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USE OF REPRESENTATIVE OPERATION COUNTS

IN

COMPUTATIONAL TESTINGS OF ALGORITHMS*

Ravindra K Ahuja, and James B. Orlin

The purpose of mathematical programming is insight, not numbers.
-AM. Geoffrion

Hundreds of books catalog optimization algorithms of one kind or another. In addition,
hundreds of research papers address applications of optimization algorithms. And yet,
experimentation in optimization is a topic that has not received nearly the attention it

merits.
- Golden, Assad, Wasil, and Baker

ABSTRACT

In the mathematical programming literature, researchers have conducted a large number of

computational studies to assess the empirical behavior of various algorithms and have
utilized the CPU time as the primary measure of performance. Generally, CPU times are not a

good measure of an algorithm's performance because they are implementation dependent, hard

to replicate, and they do not provide much insight about an algorithm's behaviour. In this
paper, we illustrate the notion of "representative operation counts" that can complement the

conventional CPU time analysis and can allow us (i) to identify the asymptotic bottleneck
operations in an algorithm, (ii) to estimate its running time for different problem sizes and on

various computers without actually implementing it, and (iii) to obtain a fairer comparison of

several algorithms. We believe that our ideas can be easily incorporated in an empirical study
and can yield valuable insight about algorithms' behaviour.

* This paper appears as a chapter in our forthcoming book, Ahuja, Magnanti, and Orlin [1993].
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1. INTRODUCTION

The field of mathematical programming is concerned with developing the most "efficient"

algorithms for a variety of optimization problems. The notion of efficiency involves all the

various computing resources needed for executing an algorithm. However, since time is often a

dominant computing resource in practice, we have used computational time as the primary

measure for assessing algorithmic efficiency. One important way to measure the computational

time of an algorithm is through its worst-case analysis. Worst-case analysis provides upper

bounds on the number of steps that a given algorithm can take on any problem instance. For a

variety of reasons, the worst-case analysis of algorithms is a popular method for judging

algorithmic efficiency, and this approach has stimulated considerable research. However,

worst-case analysis can be overly pessimistic since it permits "pathological" instances to

determine the performance of an algorithm, even though they might be exceedingly rare in

practice. Often the empirical behavior of an algorithm is much better than suggested by its

worst-case analysis. Consequently, the researchers typically rely upon the empirical testing of

an algorithm to assess its performance in practice.

In the operations research literature, researchers have conducted a large number of

computational studies to assess the empirical behavior of various algorithms and to determine

the "best" algorithms in practice. A typical study tests more than one algorithm for a specific

optimization problem and generally consists of the following steps: (i) write a computer

program (often in FORTRAN) for each algorithm to be tested; (ii) either use pseudorandom

problem generators to generate random problem instances with selected combinations of input

size parameters (e.g., the number of variables and constraints) or obtain some real life instances

of the problem; (iii) run computer programs and note the CPU (central processing unit) times for

the different algorithms on these problem instances; (iv) declare the algorithm that takes the

least amount of CPU time as the "winner". If different algorithms are faster for different input

size parameters, then report this fact as well.

The existing literature on computational testing has a tendency to over rely on CPU time as

the primary measure of performance. The CPU times depend greatly upon subtle details of the

computational environment and the test problems such as: (i) the chosen programming language,

compiler, and computer; (ii) the implementation style and skill of the programmer; (iii)

network generators used to generate the random test problems; (iv) combinations of input size

parameters; and (v) the particular programming environment (for example, the use of the

computer system by other users). Because of the multiple sources of variabilities, CPU times are

often difficult to replicate, which is contrary to the spirit of scientific investigation. Another

drawback of the use of CPU time analysis is that CPU time is an aggregate measure of

empirical performance, and does not provide much insight about an algorithm's behavior. For

example, an algorithm generally performs some fundamental operations repeatedly, and a

typical CPU time analysis does not help us to identify its "bottleneck" operations. Identifying
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bottleneck operations of an algorithm can provide useful guidelines for where to direct future
efforts to understand and subsequently improve an algorithm.

The spirit of worst-case analysis is to identify theoretical bottlenecks in the performance of
any algorithm and to provide upper bounds on the computation counts of these bottleneck
operations as a measure of the algorithm's overall behavior. Borrowing this point of view for
computational testing, we might attempt to measure the empirical performance of an algorithm

(or its computer implementation) by counting the number of times the algorithm executes each of

these bottleneck operations while solving each instance of the problem. That is, we would

conduct computer experiments to obtain an actual count of bottleneck operations instead of
providing a theoretical upper bound on this number. This approach suggests that in analyzing

the empirical behavior of an algorithm, we need not count the number of times it executes each
of the (possibly thousands) of lines of code, but instead can focus on a relatively small number of
lines that are "summary measures" of the algorithm's empirical behavior. Even for the
relatively complex algorithms, we have generally found that we need to keep track of the

computation counts of at most 3 or 4 operations or lines of code.

For example, we shall show in Section 4 that in the network simplex algorithm for the
minimum cost flow problem, the following three operations dominate all other operations: (i)

the number of arcs scanned by the algorithm to identify entering arcs; (ii) the number of arcs in

the pivot cycles; and (iii) the number of nodes in the subtrees whose potentials change. Even

though any implementation of the network simplex algorithm algorithm might contain
hundreds of lines of code, we need to keep track of only three fundamental operations in order to

identify the bottleneck operations, and in order to estimate the running time to within a
constant factor.

We will soon formalize this notion of "representative operation counts" in computational

testing; however, let us first summarize some of the advantages of this approach over the more

common approach of using only CPU time analysis.

1. Representative operation counts allow us to identify the asymptotic bottleneck
operations of the algorithm, i.e., the operations that progressively take a larger share

of the computational time as the problem size increases. (The improvement in the
asymptotic bottleneck operation has the maximum impact on the running time of the

algorithm for sufficiently large problem sizes.)

2. Representative operation counts provide more guidance and insight for comparisons of

two algorithms that are run on different computers, and even permits us to compare
algorithms implemented with different computer languages.

3. Representative operation counts facilitate the determination of lower and upper bounds

on the asymptotic growth rate in the computation time as a function of the problem size.
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4. We can use statistical methodologies to estimate the CPU time on a computer as a linear
function of the representative operation counts. We refer to this estimate of the CPU
times as the virtual CPU time. The virtual CPU time permits researchers to carry out
experiments on different computers, but estimate the running times as if all of the
experiments had been carried out on a common computer.

This type of asymptotic empirical analysis complements worst-case analysis, which is so
popular in the operatins research literature. The empirical analysis using representative
operation counts allows us to identify the actual empirical behavior of the algorithm for
sufficiently large problem sizes. Just as worst-case analysis ignores constant factors in the
running time, empirical analysis using representative operation counts ignores constant factors
in the running time, and instead focuses on the dominant term in the computations. This paper
explains the underlying ideas for this type of empirical analysis and illustrates it using a well
known network simplex algorithm for solving the minimum cost flow problem.

We remark that the field of computational testing is very broad, and we cannot do justice to
it in a short chapter. Rather than treat the wide range of topics of importance in
computational testing (such as how to select test problems, how to conduct an experimental
design, what type of statistical tests are most appropriate, and what data needs to be
reported), we will focus on the use of representative operation counts as an aid in the analysis of
computational experiments. We believe that it is quite easy to include the counting of
representative operations in any computational testing, and the potential payback for keeping
track of the added information is substantive.

2. RELATED RESEARCH

This paper focusses on using representative operations counts to analyse the empirical
behavior of an algorithm. The idea of using representative operation counts in the empirical
analysis of algorithms is quite old, and probably dates back to the origins of computational
experiments. Nevertheless the literature on computational testing for mathematical
programming has historically used CPU time as its primary measure of computational effort,
and has used representative operation counts in a rather limited way. For example, most
computational experiments on the network simplex algorithm have kept track of the number of
pivots, but have not kept track in any systematic way of the work per pivot. The thesis of
McGeoch [1986] is an excellent reference that de-emphasizes the focus on CPU time in favor of
representative operation counts. The computational studies by Johnson [1990] and Bentley [19901
provide excellent illustrations of how to use both CPU times and representative operation
counts to analyze empirical behavior of algorithms. The purpose of writing this paper is to
popularize this idea and enhance its adaptability among researchers engaged in the empirical
testings of algorithms.

In this chapter, we have focused on empirical running time as measured both by
representative operation counts and by CPU times. Other important measures of performance
for an algorithm include: (1) ease of implementation, (2) robustness, (3) reliability, and (4)
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accuracy of the solutions. The papers by Crowder and Saunders [1980], Hoffman and Jackson
[1982], and Greenberg [19901 discuss these measures of performances.

Reporting of the computational results is an integral part of any empirical study of
algorithms. The most comprehensive references on the reporting of computational experiments

in mathematical programming is Crowder, Dembo, and Mulvey [1978, 1979]. They provide
guidelines for what should be reported in a research paper, as well as provide help on how to

conduct appropriate computational experiments. Jackson and Mulvey [1978] have summarized
the reporting of computational experiments within the mathematical programming literature,

largely detailing how poor the reporting had been up to that time. More recently, Jackson,

Boggs, Nash, and Powell [1989] have provided updated guidelines for conducting and reporting

computational experiments.

Often, statistical methodologies can provide analysis and insight that is unavailable
through other means. Some papers on computational testing that provide details on statistical
methodologies are due to Bland and Jensen [1985], and Golden, Assad, Wasil and Baker [1986].

(The paper of Golden et al. [1986] is an excellent paper for illustrating a variety of other
important topics such as the comparison of different algorithms using multiple criteria, and the

different issues that one faces in developing a system for commercial use.) Moreover, statistical
methodologies such as variance reduction can often increase the power of the analysis and

reduce the number of experiments needed to obtain conclusive results. We refer the reader to
McGeoch [1992] for excellent illustrations of variance reduction as well as other pointers to the
literature.

Algorithm animation is another technique for gaining insight about an algorithm. In his

dissertation, Brown [1988] provides an excellent treatment of this topic. Algorithm animation
techniques view the progress of an algorithm on a single instance as a sequence of snapshots. For
example, consider the greedy algorithm for finding the minimum spanning tree joining n points
in the plane. This algorithm creates the minimum spanning tree one arc at a time, maintaining

a forest at each intermediate stage until it ultimately creates the minimum cost spanning tree.

Using animation, we could construct a sequence of figures showing the forest at intermediate

stages. Viewing a motion picture consisting of a series of these snapshots might reveal
additional insights into the algorithm. Alternatively, we could see how the total length of

the forest is increasing as a function of computer time, or we could see how the size of the

components decreases as a function of computer time. The papers by Bentley and Kernighan

[1990], and Bentley [1990] discuss a simple language that facilitates the construction of these
animations.

3. REPRESENTATIVE OPERATION COUNTS

In order to formalize our notion of the counting of operations performed by an algorithm, let

us first back up and consider what a computer does in executing a computer program. Suppose

that A is a computer program for solving some problem, and that I is an instance of the problem.
The computer program consists of a finite number of lines of computer code, say a1, a2 , ... , aK.
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Each line of code gives either one or a small number of instructions to the computer. The
instruction might tell the computer to carry out an arithmetic operation on a register or to move
data from one memory location to another; or it might be a control instruction informing the
computer which line of code it should execute next. For convenience, we assume that the
program is written so that each line of the code gives 0(1) instructions to the computer, and
that each instruction requires 0(1) units of time. We assume that the fastest computer
operation requires 1 time unit. (Although these assumptions are reasonable, they do imply
some restrictions; for example, we do not permit lines of code that tell the computer to add two
vectors as would be allowed in some high level languages such as APL. Rather, we would
require that the adding of vectors be carried out as a loop that sums the two vectors one
component at a time.) The assumption that each operation executed by the computer requires a
comparable amount of time seems reasonable in practice with the notable exceptions of input-
output, caching and paging.

The preceding discussion implies that executing any line of code requires 0(1) time units,
and at least 1 time unit. Therefore, each line of code requires 0(1) time units since its execution
time is bounded from both above and below by a constant number of units. (If f: Z+ - R+ and g:
Z+ - R+, we say that f(n) = O(g(n)) if c1 f(n) < g(n) < c2 f(n) for all n > no and some constants cl, c2,
no.) Suppose that the computer code we are investigating has K lines of code. For a given
instance I of the problem, let ak(I), for k = 1 to K, be the number of times that the computer

executes line k of this computer program. Let CPU(I) denote the CPU time of the computer
program on instance I. The preceding discussion implies the following lemma.

Lemma 1. CPU(I) = (k=1 ak(I)) *

Lemma 1 states that we can estimate the running time of an algorithm to within a constant
factor by counting the number of times it executes each line of code. However, counting each line
of code is unnecessarily burdensome. As we shall soon see, it really suffices to count a relatively
small number of lines of code. For example, consider the following fragment of code:

for i = 1 to 3 do
begin

A(i) := A(i) + 1;
B(i) := B(i) + 2;
C(i) := C(i) + 3;

end;

We need not count the number of times the algorithm executes the statement "B(i) := B(i) +
2", since it executes this statement whenever it executes the statement "A(i) := A(i) + 1".
Similarly, we need not count the number of times the algorithm executes the statement "C(i) :=
C(i) + 3". Moreover, it appears that regardless of the size of the problem solved, the algorithm
modifies each A, B, and C three times during the execution of the "for loop". So, in this case, it
would suffice to keep track of just the number of times that the algorithm executes the "for"
loop.
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Note that we have treated the number of iterations of the do loop as a constant. Suppose,
instead, that the first line of the do loop were "for i = 1 to 10 do." Should we also treat the 10
as a constant? What if the first line of the do loop were "for i = 1 to 10000 do." Should we
continue to treat the 10000 as a constant? In answering these questions, we might invoke two
rules of thumb. First, we should determine the representative operation counts after expressing
the algorithm as a pseudocode with all the problem parameters treated explicitly as
parameters and not as constants. For example, suppose that U denotes an upper bound on arc
capacities for network flow problems. Then, although in most practical situations we can bound
log U as being less than 16 (i.e., U < 216), in pseudocode we should use the term "log U" rather
than the constant 16. We would not treat log U as a constant. Second, as a rule, we should not
treat the number of iterations of a "do loop" or a "while loop" or any other loop as a constant
since frequently the number of times that the program will call the loop is a problem parameter
rather than a constant.

We now formalize the notion we have been suggesting; that is, keeping track of a small
number of lines of code, which we call the "representative operation counts." Let S denote a
subset of {1,..., K), and let aS denote the set ai: i E S. We say that aS is a representative set

of lines of code of a program if for some constant c,

ai(I) < c ( k S ak(I))'

for every instance I of the problem and for every line ai of code. In other words, the time spent
in executing line ai is dominated (up to a constant) by the time spent in executing the lines of

code in S. With this definition, we have the following corollary to Lemma 1

Property 2. Let S be a representative set of lines of code. Then CPU(I) = O(Zk S a k(I)).

K
Proof. By Lemma 1, CPU(I) = 0(k=1 ak(I)). Moreover, for each line of code not in S, ai(I) <

c (kE S ak(I)), and so Z k=1 k(I) = 0(k S ak(I))- 

This methodology identifies a set of representative lines of code, and during the empirical
investigations keeps track of the representative operation counts for each instance solved.
Sometimes, the selected representatives will not refer specifically to one line of code. The
representative operation might be described over several lines of code. Rather than use the
expression "the computation counts for a set of representative lines of code" we will refer to "the
computation counts for a set of representative operations" or more briefly as the representative
operation counts.

In the next section, we discuss various uses of representative operation counts. We point out
that in addition to noting representative operation counts for various instances solved, we
might keep track of some other counts that might be helpful in assessing an algorithm's
behavior. For example, in the network simplex algorithm, for each instance solved we might
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note the number of major iterations that the algorithm performs, such as the number of pivots of
the network simplex algorithm.

At first glance, we might suspect that determining a representative set of operations could
be difficult, and that the set might be quite large. But our experience suggests that it is
generally quite easy to determine representative sets, and often there are a wide number of
possible correct choices. In addition, the representative sets are typically quite small. We now
give examples of representative sets for several popular algorithms. We point out that the
representative sets, we indicate for the algorithms, are not unique. In some cases, we have
suggested additional operation counts that might be of value in empirical investigations. Most
of the algorithms analysed by us are network flow algorithms because they are simple and
illustrate our ideas nicely; however, they do require some familiarity with network notation
and network flow algorithms. For additional details of these network flow algorithms, we
refer the reader to Ahuja, Magnanti, and Orlin [19931. We, however, provide some essentials
definitions next. We consider a directed network G = (N, A), where N represents the node set
and A denoted the ar set. Let n = I N I and m = I A I. Each arc (i, j) has an associated cost cij and
an associated capacity uij. Let C denote the largest arc cost and U denote the largest arc

capacity in the network.

Dijkstra's algorithm for the shortest path problem (Version I). In the shortest path problem,
we wish to obtain a shortest path from a specified source node s to every other node in the
network. Dijkstra's algorithm (see, for example, Lawler [1976]) can be used to solve this
problem provided all arc lengths are nonnegative. Dijkstra's algorithm maintains a distance
label d(i) for each node i in the network, which is either temporary or permanent. At each
iteration, the algorithm identifies a temporary labeled node i (node selection step) by scanning
all temporary labeled nodes, makes it permanent, and scans the arcs in its adjacency list A(i) to
update the distance labels of adjacent nodes (distance update step). The algorithm terminates
when all nodes are permanently labeled. A natural set of representative operations for
Dijkstra's algorithm are: (i) the number of temporary labeled nodes scanned during the node
selection step; and (ii) the number of arcs scanned to update distance labels. But notice that the
operations performed by Dijksta's algorithm in the node selection operations is n + (n-l) + (n-2)
+...... + 1 = Q(n2 ), and the number of operations performed in the distance update operations is

:iE N I A(i) I = l(m). Thus the running time of the algorithm is same for same sized problems
irrespective of the problem instance. Consequently, keeping track of the representative
operation counts will not give us any additional insight about the algorithm.

Dijkstra's algorithm for the shortest path problem (Version II). In this version of Dijkstra's
algorithm, we wish to detrmine a shortest path from a specified source node s to another
specified sink node t, where cij denotes the length of arc (i, j) In this case, Dijkstra's algorithm

works as earlier in Version I, except that we terminate the algorithm as soon as the sink node is
permanently labeled. Observe that in this version, the two representative operation counts
will differ from instance to instance and keeping track of them may provide useful information
about the algorithm. In addition, it might be useful to keep track of the number of nodes
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permanently labeled before termination, and the number of arc scans when the distance labels
strictly decrease.

Label correcting algorithm for the shortest path problem. Label correcting algorithms are an
important class of algorithms to solve the shortest path problem with arbitrary arc lengths.
The generic label correcting algorithm maintains a distance label d(i) with each node i, which
is the length of some path from the source node to node i. If, in addition, these distance labels
satisfy the optimality conditions d(j) < d(i) + cij for each arc (i, j) E A, then they represent the

shortest path distances; otherwise they are non-optimal. The generic label correcting
algorithm also maintains a set LIST of nodes satisfying the property that whenever an arc (i, j)
violates its optimality condition, then node i is in the LIST. At each iteration, the label
correcting algorithm removes a node i from LIST, scans every arc (i, j) in its adjacency list A(i)
one by one, and if the arc satisfies d(j) > d(i) + cij, then it updates d(j) = d(i) + cij, and adds node j

to LIST. The algorithm terminates when LIST is empty.

The generic label correcting algorithm performs the following operations repeatedly: (i) it
removes nodes in LIST (removals); (ii) it scans adjacency lists of nodes removed from LIST (arc
scans); and (iii) adds arcs to LIST (additions). Using the facts that the number of removals
equals the number of additions, and that whenever a node i is added we must scan every arc (i, j)
in A(i), we conclude that arc scans are the representative operation for this algorithm.
Consequently, the number of arcs scanned can be used to assess the empirical behavior of the
algorithm. In addition, it might be useful to keep track of the number of additions to the LIST.

Labeling algorithm for the maximum flow problem. The labeling algorithm starts with a zero
flow and proceeds by identifying augmenting paths from the source node s to the sink node t and
sending flows along these paths. (An augmenting path is a directed path along which positive
amount of flow can be sent from the source node to the sink node.) The algorithm identifies an
augmenting path using a search method that works in the following manner. The method
maintains a set, LIST, of labeled nodes (i.e., the nodes reachable from the source) that are yet
unexamined. Initially, LIST contains the singleton node s. Subsequently, at each iteration, the
method removes a node i from LIST, scans arcs in its adjacency list A(i) to label more
(unlabeled) nodes and adds them to the LIST. The method terminates when either the sink
node t is labeled or LIST becomes empty. In the former case, we have identified an augmenting
path; in this case, we augment a maximum possible flow along this path, unlabel all nodes, and
reapply the search method. In the latter case, the current flow is maximum and the labeling

algorithm terminates.

The labeling algorithm performs the following operations repeatedly: (i) removing nodes
from LIST; (ii) scanning arcs in the adjacency lists of nodes removed from LIST; (iii) adding
nodes to LIST; (iv) sending flows along augmenting paths; and (v) unlabeling the labeled nodes.
It can be easily shown that the representative operation for the labeling agorithm is the arcs
scanned while examining labeled nodes, as this operation dominates all other operations that
the labeling algorithm performs. In addition to this representative operation, we would
probably want to count the number of augmentations. This additional information might
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provide insight for comparing the labeling algorithm to other maximum flow algorithms. For
example, we could check whether the labeling algorithm requires more augmentations than
other augmenting path algorithms.

Bubble sort algorithm. The bubble sort algorithm is a well known algorithm to sort the
elements of an array a of n elements in nondecreasing order. This algorithm proceeds by
performing passes over the array a. In the Ith pass, it compares the two elements a(k) and
a(k+l) for each 1 < k < -1 one by one, and if the two elements are out of order (i.e., a(k) >
0a(k+l)), it swaps their positions. The algorithm terminates when during an entire pass, no two
elements are found to be out of order. The representative operation in this algorithm is the
number of comparisons required to check whether the adjacent elements are out of order. In
addition, we might keep track of the number of passes performed by the bubble sort algorithm.

Network simplex algorithm. The network simplex algorithm is a well known algorithm to
solve the minimum cost flow problem. The network simplex algorithm is an adaptation of the
revised simplex algorithm and maintains a basic feasible solution at each step, which
corresponds to a spanning tree in the underlying network. For a basic feasible solution with a
corresponding tree T, the agorithm scans through the arc list to identify a nontree arc (k, 1)
violating its optimality conditions. Adding arc (k, ) to the current spanning tree creates a
unique cycle W. The algorithm identifies this cycle and augments a maximum possible flow
along this cycle. Doing so saturates at least one arc, say (p, q), in the cycle W. The algorithm
replaces the arc (p, q) by the arc (k, ), and updates the node potentials (or, simplex
multipliers) of a subtree T2 of T and the tree indices. The network simplex algorithm repeats

this process until all arcs satisfy the optimality conditions.

The network simplex algorithm has the following set of representative operations: (i) the
number of arcs scanned by the algorithm to identify entering arcs; (ii) the number of arcs in the
pivot cycles; and (iii) the number of nodes in the subtrees whose potentials change. The
network simplex algorithm performs many other operations. We do not need to keep track of
these operations because these three operation counts dominate them. For example, the
algorithm performs some initialization operations that we have ignored. Further, to update
the tree indices requires 0( I W I + I T2 I ) time, which is dominated by operations (ii) and (iii).

This set of representative operations is strikingly compact considering the fact that
implementations of the network simplex algorithm are typically quite intricate. In addition to
these representative operations, we might keep track of other operations. For example, we
would most likely want to keep track of the number of pivots. Moreover, if we were concerned
about the effects of degeneracy, we would also keep track of the number of degenerate pivots
performed by the algorithm.

Euclid's algorithm. Euclid's algorithm finds the greatest common divisor of two numbers, say a
and 3. We first order the numbers so that the larger number occurs first. Suppose that a is
larger than P. Then, at each iteration, we replace the larger number a by the smaller number 3
and replace the smaller number 3 by a mod . For example, if the original numbers are (102, 93),
then the numbers after the first iteration will be (93, 9). We repeat these operations until the
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smaller number becomes zero. The larger number at this point is the greatest common divisor of
a and 13.

A set of representative operations for this algorithm is the single operation of a mod 1.
However, it is possible that one may modify this set. For example, if a and are quite large,
then we may store these numbers in several words. In that case, the set of representative
operations will be the number of word operations involved in the divisions.

4. APPLICATION TO NETWORK SIMPLEX ALGORITHM

In this section, we illustrate the use of representative operation counts using the network

simplex algorithm for the minimum cost flow problem. We provide experiments based upon the
network simplex algorithm using the first negative pivot rule for the selection of the entering
arc. The first negative pivot rule scans the arc list in a wraparound fashion and selects the first
arc violating its optimality condition as the entering arc. The code for the network simplex
algorithm was developed by the authors. To generate minimum cost flow problems, we used the
well known network generator NETGEN developed by Klingman, Napier and Stutz [1974]. For
additional codes and computational testings of the network simplex algorithm, we refer the
readers to the studies of Glover, Karney and Klingman [1974], Mulvey [1978], Bradley, Brown
and Graves [1977], Grigoriadis [1986], and Chang and Chen [1989].

The computational time that the network simplex algorithm requires to solve a minimum

cost flow algorithm depends on a number of different parameters, including: the number of
nodes, the number of arcs, the network generator, the size of the cost and capacity data, and the
number of supply nodes. Of these factors, to illustrate the approach discussed in this chapter,
we have chosen to focus on the number of nodes and the number of arcs. We conducted

experiments on networks with 1,000, 2,000, 4,000, 6,000 and 8,000 nodes. For each choice of n
nodes, we created networks with 2n, 4n, 6n, 8n, and 10n arcs. Setting d = m/n, we have

considered networks with d = 2, 4, 6, 8 or 10. Thus, the largest network size we considered had
8,000 nodes and 80,000 arcs. For each specific setting of n and m, we solved 5 different problems

generated from NETGEN and computed the average of these 5 problem instances. (The averages
have a lower variability of outcomes than the individual tests, and so the resulting graphs and

charts reveal patterns more clearly.) For each problem that we solved, we noted the following
values:

(i) aE : arcs scanned in selecting an entering arc (summed over all pivots);

(ii) aw: number of arcs of the pivot cycles (summed over all pivots);

(iii) ap: node potentials modified (summed over all pivots);

(iv) p : the number of pivots, further decomposed into the number of degenerate
pivots and the number of nondegenerate pivots; and
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(v) : the CPU time to execute the algorithm (times noted on a HP9000/850
computer under a multiprogramming and multisharing environment.)

We computed the averages of these values over five problem instances for each parameter
setting. Figure 1 gives these averages for the network simplex algorithm with the first eligible
arc pivot rule.

S. n m d a E aW ap p QaE+aW+a CPU
No. p time

1 1000 2000 2 41590 183540 237599 4721.4 462729 4.46
2 2000 4000 2 129125 831593 1356773 15358 2317491 21.62
3 4000 8000 2 406115 3989374 8319325 51936.2 12714814 119.7
4 6000 12000 2 863573 10770317 25045320 116303 36679210 345.64
5 8000 16000 2 1453942 21438864 54392393 197005 77285199 699.88
6 1000 4000 4 87883 284830 403699 10275.6 776412 7.31
7 2000 8000 4 248760 1101807 2090021 29879.8 3440588 31.26
8 4000 16000 4 765758 5171901 12341060 99858 18278719 160.7
9 6000 24000 4 1475919 12277824 33993925 197858 47747668 420.96
10 8000 32000 4 2419120 24614630 77921501 335296 104955251 853.21
11 1000 6000 6 141475 351763 518265 14372.2 1011503 9.33
12 2000 12000 6 379171 1253222 2353123 38837.4 3985516 35.42
13 4000 24000 6 1152766 5655431 15215392 124249 22023589 188.55
14 6000 36000 6 2329115 14249457 42841133 259742 59419705 505.79
15 8000 48000 6 3639711 26157289 90280080 416123 120077080 978.57
16 1000 8000 8 207114 380015 598636 16586 1185765 10.7
17 2000 16000 8 529747 1452365 3012190 47116.8 4994302 42.61
18 4000 32000 8 1534355 5919861 13833227 139434 21287443 200.67
19 6000 48000 8 2918853 13917221 48131763 273089 64967837 518.08
20 8000 64000 8 4532492 25791836 99057203 437558 129381531 1033.05
21 1000 10000 10 266541 410304 739070 18634.8 1415915 12.39
22 2000 20000 10 710258 1555660 3305765 53425.4 5571683 48.08
23 4000 40000 10 1975386 5844629 17922439 145303 25742454 208.3
24 6000 60000 10 3902416 15193494 48615853 312355 67711763 584.34
25 8000 80000 10 5942548 26724636 103238910 487624 135906094 1064.45

Figure 1. A table of computation counts for the network simplex simplex algorithm with the
first entering pivot rule.

Identifying Asymptotic Bottleneck Operations

We consider an operation to be a '"bottleneck operation" for an algorithm if the operation
consumes a significant percentage of the execution time on at least some fraction of the problems
tested. We refer to an operation as an asymptotic nonbottleneck operation if its share in the
computational time becomes smaller and approaches zero as the problem size increases.
Otherwise, we refer to an operation as an asymptotic bottleneck operation. The asymptotic
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bottleneck operations are important because they determine the running times of the algorithm
for sufficiently large problem sizes.

We have earlier shown that the representative operation counts provide both upper and
lower bounds on the number of operations an algorithm performs; therefore, the set of
representative operations must contain at least one asymptotic bottleneck operation. There is
no formal method for determining asymptotic bottleneck operations using computational
testing, unless we are willing to impose further assumptions on the behavior of an algorithm on
large problems. After all, it is theoretically possible that an algorithm behaves one way for
problems of sufficiently large size, and it behaves totally differently for small size problems.
Nevertheless, there are procedures that seem quite effective in practice at determining
asymptotic bottlenecks, even if they are not totally rigorous.

We illustrate how to find an asymptotic bottleneck operation for the network simplex
aE(I) aW(I) ap(I)

algorithm. Let aS(I) = aE(I) + aw(I) + cap(I). Then, we simply plot (l) (I) ' ((l) for

increasingly larger problem instances I and look for a trend. Figure 2 gives these plots for the
network simplex algorithm with the first eligible pivot rule. In these plots, we use the number
of nodes as a surrogate for the problem size and give a plot for each different density d = m/n.
This choice helps us to visualize the effect of n and m on the growth in representative operation
counts. These plots suggest that updating node potentials is an asymptotic bottleneck operation
in the algorithm.
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Figure 2. Identifying asymptotic bottleneck operations.
(a) Plot of the ratio of arc scan operations and total number of operations.
(b) Plot of the ratio of flow update operations and total number of operations.
(c) Plot of the ratio of potential update operations and the total number of
operations.

Estimating Growth Rates of Bottleneck Operations

How should we estimate the growth in the computational time (i.e., CPU time) as the
problem size increases? Instead of directly estimating the growth in the computational time,
we estimate the growth in the asymptotic bottleneck operations. By focusing only on the

I .11

I I 
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asymptotic bottleneck operations, we eliminate the contribution of the nonbottleneck
operations, and therefore, the estimates should be more reliable. In the notation of the
previous section, the asymptotic running time is proportional to lim II I max(al(I), a 2(I),...,
CaK(I)). In the manner that we have selected the representative operations, the asymptotic
running time is also proportional to lim I I max(i(I): i E S). There is no need to consider

the nonbottleneck operations in estimating the asymptotic running time. The CPU time is a
linear function of the terms cai(I) for i = 1 to K, and thus includes information from many of the

nonbottleneck operations. For this reason, the CPU time is a much "noisier" estimator of the
asymptotic running time.

We describe a simple approach for estimating the growth rates of a bottleneck operation,
which in our illustration is aOp, the number of potential updates. Our approach consists of the

following steps:

Step 1. Determine an appropriate functional form for estimating the counts for the operation

(ap. In our example, we choose the functional form to be nY for some choice of a growth parameter

y. (A more common approach would be to choose a function of both n and m; however, we will
consider each network density separately, and for each network density d = m/n, the ratio of m
to n is fixed. Therefore, a function of m and n reduces to a function of n.)

Step 2. Select a candidate lower bound nI and a candidate upper bound nu on the growth rate
using one of several possible methods.

Step 3. Evaluate (using some methodology) whether nI and nu are really the lower and upper
bounds on ap. If not, then return to Step 2 and repeat the process.

For our illustration, we guessed a candidate lower bound of n2.2 on the growth rate of the
number of potential updates ap and guessed a candidate upper bound of n2 . Figure 3 gives a

ap ap cap
plot of - and - . In Figure 3(a), we find that the function 22 has an increasing trend

with the problem size, suggesting that that n2 2 is indeed a lower bound on the number of
ap

potential updates. Further, we find in Figure 3(b) that the function 2 8 has a decreasing trend

suggesting that n2 8 is an upper bound on the number of potential updates. If we want more
refined lower and upper bounds, then we carry out the technique further to see if n2' 4 is a valid
lower bound or if n2 6 is a valid upper bound. The polynomial estimates for the lower and upper
bounds are significantly different because our method for estimating lower and upper bounds
typically is quite conservative, and underestimates the lower bound and overestimates the
upper bound.
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Figure 3. Determining asymptotic growth rates of the bottleneck operations.

We emphasize here that our approach is intended primarily for gathering insight into the

upper and lower bounds on function growth, and is not a rigorous approach. For example, the

upper bound on growth relies on the user of the methodology recognizing that a certain function

has an increasing trend. However, "increasing trend" is not a rigorously defined concept, and

depends to an extent on a judgment call of the user.

In addition to the lack of rigor, the methodology, as we have used it, is perhaps too

conservative, and can be strengthened through careful statistical analysis. To illustrate, in the

fi - -

. n
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previous example, we estimated the growth in the number of potential updates as being
between n2 .2 and n2' 8. The gap between these bounds is very large, and a careful statistical
analysis should be able to narrow the gap considerably.

Comparing Two Algorithms

Suppose that we want to compare two different algorithms AL 1 and AL 2 for solving the

same problem and are interested in knowing which algorithm performs better asymptotically.
We can apply the same methodology for assessing asymptotic bottleneck operations to compare

different algorithms. Let (k) and xs(k) be the total expected number of operations performed
by the algorithms AL 1 and AL 2 on instances of size k. We say that the algorithm AL1 is
asymptotically superior to the algorithm AL 2 if

a(k)
lim =0.
k-oo cs(k)

Virtual Running Times

In Section 1, we have already mentioned some difficulties that arise when we use CPU
times as an empirical measure for computational investigations. Here we mention yet one more
disadvantage. The CPU times force unnecessary rigidity in the testing of an algorithm. To
collect the CPU times for an algorithm, we should conduct all of our tests on the same machine
using the same compiler. Moreover, if the machine is a time sharing machine, then we should
ideally solve all the test problems when the machine has a similar workload. Moreover, the
CPU times for large instances might be dominated by "paging," i.e., the memory management of
the secondary storage space.

We can overcome some of these drawbacks using virtual times instead of CPU times. (We

point out the virtual time is not directly related to the virtual memory.) The virtual running
time of an algorithm is a linear estimate of its CPU time obtained by using its representative
operation counts. The term "virtual time" appears in the thesis of Brown [1988], and is used in a
similar way in this paper. For example, the virtual running time V(I) of the network simplex
algorithm to solve instance I is given by

V(I) = c5 CaE(I) + c6 aw(I) + c7 ap(I),

where c5, c6 and c7 are constants selected so that V(I) is the best possible estimate of the CPU

times given by the algorithm's actual running time CPU(I) on the instance I. One plausible way
to determine the constants c5, c6 and c7 is to use (multiple) regression analysis. To do so, we
consider the points (CPU(I), E (I), W (I), Cap(I)) generated by solving various individual
instances and use regression analysis to determine the constants c5, c6 and c7 that minimizes the

expression Z (CPU(I) - V(I)) 2 .
I
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In our regression analysis, we generated each of the points (CPU(I), arE(I), W(I), ap (I)) by

taking an average of 5 problem instances; we used the averages reported in Figure 1, and so we
found the best linear fit to the 5-point averages. Using regression analysis, we found that for
the network simplex algorithm with the first eligible pivot rule, we could estimate the virtual
running time of an instance I as follows:

V(I) = (aE(I) + 2aw(I) + ap(I))/69000.

V(I)To obtain an idea of the goodness of this fit, in Figure 4 we plot the ratio CPU((I) for all the

data points. We find that in 15 out of 25 cases, the error is less than 3%. In each case, the error
is at most 7%. So for this example, we can use the virtual running time instead of the CPU time
with remarkably little loss of accuracy.
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Figure 4. Determining how well the virtual running time estimates the CPU time.

Using virtual running times has several advantages. First, the virtual running time helps
us to assess the proportion of time that an algorithm spends on different representative
operations. As an immediate consequence, it helps us to identify the bottleneck operations for
different sizes of problem instances, and not only the asymptotic bottleneck operation. For
example, we estimated the virtual running time of the network simplex algorithm as V(I) =
(a E (I) + 2 aw(I) + ap(I))/69000. To estimate the proportion of time spent of potential updates,
in Figure 5 we plot ap(I)/(aE(I) + 2aw(I) + arp(I)). As we can see, for small problems, the

potential updates is not the bottleneck operation; as n increases, however, the proportion of the
time taken by the potential updates increases as well.
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Figure 5. Identifying the percentage of the virtual running time
accounted for by the potential updates.

A second advantage of the virtual running time is that it is particularly well suited for

situations in which the testing is carried out on more than one computer. This situation might

arise for several reasons: for example, several users might be conducting computational

experiments at different sites; or the same user might wish to conduct additional tests after

upgrading from an old computer. This situation is very common in the research literature

because authors often conduct additional experiments at the suggestion of a referee or editor.

When we move from one computer system to another, the representative operation counts

remains unchanged. Using the representative operation counts of the previous study and the

constants of the new computer system (obtained in the regression estimate for the virtual

running time), we can obtain the virtual running times for all problems of the previous study

measured in terms of the new computer system.

The third advantage of the virtual running times is that it permits us to eliminate the

effect of "paging" and "caching" in determining the running times. When a computer program

executes a large program whose data does not fully fit into the computer's primary memory

(e.g., RAM), it stores part of the data in the secondary memory (e.g., disk) with higher

retrieval times. As a result, large programs run slower. In the virtual running time analysis, if

we evaluate the constants using small sized problems (that fully execute in the primary

memory), then the virtual running times for large sized problems would be as though the

program is entirely run in the primary memory. Thus the virtual running times can be used to

estimate the running time of an algorithm on a computer with sufficiently large primary

memory.
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A natural question is whether the constants used in the virtual running time are robust, i.e.,
do they give an accurate estimate of the CPU times for all possible problem inputs. Again, our
use of virtual CPU times as stated here is not fully rigorous, but our limited experience so far
has suggested that they do seem to be robust. In practice, we can also measure the robustness of
the constants using statistical analysis.

Additional Insight of Algorithms

We can also use computation counts to gain additional insight concerning an algorithm. For
example, we can use the preceding analysis to estimate the number of pivots performed by the
network simplex algorithm. In the linear programming literature, it is widely believed that
for most pivoting rules, the number of pivots is typically proportional to m and rarely more
than 3m. Let us try to verify whether this result is valid for the first eligible pivot rule as
applied to our randomly generated problems. Notice that this rule would imply that if we plot
the ratio of (number of pivots)/n for different network densities d, then we should obtain
nonincreasing functions. The plots given in Figure 6(a) indicate that this conjecture is not true
and the number of pivots, for a fixed d, is not bounded by a linear function of n. However, if we

plot (number of pivots)/n 2 for different network densities, then as indicated by Figure 6(b), we
do obtain nondecreasing functions. Therefore, the growth rate of the number of pivots is bounded
from above by n2 and bounded from below by n.
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Figure 6. Determining lower and upper bounds on the growth rate
of the number of pivots.

We might also be interested in determining what percentages of pivots are degenerate as
the network size grows. The data given in Figure 1 indicates that the ratio of degenerate pivots
to total pivots varies between 70% and 90%. We might plot a few more graphs to gain
additional insight about the network simplex algorithm. For example, we might plot the
average size of the tree whose node potentials change during the pivot operation (i.e.,
ap(I)/p). This plot would give us a good estimate of the running time per pivot since the

potential updates is the bottleneck operation, at least for the first entering pivot rule.

In addition, we might be interested in the convergence results of the network simplex
algorithm, i.e., how quickly does the network algorithm converge to the optimal objective
function value? Does the algorithm quickly obtain a solution with a near optimal objective
function value and then slow down, or does it slowly approach the optimal objective function
value and then converges rapidly. We could, in principle, provide a partial answer to this
question by selecting a few sufficiently large instances and plotting the objective function values
as a function of the number of pivots.

5. LIMITATIONS

The methodology discussed in this paper is broadly applicable to sequential algorithms.
We can always determine a representative set of operations since the set of all operations is
itself a representative set. In addition, our experience suggests that the representative set of
operations is typically quite small. Consequently, our methodology can be used to obtain
valuable information about an algorithm's behaviour and the comparative performance of

---

. - 11
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different algorithms. However, our methodology has some limitations and one should be
cautious in deriving conclusions. Here we list some of the important limitations.

1. Our methodology ignores constants (except while computing the virtual running times). The
methodology typically does not help us to measure speedups in the algorithm obtained by
improved coding. As an extreme example, an improvement by a factor of 10 is quite significant
in practice, but may be ignored by our methdology. Indeed, many empirical studies within the
operations research literature are concerned with making minor improvements in the algorithm
or in the data structure so that the running times improve by a constant factor. For such
situations, we may also keep track of the CPU times and the analysis based on CPU times can be
used to evaluate such improvements.

2. Our methodology is not appropriate for analysing parallel algorithms. Although, we can
keep track of the number of representative operations in a parallel algorithm, these numbers
can not necessarily be used to estimate CPU times because many of these operations are
performed in parallel. Communication overhead is often the bottleneck operation in parallel
algorithms, and it is quite difficult to estimate this overhead using only computation counts.

3. In certain circumstances, our methodology can lead to incorrect conclusions. Let we illustrate
a situation in which this approach will underestimate the asymptotic growth rate of the
bottleneck operation. Suppose that the actual growth rate of a bottleneck operation is h(n) = n2

+ 1000n and we have data only for instances n < 2,000. Suppose we conjecture that the growth
rate of the function is n1 '7. When we plot the ratio (n2 + 000n)/nl 7 for various values of n, we
obtain the plot shown in Figure 7, which is a decreasing function of n. Therefore, using the
methodology suggested earlier, we would misestimate n1 7 as an upper bound on h(n).
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What went wrong in the previous example that would lead us to make such a significant

misestimation of the running time? In our case, the growth rate had two components with very

dissimilar constant terms and we did not have data for sufficiently large size problems so that

the effect of the constant terms become insignificant. Had the growth function been n2 + 10 n or

had we solved problems of size n = 100,000, we would not have misestimated the running time,

except possibly by a minimal amount. We anticipate that errors of this type will be rather

infrequent in practice.

4. We have suggested that we can determine an expression for the virtual running time using

regression analysis. In general, regression analysis will misestimate the constant terms in the

expression if the representative operations counts are highly correlated. In this case, we might

prefer to use alternate methods for estimating the constants, possibly including computer

timings of the basic operations.

In addition to these limitations, there are a number of issues that we have either not

treated or have treated in a very limited way. For example, many algorithms and heuristic

are not guaranteed to get the optimal solution. In this case, one may be very interested in the

deviation of the solution from optimality; i. e., one may be interested in either in the absolute

error or the relative error or both. We have also not touched much on statistics, or on the

selection of test problems.

6. SUMMARY

Most iterative algorithms for solving network flow problems repetitively perform some

basic operations. For almost all algorithms, we can decompose these basic operations into

fundamental operations so that the algorithm executes each operation in 0(1) time. An

algorithm typically performs a large number of fundamental operations. We refer to a subset of

fundamental operations as a set of representative operations if for every possible problem

instance, the sum of representative operations provides an -upper bound (to within a

multiplicative constant) on the sum of all operations that an algorithm performs. We have

shown that these representative operation counts might provide valuable information about an

algorithm's behavior that is not captured by the CPU time. For example, the representative

operation counts allow us (i) to determine the asymptotic growth rate of the running time of an

algorithm independent of its computing environment; (ii) to assess the time an algorithm spends

on different basic operations; and (iii) to compare two algorithms executed on different

computers; and (iv) to estimate the running time of an algorithm on a computer different from

the one carrying out the experiments.

The simple methodologies that we have presented for conducting empirical analysis of an

algorithm using representative operation counts do not provide rigorous guarantees;

nevertheless, they often provide considerable insight about an algorithm's behavior, and they

typically yield far more insight than is obtainable through analyzing only CPU times. The

ideas we have outlined in this chapter apply to most network algorithms and should, as well,

apply to optimization algorithms for problems arising in several other application domains.
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