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Abstract

In this thesis, we study the problem of energy efficiency and reliability in wireless
ad-hoc networks. First, we introduce the idea of wireless cooperation advantage.
We formulate the problem of finding the minimum energy cooperative route for a
wireless network under idealized channel and receiver models. Fundamental to the
understanding of the routing problem is the understanding of the optimal power
allocation for a single message transmission between two sets of nodes. We present
the solution to this problem, and use that as the basis for solving the minimum energy
cooperative routing problem. We analytically obtain the energy savings in regular
line and regular grid networks. We propose heuristics for selecting the cooperative
route in random networks and give simulation results confirming significant energy
savings achieved through cooperation.

In the second part, we study the problem of route reliability in a multi-hop net-
work. We look at the reliability issue at the link level and extend those result to
a wireless network setting. In the network setting, we first define and analyze the
reliability for a fixed route and then propose algorithms for finding the optimal route
between a source-destination pair of nodes. The relationship between the route reli-
ability and consumed power is studied. The idea of route diversity is introduced as
a way to improve the reliability by taking advantage of the broadcast property, the
independence of fading state between different pairs of nodes, and space diversity cre-
ated by multiple intermediate relay nodes along the route. We give analytical results
on improvements due to route diversity in some simple network topologies.
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Chapter 1

Introduction

In this thesis, we study the problem of reliability and energy efficiency in wireless

ad-hoc networks. In an ad-hoc network, nodes often spend most of their energy on

communication [1]. In most applications, such as sensor networks, nodes are usually

small and have limited energy supplies. In many cases, the energy supplies are non-

replenishable and energy conservation is a determining factor in extending the life time

of these networks. For this reason, the problem of energy efficiency and energy efficient

communication in ad-hoc networks has received a lot of attention in the past several

years. This problem, however, can be approached from two different angles: energy-

efficient route selection algorithms at the network layer or efficient communication

schemes at the physical layer. While each of these two areas has received a lot of

attention separately, not much work has been done in jointly addressing these two

problems. Our analysis in this thesis tackles this less studied area.

Motivated by results from propagation of electromagnetic signals in space, the

amount of energy required to establish a link between two nodes is usually assumed

to be proportional to the distance between the communicating nodes raised to a

constant power. This fixed exponent, referred to as the path-loss exponent, is usually

assumed to be between 2 to 4. Due to this relationship between the distance between

nodes and the required power, it is usually beneficial, in terms of energy savings,

to relay the information through multi-hop route in an ad-hon network. Multi-hop

routing extends the coverage by allowing a node to establish a multi-hop route to
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communicate with nodes that would have otherwise been outside of its transmission

range. Finding the minimum energy route between two nodes is equivalent to finding

the shortest path in a graph in which the cost associated with a link between two

nodes is proportional to the distance between those nodes raised to the path-loss

exponent. Figure 1-1 shows an example of a multi-hop route between two nodes.

s


d


Figure 1-1: Multi-hop Relaying

The problem becomes more interesting once some special properties of the wireless

medium are taken into account. In particular, there are three properties of the wireless

physical layer that have motivated our work in this thesis: the wireless broadcast

property, the benefits of transmission side diversity, and multi-path fading.

A wireless medium is a broadcast medium in which signal transmitted by a node

is received by all nodes within the transmission radius. For example, in figure 1-

2, the signal transmitted by s is received by both nodes 1 and 2. This property,

usually referred to as the Wireless Broadcast Advantage (WBA), was first studied

in a network context in [3]. Clearly, this property of the wireless physical medium

significantly changes many network layer route selection algorithm. The problem of

finding the minimum energy multi-cast and broadcast tree in a wireless network is

studied in [3] and [4]. This problem is shown to be NP-Complete in [5] and [6]. WBA

also adds substantial complexity to route selection algorithms even in non-broadcast

scenarios. For example, this model is used in [7] in the context of selecting the

minimum energy link and node disjoint paths in a wireless network.

Another interesting property of the wireless medium is the benefit of space diver-

sity at the physical layer. This type of diversity is achieved by employing multiple

antennas on the transmitter or the receiver side. It is well known that transmission

10
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Figure 1-2: Wireless Broadcast Advantage

side diversity, i.e. using multiple antennas on the transmitter, results in significant

energy savings (see [2]). In the network setting studied in this thesis, we assume

that each node is only equipped with a single antenna. Hence, a straight forward

extension of multiple-antenna results to a network setting is not possible. However,

it might be possible that several nodes can cooperate with each other in transmit-

ting the information to other nodes, and through this cooperation effectively achieve

similar energy savings as a multiple antenna system.

In the problem studied in chapter 2, we intend to take advantage of the wireless

broadcast property and the transmission side diversity created through cooperation

to reduce the end-to-end energy consumption in routing the information between two

nodes. To make it clear, let’s look at a simple example. For the network shown in

figure 1-1, assume the minimum energy route from s to d is determined to be as shown.

As discussed previously, the information transmitted by node s is received by nodes

1 and 2. After the first transmission, nodes s, 1 and 2 have the information and can

cooperate in getting the information to d. For instance, these 3 nodes can cooperate

with each other in transmitting the information to node 3 as shown in figure 1-3.

Several questions arise in this context: how much energy savings can be realized by

allowing this type of cooperation to take place? What level of coordination among the

cooperating nodes is needed? And how must the route selection be done to maximize

the energy savings?

These are the problems that we look at in chapter 2. We develop a formulation

that captures the benefit of cooperative transmission and develop an algorithm for

11
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Figure 1-3: Cooperative Transmission

selecting the optimal route under this setting. We formulate the problem of finding

the minimum energy cooperative route as two separate minimization problems. First,

we look at the problem optimally transmit of information between two sets of nodes.

We refer to the set of nodes that has correctly received the information as the reliable

set. A separate problem is how to decide which nodes must be added to the reliable

set in each transmission such that the information is routed to the final destination

with minimum overall energy. We use dynamic programming to solve this second

minimization problem. We present analytical results for the lower-bound of savings

in networks with regular line or grid topology. We also propose two heuristics for

finding the optimal path in arbitrary networks and present simulation results for the

average energy savings of those heuristics.

Another property of a wireless medium that is often not taken into account by

the network layer algorithms is the multi-path fading effect. The received signal in

a wireless link is the combined sum of signals reflected by different scatterers in the

propagation environment. A channel is said to be in deep fading state when the

reflected signals add destructively at the receiver. Naturally, a higher transmission

power is required to establish a link between two nodes when the channel between

the two nodes is in deep fading. Since the fading state of the channel changes over

time, the amount of energy required to transfer a unit of information between the

two nodes changes overtime as well.

Depending on how fast channel changes occur, the time varying nature of the wire-

less channel can be addressed in two different ways. If the channel changes relatively
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fast, coding can be done to average the effect of fading. This type of averaging effect

is the motivation behind the ergodic capacity model for fading channels (see [14]). To

achieve this type of average behavior, however, very long delays might be imposed on

the data.

Another possibility arises when the time scale over which the fading states vary is

much longer than the time that it takes to transmits a unit of information between two

nodes. Assuming that the receiver is able to measure the channel state and there is a

feedback mechanism for the receiver to send this information back to the transmitter,

the transmitter can leverage this information to adjusted the transmitted power based

on the present channel state. This approach, however, requires the channel state

information at the transmitter. If we assume that such channel knowledge is not

available at the transmitter, there is no way that the transmitter can adjust its power

to compensate for very bad channel states. The appropriate model for the wireless

link in this scenario is the capacity-versus-outage model, see [15], [16], [14]. In this

model, the instantaneous capacity of a wireless link is treated as a random variable.

A link is said to be in outage when the instantaneous capacity supported by the

link is less than the transmission rate. The reliability of a link, i.e. the probability of

correct reception at the receiver, is modeled as a function of the transmission rate, the

transmitted power, the distance between the communicating nodes, and the channel

fading state. By adjusting the transmission rate or power, the transmitter can control

the probability of successful reception at its intended receiver.

A network layer routing algorithm based on the capacity-versus-outage model at

the link layer is studied in chapter 3. Our analysis starts by looking at the reliability

of a point-to-point communication link. In particular, we are interested in how the

reliability of a point-to-point link depends on the fading and the distance between

the communicating nodes. Once the results for a point-to-point link are established,

we extend the reliability results to a network setting. In a network setting, we first

define and analyze the reliability for a fixed route and then propose algorithms for

finding the optimal route between a source-destination pair of nodes under different

constraints on the end-to-end consumed power and reliability.
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An interesting aspect of the capacity-versus-outage model is the relationship be-

tween the transmitted power and link reliability. This type of analysis gives insight

into how much power is required to achieve a certain level of reliability at the link

level. It is known that in a Rayleigh fading link, the link outage probability decays

as the inverse of the transmitted power, see [19]. If, however, either the transmitter

or the receiver is equipt with multiple antenna, this trade-off become much more

favorable, see [19] for details.

To extend the same analysis to the network layer, we study how the end-to-end

reliability changes with the transmitted power. After defining the route reliability and

proposing route selection algorithms in chapter 3, we study the relationship between

the route reliability and consumed power. It is shown that the trade-off between

reliability and power is similar to the trade-off in a point-to-point link, i.e. the end-

to-end route outage probability decays as the inverse of the transmitted power.

The idea of Route Diversity is introduced as a way to improve route reliability

by taking advantage of wireless broadcast property and the independence of fading

states between different pairs of nodes. To clarify this idea, let’s go back to our simple

example. Assume that route {s → 1 → 2 → 3 → d} is selected. In each transmission

along this route, the transmitted signal may be received by nodes other than the

intended destination, shown with dotted arrows in figure 1-4. These links introduce

a level of diversity in the system at the network or route level. We give analytical

results on improvements due to route diversity in some simple network topologies.

More precisely, we show that route diversity can improve the trade-off between the

end-to-end reliability and power in networks with line topology. The effects seen are

very similar to diversity benefits of multiple-antenna systems for a point-to-point link

discussed in [19].

To our knowledge, this is the first attempt to introduce the concept of route

reliability and the end-to-end reliability versus power trade-off in a network setting.

More precisely, this is the first time that network layer routing algorithms and route

properties, such as reliability and power, are studied based on the capacity-versus-

outage model at the physical layer. This model has the potential to open the door

14
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Figure 1-4: Reliability and Diversity

for a wide-range of research at the network layer.

The idea of route diversity is motivated by the work done in [10], [11], [12], and [13].

Most pervious results have been focused on two-hop networks and the analysis has

been based on information theory results for relay channels. [10], [11], and [12] look

at the effect of cooperation among nodes in increasing the capacity or reducing the

outage probability in a fading network. In [10] and [12], the authors described several

protocols for benefiting from the space diversity created by the relays in an ad-hoc

network. They look at the trade-off between the capacity and the outage improve-

ment in a two-hop ad-hoc network and several related protocols and coding schemes.

This analysis ignores the deterministic part of link attenuation due to the distance

between nodes and assume all link fading factors are independent and identically dis-

tributed Rayleigh random variables. [13] looks at asymptotic benefit of relay nodes in

improving the capacity in an ad-hoc network. Their analysis only takes into account

the deterministic part of link attenuation due to the distance between nodes. Their

results mainly deal with how the capacity scales as a function of the number of nodes

in the network.

Here we consider both fading and path-loss in our analysis and extend the results

beyond 2-hop network topologies. The protocol discussed in our work is very similar

to the decode-and-forward protocol described in [10]. The assumptions made in our

treatment and the differences between our work and previous work are discussed in

more details as appropriate in the context of this thesis.
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Chapter 2

Energy Saving Through

Cooperation

In this chapter, we look at the problem of cooperative transmission and energy savings

due to the cooperation in multi-hop wireless networks. To clarify our approach, let’s

look at a simple example.

d

s


1


2


Figure 2-1: Cooperative Routing

Figure 2-1 depicts a simple 4-node wireless network, where s and d are the source

and the destination nodes, respectively. We assume that there is no randomness

in the fading states or distance between nodes. This implies that either there is

no fading, as would be the case in free-space propagation, or the state of fading

channels is completely known to all transmitters and remains constant for relatively

long period of time compared to a typical transmission block length. In figure 2-1,
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assume that the minimum energy path from s to d is determined to be through node

1, i.e. {s → 1 → d}. Node 2, which is also located within the transmission radius of s

to 1, receives the information transmitted from s at no additional cost. This property

of a wireless medium is usually referred to as Wireless Broadcast Advantage (WBA)

(see [3]). Cooperation between nodes 1 and 2 in the second hop creates transmission-

side diversity and may result in some energy saving in the second step of relaying the

information to d. We refer to potential energy saving due this type of cooperation

among nodes as Wireless Cooperation Advantage (WCA). Under this setting, each

node can participate in the cooperative transmission after it has completely received

the information. The problem of finding the optimal path is a multi-stage decision

making problem, where at each stage a set of nodes may cooperate to relay the

information to another node or another set of nodes. The tradeoff is between spending

more energy in each transmission slot to reach a larger set of nodes, and the potential

savings in energy in subsequent transmission slots due to larger cooperative set of

nodes. The minimum energy cooperative route may be viewed as a sequence of sets

of cooperating nodes along with an appropriate allocation of transmission powers.

We first develop a formulation that captures the benefit of the wireless cooperative

advantage. We then formulate the optimal route selection algorithm for a general

network and look at the achievable savings in networks with very simple topologies.

Two heuristic algorithms for selecting the route in a general network along with some

simulation results are also presented.

The idea of wireless broadcast advantage was first introduced in [3]. The problem

of finding the optimal multi-cast and broadcast tree in a wireless network and the

added complexity due to WBA has been studied extensively in [3] and [4]. This

problem is shown to be NP-Complete in [5] and [6]. [8] looks at the same problem

under the assumption that nodes can collect power in different transmission slots.

An overview of different transmission side diversity techniques is given in [2]. An

architecture for achieving the required level of coordination among the cooperating

nodes is discussed in [9].
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2.1 Cooperative Transmission

Consider a wireless ad-hoc network consisting of arbitrarily distributed nodes where

each node has a single omni-directional antenna. We assume that each node can

dynamically adjust its transmitted power to control its transmission radius. It is

also assumed that multiple nodes cooperating in sending the information to a sin-

gle receiver node can precisely delay their transmitted signal to achieve perfect phase

synchronization at the receiver. Under this setting, the information is routed from the

source node to the destination node in a sequence of transmission slots, where each

transmission slot corresponds to one use of the wireless medium. In each transmission

slot/stage, either a node is selected to broadcast the information to a group of nodes

or a subset of nodes that have already received the information cooperate to transmit

that information to another group of nodes. As explained shortly, under our assump-

tion it is the only reasonable to restrict the size of the receiving set to one node when

multiple nodes are cooperating in the transmission. So, each transmission is either a

broadcast, where a single node is transmitting the information and the information

is received by multiple nodes, or a cooperative, where multiple node simultaneously

send the information to a single receiver. We refer to the first case as the Broadcast

Mode and the second case at the Cooperative Mode. In the Broadcast Mode, we take

advantage of the known Wireless Broadcast Advantage. In the Cooperative Mode, we

benefit from the newly introduced concept of Wireless Cooperative Advantage.

The routing problem can be viewed as a multi-stage decision problem, where at

each stage the decision is to pick the transmitting and the receiving set of nodes as

well as the transmission power levels among all nodes transmitting in that stage. The

objective is to get the information to the destination with minimum energy. The set of

nodes that have the information at the kth stage is referred to as the kth-stage Reliable

Set, Sk, and the routing solution may be expressed as a sequence of expanding reliable

sets that starts with only the source node and terminates as soon as the reliable set

contains the destination node. We denote the transmitting set by S and the receiving

set by T. The link cost between S and T, LC(S, T), is the minimum power needed for
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transmitting from S to T.

In this chapter, we make several idealized assumptions about the physical layer

model. The wireless channel between any transmitting node, labeled si, and any

receiving node, labeled tj, is modeled by two parameters, its magnitude attenuation

factor αij and its phase delay θij. We assume that the channel parameters are estimated

by the receiver and fed back to the transmitter. This assumption is reasonable for

slowly varying channels, where the channel coherence time is much longer than the

block transmission time. We also assume a free space propagation model where the

power attenuation α2
ij is proportional to the inverse of the square of the distance

between the communicating nodes si and tj. For the receiver model, we assume that

the desired minimum transmission rate at the physical layer is fixed and nodes can

only decode based on the signal energy collected in a single channel use. We also

assume that the received information can be decoded with no errors if the received

Signal-to-Noise ration, SNR, level is above a minimum threshold SNRmin, and that

no information is received otherwise. Without loss of generality, we assume that the

information is encoded in a signal φ(t) that has unit power Pφ = 1 and that we are

able to control the phase and magnitude of the signal arbitrarily by multiplying it by

a complex scaling factor wi before transmission. The transmitted power by node i is

|wi|2. The noise at the receiver is assumed to be additive, and the noise signal and

power are denoted by η(t) and Pη, respectively. This simple model allows us to find

analytical results for achievable energy savings in some simple network topologies.

2.1.1 Link Cost Formulation

In this section, our objective is to understand the basic problem of optimal power

allocation required for successful transmission of the same information from a set of

source nodes S = {s1, s2, · · · , sn} to a set of target nodes T = {t1, t2, · · · , tm}. In order

to derive expressions for the link costs, we consider 4 distinct cases:

1. Point-to-Point Link: n = 1, m = 1: In this case, only one node is transmitting

within a time slot to a single target node.
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2. Point-to-Multi-Point, Broadcast Link: n = 1, m > 1: This type of link corre-

sponds to the broadcast mode introduced in the last section. In this case, a

single node is transmitting to multiple target nodes.

3. Multi-Point-to-Point, Cooperative Link: n > 1, m = 1: This type of link corre-

sponds to the cooperative mode introduced in the last section. In this case,

multiple nodes cooperate to transmit the same information to a single receiver

node. We will assume that coherent reception, i.e. the transmitters are able

to adjust their phases so that all signals arrive in phase at the receiver. In

this case, the signals simply add up at the receiver and complete decoding is

possible as long as the received SNR is above the minimum threshold SNRmin.

Here, we do not address the feasibility of precise phase synchronization. The

reader is referred to [9] for a discussion of mechanisms for achieving this level

of synchronization.

4. Multi-Point-to-Multi-Point Link: n > 1, m > 1: This is not a valid option un-

der our assumptions, as synchronizing transmissions for coherent reception at

multiple receivers is not feasible. Therefore, we will not be considering this case.

Point-to-Point Link: n = 1, m = 1

In this case, S = {s1} and T = {t1}. The channel parameters may be simply denoted

by α and θ, and the transmitted signal is controlled through the scaling factor w.

Although in general the scaling factor is a complex value, absorbing both power and

phase adjustment by the transmitter, in this case we can ignore the phase as there

is only a single receiver. The model assumptions made in Section 2.1 imply that the

received signal is simply:

r(t) = αejθwφ(t) + η(t)·

where φ(t) is the unit-power transmitted signal and η(t) is the receiver noise with

power Pη. The total transmitted power is PT = |w|2 and the SNR ratio at the receiver

is α2|w|2
Pη

. For complete decoding at the receiver, the SNR must be above the threshold
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value SNRmin. Therefore the minimum power required, P̂T, and hence the point-to-

point link cost LC(s1, t1), is given by:

LC(s1, t1) ≡ P̂T =
SNRminPη

α2
· (2.1)

In equation 2.1, the point-to-point link cost is proportional to 1
α2 , which is the power

attenuation in the wireless channel between s1 and t1, and therefore is proportional

to the square of the distance between s1 and t1 under our propagation model.

Point-to-Multi-Point, Broadcast Link: n = 1, m > 1

In this case, S = {s1} and T = {t1, t2, · · · , tm}, hence m simultaneous SNR constraints

must be satisfied at the receivers. Assuming that omni-directional antennas are being

used, the signal transmitted by node s1 is received by all nodes within a transmission

radius proportional to the transmission power. Hence, a broadcast link can be treated

as a set of point-to-point links and the cost of reaching a set of node is the maximum

over the costs for reaching each of the nodes in the target set. Thus the minimum

power required for the broadcast transmission, denoted by LC(s1, T), is given by:

LC(s, T) = max{LC(s1, t1), LC(s1, t2), · · · , LC(s1, tn)}· (2.2)

Multi-Point-to-Point, Cooperative Link: n > 1, m = 1

In this case S = {s1, s2, · · · , sn} and T = {t1}. We assume that the n transmitters are

able to adjust their phases in such a way that the signal at the receiver is:

r(t) =
n∑
i

αi1|wi|φ(t) + η(t)·

The total transmitted power is
∑n

i=1 |wi|2 and the received signal power is |∑n
i=1 wiαi1|2.

The power allocation problem for this case is simply

min
n∑

i=1

|wi|2

s.t.
|∑n

i=1 wiαi1|2
Pη

≥ SNRmin· (2.3)
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Lagrangian multiplier techniques may be used to solve the constrained optimiza-

tion problem above. The resulting optimal allocation for each node i is given by

|ŵi| = αi1∑n
i α2

i1

√
SNRminPη· (2.4)

The resulting cooperative link cost LC(S, t1), defined as the optimal total power, is

therefore given by

LC(S, t1) ≡ P̂T =
1

∑n
i=1

α2
i1

SNRminPη

· (2.5)

It is easy to see that it can be written in terms of the point-to-point link costs between

all the source nodes and the target nodes (see Equation 2.1) as follows:

LC(S, t1) =
1

1
LC(s1,t1)

+ 1
LC(s2,t2)

+ · · ·+ 1
LC(sn,t1)

· (2.6)

A few observations are worth mentioning here. First, based on equation 2.4, the

transmitted signal level is proportional to the channel attenuation. Therefore, in the

cooperative mode all nodes in the reliable set cooperate to send the information to

a single receiver. In addition, based on equation 2.6, the cooperative cost is smaller

than each point-to-point cost. This conclusion is intuitively plausible and is a proof

on the energy saving due to the Wireless Cooperative Advantage.

2.1.2 Optimal Cooperative Route Selection

The problem of finding the optimal cooperative route from the source node s to

the destination node d, formulated in Section 2.1, can be mapped to a Dynamic

Programming (DP) problem. The state of the system at stage k is the reliable set

Sk, i.e. the set of nodes that have completely received the information by the kth

transmission slot. The initial state S0 is simply {s}, and the termination states are

all sets that contain d. The decision variable at the kth stage is Uk, the set of nodes

that will be added to the reliable set in the next transmission slot. The dynamical

system evolves as follows:

Sk+1 = Sk ∪ Uk k = 1, 2, · · · (2.7)
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The objective is to find a sequence {Uk} or alternatively {Sk} so as to minimize

the total transmitted power PT, where

PT =
∑

k

LC(Sk, Uk) =
∑

k

LC(Sk, Sk+1 − Sk)· (2.8)

We will refer to the solution to this problem as the optimal transmission policy.

The optimal transmission policy can be mapped to finding the shortest path in the

state space of this dynamical system. The state space can be represented by as graph

with all possible states, i.e. all possible subsets of nodes in the network, as its nodes.

We refer to this graph as the Cooperation Graph. Figure 2-4 show the cooperation

graph corresponding to the 4-node network shown in Figure 1-1.

{s}
 D

{s,1}
 {s,1,2}


{s,1,d}


{s,1,2,d}

20.3


{s,2}


{s,2,d}
{s,4}


Layer 0
 Layer 1
 Layer 3
Layer 2
 Terminal Node


Figure 2-2: Cooperation Graph for a 4-Node Network

Nodes in the cooperation graph are connected with arcs representing the possible

transitions between states. As the network nodes are allowed only to either fully

cooperate or broadcast, the graph has a special layered structure as illustrated by

Figure 2-4. All nodes in the kth layer are of size k + 1, and a network with n + 1

nodes the cooperation graph has n layers, and the kth layer has


 k

n


 nodes. Arcs

between nodes in adjacent layers correspond to cooperative links, whereas broadcast

links are shown by cross-layer arcs. The costs on the arcs are the link costs defined

in Section 2.1.1. All terminal states are connected to a single artificial terminal state,

denoted by D, by a zero-cost arc. The optimal transmission policy is simply the

shortest path between nodes s and D. There are 2n nodes in the cooperation graph

for a network with n + 1 nodes. Therefore standard shortest path algorithms will in

general have a complexity of O(22n). However, by taking advantage of some special
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properties of the cooperation graph, we are able to come up with an algorithm with

complexity reduced to O(n2n). This algorithm is based on scanning the cooperation

graph from left to right and constructing the shortest path to each nodes at the kth

layer based on the shortest path to nodes in the pervious layers. The Sequential

Scanning Algorithm is outlined below.

Sequential Scanning Algorithm This is the algorithm for finding the op-

timal cooperative route in an arbitrary network based on finding the shortest

path in the corresponding cooperation graph.

Initialize Initialize the cooperation graph data structure. Initialize the layer

counter k to k = 1.

Repeat Construct to the shortest path to all nodes at the kth layer based on the

shortest path to all nodes in the previous layers. Increment the counter.

Stop Stop when D is reached. i.e. when k = n + 1.

For a network with n + 1 nodes, the main loop in this algorithm is repeated n

times and at the kth stage the shortest path to


 k

n


 nodes must be calculated.

This operation has a complexity of order O(2n), hence finding the optimal route is of

complexity O(n2n).

Although the Sequential Scanning Algorithm substantially reduces the complexity

for finding the optimal cooperative route in an arbitrary network, its complexity is

still exponential in the number of nodes in the wireless network. For this reason,

finding the optimal cooperative route in an arbitrary network becomes computation-

ally intractable for larger networks. We will focus on developing computationally

simpler and relatively efficient heuristics and on assessing their performance through

simulation.
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2.1.3 Example

Having developed the necessary mathematical tools, we now present a simple example

that illustrates the benefit of cooperative routing. Figure 2-3 shows a simple network

with 4 nodes. The arcs represent links and the arc labels are point-to-point link costs.

The diagrams below show the six possible routes, P0 through P5. P0 corresponds

to a simple 2-hop, non-cooperative minimum energy path between s and d. P1,

P2, and P3 are 2-hop cooperative routes, whereas P4 and P5 are 3-hop cooperative

routes. Figure 2-4 shows the corresponding cooperation graph for this network. Each

transmission policy corresponds to a distinct path between {s} and D in this graph

and the minimum energy policy of P3 corresponds to the shortest path. Table 2.1

lists the costs of the six policies.

No. Policy Cost

P0 NonCooperative 65

P1 ({s}, {s, 2}, {s, 2, d}) ≈ 61.5

P2 ({s}, {s, 1}, {s, 1, d}) ≈ 57.9

P3 ({s}, {s, 1, 2}, {s, 1, 2, d}) ≈ 55.9

P4 ({s}, {s, 2}, {s, 1, 2}, {s, 1, 2, d}) ≈ 73.6

P5 ({s}, {s, 1}, {s, 1, 2}, {s, 1, 2, d}) ≈ 65.2

Table 2.1: Transmission Policies for Figure 2-3

2.2 Analytical Results for Line and Grid Topolo-

gies

In this section, we develop analytical results for achievable energy savings in line and

grid networks. In particular, we consider a Regular Line Topology (see Figure 2-5)

and a Regular Grid Topology (see Figure 2-6) where nodes are equi-distant from each

other. Before proceeding further, let us define precisely what we mean by energy

savings for a cooperative routing strategy relative to the optimal non-cooperative
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Figure 2-3: 4-Node Network Example
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strategy:

Savings =
PT(Non− cooperative)− PT(Cooperative)

PT(Non− cooperative)
· (2.9)

where PT(strategy) denotes the total transmission power for the strategy.

2.2.1 Line Network-Analysis

Figure 2-5) shows a regular line where nodes are located at unit distance from each

other on a straight line. In our proposed scheme, we restrict the cooperation to nodes

along the optimal non-cooperative route. That is, at each transmission slot, all nodes

that have received the information cooperate to send the information to the next

node along the minimum energy non-cooperative route. This cooperation strategy

is referred to as the CAN (Cooperation Along the Minimum Energy Non-Cooperative

Path) strategy.

0
 1
 2
 3
 n
n-1


s
 d


0
 1
 2


s
 d


Figure 2-5: Regular Line Topology

For the 3-node line network in Figure 2-5, it is easy to show that the optimal

non-cooperative routing strategy is to relay the information through the middle node.

Since a longer line network can be broken down into short 2-hop components, it is clear

that the optimal non-cooperative routing strategy is to always send the information

to the next nearest node in the direction of the destination until the destination node

is reached. From Equation 2.1, the link cost for every stage is SNRminPη

α2 , where α is the

magnitude attenuation between two adjacent nodes 1-distance unit apart. Under our

assumptions, α2 is proportional to the inverse of the distance squared. Therefore,

PT(Non− cooperative) = n
SNRminPη

α2
· (2.10)

With the CAN strategy, after the mth transmission slot, the reliable set is Sm = {s, 1, · · · , m},
and the link cost associated with the nodes in Sm cooperating to send the information
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to the next node (m + 1) follows from Equation 2.6 and is given by

LC(Sm, m + 1) =
SNRminPη∑m+1

i=1
α2

i2

· (2.11)

Therefore, the total transmission power for the CAN strategy is

PT(CAN) =
n−1∑
m=0

LC(Sm, m + 1)

=
SNRminPη

α2

n−1∑
m=0

1

C(m + 1)
, (2.12)

where C(m) =
m∑

i=1

1

i2
· (2.13)

Before moving to find the savings achieved by CAN in a line, we need to proves

the following simple lemma regarding the existence of the average of terms for a

decreasing sequence.

Lemma 1 Let an be a decreasing sequence with a finite limit c, then limm→∞
∑m

n=1 an

m
=

c.

Proof : For any value of m, let m0 be an arbitrary integer less than m:

lim
m→∞

∑m
n=1 an

m
= lim

m→∞
1

m

(
m0∑
n=1

an +
m∑

n=m0+1

an

)

= lim
m→∞

1

m

m0∑
n=1

an + lim
m→∞

1

m

m∑
n=m0+1

an

= 0 + lim
m→∞

1

m

m− (m0 + 1)

m− (m0 + 1)

m∑
n=m0+1

an

= lim
m→∞

m− (m0 + 1)

m

1

m− (m0 + 1)

m∑
n=m0+1

an

= lim
m→∞

m− (m0 + 1)

m
lim

m→∞
1

m− (m0 + 1)

m∑
n=m0+1

an

= lim
m→∞

1

m− (m0 + 1)

m∑
n=m0+1

an ·

(2.14)
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Since an is a decreasing sequence, all terms in the final sum are less than am0 . Fur-

thermore, limn→∞an = c. So, all terms in the final sum are greater than c. Hence:

c ≤ lim
m→∞

∑m
n=1 an

m
= lim

m→∞
1

m− (m0 + 1)

m∑
n=m0+1

an ≤ am0·

For increasing values of m, m0 may be chosen such that am0 is arbitrarily close to c

and the proof is established.

Theorem 1 For a regular line network as shown in Figure 2-5, the CAN strategy

results in energy savings of (1− 1
n

∑n
m=1

1
C(m)

). As the number of nodes in the network

grows, the energy savings value approaches (1− 6
π2 ) ≈ 39%.

Proof : The minimum energy non-cooperative routing a regular line network with

n hops has cost equal to n. The cost of the optimal cooperation scheme, i.e. the CAN

strategy, is:

PT(Cooperative) =
n∑

m=1

LC({s, · · · , m− 1}, m) =
n∑

m=1

1

C(m)
(2.15)

where C(m) is defined by equation 2.13. The energy savings achieved, as defined

by equation 2.12, is:

Savings(n) =
PT(Non− Cooperative)− PT(Cooperative)

PT(Non− Cooperative)
(2.16)

=
n−∑n

m=1
1

C(m)

n
(2.17)

= 1− 1

n

n∑
m=1

1

C(m)
(2.18)

1
C(m)

is a decreasing sequence with limit of 6
π2 . So, based on lemma 1 we have:

lim
n→∞

Savings(n) = 1− lim
n→∞

1

n

n∑
m=1

1

C(m)
= 1− 6

π2
(2.19)

This establishes the claim and completes the proof.
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2.2.2 Grid Network

Figure 2-6 shows a regular n× n grid topology with s and d located at opposite

corners. A n× n grid can be decomposed into many 2× 2 grid. Assuming that the

nodes are located at a unit distance from each other, in a 2× 2 grid, a diagonal

transmission has a cost of 2 units, equal to the cost of one horizontal and one vertical

transmission. For this reason, in an n× n grid there are many non-cooperative routes

with equal cost. Figure 2-6 shows two such routes for an n× n grid.
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Figure 2-6: Regular Grid Topology

The minimum-energy non-cooperative route is obtained by a stair-like policy (il-

lustrated in Figure 2-6), and its total power is 2n. We will base our analysis for

deriving the bound for saving based on this stair-like non-cooperative path. The fol-

lowing theorem stated the energy savings achieved by the CAN strategy applied to

this non-cooperative route.

Theorem 2 For a regular grid network as shown in Figure 2-6, the energy savings

achieved by using the CAN strategy approaches 56% for large networks.

Proof: Figure 2.2.2 shows an intermediate step in routing the information is a regular

grid. At this stage, all the nodes with a darker shade, nodes 1 through 8, have received

the information. In the next step, the information must be relayed to node 9. The

cooperative cost of this stage is
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Figure 2-7: Cooperative Routing in a Grid Topology

LC({1, · · · , 8}, 9) =
1∑8

i=1
1

LC(i,9)

=
1

1
1

+ 1
2

+ 1
5

+ 1
8

+ 1
13

+ 1
18

+ 1
25

+ 1
32

(2.20)

=
1

1

1
+

1

5
+

1

13
+

1

25︸ ︷︷ ︸
+

1

2
+

1

8
+

1

18
+

1

32︸ ︷︷ ︸

(2.21)

In general, the cooperative cost of the mth stage of the proposed strategy is

Cgrid(m) = LC({1, · · · , m}, m + 1)

=
1∑m

i=1
1

LC(i,m)

(2.22)

It is not too hard to see that the point-to-point costs have the following form

LC(i, m) =

(⌈
m− i

2

⌉)2

+

(⌊
m− i

2

⌋)2

(2.23)

Using Equation 2.23, Equation 2.22 can be written as

Cgrid(m) =
1∑m

i=1
1

LC(i,m)

=
1∑m

i=1
1

(dm−i
2 e)2

+(bm−i
2 c)2

=
1

∑dm
2 e

k=1
1

2k2−2k+1
+

∑bm
2 c

k=1
1

2k2

(2.24)

Comparing Equation 2.21 and Equation 2.24, it is easy to see that the first group of

terms is generated by the first sum term and the second group is generated by the
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second sum term. Cgrid(m) is a decreasing sequence of numbers and can be shown,

using Maple, to have a limit equal to 0.44.

The total cost for the cooperative route in an n× n grid is

PT(Cooperative) =
2n∑

m=1

Cgrid(m) (2.25)

The energy saving, as defined by equation 2.9, is

Savings(n) =
PT(Non− Cooperative)− PT(Cooperative)

PT(Non− Cooperative)

=
2n−∑2n

m=1 Cgrid(m)

2n

= 1− 1

2n

2n∑
m=1

Cgrid(m) (2.26)

Since Cgrid(m) is a decreasing sequence and limm→∞ Cgrid(m) = 0.44, by lemma 1,

the savings in the case of a regular grid, as calculated in equation 2.26, approaches

1− 0.44 = 56%. This establishes the claim and completes the proof for the lower

bound of achievable savings in a regular grid.

2.3 Heuristics & Simulation Results

We present two possible general heuristic schemes and related simulation results. The

simulations are over a network generated by randomly placing nodes on an 100× 100

grid and randomly choosing a pair of nodes to be the source and destination. For

each realization, the minimum energy non-cooperative path was found. Also, the

proposed heuristic were used to find co-operative paths. The performance results

reported are the energy savings of the resulting strategy with respect to the optimal

non-cooperative path averaged over 100, 000 simulation runs.

The two heuristics analyzed are outlined below.

CAN-L Heuristic Cooperation Along the Non-Cooperative Optimal Route:

This heuristic is based on the CAN strategy described Section 2.2. CAN-L is

a variant of CAN as it limits the number of nodes allowed to participate in the
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cooperative transmission to L. In particular, these nodes are chosen to be the

last L nodes along the minimum energy non-cooperative path. As mentioned

before, in each step the last L nodes cooperate to transmit the information to

the next node along the optimal non-cooperative path. The only processing

needed in this class of algorithm is to find the optimal non-cooperative route.

For this reason, the complexity of this class of algorithms is the same as finding

the optimal non-cooperative path in a network or O(N2).

PC-L Heuristic Progressive Cooperation:

Initialize Initialize Best Path to the optimal non-cooperative route. Ini-

tialize the Super Node to contain only the source node.

Repeat Send the information to the first node along the current Best Path.

Update the Super Node to include all past L nodes along the current Best

Path. Update the link costs accordingly, i.e. by considering the Super

Node as a single node and by using equation 2.6. Compute the optimal

non-cooperative route for the new network/graph and update the Best

Path accordingly.

Stop Stop as soon as the destination node receives the information.

For example, with L = 3, this algorithm always combines the last 3 nodes along

the current Best Route into a single node, finds the shortest path from that

combined node to the destination and send the information to the next node

along that route. This algorithm turns out to have a complexity of O(N3) since

the main loop is repeated O(N) times and each repetition has a complexity of

O(N2).

A variant of this algorithm keeps a window W of the most recent nodes, and in

each step all subsets of size L among the last W nodes are examined and the path

with the least cost is chosen. This variant has a complexity of O





 W

L


× N3


,

where W is the window size. We refer to this variant as Progressive Cooperation

with Window.
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Figure 2-8: Performance of CAN
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Figure 2-9: Performance of PC

Figures 2-8 and 2-9 show average energy savings ranging from 20% to 50% for

CAN and PC algorithms. It can be seen that PC-2 performs almost as well as CAN-

3 and PC-3 performs much between than CAN-4. This show that the method for

approximating the optimal route is very important factor in increasing the savings.

Figures 2-10 compares CAN, PC, and PC-W on the same chart. It is seen that

PC-3-4 performs better than PC-3, which performs substantially better than CAN-

4. In general, it can be seen that the energy savings increase with L, and that

improvements in savings are smaller for larger values of L. As there is a trade-off

between the algorithm complexity and the algorithm performance, these simulation

results indicate that it would be reasonable to chose L to be around 3 or 4 for both

the CAN and PC heuristics.
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Figure 2-10: Comparison

35



Chapter 3

Reliability and Route Diversity in

Wireless Networks

In this chapter, we look at the problem of route reliability in wireless ad-hoc networks.

Our analysis starts by looking at the reliability of a point-to-point communication

link. In particular, we are interested in how the reliability of a point-to-point link

depends on the channel state and the distance between the two nodes. Once the

result for a point-to-point link is established, we extend the reliability result to a

wireless network. In a network setting, we first define and analyze the reliability for a

fixed route and then propose algorithms for finding the best possible route between a

source-destination pair. The relation between route reliability and consumed power is

studied. The idea of route diversity is introduced as a way to improve route reliability

by taking advantage of wireless broadcast property and the independence of fading

state between different pairs of nodes. We give analytical results on improvements

due to route diversity in some simple network topologies.

3.1 Point-to-Point Reliability

In this section, we look at the relationship between reliability and power in a point-

to-point single-user flat fading channel. We model the communication link between

two nodes as
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y = a x + η,

where x is the transmitted signal, η is additive the received noise, and a is the signal

attenuation due to propagation in the wireless point-to-point link. We assume the

received noise, η, is zero mean white additive Gaussian noise with average power of σ2
η.

In general, attenuation, a, depends on the distance between the communicating points

and the fading state of the channel. We use d to represent the distance between the

communicating nodes and f to represent the fading state of the channel. To emphasize

this dependence, let’s write a as a explicit function of these two parameters:

y = a(f, d)x + η. (3.1)

In a real system with mobile nodes and a constantly changing propagation en-

vironment, both f and d change over time. However, we assume a system where f

and d remain constant for a long period of time compared to the typical transmission

block length. Furthermore, we assume that the transmission blocks are long enough

that coding can be done to average over the Gaussian noise. This model is commonly

referred to as the Block-Fading channel model. Given these assumptions, the link

between two nodes is a simple AWGN channel and the capacity (see[21]) is given by:

C(f, d, |x|2, σ2
η) = log(1 +

|a(f, d)|2|x|2
σ2

η

)

To simplify this notation, we decompose a(f, d) into two independent components

corresponding to the small and the large scale path losses (see [20].) More specifically,

we assume

|a(f, d)|2 =
|f|2
dk

,

where f represents the small-scale path loss, d represents the large-scale path loss,

and k is the propagation power loss exponent, usually between 2 to 4. Simplifying

the capacity formula using this form for a, and simplifying the notation by using

|x|2
σ2

η
= snr, we get:

37



C(f, d, snr) = log(1 +
|f|2
dk

snr) (3.2)

This formula gives the capacity of a point to point link for a fixed fading, f, fixed

distance, d, and transmission signal-to-noise ratio of snr.

3.1.1 Outage Formulation

Equation 3.2 gives the instantaneous capacity of the point-to-point link defined by 3.1.

Outage event is said to have occurred (see [15]) when the transmission rate, R

bits/channel-use, is above the instantaneous capacity of the link, i.e.

{Outage} def
= {C(f, d, snr) < R}. (3.3)

One parameter of interest in communication systems is the probability of error.

An error occurs if the channel is in outage or if the channel is not in outage but there

is a decoding error. In our analysis, we assume that the probability of error is almost

0 when channel is not in outage. Under this assumption, outage is the dominating

error event. Hence:

PError ≈ P(Outage)

We focus our attention on calculating the outage probability as it is a good mea-

sure, although no exact, for decoding error probability. Based on the definition of

outage given in 3.3, the outage probability is given by

POutage(f, d, snr, R) = P{C(f, d, snr) < R}
= P{log(1 +

|f|2
dk

snr) < R}

= P{|f|
2

dk
<

2R − 1

snr
}. (3.4)

Similar to the approach taken in [10] and other work in this area, we normalize the

transmission rate by absorbing its effect into the snr term. This makes sense specially
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in our case since we assume that the transmission rate, R, is a fixed parameter of the

system. So we define

snrnorm =
snr

2R − 1
. (3.5)

Without lose of generality, equation 3.4 simplifies to:

POutage(f, d, snrnorm) = P{|f|
2

dk
<

1

snrnorm
}. (3.6)

For notational convenience, we drop the norm subscript from snrnorm. To simplify

subsequent derivation, define the indicator function for outage and success as follows:

1Outage(f, d, snr) =





1 if |f|2
dk snr < 1

0 else
(3.7)

and

1Succ(f, d, snr) = 1− 1Outage(f, d, snr). (3.8)

3.1.2 Randomness and Reliability

Based on our formulation from the pervious section, we now derive the outage prob-

ability for four different scenarios.

• Fixed and known fading, f, and distance, d:

If both f and d are fixed and known, there is no randomness and the outage

event becomes a degenerate random event with the following probability:

POutage = 1Outage(f, d, snr) =





1 |f|2
dk snr < 1

0 else
(3.9)

• Fading, f random and distance, d, known to the transmitter:

The outage probability in this case is obtained by taking the expectation of the

previous case over different values of f. We have:
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POutage = Ef [1Outage(f, d, snr)]

= P

( |f|2
dk

<
1

snr

)

= F|f|2(
dk

snr
).

where F|f|2 is the CDF of |f|2. For Rayleigh fading with E [|f|2] = µ, :

F|f|2(x) = 1− exp(
x

µ
).

Hence:

POutage = 1− exp(
−dk

µ snr
).

• Fading, f, known to the transmitter and distance, d, random:

In this case, we get:

POutage = Ed[1Outage(f, d, snr)]

= P

( |f|2
dk

<
1

snr

)

= 1− Fd(
k
√
|f|2 snr), (3.10)

where Fd is the CDF of the distance between the communicating nodes.

• Both Fading, f, and distance, d, are random:

Taking the expectation over both the value of f and d, we get:

POutage = Ed[Ef [1Outage(f, d, snr)]].

For Rayleigh fading with E [|f|2] = µ, we get

POutage = Ed[1− exp(
−dk

µ snr
)].

40



Table 3.1 summarizes the effect of channel fading or location randomness on the

outage probability.

Fading Known, |f |2 = µ Raleigh Fading, E[|f|2] = µ

Distance Known





1 µ snr
dk < 1

0 else
1− exp( −dk

µ snr
)

Random Distance 1− Fd

(
k
√

µ snr
)

Ed[1− exp( −dk

µ snr
)]

Table 3.1: Outage Probability under Various Channel Models

Notice that snr and µ always appear as a single product form in all four scenarios.

To simplify the notation, we can absorb the effect of µ into the value of snr by defining

snrnorm as

snrnorm = µ snr.

Using this simplified notation, table 3.2 and 3.3, summarizes the results for outage

and success probability, respectively:

Fading Known Raleigh Fading

Distance Known





1 snrnorm

dk < 1

0 else
1− exp( −dk

snrnorm
)

Random Distance 1− Fd

(
k
√

snrnorm

)
Ed[1− exp( −dk

snrnorm
)]

Table 3.2: Outage Probability for a Point-to-Point Link

Fading Known Raleigh Fading

Distance Known





1 snr
dk < 1

0 else
exp(−dk

snr
)

Random Distance Fd

(
k
√

snr
)

Ed[exp(−dk

snr
)]

Table 3.3: Success Probability for a Point-to-Point Link
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Note that for notational convenience, we have dropped the norm subscript from

snrnorm in the above tables.

It is important to note that the probability of successful reception for a Rayleigh

fading link with fixed distance is given by the simple expression

PSucc(d, snr) = exp(− dk

snr
). (3.11)

3.1.3 Fading vs. No-Fading

Table 3.2 gives the expressions for the outage probability under various channel mod-

els. The actual probabilities, however, are in terms of the distribution for inter-node

distance and it is not clear how these entries compare. In this part we give a more

in-depth comparison of outage probability under various scenarios. The following

theorem states the effect of randomness in fading and distance on point-to-point

reliability.

Theorem 3 Effect of Randomness on point-to-point reliability:

1. For a point-to-point link with Rayleigh fading and fixed distance, in the high-snr

regime, the outage probability is dk

snr
.

2. With Rayleigh fading and random distance, in the high-snr regime, the outage

probability is E[dk]
snr

as long as E[dk] is finite.

Proof:

1. Form Equation 3.10, we have

POutage = 1− exp(
−dk

snr
)

=
dk

snr
+ O

((
dk

snr

)2
)

≈ dk

snr
(3.12)

The approximation is valid for small values of dk

snr
. For any fixed and finite d, this

approximation is valid in the high-snr regime. This is in fact a very well known

result, [19], and we have only mentioned this here for the sake of completeness.
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2. For a fixed distance, the outage probability is given as

POutage = 1− exp(
−dk

snr
)

(3.13)

Using the Taylor expansion to bound the exponential function, we have:

1− x ≤ exp(−x) ≤ 1− x +
x2

2
∀x ≥ 0

Hence:
dk

snr
− 1

2

(
dk

snr

)2

≤ POutage ≤ dk

snr

Taking the expectations of both sides, we have:

E[dk]

snr
− 1

2

(
E[dk]

snr

)2

≤ POutage ≤ E[dk]

snr

Assuming E[dk] is finite, for large values of snr we can drop the second order term

in the lower bound. Therefore, in the high-snr regime, we have the following

approximation:

POutage ≈ Ed[d
k]

snr

In fact, it can be shown that the outage probability when only distance is random

decays faster than Ed[d
k]

snr
.

Theorem 4 For any distance distribution with finite mean, the outage probability

without fading is smaller than Ed[d
k]

snr
.

Proof: From equation 3.10, we have:

POutage = 1− Fd(
k
√

snr)

= P(d > k
√

snr)

= P(dk > snr)
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The Markov inequality states that for any non-negative random variable, Y, with

finite mean, E[Y], the following inequality holds:

P(Y ≥ y) ≤ E[Y]

y

Applying this to our outage probability, we have:

POutage ≤ Ed[d
k]

snr

Although the bound in derived here is generally very loose, this proof is sufficient

to show that without fading, outage decays faster than snr−1 and with Rayleigh fading,

outage only decays as snr−1. Hence, there is no circumstance in which we may benefit

from fading in a point-to-point link.

3.1.4 Example

To illustrate the effect of fading and random distance on link reliability, and since we

use the exponential internode distance in the next few section, we re-state the outage

probability results from table 3.2 for the case of exponential distance. For the fading

scenarios, we have only given the outage probability approximation in the high-snr

region. Note that for an exponential random variable d with parameter λ

Fd(x) = 1− exp(−λ x),

Ed[d
k] =

k!

λk
.

No Fading Raleigh Fading

Fixed Distance, d = 1
λ





1 λk snr < 1

0 else

1
λk snr

Exponential Distance, E[d] = 1
λ

exp
(−λ k

√
snr

)
k!

λk snr

Table 3.4: Outage Probability with Exponential Distance and Rayleigh Fading

Figure 3-1 illustrate the exact outage probability for the case of λ = 1 and k = 2.

Several observations are worth mentioning here.
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Figure 3-1: Point-to-Point Reliability

1. The effect of fading is significant. In all cases, the outage probability is much

lower when there is no fading. With no fading, the outage probability decreases

exponentially with snr. With Rayleigh fading, however, the outage probability

only decrease linearly with snr−1.

2. The outage probability for non-fading link is always less than the outage prob-

ability for fading link, i.e. there is no snr regime under which fading improves

the reliability.

3. When there is fading, at low snr, the random distance case has a lower outage

probability than the fixed distance. Intuitively, in this case a transmission is

only successful when the communicating nodes are located very close to each

other. At high snr, the effect of random distance is a factor of k! increase in the

outage probability.

4. In all cases, the outage probability is a function of λk snr. We talk more about

the significance of this factor when we look at route reliability in a line network.
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3.2 Reliability at the Network Layer

In the first section, we developed the concept of reliability for a point-to-point wireless

communication link. In this section, we take this concept one step further and look

at reliability in a multi-hop wireless network. We assume that the fading factors for

different links are independent and identically distributed Rayleigh random variables.

A route is a sequence of nodes that information is relayed through from source to

destination, i.e.

Route = (r0, r1, · · · , rh−1, rh)

= (s, r1, · · · , rh−1, d).

where, r0 = s, rh = d, and h is the number of hops. We assume the network operates

based on a time division protocol under which successive transmissions along a route

happen in consecutive transmission slots. Route (s, r1, · · · , rh−1, d) is identical to a

sequence of h point-to-point links, where for the ith link, relay i− 1 is the transmitter

and relay i is the receiver, snrri−1ri is the transmitted signal-to-noise power, and dri−1ri

is the distance between the nodes. We define the event of successful end-to-end

transmission as the event that all h transmissions are successful and the End-to-End

Reliability is defined as the probability of this event . Based on our assumption

regarding the independence of the fading factor for different links, and using results

from equation 3.11, the end-to-end reliability can be written as:

Reliability(r0,r1,··· ,rh−1,rh) =
h∏

i=1

exp

(
− dk

ri−1ri

snrri−1ri

)

= exp

(
−

h∑
i=1

dk
ri−1ri

snrri−1ri

)
. (3.14)

The corresponding total amount of power spent for successful end-to-end trans-

mission is
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SNR
(r0,r1,··· ,rh−1,rh)
Total =

h∑
i=1

snrri−1ri· (3.15)

We refer to this quantity as the end-to-end power. In section one, we analyzed the

relationship between reliability and power in a point-to-point link. In the network

setting, we are interested in the relationship between the end-to-end reliability and

power. There are three different problems that we look at in the next section:

1. What is the end-to-end reliability if the maximum transmitted power per link

is fixed?

2. What is the maximum end-to-end reliability for a fixed end-to-end power?

3. What is the minimum end-to-end power required to achieve a guaranteed level

of end-to-end reliability?

The first problem is motivated by the fact that in some cases the transmitted

power by each node might be limited due to hardware constraints or to limit the

interference level to other nodes. The second problem is a power allocation problem,

where the objective is to maximize the end-to-end reliability of a route subject to a

total power constraint. The last problem is also a power allocation problem, where

the objective is to minimize the total consumed power subject to a guaranteed level

of end-to-end reliability.

3.2.1 Route Reliability

In this part, we look at the end-to-end reliability and power in the three scenarios

discussed at the end of the last section.

1. End-to-End Reliability for a Fixed Maximum Transmission Power

Per Link

Assuming the transmitted signal-to-noise ratio at each link is limited to SNRLink−Max,

the corresponding route reliability can be readily calculated using equation ??.
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The end-to-end reliability in this case is given by

Reliability(r0,r1,··· ,rh−1,rh) = exp

(
−

h∑
i=1

dk
ri−1ri

SNRLink−Max

)

= exp

(
−

∑h
i=1 dk

ri−1ri

SNRLink−Max

)
. (3.16)

Lemma 2 For a fixed route (r0, r1, · · · , rh−1, rh) and fixed maximum transmitted

snr per node, SNRLink−Max, the end-to-end reliability is exp

(
−

∑h
i=1 dk

ri−1ri

SNRLink−Max

)
.

2. Maximum End-to-End Reliability for a Fixed End-to-End Power

The problem of achieving maximum end-to-end reliability for a fixed end-to-end

power is formulated by the following constrained optimization problem:

max Reliability(r0,r1,··· ,rh−1,rh)

s.t SNR
(r0,r1,··· ,rh−1,rh)
Total ≤ SNRTotal−Max, (3.17)

where the optimization is done over the values of the transmitted snr by the

intermediate relay nodes along the route. Using equation 3.14 and equation 3.15,

we rewrite this optimization problem in terms of the transmitted powers as:

max exp

(
−

h∑
i=1

dk
ri−1ri

snrri−1ri

)

s.t
h∑

i=1

snrri−1ri ≤ SNRTotal−Max·

The objective is equivalent to minimizing the inner sum term. Furthermore,

the inequality in the constraint can be replaced with equality. So, the problem

is equivalent to:

min
h∑

i=1

dk
ri−1ri

snrri−1ri

s.t
h∑

i=1

snrri−1ri = SNRTotal−Max·
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where the optimization is done over the values of the transmitted snr by the

intermediate relay nodes along the route. Setting up the Lagrangian for this

problem, we have:

L(snrr0r1 , · · · , snrrh−1rh , λ) =
h∑

i=1

dk
ri−1ri

snrri−1ri

+ λ

(
h∑

i=1

snrri−1ri − SNRTotal−Max

)
.

The first order condition is

∂L

∂snrri−1ri

= − dk
ri−1ri

snr2ri−1ri

+ λ = 0.

The optimal transmitted signal-to-noise power is given by

ŝnrri−1ri =

√
dk

ri−1ri

λ
.

Substituting this back into the constraint equation and solving for the optimal

λ, we get

λ̂ =




∑h
i=1

√
dk

ri−1ri

SNRTotal−Max




2

.

The optimal transmitted signal-to-noise ratio is

ŝnrri−1ri = SNRTotal−Max

√
dk

ri−1ri

∑h
i=1

√
dk

ri−1ri

. (3.18)
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For this set of power allocation, the end to end reliability of the route is

Reliability
(r0,r1,··· ,rh−1,rh)
Optimal = exp

(
−

h∑
i=1

dk
ri−1ri

ŝnrri−1ri

)

= exp


−

h∑
i=1

∑h
j=1

√
dk

rj−1rj√
dk

ri−1ri

dk
ri−1ri

SNRTotal−Max




= exp


−

h∑
i=1

(∑h
j=1

√
dk

rj−1rj

) √
dk

ri−1ri

SNRTotal−Max




= exp


−

(∑h
i=1

√
dk

ri−1ri

)2

SNRTotal−Max


 . (3.19)

For easier future reference, we state this result in lemma 3.

Lemma 3 For a fixed route (r0, r1, · · · , rh−1, rh) and for a fixed end-to-end power

of SNRTotal−Max, the maximum end-to-end reliability is

ReliabilityOptimal = exp


−

(∑h
i=1

√
dk

ri−1ri

)2

SNRTotal−Max


,

and the optimal power allocation that achieves this reliability is

ŝnrri−1ri = SNRTotal−Max

√
dk

ri−1ri

∑h
i=1

√
dk

ri−1ri

·

3. Minimum End-to-End Power for a Guaranteed End-to-End Reliabil-

ity

This problem can also be formulated as a constraint optimization problem as

given below:

min SNR
(r0,r1,··· ,rh−1,rh)
Total

s.t. Reliability(r0,r1,··· ,rh−1,rh) ≥ ReliabilityMin, (3.20)
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where the optimization is done over the values of the transmitted snr by the

intermediate relay nodes along the route. Using equation ?? and equation 3.15

to rewrite this problem, we get:

min
h∑

i=1

snrri−1ri

s.t. exp

(
−

h∑
i=1

dk
ri−1ri

snrri−1ri

)
≥ ReliabilityMin· (3.21)

Since exponential is a monotonically increasing function, the constraint must

be satisfied with equality at the optimal solution. So, the optimization problem

is equivalent to:

min
h∑

i=1

snrri−1ri

s.t.
h∑

i=1

dk
ri−1ri

snrri−1ri

= −ln(ReliabilityMin). (3.22)

The Lagrangian for this problem is given by:

L(snrr0r1 , · · · , snrrh−1rh , λ) =
h∑

i=1

snrri−1ri + λ

(
h∑

i=1

dk
ri−1ri

snrri−1ri

+ ln(ReliabilityMin)

)
.

(3.23)

The partial derivatives with respect to the transmitted snr at each intermediate

relay is:

∂L

∂snrri−1ri

= 1− λ
dk

ri−1ri

snr2ri−1ri

.

Setting these first order conditions to 0 and solving for the optimal transmitted

snr, we get:

ŝnrr0r1 =
√

λ dk
ri−1ri
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Substituting these into the constraint and solving for the optimal λ, we have:

h∑
i=1

dk
ri−1ri

ŝnri
= −ln(ReliabilityMin)

h∑
i=1

dk
ri−1ri√

λ̂ dk
ri−1ri

= −ln(ReliabilityMin)

∑h
i=1

√
dk

ri−1ri√
λ̂

= −ln(ReliabilityMin)

√
λ̂ =

∑h
i=1

√
dk

ri−1ri

−ln(ReliabilityMin)
·

The optimal transmitted signal-to-noise ratio for each node is:

ŝnrri−1ri =

∑h
i=1

√
dk

ri−1ri

−ln(ReliabilityMin)

√
dk

ri−1ri
· (3.24)

The resulting optimal end-to-end power is given by:

ŜNRTotal =
h∑

i=1

ŝnrri−1ri

=
h∑

i=1




∑h
j=1

√
dk

rj−1rj

−ln(ReliabilityMin)




√
dk

ri−1ri

=

(∑h
i=1

√
dk

ri−1ri

)2

−ln(ReliabilityMin)
· (3.25)

For easier future reference, we state this result in lemma 4.

Lemma 4 For a fixed route (r0, r1, · · · , rh−1, rh), the minimum required total

power to guarantee end-to-end reliability of Reliabilitymin is:

ŜNRTotal =

(∑h
i=1

√
dk

ri−1ri

)2

−ln(ReliabilityMin)
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and the optimal power that achieves this total consumed power is

ŝnrri−1ri =

∑h
i=1

√
dk

ri−1ri

−ln(ReliabilityMin)

√
dk

ri−1ri

3.2.2 Optimal Reliability-Power Curve

A careful reader might notice that the two optimization problems that we looked at in

the last section, formulated in 3.17 and 3.20, are in fact dual problems. To clarify this

point, we present a graphical illustration of the relationship between the end-to-end

reliability and power.

For any fixed route, different power allocation schemes result in different end-to-

end reliability and consumed power. If we were to characterize each power allocation

scheme only by the total consumed power and the resulting end-to-end reliability,

each allocation scheme could be represented by a point in the two dimensional plot of

the end-to-end reliability vs. the total snr. Certain allocation schemes are optimal,

i.e. minimize the total power consumed to achieve a guaranteed end-to-end reliability

or maximize the end-to-end reliability for a fixed consumed power.

In problem 2, we found the optimal power allocation to maximize the end-to-end

reliability for a given end-to-end power. This corresponds to moving along the vertical

line in figure 3-2 and finding the allocation scheme that maximizes the reliability

for SNRTotal−Max We found that the resulting end-to-end reliability for this optimal

allocation is:

ReliabilityOptimal = exp


−

(∑h
i=1

√
dk

ri−1ri

)2

SNRTotal−Max


 (3.26)

In problem 3, we found the optimal power allocation to minimizes the total power

subject to a guaranteed end-to-end reliability. Graphically, this optimization corre-

sponds to moving along the horizontal line in figure 3-2 and finding the allocation

scheme that minimized the total consumed power for the end-to-end reliability of
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Reliabilitymin We found that the reliability and power corresponding to the optimal

allocation are related by the following relationship:

ŜNRTotal =

(∑h
i=1

√
dk

ri−1ri

)2

−ln(ReliabilityMin)
· (3.27)

Clearly, the curve specified by equation 3.26 and equation 3.27 are identical. This

set of optimal power allocation can be represented by a single curve in the two dimen-

sional plot of the end-to-end reliability vs. total power as shown in figure 3-2. We

refer to this curve as the Optimal Reliability-Power Trade-off curve. The relationship

between the end-to-end reliability and consumed power for power allocation schemes

on this curve is given by:

Reliability = exp


−

(∑h
i=1

√
dk

ri−1ri

)2

SNRTotal


 (3.28)
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Figure 3-2: Route Reliability vs. Power
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3.2.3 Route Outage-Power Trade-off

It is insightful to look at the relationship between the end-to-end reliability and power

to better understand the difference between different power allocation schemes. For

the case that the maximum transmitted power at each link was limited to SNRMax−Link,

equation 3.16 gives the end-to-end reliability. We get more insight into the relation-

ship between power and reliability by looking at the route outage probability. The

route outage probability, ρ, is defined as:

ρ(r0,r1,··· ,rh−1,rh) = 1− Reliability(r0,r1,··· ,rh−1,rh).

Writing 3.16 in terms of the outage probability, we have:

1− ρ = exp

(
−

∑h
i=1 dk

ri−1ri

SNRMax−Link

)
,

ln(1− ρ) = −
∑h

i=1 dk
ri−1ri

SNRMax−Link
.

For small values of ρ, we can use the approximation of ln(1− ρ) ≈ ρ to simplify this

relation to:

ρ ≈
∑h

i=1 dk
ri−1ri

SNRMax−Link
. (3.29)

The relationship between reliability and power with optimal power allocation is

given by equation 3.28. Writing 3.28 in terms of the route outage probability, we

have

1− ρ = exp


−

(∑h
i=1

√
dk

ri−1ri

)2

SNRTotal


,

ln(1− ρ) = −

(∑h
i=1

√
dk

ri−1ri

)2

SNRTotal
.

Using the same approximation for small ρ, this relation can be simplified to:
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ρ ≈

(∑h
i=1

√
dk

ri−1ri

)2

SNRTotal
. (3.30)

From 3.29 and 3.30, we observe that route outage decays as SNR−1
Max−Link and

SNR−1
Total, respectively, in the regimes where the route is highly reliable. It is not

surprising that we observe this type of relation as these relationships are very similar

to what we observed in the first section for a point-to-point link. In the last section,

it is shown how diversity at the route level can fundamentally change the form of this

trade-off.

3.2.4 Optimal Route Selection

In this section, we look at the problem of finding the optimal route between a source

and destination pair of nodes in a multi-hop wireless network. We have looked at this

problem under the following 3 scenarios.

1. Finding the most reliable route when the maximum transmitted power in each

link is fixed.

2. Finding the most reliable route for a fixed end-to-end power.

3. Finding the minimum power route for a guaranteed end-to-end reliability.

1. Maximum End-to-End Reliability for a Fixed Maximum Transmission

Power Per Link

In 3.16, we showed that for any route (r0, r1, · · · , rh−1, rh), the end-to-end relia-

bility is a monotonically decreasing function of
∑h

i=1 dk
ri−1ri

. This quantity can be

treated as the cost metric for the route and the most reliable route between two

nodes is the route that minimizes this cost metric. We refer to route selection

algorithm based on this cost metric as the Mximum Reliability for Fixed Link

SNR Route, MRLR, algorithm.
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Theorem 5 The most reliable route between nodes s and d in a fixed multi-hop

wireless network where the fading parameters of different links are independent

Rayleigh random variables and the maximum transmitted snr at each node is

limited to SNRMax−Link is the route

(s, r1, · · · , rh−1, d) = (r0, r1, · · · , rh−1, rh)

that minimizes
h∑

i=1

dk
ri−1ri

,

and the reliability of this route is given by

Reliability(r0,r1,··· ,rh−1,rh) = exp

(
−

∑h
i=1 dk

ri−1ri

SNRMax−Link

)
·

Proof:

From 3.16, we know that route reliability is a decreasing function of
∑h

i=1 dk
ri−1ri

.

The most reliable route, i.e. the minimum outage probability route, is the route

that minimizes this sum. Furthermore, based on 3.16, the reliability of this route

is as claimed.

2. Maximum End-to-End Reliability for a Fixed End-to-End Power

We now turn our attention to a slightly different problem. Assuming that the

maximum amount of power that can be spent in relaying the information from

the source node to the destination node is limited to SNRTotal, our goal is to

find the most reliable route between a source-destination pair of nodes. From

lemma 3, we know for any route (r0, r1, · · · , rh−1, rh), the end-to-end reliability is

a monotonically decreasing function of
∑h

i=1

√
dk

ri−1ri
. The maximum reliability

route is the route that minimizes this sum. We refer to this route selection algo-

rithm as the Maximum Reliability for Fixed End-to-End SNR Route, MRER,

algorithm.
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Theorem 6 The most reliable route between nodes s and d in a fixed multi-hop

wireless network where the fading parameters of different links are independent

Rayleigh random variables and the maximum end-to-end power is limited to

SNRTotal−Max is the route

(s, r1, · · · , rh−1, d) = (r0, r1, · · · , rh−1, rh)

that minimizes
h∑

i=1

√
dk

ri−1ri
,

and the corresponding end-to-end reliability is given by

Reliability = exp


−

(∑h
i=1

√
dk

ri−1ri

)2

SNRTotal−Max


·

Proof:

From lemma 3, we know that route reliability is a decreasing function of
∑h

i=1

√
dk

ri−1ri
.

The most reliable route, i.e. the minimum outage probability route, is the route

that minimizes this sum. Furthermore, based on lemma 3, the reliability of this

route is as claimed.

3. Minimum End-to-End Power for a Guaranteed End-to-End Reliabil-

ity

Lastly, we look at the problem of selecting the route between two nodes that

requires the least amount of end-to-end power to achieve a desired level of end-

to-end reliability. From lemma 4, we know that for any route (r0, r1, · · · , rh−1, rh),

the end-to-end route power is a monotonically increasing function of
∑h

i=1

√
dk

ri−1ri
.

Hence, the minimum power route is the route among all possible routes between

two nodes that minimizes this sum. We refer to this route selection scheme as

Minimum Power for Fixed End-to-End Reliability Route, MPR, algorithm.
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Theorem 7 The minimum power route between nodes s and d in a fixed multi-

hop wireless network where the fading parameters for different links are inde-

pendent Rayleigh random variables to achieve guaranteed end-to-end reliability

of ReliabilityMin is the route

(s, r1, · · · , rh−1, d) = (r0, r1, · · · , rh−1, rh)

that minimizes
h∑

i=1

√
dk

ri−1ri
,

and the corresponding end-to-end power is given by

SNRTotal =

(∑h
i=1

√
dk

ri−1ri

)2

−ln(ReliabilityMin)
·

Proof:

From theorem 4, we know that route power is an increasing function of
∑h

i=1

√
dk

ri−1ri
.

So, the minimum power route is the route that minimizes this sum. Further-

more, based on theorem 4, the total power for this route is as claimed.

3.2.5 Routing Algorithms

In section 3.2.3, we looked at three routing formulations: MRLR (Theorem 5), MRER

(Theorem 6), and MPR (Theorem 7). The route selection metric was shown to only

be a function of the distance between nodes in all three algorithms. A shortest path

algorithm can be used in a straightforward way to find the optimal route in all three

cases. See [18] for several variations of the shortest path algorithm. The complexity

of finding the optimal route is O(N2), where N is the number of nodes in the network.

To get more insight into the difference between these formulations, we can compare

their cost metrics. MPR and MRER have identical cost metrics, see theorem 6 and

theorem 7. This similarity is intuitively plausible: the route that has maximum

reliability for a given power (MRER) is also the route that minimizes power to achieve
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that level of reliability (MPR). There is however an interesting difference between the

cost metric used by MPR/MRER and the cost metric for MRLR. The solution for

the first two problems minimizes

h∑
i=1

√
dk

ri−1ri
, (3.31)

while the cost metric for MRLR is

h∑
i=1

dk
ri−1ri

. (3.32)

Comparing 3.31 and 3.32, it is clear that in 3.31 the distance between nodes

is raised to a smaller power. Assuming all distance are normalized such that all

distance are greater than one, MRLR associates a larger penalty for selecting long

hops. A route selected based on this criteria would tend to use more but shorter

hops in comparison with a MPR/MRER route. This difference is due to the fact

that the transmitted snr can be adjusted to compensate for the higher attenuation in

MRER/MPR whereas the transmitted snr per link is fixed in MRLR.

As the last point, we would like to mention some implementation issues regarding

these algorithms. The process of routing a packet between two nodes consists of two

steps: route selection and relaying. The route selection processes can be done in a

distributed way using any distributed shortest path algorithm. Hence, selecting the

optimal route does not require knowledge of the entire network topology. Once the

optimal route is selected, the information must be relayed by the nodes along the

selected route. For MRER and MPR routes, optimization was done to find the power

allocation for each link along the optimal route. The optimal transmitted snr at each

hop is given in Theorem 6 and Theorem 7. The difficulty lies in the fact that these

optimal transmitted snr values depend on some non-local information, namely, the

distance between all relay pairs and the desired end-to-end reliability or power. This

information must be made available to each hop along the selected route. We will

not get into the details of this issue here.
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3.3 Route Diversity

Before introducing the idea of route diversity, let’s review our findings so far. In

section 3.1, we looked at the reliability of a point-to-point link and analyzed the

effect of randomness in the channel state of distance on this reliability. We observed

that Rayleigh fading has a significant impact on the relationship between reliability

and power.

In section 3.2, we extended the idea of reliability from the physical layer, i.e.

point-to-point link, to the network layer. We introduced the concept of end-to-end

route reliability and looked at several route selection algorithms. We also looked at

the relationship between the route outage probability and power. For the case of

fixed transmitted snr at each link, we observed that the outage probability decreases

as the inverse of the maximum transmitted snr per link (see equation 3.30.) For the

case of a fixed end-to-end power, we also observed a similar relationship in 3.29.

In a multi-hop wireless network it may be possible to improve the end-to-end relia-

bility by benefiting from the wireless broadcast advantage and independence between

Rayleigh fading channels. This is the motivation behind the Route Diversity idea

that we introduce in this section. For our analysis in this section, we assume that

there is a fixed maximum transmitted snr for each node.

To understand the shortcoming of the routing process that we focused on in Sec-

tion 3.2, we should look at the details of the routing process in a multi-hop network.

First, the most reliable route is selected based on MRLR algorithm. Suppose the

selected route is:

Routeoptimal = (r0, r1, · · · , rh),

where r0 = s, rh = d, and there are h hops in this route.

As discussed in Section 2, subsequent transmissions take place in different time-

slot. For instance, in the ith time-slot, the information signal is transmitted by node

ri−1 and is received by ri. The information is successfully routed to the destination

if it is received by the destination in time-slot h. This event requires h successful

point-to-point transmissions. The probability of this event was calculated in the
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previous section (see equation 3.16.) We refer to this routing scheme as the Simple

or Non-Diversified Routing Scheme.

To understand the shortcoming of the process explained above, consider a relay

node such as ri. In the simple routing scheme, this node can only receive the informa-

tion via relay ri−1. Motivated by the broadcast property of the wireless medium, we

propose to modify the non-diversified routing scheme in the following way: instead of

limiting relay ri to only listen for the transmitted signal in the ith transmission slot,

we also consider the possibility that this node can receive the information during

earlier transmission slots by other relays along the selected route. This gives each

node along the route several chances to receive the information and hence introduces

a level of diversity into the routing process. To simplify our analysis, we ignore the

possibility of energy accumulation over several transmission slot, and partial decod-

ing. In particular, we assume if the received signal power in a single transmission is

high enough to allow full decoding of the information, then the information is received

successfully; otherwise, the received signal is discarded.

To clarify this idea, let’s look at a simple example. Assume that in the network

shown in figure 3-3 the most reliable route is selected by the source as shown in the left-

hand-side diagram. Without diversity, a successful end-to-end route would require

3 successful point-to-point transmissions. By adding the possibility of diversity as

shown in the right-hand-side diagram in figure 3-3, we increase the probability of

successful reception by d by including several new paths. For instance, d can now

receive the information directly from s in the first transmission slot, from r0 in the

second transmission slot or from r1 in the third transmission slot. We refer to this

routing scheme as the Diversified Routing Scheme.

3.3.1 Reliability Formulation with Diversity

Before looking at the end-to-end reliability in a diversified route, we need to give

a more precise description of the relaying process in the diversified routing scheme.

Assume Routeoptimal = (r0, r1, · · · , rh) is selected as the most reliable route to the desti-

nation. In the diversified routing scheme that we analyze in this and the next section,
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Figure 3-3: Route Diversity

nodes operate according to the following rules: node i, i ≥ 1, transmits in slot i + 1

if it has received the information in time slots {1, · · · , i}. Otherwise, no transmission

takes place in time slot i + 1. Given this protocol, successful relaying of the infor-

mation from r0 to rh takes no more than h time slots and no more than h units of

transmitted power. This route is defined to be in outage if the information is not

received by rh by the end of time slot h. The end-to-end outage probability is defined

as the probability of this event.

Defining the diversified route according to these rules is the simplest way that

would allow us to compare the end-to-end outage in simple and diversified route

on fair basis, We can compare the end-to-end outage probability since both routing

schemes use the same number of transmission slots and the same amount of total

power. There are other ways to take advantage of diversity, for instance to reduce

the end-to-end delay or reduce the end-to-end power consumption. However, since

our main focus in this part is to study the end-to-end reliability, it will keep all other

parameters constant and solely focus on the reliability improvement.

For route (r0, r1, · · · , rh), let R[i, t] be the probability that node i has received the

information by time-slot t. This probability can be calculate by the following recursive

expression:

R[i, t] =





R[i, t− 1] + (1− R[i, t− 1])R[t− 1, t− 1]PSucc(drirt−i
, snr) t ≤ i

R[i, i] else

(3.33)

where PSucc(d, snr) is given by equation 3.11. This expression requires some clarifica-
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tions. Note that node slotted to transmit in time t is node t− 1. If node i has not

received the information by time t− 1, then the only way it can receive the infor-

mation by time t is node t− 1 has received the information by time t− 1, and the

transmission from node t− 1 to node i is successful. Different components in the first

part of the expression correspond to the probability of these event. R[i, t− 1] is the

probability that node i has received the information prior to time-slot t, R[t− 1, t− 1]

is the probability that node t− 1 has received the information by time-slot t− 1 and

would transmit in time-slot t, and drirt−i
is distance between ri and rt−i. The route

reliability and outage probability are defined as:

Reliability(r0,r1,··· ,rh) = R[h, h], (3.34)

ρ(r0,r1,··· ,rh) = 1− Reliability(r0,r1,··· ,rh)

= 1− R[h, h] (3.35)

These results can only be applied to a fixed network. In our analysis, we will look

at the end-to-end reliability in networks with randomly distributed nodes. In this

case, we can use the law of iterative expectations to find the end-to-end reliability

by first conditioning on the topology, i.e. the node locations, and then taking the

expectation over the location of nodes. The more appropriate definition for end-to-

end reliability or the end-to-end outage in that setting are:

Reliability(r0,r1,··· ,rh) = ENode Locations [R[h, h]], (3.36)

ρ(r0,r1,··· ,rh) = 1− ENode Locations [R[h, h]]. (3.37)

3.3.2 Example

In this part we give two examples to illustrate how the proposed route diversity can

significantly improve the reliability. Our examples focus on two very simple 2-hop

random networks. In both networks, figures 3-4 and 3-5, s and d are located two unit

distance apart. In the first network, figure 3-4, the relay node is placed uniformly on

the line connecting s to d. In the second example, figure 3-5, the relay node is placed
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uniformly inside the circle centered at the mid-point between s and d. We assume

path-loss exponent k = 2. The most reliable route in both networks is (s, r, d).

X3


X1
 X2
s
 d
r


Figure 3-4: 2-Hop Line Network
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X
1
 X2


s
 d
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Figure 3-5: 2-Hop Disk Network

The outage probability for the non-diversified route is found by first conditioning

on the location of the nodes and applying the result from equation 3.16. We have:

ρ
(s,r,d)
Non−Diversified = 1− Ex1,x2 [exp(−x2

1 + x2
2

snr
)] (3.38)

≈ Ex1,x2 [
x2
1 + x2

2

snr
], (3.39)

where the approximation is valid in the high-snr regime.

In the diversified scheme, successful relaying requires either a successful direct

transmission {s → d}, or successful multi-hoping, {s → r} followed by {r → d}. This

probability can be calculated by using the recursive expression 3.33. Thus:

R[1, 0] = 0

R[2, 0] = 0

R[1, 1] = R[1, 0] + (1− R[1, 0])PSucc(dsr, snr)

= PSucc(x1, snr)

R[2, 1] = R[2, 0] + (1− R[2, 0])PSucc(dsd, snr)

= PSucc(x3, snr)

R[2, 2] = R[2, 1] + (1− R[2, 1])R[1, 1]PSucc(drd, snr)

= PSucc(x3, snr) + (1− PSucc(x3, snr))PSucc(x1, snr)PSucc(x2, snr),

(3.40)
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where PSucc(d, snr) is defined by equation 3.11. The end-to-end reliability, defined

in equation 3.36, is:

Reliability
(s,r,d)
Diversified = Ex1,x2,x3 [R[2, 2]],

= Ex1,x2,x3 [exp(− x2
3

snr
) + (1− exp(− x2

3

snr
))exp(−x2

1 + x2
2

snr
)].

(3.41)

The end-to-end outage probability is:

ρ
(s,r,d)
Diversified = 1− Reliability

(s,r,d)
Diversified(snr)

= 1− Ex1,x2,x3 [exp(− x2
3

snr
) + (1− exp(− x2

3

snr
))exp(−x2

1 + x2
2

snr
)]

(3.42)

= Ex1,x2,x3 [(1− exp(− x2
3

snr
))(1− exp(−x2

1 + x2
2

snr
))]

≈ Ex1,x2,x3 [
x2
3(x

2
1 + x2

2)

snr2
], (3.43)

where the approximation is valid in high-snr regime. Note we used the first two

terms of Taylor expansion for exp(x) = 1 + x + 1
2
x2 + O(x3) to arrive at the final result.

The results of 3.38, 3.39, 3.42, 3.43 are valid for any two-hop network. For the

two networks shown in figure 3-4 and 3-5, these expectations can be easily calculated.

The resulting end-to-end outage probabilities are:

ρLine
Non−Diversified ≈ 2.7

snr
,

ρCircle
Non−Diversified ≈ 1.2

snr
,

ρLine
Diversified ≈ 10.6

snr2
,

ρCircle
Diversified ≈ 4.7

snr2
.

(3.44)

Figure 3-6 and 3-7 show the exact values for the end-to-end outage probability

obtained through equations 3.38 and 3.42, as well as the approximations for the end-

to-end outage probability obtained through equations 3.39 and 3.43. It is clear that
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our approximation are quite good for high values of snr. A few observations are worth

mentioning at this point.

1. Route diversity significantly improves the end-to-end reliability in both net-

works. In the high-snr regime, the end-to-end outage probability decays as

snr−2 for the diversified route. This is a significant improvement over the snr−1

decay observed in the absence of diversity.

2. A question that might come to mind is: How high is high snr? There is no

exact answer to this question for a general route. Based on figure 3-6 and 3-7,

it is clear that in this case the high-snr approximations are quite good for the

regions of snr corresponding to 1% end-to-end outage. The main significance of

finding this type of result is to find the asymptotic trade-off between the end-

to-end reliability and consumed power. We do a similar asymptotic analysis in

the next section when comparing the simple and diversified route reliability in

a line network. These approximations are not necessarily good for any finite

values of snr and may only become accurate at very large levels of transmitted

snr.

−20 −10 0 10 20 30 40
10

−4

10
−3

10
−2

10
−1

10
0

PPath
Outage

 vs. SNR

SNR (dB)

P
P

at
h

O
ut

ag
e

No−Diversity
Diversity
No−Diversity Approximation
Diversity Approximation

Figure 3-6: Line Network Reliability
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Figure 3-7: Disk Network Reliability
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3.4 Multi-Hop Line Network

We looked at the reliability and reliability-power relationship for a point-to-point link

in section 1. We observed that the outage probability decays as snr−1 in a Rayleigh

fading channel. We then turned our attention to a multi-hop network scenarios, where

we looked at the problem of routing and optimal route selection. It was shown that a

similar relationship governs the trade-off between the end-to-end reliability and power

in a multi-hop route (see section 1.2.2.) Route diversity was introduced in section 3

as one possible venue to improve the trade-off between the end-to-end reliability and

power. We looked at how diversity improves the reliability in some very simple 2-hop

networks.

In this section, we look at the relationship between the end-to-end reliability and

power in another simple topology: multi-hop line network. In particular we compare

two specific topologies: deterministic and Poisson line network. A deterministic line

network with density λ is a line network in which nodes are located at fixed distance

of 1
λ

from each other. In a Poisson line network with density λ, the distance between

neighbors are independent exponential random variables with parameter λ.

For the analysis in this section, we assume that there is a limit on the maximum

power transmitted by each node, and denote the transmitted signal-to-noise ratio

corresponding to this maximum transmission power level by snr. We start by looking

at the reliability of a non-diversified route as a function of the maximum transmitted

power, the number of hops, and network topology under the assumption of Rayleigh

fading or no fading. We then find the end-to-end reliability for diversified route

and compare that result with the simple routing scheme, i.e. multi-hoping with out

diversity, to get a better understanding of route diversity benefits.

3.4.1 Simple Route Reliability

In this section we look at the end-to-end reliability of a simple route in a line network

with N hops as shown in figure 3-8. We look at the following 4 different scenarios:

1. Deterministic line with density λ and no fading.
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2. Deterministic line with density λ and Rayleigh fading.

3. Poisson line with density λ and no fading.

4. Poisson line with density λ and Rayleigh fading.

0
 1
 2
 3
 N
N-1


s
 d


Figure 3-8: N-Hop Route in Line Network

The simple route connecting node 0 to node N consists of N point-to-point links.

The event of end-to-end outage is equivalent to outage at any of these intermediate

point-to-point links. Define

Oi ≡ Outage(i− 1 → i)

as the event that the link between relays i− 1 and i is in outage. The end-to-end

route is in outage if any intermediate link is in outage. Hence

ρ(0,1,··· ,N−1,N) = P


Outage(0 → 1)︸ ︷︷ ︸

O1

∪ · · · ∪ Outage(N− 1 → N)︸ ︷︷ ︸
ON




= P (O1 ∪ · · · ∪ ON). (3.45)

We have already looked at the outage probability for each link in section 3.1.4. In

all 4 scenarios described above, individual links have the same outage probability. So

P(Oi) = POutage(Link), ∀1 ≤ i ≤ N,

where POutage(Link) is calculated in table 3.4.

Let’s first analyze the end-to-end outage probability in a deterministic network

without fading. This is a very degenerate problem as all the intermediate links, and

hence the entire route, are either up or down, i.e. P(Oi|O1) = 1 ∀i ≥ 1. Hence
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ρ(0,1,··· ,N−1,N) = P(O1)

= POutage(Link) (3.46)

For the other 3 cases, deterministic or Poisson line with fading or Poisson line

without fading, we use the union bound approxmation to get the end-to-end outage

probability. We have

ρ(0,1,··· ,N−1,N) ≈ NPOutage(Link), (3.47)

where the approximation is valid when POutage(Link) is small, i.e. in the high-snr

regime.

Using relation 3.46 and 3.47 and table 3.4, the end-to-end outage can be found

for all 4 scenarios of interest. Table 3.5 summarizes these results.

No Fading Raleigh Fading

Deterministic Network, Density λ





1 λk snr < 1

0 else
N 1

λk snr

Poisson Network, Density λ N exp
(
− k
√

λk snr
)

N k!
λk snr

Table 3.5: Route Outage Probability in Line Network

Table 3.5 summarizes the relationship between the number of hops. i.e. the

size of the network, the transmitted snr, the network density, and end-to-end outage

probability. Several observations are worth mentioning here:

1. For a fixed N, the end-to-end outage probability decreases exponentially with

snr in non-fading scenarios compared to linear decrease with snr−1 in a fading

network. Hence, to achieve a guaranteed end-to-end outage for a fixed number

of hops, N, a much lower power is required in the non-fading case. For a fixed

snr and desired end-to-end outage probability, information can be relayed over

many more hops in the non-fading scenario than the fading case.
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2. In all different scenarios, the outage probability depends on λksnr. This is

the same as our earlier observation in section 3.1.4. This is plausible since

the reliability should depend both on the transmitted power and the distance

between nodes. λksnr shows the dependence on the first factor through snr and

on the second factor through λ. We call λksnr the Power-Density Profile of a

line network. For notational convenience, we assign a symbol to this network

parameter,

Ψk(λ, snr)
def
= λk snr. (3.48)

In the next two sections, we show that route diversity fundamentally changes

the relationship between the end-to-end reliability and the power-density profile.

3.4.2 Full Diversity

The end to end reliability for the diversified routing scheme can be calculated based

on equations 3.36, 3.34, and 3.33. The main difficulty is that solving the recursion

for a large network is tedious. We first find the exact value for the end-to-end outage

probability for small networks. Based on those results, we conjecture the relationship

between the end-to-end outage probability and power in larger networks. A determin-

istic network can be treated as a degenerate random network. Hence, we only carry

out the analysis for random network knowing that all the results can be extended to

deterministic networks in a straightforward way.

We start by looking at 2-hop line network as shown in figure 3-9.

0
 1
 2


s
 d


d1
 d2


Figure 3-9: 2-Hop Poisson Line Network

71



From equation 3.36, the end-to-end route outage probability is:

ρ(0,1,2) = 1− ENodeLocations [R[2, 2]]

= 1− Ed1,d2 [R[2, 2]]· (3.49)

Using relation 3.33, R[2, 2] can be calculated as a function of the distances between

nodes:

R[1, 0] = 0,

R[2, 0] = 0,

R[1, 1] = R[1, 0] + (1− R[1, 0])PSucc(d1, snr),

= PSucc(d1, snr),

R[2, 1] = R[2, 0] + (1− R[2, 0])PSucc(d2 + d1, snr),

= PSucc(d2 + d1, snr),

R[2, 2] = R[2, 1] + (1− R[2, 1])R[1, 1]PSucc(d2, snr),

= PSucc(d2 + d1, snr) + (1− PSucc(d2 + d1, snr))PSucc(d1, snr)PSucc(d2, snr) ·
(3.50)

Substituting this back into 3.49, we get:

ρ(0,1,2) = 1− Ed1,d2 [R[2, 2]]

= 1− Ed1,d2 [PSucc(d2 + d1, snr) + (1− PSucc(d2 + d1, snr)) PSucc(d1, snr)PSucc(d2, snr)]

= Ed1,d2 [1− PSucc(d2 + d1, snr)− ((1− PSucc(d2 + d1, snr)) PSucc(d1, snr)PSucc(d2, snr)]

= Ed1,d2 [(1− PSucc(d2 + d1, snr)) (1− PSucc(d1, snr)PSucc(d2, snr))]

= Ed1,d2

[(
1− exp(−(d2 + d1)

k

snr
)

) (
1− exp(− dk

1

snr
)exp(− dk

2

snr
)

)]
(3.51)

≈ Ed1,d2

[
(d2 + d1)

k(dk
1 + dk

2)

snr2

]
, (3.52)
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where we used the first two terms in the Taylor expansion of exponential function

to find this approximation for the high-snr regime. For a deterministic line with

density λ, assuming k = 2, the end-to-end outage probability is

ρ(0,1,2) ≈ ( 1
λ

+ 1
λ
)2( 1

λ

2
+ 1

λ

2
)

snr2

≈ 8

λ4 snr2

≈ 8

Ψ2(λ, snr)2
· (3.53)

In a Poisson line with density λ, d1 and d2 are independent exponential random

variables with parameter λ. In this case, again assuming k = 2, the outage probability

simplifies to:

ρ(0,1,2) ≈ Ed1,d2

[
(d2 + d1)

2(d2
1 + d2

2)

snr2

]

≈ Ed1,d2

[
(d2

2 + d2
1 + 2d2d1)(d

2
1 + d2

2)

snr2

]

≈ Ed1,d2

[
d2

2d
2
1 + d4

1 + 2d2d
3
1 + d4

2 + d2
1d

2
2 + 2d3

2d1

snr2

]

≈ 80

λ4 snr2

≈ 80

Ψ2(λ, snr)2
·

Table 3.6 gives a side-by-side comparison between the end-to-end outage for the

simple route, based on table 3.5, and the diversified route, based on the analysis in

this section. Note that for the simple routing scheme outage probability decays as

Ψ2(λ, snr)−1 . In the diversified routing scheme, however, outage probability decays

as Ψ2(λ, snr)−2.

Figure 3-10 gives both the exact and the approximation for outage in a 2-hop

Poisson line with λ = 1. Note that the diversified route has a much lower outage

probability than the simple route for any snr level. Furthermore, our approximations

are quite good even for the snr values corresponding to 1% end-to-end outage.
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Simple Route Diversified Route

Deterministic Network, Density λ 2
Ψ2(λ,snr)

8
Ψ2(λ,snr)2

Poisson Network, Density λ 4
Ψ2(λ,snr)

80
Ψ2(λ,snr)2

Table 3.6: Outage Probability with or without Diversity in 2-Hop Line
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Figure 3-10: Reliability Improvement in 2-Hop Line Network

The same technique can be used for finding the end-to-end outage probability for

routes with more hops. For a 3-Hop line network, following the same steps, we get

the following approximation:

ρ(0,1,2,3) ≈ Ed1,d2,d3

[
(d1 + d2 + d3)

k((d2 + d3)
k + dk

1)d
k
3

snr3

]
, (3.54)

where d1,d2, and d3 are the internode distances.

For a deterministic line with density λ, this approximation simplifies to:

ρ(0,1,2,3) ≈ 45

λ6 snr3

≈ 45

Ψ2(λ, snr)3
· (3.55)
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and for a Poisson line with density λ, it simplifies to:

ρ(0,1,2,3) ≈ 2464

λ6 snr3

≈ 2464

Ψ2(λ, snr)3
· (3.56)

Figure 3-11 gives both the exact and high-snr approximation for a 3-hop Poisson

line network with λ = 1. Again, we see that the approximation is quite good even for

modest levels of end-to-end reliability.
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Figure 3-11: Reliability Improvement in 3-Hop Line Network

Based on our analysis of 2 and 3-hop networks, we would like to make the following

observations:

1. We conjecture that for a route with N hops, the outage probability decays as

Ψk(λ, snr)−N in the high-snr regime.

2. In order to achieve this type of behavior, the high-snr approximation for in-

dividual link outage probability must be valid for the worst link, i.e. for the

link between the source, node 0, and the destination, node N. This requires

a very high level of transmitted snr. In fact, a higher value of snr is needed

as N increases. Therefore, this behavior is not scalable to large networks. In
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section 3.4.3, we look at what type of gain can be achieved if not all, but only a

limited number of links in each transmission are assumed to be operating in the

high-snr regime. In the last section of this chapter, we look at some preliminary

analysis outside of the high-snr regime.

3.4.3 Limited Diversity

In the previous section we worked out the exact and high-snr approximation for the

outage probability for diversified routes in deterministic and Poisson line networks.

We conjectured that for a route with N hops, the end-to-end outage probability

decreases as Ψk(λ, snr)−N in the high-snr regimes. However, to achieve this type of

behavior, the high-snr approximation for link outage probability must be valid for

all single point-to-point transmission. For large values of N, a very high transmitted

power is required to achieve this behavior.

In this section, we look at the improvement possible due to limited diversity.

In limited diversity with degree L, a node i can only receive the information from

nodes {i− L + 1, · · · , i− 1}. For example, figure 3-12 shows the paths in a 6-Hop line

network with a cooperation limit of 2. The motivation behind this is two-fold: first,

this type of diversity requires coordination only among nodes located close to each

other, which might be more reasonable than coordination among all nodes along the

selected route as needed in unlimited diversity. Furthermore, this approach allows

us to show some interesting analytical results for the benefits of route diversity in a

multi-hop line network.

The exact analysis of the end-to-end reliability is complicated due to strong corre-

lation between the different events that contribute to successful end-to-end relaying.

For example in figure 3-12, we are interested in calculating the probability that a

route exists between node 0 and node 6 using any of the point-to-point links shown

in the figure. The probability of success for these links are strongly correlated. This

correlation arises from the dependence of the point-to-point link success probability

on the same underlying set of random variables, i.e. the node locations. For example,

in figure 3-12, distance between nodes 1 and 2, d12, affects the probability of success
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for links {1 → 2}, {0 → 2}, and {1 → 3}.

0
 1
 2
 3
 4
 5
 6


Figure 3-12: Limited Cooperation in a Line Network

To eliminate this correlation, we consider the diversity scheme shown in figure 3-

13, where we have eliminated the links between {1 → 3} and {3 → 5}. Hence,

the total reliability of all the routes shown in figure 3-13 is less than the reliability

of routes shown in figure 3-12. In a way, by finding the probability of outage for

figure 3-13, we find an upper bound for the probability of outage for figure 3-12.
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Figure 3-13: Upper Bounding the Outage Probability in a Line Network

It is not hard to observe that

Reliability(0,1,··· ,N) = ENodeLocations [R[N, N]]

≥ Reliability(0,··· ,L)Reliability(L,··· ,2L) · · ·Reliability(N−L,··· ,N) ·
(3.57)

Of course, for this to make sense N must to divisible by L. Essentially, we have divided

the line into segments of size L and used the result from unlimited diversity in each

segment. For the case of a Poisson line, the internode distances are independent from

each other. We have:

Reliability(0,··· ,L) = Reliability(L,··· ,2L) = · · · = Reliability(N−L,··· ,N) = ENodeLocations [R[L, L]],

hence,

Reliability(0,1,··· ,N) ≥ (ENodeLocations [R[L, L]])
N
L · (3.58)
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Using these bounds and the result from the section 3.4.2, we can find the bound

for end-to-end outage probability. For L = 2, we have:

Reliability(0,1,··· ,N) ≥ (ENodeLocationsR[2, 2])
N
2

≥
(

1− Ex1,x2

[
(x1 + x2)

k(xk
2 + xk

1)

snr2

])N
2

≥ 1− N

2
Ex1,x2

[
(x1 + x2)

k(xk
2 + xk

1)

snr2

]

ρ(0,1,··· ,N) ≤ N

2
Ex1,x2

[
(x1 + x2)

k(xk
2 + xk

1)

snr2

]

(3.59)

We used the fact that (1− p)N ≥ 1− Np for all 0 ≤ p ≤ 1. This fact can be shown

by collecting all the terms on the left-hand-side and taking the first derivative. For

k = 2, we have:

ρ(0,1,··· ,N) ≤ N

2

8

λ2 snr2

(3.60)

in a deterministic line with density λ and

ρ(0,1,··· ,N) ≤ N

2

80

λ2 snr2

(3.61)

in a Poisson line with density λ.

Similar bounds can be found for the case when diversity is limited to 3 nodes,

i.e. L = 3. Table 3.7 summarizes these results. We have also repeated some results

from table 3.5 for easier comparison between limited diversity and simple routing. In

figure 3-14, the exact end-to-end outage probability and bound for a 6-Hop Poisson

line network under diversity limit of L = 2 and L = 3 are shown. These bounds are

clearly not very tight. However, finding these bounds allow us to get an idea of how
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the relation between reliability and power changes under limited diversity scenarios.

Comparing entries in table 3.7, it is clear that without diversity, the end-to-end

outage probability decays as Ψ2(λ, snr)−1. When diversity is limited to L = 2 nodes,

the end-to-end outage probability Ψ2(λ, snr)−2 and for L = 3, this tradeoff become

Ψ2(λ, snr)−3. We conjecture that for diversity limit of L, the end-to-end outage decays

as Ψk(λ, snr)−L.

Simple Route Diversified, L = 2 Diversified, L = 3

Deterministic Network, Density λ N 1
λ2 snr

N
2

8
λ2 snr2

N
3

45
λ6 snr3

Poisson Network, Density λ N 2
λ2 snr

N
2

80
λ2 snr2

N
3

2464
λ6 snr3

Table 3.7: Limited Diversity Route Outage Probability in Line Network
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Figure 3-14: Outage for 6-Hop Poisson Line Network

3.4.4 Non High-SNR Diversity Analysis

All our analysis up to this point has been based on the high-snr assumption. In

section, 3.4.2, we looked at the case of full diversity in a line network. We conjectured

that the end-to-end outage probability decays as Ψk(λ, snr)−N. However, this behavior
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is only seen at very high transmission power levels and not practical to achieve for

large networks, i.e. for large N. Trying to move away from this shortcoming, in

section 3.4.3 we looked at the case of limited diversity. It was observed that even

limited diversity has some significant benefits. It was shown that the end-to-end

outage decays as Ψk(λ, snr)−L where L is the diversity level.

Clearly, assuming infinite snr or limiting diversity to only a few nodes are not

very precise in any realistic system, i.e. we either get asymptotic results that only

apply to high-snr regimes or we don’t get the full benefit of diversity in the relay

nodes as we limit the number of receivers. In this section, we try move away from

these assumption and develop a more precise analysis of the benefits of diversity in

a line network. We calculate the probability that a transmission by a node is not

received by any node in the direction of the destination, i.e. by any node closer to the

destination. In fact, we are trying to find the exact probability that all links shown

in 3-15 fail. This can be related to our earlier analysis in a very natural way. In

section 3.4.2 and 3.4.3, we found the probability that the first N of these links fail.

We found that in the high-snr regime, this probability decays as Ψk(λ, snr)−N. In this

section, we move away from the high-snr assumption. We solely focus on the case

of Poisson line as Poisson line is more representative of a random network. We also

assume that the final destination is located very far away from the source node. We

observe this probability decays exponentially in the network power-density-profile as

defined in equation 3.48.

0


Figure 3-15: Poisson Line Network

Let N(a, b) be the random variable for the number of nodes in the interval of

(a, b]. It is well known, see [17], that for exponential internode distances, the number
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of nodes in any interval is a Poisson random variable. Furthermore, the number of

nodes in non-overlapping intervals are independent of each other, To develop our

result, we start by dividing the line into segments of length δ. For small values of δ,

the number of nodes in a line segment of length δ is approximately a Bernoulli random

variable. i.e. there is a node in the segment with probability λδ or there is no node

with probability 1− λδ. Furthermore, the number of nodes in non-overlapping line

segments are independent random variables, see [17] for details. This approximation

is prefect in our case as we will take the limit of δ → 0 to get the desired result. For

small values of δ, let’s define the disconnect event for segment located at distance mδ

away from the transmitter as the event that the information is not received by any

node in the line segment (mδ, (m + 1)δ]. This event includes both the case that there

is no node in this line segment or there is a node and transmission fails due to bad

fading. This probability can be calculated as:

PDisconnect(mδ, snr) = P (Disconnect|N(mδ, (m + 1)δ] = 0) P (N(mδ, (m + 1)δ] = 0) +

P (Disconnect|N(mδ, (m + 1)δ] = 1) P (N(mδ, (m + 1)δ] = 1)

= (1)(1− λδ) + (1− PSucc(mδ, snr)(λδ)

= 1− PSucc(mδ, snr)λδ,

where PSucc(d, snr) is defined in 3.11. Let PDisconnect(x, y, δ) be the probability that

the information transmitted by a node located at location 0 is not received by any

node between (x, y] where this segment is broken down into segments of length δ.

This probability can written in terms of PDisconnect(mδ) calculated above as:

PDisconnect(x, y, δ, snr) =

y
δ∏

i= x
δ

PDisconnect(iδ, snr)

ln(PDisconnect(x, y, δ, snr)) =

y
δ∑

i= x
δ

ln(PDisconnect(iδ, snr))

=

y
δ∑

i= x
δ

ln(1− PSucc(mδ)λδ). (3.62)
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Taking the limit δ → 0, we get:

ln(PDisconnect(x, y, snr)) = lim
δ→0

ln(PDisconnect(x, y, δ, snr))

= lim
δ→0

y
δ∑

i= x
δ

ln(1− PSucc(mδ, snr)λδ)

= −
∫ y

x

λ PSucc(l, snr)dl (3.63)

where we used the approximation of ln(1− x) ≈ −x for small values of x in the

last step.

For the case when the path-loss exponent k = 2, we have

PSucc(d, snr) = exp(− d2

snr
),

and the above integral can be calculated easily based on error function:

ln(PDisconnect(x, y)) = −λ(

√
πsnr

2

(
erfc

(
y√
snr

)
− erfc

(
x√
snr

))

= −λ

(
√

snr

∫ y√
snr

x√
snr

e−t2dt

)
. (3.64)

It is interesting to look at this result for x = 0 and y = ∞. For these values we

have:

ln(PDisconnect(0,∞)) = −λ

√
πsnr

2

= −
√

π λ2snr

2

PDisconnect(0,∞) = exp

(
−
√

π λ2snr

2

)

= exp

(
−

√
πΨ2(λ, snr)

2

)
.

It is seen that the probability that the information transmitted by a node is not

received by any node closer to the destination decays exponentially with Ψ2(λ, snr).
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This is very similar to the case of non-fading point-to-point link with exponential

distance ( see table 3.4.) The reason behind this type of result is the infinite number

of intermediate relay nodes that can receive each transmission. Of course, this is not

the case in any real network as there are only a finite number of relays between any two

node pairs. This analysis proves that route diversity has the potential to significantly

change the relationship between the transmitter power, the network density, and the

end-to-end outage, and potentially even make a fading network look a lot more like

a non-fading network.
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Chapter 4

Conclusion

In this thesis, we studied the problem of reliability and energy efficiency in wireless

ad-hoc networks. In the first part, we introduced the idea of wireless cooperation

advantage. We formulated the problem of finding the minimum energy cooperative

route for a wireless network under idealized channel and receiver models. Our main

assumption were that the channel states are known at the transmitter and precise

power and phase control, to achieve coherent reception is possible. We focused on the

optimal transmission of a single message from a source to a destination node through

sets of nodes, that may act as cooperating relays. Fundamental to the understanding

of the routing problem was the understanding of the optimal power allocation for a

single message transmission from a set of source nodes to a set of destination nodes.

We presented solutions to this problem, and used these as the basis for solving the

minimum energy cooperative routing problem. We used Dynamic Programming (DP)

to formulate the cooperative routing problem as a multi-stage decision problem. For

a regular line and a regular grid topologies, we analytically obtained the energy

savings due to cooperative transmission, demonstrating the benefits of the proposed

cooperative routing scheme. In particular, we showed that in a regular line network

energy savings of 1− 6
π2 ≈ 39% is possible. For the case of a regular grid network,

we found that energy savings of ≈ 56% is achievable. We proposed two heuristics

for general topologies. Simulations confirmed that energy savings of close to 50% is

achievable in a random network.
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In the second part, we studied the problem of route reliability in a multi-hop

network. Our analysis started by looking at the reliability of a point-to-point com-

munication link. In particular, we looked at how the reliability of a point-to-point

link depends on the fading parameter and the distance between the communicating

nodes. The analysis of a point-to-point link was based on the widely used capacity-

versus-outage model for a wireless link. Once the result for a point-to-point link was

established, we extend the reliability result to a wireless network setting. In a net-

work setting, we first defined and analyzed the reliability for a fixed route and then

proposed algorithms for finding the optimal route between a source-destination pairs

of nodes. We looked at three different formulation for the routing problem: finding

the most reliable route for a fixed maximum transmitted snr per link, finding the most

reliable route for a fixed end-to-end power, and finding the minimum power route for

a guaranteed end-to-end reliability. We showed that the last two problem are dual of

each other. Based on this duality, we found the optimal trade-off curve between the

end-to-end reliability and the end-to-end power consumption. The relation between

route reliability and consumed power was studied. It was shown that the trade-off

between the end-to-end reliability and consumed power in a route is very similar to

the trade-off between the transmission power and reliability in a link.

The idea of route diversity was introduced as a way to improve the end-to-end

reliability by taking advantage of wireless broadcast property and the independence

of the fading parameters between different pairs of nodes. We gave analytical results

for improvements due to route diversity in some simple network topologies. For a line

topology, it was shown that even limited diversity can significantly improve the trade-

off between the end-to-end reliability and the consumed power. The results observed

in this section closely resembled the reliability improvements due to space diversity in

multiple-antenna system. The model proposed in this chapter can open the door to a

new area of research on various network layer protocols and trade-off among different

route properties, such as the end-to-end reliability, the expected delay, or the total

consumed power. In this context, route diversity, i.e. the diversity created through

using multiple relay nodes at the transmitter or the receiver side, appears to have the
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potential to fundamentally change these trade-offs.
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