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Abstract

In this survey we review methods to analyze open queueing network models for discrete
manufacturing systems. We focus on design and planning models for job-shops. The survey
is divided in two parts: in the first we review exact and approximate decomposition methods
for performance evaluation models for single and multiple product class networks. The second
part reviews optimization models of three categories of problems: the first minimizes capital
investment subject to attaining a performance measure (WIP or leadtime), the second seeks to
optimize the performance measure subject to resource constraints, and the third explores recent
research developments in complexity reduction through shop redesign and products partitioning.
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1 Introduction

A large fraction of products is manufactured in discrete systems, where items are processed either
individually or in lots. Therefore, an important strategic problem is the design and planning
of discrete manufacturing systems. Examples of decisions involved are: selection of products and
technology, choice of equipment and capacity, and allocation of products to plants. For the purpose
of this paper, we group the design problems in three classes proposed in Bitran and Dasu (1992):
(i) targeted system performance (SP1), (ii) optimal system performance (SP2), and (iii) partitioning
of the facility (SP3). We present problems of classes SP1, SP2 and SP3 formulated as optimization
problems.

In class SP1 the objective is to minimize the investment in the manufacturing system subject
to the constraints of the desired system performance. Typical performance measures are work-in-
process WIP (in-process inventory), job leadtime (cycle time), throughput (production rate) and
equipment utilization (traffic intensity). In the sequel we choose WIP as a performance measure.
Consider the following example of class SP1:

(SP1.1) Targeted WIP level:
Objective: minimize cost of equipment acquisition
Decision variables: capacity of each workstation, technology
Constraints: upper bound on WIP level.

In class SP2 we want to optimize system performance subject to a limited budget for investment
in the system. An example of class SP2 is given below:

(SP2.1) Optimal WIP level:
Objective: minimize WIP level
Decision variables: capacity of each workstation, technology
Constraints: upper bound on cost of equipment acquisition.

Note that SP1.1 and SP2.1 involve a trade-off between investment capital and working capital.
Finally, in class SP3 we seek to subdivide the manufacturing system into smaller units (which can
be thought of as plants within the plant) to improve the overall performance. However, partitioning
may require duplication of equipment and resources. Consider the following example of class SP3:

(SP3.1) Targeted number of products and WIP level in each plant:
Objective: minimize cost of equipment acquisition
Decision variables: number of plants, product mix in each plant,

capacity of each workstation
Constraints: upper bound on number of products in each plant and WIP level.

Note that SP3.1 also involves a trade-off between cost of adding capacity and reduction of
managerial complexity in the system. It may be seen as a special case of class SP1. The decisions
involved are: number of plants into which we subdivide the original system, allocation of products
to the plants, and choice of capacity in each plant. In fact, problems of class SP3 are special cases
of both classes SP1 and SP2. We consider partitioning problems separately in order to emphasize
their importance in the design of production systems (see section 4).
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This paper reviews the developments of optimization models for classes SP1, SP2 and SP3,
combining techniques of mathematical programming and the theory of open queueing networks
(OQNs). We focus on design and planning models for job-shops. For completeness, the paper is
divided in two parts. In the first part we review the so called performance evaluation models to
compute performance measures for OQNs, such as WIP and leadtimes, and in the second part we
review the optimization models. Roughly speaking, the difference between a performance evaluation
and an optimization model for OQNs is that the first one describes performance measures under
certain condition while the second prescribes decisions.

In a previous survey, Bitran and Dasu (1992) analyzed several optimization and performance
evaluation models for job shops. In this present review that survey is updated and extended
with a more quantitative flavor. We present multiple product class OQN models in more detail,
emphasizing the importance of interference among classes and light-traffic approximations. Solution
algorithms are presented based on marginal analysis and greedy heuristics. We include also recent
developments such as products partitioning, and suggest perspectives for future research.

1.1 Network of Queues Representation of Discrete Manufacturing Systems

Job-shops are complex discrete manufacturing systems that process a wide variety of products or
jobs in low volumes (Chase and Aquilano, 1992). In general, job-shops involve complex job flows
through the workstations (or simply stations) and waiting queues in front of the machines. We
can represent a job-shop as a network of queues, where nodes correspond to the stations and arcs
correspond to job flows between the stations.

The study of queueing networks began basically with the work of Erlang (1917) in telephony.
Since then, various examples appeared in different areas; for example, communication, computation,
transportation, production, maintenance, biology (neural networks), health (behavior models),
chemistry and materials (polymerization), among others; see Disney and Konig (1985). Hsu et
al (1993) and Suri et al (1993) provided a broad description of the use of queueing networks to
represent manufacturing systems. Each node contains the following elements: (i) arrival process,
(ii) service process, and (iii) waiting queue. Figure 1 illustrates this representation.

The arrival process at a station is described by job interarrival times, which can be deterministic
(D) or probabilistic. If the arrival process is probabilistic, it may either depend on other interarrival
times and the service process, or consist of independent and identically distributed (iid) interarrival
times. The former case is called a G-arrival process and the latter case, a GI-arrival process or
renewal process. An example of a G-arrival process dependent on the service process occurs if an
arriving job balks when the waiting queue is too long, or if the job is removed from the queue after
waiting for a long time. An instance of a particular GI-arrival process is when the interarrival
times are exponential (memoryless or Markovian process M). We can have all jobs belonging to
a single class or product family, or different jobs belonging to multiple classes (sometimes one job
class may be artificially used to model interruptions such as machine breakdowns). All jobs of the
same class are assumed statistically identical. We may also have either individual job arrivals or
bulk-arrivals at the station.

The service process at a station is described by job service times, classified as deterministic
(D) or probabilistic. If the service process is probabilistic, it may either depend on other service
times and the arrival process, or consist of iid service times. Some authors have called the former
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Figure 1: A station with identical machines and a single queue

case as a G-service process and the latter case as a GI-service process (Disney and Konig, 1985).
Here we will refer to both as a G-service process since it is more usual in the literature. An
example of the G-service process dependent on the arrival process occurs when the service time
varies according to the number of jobs in the queue. Similarly to interarrival times, service times
may be independent and identically exponential random variables (M-service process). Stations
may have only one machine (single server), or many machines (multiple servers). The machine may
execute an operation for each job individually or in batch (bulk-service), and eventually breaks
down. Each machine may represent a set of resources like different machines, operators, tools, etc.
We use, for example, the notation GI/G/m to denote a single queueing system where the arrival
process is a renewal process (the first GI), the service times are iid random variables (the second
G), and the number of servers in the system is m.

Finally, the waiting queue (or buffer queue) of a station may have either limited or unlimited
capacity for the number of jobs in the queue, which is generally determined by the available physical
space. If it is full, new job arrivals at the queue are blocked. The queue has a discipline or rule
to sequence jobs waiting for service. Examples of queueing disciplines are: first-come first-served
(FCFS), job priority, shortest-processing-time-first, and largest-processing-time-first. When the
rule is based on job priority, preemption may or may not be allowed. In the preemptive case, the
highest priority job in the queue starts service as soon as it arrives, even if a job with lower priority
is already in service. In the non-preemptive case, a job already in service can not be interrupted
until it is completed.

A set of nodes, arcs and jobs constitute a network of queues with the following characteristics:
(i) number of stations (nodes), (ii) sequence of operations (routing), and (iii) type of queueing
network: open, closed and mixed. The number of nodes in the network (greater or equal to 1)
corresponds to the number of stations offering different operations. The sequence of operations or
routing through the stations may be sequential, sequential with feedback, assembly, arborescent,
acyclic, and cyclic. Feedback arcs can be used to represent, for example, rework in manufacturing,
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and probabilistic routings can model, for example, machine failures',
A queueing network can be classified as either open, closed, or mixed. In an open queueing

network (OQN), jobs enter the network, receive service at one or more nodes, and eventually leave
the network. The number of jobs flowing among the nodes is a random variable. In a closed
queueing network (CQN), there are no external job arrivals or departures. The departure rate
from any designated node is a random variable but the number of jobs flowing among the nodes
is fixed. However, we can artificially represent external job arrivals and departures in a station of
a CQN by defining this station as an instantaneous load-unload station. The load-unload station
switches at the same moment an internal job arrival with an external job arrival without varying the
total number of jobs in the CQN. Note that, in this way, we can represent a flexible manufacturing
system (FMS) as a CQN. If the network has multiple classes, we can redefine open sub-networks
for some classes and closed sub-networks for other classes. In this case, the resulting network of
queues is called mixed.

The queueing network models analyzed in this paper assume that the system attains equilibrium
or steady-state. The arrival processes are probabilistic with iid interarrival times at stations. Jobs
may belong to a single class or to multiple classes, and arrive individually. There is no limit on
the number of jobs in each class, but jobs can not change from one class to another. The service
processes are also probabilistic with iid service times at stations. Each station may have one or
more identical machines and each machine serves only one job at a time. Jobs can not be combined
or created in the network, and the waiting queues have unlimited capacity with discipline FCFS.
All models discussed in this paper correspond to OQNs with acyclical or cyclical structures and
deterministic or probabilistic routings (note that OQN models are analytically more tractable than
CQN models, and may approximate CQN models; see e.g. Whitt (1984) and Calabrese (1992)).
Other models for the various cases not considered in this review can be found in the literature
discussed below and in the references cited there.

1.2 Related Literature Reviews

Disney and Konig (1985) presented an extensive survey of queueing network theory, covering the
seminal works of Jackson and the extensions of Kelly, including a bibliography of more than 300
references. Other surveys are Lemoine (1977) and Koenigsberg (1982). Buzacott and Yao (1986)
discussed the developments of CQN models before 1986 (oriented to FMS applications) and classi-
fied the approaches based on the different research groups. Suri et al (1993) examined performance
evaluation models for different manufacturing systems such as single stage systems (single queues),
production lines (tandem queues), assembly lines (arborescent queues), job-shops (OQN), and FMS
(CQN). Suri et al commented on the use of queueing theory in topics like MRP II, JIT, Kanban,
and suggested alternative approaches such as sensitivity analysis in simulation, models based on
Petri net, and hierarchical queueing networks.

Buzacott and Shanthikumar (1992, 1993), Hsu et al (1993) and Bitran and Dasu (1992) analyzed
both performance evaluation models and optimization models for queueing networks. Buzacott and
Shanthikumar presented an extensive analysis oriented to the design of different manufacturing
systems such as flow lines, automated transfer lines, job shops, FMS and multicellular systems.
They analyzed optimal design problems and, in particular, considered some optimization models in
job shops that will not be covered here, such as optimal allocation of workers to stations, optimal
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number of operators in the system, optimal allocation of jobs to stations, and analysis of routing
and time diversity effects in job processing. Hsu et al examined optimization models for FMS
based in CQNs; they also suggested the use of alternative techniques like algebra max-plus, fuzzy
sets and expert systems. Bitran and Dasu discussed strategic, tactical and operational problems
of manufacturing systems based on the OQN methodology, with a special attention to design and
planning models for job-shops. As we mentioned earlier, this focus is extended in this paper.

Most approaches to optimization models are based on decomposition methods (see below) to
evaluate performance measures for an OQN. More recently, alternative approaches have been ex-
plored (Brownian models) based on heavy-traffic limit theorems to evaluate performance measures.
In section 3.2.1 we describe an example of this approach (Wein, 1990) without exploring further
developments on this topic since Harrison and Nguyen (1993) recently reviewed the state of the art
of Brownian models for multiple-class OQNs.

1.3 Structure and Notation

In section 2 we examine decompositon methods for performance evaluation models for OQNs. In
section 2.1 we briefly review exact decomposition methods for Jackson networks (M/M/m queue-
ing networks), and in section 2.2 we review approximate decomposition methods for generalized
Jackson networks (GI/G/m queueing networks). In section 3 we deal with problems SP1.1 and
SP2.1, and review solution methods based on some convexity results and performance evaluation
models of section 2. In section 3.1 we present algorithms to solve SP1.1 and SP2.1 for Jackson
networks, and in section 3.2 we present algorithms to solve SP1.1 and SP2.1 for generalized Jackson
networks. Finally, in section 4 we emphasize the importance of problem SP3.1 in the manufacturing
environment and suggest some perspectives for future research.

In the following sections, we generally use the indices i and j to indicate station, the index k
to indicate product class, and the index 1 to indicate class operation at stations. The notations
E(x), V(x) and cx denote respectively the expected value, the variance and the square coefficient
of variation (scv) of a random variable x. The scv is defined as cx = I.

2 Performance Evaluation Models for OQNs

Performance evaluation models have been addressed using: (i) exact methods, (ii) approximate
methods, and (iii) simulation and related techniques. Exact methods exist for Jackson networks
(section 2.1). The main result is that if the external interarrival and service times are exponentially
distributed, we can define the equilibrium distribution (if it exists) of the number of jobs in the
network as a product form, and decompose the network in a set of stocastically independent stations.
Thus each station is individually analyzed as an independent M/M/m system.

In most manufacturing systems the arrival and service processes are generally less variable
than the Poisson process, and the assumption above does not apply. In the absence of exact
methods for general OQNs, we can use simulation and related techniques (Law and Haider, 1989,
Law and McComas, 1989). These approaches allow the use of more elaborate assumptions that are
close to reality. The main drawback is the computational requirements that limit the number of
alternatives to be considered. Techniques like perturbation analysis suggest possible ways to reduce
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the computational cost. These techniques are beyond the scope of this work and are described in
Ho and Cao (1983), Ho (1987) and Suri (1989).

The limitations imposed by exact methods and simulation led authors to develop approxi-
mate methods. These are classified in five categories: (i) diffusion approximations, (ii) mean value
analysis, ((iii) operational analysis, (iv) exponentialization approximations, and (v) decomposition
methods.

Diffusion approximations are motivated by heavy-traffic limit theorems and have generated
new solution methods for OQNs (e.g., Reiman, 1990, Harrison and Nguyen, 1990). They have been
applied to scheduling and operational control problems. Mean value analysis (Seidmann et al, 1987,
Suri et al, 1993), operational analysis (Denning and Buzen, 1978, Dallery and David, 1986) and
exponentialization approximations (Yao and Buzacott, 1986, Hsu et al, 1993) have been basically
used to analyze CQNs. The most frequently used approximate methods to analyze OQN models for
job-shops have been decomposition methods. In this paper we only review decomposition methods
(section 2.2).

2.1 Jackson Networks (Exact Decomposition Methods)

Consider a network of queues composed of n stations, each one with one or more identical machines
and infinite waiting capacity. Stations 1, 2,..., n are internal stations and station 0 is the external
station of the system. For each internal station j, jobs arrive from station 0 with iid interarrival
times a0oj, wait in queue for an available machine, and are processed with iid service times sj. After
being processed, jobs leave station j with interdeparture times dj and go to station i, i = 0,..., n,
with transition probability defined by a Markov chain. We assume that any sequence of external
interarrival times, service times and routing decisions are mutually independent, and that jobs are
serviced at each station according to a FCFS discipline.

We refer to the network above as a Jackson open queueing network when we have exponential
distributed external interarrival and service times (Poisson processes). Otherwise we have a gener-
alized Jackson open queueing network (or simply, a general OQN). Jackson networks have elegant
exact solutions in a product form which were shown by Jackson (1957, 1963), as we will see below.

2.1.1 Single Class M/MI/m OQNs

Assume that all jobs belong to the same class. Consider the following notation for the input data:
n number of internal stations in the network.

For each station j, j = 1,... , n:
m j number of identical machines at station j, mj > 1
Aoj expected external arrival rate at station j (A0 j ao )

psj expected service rate of each machine at station j (j =
For each pair (i, j), i = O,..., n,j = O,.. .,n:
rij probability of a job going to station j after completing service at station i.

Thus our input data has (n + 1)2 + 3n numbers and each station j is described by 3 parameters:
{mj, A0oj, j }. Successive stations are visited according to an absorbing Markov chain with transition
matrix R = {rij ,O < rij < 1,i = 0,...,n,j = 0,...,n}, where En=ori = 1,i = 0,...,n, and= - ',= ', Yj=0rij= 1, i= O,..,n, an
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roo = 1 by definition. Note that roo = 1 eliminates any chance of a job returning to the system
and so, it reduces the input data to n2 + 3n numbers.

Let Q = {qij E R, i = 1 , j = 1,..., n} and qi = 1- Z iqij. Q is the matrix R without
line 0 (probability of a job entering the system at station j) and without column 0 (probability of a
job leaving the system by station i). Similarly, qio, i = 1,..., n, is the column 0 of matrix R without
the element of line 0. A deterministic job routing may be also described by Q and qio for all i, since
it is a particular case of a probabilistic routing. If qjj > 0, we say that station j has an immediate
feedback arc. To illustrate the transition matrix, consider a symmetric job shop (Shanthikumar
and Buzacott, 1981) for which Q = (qij = I;qii = i ~ j,i = i,...,n,j = 1,...,n) and qio =
ni = 1,..., n. Now consider a deterministic flow-shop with all stations in series in the sequence
1, 2,..., n, for which Q = {qi,i+l = 1, i = 1,..., n - 1; qij = 0 otherwise}, qio = , i = 1,..., n -1
and qno = 1. Note that these two examples do not contain immediate feedback arcs.

Traffic Rate Equations

The traffic rate equations provide the expected arrival rate at each station. Let Aj be the expected
arrival rate at station j, defined as Aj = E(la), where aj is the interarrival time at station j. Under
the assumption of steady-state, Aj is obtained from the following system of linear equations:

n

A = Aoj + ± qijAi for j = 1,..., n (1)
i=l

Given that qio > 0 for i = 1,..., n, it can be shown that (1) has a unique solution satisfying
Aj > 0 for all j. Using this solution we can calculate the expected utilization pj (or traffic intensity)
of station j, defined as:

Pi = A (2)

where 0 < pj < 1. The ratio A in (2) is called offered loaa (or workload), and corresponds to the
expected number of busy machines at station j, also denoted by aj = pjmj. The expected arrival
rate at station j from station i is given by:

Aij = Aiqij (3)

and the expected (external) departure rate to station 0 from station j is given by:

n

Ajo = Aj(1 - Z qji) (4)
i=l

Adding Ajo (or Aoj) for all j, we obtain the throughput Ao (or production rate) of the network.
The expected number of visits E(Vj) of an arbitrary job to station j is then evaluated by:

E(Vj)= i (5)

Let L be a state of the system defined as a vector L = (L 1, L 2,..., Ln), where Lj corresponds
to the number of jobs in queue and in service at station j. Assuming that the system reaches
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steady-state, let 7r(L) be the probability of the system being in equilibrium at state L. Jackson
showed that 7r(L) is given by the following product form:

n

7r(L) = rj(Lj) (6)
j=1

with

-F--'-- = if L < m3

7rj(Lj) = tj Lj3-!
irr(O)Ai pi

mj m! if Lj > mj

where rj(Lj) is the probability of station j having Lj jobs (Lj = 0, 1,...) and rj(O) is a normalizing
constant. These results imply that in order to compute the equilibrium probability for a given state
L, we may consider each station independently (note that (6) is the product of the probabilities
of each M/M/mj queue in the network). Thus, after applying the linear system (1) to determine
each Aj we may decompose the network into n individual M/M/mj stations, each one described
by {mj, Aj, j . To evaluate performance measures we just consider each station individually and
independently of the others. For example, the expected waiting time E(Wqj) (or mean delay) of a
job in the M/M/mj queue of station j can be derived from (6), given by (Tijms, 1986, p.333):

E(Wqj) = (mjPj)m ir (0) (7)
!,jmj(1 - pj)2mj!

where

r(O) 1 (mjpjt + (mjpj)mr() = { (1 - pj)mj! }-
t= 0

Note in (7) that if mj = 1, then E(Wqj) = - - The expected number of jobs E(Lqj) in
queue of station j can be easily obtained applying Little's law: E(Lqj) = AjE(Wqj).

The expected leadtime E(T) (or cycle time) for an arbitrary job, including waiting times and
service times spent in the network from the first arrival until the final departure, is given by:

n

E(T) = r E(Vj)(E(Wqj) + E(sj)) (8)
j=1

where E(Vj) is the expected number of visits at station j defined by (5), E(Wqj) is defined by
(7), and E(sj) is the expected service time of a job at station j. The expected number of jobs in
the network can be defined in a similar way. An interesting observation is that, even though the
number of jobs at the stations are statistically independent at a given instant of time, the waiting
times at different stations are in general not independent random variables. The variance of the
leadtime in the network is usually approximated by ignoring the correlation in the waiting times
(Shanthikumar and Buzacott, 1984). Buzacott and Shantikhumar (1993) provided an analysis of
Jackson networks considering the correlation above.
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2.1.2 Multiple Class M/M/m OQNs

Kelly (1975, 1979) extended Jackson's product form solutions to multiple class queueing networks
for the case in which service times are independent of job class (see also Baskett et al, 1975).
The model allows the definition of a deterministic routing for each class. Even if we impose other
service disciplines (e.g., priority queues), we obtain a solution in product form. Consider the state
S = (S1, S 2,..., Sn), where Sj denotes the state of station j. Each Sj corresponds to a row vector
(sjl, sj2,..., sj,Lq), where Lqj is the queue length of station j and sjl, I = 1,..., Lqj, specifies the
class of the job at the l-th position in the queue. The equilibrium probability 7r(S) has the following
product form:

7r(S) = K f(S) gl(S1) g2(S2)... gn(Sn) (9)

where K is a normalizing constant, f(.) is a function of state S, and gj(.) is a function of station j.
Although these results are interesting, practical implementations are difficult due to the size of the
state space in (9). Furthermore, the assumptions underlying Jackson networks are very restrictive
for general job shops and other manufacturing systems. For instance, Bitran and Tirupati (1988)
suggested that exponential distributions overstate the variability in the service times found in many
manufacturing operations. For further details regarding Jackson networks the readers are referred
to the surveys of Disney and Konig (1985), Walrand (1990), Suri et al (1993) and Buzacott and
Shanthikumar (1993), and the references cited there.

2.2 Generalized Jackson Networks (Approximate Decomposition Methods)

Decomposition methods may be seen as efforts to extend Jackson's product form solution and the
"independence" between stations to general OQNs (generalized Jackson networks). The arrival
and departure processes are approximated by renewal processes, and each station is analyzed as
a stocastically independent GI/GIm queue. The complete decomposition procedure is essentially
described in three steps:

Step 1: Analysis of interaction between stations of the OQN,
Step 2: Decomposition of the OQN into systems of individual and independent stations,
Step 3: Recomposition of the decomposition results to analyze the general performance of the

OQN.

In step 1 we determine the internal arrival flows for each station. In step 2 we compute the
performance measures for each station separately. In step 3 we compute the performance measures
for the whole network. Step 1 is fundamental in this procedure and involves three basic processes,
namely: (i) merging or superposition of arrivals, (ii) departures, and (iii) decomposition or splitting
of departures.

Figure 2 illustrates each one of these processes. The superposition process merges the individual
arrival flows from other stations (including the external station), producing a merged arrival flow
to the station. The departure process analyzes the effects of the merged arrival flow in the queue
of a station, producing a merged departure flow from this station. Finally, the splitting process
decomposes the merged departure flow from a station into individual departure flows to other
stations (including the external station).

9
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Figure 2: Superposition of arrivals, departures, and splitting of departures

In general, just the first two moments of the distributions (typically the mean and the scv) are
sufficient to provide a good approximation, and they have been often utilized to describe the flows
above. This approach was initially proposed by Reiser and Kobayashi (1974) and was improved
by Sevcik et al. (1977), Kuehn (1979), Shanthikumar and Buzacott (1981), Albin (1982), Whitt
(1983a), Bitran and Tirupati (1988), Segal and Whitt (1989), Whitt (1994), among others. Shan-
thikumar and Buzacott were the first to apply this method to manufacturing systems. In section
2.2.1 we present steps 1, 2 and 3 for a single class GI/G/1 queueing networks with probabilistic
routing. In section 2.2.2 we extend these steps to GI/G/m queueing networks, and in section 2.2.3
we deal with multiple class GI/GIm queueing networks with deterministic routing for each class.
This last case is widely considered in practice to model job-shop systems.

2.2.1 Single Class GI/G/1 OQNs with Probabilistic Routing

In this section we assume that all jobs belong to the same class and move through stations according
to a probabilistic routing. Both external interarrival times and service times are lid but now we
consider general distributions. Initially we assume single server stations. Consider the following
notation for the input data:

n number of internal stations in the network.
For each station j, j = 1, . . ., n:

Aoj expected external arrival rate to station j (Aoj = E(I)

caoj scv or variability of external interarrival time at station j (caoj = E(ao)2

/ij expected service rate at station j (j = -) .

csj scv or variability of service time at station j (csj = v ).
For each pair (i,j),i = 1,..., n,j = 1,..., n:

qij probability of a job going to station j after completing service at station i.

10



Thus our input data has n2 + 4n numbers and each station j is described by 4 parameters:
{Aoj,caoj, Ij,csj}. Similarly to section 2.1, let the transition matrix Q = {qij,i = 1,..., n,j =
1,..., n} and qio = 1-j= qij. In what follows we consider only OQNs with no immediate feedback
arcs (i.e., qii = 0, i = 1,..., n). If an OQN originally contains immediate feedback arcs, then we
can easily remove them from the OQN adjusting the initial parameters (see Whitt, 1983a). This
procedure improves the quality of the approximations. All assumptions for the Jackson networks
are also assumed here except, of course, exponential distributions for external arrival and service
processes (which result in caoj = 1 and csj = 1 for each station j).

Step 1

In step 1 we want to determine two parameters for each station j: (i) the expected arrival rate
Xj and (ii) the scv or variability of interarrival time caj (note that for Jackson networks we ob-
tain V(aj) = E(aj)2 and, therefore, caj = 1). In other words, starting with the initial parame-
ters {Aoj,caoj,j, csj} and the matrix Q, we want to describe each station j by the parameters
{Aj, caj, I-L, csj}. The two parameters Aj and caj are determined solving two linear systems. Firstly,
we obtain exact expected arrival rates from the traffic rate equations (1), similarly to the Jackson
networks. These are used to obtain approximate variability parameters from the traffic variability
equations defined below. These systems can be shown to have a unique non-negative solution.

Traffic Variability Equations

The traffic variability equations involve the three processes discussed earlier: superposition of
arrivals, departures, and splitting of departures. They provide approximations for the interarrival
time variability caj at each station j. These approximations combine two basic methods: the
asymptotic method (Sevcik et al, 1977) and the stationary-interval method (Kuehn, -1979).

Superposition of Arrivals

In the superposition process (figure 2), the expected arrival rates and interarrival time variability
parameters at station j are combined, producing the merged expected arrival rate Aj (from (1))

and the merged interarrival time variability caj (remember that Aj -E and caj = (a) The
asymptotic method and the stationary-interval method may be used to determine caj (or V(aj)).
These methods are also called macro and micro, respectively, because of the macroscopic and the
microscopic view of the arrival process (Whitt, 1982).

Assume that the arrivals are occurring at station j since t = -oo, and a new arrival occurs
at t = 0. Let Sp be the elapsed time until the p-th arrival after t = 0. Both methods yield the
same expected time interval E(aj), but may yield very different variances V(aj). The asymptotic
method takes a macroscopic view and try to match process behavior over a relatively long time
interval, yielding V(aj) = limp,, v(sP). The stationary-interval method takes a microscopic viewP
and try to match process behavior during a relatively short time interval. It yields V(aj) = V(S1),
where S1 is referred as the stationary interval. Moreover, the asymptotic method is asymptotically
correct as pj - 1 (heavy-traffic intensity), and the interval-stationary method is asymptotically
correct as p -+ oo, when the arrival process tends to a Poisson process.

Let caij be the interarrival time variability at station j from station i. Based on the asymptotic
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method, the superposition caj is a convex combination of caij given by (Sevcik et al, 1977):

ca 3 = AOJ Ac ~aij (10)caj = _j caoj+Zn i.aij._ = i caij (10)
Aj i=1 aj i=0 a

where ij and j are obtained from (3) and (1), respectively. Based on the interval-stationary
method, the superposition caj results in a non-linear function (Kuehn, 1979). Note that if the
arrival process is Poisson (i.e., caij = 1, i = O,..., n), then (10) is exact and returns caj = 1.

The asymptotic approximation (10) does not reflect the convergence to the Poisson process
as p - oo; on the other hand, the stationary-interval approximation deteriorates as pj - 1.
Albin (1982, 1984) suggested a more refined approximation to caj with a relative error around
3% in comparison to simulation. This approximation is based on the convex combination between
the value obtained by (10) and the value obtained by the stationary-interval method. Whitt
(1983b) simplified Albin's refinement substituting the stationary-interval method by a Poisson
process obtaining:

n Aij
caj = wj E-caij + 1 - Wj (11)

i=O j

where
1

w = 1 + 4(1 - pj)2 (vj - 1)

1

vi =O ij )2

The approximation (11) yields results very close to Albin's hybrid approximation.

Departures

In the departure process (figure 2), the merged expected arrival rate and the merged interarrival
time variability at station j, together with the service time variability csj, are used to determine
the merged expected departure rate and the merged interdeparture time variability from station
j. If station j is not saturated (i.e., pj < 1) and is in steady-state, then we have the expected
departure rate equal to the expected arrival rate. However, the evaluation of the interdeparture
time variability is not so easy.

Let cj be the scv or variability of interdeparture time at station j. Based on the stationary-
interval method and using Marshall's formulae for a GI/G/1 system we obtain (Kuehn, 1979):

cdj = ca3 + 2p2cs 2pj(1 - pj)E(Wqj) (12)

where E(Wqj) is the expected waiting time in queue at station j. Substituting in (12) the
Kraemer&Lagenback-Belz approximation for E(Wqj) (see equation (16) below), we obtain the
interdeparture time variability as a convex combination of caj and csj given by:

cdj = pcsj + (1 - pj2)caj (13)
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where pj is known from (2). Note that if the arrival process and the service process are Poisson (i.e.,
caj = csj = 1), then (13) is exact and produces cdj = 1. Note also that if pj -+ 1, then we obtain
cdj -+ csj, suggesting that the interdeparture time variability tends to the service time variability
as the expected utilization of station j becomes very high (i.e., long queues at station j tend to
diminish the effect of the interarrival time variability). On the other hand, if pj -+ 0, then we
obtain cdj -+ caj, suggesting that the interdeparture time variability tends to the interarrival time
variability as the expected utilization of station j is very low and no waiting queues are expected.

Based on the asymptotic method we obtain an elementary approximation to cdj, given by
(Whitt, 1983a):

cdj = caj (14)

The approximation (14) is also exact if the arrival and service processes are Poisson. Further-
more, it becomes more accurate at station j as the expected utilization increases in the subsequent
stations to station j. For example, consider an OQN composed of two stations in series, say sta-
tion 1 and 2 with parameters {A0o, cao, pi, cs1} and 0,0, 2, cs2}, respectively, and q2 = 1 and

lli = q22 = q2i = 0. Using (1) we obtain Al = A2 = A0 1 - In addition, if we have 2 - A2 and Ai
constant, we obtain P2 - 1. Based on heavy-traffic limit theorems, Whitt (1983a) observed that
the performance measures of station 2 are asymptotically the same as if station 1 is removed (i.e.,
1 _ 0). In other words, the arrival process at station 2 is the same arrival process at station 1.

Under these conditions, (14) is asymptotically correct for station 1 resulting cal = cd1 = ca2 , while
a heavy-traffic bottleneck phenomenon occurs at station 2.

A possible refinement is to combine the approximations from the two methods above, similarly
to the superposition process. However, Whitt observed that this refinement is not as critical as
for the superposition case, and suggested the use of (13). More recently, Suresh and Whitt (1990)
observed that the heavy-traffic bottleneck can occur in practice at reasonable expected utilization
levels. Experiments with various stations in series and different parameters revealed limitations
in the use of the approximations (13) and (14) separately. Suresh and Whitt suggested that it
should be appropriate to consider hybrid approximations to the departure process, combining the
stationary-interval method and the asymptotic method. They observed that the expected waiting
time E(Wqj) at station j does not reflect the heavy-traffic phenomenon because caj is assumed
totally independent of pj (see (16) below). Then, they suggested that caj should be a function
of cal,csl,cs2,... , csj_l and Pl,P2,.. ,pj. For instance, caj could be a convex combination of
cal, csi, cs2, ... , csj-i with weights that are continuous functions of P1, P2,. . , Pj.

Splitting of Departures

In the splitting process (figure 2), the merged expected departure rate and merged interdeparture
time variability from station j are decomposed, producing the expected rates Aji according to (3).
The interdeparture time variability cdji between stations j and i is defined below as a function of
cdj (Sevcik et al, 1977, or Kuehn, 1979):

cdji = qjicdj + 1 - qji (15)

If the departure process is Poisson (i.e., cdj = 1), then (15) is exact and gives cdji = 1. Note
that if qji -+ 1, then (15) results in cdji -+ cdj. That is, as the expected departure rate from station
j to station i tends to the merged expected departure rate from station j, the interdeparture time
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variability from station j to station i also tends to the merged interdeparture time variability from
station j. Furthermore, if qji -+ 0, then (15) results in cdji - 1, indicating that as the proportion of
flow between stations j and i tends to zero, the departure process between these two stations tends
to a Poisson process. Note also that cdji in (15) is equal to caji in (11), that is, the interdeparture
time variability from station j to station i is exactly the same as the interarrival time variability
at station i from station j. Assuming that the departure process is renewal and qji, i = 1, ... , n,
represents independent events (Markovian routing), then (15) is exact and the stationary-interval
approximation and the asymptotic approximation coincide.

Combining equations (11), (13) and (15), we obtain the second linear system as a function of
caj, cdj, and caij (or cdij) to approximate the scv caj for each station j, j = 1,..., n. The solution
of the two linear systems discussed so far (traffic rate and traffic variability equations) allows the
description of each station j by the desired parameters (Aj, caj, Uj, csj). We can then proceed to
steps 2 and 3. Note that if the network is acyclic (i.e., the job routing do not form cycles), then
the stations 1, 2,..., n can be relabeled as jl, j2,... ,jin, such that jobs visit station ji after station
jk for ji > jk. Since there are no cycles, the parameters Aj and caj can be easily computed for
each station j following the increasing order of the station labels.

Steps 2 and 3

In step 1 we decomposed the OQN into a collection of independent stations, each one described
by {Aj, caj , pj, csj}. In step 2 we want to evaluate performance measures for each station, such
as expected waiting time in queue, expected length of queue, and so on. These measures may
be approximated by formulas from queueing theory (e.g., Kleinrock, 1975, Tijms, 1986). Whitt
(1983a) observed that since the arrival process is usually not a renewal process and only two
parameters (mean and scv) are known for each distribution, then there is little to be gained from
more elaborate procedures.

For illustration, the expected waiting time E(Wqj) in the GI/G/1 queue of station j may be
estimated by the Kraemer&Lagenbach-Belz formulae (modified by Whitt), defined as:

E(Wqj) = pj(caj + csj)g(pj, caj, csj) (16)
21pj(1- pj)

where

3pj (caj +csj)g(pj,caj,csj) = { ex p(1ca)(csj): } if caj < 1
i if caj Ž1

Note that for a M/M/1 queue, (16) and (7) produce the same result. For a study and comparison
of other approximations for E(Wqj), see for example Shanthikumar and Buzacott (1981) and
Buzacott and Shanthikumar (1993).

Finally, in step 3 we want to evaluate performance measures for the whole network, for example,
the expected job leadtime, expected number of jobs, and production rate. For instance, let's
consider the expected leadtime for an arbitrary job, including waiting times and service times
spent in the network. Similarly to (8), we obtain:

n

E(T) = E(Vj)(E(Wqj) + E(sj)) (17)
j=l
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where E(Vj) is the expected number of visits at station j defined by (5), E(Wqj) is defined by (16),
and E(sj) is the expected service time at station j. As in the Jackson networks, the variance of
the leadtime is usually approximated by ignoring the correlation in the waiting times at different
stations. Further details of steps 2 and 3 may be found in Whitt (1983a, 1983b) and Suri et al
(1993).

2.2.2 Single Class GI/G/m OQNs with Probabilistic Routing

The model above considers single machine stations. The more general case with one or more
identical machines in each station can be derived from the previous one. Let mj,m j > 1, be the
number of machines in station j, now defined by 5 parameters: mj, A0O, caoj, , csj}. In step 1
equation (13) is replaced by:

cd = 1 + (1- pj)(caj - 1) + p( - ) (18)

Note that if mj = 1, then (18) reduces to (13), and that for M/M/mj (caj = 1, csj =
1) and M/G/oo (caj = 1, mj -+ oo) systems, (18) correctly results in a Poisson process (i.e.,
cdj = 1). However for a M/D/1 (caj = 1, csj = 0) system, (18) or (13) incorrectly produce an
interdeparture time variability less than the interarrival time variability (i.e., cdj = 1 - pj < 1).
In fact, Shanthikumar and Buzacott (1981) did not find good results (relative to simulation) upon
applying (13) to M/D/1 and GI/D/1 queueing networks. In order to reduce this distortion, Whitt
(1983a) suggested to modify (18) to:

?p(maxfcs 0.2} - 1)
cdj = 1 + (1 - pj)(caj - 1) + pi(max{csj.2}1) (19)

where pj is known from (2). Finally, combining equations (11), (19) and (15) we obtain the following
linear system as a function of caj, cdj and cdji (or caji) to determine the scv caj for each station j:

n

caj = j + E cai3ij for j 1,...,n (20)
i=l

where
n

j = 1 + wj{(pojcaoj - 1) + Epij[(l - qij) + qijPiXi]}
i=l

ij = wjpijqij(1 - pi2)

with wj defined according to (11) and

Pij A (where Pij = and qij = Pij i 0 

(max{csi, 0.2} - 1)
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Steps 2 and 3 are similar to the previous section, using performance measure formulas derived
from GI/GIm queueing theory. For example, the expected waiting time E(Wqj) at station j can
be approximated by:

E(Wqj) = (caj + csj) E(Wqj(M/Mmj)) (21)
2 1 )

where E(Wqj(M/M/mj)) is the expected waiting time for a M/M/mj queue defined in (7). Note
that if the arrival and service processes are Poisson, then (21) reduces to (7). Moreover, if mj = 1
and ca > 1, then (21) reduces to (16) (for improved approximations of E(Wqj), see e.g. Whitt
(1993) and Buzacott and Shanthikumar (1993)). The expected job leadtime E(T) in the network
can be defined similarly to (17).

2.2.3 Multiple Class GI/GIm OQNs with Deterministic Routings

In this section we modify the prior model (sections 2.2.1 and 2.2.2) to deal with multiple job class
OQNs. Each job class has its own routing which defines the sequence of stations to be visited.
For a class routing, each visit to a station corresponds to a different operation, and we may have
various visits to the same station. For example, the sequence (2, 3, 1, 3, 4) defines a class routing
whose jobs visit four different stations for five operations (the two operations produced at station
3 may be different). Contrary to the previous sections, now routing is deterministic. Consider the
following notation for the input data:

n number of internal stations in the network
r number of classes in the network.

For each station j,j = 1,..., n:
m j number of machines at station j.

For each class k, k = 1,..., r:
nk number of operations in the routing of class k
)A expected external arrival rate of class k
cak scv or variability of external interarrival time of class k.

For each class k, k = 1,..., r, and for each operation 1, 1 = 1,..., nk in the routing of class k:
nkt station visited for operation I in the routing of class k
E(skl) expected service time for operation in the routing of class k
or ktl expected service rate for operation in the routing of class k (i.e., ,k = E(Sk)

cskl scv or variability of service time for operation I in the routing of class k.

The routing of class k is now described by nk and nkl (instead of matrix Q), and may have
a different service time distribution for each operation. Whitt (1983a) presented a procedure to
aggregate all classes in a single one and utilize the single class model discussed before (sections 2.2.1
and 2.2.2). Note that in this way the original multiple class OQN is reduced to a single aggregate
class OQN. After this aggregate class OQN has been analyzed, we return to the original network
and estimate the performance measures for each class individually. This procedure is described
below.

Firstly we obtain the initial parameters {mj, 0oj, caoj, p j, csj} of the aggregate class for each
station j, j = 1,..., n and then, we utilize step 1 from previous sections to obtain the final parame-
ters {mj, Aj, caj , 1lj, csj} of the aggregate class. Let 1H(x) = 1 if x E H and 1H(x) = 0 otherwise.
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We calculate Aoj simply by adding the expected external arrival rates of all classes whose first
operation occurs at station j, that is,

r

A0o = Al{k nkl = j} (22)
k=l

where H = {k: nkl = j}. Each element of the aggregate transition matrix Q is obtained by:

E= l nk =1 A' 1{(k, 1): nkl = i, nk,1+l = j}
Lkqij I~l k (23)

ilj = = 1 Zk A 1{(k,1) : nkl =i}

where the numerator of (23) corresponds to Aij and the denominator corresponds to Ai (compare
to (3)). The aggregate expected service time at station j is estimated by:

E(sj) = l 1 Ak {(k 1) (24)z= l l A% l{(k,l) nk1 = j}

and the aggregate expected service rate pj at station j is simply 1 The aggregate service

time variability at station j is estimated using (24) and the property that the second moment of a
mixture of independent distributions is the mixture of the second moments:

-=l =1 AkE(skl) 2 (cSk l + 1) 1(k, ) n: j} _ (25)
CS A'k=l 1{(k, 1) 1)nk: = j}E(sj)2

Finally, we may utilize the hybrid method (see (11)) to obtain the aggregate external interar-
rival time variability to station j. Using (2) and merging all external interarrival time variability
parameters at station j, we obtain:

A' 1{k : nkl jJ}ca'
caoj = wj' l + 1-Wj (26)

where
1

wj= 1+4(1-pj) 2 (vj -1)

1
=- ] 1 A' l{k:nkl j}

Expressions (22)-(26) produce the initial parameters {mj, A0j, caoj, Lj, csj} for each station j
and matrix Q so that we have all input data for the single class OQN of section 2.2.2. In step 1 we
describe each station j by {mj,Aj, caj, lj, csj} after solving (1) (or (29) defined below) and (20).
In steps 2 and 3 we obtain the performance measures for the aggregate class in the same way as
before. Then, we return to the original network and estimate the performance measures for each
class individually. For example, the expected leadtime E(Tk) for a job of class k is given by:

nk nk

E(Tk) = E(Wqn,,) + E(skl) (27)
1=1 1=1
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where E(Wqnkl) is the expected waiting time at station nki (i.e., the station relative to the -th
operation in the routing of class k), and can be evaluated by (21). Note that the first term in (27)
corresponds to the total expected waiting time for a job of class k, and the second term corresponds
to the total expected service time for a job of class k. Similarly, the variance of leadtime V(Tk) for
a job of class k is given by:

nk nk

V(Tk) = Z V(Wqnkl) + E E(skl) 2cskl (28)
1=1 1=1

where the first and second terms correspond to the variances of waiting times and service times,
respectively.

Interference Among Classes

Bitran and Tirupati (1988) showed that expression (15) may be less effective for the splitting process
when we have multiple class OQNs with deterministic routings. Note in (15) that if qji - 0, then
cdji -+ 1. Bitran and Tirupati extended (15) to represent the interference among classes. For each

class at a station, the analysis is reduced to two classes: (i) the class of interest itself and (ii) the
aggregation of all other classes arriving between two successive arrivals of the class of interest. We
call this second class the aggregate class (do not confuse with the aggregate class of the previous
section).

Let class k be the class of interest at a certain station j in a multiple class OQN with deter-
ministic routings. For convenience, assume that class k has one and only one operation at station
j, say operation I (the approximations below are also valid for the case when class k has more than
one operation at station j). Hence, nkl = j. Assume also that the interarrival and interdeparture
times of all classes at station j are id. Since we have only deterministic routings in the network,
we can easily obtain Aj by adding the expected arrival rates from all classes (including class k)
which operations occur at station j, that is,

r nk

Aj = ) A'1 l(k, 1): nkl = j} (29)
k=1 1=1

It is also easy to obtain the proportion of the class of interest k at station j, qkl = j (recall

that j = nkl). Let dkl be the interdeparture time of class k from station j, dj be the interdeparture
time of all classes from station j, and Zk be the number of jobs of the aggregate class that arrive
at station j during one interarrival time of class k. Note that dki is the sum of zkl + 1 id random
variables. Define zl = Zkl + 1. Since the expectation and variance of the sum of Zkl id random
variables are E(dki) = E(zl)E(dj) and V(dkl) = E(zl)V(dj ) + V(zl)E(dj)2 , where E(dkl) -

and E(dj) = 1 it follows that E(zkl) = = i and cdki is given by:

cdkl = qklcdj + czkl' (30)

Bitran and Tirupati observed that the first term on the right hand side of (30) reflects the effect
of the queue process at station j, while the second term does not depend on the service process. It
captures the effect of the aggregate class arrival process between two successive arrivals of class k.
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Bitran and Tirupati proposed two approximations to czl based on the assumption that zkl has a
Poisson and Erlang distributions, respectively. Assuming that Zkl has a Poisson distribution with
rate Aj(l - qkl), it follows that czl = (1 - qkl)[qkl + (1 - qkl)cakl], and expression (30) (splitting
process) can be written as:

cdkl = qklcdj + (1 - qkl)qkl + (1 - qkl)2Cakl (31)

where j = nkl, qkl = , and cakl is the interarrival time variability of the class of interest k at

station j. Note that cakl = cdk,1l1. We may also rewrite expression (11) (superposition process)
as a function of cakl:

caj = wj E "'- vk cakl l{(k,l), nk = j} + - wj (32)
k=1 1=1 Xj

where
1

j = 1 + 4(1 - pj)2 (vj - 1)

1

=l =1 nk 1 )2 l{(k, 1), j}

and Aj is obtained from (29). Combining (32), (19) and (31), we obtain an alternative linear system
as a function of caj, cdj, and cdkl (or cak,l+l) to determine caj. After obtaining the parameters
{mj, Aj, caj, /j, csj} from step 1, we proceed to steps 2 and 3 as before. This approach based on (31)
produces much better estimates for caj than (20), which is based on (15) (see the computational
results in Bitran and Tirupati, 1988, 1989b).

In fact, expression (31) can be seen as a generalization of (15). To see that, consider a particular
situation where jobs of the class of interest k enter the network at station j, wait in line together
with jobs of other classes and, after finishing service, only the jobs of class k proceed to a certain
station i. Thus, the expected departure rate of arc (j, i) is \ji = Ak, and the rate proportion (or

probability) of jobs going from station j to station i is qji Following the same steps as above,

we can define dji, zji, zi and so on, and rewrite (30) as: cdji = qjicdj + czi. Assuming that Zji
has a Poisson distribution with rate Aj(l - qji), it follows that czi = (1 - qji)[qji + (1 - qji)ca],
and (31) can be written as:

cdji = qjicdj + (1 - qji)qji + (1 - qji)2ca' (33)

Note that if the arrival process of class k is Poisson (i.e., ca = 1), then (33) reduces to (15).
In fact, it can be shown that (15) is the special case of (33) when zi is geometrically distributed
with parameter qji, yielding czgi = 1 - qji. Note also that if qji - 1, then (15) and (33) lead to
cdji -+ cdj but, if qji -+ 0, then only (33) leads to cdji -+ ca'. This last result is asymptotically
exact (Bitran and Tirupati, 1988, remark 1), and permitted two important approximations to
multiple class OQNs with deterministic routings, presented by Whitt (1988). Initially, consider a
certain station in the network (Whitt, 1988, p.1335):
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"If the arrival rate of one class upon one visit to some queue is a small proportion of
the total arrival rate there, then the departure process for that class from that visit to
that queue tends to be nearly the same as the arrival process for that class for that visit
to that queue."

Whitt observed that this principle may be seen as a light-traffic approximation, where only the
class of interest must have low utilization (i.e., the overall utilization of the station need not be
low). Consider now a certain class with deterministic routing in the network (Whitt, 1988, p.1335):

"If the contribution to the arrival rate by this class at each visit to each queue is a small
proportion of the total arrival rate at that queue, then the departure process of that class
from each visit to each queue, and thus from the entire network, is nearly the same as
the external arrival process of this class to the network. "

Based on (33) and the approximations above, Segal and Whitt (1989) proposed an alternative
expression for the splitting process of multiple class OQNs with deterministic routings. Let cej
be the average of the external interarrival time variability parameters of the classes at station j,
weighted by the expected number of visits of each class at station j (see expression (5)). We define:

;-=1 nk ' 1(k, 1) nkl 3ce = 1j}ca (34)
Using (34), the variability parameter cd be(k,tween) stations j and i is redefined by (compare to

Using (34), the variability parameter cdji between stations j and i is redefined by (compare to
(15)):

cdji = qjiccj + (1 - qji)qjicaj + (1 - qji) 2cej (35)

Segal and Whitt suggested to replace (15) by (35) if the classes follow purely deterministic
routings (they also suggested the use of a convex combination of (15) and (35) to capture the effect
of probabilistic routings). Note that as we substitute (15) by (35), we must modify the linear
system (20) with (11), (19) and (35). Steps 2 and 3 are as before. However, we are not aware of
any computational experience comparing the performance of this approximation based on (35) and
the previous one based on (31).

Recently, Whitt (1994) proposed an extension of (31) defined as:

cdkl = qklcdj + (1 - qkl)qklCakl + (1 - qk)2cakl (36)

where akl is the interarrival time variability of the aggregation of all classes arriving between two
successive arrivals of class k for operation I at station j, j = nkl. Whitt presented computational
results suggesting that (36) is more effective for the splitting process than (31). Note that (31) can
be seen as a special case of (36) when we assume that the arrival process of the aggregate class is
Poisson (i.e., cakl = 1). Whitt proposed also other approximations for the splitting process under
the assumption that the server is continuously busy, which will not be discussed here.

The approximate decomposition methods can be used to evaluate the performance measures
of OQNs modeling real manufacturing networks. In addition to the instances discussed in this
section, more complex situations including batch service and overtime (Bitran and Tirupati, 1989c,
1991), and machine breakdowns, changes in lot sizes, product testing and repairing (Segal and
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Whitt, 1989), may be also incorporated to these methods with little modification. The effect of
material handling in manufacturing networks is discussed in Buzacott and Shanthikumar (1993).
The potential of practical applications motivated the development of various software packages
based on these methods, such as the QNA - Queueing Network Analyzer (Whitt, 1983a, 1983b;
Segal and Whitt, 1989), ManuPlan (Suri et al., 1986, Brown, 1988), MPX (Suri and De Treville,
1991), QNAP - Queueing Network Analysis Package (Pujolle and Ai, 1986), Operations Planner
(Jackman and Johnson, 1993) and X-FLO (Karmarkar, 1993). For references of major corporation
applications and case studies, see for example Suri et al (1993).

3 Optimization Models for OQNs

In section 2 we reviewed models to evaluate the performance of a given OQN representing a job-
shop system. In this section we analyze models to either design an OQN or redesign an existing
OQN representing a job-shop. Clearly, if the design is one of selecting from a small number of
alternatives, then we may utilize the models from section 2 to choose the alternative with the best
performance, otherwise we need models based on optimization techniques. Bitran and Dasu (1992)
classified optimization models for OQNs in: (i) optimal design and (ii) optimal control.

Optimal design models assume a simple operational rule to optimize the system design, for
example, the FCFS discipline. Optimal control models determine the optimal operational rule for
the system. This paper reviews only optimal design models. For a recent discussion of optimal
control models based on Brownian motion, see Harrison and Nguyen (1993).

Problems SP1.1, SP2.1 and SP3.1 presented in section 1 are examples of optimal design prob-
lems. As discussed in section 1, various performance measures may be utilized such as WIP,
leadtime or throughput. In what follows we formulate problems SP1.1 and SP2.1 choosing WIP
as a performance measure. Since WIP and leadtime are linearly related through Little's law, the
algorithms presented below also apply to leadtime. The readers are referred to Bitran and Sarkar
(1994a) for a similar study utilizing the throughput as a performance measure. For simplicity,
we adopt the notation Lj(.) and Wj(.), instead of E(Lj(.)) and E(Wj(.)), to denote the expected
number of jobs and waiting time in queue and service at station j. Let:

Aj expected service rate of each machine at station j
mj number of identical machines at station j
Fj (,j, mj) cost of allocating capacity (j, mj) at station j
FT available budget for the network capacity
Lj(ll, ml; . . .

. .. mn) expected number of jobs at station j as a function of the network capacity
vj mean monetary value of a job at station j (independent of the job class)
LT upper bound on the network WIP.

Recall that the WIP is a mean monetary value of the expected number of jobs in the network
defined as 'jv=l vjLj(pl, ml; 2, m2; ... ; An, mn). Each monetary value vj associated to a job at
station j can be estimated using practical experience, or as a weighted average proportional to the
expected arrival rate and expected waiting time of each class (the expected waiting time may be
computed approximately by a procedure given in Albin, 1986). Obviously, if vj = 1 for all j, then
the WIP corresponds to the expected number of jobs in the network.
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The targeted WIP performance problem SP1.1 is the problem of determining capacity (j, mj)
for each station j in such a way to minimize total cost and satisfy a WIP target constraint for the
network. SP1.1 is formulated as:

n

(SP1.1) min EFj(,j,mj)
j=1

n

subject to: E vjLj(l1l, ml; Pl2, m2; ... ; ln, mn) < LT
j=l

with: (j,mj) E Pj ,j = 1,...,n

where Pj is a given domain of the variables. Similarly, the optimal WIP performance problem
SP2.1 is the problem of determining capacity (j, mj) for each station j in such a way to minimize
total WIP and satisfy a budget constraint for the network. SP2.1 is formulated as:

n

(SP2.1) min vjLj(1l,M l;L2,m2; ... ; n, mn)
j=1

n

subject to: Fj (j, mj) = FT
j=1

with: (tj,mj)E Pj,j = 1,...,n

Different authors have presented solution methods for te two problems above. In the following
sections, we review some of these approaches. In order to present them in a more structured way,
we adopt the notation suggested by Bitran and Dasu (1992) denoting each instance by a/,3/X/6,
where a E{SP1.1, SP2.1, SP3.1 }, E{ J, G }, X E{ S, M } and E{ R, N }. The symbol a
indicates problem type, / indicates if the problem is applied to a Jackson OQN (J) or to a general
OQN (G), X indicates if the stations have a simple machine (S) or multiple machines (M), and
6 indicates the decision variable: expected service rate (R) or number of machines (N) in each
station.

Problems SP1.1 and SP2.1 are considered in both sections 3.1 and 3.2. In section 3.1 we review
models and solution methods to Jackson OQNs and in section 3.2, to general OQNs. For related
approaclhes to CQNs, the readers are referred to Shanthikumar and Yao (1987, 1988), Dallery and
Stecke (1990), and Calabrese (1992).

3.1 Models ./J/./. (Jackson Networks)

As we saw in section 2.1, we can analyze exactly each station j of a Jackson network as a stocastically
independent system. Thus, Lj in SP1.1 and SP2.1 becomes a function of /lj and mj only, instead
of a function of /lu, ml; /12, m2; · · ; In, n-.
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3.1.1 Models ./J/./R

Kleinrock (1964, 1976) initially studied the problem of minimizing the expected number of jobs in
a single-class single-server Jackson queueing network. Consider again the input data from section
2.1.1 with mj = 1 for all j. Kleinrock chose the service rates j,j = 1,..., n, as decision variables,
and assumed that the cost Fj is proportional to j for each station j: Fj(lpi) = fjpj, where fj
is the unit cost of capacity at station j. Applying Little's law (Lqj = AjWqj) in (7) and adding
the offered load (j = ), we obtain the expected number of jobs at a M/M/1 system defined as

Lj(pi) = A'X where Aj is computed from (1). The model SP2.1/J/S/R is then formulated as:

n

(SP2.1/J/S/R) minELj(pi)
j=1

n

subject to: E fjpj = FT
j=l

with: j > O, j = 1,...,n

Kleinrock showed that SP2.1/J/S/R has an optimal solution j, j = 1,., n, defined in a closed
form by:

f/-jA (FT - E= 1 fiAi) (37)
A"3 j + ~n (37)

Note that if the unit cost of capacity is the same for all stations, (37) first allocates enough
capacity to station j to satisfy the expected arrival rate, and then allocates capacity to station j
in proportion to the square root of its expected arrival rate. As Bitran and Dasu (1992) observed,
five conditions are satisfied in the model above:
(i) Lj (lj) is a convex function of /j (the expected number of jobs at station j is a convex function
of the capacity at station j),
(ii) Lj(pj) is not dependent of pi, i # j, i = 1, .. , n (capacity additions at other stations have no
effect on the expected number of jobs at station j),
(iii) j is continuous (the decision variables are continuous variables),
(iv) Fj(,j) is a convex function of j (the cost of capacity.at station j is a convex function of the
capacity at station j),
(v) Lj(pj) (and Wj(pj)) can be expressed in closed form.

Conditions (i)-(iv) reduce SP2.1/J/S/R to a convex program that can be optimally solved via
local-optimal methods (Bazaraa et al, 1993). Condition (v) enables a closed form solution to the
problem. These conditions will be extensively used in the remaining of section 3.

We may formulate SP2.1/J/M/R exactly as SP2.1/J/S/R, where Lj(pj) is redefined for a
M/M/mj queue (compare to (7)). Harel and Zipkin (1987) showed that the expected waiting time
Wj (j) (and the expected number of jobs Lj(pj)) in a M/M/mj queue is also a convex function of
pj. Thus, conditions (i)-(iv) are again satisfied and SP2.1/J/M/R may be also reduced to a convex
program.

Models SP1.1/J/S/R and SP1.1/J/M/R can be defined and analyzed in a similar way.
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3.1.2 Models ./J/M/N

In sequel, we discuss models SP1.1/J/M/N and SP2.1/J/M/N. Now we have integer decision vari-
ables corresponding to the number of machines in each station. Boxma et al (1990) presented a
heuristic and an exact algorithm to solve both problems. The manufacturing network is repre-
sented by a multiple-class multiple-server Jackson OQN with a different deterministic routing for
each class (see sections 2.1.2 and 2.2.3). Consider again the input data described in section 2.2.3
with cak = 1 and CSk = 1 for each class k, and mj > 1 for each station j.

Aggregating all classes into a unique class, we obtain each station j described by 3 parameters
(mj, Aj, Aj } (see section 2.1.2). Kelly (1979) showed that the equilibrium distribution of the number
of jobs in the network can be expressed as a product form, and that each station j in steady-state
behaves as a M/M/mj system. Applying Little's law in (7) and adding the offered load, we obtain
the expected number of jobs Lj as a function of mj, Aj and j, given by:

2L)'(oxj
Lj(mj, ij, j) = ljm + A (38)

where
Mj-1 C( t ( )mj

7(0) = A E t! + j(1 ) 1
t=0 t!( 1 )mj!

Boxma et al considered mj,j = 1,...,n, as decision variables in models SP1.1/J/M/N and
SP2.1/J/M/N, and observed that Lj(mj,Aj,pj) in (38), namely Lj(mj), is a convex decreasing
function of mj (conditions (i) and (ii) are satisfied). They chose WIP as a performance measure
for the network. Note that this analysis is easily extended to leadtime since WIP and leadtime are
linearly related through Little's law. Let m be the vector of decision variables (ml, m2,... ,mn).
The network WIP, L(m), is given by:

n

L(m) = ZvjLj(mj) (39)
j=1

The choice of mj in each station must satisfy the condition pj < 1, in order to prevent system
instability. Let Izl denote the largest integer number less than z. Using this condition and (2), it
follows that mj must be an integer number greater than or equal to the lower bound m °, defined
as:

mj = jj + 1 (40)

Model SP1.1/J/M/N

In model SP1.1/J/M/N we want to find a minimal cost solution satisfying a WIP level less than
or equal to the specified limit LT, where LT < L(m°). Let Fj(mj) be the cost of allocating
mj machines at station j, defined as a convex non-decreasing function of mj (condition (iv) is
satisfied). Using (39) and (40) we obtain the targeted WIP level problem (also called server
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allocation problem):
n

(SP1.1/J/M/N) min F(m) = Fj(mj)
j=1

subject to: L(m) < LT

with: mj > m ° , mjinteger,j = 1, . . ., n

Note that since SP1.1/J/M/N is a convex program with integer variables, the use of marginal
analysis schemes do not lead necessarily to optimality (condition (iii) is not satisfied). Let PIj (mj)
be a priority index defined as the quotient of the increase of cost and the decrease of WIP at station
j, given by:

PIj(mj) AFj(m ) (41)
-vjALj(mj + 1)

where
AFj(mj + 1) = Fj(mj + 1) - Fj(mj) > 

ALj(mj + 1) = Lj(mj + 1) - Lj(mj) < 0

PIj is a result from the marginal analysis of Fj and Lj. Boxma et al (1990) presented a simple
heuristic algorithm (algorithm 1) based on the greedy method to solve problem SP1.1/J/M/N (see
also Sundarraj et al (1994). for a related approach to a similar problem). The algorithm starts with
the smallest possible machine allocation (40) for each station. At every iteration it then adds one
machine at the station where the priority index. (41) is the smallest. The algorithm terminates as
soon as adding a machine makes the allocation feasible.

Algorithm 1

1. Start with the allocation m = j = m,j = 1,..., n. This solution is infeasible (L(m °) > LT) and
its cost F(m ° ) is less than the minimum cost of SP1.1/J/M/N.

2. At each iteration, update the cost F(m), WIP L(m) (using (38) and (39)), and PIj(mj) (using
(41)). Add one machine at the station j* which results in the smallest quotient PIj* (greedy
strategy), given by:

PIj* = min{PIj(mj),j = 1,...,n} (42)

3. Stop as soon as L(m) reaches the target LT (feasible solution).

Note that station j* chosen in (42) produces the smallest increase of F(m) per unit of decrease
of L(m), indicated by PIj.. From the convexity of Fj and Lj, we obtain:

AFj(mj + 1) AFj(mj) (43)
(43)

-vjALj(mj + 1) - -vjLj(mj)

An interesting result from (43) is that we can verify the quality of the heuristic solution gen-
erated by algorithm 1, just comparing the solutions generated in the last two iterations. Let p be
the last iteration, and m l, m 2 ,..., m - l , m be the solution generated in each iteration. Obviously,
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mp-1 is infeasible and m p is feasible. Let's denote the optimal solution of SP1.1/J/M/N by m*
Boxma et al (theorems 1 and 2) showed that:

F(mP - ) < F(m*) < F(mP )

and so, F(mP- 1) and F(mP) are bounds for the optimal solution value. Computational experiments
using two real-life manufacturing networks resulted in a relative error of 5% between F(mP) and
F(mP-1). These experiences suggest that algorithm 1 generates an allocation sufficiently close to
the optimal allocation of SP1.1/J/M/N.

Model SP2.1/M/N

In model SP2.1/M/N we want to allocate (or reallocate) machines in order to optimize a perfor-
mance measure, for instance, the WIP of the network. We assume a total of M homogeneous
machines to be allocated to the stations, where M > jn=l m0 . This situation occurs for example
in the FMS design, where we may have identical machines performing different operations as we
install different tools. Using (39) and (40) we obtain the optimal WIP level problem (also called
server reallocation problem):

(SP2.1/J/M/N) min L(m)
n

subject to: E mj= M
j=1

with: mj >m,0 mjinteger,j .= 1,..., n

Again, we have a convex program with integer variables (conditions (i), (ii) and (iv) are satisfied
but condition (iii) is violated), and the use of marginal analysis schemes may not produce the
optimal solution of SP2.1/J/M/N. Let PIj(mj) be a priority index defined now as the decrease of
WIP per machine at station j, given by:

PIj(mj) = -vjALj(mj + 1) (44)

where ALj(mj + 1) = Lj(mj + 1) - Lj(mj) < 0, in accordance with the previous section.
Boxma et al (1990) presented a simple algorithm (algorithm 2), similar to algorithm 1, also

based on the greedy method to solve SP2.1/J/M/N. The algorithm starts with the smallest possible
machine allocation (40) for each station. At every iteration it then adds one machine to the station
where the priority index (44) is the largest. The algorithm terminates when all the M machines
have been allocated.

Algorithm 2

1. Start with the allocation mj = m,j = 1,... , n. This is an infeasible solution (jn=l m < M)
and its WIP L(m °) is greater than the minimum WIP of SP2.1/J/M/N.

2. At each iteration, update the WIP L(m) (using (38) and (39)) and PIj(mj) (using (44)). Add
one machine at the station j* which results in the largest PIj* (greedy strategy), given by:

PIj. = max{PIj(mj), j = 1,..., n} (45)
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3. Stop as soon as the total number of allocated machines reaches the limit M (feasible solution).

Note that station j* chosen in (45) produces the largest decrease of L(m) per machine, indicated
by PIj.. From the convexity of Lj, we obtain:

vjALj(mj + 1) > vjALj(mj) (46)

Using (46), Boxma et al (theorem 3) proved that algorithm 2 is exact and terminates with
the optimal solution of SP2.1/J/M/N (in spite of the fact that condition (iii) is not satisfied).
Furthermore, this solution is found within a time span bounded by a polynomial function in the
number of stations of the network, that is, within O(Mn) steps.

3.2 Models ./G/./. (Generalized Jackson Networks)

In this section we study models SP1.1/G/S/R and SP2.1/G/S/R (Bitran and Tirupati, 1989a,
Bitran and Sarkar, 1994a, and Wein, 1990), SP1.1/G/M/R with discrete variables (Bitran and
Tirupati, 1989b), and SP1.1/G/M/N and SP2.1/G/M/N (Van Vliet and Rinnooy Kan, 1991).

3.2.1 Models ./G/./R

Initially we present two algorithms introduced by Bitran and Tirupati (1989a) to solve models
SP1.1/G/S/R and SP2.1/G/S/R. These algorithms can be easily extended to deal with models
SP1.1/G/M/R and SP2.1/G/M/R. The manufacturing network is represented by a multiple class
GI/G/1 OQN with a deterministic routing for each class (see section 2.2.3). In the previous
section performance measures such as WIP in (39), were easily evaluated because of the exact
results for Jackson networks. In the absence of exact methods for generalized Jackson networks,
approximate decomposition methods are then utilized to estimate the variability parameters at
each station. Let's consider again the input data of section 2.2.3 with mj = 1 for all j. Step
1 of the decomposition method results in the system of equations (13) plus (29), (31) and (32),
represented below simply by:

(A, ca, i, cs) = 0 (47)

where vectors A, ca, p and cs denote {Aj, caj, j, csj} for all j. Applying Little's law in (16) and
adding the offered load, we obtain the expected number of jobs Lj as a function of Aj, caj, pj and
csj, given by:

= ()2(caj + csj)g(Aj, caj, Aj, csj) AjLj(Aj, caj, ,jj, csj) = (1-j )+ - (48)
~2 (1 -~I-'tj

where g(Aj, caj, tj, csj) is defined according to (16). Since Lj is a function of Aj, caj, j and csj in
(48) and A, ca, IL and cs are related in (47), we obtain Lj as a function of A, ca, and cs. Bitran
and Tirupati considered each capacity pj,j = 1, . . ., n, as a continuous decision variable (condition
(iii) is satisfied), assuming that additional capacity may be added to a station by small increments
when compared to the total capacity (remember that we are assuming only one machine at each
station). For a given A, (47) and (48) suggest that changes in the capacity p result in changes in
ca and cs. Therefore, L is a function of 1l, 2,... ,n. However, this functional relationship is
complex since the system of equations in (47) is non-linear and not easy to analyze.

27



Bitran and Tirupati assumed that ca and cs are independent of changes in capacity Pu. In this
way, Lj is not dependent on i, i j (condition (ii) is satisfied). They assumed that as we modify
p, the mean and variance of the service time vary in the same proportion and hence, cs remains
nearly constant. Furthermore, the sensitivity of ca to changes in , seems to be small, as we increase
the number of classes, and the proportion of load due to each class decreases (see the numerical
results in Bitran and Tirupati (1988) and the discussion in Whitt (1988)). The consequence of
these assumptions is that we can first solve system (47) for a given initial capacity, and then treat
the resulting ca as known parameters in (48). Under these assumptions, Bitran and Tirupati also
showed that Lj(Aj, caj, Lj, csj) in (48) is a convex function of Pj, now denoted simply by Lj(Plj)
(condition (i) is satisfied). The WIP of the network may be expressed as (compare to (39)):

n

L(u) = vjLj(ftj) (49)
j=1

Finally, we denote by Aj a lower bound on the capacity at station j. Note that this bound must
satisfy the condition pj < 1 to avoid system instability:

> A (50)

Model SP1.1/G/S/R

Similarly to section 3.2.1, let LT be a target WIP level of the network, such that LT < L(P°). Let
also Fj(pj) be the cost of allocating capacity j to station j, defined as a convex non-decreasing
differentiable function of /j (condition (iv) is satisfied). Using (49) and (50), we obtain the following
convex programming problem:

n

(SP1.1/G/S/R) min F(p) = Fj(pj)
j=1

subject to: L(p) < LT

with: j > j °,j = ,...,n

Bitran and Tirupati (1989a) presented a heuristic algorithm (algorithm 3) to solve SP1.1/G/S/R
and to generate trade-off curves between F(p) and L(p). Let PIj(pj) be a priority index, now
defined as the quotient of the increase of marginal cost and the decrease of marginal WIP at
station j, given by:

PIj(uj)= - 9Fj (/)/p (51)

Algorithm 3 is similar to algorithm 1 from section 3.2.1. Let A be a previously specified
increment of capacity at each iteration. We start with an initial capacity satisfying (50) for all
stations. At each iteration, we increase by A the capacity of the station with the minimum priority
index (51). The procedure is repeated until the target LT is achieved.
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Algorithm 3

1. Start with the allocation pj = pu° (sufficiently small), and compute caj and CSj (using (47)) for
each station j, j=1,...,n. This solution is infeasible (L(/y°) > LT) and its cost F(/, °) is less
than the minimum cost of SP1.1/G/S/R.

2. At each iteration, update the cost F(t,), WIP L(t,) (using (48) and (49)) and PIj(p/j) (using
(51)). Add capacity A to the station j* which results in the smallest PIj. (greedy strategy),
given by:

PIj = min{PIj(plj),j = 1,..., n} (52)

3. Stop as soon as L(p) reaches the target LT (feasible solution).

As we choose smaller values for A, algorithm 3 generates more precise trade-off curves. Bi-
tran and Tirupati (proposition 2) showed that in the limit A - 0, algorithm 3 optimally solves
SP1.1/G/S/R (remember that we have assumed that all conditions (i)-(iv) are satisfied), and
PIj(lj) obtained in the last iteration corresponds to the dual multiplier associated with the WIP
constraint of station j.

Bitran and Tirupati (proposition 3) also presented an error bound for the approximate solution
value produced by algorithm 3. Let's suppose that algorithm 3 finds a feasible solution after p
iterations, and let's denote this solution by up and the optimal solution of SP1.1/G/S/R by *.
Then:

0 < F(j) - F < (LT -L(P)) + 6 (53)

Phi
where = A EP=1(1 - ) and PI.* is the quotient obtained by (52) at iteration i,i = 1,... ,p.

Computational experiences with A = 0.1 applied to a real-life example with 13 stations and 10
product classes resulted in a relative error of 0.6% between F(AP) and F(p*). This is acceptable
in many practical situations. These experiences also indicated that the previous assumption of
considering ca and cs independent of changes in is reasonable (observe in algorithm 3 that ca
and cs are maintained constant). As an illustration, as the WIP was reduced from an initial value
of 70000 to a final value of 30000 in the example above, the maximum change found in ca was 3%.
This change was obtained by updating ca according to (47) at the final network configuration.

A refinement of algorithm 3 is to update ca in (47). In fact, Bitran and Sarkar (1994b) have
explored this alternative. When the ca are not considered independent of capacity, there is no
guarantee that SP1.1/G/S/R is a convex program. We do not know if L in (49) stays convex in
p because ca now changes as changes, according to (47). Thus, this alternative procedure may
not converge to an optimal solution or even to a feasible solution. Nevertheless, Bitran and Sarkar
(op.cit.) showed that the procedure converges under certain conditions for the initial data.

Model SP2.1/G/S/R

In this section, we analyze the problem of redistributing the existing capacity in the stations to
minimize WIP. This redistribution is meaningful in networks with homogeneous capacity, that is,
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resources that can be shared by different stations (e.g., labor). Let 4 be the initial existing capacity
at station j, such that 1A > p1 . Using (49) and (50), we obtain:

(SP2.1/G/S/R) min L(j)

n n

subject to: E Ail = E/p
j=1 j=1

with: j >/°,j 1,...,n

Bitran and Tirupati (1989a) presented a heuristic algorithm (algorithm 4) also based on the
greedy method to solve SP2.1/G/S/R (again, conditions (i)-(iv) are satisfied). Let A be defined
as before (see algorithm 3), and let PIj(pj) be defined now as the decrease of marginal WIP at
station j, given by:

9Lj (Mj)
PIj(/lj) = -vj 9(j) (54)

Algorithm 4

1. Start with the feasible allocation j = jl, and compute caj and csj (using (47)) for each station
j, j=l,... ,n. Define Jo as the set of available stations, J1 as the set of stations to which
capacity is increased, and J2 as the set of stations to which capacity is reduced. Initially,
Jo = {1, 2, ... , n}, and J1 and J2 are empty. Compute ej such that:

Plj(lpj)(Aj + j) = max{PIj(lj),j E Jo} (55)

2. At each iteration, update the WIP L() (using (48) and (49)), and PIj(lj) (using (54)). Find
the station jl which results in the smallest PIjl given by:

PIj1 = min{PIj(/lj),j E Jo} (56)

and the station j2 which results in the largest PIj2 given by:

PIj2 = max{PIj(tj),j E Jo} (57)

2a. If jl E J1, then make Jo +- Jo - {j }.

2b. If j 2 E J2, then make Jo +- Jo - {j2}.

2c. If jl ¢ J1 and j2 0 J2, then define Al = min{A, ljl -Aj -Ej 1} and make Ij, + /j -A 1,
ij2 - Pj2 + A 1, J1 +- J1 U {j2} and J 2 +- J2 U {jl}.

3. Stop if Jo is empty or unitary, or PIj = PIj2.

Note that, at each iteration, (56) and (57) correspond to the stations that produce the largest
and smallest marginal reduction in L(/l), respectively. Expression (55) together with A1l guarantees
that the solution generated by algorithm 4 satisfies !Uj > Aj +ej, j = 1,..., n. Hence, it satisfies (50)
and is feasible. Bitran and Tirupati (1989a, remark) showed that in the limit A -+ 0, this solution
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is optimal to SP2.1/G/S/R (remember that we have assumed all conditions (i)-(iv) satisfied), and
all PIj(Itj) in the last iteration have the same value. As before, each PIj(ipj) can be interpreted
as the dual multiplier associated to the capacity constraint at station j. It represents the rate of
decrease in WIP due to marginal additions in the capacity of this station.

Bitran and Tirupati (proposition 4) also presented an error bound for the approximate solution
value produced by algorithm 4. Let P denote the heuristic solution found at the last iteration p,
and * denote the optimal solution of SP2.1/G/S/R. Then:

o < F(I1P) - F(y*) < n PI2 (58)

where PIP is the priority index obtained from (57) at the last iteration p. Note in (58) that the
solution tpP is optimal in the limit - 0. Computational experience with A = 0.02 applied to
the same practical example of the previous section resulted in a relative error smaller than 2%
between F(tuP) and F(/i*), indicating that algorithm 4 is a good approximation to SP2.1/G/S/R.
Bitran and Tirupati reported an interesting result from this example: the WIP is reduced from
a initial value of 70000 to a final value around 40000 just by redistributing the initial capacity of
the network (note however that they have assumed that the capacity of one station is completely
transferable to other station). In order to test the hypothesis of independence of ca to capacity
changes, they recomputed ca according to (47) at the final network configuration (remember that
algorithm 4 maintains ca and cs fixed during the iterations). The largest variation found in ca was
around 3%.

Note that algorithms 2 and 4 help balancing a manufacturing system, whereas algorithms 1 and 3
efficiently add resources to that system. One may generate trade-off curves between working capital
(WIP) and investment capital by, firstly, applying algorithm 4 to the original system configuration
and then, utilizing the solution obtained, pP, as a starting capacity for algorithm 3 (i.e., M0 +_ P,
where p0 is the initial capacity at step 1 of algorithm 3). For a computational experience and
analysis of trade-off curves, see e.g. Bitran and Tirupati (1989a) and Bitran and Morabito (1994).

Wein (1990) analyzed the model SP2.1/G/S/R for a single-class GI/G/1 OQN with all jobs
following a probabilistic routing. Starting from the Brownian model proposed by Harrison and
Williams (1987), which is based on heavy-traffic approximations (Reiman, 1984), Wein obtained
the expected number of jobs at station j (in equilibrium) given by:

Ljj)= 13 A (59)

where
n

aj = Aojcaj + Ajcsj + 3 Aiqi(csiqij + 1 - qij)
i=l

Note that expression (59) is not derived from the approximate decomposition methods discussed
in section 2.2, such as expression (48). Furthermore, (59) is valid only if a certain condition, called
skew-symmetry, is satisfied (see expression (4) in Wein, 1990). Let's consider again the budget
constraint used by Kleinrock (1964) and discussed in the section 3.1.1. Assuming that the skew-
symmetry condition is satisfied and using (59), the model SP2.1/G/S/R may be formulated as
below: n

(SP2.1/G/S/R') min ELj(i)
j=1
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n

subject to: E fjj - FT
j=1

with: j O,j = , . . .,n

After deriving the Lagrangean function of this problem, Wein obtained a closed form solution
Lj,j = 1,..., n, given by:

fa 3 (FT - E1 fi(6i)
J -- ' + _ Z- (60)

fj

Wein observed that the skew-symmetry condition is satisfied for Jackson networks (i.e., M/M/1
systems with caj = 1 and csj = 1,j = 1,... , n), and (60) reduces to (37) which is the optimal
solution to SP2.1/J/S/R'. Note that if fj is equal for all stations, then (60) first allocates enough
capacity to station j just to compensate Aj, and then allocates capacity to station j in proportion
to the square root of the parameter aj.

Wein presented computational experiences from a simple network example satisfying the skew-
symmetry condition. These results showed that (60) produces a solution very close to the optimal
solution found by simulation. Although (60) is derived under heavy-traffic conditions (pj > 0.9),
it may also produce good approximations for low traffic intensities. An important question is to
investigate the quality of the solution generated by (60) in situations where the skew-symmetry
condition is not satisfied.

3.2.2 Model SP1.1/G/M/R with Discrete Variables

Bitran and Tirupati (1989b) presented a heuristic algorithm to solve the model SP1.1/G/M/R with
discrete alternatives for capacity changes at each station. Jobs belong to multiple classes and each
class follows a different deterministic route, according to section 2.2.3. Similarly as we have done in
section 3.2.1, the system of equations (19) plus (29), (31) and (32) from step 1 of the decomposition
method is described below simply as:

((m, A, ca, ,p, cs) = 0 (61)

where vectors m, A, ca, and cs denote respectively the parameters m j , Aj, caj,pj, csj} for all
stations j,j = 1,..., n. Applying Little's law in (21) and adding the offered load, we obtain the
expected number of jobs at station j, given by:

Lj (mj, Aj, caj, +j, csj) = ) Lqj(M/M/mj) + A (62)
2 Ai(

where Lqj(M/M/mj) denotes the expected number of jobs in queue at a M/M/mj system. Note
that Lqj(M/M/m j ) corresponds to the first term on the right hand side of (38). Similarly to (48),
Lj(mj, Aj,caj ,lpj, csj) in (62) is a function of mj, Aj, caj, ,j and csj satisfying (61) (for other
approximations of Lj, see e.g. Whitt (1993)). Instead of choosing m or p as the decision variables
of the model, Bitran and Tirupati considered a finite number of alternatives for capacity change at
each station. Let's define nj as the total number of alternatives at station j. For each alternative
k, k = 1,..., nj, the following input data is given:
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mjk number of identical machines at station j in alternative k
1j3k expected service rate of each machine at station j in alternative k
fjk cost of station j in alternative k.

Define Ujk as a 0-1 decision variable (condition (iii) is not satisfied), such that:

U i if alternative k is chosen for station j
Ujk = 0 otherwise

where -k=- 1 Ujk = 1. For each station j, the capacity choice is represented by the vector (ujl, uj2,
u .. , j,nk) where all elements are null except one. In this way, we have mj = k=L1 mjkujk and Lj =

Ek-=,l jkUjk and hence, (61) and (62) depend on Ujk. Let u = {ujk,j = 1, ... ,n; k = 1,...,nj).
Similarly to section 3.2.1, Bitran and Tirupati assumed that ca and cs are independent of capacity
changes in the network (see the discussion in the section 3.2.1). As a consequence, we may first
solve system (61) for a given u (i.e., a given capacity m and p ), and then treat the resulted values of
ca and cs as fixed parameters in (62). Furthermore, as we choose an alternative k at station j (i.e.,
Ujk = 1 and ujl = 0,l $ k), we may refer to Lj(mj, Xj, caj,pj, csj) in (62) simply as Ljk, where

Ljk = Lj(mjk, Aj, caj, jk, csj). Note that, in this way, we can compute Ljk for every alternative
k and every station j using (62). Without loss of generality, we assume that if Ljk > Ljl, then
fjk < fjl, k l , k, = 1,..., nj. Similarly to (49), the network WIP can be written as:

n ni

L(u) = I] jjuk (63)
j=l k=1

where, as before, vj is the mean value of a job at station j. Using (63), we obtain the following
problem:

n nj

(SP1.1/G/M/R) min F(u) = Z Z fkujk
j=1 k=1

subject to: L(u) < LT

nj

Ujk = , for j = 1, ...,n
k=1

with: ujk E {O, 1},j = 1,...,n,k= 1,...,nj

where LT is a given target for the network WIP. Note that L(u) and F(u) are assumed to be
linear functions of u. SP1.1/G/M/R models situations in which the target LT is achieved by
increasing capacity either by means of additional machines, workers, or by increasing the availability
with overtime, or additional shift operations. Bitran and Tirupati proposed a heuristic algorithm
(algorithm 5) to solve the integer linear program SP1.1/G/M/R above. They showed that: (i) the
optimal solution of the linear program relaxation of SP1.1/G/M/R has either zero or two different
variables ujk with fractional values (proposition 3.1), and (ii) if this optimal solution has two
variables with fractional values, then they correspond to the same station (corollary)-. The next
algorithm described below produces the approximate solution ul:
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Algorithm 5

1. Let u ° be the optimal solution to the LP relaxation of SP1.1/G/M/R. If u° is a feasible solution
to SP1.1/G/M/R, then u1 = u is an optimal solution to SP1.1/G/M/R, otherwise go to
step 2.

2. Let i be the station which variables are fractional values for some k and k 2 ( < ukl < 1,

0 < u°k2 < 1). A feasible solution to SP 1.1/G/M/R is given by:

=ik = ujkj ij = ,...,n,k = 1,... ,nj

1 /1 ifk = I
i otherwise

where 1 is such that:

Lil = max{LikLik < LiklUkl LLik 2Uik2, k = 1,..., ni}

The authors also presented an error bound on the value of approximate solution ul generated
by algorithm 5. Without loss of generality assume that Lik > Lik2, and denote by u* the optimal
solution of SP1.1/G/M/R. Then:

0 < F(u l ) - F(u*) < fik2 -fik < max{fjk,j = 1,... ,n,k = 1,..., nj}

Computational experiences from a real-life network example of 13 stations and 10 product
classes indicate that algorithm 5 is a good approximation to SP1.1/G/M/R when the number of
classes is relatively large. In this example, as the network WIP was reduced from an initial value
of 80000 to a final value below 30000, the relative error between F(ul) and F(u*) was less than
0.08%. The largest change in ca was equal to 4.6%, corresponding to a change of 0.5% in the WIP
(remember that the values of ca and cs are also kept constant in algorithm 5). Bitran and Tirupati
left the development of approaches to situations involving a small number of classes and mixtures
of deterministic and probabilistic routings for future investigation..

3.2.3 Models ./G/M/N

Van Vliet and Rinnooy Kan (1991) presented two algorithms to solve models SP1.1/G/M/N and
SP2.1/G/M/N, based on marginal analysis and greedy methods. These algorithms are closely
related to the two algorithms presented by Boxma et al (1990) to solve models SP1.1/J/M/N and
SP2.1/J/M/N (described in the section 3.1.2). Again, jobs belong to multiple classes and each
class follows a different deterministic route. In contrast with section 3.2.2, the decision variables
are the number of machines at the stations.

Let's consider again the system of equations (61), and expression (62) for the expected number
of jobs in a GI/G/mj queue at station j. Van Vliet and Rinnooy Kan considered each capacity
mj, j = 1,..., n, as an integer decision variable. Given A and , (61) and (62) suggest that changes
in capacity m result in changes in ca and cs (Lj is a function of ml, m 2,..., mn). Note, however,
that this functional relationship is not easy to analyze.
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Based on the results from Bitran and Tirupati (1989a) (see section 3.2.1), Van Vliet and Rin-
nooy Kan assumed that ca and cs are independent of changes in capacity m. Therefore, Lj is
not dependent on mi,i $ j (condition (ii) is satisfied). They argued that as we modify m, the
mean and variance of the service time vary in the same proportion and hence, cs remains nearly
constant. Furthermore, the sensitivity of ca to changes in m seems to be small as the number of
classes increases and the proportion of load due to each class decreases. Hence, once the set of
equations (61) is calculated, we can regard ca and cs as parameters for (62). This means that
Lj(mj, Ajj, caj,uj, csj) in (62) can be seen as a function of mj only, now denoted by Lj(mj). Since
Lqj(M/M/mj) is a convex function of mj, and we are assuming ca and cs as parameters, then
Lj(mj) becomes a convex function of mj (condition (i) is satisfied). Following the same steps of
section 3.1.2, the network WIP L(m) is defined according to (39) (where Lj(mj) is given by (62),
instead of (38)), and the initial number of machines m ° must satisfy (40).

Model SP1.1/G/M/N

The model SP1.1/G/M/N is formulated exactly as SP1.1/J/M/N described in section 3.1.2, where
F(m) is a convex non-decreasing function of m (condition (iv) is satisfied), and L(m) is assumed
to be convex in m, in accordance with the discussion above. SP1.1/G/M/N, also called the server
allocation problem, is a convex program with integer variables and the use of marginal analysis do
not lead necessarily to optimality (condition (iii) is not satisfied). The problem can be regarded as
the minimum-cost allocation of machines so that the WIP is less than a given target WIP.

Van Vliet and Rinnooy Kan utilized algorithm 1 (section 3.1.2) to solve SP1.1/G/M/N. The
algorithm starts with the smallest possible allocation of machines m ° for all stations (infeasible
allocation). At every iteration, it adds one machine at the station with the smallest priority index
(i.e., the quotient of the increase of the objective function and the decrease of the network WIP).
Note that this priority index is a result of marginal analysis. It is obtained by substituting (62) in
(41). The algorithm terminates as soon as adding a machine makes the allocation feasible.

The error bound provided by Boxma et al (1990) (discussed in section 3.1.2) can also be applied
here. For instance, if p is the last iteration of algorithm 1 and m* is the optimal solution of
SP1.1/G/M/N, we have: F(m P-1 ) < F(m*) < F(mP). Van Vliet and Rinnooy Kan generated
trade-off curves between cost and WIP similar to those discussed by Bitran and Tirupati (1989a).
Using different computational results from two network examples, they found a relative error of 7%
in the solution of the first example and 5% in the solution of the second example. This relative error
decreases as the target WIP imposed to the problem decreases. Van Vliet and Rinnooy Kan also
recalculated ca for the final configuration of the network to verify the sensitivity of ca to changes of
m. They obtained an error in ca below 6%, suggesting that this approach is a good approximation
to problem SP1.1/G/M/N.

Model SP2.1/G/M/N

Similarly, the model SP2.1/G/M/N is formulated exactly as the model SP2.1/J/M/N described in
section 3.1.2, where M is the number of available machines such that M > j=l m. Again, we have
the objective function and the constraint of the problem as convex functions of m. SP2.1/G/M/N,
also called the server reallocation problem, is a convex program with integer variables and it can
be regarded as the minimum-WIP redistribution of the M machines over the network.
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Van Vliet and Rinnooy Kan utilized algorithm 2 (section 3.1.2) to solve SP2.1/G/M/N. The
algorithm starts with the smallest possible allocation of machines m °. At every iteration, it adds
one machine to the station with the largest priority index (i.e., the greatest decrease in the network
WIP per machine). Note that this priority index is obtained from marginal analysis by substituting
(62) in (44). The algorithm terminates when all the M machines have been allocated.

Since we are assuming L(m) as a convex function of m, algorithm 2 terminates after O(Mn)
steps with an optimal reallocation of machines (see section 3.1.2 for details). Computational exper-
iments with the two examples above indicated that the sensitivity of ca to changes in m is small.
Therefore, the optimal solution produced by algorithm 2 to the assumed convex problem may be
utilized as a good approximation to the original problem.

4 Perspectives for Further Research

In this section, we suggest topics for future research. The first one is concerned with the relevance
of class SP3 (see section 1) to the focused factory design. Then, we discuss the importance of light-
traffic approximations to manufacturing networks with multiple classes and deterministic routings
(according to section 2.2.3). Finally, we return to the critical question of the existence of steady-
state for an OQN representing a discrete manufacturing system.

4.1 Relevance of Class SP3

Different authors have pointed out that modern manufacturing systems are becoming more com-
plex due to: (i) the large number of product classes competing for common resources, (ii) the
uncertainty of product demands, and (iii) the reduction of life cycles. In addition to developing
efficient methods to analyze more complex systems, we may also try to reduce the complexity of
the manufacturing environment. Much of the success of JIT and other related methods comes
from simplification. Examples of alternatives to reduce complexity include partitioning existing
production lines, duplication of resources, and redesigning products and manufacturing processes.
Note that problems of class SP3 (e.g., problem SP3.1 in section 1) can be regarded in this context.

Recent attempts based on OQN models have been made to analyze the trade-off between the
partitioning of product lines and duplication of machines (Bitran and Sarkar, 1994c; see also Tang
and Yoo (1991) for a related study of customer partition and server allocation applied to a single
node service system). The idea is to relate complexity and predictability of a system, suggesting
that more complex systems tend to have poorer predictability. Therefore, we can use system
predictability of job completion as a measure of complexity. For instance, as we increase the
number of product classes manufactured in a system, complexity tends to increase and predictability
tends to decrease due to product interference at stations. Of course we may reduce complexity by
adding capacity to stations. We may also reduce complexity by simply partitioning the shop. In
what follows, we suggest possible measures of complexity to capture this notion. We consider: (i)
measures of complexity from a product management point of view, (ii) measures of complexity
from a station management point of view.
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4.1.1 Measures of Complexity from a Product Management Point of View

Managers should be able tc predict product leadtimes as accurately as possible. In other words, it is
desirable to have small leadtime variances. We may reduce variances by adding additional machines
to the stations. Let Tk be the leadtime of a product from class k, wk be a weight associated with
a product from class k, and T be an upper bound on the weighted leadtime of all classes in the
network. Then, we can formulate the following complexity constraint:

E wkV(Tk) < T (64)
k=l

Note that the smaller the bound T, the higher is the predictability of the system. Each variance
V(Tk) in (64) is defined as the sum of the variances of waiting times and service times of all
stations in class k routing. For general OQNs, V(Tk) can be estimated by using the approximate
decomposition methods discussed in section 2.2. For simplicity, let's assume that service times
are deterministic at all stations and hence, their variances are null. Then, we obtain (Bitran and
Sarkar, 1994c):

nk n

V(Tk) = E V(Wqj) l{j : j = nkl} (65)
1=1 j=l

where V(Wqj) is the waiting time variance at station j, given by:

V(Wqj) = [Wqj(M/M/mj)]2 (caj + csj) (66)4

where Wqj(M/M/mj) is the expected waiting time for a M/M/mj system. Since Wqj(M/M/m j )
is a convex decreasing function of mj and assuming caj and csj independent of capacity changes in
the network (see section 3.2.1 for a detailed discussion), it follows from (66) that V(Wqj) decreases
as we increase mj. Therefore, as we add machines to the stations in the routing of class k, we
reduce the variance V(Tk) in (65) and hence, the system complexity on the left side of (64).

Expressions (64)-(66) also suggest that for the same overall shop capacity, we might reduce
system complexity by appropriately partitioning the shop into sub-shops or production lines with
more homogeneous product mix. In this way, we might obtain smaller variability parameters at
the stations of each sub-shop, such that the overall variance of each class in (65) would be reduced
and hence, the system complexity in (64).

4.1.2 Measures of Complexity from a Station Management Point of View

Bitran and Sarkar (1994c) have pointed out that as the number of machines increases at one
station, we expect to obtain more flexibility (in terms of scheduling and maintenance) to operate
that station. In order to determine the number of machines for each station we should consider the
uncertainties of interarrival and service times of products visiting the station.

Whitt (1992) discussed some heuristics that may be useful to describe complexity constraints
with respect to the grade of service of each station. A grade of service is a measure-that, when
fixed, maintains a certain congestion measure nearly constant in the station (later we point out the
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relationship between the grade of service and the flexibility of the station). For example, let yj be
a grade of service for station j, given by:

Vj = (1-p/j)2; (67)

Expression (67) suggests an economy of scale, that is, for the same grade of service, the expected
utilization level increases as we increase the number of machines and the expected arrival rate Aj

at the station (recall that pj = j ). Note, however, that the rate of increase of the number of
machines is smaller than the rate of increase of the expected arrival rate. Whitt showed that if
we maintain yj constant in (67), then we also maintain the congestion measure P(Wj > 0) nearly
constant (i.e., the probability of a positive waiting time). This result is supported by heavy-traffic
limit theorems, and was observed in computational experiments. In particular, Whitt showed that,
for a GI/G/mj queue, we have the following approximation:

(caj + csj)
2x/- E(WjlW > O) (68)

where E(WjlWj > 0) is also a congestion measure. It corresponds to the expected waiting time in
the queue of station j, given that the waiting time is greater than zero. Combining (67) and (68),
we obtain another example of grade of service for station j, r7j, defined as:

(1 - pj )m s 1
(caj +csj) 2E(WjlWj > 0)

Equation (69) implies that given a grade of service rj, we maintain the congestion measure
E(WjlWj > 0) nearly constant. Assuming that caj and csj are independent of capacity changes
in the network (see section 3.2.1 for a detailed discussion), it follows from (69) that as we add
machines and increase the expected arrival rate at station j, the expected utilization increases for
the same grade of service. Let's define the following constraint for each station j of the network:

(1 - j) > Gj (70)
(cas + csj)

where Gj is a lower bound on the grade of service of station j (note that Gj is also an upper bound
on the congestion measure E(WjlWj > 0)). The parameter Gj can be also viewed as the minimum
desired flexibility for station j. For larger values of caj and csj, we should increase the number of
machines at station j in order to satisfy the desired flexibility.

Expression (70) suggests that in some cases we can satisfy the minimum desired flexibility at sta-
tions without changing the overall number of machines in the network. Partitioning appropriately
the shop into sub-shops with more homogeneous product mix, we may obtain smaller variability
parameters, say caj and cs, for each station j of each sub-shop i, such that the left-hand side in
(70) would be increased for all j and i.

4.1.3 Focused Factory Design

The focused factory design involves product allocation to production lines, and capacity allocation
to the stations of each line. This problem may be regarded as an instance of class SP3 (see problem
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SP3.1 in section 1), and it is different from problems discussed in section 3, where only capacity
allocation was involved.

An interesting research issue is developing optimization models to analyze the trade-off between
the partitioning of product lines and the duplication of machines in the focused factory design.
We might incorporate to these models the complexity constraints from the product and station
management points of views, such as (64) and (70) discussed above. These constraints can help us
represent desired product leadtimes and desired station flexibility in the system.

A recent research based on these ideas (Bitran and Sarkar, 1994c) reveals an unexpected result:

Contrary to the commonly view, the number of machines required can be less when
production lines are partitioned (compared to when they are put in one shop only).

This result suggests that we may reduce the complexity of the network (left side of (64)),
or increase the flexibility of the stations (left side of (70)), by only partitioning the facility into
product lines. Further research might investigate the stability of optimal partitions. For instance,
the solution sensitivity to changes on the expected arrival rate of products, or to changes on the
desired grade of service of stations. We might also consider particular situations where privileged
product classes must have lower leadtimes, or follow routings through high service grade stations.

4.2 Light-Traffic Approximations

In this section, we emphasize the importance of light-traffic approximations to analyze OQNs with
multiple classes and deterministic routings. Upon certain conditions, these approximations may
effectively simplify performance evaluation of large and complex manufacturing networks such as
job-shops.

As discussed in section 2.2.3, Bitran and Tirupati (1988, remark 2) suggested that if the number
of product classes processed at each station is large enough, we may ignore the interaction between
stations and analyze each station individually. The mean and variance of each product class are
preserved throughout the network, and we may assume that at every station, the mean and variance
are the same as those of the external arrival process of this class. In other words, as the number
of classes increases, we expect that qkl -+ 0 and cdkl -+ cakl in (31) for all k and 1, and hence,
cdkl -+ ca'. The network may be decomposed in a set of independent stations, each one analyzed
as a single queue system (similarly to the Jackson networks discussed in section 2.1). Note that,
in this way, we have virtually no limits on the size of the OQN that could be analyzed. However,
practical manufacturing networks usually have one or more stations working under heavy-traffic
intensity condition.

Based on the argument above, Whitt (1988) observed that if the arrival rate of one class upon
one visit at a station is a small proportion of the total arrival rate there (i.e., qkl is small for class
k during visit I to a certain station), then the departure process for that class from that station
should be nearly the same as the arrival process for that class for that visit (i.e., Cdk - caki). Note
that this can be regarded as a light-traffic approximation, where the class of interest has light-traffic
at the station; however, the overall traffic intensity of the station does not need to be low. This
observation can be extended to the network. If the light-traffic condition occurs at every station
in the routing of the class, then the arrival and departure processes for this class at the stations
in its routing should be nearly the same as its external arrival process (i.e., caki -+ ca' and so,
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Cdkl -+ ca). Again, note that only the class of interest must be in light-traffic at the stations. This
principle becomes more meaningful as the size and complexity of the network increases.

Whitt also observed that there is another condition to be satisfied for the light-traffic approxi-
mation. The offered load for the class of interest must also be small, that is, its service time can not
grow indefinitely at the same time. In other words, the light-traffic condition assumes that the time
scale for arrivals and departures from the class of interest is much longer than the time scale for the
aggregate of all other classes (aggregate class) at the station. For example, the interarrival times
for jobs of the designated class are days or months (and the service times are hours or minutes),
whereas interarrival times for jobs of the aggregate class are hours or minutes. Thus, the waiting
times and service times for the class of interest are negligible if compared to their interarrival times
at the station.

The use of light-traffic approximations, therefore, might permit enormous simplifications for the
analysis of classes in light-traffic in OQNs. However, an important pragmatical question remains:
When could these approximations be actually applied to manufacturing networks? For instance,
which practical values of traffic intensity and proportion of a class at a station would satisfy the
light-traffic condition for that class at that station? How to combine light-traffic approximations
with busy stations?

4.3 Steady-State Assumption

In all OQN models discussed in this study, we have assumed that the system attains equilibrium
or steady-state. The system is supposed to travel through different transient states until it achieves
steady-state. However, the steady-state may not exist, or if it exists it may not be attainable
by the system during its life time. In particular, many authors have criticized the steady-state
assumption for discrete manufacturing systems. Changes often happen in this environment due to
new products, premature obsolescence of current products, capacity changes in the workstations,
process technology updates, and so on. Examples of critical questions are: Do manufacturing
systems maintain their characteristics during a time long enough to attain steady-state? How is the
sensitivity of the steady-state to changes in the system configuration? Further research exploring
these themes would be helpful to characterize instances where the steady-state hypothesis can be
assumed.
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