
Optimized Crossover for the Independent
Set Problem

by
Charu C. Aggarwal

James B. Orlin
Ray P. Tai

WP #3787-95 January 1995



Optimized Crossover for the Independent Set Problem

Charu C. Aggarwal
Operations Research Center
Massachusetts Institute of Technology
Cambridge, MA 02139

James B. Orlin
Sloan School of Management
Massachusetts Institute of Technology
Cambridge, MA 02139

Ray P. Tai
EECS Department
Massachusetts Institute of Technology
Cambridge, MA 02139

January 15, 1995

Abstract

We propose a knowledge-based crossover mechanism for genetic algorithms that exploits the structure of the solution

rather than its coding. More generally, we suggest broad guidelines for constructing the knowledge-based crossover

mechanisms. This technique uses an optimized crossover mechanism, in which the one of the two children is con-

structed in such a way so as to have the best objective function value from the feasible set of children, while the

other is constructed so as to maintain the diversity of the search space. We implement our approach on a classical

combinatorial problem, called the independent set problem. The resulting genetic algorithm dominates all other

genetic algorithms for the problem, and yields one of the best heuristics for the independent set problem in terms of

robustness and time performance.

Keywords: Independent Set, genetic algorithms, crossover.
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1 Introduction

Genetic algorithms were designed by Holland [14] for solving parameter optimization problems. The
premise of genetic algorithms is that one can use principles from the process of evolution in order
to design solution methods for many problems. In this context, evolution may be conceptualized
as a continuously occurring optimization process involving biological species.

Genetic Algorithms were designed by exploiting the metaphor of evolution. Generation after
generation, the individual species compete with each other to survive (Darwinian selection). Fitter
members are more likely to mate with each other in subsequent generations. This mating leads
to recombinations of the genetic materials of the fit members and often leads to a sequence of
generations which are successively more fit. In addition, nature infrequently throws in unexpected
variants in the form of mutations, resulting in a greater amount of diversity among the population
members.

To transform the evolutionary metaphor into a way of developing heuristics, the essential
idea is to treat each solution for a problem as an "individual", whose fitness is typically either the
corresponding objective function value or a closely related function. The solutions for a problem are
represented or coded as strings. The string representing an individual is called a chromosome. For
the purpose of this paper, we shall assume that chromosomes are always in the form of bit-strings
(that is, 0-1 vectors). The current collection of solutions is called the population. At each major
iteration, the population is replaced by another population referred to as the subsequent generation.
In order to move from one generation to the next, Holland proposed the following operators:

(1) Selection: This operator is motivated by the evolutionary mechanism implied by the well-
known phrase "survival of the fittest". In the context of the genetic algorithm, it means that
greater representation is given to the fitter strings in the current population of solutions. For
the purpose of this paper, we shall use the simple fitness proportional rule, which stipulates
that the expected number of copies of each individual in the next population is proportional to
his fitness. More specifically, if f(.) be the fitness function, and N be the number of population
members, then the selection process is performed with the help of a roulette wheel having N
slots. Each slot corresponds to a population member, and the width of a slot is proportional
to its fitness. There are N fixed pointers uniformly spaced around the slotted wheel. The
wheel is spun once, and positions marking these N pointers dictate the new population.

(2) Crossover: This operator is motivated by the biological process of meiosis. Suppose that x
and y are parent chromosomes. We say that z is a potential child of x and y, if zi = xi or zi =
yi for i E {1, 2,... n}. We let CrossSpace(x, y) denote the set of potential children of x and
y. In the genetic algorithm, a crossover is typically some well defined random finction f(x, y),
such that f(x, y) E CrossSpace(x, y). Holland [14] suggests choosing z E CrossSpace(x, y)
as follows:

f xi for i = 1...k 
Z Yi for i = k + ... n (1)

This kind of crossover is called a single point crossover.

(3) Mutation: This process is motivated by the evolutionary mechanism of mutation, where a
chromosome undergoes a small but important modification. In genetic algorithms, mutations
may be viewed as a selection from a neighborhood, as is common in simulated annealing and
tabu search. (see, for example, [22]) For each solution x, there is an associated neighborhood
N(x). A mutation of x is a selection of some solution y from N(x), possibly uniformly at
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random, and possibly using some other approach. It is common (but not necessary) in genetic
algorithms to have N(x) consist of all vectors y such that y differs from x in exactly one bit.

Thus, the basic genetic algorithm may be summarized as follows:

Algorithm GA;
begin

Initialize Population;
Generation:=0;
repeat

Generation= Generation + 1;
Selection(Population);
Crossover (Population);
Mutate(Population);

until TerminationCriterion;
end

A primary contribution of Holland's paper and of the subsequent voluminous literature on
Genetic Algorithms is the crossover operation. Most of the current methods of crossover determine
a child of x and y by selecting z E CrossSpace(x, y), using a stochastic approach and without
reference to the objective function. (We note that the same is true in standard implementations of
simulated annealing, in which the objective function is used in the process of deciding whether to
accept or reject the proposed neighbor of the current solution.) Some of the widely used crossover
operations are 1-point crossover, 2-point crossover, and multipoint crossover. ([8]). There is also
a literature on objective functions that are called "GA-deceptive" ([16], [17]) for which the above
three crossover mechanisms are often quite ineffective. Here we propose a crossover mechanism
which takes into account the objective function in a straightforward way. In particular, we refer to
an optimized crossover of x and y as the selection of the most fit child in CrossSpace(x,y). We apply
optimized crossover to the special case in which one is solving the independent set problem. Even
though the independent set problem is NP-hard, finding an optimized crossover is polynomially
solvable, and the resulting GA is computationally efficient, and obtains high quality solutions.

Since, an important goal of the crossover mechanism is to promote the recombination of
solutions so as to encourage the rebuilding of fitter solutions, a natural technique would be to
design the crossover specifically for the problem concerned, so as to encourage efficient interchange.

We now introduce the independent set problem. Suppose that G = (N, A) is an undirected
graph with a set N consisting of n nodes and a set A consisting of m arcs. An independent set is
any set I of nodes, no two of which are adjacent; that is no arc (i, j) E A has both end points in
I. The maximum independent set problem is that of finding a set of independent nodes with the
largest cardinality. Finding such a set is NP-hard. (See, for example, Garey and Johnson [10]) A
maximal independent set is a subset I of nodes such that I U {j} is not independent for any j I.
Finding such a set is quite easy using a simple greedy heuristic. Obviously, a maximal independent
set need not necessarily be maximum.

The maximum independent set problem is closely related to the maximum clique problem.
A clique is exactly the reverse of an independent set, in the sense that for every pair of nodes i, j
in the clique, (i, j) E A. Thus, the maximum independent set problem and the maximum clique
problem are equivalent in the sense that an algorithm for one problem can be used for the other,
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by applying the algorithm on the complement1 of the input graph. In the following discussion, we
shall provide some background results for the independent set problem. Many of the algorithms
are actually for the maximum clique problem, but since these can also be used for the independent
set problem, we shall cite those algorithms as well. It may be noted that the independent problem
is also closely related to the arc covering 2 and set packing3 problems.

A number of algorithms have been proposed for the independent set problem. Many of
these use partially enumerative techniques or branch and bound methods. Most of these require a
worst-case complexity which is exponential, but in practice, they may do well for many classes of
graphs. Some of these algorithms may be found in [4], [6], [7], [11], [12], [15], [18], [20], and [24],
and a good survey of all algorithms related to this problem may be found in [21]. Several papers
provide good heuristics for the problem, which are typically faster than exact methods, and are
often relatively robust in terms of time requirements on different instances. Gibbons et.al. [13]
developed a continuous heuristic (called the continious based heuristic) for the maximum clique
problem, which is computationally competitive with most known heuristic procedures. Balas and
Niehaus [5] have implemented a heuristic similar to our genetic algorithm which is very good in
terms of the quality of solution, but is very time intensive.

Back and Khuri developed a traditional genetic algorithm for the independent set problem
that used a "graded penalty function method. " Any set of nodes constituted a feasible solution,
and the fitness function penalized the number of pairs of adjacent nodes in the set. We provide
some limited comparisons of our approach to this algorithm in Section 5. However, Back and Khuri
did not test their algorithm on the DIMACS benchmark examples, which are the primary examples
used in our testing. As a result we do not provide a detailed comparison of their method to ours.
In addition, we have developed a genetic algorithm based on "random keys" developed by Bean
([3]). We describe our random keys implementation and provide a detailed comparision of that
approach to our optimized crossover approach in Section 4.

This paper is organized as follows. In the next section, we describe the optimized crossover
in more detail. In Section 3, we describe how to implement our method for the particular case of
the independent set problem. In Section 4, we present computational results. In the computational
section, we compare our algorithm to three of the best known ones on the independent set problem.
In Section 5, we present a brief conclusion and summary.

2 Optimized Crossover: General Principles

For parents x and y, an optimum child z is one that maximizes {f(z) : z E CrossSpace(x, y)}.
We refer to such a child as an O-child of parents x and y. We note that the selection of an O-
child parallels Glover's suggestion [19] in tabu search to select the neighbor which has the highest
objective function.

As is common with genetic algorithms, we replace the two parents in a crossover operation
1 The complement of a graph G = (N, A) is the graph G = (N, C - A), where C represents the set of arcs in a

complete graph with node set N.
2 An arc cover is a set of nodes V, which are such that every arc in the network has at least one end point in V.

If V is a minimum arc cover in G = (N, A) then N - V is the maximum independent set.
3A set packing problem is defined over a number of sets S1, S2,... S each of which have elements drawn from a

set of elements E = {1, ... n}. A set-packing P is a collection of sets {Si, . . . Si.}, such that no two sets have an
element in common. A set packing problem may be represented as an independent set problem on a graph having a
node corresponding to each set, and an arc joining two nodes if and only if the corresponding sets are not disjoint.
A one to one correspondence exists between independent sets in this graphs and the possible set packings. In fact,
the nodes corresponding to the independent set in the graph form a packing.
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with two children. The firest child is called tge O-child, and the second is called the E-child. (or
exploratory child). Suppose that x and y are binary n-vectors, and z is the O-child. We define the
E-child w, such that wi = xi + yi - zi.

Equivalently, if zi = xi, then wi = yi, and if zi = yi, then wi = xi. In the case that xi = yi,
we refer to xi and yi as the same allele. In case xi 7& yi, we refer to xi and yi as conflicting alleles.
It follows that when xi and yi are conflicting alleles, then so are wi and zi. And when xi and yi
are the same allele, then both the O-child and the E-child inherit the same allele.

The purpose of the E-child is to maintain the diversity of the population. Although the
concept of diversity is one that does not have a counterpart in either tabu search or simulated
annealing, it is widely discussed within the GA literature.

In the case that the problem to be solved is NP-hard, it is often the case that finding an
O-child is also NP-hard. In particular, if x is the vector of all ones, and y is the vector of all zeros,
then the O-child is the optimum for the entire population. Nevertheless, in such a case, it may be
possible to generate a nearly optimum child in a small amount of time.

In the case that an E-child is infeasible, it may be possible to develop a feasible E-child using
some repair mechanism. Briefly, a repair mechanism is a procedure by which one may transform an
infeasible solution into a feasible one. In cases where a repair mechanism is not readily available,
one could select one of the two parents to be the E-child.

3 Optimized Crossover for the Independent Set Problem

A key aspect of any genetic algorithm is the way in which the solutions are encoded. A natural
way of coding the problem would be to represent each solution by a bit string of size n, where the
bit in position i is a 0 or a 1, according as whether or not node i is or is not in the independent set.

Let us now see how the O-child and the E-child are generated. The idea of using the infor-
mation from two independent sets in an optimum way so as to generate another independent set
was conceived by Balas and Niehaus [5]. In the context of the independent set problem, generation
of an O-child for the sets I1 and 12 means that we need to find the largest independent subset
of I1 U I2. One can generate an O-Child, using the bipartite matching algorithm in the following
well-known manner.

(1) Step 1: Let 1 and 12 be the two parent independent sets. Assume without loss of generality
that I I1 IL I'2 1. Construct the subgraph of G as restricted to the nodes in I1 and I2. Further,
this graph is undirected like the original graph G. All arcs have one endpoint in I1 and the
other in 2. This subgraph is bipartite, because both the sets I and I2 are independent;
hence N 1 = I1 and N 2 = 12 - I1 forms one possible bipartite partition of the nodes.

(2) Step 2: Find a maximum matching M in this network. (See, for example, the book by Ahuja
et. al. [1] for several efficient matching algorithms.)

(3) Step 3: Construct the (directed) auxiliary network G' = (N1 U N 2, A'), which is exactly the
same as the network defined in Step 1, except that the arcs are directed as well. For each arc
(i, j) in the original network, such that (i, j) E M, let the orientation of the corresponding
arc in the auxiliary network be such that the head end of the arc lies in N 1 and the tail end
in N 2. For each arc (i, j) ' M, define its orientation such that the head end of the arc lies in
N 2, and the tail end lies in N 1.
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(4) Step 4: Starting at each unmatched node in N1 , run a depth-first search algorithm, and label
all the visited nodes. Let L 1 and L 2 be the set of labeled nodes in N1 and N 2 respectively.
Then, the desired O-child is the set L 1 U N 2 - L 2.

The proof of correctness of the method is described in the paper by Balas and Niehaus [5]. They
developed this method of optimized crossover (they referred to it more simply as a merging oper-
ation) for the independent set problem. Although the optimized crossover can be viewed from a
genetic algorithm's viewpoint, Balas and Niehaus did not adopt this viewpoint and did not rely
on other mechanisms such as selection and mutation that are traditional to genetic algorithms. It
is an interesting empirical question as to whether these other features of genetic algorithms lead
to an improved performance over the primary focus on the crossover operation. We answer this
question in part in Section 5, in which relative computational results are presented. Providing a
comprehensive answer is difficult in part because Balas and Niehaus focused primarily on the qual-
ity of the solution rather than the speed of performance. We focused much more on the empirical
computational performance. As a result, our approach is, in general, 100 to 1000 times faster than
the CLIQMERGE approach of Balas and Niehaus.

Once the O-child has been generated, the E-child is obtained by taking all the nodes in I1 UI2
which do not lie in the independent set corresponding to O-Child , and deleting nodes in a greedy
manner until the resulting set is independent. Alternatively, it is also possible to use the parent
which is least similar to O-child as the E-child.

Mutations were performed on the population in the usual way, by flipping a coin for each bit
in the population. In case the coin flip was a success, the corresponding bits were flipped; otherwise
not. The probability of success on such flips was defined as the mutation rate. Unfortunately, this
sometimes results in strings that are infeasible. To regain feasibility, we applied the following repair
algorithm. We delete some randomly chosen nodes from the solution until the resulting set was
independent and then to added as many nodes as possible without violating the independence
constraint.

The initial population was chosen heuristically in the following manner. For each member
in the population a random permutation of the numbers {1,... ,n} was generated. (n is the
number of nodes in the network.) Then the nodes were examined greedily in that order, and added
to the current set, if the independence condition was not violated. Thus, each element in the
initial population is a maximal independent set. Moreover each O-child and E-child is a maximal
independent set. The genetic algorithm applies the selection, crossover and mutation operators on
this population iteratively.

4 Computational Results

We performed computational tests on the independent set problem by using a standard test bed
of independent set (max clique) problems available from the second DIMACS implementation
challenge. By using this widely available set of problem instances we could directly compare
the computational results of our algorithm to that of many other researchers. We conducted an
initial phase of testing in order to set the parameters associated with the genetic algorithm. In
general, larger population sizes lead to improved solution quality and increased running times. After
substantial testing, we settled on a population size that is equal to 25% of the number of nodes of
the input graph. In determining the mutation rate, we found that the performance of the genetic
algorithm steadily increased as the mutation rate was increased from .001 to .004. (see Figure 1.)
However, the running time for mutation rates around .004 were increased substantially over those
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Figure 1: Dependence of the best solution obtained on the mutation rate.

of smaller mutation rates both because of a slow down of the convergence of the genetic algorithm
and also because of the increased time to perform the mutations. As a result, we selected the more
modest mutation rate of .002 for subsequent testing. Finally, we selected an elitist strategy, which
means that the best solution in each generation was saved for the next.

In translating from the maximum clique problems into maximum independent set problems,
one needs to take complements of each graph. Complementation creates dense graphs from sparse
graphs and sometimes creates sparse graphs from dense graphs; since the input sizes are not fully
comparable, the running times are not fully comparable; however, it should be noted that most of
the DIMACS problems had the property that both the graph and its complement were dense, and
in these cases the problem sizes are comparable.

We refer to our algorithm as OCH, for Optimized Crossover Heuristic. We ran OCH twice
on each problem instance, and selected the better of the two solutions. In general, for a fixed total
CPU time, this approach worked more effectively than either increasing the size of the population
or increasing the number of generations.

All tests were performed on the DECstation running X windows, and the user time was
measured for the execution of each graph. The code was written in C, and the compiler used was
the Ultrix (version 4.2A) operating system compiler. Since the procedure for loading the graph
converts from the maximum clique problem to the maximum independent set problem, the read
times tend to be high. The time used for reading has not been included in the reporting times for
the heuristic. Further, in order to compare our heuristic with that of other algorithms we needed
to use a common standard. We chose this standard to be the DIMACS challenge machine. We
ran a heuristic called dfmax on our machine, whose computational results on the SGI challenge
machine were available from the DIMACS directories.4 We ran the tests for a few instances in
order to compare the relative speeds of our DEC machines, and the SGI challenge machines. We
estimated that our machine was about 3.21 times slower than the SGI challenge machine on the
average. In our presentation of the computational results, we shall compare our heuristic with those
of all others in terms of SGI challenge times. While these translations to SGI challenge times are
imperfect, it is a reasonably good first order approximation. 5

4 The heuristic also is available from the DIMACS DIRECTORIES.
5We note that 3.21 is actually the average slowdown on the various instances of the problem. We noted that the
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4.1 Comparison with other genetic algorithms

As we have already stated, Bck and Khuri have implemented a genetic algorithm, for the in-
dependent set problem. It is difficult to compare our results directly with theirs because their
algorithm has not been implemented directly on the DIMACS challenge problems. Further, the
sizes of the graphs which they have tested have been restricted to only 100 or 200 nodes. One
interesting statistic is that their algorithm converges to the global optimum solution in less than
10% of the runs. (By comparison, the smallest graph on which we tested our solution was at least
200 nodes, and on such graphs the algorithm converged to the global optimum solution in every
run.) We conjecture that their use of a penalty function method [23] results in a population largely
consisting of infeasible solutions. Consequently, their algorithm might spend a large fraction of its
time evaluating infeasible solutions.

We have implemented a different genetic algorithm which we call R-Key by using the tradi-
tional crossover and mutation mechanisms. The technique used by R-Key is essentially Jim Bean's
[3] method of using random keys. Each node i of the graph is assigned a key value Key(i) which
initially is an integer selected uniformly at random from the interval [0, 2k - 1] for some choice of
k. The keys determine the representation of the solution indirectly. To determine an independent
set from the keys, one runs the greedy algorithm after first sorting the nodes in order of increasing
keys. We describe the procedure in detail below.

The random keys approach has been applied to a wide range of problems including the
traveling salesperson problem, the quadratic assignment problem, the knapsack problem, and some
interesting special cases of the integer programming problem [3]. To our knowledge, this is the first
implementation of the random keys approach to the independent set problem.

In order to simplify the description of the algorithm in pseudo-code, we let r(j) denote the
node whose key value is jth lowest. For example, if there are three nodes with key values .3, .4,
and .2 respectively, then node 3 has the least key value, and 7r(1) = 3. Similarly, 7r(2) 1, and
7r(3) = 2 in this case. One may view r as a measure of priority, and view 7r(1) as the node whose
priority is the highest. Using this view, for any particular assignment of keys, the random keys
algorithm selects the (lexicographically) highest priority independent set.

A description of the way in which the fitness function of R-Key on a string x = xIx2 . . . Xn is
evaluated is as follows:

Function Fitness(Key(1), Key(2),..., Key(n))
begin

Sort the keys, and let r(i) denote
the index of ith smallest key;

S = {}
for i = 1 to n do
begin

Add node r(i) to S provided that
independence condition is not violated

end
return( S )

end

slowdown was greater for problems of larger size. The estimate of 3.21 probably underestimates our relative running
time on smaller problems, and overestimates our relative running time on larger problems. Therefore, an average
value is not in our favor for the bigger problems.
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Problem Optimum VOCH VRKey I tOC H I tR-Key |
brock200-2 12 11 10 0.96 7.4
brock200-4 17 16 16 0.80 22.5
brock400-2 29 24 22 8.25 132.1
brock400-4 33 24 22 5.11 66.0
brock800-2 24 19 18 15.31 730.1

keller4 11 11 11 0.59 30.2
keller5 27 25 24 38.40 300.4

Table 1: Relative Performance of the genetic algorithm (OCH) *
with respect to the genetic algorithm R-Key

A major advantage of the random keys approach is that it is a very simple mechanism of ensuring
feasibility after crossover. This method creates a feasible solution for any set of key values includ-
ing those obtained after crossover and mutation. In order to implement the operation, the keys
used were integers in the range [0, 2k - 1] represented in binary. We used a two-point crossover
mechanism, and the standard mutation operator, with a mutation rate of 0.02. As we can see from
the computational results in Table 1, R-Key was unable to find the optimum solution for most of
the cases, but performed reasonably well on most test problems.

In implementing R-Key , we ran each genetic algorithm three times and selected the best of
the three solutions. We chose three solutions so that the running times of R-Key would be more
directly comparable to OCH. (Our choice of three was not of particular significance.)

4.2 Comparison with CLIQMERGE

Balas and Niehaus [5] have used the the method of optimal merging (optimized crossover) in order
to come up with a heuristic for the independent set problem. Their heuristic enumerates many
more sets of parents than ours, and accordingly has a much greater running time. Our genetic
algorithm using an optimized crossover mechanism is approximately 100 to 1000 times faster. We
report the comparative running times in Table 2. While the running times of our algorithm are
orders of magnitude faster, the quality of solution obtained is slightly worse. To check whether
the improved performance of CLIQMERGE was due primarily to its searching a larger source, we
ran OCH 20 times and selected the best solutions for a subset of DIMACS problem instances, and
compared these results to CLIQMERGE. In each case tested, we obtained a solution quality which
is equally good or better than that of CLIQMERGE, and has significantly less running time. The
computation results are illustrated in Tables 2 and 3.

4.3 Comparison with the Continuous Based Heuristic of Gibbons et. al.

Gibbons et. al. have presented a deterministic heuristic, called the continuous based heuristic
[13] for the independent set problem. This heuristic provides reasonably robust solutions in times
comparable to OCH. Further, since this heuristic has already been tested comprehensively on the
DIMACS test problems, it is relatively easy for us to compare our results to theirs. Here is a
summary of the comparisons.
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Table 2:

Problem Optimum vOCH vCLIQMERGE tOCH tCLIQMERGE
brock200-2 12 11 11 0.96 68
brock200-4 17 16 16 0.80 135
brock400-2 29 24 25 8.25 917
brock400-4 33 24 25 5.11 876
brock800-2 24 19 21 15.31 2288
brock800-4 26 19 21 33.01 2252

keller4 11 11 11 0.59 69
keller5 27 25 27 38.40 4997

MANN-a27 126 126 126 8.19 19371
MANN-a45 345 343 344 110.36 32953

Relative Performance of the Genetic Algorithm (OCH)
with respect to CLIQMERGE

Problem Optimum vOCH vCLIQMERGE tOCH tCLIQMERGE
brock200-2 12 12 11 20.0 68
brock200-4 17 17 16 18.6 135
brock400-2 29 25 25 80.9 917
brock400-4 33 26 25 69.7 876
brock800-2 24 21 21 138.2 2288
brock800-4 26 22 21 1008.6 2252

keller4 11 11 11 8.9 69
keller5 27 27 27 43.89 4997

MANN-a27 126 126 126 175.6 19371
MANN-a45 345 345 344 3723.8 32953

Table 3: Performance of the Optimized Crossover Heuristic (OCH)
with multiple executions

10
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Figure 2: Relative performance of OCH and CBH
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Graph Nodes Edges V)CH I vB H v *Opt tOCH tCBH 
c-fat-200-1 200 3235 12 12 12 0.59 1.02
c-fat-200-2 200 3235 24 24 24 1.12 0.72
c-fat-200-5 200 8473 58 58 58 1.15 0.58
c-fat-500-1 500 4459 14 14 14 6.07 8.6
c-fat-500-10 500 46627 126 126 > 126 16.2 12.6
c-fat-500-2 500 9139 26 26 26 5.01 6.08
c-fat-500-5 500 23191 64 64 64 8.00 7.43

johnsonl6-2-4 120 5460 8 8 8 0.16 0.27
johnson32-2-4 196 107880 16 16 16 8.20 9.49
johnson8-2-4 28 210 4 4 4 0.01 0.04
johnson8-4-4 70 1855 14 14 14 0.02 0.06

keller4 171 9435 11 10 11 0.59 0.91
keller5 776 225990 25 21 27 38.40 21.04
keller6 3361 4619898 DNR DNR > 59 DNR DNR

hamminglO-2 1024 518656 512 512 512 110.28 107.07
hamminglO-4 1024 434176 33 35 > 40 50.34 21.96
hamming6-2 64 1824 32 32 32 0.02 0.03
hamming6-4 64 704 4 4 4 0.02 0.01
hamming8-2 256 31616 128 128 128 5.00 1.01
hamming8-4 256 20864 16 16 16 1.06 1.31

san1000 1000 250500 10 8 10 32.00 107.07
san200_0.7_1 200 13930 30 15 30 0.97 1.36
san200_0.7_2 200 13930 15 12 18 0.29 2.07
san200_0.9_1 200 17910 70 46 70 2.64 1.31
san200_0.9_2 200 17910 60 36 60 2.21 1.58
san200_0.9_3 200 17910 36 30 44 0.99 1.51
san400_0.5_1 400 39900 13 8 13 2.12 6.13
san400_0.7_1 400 55860 40 20 40 10.00 14.32
san400_0.7_2 400 55860 30 15 30 4.39 8.76
san400_0.7_3 400 55860 16 14 22 3.21 9.95
san400_0.9_1 400 71820 100 50 100 30.39 13.3

Table 4: Relative performance of OCH and CBH
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Graph Nodes I Edges vOCH VCBH V*Op t
tOCH tCBH

sanr200_0.7 200 13868 18 18 18 0.71 1.20
sanr200_0.9 200 17863 42 41 > 42 1.71 1.37
sanr400_0.5 400 39984 12 12 13 3.11 3.96
sanr400_0.7 400 55869 20 20 > 21 3.06 4.23
brock200_1 200 14834 21 20 21 0.85 1.00
brock200_2 200 9876 11 12 12 0.96 1.39
brock200_3 200 12048 14 14 15 0.77 4.06
brock200_4 200 13089 16 16 17 0.80 0.92
brock400_1 400 59723 24 23 27 2.41 3.83
brock400_2 400 59786 24 24 29 8.25 15.79
brock400_3 400 59681 24 23 31 3.25 5.48
brock400_4 400 59765 24 24 33 5.11 8.33
brock800_1 800 207505 19 20 23 30.46 54.65
brock800_2 800 208166 19 19 24 15.31 47.12
brock800_3 800 207333 19 20 25 22.13 55.17
brock800_4 800 207643 19 19 26 33.01 47.59
p _hat300-1 300 10933 8 8 8 2.01 3.63
p_hat300-2 300 21928 25 25 25 3.00 3.11
p_hat300-3 300 33390 36 36 36 1.20 5.87
p_hat500-1 500 31569 9 9 9 7.27 15.86
p _hat500-2 500 62946 36 35 36 6.12 13.56
p_hat500-3 500 93800 49 49 > 50 4.20 15.27
p _hat700-1 700 60999 9 11 11 15.2 47.6
p_hat700-2 700 121728 44 44 44 36.40 32.42
p_hat700-3 700 183010 62 60 > 62 13.87 41.31
p_hat1000-1 1000 122253 9 10 10 12.85 111.52
p_hat1000-2 1000 244799 45 46 > 46 91.32 84.38
p_hatlO000-3 1000 371746 64 65 > 65 31.79 134.17
p_hat1500-1 1500 284923 10 11 12 40.23 356.81
p_hat1500-2 1500 568960 59 63 > 63 179.76 167.86
p_hat1500-3 1500 847244 92 94 > 94 180.54 630.08
MANN_a27 378 70551 126 121 126 8.19 8.93
MANN_a45 1035 533115 343 336 345 110.36 153.90
MANNa81 3321 5506380 DNR DNR > 1100 DNR DNR
MANN_a9 45 918 16 16 16 0.83 0.04

Table 5: Relative performance of OCH and CBH (contd.)
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(1) Our heuristic was more robust than the Continuous Based Heuristic (CBH) in [13]. Although
CBH performs well in general, it does not perform well on two of the nine classes of graphs
available in the DIMACS directory in terms of the quality of solution obtained. Our algo-
rithm performs well on both of these. In the case of the Sanchis graphs the quality of the
solutions obtained by our genetic algorithm is significantly better. On the other graphs, the
performance of our algorithm is competitive to CBH. Thus our algorithm performed robustly
on each and every class of graph for which it was tested. We consider this a very important
feature of our results, because quite a few heuristics for the independent set problem are
known not to be too robust when faced with different kinds of graphs.

(2) The running times of OCH were typically less than those used by CBH. In some cases,
the performance of our algorithm was significantly faster. On a few instances our method
was slightly slower. Most importantly, we found that our algorithm ran much faster on the
larger instances than CBH, while on the smaller instances the times required were relatively
competitive. This is evidence of the fact that our algorithm dominates the Continuous Based
Heuristic when the size of the instance is large. To compare the relative running times of
OCH and CBH, side by side with the solution quality, we present a two dimensional plot of
VOCH/VCBH versus tCBH/tOCH in Figure 2. As we can see, the graph is divided into four
quadrants, denoting the areas in which OCH dominates over CBH, either totally, or in time
only or solution quality only. The graph suggests that CBH and OCH are often comparable
in one dimension, but OCH is usually far better than CBH in either CPU time or solution
quality or both.

The details of the running times of the Continuous Based Heuristic and the Optimized Crossover
Heuristic are illustrated in Tables 4 and 5.

5 Conclusion and Summary

In this paper we introduced the natural idea of optimized crossover for Genetic Algorithms. We
tested it on the independent set problem, and presented computational results, which verifies the
inherent power of this method, at least in this special case. It would only be fair at this stage to
point out that it is not necessarily possible to apply the method to each and every kind of problem.
Hence, we would like to lay down some general principles to be kept in mind while deciding whether
or not a problem can be successfully solved by using optimized crossover.

It is not difficult to see that the time to actually perform the crossover is a very important
component in the running time, and is likely to be the bottleneck. We observe that for dense
graphs, the maximum independent set is typically O(log(n)), and hence, the corresponding match-
ing problem for the optimized crossover mechanism can be solved in O(log3(n)) time. (We observed
that the running time in practice is O(log2 (n)), since only one or two extra augmentations were
typically needed to convert the initial (maximal) matching into a maximum matching.) Thus, the
time to perform an optimized crossover is asymptotically less than the time spent in implementing
the crossover mechanism of the usual genetic algorithm crossover, which stores each independent
set as a bit-string of size n. In general, the optimized crossover approach is well suited to cases in
which the number of conflicting genes between the two parents is sufficiently small, since determin-
ing an optimized crossover may be formulated as an integer programming problem, in which the
decision variables are the conflicting bits of the parents. A number of important 0-1 combinatorial
optimization problems do fall into this category. When finding an optimized crossover is computa-
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tionally prohibitive, it may be possible to design good approximation algorithms for the crossover
itself, which may lead to good genetic algorithms in practice.
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