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Abstract

This paper characterizes the optimal bandwidth value for estimating
density-weighted averages, statistics that arise in semiparametric estima-
tion methods for index models and models of selected samples based on
nonparametric kernel estimators. The optimal bandwidth is derived by
minimizing the leading terms of mean squared error of the density weighted
average. The optimal bandwidth formulation is developed by comparison to
the optimal pointwise bandwidth of a naturally associated nonparametric
estimation problem, highlighting the role of sample size and the structure of
nonparametric estimation bias. The methods are illustrated by estimators
of average density, density-weighted average derivatives and conditional
covariances, and bandwidth values are calculated for normal designs. A
simple "plug-in" estimator for the optimal bandwidth is proposed. Finally,
the optimal bandwidth for estimating ratios of density-weighted averages
is derived; showing that the earlier optimal formulae can be implemented
directly using naturally defined "residual" values.
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1. Introduction

Recent advances in the study of semiparametric methods in econometrics have
yielded a number of new tools for studying empirical economic relationships. An
important class of these methods involve "plug-in" estimators, where estimation of
parameters of interest is facilitated by using nonparametric estimates of functions
in place of the true, but unknown functions. Typical examples of such unknown
functions include the density of disturbances in a model, or unknown features of
the regression function of the response on the predictor variables. Examples of
nonparametric estimators include kernel estimators and related local smoothing
methods, or series estimators such as truncated polynomials or spline methods.

The issues of precision of nonparametric estimators are well known. In par-
ticular, suppose a function is estimated by averaging over a window f, nearby
data values, and consider the difference between setting a large or small window
size. A large window includes more observations, thereby reducing variance, but
masks subtle nonlinearity, or increases bias. Alternatively, a small window better
facilitates detecting nonlinearity, or reduces bias, but involves less observations,
thereby increasing variance. For estimating the function at a point, the optimal
window size, or bandwidth value, is given by balancing variance with squared bias,
thereby assuring the smallest mean squared error. The tradeoff between bias and
variance will vary over different ranges of the function to be estimated, as well the
optimal bandwidth or window size. A single, global choice of bandwidth can be
based on minimizing average or integrated (pointwise) mean squared error values,
or some other weighting of error across different ranges of the unknown function.1

The literature on bandwidth choice in estimation of functions is quite extensive,
and include several automatic (data-based) methods for choosing bandwidths in
applications. 2

When nonparametric estimators are used as ingredients in semiparametric esti-
mation, the concerns regarding their precision are different. Since the parameters
to be estimated are a primary focus, the relative importance of (pointwise) bias
and variance of the nonparametric estimators is different than in the purely non-

1 The same issues apply for any nonparametric method, such as choosing the degree of a
polynomial expansion, or the degree of spline functions used for approximation.

2 Textbook treatments of bandwidth choice in nonparametric estimation are given in Sil-
verman (1986), Hardle (1991) and Hastie and Tibshirani (1990). References to more recent
literature are given in Hardle, Hall and Marron (1988), Gasser, Kneip and Kohler (1991) and
Nychka (1991), among others.
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parametric case. For instance, if the parameter estimates are adversely affected by
bias in the nonparametric estimators, then it may be sensible to lower the band-
width size, reducing pointwise bias relative to variance. As such, semiparametric
use of nonparametric estimators involves different criteria for nonparametric ap-
proximation, than optimal estimation of the unknown functions.

This feature is evident from the now standard results of asymptotic theory for
semiparametric estimators. For example, procedures that employ kernel estima-
tors typically involve "asymptotic undersmoothing"- if N denotes sample size,
"asymptotic undersmoothing" refers to the notion that for parameter estimates
to be N consistent, the bandwidth for kernel estimation must be shrunk more
rapidly to zero than it would be for optimal pointwise estimation. This feature
was noted for the estimators studied in Robinson (1988), Powell, Stock and Stoker
(1989) and HLdle and Stoker (1989), among others, and more recently is high-
lighted in the unifying theory of Goldstein and Messer (1990). 3 This work does not
address the issues of choosing bandwidths for particular applications, but rather
just indicates how the conditions of limiting theory differ between nonparametric
and semiparametric estimation.

In this paper we characterize bandwidth choice in perhaps the simplest sub-
stantive semiparametric estimation problem, namely, the estimation of density-
weighted averages. This problem is interesting because it covers procedures for
a wide range of semiparametric models, including situations where the precision
of the nonparametric kernel estimators is a central focus.4 We derive the optimal
bandwidth by minimizing mean squared error of the estimator, and the nature
of the solution is simple because the technical details of the analysis are kept
to a minimum. This simplicity has the added bonus of permitting a straightfor-
ward comparison between optimal bandwidth values for pointwise estimation and
for semiparametric estimation. Practical methods for bandwidth choice follow
naturally from the development.

Related to our derivation is work on estimation of integrated squared density
derivatives. In particular, Hall and Marron (1987) study that problem using kernel
estimators, 5 and derive an optimal bandwidth formula. Our development can be

3 Newey (1991) notes some differences between pointwise function estimation and semipara-
metric estimation when truncated polynomials are used.

4 Andrews (1989) discusses situations where the precision of nonparametric estimators does
not affect the asymptotic theory for "plug-in" semiparametric methods.

5 Work on other aspects of estimating integrated squared density derivatives includes Bickel
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viewed as a generalization of their results to more general estimation problems.
Also related is a recent paper by Hirdle, Hart, Marron and Tsybakov (1992),
which studies the problem of bandwidth choice for estimation of one-dimensional
unweighted average derivatives. Their results are specific to this case, and require
strong conditions on the distribution of the covariates which are not imposed
here.6 Hardle and Tsybakov (1993) independently derived a result on bandwidth
choice for weighted average derivatives similar to that in Section 4; our results
specialize to their formulae for the weighted average derivative case.

Section 2 presents the estimator, estimand and a series of examples for moti-
vation. Section 3 presents our assumptions, in the context of a "pointwise" non-
parametric estimator that is closely associated with the density weighted average,
and reviews the optimal bandwidth formula for the pointwise estimator. Section
4 derives the optimal bandwidth for the density weighted average, and spells out
how the optimal bandwidth differs from the pointwise bandwidth in terms of an
adjustment for sample size and an adjustment for the structure of nonparametric
bias. These features are illustrated by computed bandwidth values for designs
based on normal random variables. Section 4 closes with a simple "plug-in" esti-
mator of the optimal bandwidth. Section 5 then characterizes bandwidth choice
for ratios of density weighted averages, as motivated in certain examples of Section
2. Section 6 gives some concluding remarks.

2. The Estimation Problem and Examples

We assume that the data represent an i.i.d. sample of observations {zi = 1, ... , N},
where z is the vector of responses and predictor variables as outlined below. We
study estimators of "density-weighted averages" of the following form:

6(h) - > : p(i, j, h) (2.1)2 i<j

where the function p(-) is symmetric in pairs of observation - that is, p(zi, zj, h) =
p(zj, zi, h). As such, 6(h) is a second order U-statistic with kernel p. The band-

and Ritov (1988) and Jones and Sheather (1991), among others.
6 Kernel estimators of unweighted average derivatives (Hiirdle and Stoker (1989)) are nonlin-

ear combinations of kernel estimators computed with trimming of the data sample. These two
features substantially complicate the analysis of bandwidth choice.
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width is the parameter h, and the limiting theory for 8(h) has h decreasing with
sample size, or h = h(N)^-+ 0 as N -+ oo.

If the expectation of 6(h) is denoted

6(h) -E [(h)] = E [p(z, zj, h)], (2.2)

then the object of estimation is

60 _ lim (h), (2.3)
h---0

The object of the paper is to characterize the optimal bandwidth h+ for computing
6(h). We also characterize the optimal bandwidth for ratios of density-weighted
averages, or ratios of estimators in the form (2.1).

We refer to the U-statistic in (2.1) as a "density-weighted average" because
this form often arises when kernel methods are used to estimate density-weighted
expectations, as in each of the following examples. Example 2.1 is a useful ped-
agogical device for illustrating our results, and Examples 2.2 and 2.3 arise from
standard semiparametric problems in econometrics.

Example 2.1. (Average Density): Here zi _ xi R k is a continuous random
vector, xi f (x)dx, and the object of estimation is the average density value:

60 = / f(xi)2dxi = E [f (x)] (2.4)

The estimator 6(h) of do is constructed by computing density estimates for each
data point as

f(xi,h) -N 1 E h- (i -xj) (2.5)
j= hk

and taking their average 6(h) = N - 1 E iN
1 fi(xi, h), which gives (2.1) with

p(zi,zj,h) = K (Xi h j (2.6)

Here K: Rk -* R is a (kernel) function with C (u) = KC (-u) and S KC (u) du = 1.
Here and elsewhere, we utilize "leave-out" kernel estimators such as (2.5); we could
incorporate the "i = j" terms without changing any results, but unnecessarily
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complicate the notation to account for the terms.7 For parts of our bias discussion
below, we will refer to the order of the kernel IC; this is defined as an integer
P(> 2) such that ul ... uek (u) du = 0 if {j} are nonnegative integers with

+ ... 4 + < P andf Sugl...uek K (u) du # O for some + ... + ±k = P. (In the
typical case where IC is a positive symmetric density function, P = 2).

Example 2.2. (Density-Weighted Average Derivative): Here i (yi, x)', where
yi R 1 denotes a response or dependent variable, xi C Rk denotes a continuous
predictor variable, xi - f(x)dx, and the regression of y on x is denoted E[yilxi] =
g(xi). The object of estimation is the density-weighted average derivative

5o = E f(xi) xi = -2 [ x i yi (2.7)6 XO)&g(xi)] [af(xi)] (2.7)

assuming f(x)g(x) - 0 as xl - oo, and all derivatives and moments exist
(Powell, Stock, and Stoker 1989). The density-weighted average derivative gives
an estimator of index model coefficients up to scale - that is, when g(xi) =
G(x4o), then 6o is proportional to the coefficients 0o. The estimator 6(h) is the
sample analogue of the second equality, or the average of -2yioafi(xi, h)/ax, where
fi(xi, h) is the kernel estimator (2.5). This gives 8(h) in the (vector) form (2.1),
with

p(zi, zj, h)=- V (Y-Yj) (2.8)

where V(u) = -1C (u) /du, for x :Rk -. R assumed to have the same properties
as discussed for Example 2.1. A related estimator d(h) uses afi(xi, h)/dx as
instruments in a linear regression of yi on xi; namely the sample analog of

do = E af(xi) ] E [ (i)Yi] (2.9)ax i a

With an index model, do is likewise proportional to the coefficients io0, and the
estimator d(h) is a ratio of density-weighted averages of the form (2.1) (see Powell,

7 The average density is covered as the integrated squared (zero order) density derivative in
Hall and Marron (1987), who also discuss the omission of the "i = j" terms. While these terms
can produce inferior asymptotic behavior of the statistic, Jones and Sheather (1991) discuss
using the "i = j" terms to reduce finite sample mean squared error. Estimation of the average
density also arises in the measurement of precision of various rank estimators (Jaeckel 1972,
JureckovA 1971).
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Stock and Stoker (1989) for details). We study bandwidth choice for such ratios
in Section 5.

Example 2.3. (Density-Weighted Conditional Covariances): Here zi = (yi, x', wi) ,

where yi C R 1 is a response, xi G R k is a set of predictor variables (discrete or
continuous), and wi E Rk is a set of continuous predictor variables, wi - f (w)dw.
The objects of estimation are density-weighted conditional covariances, given as

d = E [f(wi) (xi- E [xiwi]) (Yi- E [yilwi])] , (2.10)

and
6 = E [f(wi) (xi - E [xijw]) (xi- [xiwi])]. (2.11)

Density-weighted conditional covariances are relevant for estimation of the par-
tially linear model

Yi = xi3o + O(wi) + ui, E [uilxi, wi] = O (2.12)

where Pio can be written as

P [1]-1 6y (2.13)

assuming 8o is nonsingular and 0 () is sufficiently smooth (c.f. Powell (1987),
among others). An estimator Y(h) of boy is given by (2.1) with

pI(Zi, zj, h) (wi w) . (x i- xj) (i-Yj) (2.14)
2h k h ( 

where again ICK (u) is a kernel function satisfying the properties discussed in Ex-
ample 2.1. Analogously, R6 is estimated by Bx(h) of (2.1), where

Px(zizj h) = Wi2h (xi- xj) (xi-xj), (2.15)

Again, our main focus is on bandwidth choice for S5(h) and 6x(h) in Section 4,

with bandwidth choice for the ratio p(h) = [(h)] -1 (h) discussed in Section
5.
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3. The "Pointwise" Structure of Density Weighted Aver-
ages

At this point, we could derive the optimal bandwidth for (h) directly, as we
do in Section 4. However, we first develop the structure of 6(h) by analyzing
a nonparametric estimation problem that is closely associated with it. This is
useful for a couple of reasons. First, the issues involved with bandwidth choice
for estimating a function are well known, and provide a reasonable backdrop
for discussing bandwidth choice for (h). Second, one of our main aims is to
spell out the differences between bandwidth choice for estimating functions and
bandwidth choice in semiparametric procedures, such as (h). The following
development provides the relevant grounds for comparison - 6(h) is just the
average of the associated nonparametric estimator evaluated over the data sample,
and our comparative analysis is based on the difference between pointwise fitting
criterion and the averaged criterion appropriate for the performance of 8(h).

Define the functions r(zi, h) and ro(zi) as the conditional expectations8

r(zi, h) E [p(Zi, zj, h)lzi] , (3.1)

rO(zi) lim r(zi, h) = r(ziO). (3.2)

These functions are related to 6(h) and 60 through

6(h) = E [r(zi, h)], (3.3)

and

6o = E [ro(zi)]. (3.4)

The natural nonparametric estimator of ro(zi) is obtained by averaging p(zi, zj, h)
over , or

1 N
(zi, h) - - EP(Zi, zj h) (3.5)

j=1
ji

with the density-weighted average (h) just the sample average of this nonpara-
metric estimator:

1 N

8(h) = (zi, h). (3.6)
i=l

8These functions arise from the projection of the U-statistic (2.1); c.f. Hoeffding (1948).
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The "pointwise" bandwidth of interest is the optimal bandwidth choice for the
estimator (zi, h) of ro(zi).9

Further intuition can be gained from noting the role that the function ro(zi)
plays in the asymptotic theory for 6(h). As outlined in Section 4, when 6(h) is a
VN asymptotically normal estimator, then 2[ro(zi) - So] is the "influence" of the
i th observation in the asymptotic variation of 8(h)1 0 . For Example 2.1, it is easy
to verify that ro(z) equals f(x); for Example 2.2, ro(z) equals f(x) og(x)/9x -
[y - g(x)] Of(x)/Ox; and for of Example 2.3, ro(z) equals (1/2) f(w). (x -
E[xlw]). (y - E[yJw]). Moreover, the sample variance of 2i(zi, h) gives a natural
estimator of the asymptotic variance of 6(h), as proposed by Powell, Stock and
Stoker (1989).11

We state our assumptions in terms of properties of (zi, h) as an estimator of
ro (zi), which are easily derived for each of our examples (under standard prirl cive
conditions). First, we assume that the bias of fr(zi, h) is of polynomial order in h:

Assumption 1. (Rate of Convergence of Pointwise Bias of P(zi, h)): The func-
tion r(zi, h) satisfies

r(zi, h) - ro(zi) = s(zi) hc' + s*(zi, h) (3.7)

for some a > 0, where E[s(zi)] # O and the remainder term s*(.) satisfies

E IIs*(i, h) 112 = o(h2a). (3.8)

In each of our examples, the power a is the order of the kernel K(u) - namely
a = P - but generally, a depends n the structure of the kernel p(-) of the U-
statistic. Assumption 1 clearly implies a polynomial order for the bias of 6(h) for
60-- (3.3,3.4) and (3.7) imply that

8(h) - 5o = E [s(zi)]. h' + o(h"). (3.9)

We next structure the variance of (zi, h) by assuming

9 For Example 2.1, the estimator (zi, h) of (3.5) is the kernel density estimator f(zi,h) of

(2.5). In this case, comparison of the optimal bandwidths for estimation of (zi, h) and for 6(h)
will indicate how bandwidth choice for density estimation differs from that for estimation of
average density.

1°While (h) is the average of r(zi,h) of (3.6), the fact that its asymptotic variance is given
by 2 [ri(zi) - o] is due to the many common components (overlaps) in (zi, h) for different
observations i = 1,..., N. Basic discussion of this overlap structure is given in Stoker (1992).

l1This procedure was subsequently proposed in "linearized" form in the analysis of unweighted
average derivative estimators by Hardle and Stoker (1989), among others.
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Assumption 2. (Series Expansion for Second Moment): The function p(zi, zj, h)
satisfies

E [Ilp(zi,zj, h)ll2 zi] = q(zi) h- + q*(zi, h) (3.10)

for some y > 0, where the remainder term q* satisfies

E IIq*(z, h) 112 = o(h-'). (3.11)

In Examples 2.1, 2.2 and 2.3, the coefficient y of Assumption 2 takes the
values k, k + 2, or k, respectively. Assumption 2 clearly restricts the unconditional
variance of p(.), as

E [p(zi, zj, h)112 ] = E[q(zi)] h - + o(h-a). (3.12)

All our optimal bandwidth values are derived by minimizing mean squared
error, employing the leading terms of squared bias and variance. For these calcu-
lations, we take p() to be a scalar function for simplicity. For cases where p(.)
is a vector function, our derivations apply immediately to a single component
of p(.) and of (h), and can immediately be extended to any particular linear
combination A'p(.), by computing optimal bandwidths for \Ar' and A'(h).1 2

These assumptions allow an immediate derivation of the optimal pointwise
bandwidth for the estimation of the function ro(z). For a given argument value,
the pointwise mean squared error of (zi, h) is

PMSE[r(zi, h)] = E [(z, h) - ro(z)lz]2 (3.13)

= (N - 1)-1 Var [p(z, zj, h)lz] + [r(z, h) -ro(z)] 2

= N-'q(z) h-Y + (z)2 . h2o + o ( I) + o(h2 a),

1 2Likewise, we could solve for the bandwidth that minimizes E ((h) - 6o) W (6(h) - 60)]

for any positive semi-definite matrix W, etc. By diagonalizing the weight matrix W, we can
rewrite this problem as the minimization of the mean squared error of a linear combination
Ej A6jS(h) of U-statistics, which is itself a scalar U-statistic. In the formulae below, we would
replace the terms for the squared bias and variance with the corresponding quadratic form in

bias and E [(6(h) - E (6(h))) W (6(h)-E (6(h)))] respectively.
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and by minimizing the first two terms, we can derive the optimal bandwidth h*(z)
for estimation of ro(z) at z = zi as

h*(z) = 2a s(z)2J + o(I (3.14)

where we have assumed that s(z) 0.13 The bandwidth h*(z) will vary with
z, depending on the (local) sensitivity of bias and variance to bandwidth value,
through s(z) and q(z). To choose a single bandwidth value for estimating ro(z)
over its domain, we can minimize a global fitting criterion, such as the integrated
mean squared error. For our problem, it is convenient consider the average of the
pointwise mean squared error values, or

AMSE[r(zi,h)] = E[r(z, h)-ro(Z)]2

= (N - 1)-E (Var [p(z, zj, h)]) + E[r(z,h) -ro(z)] 2

= N-1E[q(z)] h- + E [s(z) 2] h 2 + o( ) +o(h 2 a).

(3.15)
where we have assumed that E[s(zi)2 ] $ O. Likewise, minimizing (the leading
terms of) AMSE gives

[2 E[q(z)2]] [ 2 ([1 ) (316)

We will use h* as the "pointwise" optimal bandwidth in our comparisons later.
It is easy to verify that h* (and h*(z) for any z) displays standard rates for
large sample nonparametric estimation - the orders of pointwise variance and
squared bias are equated as O(1/N(h*)Y) = O((h*)2 a), with h* = O(N-1/(2o+v)).
and the (best) average pointwise mean squared error rate is AMSE[r(zi, h*)]
O (N-2a/(2a+)) 14

The bandwidth h* is approximated by its leading term, which we denote as
h**. For later reference, we summarize this discussion as

1 3See, for example, Silverman (1986) for a discussion of this calculation.
14 The slow rate of convergence of the bandwidth h* given here is well known; see, among

others, Hairdle, Hall and Marron (1988).
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Proposition 3.1. Given Assumptions 1 and 2, if h* denotes the bandwidth value
that minimizes AMSE[(zi, h)] and

h** = . E[q(z)]] 2a+y [|1] 2a+y ,(3.17)

2aE(z) 'E[S (3)2]· 

then we have that (h** - h*) = o (N-1/(2a+7)).

4. Analysis of the Density-Weighted Average

4.1. Root-N Asymptotic Normality of the Density Weighted Average

The density weighted average (h) has substantively different statistical prop-
erties that its associated nonparametric estimator, and involves different con-
siderations for bandwidth choice. In particular, under certain rate conditions
on the bandwidth h, (h) is a N consistent, asymptotically normal estimator
of 60, and the pointwise optimal bandwidth h* does not generally satisfy those
conditions.l5 In order to ensure that the bias of (h) vanishes at rate N, or

/N [6(h) - 60] = o(l), the bandwidth h must satisfy

h = o(N 2 ) (4.1)

(from (3.9)), which is a condition not obeyed by h*. The variance of (h), as a
U-statistic, vanishes at rate N provided that E [p(zi, zj, h)12] = o(N), (Lemma
3.1 of Powell, Stock and Stoker (1989)), which (from (3.12)) requires

h- = o(N ). (4.2)

The expressions (4.1) and (4.2) bound the rate at which the bandwidth h converges
to 0, and for both to hold simultaneously, we need 2a > y. Further, (h) is N
asymptotically normally distributed if E[lro(zi)l2] < o, since we can write

8(h) - o = 2 [ro(zi) - 6] + op ), (4.3)

so that N[6(h) - o50] - A(0, V0) with Vo 4. E {f[ro(zi) - 60] [ro(zi) - 0o] }.16

15Powell, Stock and Stoker (1989) give a rigorous derivation of the following conditions for
Example 2.2, and Powell (1987) covers Example 2.3.

16 This confirms our earlier assertion that 2 [ro(zi) - 60] represents the influence of the i th

observation in the asymptotic variance of 6(h).
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4.2. The Optimal Bandwidth for the Density Weighted Average

The optimal bandwidth for computing 6(h) is computed by minimizing the lead-
ing terms of its mean squared error. Since 6(h) is a U-statistic, its finite sample
variance is found using the standard formulation in Serfling (1980, Section 5.5).
With p(.) a scalar function as before, the finite sample variance of 6(h) is

Var[(h)] = () [2(N - 2)Var[r(zi, h)] + Var[p(zi, zj, h)]]
(4.4)

= 4N-1 V ar[r(z, h)] + 2N-2 E[p(zi, zj, h)2]2 + o(N-2 ).

Consequently, we require a characterization for the variance of the conditional
expectation r(zi, h) E[p(zi, zj, h)lzi]. From Assumption 1 it follows that

Var[r(zi, h)] = Var[ro(zi)] + Co. h + o(ha), (4.5)

where Co 2Cov[Tro(zi), s(zi)].
We can now formulate the mean squared error of 6(h) for 6o. By combining

(3.9), (3.12), (4.4) and (4.5), we have

MSE[6(h)] = [6(h) - 60]2 + Var [(h)]

= {E[s(zi)]} 2h 2a + 4N-1Var[ro(zi)] + 2N-1Co h c

+2N-2E[q(zi)]h- ' + o(h2 ,) + o (") + o (N-h7) + o(N-2 ).
(4.6)

For characterizing the optimal bandwidth, we subtract the variance term 4N-Var[ro(z)]
because it does not vary with the bandwidth h, writing (net) mean squared error
as

MSE[6(h)] - 4N-1Var[ro(zi)] = {E[s(zi)]} 2h 2a + 2N-1 Coh a + 2N-2E[q(zi)]h- '

+ [o(h2-) + 0 (h N) + 0 (ih ) + o(N )]

= T1 +T 2 +T 3 +R.
(4.7)

It is clear that T1 and T2 are increasing in h, while T3 is decreasing in h. At a
minimizing bandwidth sequence h+ , the term T1 must be of larger order than T2,

13
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since if T2 were of larger order, the bandwidth which equates orders of squared
bias and variance would be O(N-l/("+Y)), which would imply T1 is O(N-2 /("+~)),
which is of greater order than T2, which would be O(N(-2±+7)/( +')). Therefore,
minimizing on the basis of the leading terms T 1 and T3 gives the optimal band-
width as

.rE[q(z)] 1 2r 2.+-
h L E[S( 2a+'y [h] + ] o ) (4.8)

This formula captures how h + equates the leading orders of variance and squared
bias - setting O(1/N2 h+7) = O(h+2 a) gives h + = O(N-2/(2a+)). Moreover, the
(net) mean squared error of 6(h+) vanishes at rate

MSE[6(h+ ) ] - 4N-1Var[ro(z)] = 0 (N-2-). (1.9)

Under the conditions for asymptotic normality, namely 2a > y, the right hand
remainder term is o(N-1 ), but necessarily greater than O(N-2 ).1 7

As before, we can approximate h + by its leading term, which we denote as
h ++. We can summarize this discussion as

Proposition 4.1. Given Assumptions 1 and 2, if h + denotes the bandwidth value
that minimizes MSE[6(h+)] and

2

.h++= EqZ) ] 2a±t [] 2a+ (4.10)

then we have that (h++ - h+)o (N-2/(2+ )).

4.3. Interpretation and Examples

Proposition 4.1 gives the main result of the paper. We have developed the struc-
ture of density weighted averages in some detail, to facilitate comparing the opti-
mal bandwidth h + with the pointwise optimal bandwidth h*. A quick comparison

17Note that this result holds even if the conditions for \N consistency of 6(h) do not hold.
In particular, in our examples, the condition 2a > y requires the use of a higher order kernel
KC(-). If, on grounds of superior finite sample performance of the estimator, we took /C() as a
standard positive density function, then our bandwidth analysis will still apply. This is relevant
if a positive kernel IC(-) is used in any of our examples when k > 3 (or k > 1 in Example 2).

14



of (3.16) with (4.8) indicates that the bandwidth h shrinks to 0 at twice the
rate of the pointwise optimal bandwidth h*. This feature of h+ is referred to as
"asymptotic undersmoothing," and occurs because pointwise squared bias must
decrease at a faster rate than pointwise variance when estimating 60. Therefore h+
must become smaller than h* for sufficiently large samples. However, one cannot
conclude that h+ is smaller than h* in any particular application, or for a given
sample size, because of differences in the leading constants of h+ and h*.

We can spell this out by comparing the approximations h++ and h**. In
particular, we have that

h ++ = AN B h**, (4.11)

where
1

AN 1 2a (4.12)

is an adjustment factor for sample size, and

B E [s(z)2] 2a+y (4.13)

is an adjustment factor for the structure of the pointwise bias.
The adjustment term AN for sample size is less than 1 (for N > 2) and

decreases to 0 as N -* oo, reflecting the different rates of convergence discussed
above. The adjustment term B for the structure of bias does not vary with sample
size and is greater than one unless s(z) is a constant function. In particular,
B 2 a+y is one plus the squared coefficient of variation of s(zi). The factor B
arises because the average pointwise mean square error depends on the variance
of the pointwise bias of (z, h), whereas the bias of &(h) depends only on the
mean of the pointwise bias. Variation in the pointwise bias dictates a smaller
pointwise bandwidth h** relative to the bandwidth h++. Whether the adjustment
for sample size is larger or smaller than the adjustment for bias structure depends
on the particular application.

To get a clearer notion of the sizes of the optimal bandwidths and these two
effects, we compute bandwidths for Examples 2.1 and 2.2 based on normal designs.

4.3.1. Bandwidths for Average Density with Normal Variables

Recall from Example 2.1 that zi = xi here, where xi - f(x)dx, and the object
of estimation is the average density value 0o = E[f(xi)]. Moreover, (xi, h) is

15
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the kernel density estimator fi(xi, h) of (2.5), and ro(x) is the density f(x). For

simplicity, we denote partial derivatives of f using subscripts: f f /dxj, fji =
d 2f /&Xjx, etc., where each function is evaluated at x unless another argument

value is indicated. Here r(x, h) - ro(x) is given from the familiar expression for
bias of the kernel density estimator:

r(x, h) - ro(x) = E [h-klC (I)] - f(x)
(4.14)

= IC(u)f(x + hu)du.

We take KC(u) to be a positive density function, with f ulC(u)du = 0 and

P = 2, so that a = 2 and s(xi) = (1/2)&2 r/h 2 Ih=o. In particular

S(xi) = (2) [ui ujlC(u)du]f;"(xi). (4.15)
I j

For the variance term, we have that

E [(xixj, h)2 xi]= E [h-2k (I)2]

= h - k f C2 (u)f(xi + hu)du (4.16)

= h-k C2 (u)du f(xi) + op(hk)

so that
q(xi) = f C2(u)du f(xi) (4.17)

and y = k.
To compute bandwidth values, we specialize the general formulae to the case

where f(x) is the spherical normal JA(O, I) density, and IC(u) is likewise chosen

to be the .f(0, I) density. These specifications imply first that

s (xi) = ( ) fil (xi) (4.18)
3

If we define ck = (27r) - k/2, then some tedious arithmetic yields

E[s(xi)]2 = k2c2 (i) , (4.19)
k 2
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E[ )2 = k (k - ) () (4.20)

E[q(xi)] = C2 () (4.21)

and 2a + - = k + 4. Therefore, the approximate pointwise optimal bandwidth
(3.17) is

v'3- 4 T4 1 k+4
h** = ( ) ( (4.22)

3k - 2 N

The bias factor (4.13) is

2 3k - 2 k+4
B= k ) (4.23)

and the size factor (4.12) is

1

AN = (N) (4.24)

Consequently, the approximate optimal bandwidth (4.10) for estimating the
average density is

I 2

h++ = AN B .h**= () () (4.25)

Table 1 contains computed bandwidth values and bias and size factors for
various dimensions k and sample sizes N. In terms of estimating average density
versus estimating the density function, here the size factor always outweighs the
bias factor, so that a smaller bandwidth should be used for estimating the average
density. For increases in sample size, all bandwidths shrink, with the size effect
much more pronounced in lower dimensional problems. Interestingly, for high
dimension and low sample size, the optimal bandwidths for the pointwise and
average density problems are nearly equal; also, for k = 1 and small N the
pointwise bandwidths are larger than for k = 2, then increase monotonically in k.

17
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4.3.2. Bandwidths for Density Weighted Average Derivatives, Linear
Model With Normal Regressors

Recall from Example 2.2 that zi = (y, xi) here, where xi f(x)dx and E(yi xi) =
g(xi). We compute bandwidth values for estimation of the first component of
the density weighted average derivative, o1 = E[f(xi)gl(xi)], where as above,

gl = ag/Ox. We denote the first component of V = 09C/9u as V1 = aCK/dul. The
function r(z, h) is computed directly as the conditional expectation of the first
component of p(-) of (2.8), as

r(z,h) = E[p(z,j,h)z]

-- fC(u).y. fl(x + hu)du (4.26)

+S fC(u) [g'(h + hu) f (x + hu) + g(x + hu) fl (x + hu)] du,

where the latter equality employs integration by parts. As above, we have a = 2,
with s(zi) = (1/2)02 r/dh 2 1h=o. Therefore

(Z) (1) 1 j([f ulujC(u)du][-Yif ljl(xi) + g(xi) f 1 (x) + gll(xi) fj(xi)

+gl(xi)fjl(Xi) + gl 1(xi)f,(xi) + g(xi)fll(Xi) + gl (i)flj(xi)]}
(4.27)

The variance term is found similarly as

q(zi) = f V2(u)du. [i - 2yig(xi) + E(yxi)], (4.28)

where here 'y = k + 2.
To compute bandwidth values, we again specialize the general formulae to the

case where f(x) is the spherical normal A(O,0,) density, and IC(u) is likewise the
J(O, I) density. We assume the true model is linear;

k

Yi = xji + i, (4.29)
j=1

where i is univariate normal with mean 0 and variance ak, and independent of
x. This allows s(zi) to be simplified as

s(zi) = () [-fl'j(xi) + f j(xi) + 2f (xi)]. (4.30)
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Considerably more tedious algebra gives

E[s(xi)]2 = k2 c (2) (4.31)

E[s(xi)2] = -c ( ) [3-2 - 1.25k + 7.25 + crk + 3)] , (4.32)

E[q(xi)] = Ck (2) o k, (4.33)

and 2a + y = k + 6. The approximate pointwise bandwidth h** , the bias factor
B, the size factor AN and the approximate optimal bandwidth h+ + are computed
from these terr -; as above. Tables 2A and 2B contain computed bandwidth values
and bias and size factors for various dimensions k and sample sizes N. To make
the values comparable across dimensions, the linear model (4.29) is assumed to
have a constant value of R 2 , so that the variance of Ei varies with k as

=k (1R2 ) (4.34)

Table 2A gives values for R 2 = .80, and Table 2B gives values for R 2 = .20.
These bandwidth values are qualitatively similar to those in Table 1, but there
are some notable differences. As before, the sample size effect is much more
pronounced in low dimensions. The bandwidths for estimating average derivatives
are generally larger than those for estimating average density, and increase as the
R2 value decreases. The bias factor is more evident for average derivatives as well -
for instance, the bandwidths for estimating average derivatives are larger than the
pointwise bandwidths for smaller sample sizes in Table 2B. Finally, for R2 = .20,
several of the optimal pointwise bandwidths actually exceed their "averaged"
counterparts, though this possibility vanishes as N increases relative to k.

4.4. A "Plug-In" Estimator of the Optimal Bandwidth

One approach for approximating the optimal bandwidth h + is to make use of cross
validation or another data-based method for estimating the pointwise optimal
bandwidth h*,18 and then applying the factorization (4.11) using the appropriate

18See Nychka (1991) for a recent discussion of smoothing parameter choice and references to
automatic methods for kernel estimation.
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AN value and an approximate value of B. To the extent that the application at
hand is similar to one of the examples above, the B values in Tables 1, 2A or 2B
may give reasonable performance.19

Alternatively, we propose a simple "plug-in" estimator of h+, based on empir-
ical implementations of the bias and variance formulations above.20 In particular,
to approximate (4.8) or (4.9), we need consistent estimators of Qo E[q(zi)] and
So E[s(zi)]. Denoting such estimators as Q and S respectively, the optimal
bandwidth is estimated as

·[ ] 2~+~t [ 2
(4.35)

From the consistency of Q and S, it follows immediately that

h-h + + = op(N- 2+ ), (4.36)

for h ++ of (4.10), and therefore we can conclude that

h - = o,(N-2,+-v) (4.37)

for the optimal bandwidth h + of (4.8).
The variance coefficient Q0 is estimated by empirically implementing (3.12).

Using an initial bandwidth value ho0 , define

1
Q Q(ho) = ) hn - p(zi, zj, ho) 2 (4.38)

Consistency of Q for Q0 is obtained by allowing ho to converge to 0 at a different
rate than the optimal bandwidth h +. From the U-statistic structure of (4.38), if

E[p(zi, zj, ho)4] = O(ho-7-2hy), (4.39)

19Hall and Marron (1987) propose an interesting "plug-in" method of estimating the pointwise
optimal bandwidth for density estimation using an estimate of the integrated squared density
derivative. They exploit a connection due to integration-by-parts that is not available in our
general setting.

2 0 Gasser, Kneip and Kohler (1991) discuss iterative "plug-in" methods for approximating
optimal pointwise bandwidths.
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for some q7 > 0, then Lemma 3.1 of Powell, Stock and Stoker (1989) implies that
Q is consistent for Qo if ho -- 0 and Nh + 2 -4 O as N -+ oo.

To estimate the bias coefficient So , we exploit (3.9) in differenced form. Since
So is the leading term in the bias expansion of 6(h), estimate So by

6(7-ho0) - 6(h0) (4.40)
(Tho) - ho

for some positive T £ 1. This has expectation

E (S) = [(Tho)a - h] 1 {So [(T7h) - ha] + o(h)} = So + o(1), (4.41)

assuming ho - 0 as N - oo. Since S is a U-statistic with kernel

ps(Zi, zj, ho) = ho¶[p(zi, zj, ho) - p(zi, zj, Tho)]/(Tr - 1), (4.42)

we have that
E[p2] = O(ho-2`E[p2 ]) = O(ho2c-7), (4.43)

so that S is consistent for So provided ho - 0 and Nh 0 7 -4 oo as N co.21

In summary, we have shown

Proposition 4.2. Under Assumptions 1 and 2, suppose that (4.39) is valid for
r! > 0, and let p = max7 + 2, 2a + y). If ho - 0 and Nh - oo as N -- oo,
then Q = Q(h) and S = S(h) are consistent estimators of Qo - E[q(zi)] and
So _ E[s(zi)] respectively, and the "plug-in" bandwidth estimator h obeys

h- h = op(N2a). (4.44)

While Proposition 4.2 gives a solution to the problem of estimating h +, we
must mention one technical proviso of the result. We have not shown that our
conditions will guarantee that the "plug-in" estimator (h) will be asymptotically
equivalent to (h+), because the mean squared error calculations used to derive
the form of the optimal bandwidth held h fixed in calculating the moments of

2 1 With reference to the note following (4.9), the estimator S can estimate the bias in situations
where (h) does not obey all the tenets of vN consistency for 6o. While our justification of S
is asymptotic, the estimator S may provide a practical method of studying small sample bias
issues, such as those discussed in Stoker (1993a,1993b).
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the U-statistic in (2.1). The MSE formulae does not follow immediately if the
bandwidth h were replaced by a (stochastic) bandwidth value that was constructed
using the same data as appear in the U-statistic, and derivation of general large-
sample properties of 6(h) would require much stronger conditions (e.g. higher
order differentiability) on the kernel function p(zi, zj, h).

A straightforward but inelegant solution to this technical problem could be
based upon a familiar "sample-splitting" device - the bandwidth h could be
constructed using, say, the first N* = O(ln(N)) observations on zi, with the
remaining observations being used to form the U-statistic in (2.1). While this
sample-splitting approach would ensure the equivalence of 6(h) and 6(h +), it would
clearly lead to very imprecise estimates of the optimal bandwidth in practice, and
an approach that made use of the whole sample in both steps seems more likely
to be well-behaved. Another straightforward solution would be to discretize the
set of possible scaling constants, replacing the estimated constant term with the
closest value in some finite set. While the optimal constant will generally not be
in this set, it can be arbitrarily well approximated if the mesh of the set is small
enough; the rate of convergence of the the discretized constant will be arbitrarily
high in probability, so this "plug-in" bandwidth will not affect the asymptotic
properties of the U-statistic.

5. The Optimal Bandwidth for Estimating Ratios of Den-
sity Weighted Averages

As outlined for Examples 2.2 and 2.3, there are various estimators of interest that
take the form of ratios of density weighted averages. We can solve the optimal
bandwidth problem for estimators of this type by a straightforward modification
of the derivations above. We now spell out this modification. 2 2

In particular, as motivated by (2.9) and (2.13) of Examples 2.2 and 2.3, we
are often interested in the estimation of a parameter of the form

3o = [{]-1 b6. (5.1)
22We do not consider the possibility of using different bandwidths for the "numerator" and

"denominator" of the ratio, but rather a single bandwidth for each. Our version is directly
motivated by certain problems, such as the instrumental variables estimator of Example 2.2.
Different bandwidths would imply that different instruments are used for the "x" moments than
for the "y" moments.
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The corresponding estimator takes the form

3(h) = [x(h)] f Y(h). (5.2)

The optimal bandwidth for the estimator (5.2) can be studied by manipula-
tions similar to those familiar from linear regression analysis. In particular, we
focus the variation of (h) on the "residuals" of the problem by defining

Su(h) =_ Y(h) - Zx(h)/0%. (5.3)

Su(h) is a second-order U-statistic of the form (2.1) with kernel

u(zi, zj, h) -- py(zi, zj, h) - px(zi, zj, h)fo, (5.4)

where pY(.) and p(.) are the kernels of the U statistics 6Y(h) and 5X(h) respectively.
By construction, 6u(h) is an estimator of

6 = C - 6o"0x = O. (5.5)

Returning to (h), we have that

(h)- = [ (h)]- (h)
(5.6)

[6fl &u(h) + ([Sx(h)] - [6X]) (h) (5.6)

As long as 5x(h) is Nl-consistent for some r7 > 0, the second term on the right-
hand-side of (5.6) is of smaller order (in N) than the first, so that the rate of
convergence of P(h) to 0 is the same as that of U (h) to zero. Thus the optimal
bandwidth for p(h) is the same as that for the U-statistic based on the scaled
residuals [6] - 1 u(zi, h).

It is easy to check that the use of an estimated "residual" does not change any
of the conclusions above, provided the rate of convergence of 6X(h) is the same as
for &u(h). To be more precise, suppose that 8 x and are consistent estimators of
06 and 0, say based on an initial bandwidth value, and define

["]j 'u(h)- [x] [6(h) - Sx(h)/] * (5.7)
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Then we have that

[x]- 1u(h) [] 1 b (h) _ ([6]-1 [~x]l) 6U(h) - [] - zSx(h) []- o]

= [6x]-1 8U(h) + op ([x]-1 6u(h)) + op (zx(h)) .

(5.8)
Replacement of [6] 1 (h) by []-1 8u(h) does not affect the leading terms of
mean squared error, nor does it alter the optimal bandwidth value.

In summary, we have shown

Proposition 5.1. Under Assumptions 1 and 2 applied to 6Y(h) and 6x(h), the
optimal bandwidth for estimating the ratio 13(h) = [(h)]-16Y(h) is the same as
that for estim4 ng [8] - 1 S(h), the density weighted average with scaled "resid-
ual" kernel [60] 1u(zi,zi, h) of (5.4). This bandwidth is consistently estimated
using consistent estimates 6x and p to construct the scaled residual kernel.

It is worthwhile noting one special case of our results, because of its appearance
in common model designs. In particular, there are settings where the biases
in p(h) and 6u(h) are identically zero. For instance, consider the instrumental
variables estimators for Example 2.2 (implementing (2.7)). If the true model is
linear, since the "instruments" afi(xi)/Ox are solely functions of x, the coefficient
estimator d(h) is conditionally unbiased for the linear coefficients. This implies
that the optimal bandwidth calculation only contains the terms for the variance of
d(h), which are decreasing in h. Consequently, one will want to set the bandwidth
to a "large" value in this setting.23 This is reflected in the optimal bandwidth
formula (4.11) by noting that E[s(xi)]2 = 0 in this case. At any rate, our "plug-
in" estimation method of Section 4 permits determining whether this is the case
empirically, in that a small estimate of the bias in u (h) will translate to the large
bandwidth value.

6. Conclusion

In this paper we have characterized the optimal bandwidth for estimating density-
weighted averages, and ratios of density-weighted averages. Our main purpose was

23 More precisely, the optimal bandwidth value may not shrink with sample size in this case.
However, while larger bandwidth values decrease variance, at the limit h = co, fi(xi)/Ox is
everywhere zero, and therefore fails to be a proper instrument.
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to provide a guide for choice of bandwidth for estimators that employ kernel esti-
mators in the form of density weighted averages. Most of the existing asymptotic
theory for these estimators had little to say about how to set bandwidth values
in applications, so our results give more specific help for this problem. A natural
next step is to study the performance of fully automatic methods (namely esti-
mators that use estimates of optimal bandwidths), to see whether approximating
an optimal bandwidth gives rise to real practical benefits.

One concern raised by the computed bandwidth values of Section 4.3 is the
quality of the asymptotic approximations we have employed. In particular, if
the bandwidth is of the same order (say one half) of the standard error of the
data components, then one could question the quality of our analysis based on
leading terms in a series expansion. Further research is indicated to see whether
the remainder terms substantially affect the optimal bandwidth value. Never lie-
less, computing the estimators of Section 4.4 (of the leading coefficients of bias
and variance) will be informative in applications, for indicating how sensitive the
estimated results are to the bandwidth values used.

Another object of the paper was to give a concrete comparison of bandwidth
settings for optimal function approximation versus optimal performance of a de-
rived semiparametric estimator. The simple framework above gave rise to an
immediate relationship of this type, and permitted us to compare a pointwise
optimal bandwidth with an optimal bandwidth for the semiparametric problem.
Since the nonparametric estimator for this exercise is intrinsically connected to
the density-weighted average of interest, our results somewhat beg the question of
bandwidth choice in other semiparametric contexts. However, the simple structure
of our results may provide some general insight in how to adjust for different uses
of nonparametric estimators, as well as how to practically implement "asymptotic
undersmoothing."
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III

TABLE 1: OPTIMAL BANDWIDTHS FOR ESTIMATING DENSITY AND AVERAGE DENSITY

Specification:

Spherical Normal Regressors: f(x) = N(O,I) Density

Spherical Normal Kernel: X(u) = (0,I) Density

Dimension k 1 2 3 4 5 10

Bias Factor 1.155 1.296 1.303 1.295 1.284 1.243

N = 50
Bandwidth (PW) 0.523 0.451 0.457 0.474 0.492 0.570
Size Factor 0.525 0.585 0.631 0.669 0.699 0.795
Bandwidth (Ave) 0.317 0.342 0.376 0.410 0.442 0.563

N = 100
Bandwidth (PW) 0.455 0.402 0.414 0.434 0.455 0.542
Size Factor 0.457 0.521 0.572 0.613 0.647 0.756
Bandwidth (Ave) 0.240 0.271 0.309 0.345 0.379 0.510

N = 500
Bandwidth (PW) 0.330 0.307 0.329 0.355 0.381 0:483
Size Factor 0.331 0.398 0.454 0.501 0.541 0.674
Bandwidth (Ave) 0.126 0.159 0.195 0.231 0.265 0.405

N = 1000
Bandwidth (PW) 0.287 0.274 0.298 0.326 0.353 0.460
Size Factor 0.289 0.355 0.412 0.460 0.501 0.642
Bandwidth (Ave) 0.096 0.126 0.160 0.194 0.227 0.367

N = 5000
Bandwidth (PW) 0.208 0.209 0.237 0.266 0.295 0.410
Size Factor 0.209 0.271 0.327 0.376 0.419 0.572
Bandwidth (Ave) 0.050 0.074 0.101 0.130 0.159 0.292

N = 10000
Bandwidth (PW) 0.181 0.187 0.214 0.244 0.273 0.390
Size Factor 0.182 0.242 0.296 0.345 0.388 0.544
Bandwidth (Ave) 0.038 0.058 0.083 0.109 0.136 0.264

N = 100000
Bandwidth (PW) 0.114 0.127 0.154 0.183 0.211 0.331
Size Factor 0.115 0.165 0.213 0.259 0.301 0.462
Bandwidth (Ave) 0.015 0.027 0.043 0.061 0.082 0.190



TABLE 2: OPTIMAL BANDWIDTHS FOR DENSITY WEIGHTED AVERAGE DERIVATIVES

Specification:

Spherical Normal Regressors: f(x) = N(0,I) Density

Spherical Normal Kernel: X(u) = N(0,I) Density

k
Linear Model: yi = E xji+ i ; i =

j=l

e C N(O,ak2); rk = k [ R

TABLE 2A: R = .80

Dimension k 1 2 3 4 5 10

Bias Factor 1.537 1.354 1.302 1.279 1.265 1.235

N = 50
Bandwidth (PW) 0.472 0.621 0.743 0.852 0.953 1.355
Size Factor 0.631 0.669 0.699 0.725 0.746 0.818
Bandwidth (Ave) 0.458 0.563 0.677 0.790 0.900 1.368

N= 100
Bandwidth (PW) 0.428 0.570 0.688 0.795 0.895 1.297
Size Factor 0.572 0.613 0.647 0.676 0.701 0.783
Bandwidth (Ave) 0.376 0.473 0.580 0.688 0.793 1.254

N = 500
Bandwidth (PW) 0.340 0.466 0.575 0.677 0.773 1.173
Size Factor 0.454 0.501 0.541 0.576 0.605 0.708
Bandwidth (Ave) 0.237 0.316 0.406 0.498 0.592 1.026

N = 1000
Bandwidth (PW) 0.308 0.427 0.533 0.632 0.726 1.123
Size Factor 0.412 0.460 0.501 0.537 0.568 0.678
Bandwidth (Ave) 0.195 0.266 0.348 0.434 0.522 0.941

N = 5000
Bandwidth (PW) 0.245 0.349 0.445 0.538 0.627 1.016
Size Factor 0.327 0.376 0.419 0.457 0.491 0.613
Bandwidth (Ave) 0.123 0.178 0.243 0.315 0.390 0.769

N = 10000
Bandwidth (PW) 0.222 0.320 0.412 0.502 0.589 0.973
Size Factor 0.296 0.345 0.388 0.427 0.461 0.587
Bandwidth (Ave) 0.101 0.150 0.208 0.274 0.343 0.705

N = 100000
Bandwidth (PW) 0.159 0.240 0.319 0.399 0.478 0.842
Size Factor 0.213 0.259 0.301 0.339 0.374 0.509
Bandwidth (Ave) 0.052 0.084 0.125 0.173 0.226 0.529
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TABLE 2B: R = .20

Dimension k 1 2 3 4 5 10

Bias Factor- 1.734 1.543 1.475 1.440 1.418 1.359

N = 50
Bandwidth (PW) 0.622 0.771 0.893 0.999 1.094 1.463
Size Factor 0.631 0.669 0.699 0.725 0.746 0.818
Bandwidth (Ave) 0.681 0.796 0.921 1.042 1.158 1.627

N = 100
Bandwidth (PW) 0.563 0.707 0.827 0.932 1.027 1.401
Size Factor 0.572 0.613 0.647 0.676 0.701 0.783

Bandwidth (Ave) 0.559 0.669 0.789 0.908 1.021 1.492

N = 500
Bandwidth (PW) 0.448 0.579 0.691 0.793 0.887 1.267

Size Factor 0.454 0.501 0.541 0.576 0.605 0.-/8

Bandwidth (Ave) 0.353 0.448 0.552 0.658 0.762 1.220

N= 1000
Bandwidth (PW) 0.405 0.531 0.640 0.740 0.833 1.214

Size Factor 0.412 0.460 0.501 0.537 0.568 0.678

Bandwidth (Ave) 0.289 0.376 0.473 0.573 0.672 1.119

N = 5000
Bandwidth (PW) 0.322 0.434 0.535 0.630 0.720 1.097
Size Factor 0.327 0.376 0.419 0.457 0.491 0.613

Bandwidth (Ave) 0.183 0.252 0.331 0.415 0.501 0.915

N = 10000
Bandwidth (PW) 0.292 0.398 0.495 0.588 0.676 1.051

Size Factor 0.296 0.345 0.388 0.427 0.461 0.587

Bandwidth (Ave) 0.150 0.212 0.284 0.361 0.442 0.839

N = 100000
Bandwidth (PW) 0.210 0.298 0.384 0.467 0.548 0.910

Size Factor 0.213 0.259 0.301 0.339 0.374 0.509

Bandwidth (Ave) 0.078 0.119 0.170 0.228 0.291 0.629


