always driven to their limits by T3. Hence,
the exclusive group Y3 and Y 7 decisions satisfy C2.2. We can also show that Y3 is an order

invariant exclusive group. The variables in Y3 occur only in T3 and so are driven to the same limit
in every order because only T3 can decide them. (Y3 satisfies condition C1.2). Y7 is not order
invariant because the variable in Y 7 occurs in all tasks and with different monotonicities; in
different orders it can be driven to different values by different tasks. We can also see that the
exclusive group Ys decision is sensitive only to the order invariant exclusive group Y3 (apart from
itself) and thus Ys is also forming task T3 invariant (C2.1). All exclusive groups spanning T3 are
forming task T3 invariant and thus there is no need to re-execute T3 because, its decisions under
any order will be the same as its independent decisions. Such tasks, all whose spanning exclusive
groups are forming task invariant, will be referred to as tasks with invariant spanning groups.

Notice that identifying invariant exclusive groups using C1 or C2 is simple because it just
requires mapping design variables into exclusive groups and checking the sign invariance of the
range of first partial derivatives (using tools such as interval analysis) or evaluating the mixed
partials with respect to the exclusive groups. It is also interesting to observe that if a particular
exclusive group is sparse (or the number of forming tasks is minimal) then it is likely to be order
invariant, because the number of deciding tasks is less. Such is the case with the order invariant
DC motor exclusive group Y3. If the exclusive group is monotonic in a task, then it is (forming)

task invariant. If an exclusive group is both monotonic and sparse then it is a strong candidate for
order invariance. Thus the topological notion of sparseness and the analytical sensitivity based idea
of monotonicity come together in a synergistic fashion to enhance the two invariances. These ideas
are useful in ordering decision making in cross-functional teams in the following incremental
fashion:

* If a certain exclusive group is order invariant, then the size (and thereby the complexity) of all
tasks are reduced. If it is forming task invariant, then the size of the particular forming task is
reduced.

* All tasks with invariant spanning groups need not be required to make decisions after having been
asked to make independent decisions.

* If every task is spanned by invariant groups, as in the case of DC motor, then the quality loss
calculation and optimal order identification can be simplified as shown below.
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In the next section, we delve in on the invariance of spanning exclusive groups in more

detail.

3.5 Composing Partial Quality Losses

The next step in our reasoning involves attributing the quality loss incurred by a task to

losses of specific exclusive group freedoms. We will introduce an intermediate construct called

Partial Quality Loss. Partial Quality Loss (PQL) incurred by a task due to loss of a particular

exclusive group freedom is the degradation in the task results due to the loss of only that particular

exclusive group freedom. For instance, the partial quality loss incurred by T3 due to loss of

exclusive group Y7 freedom is the loss in quality of the output of T3 when design freedom in only

the variables belonging to Y7 is lost. We show in appendix A4 that, if all exclusive groups

spanning a task satisfy C1 or C2. 1, as is the case with T3, then the total quality loss incurred by

the task is the sum of partial quality losses due to loss of each individual exclusive group freedom.

This enables the decomposition of the quality loss of an order into partial quality losses over

exclusive groups. However, the value of this partial quality loss depends on which task to which

T3 lost its exclusive group Y7 freedom. Y 7 freedom could be lost to either T 1 or T2. This implies

that we have to calculate both terms, partial quality loss for loss of Y7 freedom to T1 and to T 2,

and use the quantity that is appropriate to the order. In other words partial quality loss incurred is a

function of three entities: 1) the deciding task 2) the freedom losing task and 3) the exclusive group

under consideration.

3.5.1 Quality Loss Infliction and Stage Independence

Consider the case where instead of T3 losing its exclusive group Y7 freedom to other tasks,

other tasks lost the exclusive group Y7 freedom to T3. In such cases T3 "inflicts" a quality loss on

other tasks by constraining them with its decision of Y7 . The partial quality loss inflicted by a task

such as T3 is defined to be the weighted sum of the partial quality losses incurred by all other tasks

due to loss of exclusive group freedoms to T3. (When all exclusive groups spanning a task satisfy

C1 or C2.1, the partial quality loss incurred due to loss of a particular exclusive group freedom can

be readily calculated with just the independent decisions, as shown in Appendix A4.) Because, the

tasks forming an exclusive group are known from the topological structure, the partial quality loss

inflicted is only a function of the deciding task and the exclusive group! How can we use this to

our advantage? In designs where every task is spanned by exclusive groups satisfying C1 or

C2. 1, the quality loss of an order, which equals the sum of partial losses incurred, is shown in

Appendix A4 to be equal to the sum of the quality losses inflicted by each task in the order. We can

represent these quality losses as a network, as illustrated in Figure 3 for the DC motor.
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The nodes of the network (in bold letters) represent the tasks remaining to be executed at a

particular stage of the cross-functional decision process. For example the start node 123 indicates

that tasks T 1, T2 and T3 are left to be executed and the node 23 indicates that tasks T2 and T3 are

left to be executed. End node signifies that no more tasks are left to be executed. The edge which

connects node 123 and node 23 corresponds to the execution of task T1 in the first stage and the

weight of this arc, QL 2 3, is the quality loss inflicted by T1 on T2 and T 3 when it is the first task

to make decisions. Notice that one task is executed at every stage and each directed path from the

start node to the end node corresponds to one specific order and the length of the path equals the

sum of quality losses inflicted by each of the tasks. All orders are represented in the network, the

number of paths from start to end equals the number of orders. If every task is spanned by

exclusive groups satisfying C1 or C2. 1, the quality loss of the order is equal to the sum of quality

losses inflicted, which is equal to the length of the path from the start to the end node. Hence the

optimal order (with the smallest quality loss) corresponds to the shortest path of the network given

in Figure 3.

123

(START

' L' 2

Figure 3: Network Representing the Cross-Functional Decision Orders

4. Identifying the Optimal Order

The procedure we use to identify the optimal order involves five steps, as described below:

Step 1 We execute each design task separately to get its "independent" output and decisions.

Step 2 We partition the design variables into M = 2n - 1 exclusive groups, y I, Y2, , YM.

Step 3 We verify if a specific exclusive group is forming task invariant or order invariant.

Any task all whose spanning exclusive groups are invariant need not be executed again, after

having executed it once in Step 1. Its decisions at a stage of the order are the same as its
independent decisions. Also the quality loss of such a task is a simple algebraic summation of the

partial quality losses.

"Il
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Step 4 When every task is spanned by exclusive groups satisfying C1 or C2. 1, we store in a

matrix (Table 6), the quality losses inflicted by each task (by deciding the variables in each

spanning exclusive group). We call the matrix, Quality Loss Matrix(QLM). QLM(ij) denotes the

quality loss inflicted by Tj by deciding the variables in Yi. Notice that a task cannot decide the

values of design variables in exclusive groups which it does not form. For example T1 cannot

decide the value of variables in Y2 and therefore cannot inflict a quality loss. QLM(ij) is set to x if

Tj cannot inflict a quality loss in Yi.

Notice that if a particular exclusive group is order invariant, then the corresponding row in the

QLM will be zero (except for the x's denoting the non-forming tasks). This is because the

exclusive group does not contribute to any quality loss. Such an exclusive group may be removed

from the design problem, reducing the size and complexity. In Table 6, this is the case with

exclusive groups Y 1, Y2, Y3, Y4 and Y6. (It is noteworthy that Y 1, Y2 and Y3, are also the sparse

exclusive groups, formed by a single design task).

T. T2 T 3

Y1

Y2

Y3

Y4

Y5

Y6

Y7

Table 6: Quality Loss (Inflicted) Matrix

Step 5 Our next step involves determination of the optimal order using the quality loss terms

stored in QLM. We construct a network of quality losses, similar to Figure 3, and using the terms

in QLM(see Figure 4). The arc connecting node 123 and node 23 corresponds to the execution of

task T 1 in the first stage and the weight of this arc is the quality loss inflicted by T1 when it is the

first task to make decisions (= QLM(7,1) + QLM(4,1) + QLM(1,1)). Similarly, the arc connecting

nodes 23 and node 3 corresponds to the execution of task T2 in the second stage and its weight is

the quality loss inflicted by T2 when it is the second task to make decisions (= QLM(5, 2)). The

weights of the other arcs can be filled in the same fashion. It is noteworthy that weights of several

arcs (italicized) equal zero due to order invariant exclusive groups. Since the optimal order is the

o x x

x I x

x x 0

0o 0 x

x 0.602 0.188

0 x 0

0.001 0.001 1.081



16

one with the lowest sum of the quality loss inflicted at all stages it is obtained by finding the

shortest path from the start node to the end node (using an algorithm like dynamic programming

[1]).

(ST

Figure 4: Network with Quality Losses Inflicted Computed from QLM
(Bold lines show the shortest path which is also the optimal order.)

5. Conclusion: Strengths and Limitations of the Approach

Our analysis of decision ordering in cross-functional teams has served several purposes
which are reviewed here.

Partitioning of design variables into exclusive groups has enabled the decomposition of

quality loss incurred by a task into components due to loss of exclusive groups. In real design

decision making processes, where the number of tasks or lifecycle considerations, n is much less

than the number of design variables, m, such a decomposition would result in substantial

computational payoffs. It is noteworthy that we are interested in seeking special solutions to a

nonlinear program, solutions that correspond to ordered decision making in a cross-functional

group. Clearly, such solutions (to a more constrained problem) will be less optimal than the

globally optimal solution to the nonlinear program.

In a three step approach exclusive group structure has been exploited repeatedly to arrive at a

series of sufficient conditions. First, conditions are identified, under which the exclusive group is

order invariant and forming task invariant. Such groups reduce the complexity of one or more

design tasks. When all exclusive groups spanning a task satisfy C1 or C2.1, quality loss incurred

by the task can be written as the summation of quality loss components due to loss of individual

exclusive groups. In the third step, quality loss is interpreted as loss inflicted to induce stage

independence in calculating the optimal order so that the shortest path of a directed network, equals

the optimal decision order.
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This analysis has interwoven connectivity and sensitivity issues together in identifying the

optimal order. Partitioning into exclusive groups is done on the basis of topological connectivity.

However, the concept of invariance (order invariance and forming task invariance) uses both

connectivity and sensitivity. As observed earlier, both sparseness (topological notion) and

monotonicity (sensitivity based idea) enhance invariance. The reasoning process reveals the utility

of both these aspects and unearths the strong links between design structure and optimal decision

strategies.

The results are incremental in their utility. If a certain exclusive group is forming task

invariant, then the size of the particular forming task is reduced. If it is order invariant, then the

size (and thereby the complexity) of all tasks are reduced. If all exclusive groups spanning a task

are invariant, then the task is not required to make decisions after having been made independent

decisions. If all exclusive groups spanning every task are invariant, as in the case of DC motor,

then the optimal order is obtained simply by identifying the shortest path in a network of quality

losses.

Although the conditions stated to identify invariance apply only to specialized situations, the

notion of quality loss, exclusive groups and invariance are broader and can be applied in more

general cases, in particular, to our next step study of iterative decision strategies.

Also, there are several limitations to the approach. The results hold for design processes

with specially structured design tasks. Tasks are nonlinear programs with a continuously

differentiable objective. Constraints could only be either range inequalities or equalities that could

be explicitly eliminated by symbolic propagation (as in serial constraint networks). The possibility

of including other type of constraints in the objective, other definitions for Quality Loss and

methods for weight determination have to be investigated in future.

Our definition of a task assumes that a task is able to decide design variables by itself,

without assistance from other tasks. This model may be invalid in some design situations.

Finally, the conditions developed to recognize invariances are not strong in non-sparse, non-

monotonic situations.
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Appendix Al. Mathematical Description of a Cross-Functional Design Task

In our model, we assume the following:

· Each task Ti is a nonlinear program with a continuously differentiable objective Ji. Ji is explicitly
expressible as a function of the design variables. Let Zi be a set consisting of the design variables
appearing in Ji and zi be a vector consisting of these variables.

· Finite upper and lower limits are specified on each design variable so that the domain of design
variables is a closed and bounded (compact) set.

* All equality constraints have been explicitly eliminated or used for symbolic propagation. The
only inequalities given are lower and upper limit constraints.

* Suppose that variables zil, Zi 2, -- , Zir occur in task Ti. Without loss of generality
order (p = {T1, T2, T3, .. , T }. The nonlinear programming problem for task Ti (in

) and the corresponding optimality conditions are stated in Table Al.

consider the
the order

Mathematical representation of Ti: K-T Optimality conditions for task Ti in the order p.

Ti: Min Ji(zi) subject to r Q
VJi(z )+X XikVLik(Zi )+VikVUik(Zi)+ Z KiqVS/i

Lik(zik) = lik- Zik < 0 k=l
=0

Uik(Zik =-uik + ik < O *

Xik Lik(Z i) = 0;
ShY = ZqZiq (Pi = 0

Vik Uik(Zi ) = 0;

for k = 1, 2, ... , r and
)ik, Vik >-O; k= 1, 2,..., r

Ziq Zir (Z1V *.. Zi}j aJ

q = !, 2, ..., Q where VJ i = l and

* lik and Uik are the limits on zik zi

* Ziq represents the design freedom lost ,v andK are the lagrange multipliers.
by Ti in the order p. ziqqP is the value

set by a preceding task.

Table Al. Kuhn-Tucker Optimality Conditions

We make the following observations. (' superscript indicates the vector transpose).

* All the components of the gradients of Lik and Uik are zero, but for kth component:

0.-~-^-~~--~-1-11



(0, , · ·0, -1, , O. , 0 '; VUik - o, o,.., 0,1, 0, 0, .. ,0o

Also Lik(Z ) = Lik(Zik); Uik(Z ) = Uik(Z ik);

* If in an order Ti decides the value of design variable Zis, then the order constraints, S 'q, do not

affect is.

zise Zi n (Zl1. ... u Zil). So aSq -0

azis

For variables such as is, decided by Ti, we can rewrite the K-T conditions as follows:

VJi(z7) - iS+Vis =O

kisLis(Zis*) = O;

Vis Uis(Zis*) = 0;

kis, Vis > 0;

It is noteworthy that the K-T conditions for is are still a function of z i.

· We will combine the K-T conditions for all variables belonging to the same exclusive group Yj,

decided by Ti. Suppose that exclusive group Yj consists of variables zil, Zi2, ... , zis.

Y zij }Let yj = ;
zis i fX\ is \

Pij= V };
Vis

aDjaJi a ;
ayj a~aJi 

Nai s

be column vectors.

Now we can write (K-T) conditions for the exclusive group yj as:

OYj (Zi ) - i + Pij = 

?ik Lik(zik) = 0;

Xik, Vik 0; k = 1, 2,..., 

VLik =ik 

20

Vik Uik(zik) = 0;
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Appendix A2. Order Invariant Exclusive Groups

An exclusive group Yj is said to be order invariant if the values of each design variable
belonging to Yj is the same under any order.

Proposition 1: An exclusive group Yj is order invariant if C1. 1 or C1.2 is satisfied.

C1.1 a P = 0 V Yk, ( k) spanning every Tp E tj.
aYk Yj

(i. e. Yj is insensitive to all other spanning exclusive groups in every forming task )

and the independent decisions of all forming tasks equal the same value yj*

C 1.2 V Xi E Yk, either a- > O VTp E tj oraP <OT 0 

Proof:

Consider a order in which the value of the design variables in yj is decided by one of the

tasks Tp E t. All orders have this property because by definition of decision in Section 3, the

value of the design variables in yj can only be decided by one of the tasks Tp E tj. Now if C1.2 is

satisfied, due to monotonicity, any design variable will be driven to the same decision value yj* in

every order (this value equals one of its limits based on its monotonicity).

If all P > 0, then > O. To satisfy K-T conditions, rij > 0 and Lik(Zik) = O0. So in all

orders, zik= lik. If all < O, then -i < 0. Now Pij > 0 and so, Uik(Zik) = 0, Zik = Uik-

If C1.1 is satisfied, then we first prove that the value decided by any task Tp tj for the

design variables in yj is always the same as the task's independent decision.

When a aJ _ aJi * aJi-*
When/ a a, -0 V k, ( k) spanning Tp tj y .Zi ) -

aYk aj ayi ayi)

Now we can write (K-T) conditions for the exclusive group yj as:

aJi (yj) - ri + Pij = Oayj

_1_1�1�__



XikLik(zi*k = 0;

Vik Uik(Zik) = 0; ik, Vik 0; k = 1, 2,..., s

Now one observes that the K-T conditions are independent of other exclusive groups and

independent of order! Thus the K-T conditions "separate out" for any exclusive group. So the

(value decided by a task when it makes its) independent decision satisfies the K-T conditions under

any order. This is because when the task makes its independent decision it has to satisfy the same

K-T conditions that it does under any order. Now, if the independent decisions of every forming

task are the same, as the proposition states, then yj is order invariant.
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Appendix A3. Task Invariant Exclusive Groups

Proposition 2: Exclusive group Yj is forming task Ti invariant if it satisfies C2.1 or

C2.2

C2 .1 = 0 V Yk, (j *k) spanning Ti and not satisfying CI.
aYk aYj

(i. e. Yj decision by Ti is sensitive only to other provenly order invariant exclusive groups).

C2.2 V Xi E Yk, either aP > 0 or a-P < 0 (i. e. every Variable in yj is monotonicaxi axj
in Ti in the range of the given design problem).

Proof: It is easy to show that if Ti makes Yj decision and yj is monotonic in Ti (C2.2)

then the variables in Yj will be driven to the same value (one of the limits; similar to the

argument used in C1.2). This can be verified using K-T conditions for yj , since there are

no order constraints affecting the design variables in yj.

If C2. 1 is satisfied, then again the K-T conditions, written for Yj become order

independent, in a fashion similar to the Appendix A2 (we set all order invariant exclusive

groups to their constant, order invariant decision value). Hence the value decided by Ti for

the design variables belonging to Yj is the same in every order in which Ti makesYj

decision. This order invariant value equals the independent decision of Ti because the

independent decision is the same as the decision of the order in which Ti makes decisions

first.
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Appendix A4. Partial Quality Loss

A task Ti is said to lose the exclusive group Yk freedom in a order (p if the variables inYk
are decided by a preceding task in the order p.

Partial quality loss incurred by Ti due to loss of exclusive group Yk freedom in a order cp,

QL~, is defined as the quality loss incurred by Ti when it loses only the exclusive group
Yk freedom. Mathematically:

QL = J i ,, y2, ., YL) - Ji

where yl, Y2,, Yk,'", YL are assumed to be the vectors with the variables in the
corresponding exclusive groups spanning Ti .

Proposition 3:

If all exclusive groups spanning a task Ti satisfy either C2. 1, C1. or C1.2, then Quality
Loss incurred by task Ti in a order (p, QLP, can be written as the sum of partial quality losses
incurred for loss of each exclusive group freedom in order (p.

Proof: Quality loss in p can be written as: QLi = J i (Y , y, ', Y ', YL ) - J

(assuming the degrees of freedom lost in (p are in y 2, ), k)

Applying Taylor's Theorem for multiple variables (given below) to the quality loss term:

f(x + Ax, y + Ay) - f(x, y) = Axaf + Ay y + (Ax)2 a2f + Ax Ayay2! Axx2

.. 4,QL = Ji (Yl;,

= L Y2-

I2![G4-Y2 

. . * r .

Y2 ' " Y- ' YL- J i 

Y2 ) + ' " + ( k - Y k
a2i + 

Ji 1 + - 1 *- \ 2

'1, Y2 , k, " Y L)

* 2Ji +
+ cross-derivative

ayk 2
terms + ]·

When C 1.1 or C1.2 is satisfied then the exclusive groups are order invariant in which case the Ax

term is zero. If C2.1 is satisfied, then the cross-derivative terms are zero with respect to all groups

that do not satisfy C1.1 or C1.2. Applying these in the quality loss term, we have:

QL = QL 9 +... + QL, where QL9= (yk'- Yk ) aJi +1 Gk -2k2!
pa

2
j.

(AY) 2 a2f] -'

dY2 '
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Thus the quality Loss incurred by task Ti in a order p, QL', is the sum of partial quality losses

incurredfor loss of each exclusive group freedom in order p.

Corollary If the exclusive groups spanning every task in a product development process

satisfies the conditions of Proposition 3, then the quality loss of a sequence is the weighted

sum of partial quality loss of each individual tasks over the exclusive group freedom lost in

the sequence. (Over the exclusive group freedoms not lost, the quality loss is zero, so

adding such exclusive groups does not affect the summation).
n M qp

From Proposition 3 and quality loss definition, QL = i QLik
i=1 k=l1

n M q M n

Reversing the order of summation, QL4° = wi i wi QL
i=1 k=1 k=l i = 

Defn: Quality loss inflicted by a task Th by deciding the exclusive group yj in a sequence
p, QL19h, is defined as the weighted sum of the partial quality losses incurred by each task

which loses exclusive group yj freedom to Ta in the sequence (q (tasks which do not lose

the exclusive group freedom incur a loss of zero; hence the summation can include all

tasks): QLI= E wi QL
i= I

Defn: Quality loss inflicted by a task Th, QLI, is defined as the sum of the partial quality

losses inflicted due to all the exclusive groups decided by Th in the sequence (p.

(By definition of ordered decision making, each exclusive group decision is made by one

task, which inflicts quality losses on all other tasks. So the sum of quality losses inflicted

due to all the exclusive groups is the same as the sum of quality losses inflicted by all the
M n (

tasks. In other words, QLI'hk =QLI
k=l h= 

M n

From corollary above we have, QL - wi QLP
k=l i=1

Using QL = A wi QLi, we have, QLhAhj Y, have, QL' = LI' h
i=1 k=1 h=l

This shows that the quality loss of a sequence is also the sum of the quality losses inflicted

by each task in the sequence.
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