
Approximating Fluid Schedules in

Packet-Switched Networks
by

Michael Aaron Rosenblum
B.S., Symbolic Systems; M.S., Mathematics

Stanford University, 1998
Submitted to the Department of Mathematics

in partial fulfillment of the requirements for the degree of
Doctor of Philosophy

at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2004
c© Michael Aaron Rosenblum, MMIV. All rights reserved.

The author hereby grants to MIT permission to reproduce and

distribute publicly paper and electronic copies of this thesis document
in whole or in part.

Author .
Department of Mathematics

August 6, 2004

Certified by. .
Michel X. Goemans

Professor of Applied Mathematics
Thesis Co-Supervisor

Certified by. .
Vahid Tarokh

Professor of Electrical Engineering, Harvard University

Thesis Co-Supervisor
Accepted by .

Rodolfo Ruben Rosales
Chairman, Committee on Applied Mathematics

Accepted by .
Pavel Etingof

Chairman, Department Committee on Graduate Students

2

Approximating Fluid Schedules in Packet-Switched Networks

by

Michael Aaron Rosenblum

Submitted to the Department of Mathematics
on August 6, 2004, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

We consider a problem motivated by the desire to provide flexible, rate-based, quality
of service guarantees for packets sent over switches and switch networks. Our focus
is solving a type of on-line, traffic scheduling problem, whose input at each time step
is a set of desired traffic rates through the switch network. These traffic rates in
general cannot be exactly achieved since they treat the incoming data as fluid, that
is, they assume arbitrarily small fractions of packets can be transmitted at each time
step. The goal of the traffic scheduling problem is to closely approximate the given
sequence of traffic rates by a sequence of switch uses throughout the network in which
only whole packets are sent. We prove worst-case bounds on the additional delay and
buffer use that result from using such an approximation. These bounds depend on
the network topology, the resources available to the scheduler, and the types of fluid
policy allowed.

Thesis Co-Supervisor: Michel X. Goemans
Title: Professor of Applied Mathematics

Thesis Co-Supervisor: Vahid Tarokh
Title: Professor of Electrical Engineering, Harvard University

3

4

Acknowledgments

I would like to thank my co-advisors Professor Michel X. Goemans and Professor

Vahid Tarokh for their extremely valuable support, encouragement, advice, and joint

work on this research. It has been an honor to work with them. I also thank the other

members of my thesis committee Professor Daniel Spielman and Professor Daniel

Kleitman. I am lucky to have worked jointly with Constantine Caramanis on the

results in Chapters 4 and 5; I appreciate not only his hard work and key insights, but

also his camaraderie, which made my graduate school experience a more enjoyable

one.

Thank you to my parents David and Nancy, and my brothers Daniel and Jonathan

for their love and constant support. Also, thank you to Bob, Ann, Hanna, Maia, Alan,

and Geoffrey Steinberg for their love and encouragement.

I wholeheartedly thank Brian Dean, Kathleen Dickey, Samuel Fiorini, Thomas

Erlebach, Can Emre Koksal, and Daniel Spielman for their helpful feedback on my

work. I would like to thank Greg Shomo for his computer help, and CSAIL Reading

Room Librarians Paula Mickevich and Maria T. Sensale for their help throughout my

research.

Parts of this work are joint with other researchers, and have been previously

published, or have been adapted from work previously published. Sections 2.4 and

2.7 were in M. Rosenblum, R. Yim, M.X. Goemans, and V. Tarokh, Worst-case delay

bounds for packetizing time-varying fluid schedules for a single server in a packet-

switched network. In Proceedings of the 38th Annual Conference on Information

Sciences and Systems (CISS), pages 1553–1559, Princeton, NJ, 2004.

Section 2.6 and Chapter 3 were in M. Rosenblum, M. X. Goemans, and V. Tarokh,

Universal bounds on buffer size for packetizing fluid policies in input queued, crossbar

switches. In Proceedings of IEEE INFOCOM, Hong Kong, China, 2004. c©2004

IEEE. Reprinted, with permission.

Chapter 4, with the exception of Section 4.6, was in C. Caramanis, M. Rosenblum,

5

M.X. Goemans, and V. Tarokh, Scheduling algorithms for providing flexible, rate-

based, quality of service guarantees for packet-switching in Banyan networks. In

Proceedings of the 38th Annual Conference on Information Sciences and Systems

(CISS), pages 160–166, Princeton, NJ, 2004.

The material in this thesis is based upon research supported by the National Sci-

ence Foundation under the Alan T. Waterman Award, Grant No. CCR-0139398,

and under contracts ITR-0121495 and CCR-0098018. Also, I was supported during

my first two years at MIT by a Department of Defense NDSEG Fellowship (contract

number F46920-99-C-0054). Any opinions, findings, and conclusions or recommen-

dations expressed in this publication are those of the author and do not necessarily

reflect the views of the National Science Foundation or of the Department of Defense.

6

Contents

1 Introduction 15

1.1 Our Model and Adversarial Queueing Theory 15

1.2 Packet-Scheduling using Fluid Policies 17

1.3 Overview of Results . 18

2 The N × 1 Switch 21

2.1 Introduction . 21

2.2 Traffic Model . 21

2.3 Results Overview . 25

2.4 Related Work . 25

2.5 Exactly How Much Lookahead is Required to Track with No Speedup 28

2.5.1 Upper Bounds on Lookahead Required to Track 29

2.5.2 Lower Bounds on Exactly How Much Lookahead is Required to

Track . 34

2.6 Tight Bounds on Backlog with No Lookahead 36

2.6.1 Lower Bounds on Backlog . 37

2.6.2 Upper Bounds on Backlog . 39

2.7 Bounds on Delay . 40

2.7.1 Proof of Theorem 4: Bounds on Delay using Finite Lookahead,

No Speedup . 42

2.7.2 Proof of Theorem 5: Bounds on Delay using Speedup, but No

Lookahead . 45

7

2.7.3 Proof of Theorem 6: Bounds on Lookahead, Speedup to Guar-

antee Low Delay . 50

2.8 Applying Our Bounds to Time-Varying, Leaky-Bucket Constrained Ar-

rival Processes . 52

3 The N ×N , Input Queued, Crossbar Switch 55

3.1 Traffic Model . 56

3.2 Related Work . 59

3.3 Bounds on Backlog for the N ×N Crossbar Switch 61

3.3.1 A Lower Bound on Backlog for the N ×N Crossbar Switch . 61

3.3.2 An Upper Bound on Backlog for the N ×N Crossbar Switch . 62

3.4 A Packet-Scheduling Algorithm with Running Time O(N log N) per

Fluid Step, Using N/ log N Parallel Processors 66

3.5 Packet-Scheduling Generalized Fluid Policies 70

3.6 Chapter Summary . 72

4 Banyan Networks 75

4.1 Notation and Definitions . 76

4.1.1 Structure of Banyan Networks 76

4.1.2 Definition of Fluid Policy and Packetized Policy 82

4.1.3 Definition of Cumulative Difference, Backlog, Speedup 83

4.2 Results . 84

4.3 Speedup is Required . 85

4.4 Characterization of Required Speedup 86

4.5 Speedup Required for 4× 4 Banyan Networks 91

4.6 Speedup Required for 8× 8 Banyan Networks 93

4.6.1 Lower Bound on Speedup for 8× 8 Banyan Networks 93

4.6.2 Upper Bound on Speedup for 8× 8 Banyan Networks 94

4.7 A Greedy Algorithm for Decomposing Fluid Matrices 114

4.8 Chapter Summary . 117

8

5 General Input-Queued Switch Networks 119

5.1 Model and Definitions . 120

5.1.1 Definition of General Network 121

5.1.2 Definitions for Static Flows 121

5.1.3 Definitions for Multicommodity Flows Over Time 122

5.1.4 Definition of Packetized Policy and Fluid Policy 123

5.1.5 Definition of Cumulative Difference and Backlog 124

5.2 Upper Bound on Required Speedup for General Networks 125

5.3 Upper Bound on Required Speedup in terms of Network Dilation . . 133

A 137

A.1 Proofs of Claims from Section 2.6.1 137

A.2 Proofs of Claims from Section 2.7.2 138

B 141

9

10

List of Figures

2-1 An example of an adversarial fluid policy for the 4× 1 switch. 35

2-2 An example of a fluid policy for a single server with N = 6 input ports,

where the rows correspond to successive time steps. The first packet

from the sixth input port is completed at time step 2 by both the fluid

and packetized policies, and thus has no delay. The second packet from

the sixth input port is completed by the fluid policy at time step 4 but

not completed by the packetized policy until time step 6, so its delay

is 2. The boldface numbers in the fluid policy represent the elements

of Ij, defined in the proof of Theorem 4, at time step tj. 44

3-1 A 4× 4 input queued, crossbar switch. Each input port has 4 virtual

output queues, one corresponding to each output port. 56

3-2 Three steps of a fluid policy (first column), packetized policy (sec-

ond column), and their cumulative difference (third column). Since

a packet-scheduling algorithm can only send a packet at or after its

fluid start time, a packet-scheduling algorithm has to set P (3) to be a

sub-permutation matrix that is not a (full) permutation matrix. At

time step 3, the backlog at input ports 1, 2, 3, 4 (corresponding to the

rows of C(3)) is 1, 1/2, 1/2, 1 respectively. 59

4-1 A 16 by 16 Banyan Network built from 2× 2 crossbar switch elements. . . 77

4-2 Recursive construction of a 2m × 2m Banyan network, for m ≥ 2. 78

4-3 A 4× 4 Banyan Network. 81

4-4 The link graph corresponding to the above 4× 4 Banyan Network. 81

11

4-5 We obtain the upper bound on speedup for the 4 × 4 Banyan network by

decomposing any 4× 4 fluid policy into four parts as shown above. 91

4-6 This is the complement of a 4 × 4 Banyan network link graph with the

corner removed. The edges are oriented so that edges between nodes in

U and nodes in V are directed towards V , edges between U and W are

directed towards W , and edges between V and W are directed towards W .

Therefore this is a directed, acyclic, transitive graph. 92

4-7 An 8× 8 Banyan network. 93

4-8 The set of cliques Q = {Qh,k}0≤h≤3,0≤k≤7 for an 8 × 8 Banyan network.

Each clique Qh,k is represented by a rectangle of input, output pairs corre-

sponding to the nodes in the clique. For example, Q0,0 is the set of nodes

corresponding to {(1, j) : 1 ≤ j ≤ 8}. 97

4-9 A vertex of FTIGHT in T ′
1. 105

4-10 Two vertices of FTIGHT in T ′
2. The vertex v on the left is in subcase 2e of

T ′
2; this vertex v is such that min{s ≥ 1 : (1/s)v ∈ P} = 4/3. The vertex

on the right is in subcase 2f of T ′
2. 109

4-11 Two vertices of FTIGHT in T ′
4. The vertex on the left is in the first case of

T ′
4. The vertex on the right is in the second case of T ′

4. 111

5-1 A general network with three communicating source-sink pairs (a1, b1), (a2, b2), (a3, b3)

where each arc has unit capacity. Here, the dilation d of the general network

is 4. 121

12

List of Tables

2.1 Exact Lookahead Required to Track on N×1 Switches with No Speedup 29

2.2 Delay Bounds for N×1 Switches as a Function of Speedup and Looka-

head Used. A lower bound of f(N, s, L) means that for any packet-

scheduling algorithm using speedup s and lookahead L on an N × 1

switch, there exists a fluid policy that causes a packet to be delayed

at least f(N, s, L) steps. An upper bound of g(N, s, L) means that the

Earliest Completion Time packet-scheduling algorithm using speedup s

and lookahead L on an N×1 switch guarantees delay at most g(N, s, L)

for any fluid policy. 42

3.1 Summary of bounds on backlog for the N ×N Crossbar Switch . . . 72

13

14

Chapter 1

Introduction

The problems we analyze in this thesis fit into the recently unified framework of

adversarial queueing theory. We do not present a comprehensive overview of this field

here (we refer the interested reader to [4, 9]); instead, we briefly introduce the main

principles of adversarial queueing theory and show how they apply to our model.

We compare and constrast the model used here with the models used in related

work; however, we postpone detailed discussions of related results for different switch

architectures until the chapters dealing with these architectures. Next, in Section 1.2

of this chapter, we describe the main feature of our model, the fluid adversary. In the

last section, we present an overview of our results.

1.1 Our Model and Adversarial Queueing Theory

Adversarial queueing theory1 is the analysis of stability in dynamic, packet-switched

networks in which the packet arrival process is adversarial. That is, the evolving state

of the queues in a network is considered a game between a packet-scheduling algorithm

and an adversary with limited control over where packets arrive in the network, when

they arrive, where they must be sent, and when they should arrive there. The packet-

scheduling algorithm attempts to route packets to their destinations as quickly and

1The description of adversarial queueing theory in the following four paragraphs is paraphrased
from [4, 9].

15

with as little buffering as possible.

Other approaches to scheduling are also possible. Much analysis has been done in

models where the input traffic is assumed to have certain statistical properties (e.g.

[18, 41, 57]). In such models, it is often shown that the queue lengths, considered

as a stochastic process, converge to a limiting distribution with finite expectation.

The worst-case bounds obtained in adversarial queueing theory and in particular this

work, however, are more robust in that the arrival process is not assumed to have any

statistical properties.

The results in adversarial queueing theory, as in this work, are bounds on the

performance of packet-scheduling algorithms as a function of their resources relative

to those of the adversarial arrival process, and as a function of the network topology.

The performance metrics used in adversarial queueing theory include how large queue

sizes (buffers) get and how much time each packet spends in queues, in the worst-case.

The performance metrics in this work are variants of these general metrics; they focus

on the additional buffer use and delay that result from approximating a schedule that

treats data as fluid, by a schedule that sends only whole packets; these performance

metrics, which we call backlog and delay, are further explained in the next section.

In this work, the resource available to the packet-scheduling algorithm is how much

information it has on the the future decisions of the (fluid) arrival process (which

we call lookahead); the adversary is constrained in terms of the rate at which it can

insert deadlines for packet deliveries (which we call speedup).

In this work, we analyze adversaries that are free to allocate different rates at

different time steps. This is referred to as the “temporary session model” in [5], as

opposed to what they call the “permanent session model” used in [6, 7, 11, 12, 16,

17, 43, 44, 58]. The temporary session model, which according to Borodin et al. [9]

“intuitively seems to provide a better model for ATM networks having heterogeneous

and frequently changing rates of traffic” is used in [1, 4, 5, 9, 24, 34, 37, 53].

The model we use in this thesis, as in the models in [1, 7, 11, 12, 24, 34, 37, 55],

allows the adversary to choose arrival and departure deadlines for each packet that

should be met as closely as possible by the packet-scheduling algorithm; the adversary

16

is limited in that the deadlines selected must meet certain rate constraints. The

adversary can make the delivery of a packet more urgent by selecting deadlines in

which this packet’s departure time from the network is soon after its arrival time to

the network. These models differ from the models in [4, 5, 6, 9, 16, 17, 43, 44, 53],

which allow the rate-constrained adversary to directly inject packets that should

be transmitted to their destinations as quickly as possible by the packet-scheduling

algorithm.

When we analyze packet-switched networks in this work, we assume that interme-

diate switches do not have buffers; that is, once a packet leaves its source, it travels

without waiting in any queues until it reaches its destination. We do not allow pack-

ets to be dropped, which implies that the number of packets traversing any link at

any time step can be at most that link’s capacity. In such a setting, a centralized

router and scheduler seem necessary to coordinate packet transmissions throughout

the network. We assume that our packet-scheduling algorithm knows the states of all

queues for every switch in the network; we also assume it can communicate instan-

taneously with each switch to request packet transmissions. The packet-scheduling

algorithm can be thought of as a network manager.

1.2 Packet-Scheduling using Fluid Policies

In our approach to packet-scheduling, which is motivated by the goal of providing

flexible, rate-based, quality of service guarantees, the designer first ignores the packet

nature of traffic and constructs a schedule under the assumption that packets can be

broken into arbitrarily small pieces and sent at different time slots (as in [1, 6, 7, 11,

12, 16, 17, 21, 24, 34, 37, 43, 44, 53, 55]). This schedule is referred to as a fluid policy.

Next, the designer constructs a packetized policy, which approximates the behavior of

the fluid policy in order to send packet data.

We use two metrics for how well a packetized policy approximates a fluid policy.

The first, backlog, measures the gap in cumulative service between the fluid policy and

the packetized policy. The second, the additional delay experienced by a packet due

17

to approximating a fluid policy by a packetized one (which we refer to simply as delay)

is the difference between when the packetized policy sends a packet and when the fluid

policy finishes transmitting that packet. If a packet-scheduling algorithm, given any

fluid policy as input, outputs a packetized policy in which each packet experiences

no delay, we say the algorithm tracks. These metrics are similar to metrics used in

[12, 34, 37]. Our bounds on backlog and delay are not asymptotic; they apply to all

switch sizes and to time increments of any finite duration.

The present work tackles the problem of bounding backlog and delay when time-

varying fluid policies are approximated by packetized policies in individual switch

elements and in switch networks.

1.3 Overview of Results

We briefly describe our results for each chapter. Switch architectures of increasing

complexity are considered, starting with a single N × 1 switch in Chapter 2 and

building to general switch networks in Chapter 5.

Chapter 2 is devoted to analyzing backlog and delay for a single N×1 switch. This

switch models processor sharing, in which N data streams (input ports) compete for

processing time of a single server. First, we characterize exactly how much lookahead

is required to track with no speedup. Next, we prove tight bounds on worst-case

backlog when speedup, but no lookahead, is used. We then turn to analyzing the

trade-offs between speedup and lookahead required to bound delay. We prove for

packet-scheduling algorithms using bounded lookahead and no speedup that worst-

case packet delay grows linearly with the number of input ports N . Also, we prove

for algorithms using no lookahead that worst-case delay grows linearly with N and

decreases exponentially with speedup. We look at algorithms using both lookahead

and speedup; for fixed speedup and maximum tolerable delay, we lower bound the

necessary lookahead (by a function linear in N) and upper bound sufficient lookahead

(by a function linear in N). We end Chapter 2 with an example of how the above

bounds can be translated into bounds on queue length and packet waiting time for

18

leaky-bucket arrival processes under the temporary session model of Andrews and

Zhang [5].

In Chapter 3, we establish worst-case bounds on backlog for the N ×N crossbar

switch. Specifically, a packet-scheduling algorithm using no speedup and no looka-

head is presented that guarantees backlog at most (N + 1)2/4 packets at each input

port and at each output port, for any fluid policy. To our knowledge, this is the

first packet-scheduling algorithm using no speedup that has been shown to maintain

bounded backlog for arbitrary, time-varying fluid policies on the N × N crossbar

switch. The algorithm can be made to run in O(N log N) time per packetized step

using N/ log N parallel processors, by employing a fast algorithm for edge-coloring

bipartite multigraphs. In the reverse direction, it is shown for an N×N input queued,

crossbar switch, that for any packet-scheduling algorithm using no speedup and no

lookahead, there is a fluid policy resulting in backlog more than N/e − 2 at an in-

put port. We also extend the main packet-scheduling algorithm of this chapter to

a generic scheme for bounding backlog for a general class of switch architectures; in

Chapter 4, we give a polynomial-time algorithm implementing this scheme for Banyan

networks.

Our results in Chapter 4 focus on a class of multistage switch networks called

Banyan networks. We first prove that when no speedup is used, bounded backlog

results like those proven in Chapter 3 for the N ×N crossbar switch do not exist for

arbitrary switch networks or even for 4 × 4 or larger Banyan networks. However, if

the packet-scheduling algorithm is allowed to use speedup, it can maintain bounded

backlog. We prove that if speedup s is sufficient to maintain bounded backlog for any

constant fluid policy, then speedup s is also sufficient to maintain bounded backlog

for any time-varying fluid policy. We prove that speedup 4/3 is necessary and suf-

ficient to keep backlog bounded for any fluid policy on 4 × 4 Banyan networks. We

also determine, through detailed analysis of polytopes and non-trivial computations

using the package cdd+2, that the necessary and sufficient speedup to keep backlog

2cdd+ is, according to its author Komei Fukuda, an “implementation of the Double Descrip-
tion Method [42] for generating all vertices (i.e. extreme points) and extreme rays of a gen-
eral convex polyhedron given by a system of linear inequalities.” See http://www.cs.mcgill.ca/ ˜

19

bounded for any fluid policy on 8×8 Banyan networks is also 4/3. For general N×N

Banyan networks, we give a polynomial time algorithm using speedup log2 N +1 that

keeps backlog bounded for any fluid policy.

We extend some of the results proved for Banyan networks to general, input-

queued switch networks, which we simply refer to as general networks, in Chapter 5.

A general network consists of a set of interconnected, crossbar switches, along with a

set of data sources and data sinks. General networks, unlike Banyan networks, may

be non-layered, may have multiple paths connecting each source and destination, and

may have different integer capacities on each link. The main result in this chapter is

an upper bound on the required speedup to maintain bounded backlog for any fluid

policy; this bound is derived by analyzing integral and fractional static flows through

the general network. We apply this bound to show that for d the maximum number

of links in any simple, source-sink path in a general network, we have for any ε > 0,

a packet-scheduling algorithm using speedup d + ε that, for any given fluid policy,

maintains bounded backlog.

fukuda/soft/cddman/node2.html for details.

20

Chapter 2

The N × 1 Switch

2.1 Introduction

In this chapter, we consider only the N × 1 switch, which models processor sharing.

This type of switch has been extensively studied in the literature, for example in

[1, 6, 16, 17, 21, 24, 43, 44, 47, 48, 52, 53]. The analysis of the N × 1 switch gives

intuition that will be useful in understanding the algorithms and lower bounds for

M ×N switches and general switch networks.

We define the traffic model in terms of fluid and packetized policies. Based on

these, we define the performance metrics of delay and backlog. We also consider

resources available to a packet-scheduling algorithm, focusing on speedup and looka-

head. Next, we present worst-case bounds on these performance metrics in terms of

the available resources.

2.2 Traffic Model

We consider a single server sending packets from N input ports (or, equivalently,

from N data streams) to a shared output port within a packet-switched network

operating in discrete time. All packets are assumed to have the same size, and time

is normalized so that the maximum service rate (capacity) of any input port is one

packet per time step. At each time step, the server can select one input port and

21

send one packet from it. At any time step, the server may decide to send no packets.

Our traffic model is similar to that used by Cruz [16, 17], Parekh and Gallager

[43, 44], and Tabatabaee, Georgiadis, and Tassiulas [55], in that input traffic is first

considered fluid and satisfies some burstiness and long-term rate constraints; for ex-

ample, in [43, 44] and sometimes in [16, 17], the input traffic is a linear bounded

arrival process, which is sometimes called a “leaky bucket” controlled process. A

significant difference between the fluid constraints in [16, 17, 43, 44], and the fluid

constraints used here and in [24, 34, 37, 55] is that in the former cases these con-

straints generally apply to the fluid at each input port as in a permanent session

model, while in our model the constraints apply to the sum of fluid over all input

ports as in a temporary session model [5]. Thus, our traffic model allows for variation

in the rates of each input port, as long as the sum of rates is no more than the server

capacity. This is made concrete in our definition of a fluid policy, which represents

the ideal, rate-based, packet-scheduling behavior.

A Fluid Policy for a single server with N input ports is a sequence of rate allo-

cations specifying the number of fractional packets that ideally would be sent to the

output port from each input port at each time step. This is represented by a sequence

of vectors {F (t)}t>0, each of length N with non-negative entries summing to at most

1, in which F
(t)
i represents the fraction of a packet that should be sent from input

port i at time step t. The fluid start time of the kth packet from input port i is the

first time step such that a total of more than k− 1 units of fluid have been sent from

input port i by the fluid policy. The fluid completion time for the kth packet from

input port i is the first time step at which at least a total of k units of fluid have been

sent from input port i by the fluid policy. We next define a packetized policy, which

should approximate the fluid policy.

A Packetized Policy for a single server with N input ports is a sequence of packet

transmissions, one per time slot. This is represented by a sequence of {0, 1}-valued

vectors {P (t)}t>0 each of length N and containing at most a single 1. P
(t)
i is 1 if and

only if a packet is sent from input port i at time step t. We say that the packetized

policy sends the kth packet from input port i at time t, if a total of exactly k packets

22

have been sent by the packetized policy from input port i by time t.

Ideally, given a fluid policy, a packetized policy would be constructed that sends

each packet at or after that packet’s fluid start time, and at or before that packet’s

fluid completion time. When this occurs, we say, as in [55], that the packetized policy

tracks the given fluid policy. Since in many cases tracking is not possible, we study

the problem of closely approximating a fluid policy by a packetized policy that sends

each packet at or after that packet’s fluid start time, but possibly after that packet’s

fluid completion time. The motivation for keeping one constraint and relaxing the

other is based on our interpretation that a packet has arrived in its input queue by

its fluid start time, and should ideally be sent by its fluid completion time; we do not

relax the constraint that a packetized policy can only send a packet at or after that

packet’s fluid start time, since in our interpretation, a packet may not have arrived

in its input queue before its fluid start time, and we want to ensure each packet is

scheduled at or after its arrival time in the queue.1 We define a packet-scheduling

algorithm to be a deterministic algorithm that takes a fluid policy as input (possibly

online), and outputs (one step at a time) a packetized policy that sends each packet at

or after that packet’s fluid start time. At a given time step, when a packet-scheduling

algorithm outputs a packetized vector that sends packet p, we simply say that the

packet-scheduling algorithm sends packet p.

We study two metrics of how well a packetized policy approximates a given fluid

policy. First, we define the additional delay experienced by a packet due to approx-

imating a fluid policy by a packetized one (which we refer to simply as delay) to be

the positive part2 of the difference between the time at which the packetized policy

sends the packet and the packet’s fluid completion time; if a packet experiences delay

0, we say it experiences no delay. Second, we define the backlog at a single input

port to be the positive part of the difference between the cumulative fluid that has

been sent from it by the fluid policy and the cumulative number of packets that have

1See Bennett and Zhang [6] for a discussion of the importance of the constraint that a packetized
policy can only send a packet at or after that packet’s fluid start time, in the context of Generalized
Processor Sharing.

2The positive part of a vector V is denoted V +, where V +
i := max{Vi, 0}.

23

been sent from it by the packetized policy. The backlog for a set of input ports

is the sum of backlog for each input port in the set. Backlog can be computed,

at each time step t, by taking the positive part of the cumulative difference vector

C(t) :=
∑t

h=1(F
(h)−P (h)). For notational convenience, we define C (0) := 0, the vector

with all zeros. See Figures 2-1 and 2-2 for examples of a fluid policy, a corresponding

packetized policy, and their cumulative difference. For a set of input ports, we say

that a packet-scheduling algorithm gets at most b-backlogged if for all time steps t,

their backlog is at most b. In other words, for all t, the sum of corresponding entries

in (C(t))+ is at most b. For example, we say that a packet-scheduling algorithm gets

at most b-backlogged per input port if for each input port i, C
(t)
i ≤ b at all time steps

t.

There are several immediate consequences of the above definitions. First, since

by definition a packet-scheduling algorithm can only send a packet at or after that

packet’s fluid start time, a packet-scheduling algorithm can only send a packet from

input port i at time t if C
(t−1)
i +F

(t)
i > 0. This implies that for any packet-scheduling

algorithm, we have

∀i, t, C
(t)
i > −1. (2.1)

Second, a packetized policy tracks a fluid policy if and only if for all t, and for all

i ≤ N , we have −1 < C
(t)
i < 1.

For L : 0 ≤ L < ∞, we say that a packet-scheduling algorithm uses lookahead

L if the set of fluid vectors it has access to in computing packetized vector P (t) is

{F (1), F (2), . . . , F (t+L)}. We say that a packet-scheduling algorithm uses lookahead

∞ if it has access to all fluid vectors in computing packetized vector P (t). If the

lookahead for a packet-scheduling algorithm is not specified, it is assumed to use

lookahead 0.

In general, a server is said to use speedup s ≥ 1 if it processes packets s times as

fast as the maximum input line rate at a single input port. In this work, it will be

more convenient to use a related definition; we say that a packet-scheduling algorithm

uses speedup s ≥ 1 when we restrict all fluid policies to consist of fluid vectors F (t)

24

such that
∑N

i=1 F
(t)
i ≤ 1/s. We say that an algorithm uses no speedup if s = 1. If the

speedup for a packet-scheduling algorithm is not specified, it is assumed to use no

speedup.

We define the worst-case backlog for a given switch size, lookahead, and speedup to

be the minimum over all deterministic packet-scheduling algorithms of the maximum

over all fluid policies of the maximum resulting backlog over all time steps. Worst-case

delay is defined as in the previous sentence, with “backlog” replaced by “delay.”

2.3 Results Overview

In the following sections, we give bounds on worst-case backlog and delay as a function

of the lookahead and speedup used, and the switch size (that is, the number of input

ports, N). In Section 2.4, we present results from related work. In Section 2.5, we

analyze exactly how much lookahead is required to track all fluid policies when no

speedup is used. Next, in Section 2.6, we give tight bounds on worst-case backlog

when speedup, but no lookahead, is used. In Section 2.7, we bound worst-case packet

delay as a function of the lookahead and speedup used, and the switch size; we

get bounds on how much lookahead is required to track when speedup is used as a

corollary to one of these bounds. In Section 2.8, we show how to translate bounds

from the previous sections into bounds on queue length and packet waiting time for

leaky-bucket arrival processes under the temporary session model of Andrews and

Zhang [5].

2.4 Related Work

A number of authors have used fluid policies as a first step in constructing packet-

switched schedules for the N × 1 switch. Parekh and Gallager analyzed Generalized

Processor Sharing (GPS), which creates a fluid policy that schedules fractional packets

in proportion to fixed weights w1, . . . , wN on an N × 1 switch [43, 44]. In GPS, at

each time step, for S the subset of input ports whose queues are non-empty, the

25

fluid policy schedules wi
∑

i′∈S
wi′

fractional packets from input port i. The fluid policy

is then approximated by a packetized policy; the packet-scheduling algorithm that

constructs this packetized policy, and which uses no lookahead, is called Packet-by-

Packet Generalized Processor Sharing (PGPS). PGPS, which was first proposed by

Demers, Shenker, and Keshav [19] who called it Weighted Fair Queueing, determines

which packet to send at each time step based on the fluid completion times resulting

from GPS. PGPS first tries to determine which packet has the earliest fluid completion

time among the packets that have not already been sent by the packetized policy; if

it can determine this, it sends this packet. Since PGPS uses no lookahead, however,

it may not be able to determine which packet has the earliest fluid completion time.

In this case PGPS, at each time step t, computes an approximate fluid completion

time for each packet; it sets this approximate fluid completion time to be the fluid

completion time that GPS would output if no new packets arrived for time steps > t.

It then sends the packet with the earliest approximate fluid completion time among

the packets that have not already been sent by the packetized policy. Parekh and

Gallager show that PGPS tracks the fluid policy created by GPS.

Bennett and Zhang [6] present another GPS-approximating, packet-scheduling

algorithm called Worst-case Weighted Fair Queueing. This packet-scheduling algo-

rithm is identical to PGPS, except that at each time step, it sends the packet with

earliest approximate fluid completion time among the packets with fluid start time

at most t that have not already been sent by the packetized policy. This algorithm

ensures that no packet is sent by the packetized policy before its fluid start time, thus

preventing the packetized policy from getting more than one unit ahead of the fluid

policy. Bennett and Zhang prove that this packet-scheduling algorithm tracks the

fluid policy created by GPS. The resulting packetized policy, however, suffers from

abrupt increases or decreases in delay (known as jitter), as pointed out by Stamoulis

and Liebeherr [52]. The jitter problem is addressed in [52] with a modified version of

GPS, Slow-Start Generalized Processor Sharing, which creates a smoothed version of

the GPS fluid policy by using time-varying weights.

In the related work described in the previous two paragraphs, the foundation for

26

each algorithm is a fluid policy created according to GPS. Duffield, Lakshman, and

Stiliadis question “the notion that queueing systems should closely emulate a GPS

system” [21]. They point out that since GPS-emulating systems allocate resources

to sessions in proportion to weights that are fixed to reflect long-term requirements

of traffic flows, these systems do not meet the instantaneous quality of service needs

of some applications. Duffield, Lakshman, and Stiliadis present modified algorithms

for constructing fluid and packetized policies, with the aim of meeting some of these

needs. First, each input port is assigned a weight wi, where
∑N

i=1 wi ≤ 1. At each

time step, for S the subset of input ports whose queues are non-empty, the fluid policy

schedules wi fractional packets from input port i. Note that the sum of fractional

packets scheduled in a single time step may be less than one; the excess bandwidth at

a single time step is defined as one minus this sum. Duffield, Lakshman, and Stiliadis

consider algorithms that allocate excess bandwidth to input ports based on factors

such as how long each packet has been waiting in its queue, and how many packets are

waiting in each queue. These factors could be difficult to predict, and could change

dramatically in a short period of time (e.g. due to a burst of packets). The packetized

policy is constructed by scheduling packets as in PGPS, except that whenever the

integer part of the cumulative excess bandwidth (over time and over all input ports)

increases, a packet may instead be sent according to the factors discussed above [21].

Stamoulis and Giannakis [53] also point out the undesirability of using fixed

weights to create schedules, as is done in GPS. To allow for more flexible sched-

ules, they propose using deterministically time-varying weights at each input port.

They give an efficient algorithm for building a packetized policy from a fluid pol-

icy that is known completely in advance. This packet-scheduling algorithm provides

guaranteed delay bounds that, under certain assumptions, are close to those provided

by the Earliest Completion Time packet-scheduling algorithm, which we define in

Section 2.5.1; in that Section, we show the Earliest Completion Time algorithm gives

optimal, worst-case delay bounds when infinite lookahead is used.

The use of time-varying weights in GPS and the allocation of excess bandwidth

based on factors other than fixed weights result in more general, and less predictable,

27

fluid policies than those resulting from GPS. The desire for this added flexibility in

designing fluid policies motivates the investigation of how well one can approximate,

on-line, an arbitrary fluid policy by a packetized policy, in terms of minimizing delay

and backlog.

Adler et al. [1] consider the problem of minimizing worst-case backlog for the N×1

switch. They show that the Largest Cumulative Difference algorithm, which we define

in Section 2.6 below, is optimal in terms of minimizing the worst-case backlog over

all possible sets of input ports when no lookahead and no speedup are used.

2.5 Exactly How Much Lookahead is Required to

Track with No Speedup

If a packet-scheduling algorithm, when given a fluid policy as input, outputs a packe-

tized policy that tracks it, we simply say that the packet-scheduling algorithm tracks

that fluid policy. Also, if a packet-scheduling algorithm tracks all fluid policies, we

simply say that it tracks. We say that an N × 1 switch requires lookahead exactly L

to track if the following two conditions hold:

1. There exists a packet-scheduling algorithm using lookahead L that tracks.

2. For every packet-scheduling algorithm using lookahead strictly less than L, there

exists a fluid policy that it does not track.

In this section, we show for every N exactly how much lookahead an N ×1 switch

needs to track when no speedup is used. In Section 2.7 below, we give bounds on the

necessary and sufficient lookahead to track when speedup is used (as a special case

of Theorem 6).

We now prove the following theorem, which asserts the correctness of Table 2.1.

In this table, an entry of ∞ indicates that for the given switch size, no packet-

scheduling algorithm with finite lookahead tracks, but there is a packet-scheduling

algorithm using lookahead ∞ that tracks.

28

Table 2.1: Exact Lookahead Required to Track on N × 1 Switches with No Speedup

N : 1 2 3 4 N ≥ 5
Lookahead: 0 0 0 1 ∞

Theorem 1 The entries in Table 2.1 indicate exactly how much lookahead is required

to track for N × 1 switches when no speedup is used.

Proof: First, we show that the lookahead needed to track on the N×1 switch is a

non-decreasing function of N . This follows since a packet-scheduling algorithm using

lookahead L that tracks on an N × 1 switch, can be converted into an algorithm

using lookahead L that tracks on an (N − 1) × 1 switch. The algorithm for the

(N − 1) × 1 switch first converts each fluid vector F (t) = (f1, . . . , fN−1) into the

fluid vector (f1, . . . , fN−1, 0), which it uses as input to the N × 1 packet-scheduling

algorithm; the algorithm for the (N − 1) × 1 switch then converts each packetized

vector P (t) = (p1, . . . , pN) output from the N × 1 packet-scheduling algorithm into

the packetized vector (p1, . . . , pN−1).

We now prove that each entry in Table 2.1 is correct. First, we exhibit a packet-

scheduling algorithm that tracks on N × 1 switches, using lookahead as in the table.

Second, we prove corresponding lower bounds on exactly how much lookahead is

required to track.

2.5.1 Upper Bounds on Lookahead Required to Track

We describe a packet-scheduling algorithm that tracks on the 3 × 1 switch using

lookahead 0, that tracks on the 4×1 switch using lookahead 1 and that tracks on the

N×1 switch for N ≥ 5 using lookahead∞. The packet-scheduling algorithm Earliest

Completion Time at each time step t sends the packet with earliest, fluid completion

time among the packets with fluid start time at most t that have not been sent by

the packetized policy before time t. Since in general a packet-scheduling algorithm

has bounded lookahead L, it may not be able to determine which packet has the

earliest, fluid completion time; if for some i, C
(t−1)
i + F

(t)
i > 0 and for all i′ such that

29

C
(t−1)
i′ +F

(t)
i′ > 0, we have C

(t−1)
i′ +

∑t+L
t′=t F

(t′)
i′ < 1, then the Earliest Completion Time

algorithm sends a packet from input port

arg max
i
{C(t−1)

i +
t+L
∑

t′=t

F
(t′)
i : C

(t−1)
i + F

(t)
i > 0}. (2.2)

If there are any ties between packets for earliest fluid completion time or for achieving

the maximum in (2.2), then among the tied packets, the one from the input port with

smallest index is sent. If for all i, C
(t−1)
i + F

(t)
i ≤ 0, then no packet is sent by the

packetized policy at time t. The Earliest Completion Time algorithm is similar to the

Earliest Due Date algorithm studied in [7] and the Earliest Deadline First algorithm

discussed in [53]. For an overview of results on the Earliest Deadline First scheduling

algorithm, see Stankovic [54]. The optimality of the Earliest Deadline First algorithm

in certain scenarios was given in 1955 by Jackson [33].

Note that under the Earliest Completion Time algorithm, for all time steps t,

N
∑

i=1

C
(t)
i ≤ 0. (2.3)

This can be shown by induction on the time step t, using the fact that a packet is

sent at time step t if and only if some entry of C (t−1) + F (t) has positive value.

The 3× 1 Switch

We prove that the Earliest Completion Time algorithm, using lookahead 0 and no

speedup, tracks on the 3 × 1 switch. The proof is by induction on the time step t.

For t = 0, we have C(0) = 0, so trivially for all i ≤ N, we have −1 < C
(0)
i < 1. For

t ≥ 0, assume the algorithm tracks at time step t; that is, for all i ≤ N , we have

−1 < C
(t)
i < 1. By (2.1) and (2.3), there is at most one entry of C (t) + F (t+1) with

value ≥ 1, and such an entry must have value < 2 by the inductive hypothesis. If

there is such an entry, Earliest Completion Time would send one packet from the

corresponding input port. Thus, every entry of C (t+1) has value less than 1. By

induction, we have that the Earliest Completion Time algorithm tracks. 2

30

The 4× 1 Switch

We prove that the Earliest Completion Time algorithm, using lookahead 1 and no

speedup, tracks on the 4× 1 switch. First, we restate the Earliest Completion Time

algorithm for the special case of lookahead L = 1. Given the most recent fluid step

F (t), it sets the corresponding packetized step P (t) as follows:

If there is an input port i such that C
(t−1)
i + F

(t)
i ≥ 1, it sets to 1 the entry of P (t)

corresponding to the least numbered such input port. Else, it finds the least numbered

input port among those with positive value in C (t−1) + F (t) (if there is one) and that

has maximum value in C(t−1) +F (t) +F (t+1), and sets the corresponding entry of P (t)

to 1. It sets the remaining entries of P (t) to 0.

To show that this packet-scheduling algorithm tracks, we prove by induction on

the time step t that the following invariants hold for all time steps t:

1. For each input port i, C
(t)
i < 1.

2.
∑

1≤i≤N(C
(t)
i)+ < 2. In other words, the sum of backlog over all input ports is

< 2.

3. If a packet is sent from input port j in the packetized step at time t, and

C
(t)
j ≥ 0, then

∑

1≤i≤N(C
(t)
i)+ < 1. In other words, if a packet is sent in a

packetized step at or after its fluid completion time, the sum of backlog over all

input ports is less than 1.

The base case is trivial, since C (0) = 0. For the inductive step, for t ≥ 0, assume

the invariants hold for C(t). We will show that the choice of packetized step P (t+1)

made by the algorithm maintains the invariants. We consider two cases:

Case 1:
∑

1≤i≤N(C
(t)
i)+ < 1.

This case is easy, since
∑

1≤i≤N (C
(t)
i + F

(t+1)
i)+ < 2. If there is an input port i′ such

that C
(t)
i′ +F

(t+1)
i′ ≥ 1, then the Earliest Completion Time algorithm sets P

(t+1)
i′ to be

1; in this case,
∑

1≤i≤N (C
(t+1)
i)+ is less than 1, so all the invariants are maintained.

Otherwise, every entry of C (t) + F (t+1) is less than 1, and so if the algorithm sends a

31

packet from input port j at time t + 1, we will have C
(t+1)
j < 0; thus, regardless of

the choice of P (t+1), all the invariants will be maintained at step t + 1.

Case 2:
∑

1≤i≤N(C
(t)
i)+ ≥ 1.

By Invariant 1, and Inequalities 2.1 and 2.3, there must be exactly two entries (call

them i1, i2) with negative values in C(t) and two entries (call them i3, i4) with positive

values in C(t). Some packet must have been sent at step t by the packetized policy

since the Earliest Completion Time algorithm always sends a packet at time t if there

is a positive-valued entry in C(t−1) + F (t). Since we are assuming
∑

1≤i≤N(C
(t)
i)+ ≥ 1,

by Invariant 3, the packet sent at step t came from an input port whose value in C (t)

is negative; without loss of generality, assume this input port is i1.

Consider the case in which C
(t)
i1 + F

(t+1)
i1 ≥ 0. By Inequalities 2.1 and 2.3, the

sum of positive values in C(t) + F (t+1) is less than 2, and so at most one of the

entries in C(t) + F (t+1) can have value ≥ 1; if there is such an entry, the packet-

scheduling algorithm sets the corresponding entry in P (t+1) to 1, and all the invariants

are maintained. Otherwise every entry in C (t) +F (t+1) is less than 1, and so as argued

at the end of Case 1 above, this guarantees all invariants are maintained at step t+1.

Otherwise, consider the case in which C
(t)
i1 + F

(t+1)
i1 is negative. At time step t,

the packet-scheduling algorithm sent a packet from input port i1 because input port

i1 had maximum value in C(t−1) + F (t) + F (t+1) among the input ports with positive

value in C(t−1) +F (t). Thus, we have that C
(t)
i3 +F

(t+1)
i3 and C

(t)
i4 +F

(t+1)
i4 are at most 1

more than C
(t)
i1 + F

(t+1)
i1 . Then every entry in C(t) + F (t+1) is less than 1. Thus, since

we are considering the case in which C
(t)
i1 + F

(t+1)
i1 < 0, we have that C(t+1) has at

most two positive-valued entries, each with value less than 1; this implies invariants 1

and 2 hold at time step t + 1. Also, this implies that if the algorithm sends a packet

from input port j at time t + 1, we will have C
(t+1)
j < 0, and so invariant 3 holds at

time step t + 1. 2

The N × 1 Switch for N ≥ 5; Infinite Lookahead

Table 2.1 indicates that infinite lookahead is both necessary and sufficient to track on

the N ×1 switch, for N ≥ 5. We show in Section 2.5.2 that for any packet-scheduling

32

algorithm on the 5× 1 switch using bounded lookahead, there exists a fluid policy it

does not track. However, if the Earliest Completion Time packet-scheduling algorithm

uses lookahead L = ∞, that is it has access to the entire fluid policy in computing

each packetized step, it tracks on the N × 1 switch for any N . This follows taking

L = ∞ in the following lemma. Note that the Earliest Completion Time packet-

scheduling algorithm using lookahead L =∞ at each time t knows which packet has

the earliest completion time among the packets with fluid start time at most t.

Lemma 1 The Earliest Completion Time algorithm with lookahead L ≤ ∞ and us-

ing speedup s ≥ 1 constructs a packetized policy such that every packet with fluid

completion time at most L experiences no delay.

Proof: We show the following claim, which implies the lemma, by induction on t:

For all (positive-integer valued) time steps t ≤ L, all packets with fluid completion

time at most t are sent by the packetized policy by time step t. The base case t = 1

follows since at most one packet is completed by the fluid policy at time t = 1, and

such a packet would be sent at that time by the packetized policy. For the inductive

step, assume for all time steps < t that the claim is true.

If the packetized policy does not send a packet at time t with fluid completion

time t, then no packet is completed by the fluid policy at time step t that hadn’t

already been sent at an earlier time by the packetized policy (since otherwise the

Earliest Completion Time algorithm would have scheduled such a packet at time t).

In this case, by the inductive hypothesis, the claim holds at time step t.

Otherwise, we have that the packetized policy sends a packet at time step t that

has fluid completion time t. Let t′ be the greatest time step < t at which the packe-

tized policy did not send a packet with fluid completion time ≤ t; if no such time step

exists, set t′ := 0. Then by the inductive hypothesis, at each time step in [t′ + 1, t],

the packetized policy sends a packet with fluid completion time in [t′ + 1, t]. Let P

denote the set of packets completed by the fluid policy during time steps [t′ + 1, t],

but not sent by the packetized policy before time t′. We now show that all packets in

P are sent by the packetized policy by time t, which implies the claim at time step

33

t. Each packet in P has fluid start time greater than t′, since otherwise the Earliest

Completion Time algorithm using lookahead L ≥ t would have sent a packet at time

t′ with fluid completion time ≤ t, contradicting our choice of t′. Thus, the number of

packets in P is at most b(t− t′)/sc, the total available fluid that could be scheduled

during [t′+1, t]. But since one packet from P is sent by the packetized policy at every

time step in [t′ + 1, t], we have that all packets in P are sent by the packetized policy

by time t. This implies that all packets completed by the fluid policy at or before

time step t are sent by the packetized policy at or before t, completing the induction

and proving the lemma. 2

Note that the same argument as above can be used to prove that if for some time

step t ≥ 0, each entry of the cumulative difference vector C (t) has non-positive value,

then the Earliest Completion Time algorithm using lookahead L < ∞ constructs a

packetized policy such that every packet with fluid completion time in [t + 1, t + L]

experiences no delay.

An immediate consequence of the lemma above is that the Earliest Completion

Time algorithm tracks any constant fluid policy (as long as the algorithm knows in

advance that the fluid policy will be constant).

2.5.2 Lower Bounds on Exactly How Much Lookahead is Re-

quired to Track

Recall the second part of the definition of requiring lookahead exactly L from the

beginning of this section :

For every packet-scheduling algorithm using lookahead strictly less than L, there

exists a fluid policy that it does not track.

To prove lower bounds on exactly how much lookahead is needed to track that

correspond to Table 2.1, we first construct, for any packet-scheduling algorithm using

lookahead 0 and no speedup, a fluid policy that it does not track on the 4× 1 switch.

Next, we exhibit for any L : 0 ≤ L < ∞ and any packet-scheduling algorithm using

lookahead L and no speedup, a fluid policy it does not track on the 5× 1 switch.

34

Fluid Policy F (t) Packetized Policy P (t) Cumulative Difference C(t)
[

1
4

1
4

1
4

1
4

]

,
[

1 0 0 0
]

,
[

−3
4

1
4

1
4

1
4

]

[

0 1
3

1
3

1
3

]

,
[

0 0 0 1
]

,
[

−3
4

7
12

7
12
− 5

12

]

[

0 1
2

1
2

0
]

,
[

0 0 1 0
]

,
[

−3
4

13
12

1
12
− 5

12

]

Figure 2-1: An example of an adversarial fluid policy for the 4× 1 switch.

The 4× 1 Switch

We construct, for any packet-scheduling algorithm on the 4 × 1 switch using no

lookahead and no speedup, a fluid policy that it does not track. The fluid policy

depends on the packet-scheduling algorithm under consideration. The fluid policy

first sends 1/4 (of a packet) from each input port. At time step 2, the fluid policy

sends 1/3 from every input port except the one from which the packetized policy

sent a packet at time 1.3 At time step 3, the fluid policy sends 1/2 from every input

port that received 1/3 unit of fluid at time step 2 except the one from which the

packetized policy sent a packet at time 2.4 Now, there is some input port that has

been scheduled a total of 1/2+1/3+1/4 > 1 fluid, but from which no packet has been

sent by the packetized policy, showing that this packet-scheduling algorithm does not

track. Thus, no packet-scheduling algorithm using no lookahead and no speedup can

track every fluid policy. 2

See Figure 2-1 for an example of such an adversarial fluid policy. In Section 2.6.1,

we extend the argument given here to N×1 switches when speedup but no lookahead

is used, to give tight lower bounds on backlog.

The 5× 1 Switch

We want to build, for any L < ∞ and any packet-scheduling algorithm using looka-

head L and no speedup, a fluid policy that it does not track on the 5 × 1 switch.

This will follow from the proof of the first half of the more general Theorem 4 in

3If no packet was sent by the packetized policy at time 1, then 1/3 is sent from each of the first
three input ports.

4If no packet was sent by the packetized policy at time 2, then 1/2 is sent from two of the three
input ports from which 1/3 was sent at time step 2.

35

Section 2.7.1; see footnote 7 in Section 2.7.1.

The proof that the entries in Table 2.1 are correct is complete. 2

2.6 Tight Bounds on Backlog with No Lookahead

The results in this section on backlog with no lookahead were proved independently

in a recent paper by Adler et al. [1], for the case when no speedup is used. Recall the

definition of backlog: for a set of input ports, at time t, their corresponding backlog is

the positive part of the difference between the cumulative fluid sent from these ports

by the fluid policy up to and including time t, and the cumulative number of packets

sent from these ports by the packetized policy up to and including time t.

We show that the Largest Cumulative Difference packet-scheduling algorithm,

defined next, is optimal in terms of minimizing the worst-case backlog over all possible

sets of input ports when no lookahead is used. The Largest Cumulative Difference

algorithm constructs a packetized policy that at time t sends a packet from input port

arg maxi

(

C
(t−1)
i + F

(t)
i

)

. If for all i, C
(t−1)
i + F

(t)
i ≤ 0, then the Largest Cumulative

Difference algorithm doesn’t send from any input port at time t. Else, if several input

ports achieve the maximum maxi

(

C
(t−1)
i + F

(t)
i

)

, then among these input ports, a

packet from the smallest numbered one is sent.

First, we prove that for every packet-scheduling algorithm using speedup s ≥ 1 and

no lookahead, there exists an adversarial fluid policy that gives a lower bound linear in

N/s on the sum of backlog over all input ports and a lower bound of 1
s
(ln(N +1)−1)

on the backlog of some single input port. Next, we show that the Largest Cumulative

Difference algorithm using speedup s and no lookahead achieves both lower bounds.

36

2.6.1 Lower Bounds on Backlog

We design an adversarial fluid policy for a given packet-scheduling algorithm using

speedup s and no lookahead5 by, at each time step, scheduling fluid equally among

a subset of the input ports from which the algorithm’s packetized policy has never

sent.

In addition to keeping track at each time step t of the fluid vector F (t), packetized

vector P (t), and cumulative difference vector C (t), we keep track of a subset of input

ports It ⊆ {1, 2, ..., N}. It will include all the input ports sent from by the packetized

policy up to and including time step t; however, It may contain additional input

ports. Also, we will maintain for all t ≥ 0 that

It ⊆ It+1 (2.4)

and |It| = t. The N × 1 incidence vector χIt has value 1 for all components in It and

has value 0 elsewhere.

Given a packet-scheduling algorithm using speedup s and no lookahead, we itera-

tively construct an adversarial fluid policy {F (t)}, for t ∈ {1, 2, ..., N − 1} as follows:

First, we set I0 := ∅.

At each iteration t ≥ 1, we define

F (t) :=
1

s(N − t + 1))
([1, 1, ..., 1]− χIt−1).

Then we run the packet-scheduling algorithm to determine which input port j, if

any, the packetized policy sends a whole packet from at time step t. If no packet is

sent or if j ∈ It−1, we choose the least i ≥ 1 not in It−1, and set It := It−1 ∪ {i}.

Otherwise, we set It := It−1 ∪ {j}. An example of such an adversarial fluid policy for

the 4× 1 switch is given in Figure 2-1.

Let Hm denote the mth harmonic number; that is, H0 := 0, and for m ≥ 1,

we have Hm :=
∑m

j=1 1/j. Having constructed {F (t)}1≤t≤N−1, we see that for any

5We generalize this adversarial fluid policy to packet-scheduling algorithms using lookahead in
Section 2.7.2.

37

m : 1 ≤ m ≤ N , immediately after time step N −m, the m input ports not in IN−m

each have cumulative difference equal to 1
s
(HN −Hm). Thus, the backlog of the set of

m most-backlogged input ports is m
s
(HN −Hm) immediately after time step N −m.

Since we will refer to this function often in the next section, we define for fixed

N , fixed s ≥ 1, and m : 1 ≤ m ≤ N ,

g(m) :=
m

s
(HN −Hm).

In Appendix A, we prove that for m : 1 ≤ m ≤ N,

1. g(m) ≥ 0,

2. m(g(m + 1) + 1/s) = (m + 1)g(m),

3. 1
s
(ln(N + 1)− 1) < g(1) ≤ 1

s
ln N ,

4. 1
s
((N + 1)/e− 2) < maxm:1≤m≤N g(m) < N/(es).

We have proved the following theorem:

Theorem 2 For the N×1 switch, for every packet-scheduling algorithm using speedup

s ≥ 1 and no lookahead, there exists an adversarial fluid policy with the following prop-

erty: For any m : 1 ≤ m ≤ N , there exists a time step t ≤ N − 1 and a set I of m

input ports such that

∑

i∈I

C
(t)
i = g(|I|). (2.5)

In particular, at some time step the sum of backlog over all input ports is more than

1
s
((N + 1)/e − 2). Also, at some time step there is a single input port with backlog

more than 1
s
(ln(N + 1)− 1).

We now turn to a converse, which in light of the above theorem shows optimality

of the Largest Cumulative Difference algorithm for minimizing worst case backlog

when no lookahead is used.

38

2.6.2 Upper Bounds on Backlog

We prove the following theorem for the Largest Cumulative Difference algorithm:

Theorem 3 For the N × 1 switch and for any fluid policy, the Largest Cumulative

Difference packet-scheduling algorithm using speedup s ≥ 1 produces a packetized pol-

icy satisfying the following set of inequalities: For all t and for any non-empty set I

of input ports, we have

∑

i∈I

C
(t)
i ≤ g(|I|). (2.6)

This implies for the Largest Cumulative Difference packet-scheduling algorithm, that

the sum of backlog over all input ports is at most N/(es), and the backlog for each

input port is at most 1
s
ln N .

Proof: We show by induction that the Largest Cumulative Difference algorithm for

constructing a packetized policy from a fluid policy maintains (2.6) at each time step.

Let I be any non-empty subset of {1, 2, ..., N}.

The set of inequalities (2.6) are true initially since C (0) = 0 and for all non-empty

I, g(|I|) ≥ 0.

For the inductive step, assume that (2.6) holds at time step t. We show it holds

for time step t + 1 regardless of the fluid policy’s choice of F (t+1). We set P :=

P (t+1), C := C(t), and F := F (t+1) for clarity of exposition.

If for all i, Ci + Fi ≤ 0 then we are done. Otherwise, the Largest Cumulative

Difference algorithm chooses the N × 1 matrix P to be all 0’s except at entry l :=

arg maxi (Ci + Fi), at which P has value 1. We consider two cases, depending on

whether l ∈ I or not.

Case 1: l ∈ I

Since
∑N

i=1 Fi ≤ 1/s ≤ 1, we have:

[

∑

i∈I

(Ci + Fi)

]

− 1 ≤
∑

i∈I

Ci

≤ g(|I|).

39

Since the left hand side equals the sum over input ports i ∈ I of the cumulative

difference at time step t + 1, this proves (2.6) in this case.

Case 2: l /∈ I

We have the following inequalities:

|I|+ 1

|I|

[

∑

i∈I

(Ci + Fi)

]

≤
∑

i∈{l}∪I

(Ci + Fi)

≤ g(|I|+ 1) + 1/s.

The first inequality holds since by the greediness of the algorithm, we have for all

i, Ci + Fi ≤ Cl + Fl. The second inequality holds by the inductive hypothesis and

since
∑N

i=1 Fi ≤ 1/s. Since for any m : 1 ≤ m ≤ N, we have

m(g(m + 1) + 1/s) = (m + 1)g(m), we get from the above inequality that

∑

i∈I

(Ci + Fi) ≤ g(|I|).

Since the left hand side equals the sum over input ports i ∈ I of the cumulative

difference at time step t + 1, this proves (2.6) in this case.

The induction is complete. 2

2.7 Bounds on Delay

We analyze the trade-offs between speedup and lookahead required to bound worst-

case delay for time-varying fluid policies. Before delving into the proofs, we present

our main results, which are summarized in Table 2.2, and discuss them briefly. The

first result bounds packet delay for packet-scheduling algorithms using bounded looka-

head but no speedup.

Theorem 4 For any packet-scheduling algorithm that uses bounded lookahead and no

speedup on an N × 1 switch, there exists a fluid policy causing a packet to be delayed

at least bN/ec − 1 steps. Conversely, the Earliest Completion Time algorithm using

no lookahead and no speedup, guarantees that each packet is delayed at most bN/ec

40

steps.

A surprising consequence of the above theorem is that the delay bounds do not

depend on the amount of lookahead used, as long as it is bounded. In particular, the

Earliest Completion Time algorithm using no lookahead achieves a bound on delay

within one time step of the lower bound. Another consequence of Theorem 4 is that

for 6 or more input ports, even with arbitrary, bounded lookahead, there exist fluid

policies that cannot be tracked with no speedup.6 The next result bounds packet

delay when speedup is allowed, but with no lookahead.

Theorem 5 The Earliest Completion Time algorithm, on an N × 1 switch using

speedup s ≥ 1 but no lookahead, guarantees that each packet is delayed less than

N/es steps. Furthermore, for any packet-scheduling algorithm using speedup s and no

lookahead, there exists an adversarial fluid policy causing a packet to have delay at

least b(N + 1)/esc − 1.

A consequence of Theorem 5 is that with no lookahead, speedup max{lnN, 1} is

sufficient to track, while speedup greater than ln(N + 1)− ln 2 is necessary to track.

Lastly, we analyze algorithms using both lookahead and speedup.

Theorem 6 For any packet-scheduling algorithm using speedup s > 1 and lookahead

L ≥ 0 there is a fluid policy causing some packet to be delayed at least

(b(N + 1)/es − 1c − L)+ time steps. Also, the Earliest Completion Time algorithm

using speedup s > 1 and lookahead L ≥ 0 causes each packet to be delayed at most

(d(N + 1)s/(s− 1)e − L)+ time steps.

Theorem 6 implies that for speedup s > 1, the necessary and sufficient lookahead

to track is at least b(N + 1)/es − 1c and at most d(N + 1)s/(s− 1)e.

For fixed speedup and delay bound, Theorem 6 can be rephrased to give lower

and upper bounds linear in N on the necessary and sufficient lookahead to meet the

delay bound:

6In the proof of Theorem 4, we show the same holds for 5 input ports.

41

Table 2.2: Delay Bounds for N×1 Switches as a Function of Speedup and Lookahead
Used. A lower bound of f(N, s, L) means that for any packet-scheduling algorithm
using speedup s and lookahead L on an N × 1 switch, there exists a fluid policy that
causes a packet to be delayed at least f(N, s, L) steps. An upper bound of g(N, s, L)
means that the Earliest Completion Time packet-scheduling algorithm using speedup
s and lookahead L on an N × 1 switch guarantees delay at most g(N, s, L) for any
fluid policy.

Speedup s Lookahead L Lower Bound on Delay Upper Bound on Delay
None (s = 1) L <∞ bN/ec − 1 bN/ec
s ≥ 1 None (L = 0) b(N + 1)/esc − 1 b(N + 1)/esc
s > 1 L <∞ b(N + 1)/es − 1c − L (d(N + 1)s/(s− 1)e − L)+

Corollary: For speedup s > 1 and delay bound d ≥ 0, lookahead at least

b(N + 1)/es − 1c − d is required to meet this delay bound. Also, for speedup s > 1,

and delay bound d ≥ 0, the Earliest Completion Time algorithm using lookahead

d(N + 1)s/(s− 1)e − d causes each packet to be delayed at most d time steps.

However, the gap between these linear bounds can grow large as a function of

speedup s.

We now prove Theorems 4, 5, and 6.

2.7.1 Proof of Theorem 4: Bounds on Delay using Finite

Lookahead, No Speedup

We start by proving the first half of Theorem 4, which states that for any packet-

scheduling algorithm that uses bounded lookahead and no speedup on an N×1 switch,

there exists a fluid policy causing a packet to be delayed at least bN/ec − 1 steps.

Proof: For any given packet-scheduling algorithm that uses bounded lookahead L

and no speedup, we design an adversarial fluid policy that forces some packet to be

delayed by at least bN/ec − 1 steps. Since for N ≤ 5 designing such an adversarial

fluid policy is trivial, we assume N ≥ 6. In each step of this fluid policy, either fluid

is scheduled equally across a subset of the first N − 1 input ports or one unit of fluid

is sent from input port N . For each j ≥ 0, we keep track of a subset Ij of input ports

42

from {1, ..., N − 1}; the subset Ij−1 will be used to determine the input ports that

will not have fluid scheduled from them at time step tj := j + (j − 1)L, for j ≥ 1.

For notational convenience, we set t0 := 0.

We maintain for all j ≥ 0, that |Ij| = j and Ij ⊆ Ij+1. The N×1 incidence vector

χIj has value 1 for all components in Ij and has value 0 elsewhere.

Given a packet-scheduling algorithm, we iteratively construct the adversarial fluid

policy {F (t)}, for t ∈ {1, 2, ..., tdN−N/ee}.

For each j ≥ 1, we define for time step tj,

F (tj) :=
1

N − j
([1, 1, ..., 1, 0]− χIj−1).

For all other time steps t, we set F (t) := [0, 0, ..., 0, 1]. It remains to describe how Ij

for j ≥ 0 are determined.

We set I0 := ∅. For each j ≥ 1, we run the packet-scheduling algorithm to

determine from which input ports the packetized policy sends packets during time

steps tj−1+1 through tj. If there exists an input port in {1, ..., N−1}\Ij−1 from which

the packetized policy has sent at least one packet at some time step in [1, tj], we set

Ij := Ij−1∪{dj}, where dj is some such input port. Otherwise, we set Ij := Ij−1∪{dj},

where dj is some input port in {1, ..., N − 1} \ Ij−1. Note that the packetized policy

can be generated through time step tj before dj has been specified. This follows since

the choice of dj is not revealed in the fluid policy until time step tj+1 = tj +L+1, and

the algorithm has lookahead bounded by L. An example of such an adversarial fluid

policy for N = 6 input ports with lookahead L = 1 is given in Figure 2-2. Having

specified how the fluid policy is constructed, we show below that it forces some packet

to be delayed at least bN/ec − 1 time steps.

Denote by Rj the subset of input ports {1, ..., N − 1} from which at least one

packet has been sent by the packetized policy at or before time step tj. Then we have

the following lemma:

Lemma 2 For all j ≥ 0, |Rj \ Ij| ≤ C
(tj)
N .

43

Fluid Policy F (t) Packetized Policy P (t) Cumulative Difference C(t)

[1
5

1
5

1
5

1
5

1
5

0] , [1 0 0 0 0 0] , [− 4
5

1
5

1
5

1
5

1
5

0]

[0 0 0 0 0 1] , [0 0 0 0 0 1] , [− 4
5

1
5

1
5

1
5

1
5

0]

[0 1

4

1
4

1
4

1
4

0] , [0 1 0 0 0 0] , [− 4
5
−11

20
9
20

9
20

9
20

0]

[0 0 0 0 0 1] , [0 0 1 0 0 0] , [− 4
5
−11

20
−11

20
9
20

9
20

1]

[0 0 1
3

1
3

1

3
0] , [0 0 0 0 1 0] , [− 4

5
−11

20
−13

60
47
60
−13

60
1]

[0 0 0 0 0 1] , [0 0 0 0 0 1] , [− 4
5
−11

20
−13

60
47
60
−13

60
1]

[0 0 1

2

1
2

0 0] , [0 0 0 0 0 1] , [− 4
5
−11

20
17
60

77
60
−13

60
0]

Figure 2-2: An example of a fluid policy for a single server with N = 6 input ports,
where the rows correspond to successive time steps. The first packet from the sixth
input port is completed at time step 2 by both the fluid and packetized policies, and
thus has no delay. The second packet from the sixth input port is completed by the
fluid policy at time step 4 but not completed by the packetized policy until time step
6, so its delay is 2. The boldface numbers in the fluid policy represent the elements
of Ij, defined in the proof of Theorem 4, at time step tj.

Proof: We prove the claim by induction on j. The base case t0 = 0 follows trivially.

For the inductive step, assume the inequality in the lemma holds for some j ≥ 0.

Denote by R′
j+1 the set of input ports in {1, ..., N − 1} from which at least one

packet has been sent by the packetized policy at or before time step tj+1 − 1. By

the inductive hypothesis (|Rj \ Ij| ≤ C
(tj)
N) and the fact that for time steps t ∈

[tj + 1, tj+1 − 1] the fluid vector F (t) = [0, 0, ..., 0, 1], we have |R′
j+1 \ Ij| ≤ C

(tj+1−1)
N .

If Rj+1 \ Ij+1 = ∅, then |Rj+1 \ Ij+1| ≤ C
(tj+1)
N , since for all t′, C

(t′)
N ≥ 0. The latter

inequality holds since only whole units of fluid are ever added or subtracted from

input port N , and packet-scheduling algorithms are only allowed to send a packet at

or after its fluid start time. Thus, we need only consider the situation Rj+1 \Ij+1 6= ∅,

which implies that an input port from Rj+1 \ Ij is added to the set Ij to form Ij+1.

If the packetized policy at step tj+1 sends a packet from input port N , we have

|Rj+1 \ Ij+1| = |R
′
j+1 \ Ij| − 1 ≤ C

(tj+1−1)
N − 1 = C

(tj+1)
N .

Else, we have

|Rj+1 \ Ij+1| ≤ |R
′
j+1 \ Ij| ≤ C

(tj+1−1)
N = C

(tj+1)
N .

44

For both the above cases, we see that the inequality in the lemma holds for j + 1,

completing the induction and the proof of Lemma 2. 2

For any j ≥ 1, just after time step tj, the N−1−j input ports in {1, ..., N−1}\Ij

have each been scheduled a total of exactly HN−1 −HN−1−j fluid.7 For

j ′ := dN −N/ee, we have that by just after time step tj′, each of the N − 1− j ′ input

ports in {1, ..., N − 1} \ Ij′ have been scheduled a total of exactly HN−1−HN−1−j′ ≥

ln N
N−j′

≥ 1 fluid. The subset of these input ports that the packetized policy has not

sent any packets from at or before time step tj′ is exactly {1, ..., N − 1} \ (Rj′ ∪ Ij′).

Thus, each input port in {1, ..., N − 1} \ (Rj′ ∪ Ij′) has a packet completed by the

fluid policy but not yet sent by the packetized policy by just after time step tj′. Using

Lemma 2, we get that the number of packets completed by the fluid policy but not

yet sent by the packetized policy at or before time step tj′ is at least

|{1, ..., N − 1} \ (Rj′ ∪ Ij′)|+ C
(tj′)

N ≥ N − 1− j ′ = bN/ec − 1.

One of these packets will be delayed by at least bN/ec − 1 time steps, proving Theo-

rem 4.8 2

In the next section, we prove the first claim in Theorem 5, which yields the converse

in Theorem 4 as a special case.

2.7.2 Proof of Theorem 5: Bounds on Delay using Speedup,

but No Lookahead

We now prove the first part of Theorem 5, which says that the Earliest Completion

Time algorithm, using speedup s ≥ 1 but no lookahead, guarantees that each packet

7For the special case of N = 5 and j = 3, we have that the single input port in {1, 2, 3, 4} \ I3

has been scheduled a total of 1/4+ 1/3+ 1/2 > 1 fluid by just after time t3. Either C
(t3)
N ≥ 1, or by

Lemma 2 the packetized policy has not sent any packets from the input port in {1, 2, 3, 4} \ I3 by
just after time t3. In either case, we see that the packet-scheduling algorithm does not track. This
proves that for the 5× 1 switch, for any packet-scheduling algorithm using bounded lookahead and
no speedup, there exists a fluid policy that cannot be tracked, as claimed in Section 2.5.2.

8The gap of 1 between the upper and lower bounds on worst-case packet delay from Theorem 4
cannot in general be improved; in particular, in Section 2.5 we showed for the case of N = 4 input
ports that with lookahead L = 1 the worst-case delay is 0, but with no lookahead (L = 0) the
worst-case delay is 1.

45

is delayed less than N/es steps. It will be convenient to refer, at a given time step,

to the packets that have been completed by the fluid policy but not sent by the

packetized policy by this time step; we call these the urgent packets. The idea of the

proof is to upper bound the number of urgent packets at any time step, since the

delay experienced by a packet under the Earliest Completion Time algorithm is at

most the number of urgent packets at this packet’s fluid completion time. We first

show that with speedup s ≥ 1 and no lookahead, the number of urgent packets at any

time step resulting from the Earliest Completion Time packet-scheduling algorithm

is identical to the number of urgent packets resulting from the Largest Cumulative

Difference packet-scheduling algorithm (which was defined in Section 2.6). We then

use a result from Section 2.6.2 to help prove that the number of urgent packets is

always less than N/es for this latter packet-scheduling algorithm.

Lemma 3 When operating on the same fluid policy and using speedup s ≥ 1 and no

lookahead, at each time step the Earliest Completion Time and Largest Cumulative

Difference algorithms result in exactly the same number of urgent packets.

Proof: We use C and Ĉ to denote the cumulative differences resulting from the

Largest Cumulative Difference and Earliest Completion Time algorithms, respec-

tively. For clarity, we set C := C (t), Ĉ := Ĉ(t), and F := F (t+1). Then the number

of urgent packets at time step t resulting from the Largest Cumulative Difference

algorithm is
∑

k:Ck≥1bCkc, and the number of urgent packets resulting from the the

Earliest Completion Time algorithm is
∑

k:Ĉk≥1bĈkc. Note that if the set of input ports

{k : Ck + Fk ≥ 1} is non-empty, then the Largest Cumulative Difference algorithm

sends a packet from an input port in this set; else, if this set is empty and for some k,

Ck + Fk > 0, it sends a packet from arg maxk(Ck + Fk); otherwise if ∀k, Ck + Fk ≤ 0,

it doesn’t send any packet. The same is true of the Earliest Completion Time algo-

rithm, with C replaced by Ĉ. We show below that since both algorithms have the

above property, we will have for all time steps
∑

k:Ck≥1bCkc =
∑

k:Ĉk≥1bĈkc.

First, since at each time step the same fluid vector is fed to both algorithms,

and only whole (unit size) packets are sent, we have that for each input port k the

46

fractional part of Ck and of Ĉk are equal. The following, two-part claim together with

the previous fact implies the lemma.

Claim: For all time steps,

∀k,
(

If Ck < 0 or Ĉk < 0, then Ck = Ĉk

)

. (2.7)

N
∑

k=1

Ck =
N
∑

k=1

Ĉk. (2.8)

We prove the claim by induction on the time step t. The base case t = 0 follows

since C(0) = Ĉ(0) = 0. For the inductive step, assume the claim holds at the current

time step t. To prove (2.7) holds at the next time step, we first note that (2.7) of the

inductive hypothesis implies

{k : Ck + Fk ≥ 0} = {k : Ĉk + Fk ≥ 0}.

By (2.7) and (2.8) of the inductive hypothesis, we then have

∑

k:Ck+Fk≥0

Ck + Fk =
∑

k:Ĉk+Fk≥0

Ĉk + Fk.

Since for all k the fractional part of Ck + Fk and of Ĉk + Fk are equal, the previous

equation implies
∑

k:Ck+Fk≥0

bCk + Fkc =
∑

k:Ĉk+Fk≥0

bĈk + Fkc.

Thus, either there exist k, k′ such that Ck + Fk ≥ 1 and Ĉk′ + Fk′ ≥ 1, or else for

all j, Cj + Fj = Ĉj + Fj. In the former case, the Largest Cumulative Difference and

Earliest Completion Time algorithms send packets from input ports i, i′ respectively,

such that Ci + Fi ≥ 1 and Ĉi′ + Fi′ ≥ 1; this implies (2.7) holds at time step t + 1. In

the latter case, both packet-scheduling algorithms behave identically, and thus (2.7)

holds at time step t + 1. Equation (2.8) holds at the next time step since either both

algorithms send a packet or neither does. The induction is complete and the Claim

above is proved.

47

Now Lemma 3 follows easily from the Claim just proved. By (2.8) and the

fact that for each input port k the fractional part of Ck and of Ĉk are equal, we

have
∑N

k=1bCkc =
∑N

k=1bĈkc. From this equation and (2.7), we have
∑

k:Ck≥0bCkc =
∑

k:Ĉk≥0bĈkc, which implies Lemma 3. 2

Next, we prove that the Largest Cumulative Difference algorithm always results

in less than N/es urgent packets. We use Inequality 2.6 proved in Section 2.6.2, which

bounds the cumulative difference under this packet-scheduling algorithm. We repeat

this inequality here. For all time steps, and for any non-empty set of input ports

I ⊆ {1, . . . , N}, we have

∑

i∈I

Ci ≤ |I|(HN −H|I|)/s.

We can upper bound the number of urgent packets by analyzing this inequality for I

the set of input ports with at least one urgent packet (that is, I := {i : Ci ≥ 1}). If

I = ∅, the number of urgent packets would be 0, so we need only consider the case in

which I 6= ∅. Note that I 6= ∅ and the inequality above imply HN − 1 ≥ s. We have

|I| ≤
∑

i:Ci≥1

bCic ≤ |I|(HN −H|I|)/s. (2.9)

For M := max{j : HN − Hj ≥ s}, we have from the previous inequalities that

|I| ≤M . In the second section of Appendix A, we give straightforward proofs of the

following three claims:

1. M < N/es.

2. For fixed N and s, the function g(m) := m
s
(HN −Hm)

is increasing for m : 1 ≤ m ≤M .

3. g(M) < M + 1.

Then we have
∑

i:Ci≥1

bCic ≤ g(M) < M + 1.

48

where the first inequality follows from (2.9) and Claim 2 above. Thus, by Claim 1

above, the number of urgent packets resulting from the Largest Cumulative Differ-

ence algorithm is less than N/es. By Lemma 3, N/es is also a strict upper bound on

the number of urgent packets resulting from the Earliest Completion Time algorithm.

This proves the first part of Theorem 5.

We now analyze a generalization of the adversarial fluid policy constructed in

Section 2.6.1 in order to prove the converse in Theorem 5 and the first part of Theo-

rem 6. Assume we are given a packet-scheduling algorithm using speedup s ≥ 1 and

lookahead L < ∞. For any d : 0 ≤ d < N/es,9, we define for each t ≥ 1, (where the

sets of input ports It are defined exactly as in Section 2.6.1):

F (t) :=











1
Ns

[1, 1, ..., 1], if t ≤ L

1
s(N−(t−L−1))

([1, 1, ..., 1]− χIt−L−1), otherwise.

We have just after time step N − d that the cumulative difference in each of the

input ports in {1, 2, ..., N} \ IN−d is











N−d
Ns

, for N − d ≤ L

L
Ns

+ HN−Hd+L

s
, otherwise

. (2.10)

Now define r(N, s, d) := b(N + 1)/es − d− 1c.

If r(N, s, d) ≥ L ≥ 0, then the cumulative difference given in (2.10) equals or exceeds

1. In this case, at least d packets are completed by the fluid policy but not sent

by the packetized policy by just after time step N − d. For fixed N and s, we have

r(N, s, d) ≥ 0 for d ≤ (N+1)/es−1, which proves for any packet-scheduling algorithm

using speedup s and no lookahead, there exists an adversarial fluid policy causing a

packet to have delay at least b(N + 1)/es − 1c. This is the converse in Theorem 5.

9As shown earlier in this section, the Earliest Completion Time algorithm using speedup s ≥ 1
and no lookahead guarantees each packet is delayed less than N/es steps. Thus, if d ≥ N/es, then
we have no hope of constructing an adversarial fluid policy for this particular algorithm that causes
a packet to be delayed more than d steps.

49

For fixed speedup s ≥ 1 and lookahead L <∞, we have for d = b(N+1)/es−1c−L

that r(N, s, d) = L. Thus, some packet experiences delay at least b(N +1)/es−1c−L.

This proves the first part of Theorem 6.

2.7.3 Proof of Theorem 6: Bounds on Lookahead, Speedup

to Guarantee Low Delay

Since the first part of Theorem 6 was shown to follow from the analysis in the previous

section, we now turn to the second part of Theorem 6, which states that the Earliest

Completion Time algorithm using speedup s > 1 lookahead L < ∞ guarantees that

no packet is delayed more than (d(N + 1)s/(s − 1)e − L)+ time steps. That is, for

any given fluid policy, this algorithm constructs a packetized policy that sends every

packet at most (d(N +1)s/(s− 1)e−L)+ steps after the time that it is completed by

the fluid policy.

We first prove the following lemma:

Lemma 4 For any fluid policy, the Earliest Completion Time algorithm using speedup

s > 1 and lookahead L ≥ d(N + 1)s/(s− 1)e tracks.

Proof: Assume at some time step t ≥ 0, each entry of C (t) is non-positive. Then

by Lemma 110 of Section 2.5.1, each packet with fluid completion time in [t+1, t+L]

experiences no delay. The number of packets with fluid start time and fluid completion

time in [t+1, t+L] is at most L/s. This fact, and the fact that the number of packets

with fluid start time in [t+1, t+L] but with fluid completion time > t+L is at most

N (that is, one per input port), imply that the number of packets with fluid start time

in [t + 1, t + L] is at most L/s + N ≤ L− 1. Our assumption that each entry of C (t)

is non-positive implies that each packet with fluid start time at most t has been sent

by the packetized policy by time step t. Since the packetized policy can only send a

packet at or after its fluid start time, and since at each time step t′ ∈ [t + 1, t + L], if

C(t′) has a positive-valued entry, then the Earliest Completion Time algorithm sends

10See the comment just after the proof of this lemma.

50

a packet, we have that there must be some time step τ ∈ [t+1, t+L] such that every

entry in C(τ) is non-positive.

Since C(0) = 0, the above argument gives that each packet with fluid completion

time in [1, L] experiences no delay and for some t1 ∈ [1, L], every entry in C(t1) is

non-positive. Applying the above argument at time step t1 gives that each packet

with fluid completion time in [t1 + 1, t1 + L] experiences no delay and for some t2 ∈

[t1 + 1, t1 + L], every entry in C(t2) is non-positive. Repeating this argument results

in a strictly increasing sequence (where t0 := 0) t0, t1, t2, ... such that for each k,

each packet with fluid completion time in [tk + 1, tk + L] experiences no delay and

tk+1 ∈ [tk + 1, tk + L]. Thus, the Earliest Completion Time algorithm using the

aforementioned lookahead tracks. 2

We present a modified version of the Earliest Completion Time algorithm using

speedup s > 1 and lookahead L < ∞ that guarantees delay at most d := (d(N +

1)s/(s − 1)e − L)+. The modified algorithm sends no packets for the first d time

steps. At each subsequent time step t, it simulates the Earliest Completion Time

algorithm using lookahead L + d for time steps11 1 to t− d on the same fluid policy

{F (1), F (2), . . .} to find the packetized vector it would output at time step t− d. The

modified algorithm schedules this packetized vector at time step t. Each packet is sent

by the modified algorithm exactly d steps after the time it would have been sent by the

Earliest Completion Time algorithm using lookahead L+d ≥ d(N+1)s/(s−1)e acting

on the same fluid policy F (1), F (2), Since we showed in the lemma above that the

Earliest Completion Time algorithm tracks using lookahead ≥ d(N + 1)s/(s − 1)e,

we have that the modified algorithm sends each packet at most d time steps after its

fluid completion time. This completes the proof of the second part of Theorem 6. 2

11If the modified algorithm keeps track of the packetized vectors and cumulative difference vectors
produced by the Earliest Completion Time algorithm, the modified algorithm need only simulate one
time step of the Earliest Completion Time algorithm to find the next packetized vector it outputs.

51

2.8 Applying Our Bounds to Time-Varying, Leaky-

Bucket Constrained Arrival Processes

We give an example of how our bounds on tracking, backlog, and delay can be applied

when some information is provided on the packet arrival process. Here, we consider

the temporary session model of Andrews and Zhang [5]:

At each input port, service is provided in consecutive sessions, with one session com-

pletely finishing before another begins. Each session j is active during a time interval

[tj, uj], in which packets arrive subject to a leaky-bucket constraint with parameters

ρj, σj; that is, for any t′, u′ such that tj ≤ t′ < u′ ≤ uj, the number of packets that

arrive at input port i during the time interval [t′, u′] is at most σj + ρj(u
′ − t′). Note

that session j packets may still be waiting at the input port after time step uj; also,

there may be times when no session is active. The sessions, with corresponding time

intervals and parameters σj, ρj, may be completely different for each input port.

Given a fixed speedup s and lookahead L, we can do admission control of requests

for leaky-bucket constrained, temporary sessions. Our goal is to accept as many

sessions as possible and still make certain backlog and/or delay guarantees to these

sessions. We accept a request to reserve a temporary session (call it session j) at

input port i with time interval [tj, uj] and with leaky-bucket constraint parameters

ρj, σj, if setting F
(t)
i := ρj for t ∈ [tj, uj + d(σj + 1)/ρje] doesn’t violate the fluid

constraint that for all time steps t′,
∑

k F
(t′)
k ≤ 1/s. Additional fluid may be allocated

to any input port (for example, when it is desirable to allocate excess bandwidth

based on current queue size as argued for in [21]) as long as for all time steps t′,
∑

k F
(t′)
k ≤ 1/s. Note that if lookahead L is used by a packet-scheduling algorithm,

then all session reservations and additional fluid allocations must be made at least

L steps in advance. If admission control is done in this way, we have the following

guarantees for packets from session j at input port i:

• During session j, the number of packets in the queue at input port i is at most

σj +1 plus the backlog (due to approximating the fluid policy by the packetized

52

policy).

• The number of time steps a packet waits in the queue is at most d(σj + 1)/ρje

plus the delay due to approximating the fluid policy by the packetized policy

(which we simply refer to as “delay” in this work).

These guarantees follow from similar arguments as used by Charny in Section

3.3.1, Theorem 7 of [12].

Thus, we have from Section 2.6 that during session j at input port i, the queue

at this input port never has more than σj + 1 + 1
s
ln N packets, when the Largest

Cumulative Difference packet-scheduling algorithm using speedup s and no lookahead

is used. Note that a burst of σj packets at the first time step forces the queue at

input port i to hold at least σj − 1 packets.

Also, we have from Section 2.7 that during session j at input port i, no packet

waits in the queue at this input port more than d(σj +1)/ρje+N/es time steps, when

the Earliest Completion Time packet-scheduling algorithm using speedup s and no

lookahead is used; when speedup s > 1 and lookahead d(N +1)s/(s− 1)e are used by

this algorithm, no packet waits more than d(σj + 1)/ρje time steps. This last bound

is at most d1/ρje more than the wait time the last packet of a burst of σj packets

would experience if session j were allocated exactly ρj fluid per time step in an ideal

switch that sent data as fluid.

53

54

Chapter 3

The N ×N , Input Queued,

Crossbar Switch

We establish worst-case bounds on backlog for the input queued, crossbar switch when

neither speedup1 nor lookahead is used. Specifically, for an N × N input queued,

crossbar switch, we present an on-line, packet-scheduling algorithm that guarantees

backlog at most (N + 1)2/4 packets at each input port and at each output port

for any fluid policy. The algorithm can be made to run in O(N log N) time using

N/ log N parallel processors, by employing a fast algorithm for edge-coloring bipartite

multigraphs. In the reverse direction, we show on the N ×N input queued, crossbar

switch, that for any on-line, packet-scheduling algorithm using no speedup and no

lookahead, there is a fluid policy that causes an input port or output port to have

backlog at least (N+1)/e−2 packets. We also extend the packet-scheduling algorithm

for crossbar switches to a general class of switch architectures.

The layout of this chapter is as follows: Section 3.1 extends the traffic model

from Chapter 2 to N ×M input queued, crossbar switches (which we refer to simply

as crossbar switches). In particular, we define backlog for crossbar switches, which

quantifies how much additional buffer space is used by a packetized policy than is used

by the fluid policy it is emulating. In Section 3.2, we present results from related work.

1The problem of bounding backlog for crossbar switches when speedup strictly greater than 1 is
used is analyzed by Koksal in [37].

55

'

&

$

%'

&

$

%'

&

$

%'

&

$

%

-

-

-

-

'

&

$

%'

&

$

%'

&

$

%'

&

$

%

-

-

-

-

-

-

-

-

-

-

-

-

Crossbar

Fabric

Input Ports Output Ports

Figure 3-1: A 4 × 4 input queued, crossbar switch. Each input port has 4 virtual
output queues, one corresponding to each output port.

In Sections 3.3 and 3.4, we analyze worst-case backlog for N ×N crossbar switches.

Section 3.5 extends the results of Section 3.3 to more general switch architectures

than the crossbar switch, using a resource allocation model of Tassiulas [57]. Finally,

Section 3.6 summarizes the chapter and gives directions for future research.

3.1 Traffic Model

We extend the traffic model from Section 2.2 of Chapter 2 from N × 1 input queued

switches to N ×M input queued, crossbar switches. All packets are assumed to have

the same size, and time is normalized so that the maximum data rate (capacity) of

any input or output port is one packet per time step. The N ×M crossbar switch

allows one to send, in one time step, packets from any of the N input ports to any

56

of the M output ports. The only constraints are that in one time step, at most one

packet can leave a single input port, and at most one packet can arrive at a single

output port. The switch uses virtual output queueing to avoid head-of-line blocking;

that is, a packet arriving at any input port is placed in one of the M separate queues

at that input port, depending on the packet’s destination output port (See [55] for

more details.). Figure 3-1 is a diagram of a 4× 4 crossbar switch. A fluid policy, as

in the case of the N × 1 switch, represents the ideal, packet-scheduling behavior.

A Fluid Policy for an N × M crossbar switch is a sequence of rate allocations

specifying the number of fractional packets that ideally would be sent from each

input port to each output port at each time step. This is represented by a sequence

of N ×M doubly sub-stochastic matrices2 {F (t)}t>0. The fraction of a packet that

should be sent from input i to output j at time step t is represented by F
(t)
ij . The

fluid start time of the kth packet to be transmitted from input port i to output port

j is the first time step such that a total of more than k − 1 units of fluid have been

sent from input port i to output port j by the fluid policy. The fluid completion time

for the kth packet to be transmitted from input port i to output port j is the first

time step at which at least a total of k units of fluid have been sent from input port i

to output port j by the fluid policy. We next define a packetized policy, which should

approximate the fluid policy.

A Packetized Policy for an N ×M crossbar switch is a sequence of (whole) packet

transmissions, one per time slot. It is represented by a sequence of N × M sub-

permutation3 matrices, {P (t)}t>0. The value of P
(t)
ij is 1 if and only if a packet is sent

from input i to output j at time step t; otherwise it has value 0.

We say that a packet-scheduling algorithm tracks on a crossbar switch if for any

given fluid policy, it sends each packet at or after its fluid start time and at or before

its fluid completion time [55]. Bonuccelli and Clo [7] construct a fluid policy for the

4 × 4 crossbar switch that cannot be tracked. Their construction implies that for

2A non-negative valued matrix is doubly sub-stochastic if all its row sums and column sums are
≤ 1. If the row sums and column sums all equal one, the matrix is doubly stochastic.

3A {0, 1}-valued matrix is a sub-permutation matrix if all its row sums and column sums are
≤ 1. A permutation matrix is a sub-permutation matrix with a 1 in every row and every column.

57

any N ×M input queued, crossbar switch with N, M ≥ 4, there exists a fluid policy

that cannot be tracked. This negative result motivates the study of packet-scheduling

algorithms that satisfy a relaxation of the tracking property.

Backlog, defined next, quantifies how much additional buffer space is used by a

packetized policy than is used by the fluid policy it is emulating. We define the backlog

at a single input port, output port pair (i, j), to be the positive part of the difference

between the cumulative fluid that has been sent from i to j by the fluid policy and

the cumulative number of packets that have been sent from i to j by the packetized

policy. The backlog for pair (i, j) at time step t is the (i, j) entry of the positive part4

of the N ×M cumulative difference matrix C (t) :=
∑t

h=1(F
(h)−P (h)). For notational

convenience, we define C(0) := 0, the matrix with all zeros. See Figure 3-2 for an

example of a fluid policy, a packetized policy, and their cumulative difference. The

backlog for a set of input port, output port pairs is the sum of backlog for each input

port, output port pair in the set. For a set of input port, output port pairs, we say

that a packet-scheduling algorithm gets at most b-backlogged if for all time steps t,

their backlog is no more than b. In other words, for all t, the sum of corresponding

entries in (C(t))+ is at most b. For example, we say that a packet-scheduling algorithm

gets at most b-backlogged per input port if in each row of (C (t))+, the sum of entries

is at most b at each time step t. Similarly, we say that a packet-scheduling algorithm

gets at most b-backlogged per output port if in each column of (C (t))+, the sum of

entries is at most b at each time step t.

We define a packet-scheduling algorithm to be a deterministic algorithm that takes

a fluid policy as input (possibly online), and outputs (one step at a time) a packetized

policy that sends each packet at or after that packet’s fluid start time. In other words,

for all t, the packetized step P (t) is only allowed to have value 1 in entries (i, j) for

which C
(t−1)
ij + F

(t)
ij > 0; this ensures that all entries of the cumulative difference

matrix C(t) are greater than −1. In this chapter, we consider only packet-scheduling

algorithms using no speedup and no lookahead.

4The positive part of a matrix M is denoted M+, where M+
ij := max{Mij , 0}.

58

Fluid Policy F (t) Packetized Policy P (t) Cumulative Differences C(t)











1
2

0 0 1
2

0 1
2

1
2

0
0 1

2
1
2

0
1
2

0 0 1
2











,











0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0











,











1
2

0 0 −1
2

0 1
2
−1

2
0

0 −1
2

1
2

0
−1

2
0 0 1

2





















0 1
2

1
2

0
0 1

2
1
2

0
1
2

0 0 1
2

1
2

0 0 1
2











,











0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1











,











1
2

1
2
−1

2
−1

2

0 0 0 0
−1

2
−1

2
1
2

1
2

0 0 0 0





















1
2

1
2

0 0
0 0 1

2
1
2

1
2

1
2

0 0
0 0 1

2
1
2











,











1 0 0 0
0 0 1 0
0 0 0 1
0 0 0 0











,











0 1 −1
2
−1

2

0 0 −1
2

1
2

0 0 1
2
−1

2

0 0 1
2

1
2











Figure 3-2: Three steps of a fluid policy (first column), packetized policy (second
column), and their cumulative difference (third column). Since a packet-scheduling
algorithm can only send a packet at or after its fluid start time, a packet-scheduling
algorithm has to set P (3) to be a sub-permutation matrix that is not a (full) permu-
tation matrix. At time step 3, the backlog at input ports 1, 2, 3, 4 (corresponding to
the rows of C(3)) is 1, 1/2, 1/2, 1 respectively.

3.2 Related Work

A number of authors have worked on the problem of approximating fluid schedules for

N×N crossbar switches with virtual output queueing. Chang, Chen, and Huang [11]

present a packet-scheduling algorithm for approximating fluid policies on an N ×N

crossbar switch, in which the same fluid step F is repeated at each time step; we

call this a constant fluid policy. Ideally, service at each time slot should exactly

mimic the behavior of the fluid matrix F , but in practice only whole packets can be

scheduled; thus, the fluid behavior can only be approximated by a packetized policy.

Their packet-scheduling algorithm, based on a Birkhoff-von Neumann decomposition

of the fluid matrix F , guarantees bounded backlog for any constant fluid policy.

The algorithm requires initial run-time O(N 4.5) and on-line run-time O(log N) for an

N ×N crossbar switch.

Charny [12] gives a simple packet-scheduling algorithm using speedup 6,5 that

5Due to a small difference in the model used by Charny and that used here, her result holds in
our model using constant speedup slightly larger than 6.

59

tracks any constant fluid policy. In the work here, we consider more general fluid

policies, in which the amount of fluid scheduled can vary at each time step. Worst-

case backlog and delay for time-varying fluid policies when lookahead is bounded can

be significantly greater than that for constant fluid policies. For example, Theorem 6

in Section 2.7 implies that for any packet-scheduling algorithm on an N ×N crossbar

switch using speedup s and lookahead L, there exists a time-varying fluid policy such

that for some input port, output port pair, the delay is at least b(N +1)/esc− 1−L.

Charny’s packet-scheduling algorithm, however, uses speedup 6 and for any constant

fluid policy guarantees (for any N) that no packet experiences any delay.

Tabatabaee, Georgiadis, and Tassiulas [55] consider the problem of tracking arbi-

trary fluid policies in an N × N crossbar switch. They attempt to characterize for

which N there exist packet-scheduling algorithms that track. They prove that any

fluid policy for the 2×2 crossbar switch can be tracked, and propose several heuristics

for approximating fluid policies by packetized policies on larger switches. Bonuccelli

and Clo [7] construct a constant, fluid policy for the 4×4 crossbar switch that cannot

be tracked. This untrackable fluid policy can be extended to larger switch sizes. The

result of Bonuccelli and Clo [7] that for many switch sizes there exist untrackable

fluid policies, has motivated us to consider the two relaxations of tracking, backlog

and delay.

Kam and Siu [34] provide bounds on worst-case backlog for time-varying fluid

policies on N×N crossbar switches, when speedup at least 2 is used. They formulate

a credit-based system, which is equivalent to the model used here, and in which

each input port, output port pair receives a fractional credit (which corresponds

to fluid in our model) at each time step based on a (possibly time-varying) service

contract. They present an algorithm for determining which packets to send based

on outstanding credits (which correspond to backlog in our model); their algorithm

is based on finding a stable marriage matching. They show that outstanding credit

can be kept bounded in the worst-case, using speedup 2. Their proof technique does

not extend to the case of no speedup; they assert “the unavailability of combinatorial

proof techniques for our no-speedup scenario.” [34]. The main result of this chapter is

60

a combinatorial proof that worst-case backlog can be kept bounded using no speedup.

Using a credit-based model similar to that used by Kam and Siu [34], Koksal [37]

bounds backlog on the N ×N crossbar switch (called “service lag” in his work) when

speedup is strictly greater than 1. The upper bounds given tend to infinity as speedup

approaches 1.

3.3 Bounds on Backlog for the N × N Crossbar

Switch

3.3.1 A Lower Bound on Backlog for the N × N Crossbar

Switch

A corollary of Theorem 2 in Section 2.6.1 of the previous chapter gives the following

bound for the N ×N crossbar switch:

Corollary: For the N ×N crossbar switch, for every packet-scheduling algorithm

using no speedup and no lookahead, for any column j, there exists an adversarial

fluid policy with the following property: For any m : 1 ≤ m ≤ N , there exists a time

step t ≤ N − 1 and a set I of m input ports such that

∑

i∈I

C
(t)
ij = m(HN −Hm). (3.1)

In particular, at some time step the backlog of the set of pairs {(i, j)}1≤i≤N is more

than (N + 1)/e− 2; also, at some time step there is a single pair (i, j) with backlog

more than ln(N + 1)− 1.

Worst-case backlog for time-varying fluid policies can be significantly greater than

that for constant fluid policies. An extension of the corollary above (which follows

from Theorem 2) is that for any constant speedup s, for any packet-scheduling algo-

rithm on an N ×N crossbar switch, there exists a time-varying fluid policy such that

for some input port, output port pair, its backlog is more than 1
s
(ln(N +1)−1). This

is in stark constrast with Charny’s [12] result, in which a simple packet-scheduling

61

algorithm using speedup 6 is shown to track any constant fluid policy on the N ×N

crossbar switch.

It is not clear how to generalize the proof of Theorem 3 in Section 2.6.2, in which

the Largest Cumulative Difference packet-scheduling algorithm is shown to achieve

the lower bound in Theorem 2, to the N ×N crossbar switch. First, the N × 1 and

N × N crossbar switches differ in that there is no clear choice for what the Largest

Cumulative Difference packet-scheduling algorithm should be for the N ×N crossbar

switch. A second obstacle is that on the N ×N crossbar switch, it may be impossible

for a packet-scheduling algorithm to send a (full) permutation matrix at every time

step, since a packet-scheduling algorithm can only send a packet at or after its fluid

start time; for example, see Figure 3-2 and the accompanying caption. In light of

this fact, it is not initially clear whether backlog can be kept bounded at all for the

N ×N crossbar switch. The next section proves that it can.

3.3.2 An Upper Bound on Backlog for the N × N Crossbar

Switch

We present a packet-scheduling algorithm that from any fluid policy, builds a packe-

tized policy that is at most [(N +1)2/4−1]-backlogged per input port and per output

port for the N ×N crossbar switch.

Algorithm 1

The algorithm builds a packetized policy {P (t)}t>0 from a given fluid policy {F (t)}t>0.

At each iteration, the algorithm computes P (t+1) based on C(t) and F (t+1). This

computation is described below, where we set P := P (t+1), C := C(t), and F := F (t+1)

for clarity of exposition. The algorithm maintains the following invariant for all time

steps t:

Invariant 1 For all t, the sum of positive entries in any row or column of C (t) is at

most (N + 1)2/4− 1.

62

There are three main steps in the packet-scheduling algorithm. First, the algo-

rithm dominates6 C + F by a matrix B with non-negative entries and with all row

sums and column sums equal to exactly (N + 1)2/4. Next, it finds a permutation

matrix π dominated by the matrix B ′ which is defined as:

B′
ij :=











1, if Bij ≥ 1

0, otherwise

Lastly, the packetized step P is set to be the sub-permutation matrix defined as:

Pij :=











πij, if Cij + Fij > 0

0, otherwise

We will need the lemmas below in order to prove that Algorithm 1 is well-defined

and satisfies Invariant 1. The first lemma, proved by König [39], describes how the

first step of Algorithm 1 is computed. For this, as well as combinatorial results cited

elsewhere in this paper, we refer the interested reader to Schrijver [49] for further

details.

Lemma 5 One can dominate any N × N doubly sub-stochastic matrix by a doubly

stochastic matrix in time O(N 2).

Proof: We define a greedy algorithm below to dominate doubly sub-stochastic

matrix D by a doubly stochastic matrix D′. First, compute the row sums and column

sums of D. Then, loop once through all N 2 entries of D, increasing each of them

until either the corresponding row sum or column sum is 1. We claim that this results

in a matrix in which all row sums and column sums are 1. If this were not the case

for some row, then every column would have a column sum of 1, implying that every

row sum is also 1, a contradiction. A similar contradiction follows if any column sum

were not 1. 2

The key, technical lemma of this paper is presented below; it will be used to show

that the second step of Algorithm 1 is well-defined:

6Matrix D′ dominates matrix D if for all i, j, D′
ij ≥ Dij .

63

Lemma 6 For any w ≥ (N + 1)2/4, for any non-negative valued N × N matrix D

with row sums and column sums equal to w, there exists a permutation π dominated

by D.

Proof: Assume the claim were false, that is, that there were some non-negative

valued N × N matrix D with row sums and column sums equal to w such that for

any permutation, there is at least one corresponding entry in D with value less than

1. By Hall’s Matching Theorem [29], this implies that for some m : 1 ≤ m ≤ N there

is a set R of m rows and a set C of N −m + 1 columns, such that for any entry (i, j)

with i ∈ R and j ∈ C, Dij < 1.

We can thus reorder the rows and columns so that the matrix consists of four

blocks:







D(1) D(2)

D(3) D(4)





 , where each entry of D(1) has value less than 1, and D(1) is of

dimension m× (N −m + 1).7 Now, since each row sum equals w, the sum of entries

in block D(2) is strictly greater than m[w− (N −m + 1)]. Thus, there must be some

column among the last m− 1 with sum strictly greater than m
m−1

[w − (N −m + 1)].

But since for any value of m, m(N −m + 1) ≤ (N + 1)2/4 ≤ w, we have:

m

m− 1
[w − (N −m + 1)] =

mw −m(N −m + 1)

m− 1

≥ w,

a contradiction, proving the lemma.8 2

Lemma 6 has the following corollary:

Corollary: For any d ∈ Z+, and any non-negative valued matrix M with row sums

and column sums equal to d+(N +1)2/4, there exist permutation matrices π1, ..., πd+1

such that M dominates
∑d+1

i=1 πi.

Note that we can use the Birkhoff-von Neumann theorem (see e.g. [13]) to imme-

diately obtain a similar, but weaker version of Lemma 6. This follows since by the

7The dimensions of D(2), D(3), D(4) can be deduced from the dimensions of D(1).
8In fact, for N even, we can get the slightly better bound that m(N −m + 1) ≤ N(N + 2)/4.

This implies that for N even, the lemma holds for any w ≥ N(N + 2)/4.

64

Birkhoff-von Neumann theorem, every matrix B with non-negative entries and row

and column sums equal to (N − 1)2 + 1 can be decomposed into a weighted sum of

(N − 1)2 + 1 permutation matrices, where all weights are non-negative, and sum to

(N−1)2 +1. Since at least one of the weights must be ≥ 1, there exists a permutation

matrix π that is dominated by B.

We now prove Algorithm 1 is well-defined and that it satisfies Invariant 1 by

induction on the time step t.

Proof: The base case, in which C(0) = 0, is clear.

For the inductive step, assume the algorithm is well-defined and satisfies In-

variant 1 at all time steps up to and including time step t. Recall that we set

P := P (t+1), C := C(t), and F := F (t+1) for clarity of exposition. We first show that

the algorithm is well-defined at time step t + 1:

By Invariant 1 at time step t (using the inductive hypothesis) and the fact that F

is doubly sub-stochastic, we have that all row sums and column sums of (C +F)+ are

at most (N + 1)2/4. By Lemma 5 we can dominate C + F by a non-negative valued

matrix with row sums and column sums equal to exactly (N + 1)2/4. Thus, the first

step in the algorithm is well-defined.

For the second step in the algorithm, we need to show that there exists a permu-

tation matrix dominated by the matrix B ′. By Lemma 6, there exists a permutation

matrix π dominated by B. Then π must also be dominated by B ′.

It remains to show that the algorithm satisfies Invariant 1 at time step t + 1:

From the first two steps of the algorithm, we have:

C + F ≤ B. (3.2)

Subtracting π from both sides, and taking the positive parts of both sides gives:

(C + F − π)+ ≤ (B − π)+ = B − π, (3.3)

where the equality on the right follows because B dominates π.

65

By the construction of P , the matrix C + F − P differs from C + F − π only at

entries in which both expressions have non-positive values. This implies

(C + F − π)+ = (C + F − P)+. (3.4)

Therefore, from (3.3), we have (C + F − P)+ is dominated by the non-negative

valued matrix B−π, with row sums and column sums equal to (N +1)2/4− 1. Since

C(t+1) := C + F − P , this proves Invariant 1 for time step t + 1. The induction is

complete. 2

We now bound the running time of Algorithm 1. The algorithm requires O(N 2)

time to compute B and B ′. The time required to find a permutation matrix π

dominated by B′ is of the same order as the time required to find a perfect matching9

in an N by N bipartite graph, which is O(N 2.5) [30]. We show in Section 3.4 how

to use a fast algorithm for edge-coloring bipartite multigraphs to reduce the running

time per fluid step to O(N log N), when N/ log N parallel processors are used.

3.4 A Packet-Scheduling Algorithm with Running

Time O(N log N) per Fluid Step, Using N/ log N

Parallel Processors

We present a packet-scheduling algorithm for an N×N input queued, crossbar switch

with the following performance guarantees, for any ε : 0 < ε < 1:

• It runs in time O(1
ε
N log N) per fluid step, using N/ log N parallel processors.

• It uses no speedup.

• It guarantees backlog at most (1+ ε)(N + 1)2/4 packets per input port and per

output port.

9A perfect matching is a set of vertex-disjoint edges that covers all the vertices.

66

The main idea behind this algorithm is to process batches of accumulated fluid,

producing a list of permutation matrices all at once, instead of just one at a time

as in Algorithm 1. This list of permutation matrices is guaranteed to exist by the

Corollary to Lemma 6, and can be computed quickly using a fast algorithm for edge-

coloring bipartite multigraphs.

The algorithm uses pipelining; after an entire batch of fluid steps has arrived,

it computes a corresponding list of permutation matrices (which may take as much

time as for yet another batch of fluid steps to arrive), and then schedules this batch

of permutation matrices as packetized steps. The batch size is set to be the positive-

integer valued function α(N), which will be explicitly defined later in order to obtain

the bounds claimed above. Each batch of packetized steps, then, will be scheduled

2α(N) time slots after the corresponding batch of fluid steps. It will be convenient

to keep track of C(bα(N)) minus the sum of packetized steps for time steps bα(N) + 1

to (b + 2)α(N). We refer to this quantity as the pipelined, cumulative difference at

the end of batch b.

The algorithm maintains the following invariant on the pipelined, cumulative dif-

ference at the end of each batch b:

Invariant 2 For any b ≥ 0, the matrix
(

C(bα(N)) −
∑(b+2)α(N)

t=bα(N)+1 P (t)
)+

has row sums

and column sums at most (N + 1)2/4.

This invariant implies that for any time step t, the row sums and column sums of

(C(t))+ are at most (N + 1)2/4 + 3α(N).

We first give an outline of the packet-scheduling algorithm, and then its complete

description with technical details.

Algorithm 2 Outline: The overall structure of the packet-scheduling algorithm is

similar to that of Algorithm 1. In the first step, the algorithm dominates the new

batch of fluid plus the pipelined, cumulative difference from the end of the previous

batch by a non-negative valued matrix D with row sums and column sums equal to

α(N) + (N + 1)2/4.

67

The goal of the second and third steps is to efficiently find α(N) permutation

matrices π1, . . . , πα(N) such that D dominates their sum. In step 2, an integer-valued

matrix D′ is found that has row sums and column sums equal to α(N) and is domi-

nated by D. By König’s Theorem [38], it is possible to decompose D′ into a sum of

α(N) permutation matrices. This decomposition is efficiently found in step 3. The

complete algorithm including technical details is given below.

Algorithm 2

The algorithm builds a new batch of α(N) packetized steps at each iteration. Initially,

the batch count b is set equal to 0. Also, for 1 ≤ t ≤ 2α(N), the algorithm sets P (t)

to be the all zero matrix.

Given C(bα(N)), and new batch of consecutive fluid steps F (bα(N)+1), . . . , F ((b+1)α(N)),

the algorithm constructs P ((b+2)α(N)+1), . . . , P ((b+3)α(N)) as follows:

1. The algorithm dominates

C(bα(N)) −
∑(b+2)α(N)

t=bα(N)+1 P (t) +
∑(b+1)α(N)

t=bα(N)+1 F (t)

by a matrix D with non-negative entries, and row sums and column sums equal

to α(N) + (N + 1)2/4. The algorithm then rounds the value of each entry of D

down to the nearest integer.

2. In this step, the algorithm will construct an integer-valued matrix D′ that has

row sums and column sums equal to α(N) and that is dominated by D.

Let the edge-weighted graph G be defined as follows: First a complete, bipartite

graph with 2N nodes (N on the left corresponding to the input ports, and N

on the right corresponding to the output ports of the switch) is formed. The

weight of the edge from node i on the left to node j on the right is set to be

Dij. We connect a single, source node s to all the nodes on the left side, with

edges of weight α(N). We connect all nodes on the right side to a single sink

node t, also with edges of weight α(N). Now, the algorithm finds an integral,

maximum flow f from the source to the sink through this graph (see e.g. [13]).

68

Let the N × N matrix D′ be defined such that D′
ij equals the flow value from

node i on the left to node j on the right. By the Corollary to Lemma 6, the flow

out of each node on the left, and the flow into each node on the right equals

exactly α(N). Also, note that D dominates D′.

3. D′ can be viewed as an α(N)-regular bipartite graph (possibly with parallel

edges) on 2N nodes, where the value of D′
ij represents the number of edges with

endpoints i and j. We find a minimum edge-coloring of this bipartite graph,

which by König’s Theorem [38] uses α(N) distinct colors. For each color used,

the edges with this color form a perfect matching. Since a perfect matching,

here a set of N vertex-disjoint edges, corresponds to a permutation matrix in

D′, the minimum edge-coloring we found represents a list of α(N) permutation

matrices that sum to exactly D′.

4. For m : 1 ≤ m ≤ α(N), we set π((b+2)α(N)+m) to be the mth permutation matrix

from the previous step. Lastly, for t = (b + 2)α(N) + 1 to (b + 3)α(N), the

packetized step P (t) is set to be the sub-permutation matrix defined as:

P
(t)
ij :=











π
(t)
ij , if C

((b+1)α(N))
ij −

∑t−1
h=(b+1)α(N)+1 P

(h)
ij > 0

0, otherwise

The proof that Invariant 2 holds is similar to the proof that Invariant 1 holds from

Section 3.3.

The run-time of one iteration of Algorithm 2 is dominated by steps 1, 2, and

3, in which α(N) fluid steps are summed, an integral, maximum flow is found, and

a minimum edge-coloring is found, respectively. If we assume the algorithm uses

β(N) parallel processors, then the sum of α(N) fluid steps can be computed is time

O(N2α(N)/β(N)). An integral, maximum flow in a graph with N nodes can be

computed in O(N3) time10 [15]. For step 3 we can use a simple, efficient, and easy

to implement minimum edge-coloring algorithm with running time O(m log ∆) on a

∆-regular bipartite graph with m edges [50, 23] for the special case of ∆ a power of 2.

10or in time O(N8/3 log N) using an algorithm of Goldberg and Rao [25]

69

The run time of the entire algorithm is then O(N 2α(N)/β(N)+N 3+Nα(N) log α(N))

to compute a batch of α(N) packetized steps.

We now show how the batch computations in Algorithm 2 can be timed so that

the run time per fluid step is O(N 2/β(N) + N3/α(N) + N log α(N)). The algorithm

computes packetized steps P (t) for t = (b + 2)α(N) + 1 to (b + 3)α(N) during time

steps (b+1)α(N)+1 to (b+2)α(N). It can do this since by time step (b+1)α(N)+1,

it has access to the fluid steps that have arrived before this time step, and it will have

already computed the previous batch of packetized steps P (t) for t = (b + 1)α(N) + 1

to (b+2)α(N). Since the batch computation is then spread over α(N) time slots, the

run time per fluid step is the run time of one batch divided by α(N).

If we set the batch size α(N) to be εN 2/24 rounded up to the nearest power of 2,

and the number of parallel processors β(N) to be N/ log N , an iteration of Algorithm 2

will run in time O(1
ε
N log N). Also, Invariant 2 implies for any time step t, the row

sums and column sums of (C(t))+ are at most (N +1)2/4+3α(N) ≤ (1+ε)(N +1)2/4.

Thus, the algorithm will maintain the running time and the bound on backlog per

input port and per output port claimed at the beginning of this section.11

In the next section, we extend Algorithm 1 to give upper bounds on backlog for

a more general class of switches than the crossbar switches studied above.

3.5 Packet-Scheduling Generalized Fluid Policies

Using the resource allocation model of Tassiulas [57], we can generalize the crossbar

switch architecture. The crossbar switch’s constraints are that in one time step, at

most one packet can leave a single input port, and at most one packet can arrive at a

single output port. In general, a switch architecture could differently restrict the set of

packets that may be simultaneously transmitted without conflict. Following Tassiulas

[57], we call an N × M matrix with elements ∈ {0, 1} an activation matrix if the

corresponding set of input-output pairs can simultaneously service packets without

11In the case of εN2/24 < 1, we can run Algorithm 1 instead of Algorithm 2, which results in
run time O(N2.5) (so also O(N/ε)) per fluid step and backog per input port and per output port at
most (N + 1)2/4.

70

conflict on a given, generalized switch. We let S denote the set of activation matrices

for a generalized switch. In the special case of the input queued, crossbar switch, S is

the set of sub-permutation matrices. In this section, we consider switch architectures

constrained by an arbitrary set S of N×M matrices with elements ∈ {0, 1}, such that

S is down-monotone12. Examples of switch architectures fitting our model include

output queued switches and Banyan Switch Networks.

Let conv{S} denote the convex hull of S. In this resource allocation model, a

generalized, fluid policy is a sequence of N×M matrices from conv{S}. A generalized,

packetized policy is a sequence of N×M matrices from S corresponding to a sequence

of switch uses. Let m(S) denote the maximum row or column sum of any matrix in

S. In the case of an input queued, crossbar switch, we have m(S) = 1.

We show that Algorithm 1 can be modified to give a generalized, packet-scheduling

algorithm using no speedup and no lookahead for building, from any generalized, fluid

policy, a generalized, packetized policy that gets at most (MN)m(S)-backlogged per

input port and per output port for the N ×M generalized switch.

We rely on Caratheodory’s theorem, which gives for any F ∈ conv{S}, the ex-

istence of a decomposition into a convex combination of at most MN + 1 elements

of S [13]. The main difference between the algorithm in this section and the previ-

ous algorithms is that we don’t know of an efficient way to find an element of such

a decomposition with large weight. In Chapters 4 and 5, we will give polynomial-

time implementations of the algorithm in this section for Banyan networks and for

general networks, respectively. The packet-scheduling algorithm below maintains the

following invariant for all time steps t:

Invariant 3 For all t, (C(t))+ ∈ (MN)conv{S}

Algorithm 3

Given a generalized, fluid policy, this packet-scheduling algorithm computes the gen-

eralized, packetized policy as follows:

12We call S down-monotone if for any F, F ′, both N ×M matrices with elements in ∈ {0, 1} s.t.
F dominates F ′ and F ∈ S, then we have F ′ ∈ S.

71

Table 3.1: Summary of bounds on backlog for the N ×N Crossbar Switch
Lower Bound Upper Bound

Backlog per input port and per output port (N + 1)/e− 2 (N + 1)2/4
Backlog per Virtual Output Queue ln N − 1 (N + 1)2/4

First, it calculates C(t−1) :=
∑t−1

h=1(F
(h) − P (h)), and then decomposes (F (t) +

C(t−1))+ into a non-negative linear combination of at most MN + 1 matrices from S,

in which the weights sum to MN +1. At least one matrix in the decomposition must

now have weight at least 1. Set π to be one such matrix. Define

P
(t)
ij :=











πij, if C
(t−1)
ij + F

(t)
ij > 0

0, otherwise

By a similar argument as that which followed Algorithm 1, we have that Algo-

rithm 3 maintains the invariant (C(t))+ ∈ (MN)conv{S} for all time steps t. In other

words, Algorithm 3 gets at most MNm(S)-backlogged per input port and per output

port.

3.6 Chapter Summary

The bounds proved in this paper for the N × N crossbar switch are summarized in

Table 3.1 above. A lower bound of f(N) means that for any deterministic, packet-

scheduling algorithm using no speedup and no lookahead, there exists a fluid policy

that when used as input to the packet-scheduling algorithm will cause backlog at

least f(N). An upper bound of g(N) means that there exists a packet-scheduling

algorithm using no speedup and no lookahead that is at most g(N)-backlogged when

run on any fluid policy.

As can be seen in Table 3.1, gaps remain between the lower and upper bounds

proved for backlog. In particular, the gap for the backlog of a virtual output queue,

which corresponds to the maximum entry in the cumulative difference matrix C (t), is

quite large. Narrowing these gaps, and finding tighter tradeoffs between backlog and

run-time of packet-scheduling algorithms are directions for future research.

72

73

74

Chapter 4

Banyan Networks

Multistage switching fabrics, based on the interconnection of small switch compo-

nents, allow for the efficient, modular construction of high-performance routers. We

look at the resources, in terms of buffer size and switch speedup, required to pro-

vide flexible, rate-based, quality of service guarantees for Banyan multistage switch

networks.

We consider Banyan networks in which all links have unit capacity (that is, at

most one packet can traverse a link in one time step), and buffering is only allowed just

before the first-stage input ports and just after the last-stage output ports. The design

of packet-scheduling algorithms for such networks is significantly more difficult than

for crossbar switches, because of the potential for overloading internal links. Packets

originating from different input ports and sent to different output ports may follow

routes that use the same link of an internal switch element; these packets cannot be

simultaneously transmitted, since this would result in an overloaded link and thus a

dropped packet.

In this chapter, we focus on bounding backlog in Banyan networks; our results

for Banyan networks are interesting in themselves, and focusing on them allows a

concrete demonstration of the techniques and algorithms we use. In the next chapter,

we extend some of the bounds derived here to general, input-queued switch networks,

which do not in general have the properties that allow the relatively simpler analysis

of Banyan networks in this chapter; these properties of Banyan networks include

75

being layered, having unit-capacity links, and having for each source and destination

a unique path connecting them.

4.1 Notation and Definitions

4.1.1 Structure of Banyan Networks

Banyan networks have been studied extensively in the literature due to their parallel

capacity, modularity, expandability, and because they lend themselves to efficient im-

plementation (see for instance, [45], [35], and references therein). A Banyan network

is a set of switch elements, that is 2 × 2 crossbar switches, interconnected by links,

with a structure defined below.

Banyan networks are layered networks, that is, the set of switch elements in a

Banyan network can be partitioned into stages S1, S2, . . . , Sm such that for h < m,

any outgoing link from a switch element in stage Sh connects to a switch element in

stage Sh+1; we say that a link connecting a switch element in Sh to a switch element

in Sh+1 is between stages h and h+1, and for convenience we say an incoming link to

S1 is between stages 0 and 1, and an outgoing link from stage Sm is between stages

m and m+1. Incoming links to S1 are called input ports and outgoing links from Sm

are called output ports. Figure 4-1 depicts a 16 × 16 Banyan network, which has 4

stages.

N × N Banyan networks, which have N input ports and N output ports for N

a power of 2, can be constructed recursively by appropriately connecting smaller

Banyan networks. The following construction, depicted in Figure 4-2, is from [45].

The 2×2 Banyan network is simply the 2×2 crossbar switch. For m ≥ 2 and N = 2m,

the N × N Banyan network can be constructed by connecting 2m−1, 2 × 2 crossbar

switches to two 2m−1 × 2m−1 Banyan networks as shown in Figure 4-2. The first

(topmost) 2×2 crossbar switch has its first outgoing link connected to the first input

of the top 2m−1×2m−1 Banyan network, and has its second outgoing link connected to

the first input of the bottom 2m−1×2m−1 Banyan network. The second 2×2 crossbar

76

Stage 1 Stage 2 Stage 3 Stage 4

1

2

3
4

5
6

7

9
10

8

1
2

3
4

5
6

7
8

9
10

11

12

13

14

15
16

11
12

13
14

15
16

Figure 4-1: A 16 by 16 Banyan Network built from 2× 2 crossbar switch elements.

switch has its first outgoing link connected to the second input of the top 2m−1×2m−1

Banyan network, and has its second outgoing link connected to the second input of

the bottom 2m−1 × 2m−1 Banyan network. This process is continued until all 2m−1

of the 2 × 2 crossbar switches are connected, at which point the 2m × 2m Banyan

network is fully constructed. It has m stages.

As in the previous chapters, we assume time is discrete. One time step is set to be

the time required for a 2 × 2 crossbar switch to transmit a packet across the switch

fabric and through an outgoing link. We say a set of packets is sent at time step t > 0

to mean each packet in the set traverses an incoming link of a first-stage 2× 2 switch

element during time step t. For each h : 1 ≤ h ≤ m, during time step t + h, each

packet in this set is transmitted across the switch fabric of a 2× 2 switch element in

stage h of the Banyan network and through one of its outgoing links, arriving at a

stage h + 1 switch element (or at an output port if h = m). Note that packets sent

at different time steps are never in danger of traversing the same link at the same

time, since at each time step they traverse links connected to different stages of the

Banyan network.

One of the properties of the Banyan network is that each input port, output port

pair (which we simply refer to as an input, output pair in this chapter), is connected

by a unique path through the network [45]. We call this the unique-path property.

77

.

.

.

.

.

.

.

.

.

.

.

.

OUTPUT
PORTS

2m

INPUT
PORTS

2m

2 x 2 BANYAN NETWORK

Network

Banyan

Network

Banyan

2 x 2

2 x 2

m−1m−1

m−1 m−1

Elements
(2x2)

2
m−1

Switch

mm

Figure 4-2: Recursive construction of a 2m × 2m Banyan network, for m ≥ 2.

78

The unique-path property can be proven by induction on the number of stages in

the Banyan network, using the recursive structure given above. We consider Banyan

networks without buffers in the intermediate stages and with all links having unit

capacity. Since we don’t allow packets to be dropped, if input i is transmitting a

packet to output j, then any input, output pair (k, l) whose (unique) path shares at

least one link with the path from i to j, is blocked from transmitting a packet at the

same time. We refer to the set of input, output pairs (k, l) that are blocked by pair

(i, j), as the neighborhood of (i, j).

Another property of Banyan networks is expressed in the following lemma, which

deals with sets of input, output pairs and the paths connecting them. A path through

a 2m×2m Banyan network is a sequence of links l0, l1, . . . , lm, where link lh is between

stages h and h + 1, and for h : 0 < h ≤ m, link lh is an outgoing link from the switch

element with incoming link lh−1.

Lemma 7 For any set S of input, output paths through a Banyan network such that

each pair of paths in S shares some link, there is some link l contained in all paths

in S.1

Proof: The proof is by induction on the size of the Banyan network. For 2 × 2

Banyan networks, one can verify that any set of paths S such that each pair of paths

shares some link must either contain a single path, or be a set of two paths. The

lemma trivially holds in this case.

Assume the lemma holds for 2m−1 × 2m−1 Banyan networks, for some m ≥ 2. We

show it holds for the 2m×2m Banyan network N , using the recursive structure shown

in Figure 4-2. Take any set S of input, output paths through the Banyan network

N such that each pair of paths in S shares some link. If all paths in S have the

same first link, the lemma holds. If not, then either the last link in each path in S

is one of the first 2m−1 output ports, or the last link in each path in S is one of the

1In general, a family of sets is said to have the Helly property if for any subfamily of pairwise non-
disjoint sets, the intersection of the sets in the subfamily is non-empty [60]. For Banyan networks,
this lemma shows that the set of paths through the network has the Helly property, where each
path represents the set of links it contains, two paths are considered disjoint if they have no links in
common, and the intersection of a set of paths is the set of links common to all of them.

79

last 2m−1 output ports. This follows since if the last link in p1 ∈ S were one of the

first 2m−1 output ports and the last link in p2 ∈ S were one of the last 2m−1 output

ports, then their only shared link could be their first links; all the other paths in S,

which were assumed to share a link with p1 and a link with p2, by the structure of

the Banyan network must share their common first link, which we assumed was not

the case. Thus, either the last link in each path in S is one of the first 2m−1 output

ports, or the last link in each path in S is one of the last 2m−1 output ports. In

other words, for S ′ the set of paths that result when each path in S has its first link

removed, one of the two 2m−1 × 2m−1 Banyan networks in the recursive construction

of N contains all paths in S ′; let N ′ denote this 2m−1 × 2m−1 Banyan network. The

previous sentence implies that if paths p1, p2 ∈ S have the same first link, they must

also have the same second link. This, and our assumption that each pair of paths in

S shares some link imply that each pair of paths in S ′ shares some link. Now, the

lemma holds by the inductive hypothesis applied to N ′, which contains all paths in

S ′. 2

The Link Graph of a Banyan Network

We define the link graph G = (V, E) of a Banyan network as follows: the link graph

has a node for every input, output pair (i, j). Two nodes (i, j), (k, l) are connected

by an edge in the graph if the unique path from input i to output j shares a link

with the path from k to l. In Figures 4-3 and 4-4 we show the 4× 4 Banyan network,

and the associated link graph G. Consider link 2 in Figure 4-3. Link 2 is required for

any packet transmission from input 2 to outputs 1,2,3 or 4. Therefore in a packetized

model, at most one of these four transmissions can occur per time step. In the link

graph, this constraint is represented by a clique, that is a set of nodes with an edge

between each pair, {(2, 1), (2, 2), (2, 3), (2, 4)}; this corresponds to clique A in Figure

4-4. Similarly, link 8 is required for transmission from 3 to 3, 3 to 4, 4 to 3, and 4

to 4, so among these input, output pairs, at most one transmission can take place.

In the link graph, we have a clique among nodes {(3, 3), (3, 4), (4, 3), (4, 4)}. This

corresponds to clique B in the figure.

By Lemma 7 above, each clique in the link graph corresponds to a set of input,

80

Link 1

Link 3
Link 4

Link 5 Link 9
Link 10

Link 11
Link 12

Link 2
Link 6

Link 8

1
2

3
4

1

2

3
4

Link 7

Figure 4-3: A 4× 4 Banyan Network.

4

3

2

1

1 2 3 4
OUTPUT PORTS

Link Graph of 4 x 4 Banyan Network

INPUT
PORTS

Clique A

Clique B

Figure 4-4: The link graph corresponding to the above 4× 4 Banyan Network.

81

output pairs, all of whose paths contain some link l.

Valid Transmissions and Clique Constraints

We now show the connection between cliques in the link graph and sets of packets

that can be simultaneously transmitted without causing any packets to be dropped.

A valid transmission is a set of fractional packets sent at the same time step t, in

which for 0 ≤ h ≤ m, for each link between stages h and h + 1, the total traversing

that link at time step t + h is at most one. By Lemma 7, a transmission sending xij

from input i to output j is valid if and only if for each clique Q in the link graph G,

the following clique constraint is satisfied:

∑

(i,j)∈Q

xij ≤ 1. (4.1)

We will see that the structure of link graph G (which is derived from the topology of

the switch network) has an intimate connection with how much speedup is required

to maintain bounded backlog for all fluid policies on a Banyan network.

4.1.2 Definition of Fluid Policy and Packetized Policy

As mentioned in the previous section, one time step is set to be the time required

for a single crossbar switch to transmit a packet waiting at an input port across the

switch fabric and through an outgoing link. At each time step, a new fluid step is

made available to the packet-scheduling algorithm, which outputs a packetized step

for that time step. Buffering is only allowed at the input ports and output ports. The

switch uses virtual output queueing at each input port to avoid head-of-line blocking.

All packets are assumed to have the same size.

A Fluid Policy for an N ×N Banyan network is a sequence of valid transmissions

specifying the number of fractional packets that ideally would be sent over the multi-

stage switch. This is represented by a sequence of N ×N non-negative-valued, fluid

matrices {F (t)}t>0, where F
(t)
ij represents the fraction of a packet sent from input i of

the first stage at time step t, and with output j of the last stage as its destination.

Each fluid matrix must satisfy the constraint that the total fluid traversing any link

82

in the Banyan network is at most 1. A constant fluid policy is a fluid policy where

for some fluid matrix F , F (t) = F for all t.

A Packetized Policy for an N × N Banyan network is a sequence of valid trans-

missions where only whole packets are sent and received at each time step. It is

represented by a sequence of N × N packetized matrices, {P (t)}t>0 where P
(t)
ij has

value 1 if a packet is sent from input i at time step t, with output j as its destination;

otherwise it has value 0. Each packetized matrix must obey the constraint that for

each link in the network, at most one packet traverses it; in other words, no packet

collisions are tolerated in the packetized policy. Note that a {0, 1}-valued matrix is

a valid packetized matrix if and only if the set of entries with value 1 corresponds to

a stable set, that is, a set of nodes with no edges between them, in the link graph of

the switch network.

4.1.3 Definition of Cumulative Difference, Backlog, Speedup

It is convenient to record, for each input port i and output port j, the difference

between the cumulative number of fractional packets scheduled by the fluid policy

up to and including time t, and the cumulative number of whole packets sent by

the packetized policy up to and including time t. This information is stored in the

N × N matrix C(t), for t ≥ 0. In particular, C(0) := 0, the all zero matrix, and

C(t) :=
∑t

h=1(F
(h) − P (h)) for t ≥ 1. For time step t, and for a set of pairs of input

ports and output ports, we define their backlog to be the sum of corresponding entries

in (C(t))+. In order for a packet-scheduling algorithm to send a packet from input port

i to output port j, we require C
(t−1)
ij + F

(t)
ij > 0, just as for the crossbar switch. This

requirement reflects our interpretation of dC (t−1)
ij + F

(t)
ij e representing the number of

packets waiting at input port i ready to be sent to output port j; when this quantity

is zero, there is no packet to be scheduled. This requirement also ensures that the

packetized policy never gets ahead of the fluid policy it is emulating.

In general, a switch network is said to use speedup s ≥ 1 if all its switch elements

and all its internal links send packets s times as fast as the line rate of the input ports.

We model a scheduling algorithm using speedup s ≥ 1 by requiring that for each fluid

83

matrix in any fluid policy, the link usage totals at most 1/s for each link; that is, we

require each fluid matrix F to satisfy the following clique constraints (which are more

stringent than those of (4.1)): For each clique Q in the link graph,

∑

(i,j)∈Q

Fij ≤ 1/s. (4.2)

We say that an algorithm uses no speedup if s = 1.

We focus on solving the on-line, traffic scheduling problem, whose input at each

time step is the corresponding fluid matrix from a fluid policy. The goal at each time

step is to choose a packetized matrix so that backlog remains bounded for all time

steps. We say speedup s is sufficient for maintaining bounded backlog if there exists

a packet-scheduling algorithm using speedup s that maintains bounded backlog for

all fluid policies. Similarly, we say speedup s is necessary for maintaining bounded

backlog if every packet-scheduling algorithm that maintains bounded backlog uses

speedup at least s.

4.2 Results

We begin this chapter with a negative result. Specifically, we prove that bounded

backlog results of the type developed in the previous chapter for the crossbar switch

do not exist for arbitrary switch networks. In fact, this is true even for Banyan

networks for the simple case of a constant fluid policy. This motivates our analyzing

the necessary and sufficient speedup for maintaining bounded backlog. Specifically,

given a Banyan network we seek the minimum amount of speedup that is sufficient for

maintaining bounded backlog for all fluid policies. Universal bounds for this required

speedup are established.

First, as concrete motivation for the sequel, in Section 4.3, we show that already

for small Banyan networks, speedup is necessary for maintaining bounded backlog.

For the 4×4 Banyan network, we show speedup at least 4/3 is required for maintaining

bounded backlog.

84

Section 4.4 contains the core of our methodology. We characterize the required

speedup to maintain bounded backlog for all fluid policies in terms of two polytopes

derived from the link graph of a Banyan network. We first state a result, which

follows directly from a theorem of Koksal [37], characterizing the necessary and suf-

ficient speedup for maintaining bounded backlog for constant fluid policies. Our first

theorem strengthens this result, and proves that if speedup s is sufficient for main-

taining bounded backlog for all constant fluid policies, then in fact it is sufficient for

maintaining bounded backlog for arbitrary fluid policies.

In Section 4.5 we revisit the 4×4 Banyan network, and show, using the machinery

developed in Section 4.4, that speedup 4/3 is in fact necessary and sufficient for

maintaining bounded backlog for arbitrary fluid policies. In Section 4.6 we determine,

through analysis of polytopes and non-trivial computations that the necessary and

sufficient speedup to keep backlog bounded on 8× 8 Banyan networks is also 4/3.

In Section 4.7 we show that for a Banyan network with N input ports, speedup

s = log2 N + 1 is sufficient for maintaining bounded backlog for an arbitrary fluid

policy. Furthermore, in this case we show how to implement the packet-scheduling

algorithm of Section 4.4 to compute each packetized matrix in time polynomial in N .

4.3 Speedup is Required

In this section, we exhibit a behavior of the Banyan network that is fundamentally

different from the crossbar switch. We exhibit a constant fluid policy for which, using

no speedup, it is impossible to maintain bounded backlog. Recall the 4 × 4 Banyan

network in Figure 4-3. Consider the constant fluid policy, with each fluid matrix F (t)

equal to the matrix

F =





















1
2

0 0 1
2

0 1
2

1
2

0

1
2

0 1
2

0

0 1
2

0 1
2





















.

85

Note that each link in the network has total demand equal to unity. In other words,

for every clique Q in the link graph G (see Figure 4-4 above) we have

∑

(i,j)∈Q

Fij = 1,

and the above is indeed a valid fluid matrix. Suppose that at each time step, this

fluid matrix is requested, and knowing this stationary policy in advance, we wish

to choose a valid packetized policy so that the total backlog after M time steps, is

minimized. While we cannot transmit fractional values with packetized policies, if we

could transmit unit value along four of the eight pairs of positive entries in the fluid

matrix at one time step, and then transmit the remaining four at the next time step,

then the backlog would remain bounded. However, one can verify that a packetized

policy cannot transmit any more than three of the eight pairs of positive entries of

the fluid policy, at any given step. For instance, if (1, 1) is transmitted, this rules

out (1, 4), (3, 1), (2, 2). Then if, say, (2, 3) is transmitted, (3, 3) is ruled out, and of

the two that remain, {(4, 2), (4, 4)}, only one can be transmitted. The same can be

seen to be true for any possible set of choices. Therefore any packetized policy can

only transmit 3 units per time step, while the fluid policy transmits 4 units each time

step. Thus regardless of which packetized policy we choose, the backlog becomes

unbounded. In fact, we have proved that the minimum speedup required on a 4× 4

Banyan network for maintaining bounded backlog for any constant fluid policy is at

least 4/3. In Section 4.5 we show that this result is tight.

4.4 Characterization of Required Speedup

In this section we give a characterization of the required speedup for maintaining

bounded backlog for all fluid policies in Banyan networks. In addition, we develop

the essential elements of our polyhedral and combinatorial methodology which we

use throughout. We define the polytope P to be the convex hull of the set of valid

packetized matrices, and the polytope F to be the set of valid fluid matrices when no

86

speedup is used. Using terminology from combinatorics, we note that the polytopes P

and F are, respectively, the stable set polytope and the fractional stable set polytope of

the link graph of the Banyan network; the stable set polytope and the fractional stable

set polytope for general graphs have been studied extensively in the combinatorics

literature (see [27],[49] for details).

For Banyan networks, we have that P ⊆ F (since any convex combination of a

set of valid packetized matrices is a valid fluid matrix). The example of the 4 × 4

Banyan network in Section 4.3 above shows that this inclusion can be strict. For the

N ×N Banyan network, the dimension of P is N 2.

Recall that we model a scheduling algorithm using speedup s ≥ 1 by requiring for

each fluid matrix in any fluid policy, that its link usage totals at most 1/s for each

link. This is equivalent to requiring for all fluid matrices F (t) in any fluid policy, that

F (t) ∈ 1
s
F .

If P = F then every fluid matrix can be seen as a convex combination of packetized

matrices and so for any constant fluid policy, bounded backlog can be maintained

using no speedup (by simply scheduling the packetized matrices in the decomposition

at the right frequencies). In graph theoretic terms, P = F is equivalent to the link

graph being perfect (see [27]). Many classes of perfect graphs are known, and in

particular, the link graph of a crossbar switch is perfect, as it can be seen to be the

line graph of a complete bipartite graph. This is a graph-theoretic explanation of

the fact that no speedup is required for maintaining bounded backlog on crossbar

switches.

Koksal shows for layered, multistage switch networks, that it is possible to main-

tain bounded backlog for a constant, fluid policy scheduling fluid matrix F at each

time step if and only if F ∈ P [37]. This implies that using speedup s, bounded

backlog can be maintained for all constant fluid policies if and only if 1
s
F ⊆ P. We

use ideas similar to those used in the previous chapter to show that the necessary

and sufficient speedup for maintaining bounded backlog for all constant fluid policies

is the same as that for maintaining bounded backlog for arbitrary fluid policies. This

implies, for any switch network operating strictly slower than the minimum required

87

speedup, even for constant fluid policies, bounded backlog cannot be maintained; as

soon as the switch network runs at least as fast as the minimum required speedup,

then bounded backlog can be maintained for any fluid policy.

Theorem 7 Using speedup s, bounded backlog can be maintained for all arbitrary

fluid policies if and only if 1
s
F ⊆ P.

Proof: Because of Koksal’s result mentioned above, it suffices to exhibit, in the

case where 1
s
F ⊆ P, a packet-scheduling algorithm using speedup s that maintains

bounded backlog for any fluid policy.

Assume 1
s
F ⊆ P holds, so that for each fluid matrix F (t), (which is by definition

in 1
s
F when speedup s is used) we have F (t) ∈ P. We present a packet-scheduling

algorithm using speedup s that, for any fluid policy, maintains backlog at most N 2

per input port and per output port. The algorithm maintains the following invariant:

Invariant 4 C(t) ∈ N2P.

This invariant implies that no input port can have backlog more than N 2. We present

the algorithm below, which is modeled after Algorithm 3 of the previous chapter, and

prove it maintains the invariant above inductively. Note that the invariant holds at

time step t = 0, since C(0) = 0, which is in N2P.

Algorithm 4

Given a fluid policy, this packet-scheduling algorithm computes the packetized policy

as follows:

For t ≥ 0, by our assumption above that F (t+1) ∈ P, and assuming the invariant

holds at time step t, we have C(t) +F (t+1) ∈ (N2 +1)P. Since P is an N 2-dimensional

polytope, Caratheodory’s theorem gives that any point in P can be written as a convex

combination of at most N 2 + 1 vertices, which in this case are packetized matrices.

Thus, we can decompose C(t) + F (t+1) into a convex combination of at most N 2 + 1

vertices of (N 2+1)P. At least one matrix in the decomposition must now have weight

at least 1. Set packetized matrix P (t+1) to be one such matrix.

88

It follows that C(t+1) = C(t) + F (t+1) − P (t+1) ∈ N2P, and so the invariant holds

at time step t+1. Thus, Algorithm 4, for any fluid policy, maintains backlog at most

N2 per input port and per output port. 2

In the proof of the above result, we use Caratheodory’s Theorem to decompose

C(t) + F (t+1) into a convex combination of packetized matrices. Caratheodory’s The-

orem, however, is not constructive (unless one has a description of P in terms of

linear inequalities). We give a modified, packet-scheduling algorithm below that only

requires decomposing each fluid matrix F (t) into a convex combination of packetized

matrices, and that maintains bounded backlog for any fluid policy. We show in Sec-

tion 4.7 that for the case of a Banyan Network with N input ports and speedup

s = log2 N + 1, such a decomposition can be computed in time polynomial in N ;

thus, in this case the packet-scheduling algorithm below runs in time polynomial in

N and maintains bounded backlog for any fluid policy.

Again we assume that 1
s
F ⊆ P, so that for each fluid matrix F (t), (which is by

definition in 1
s
F when speedup s is used) we have F (t) ∈ P. The algorithm maintains

the following invariant:

Invariant 5 For all time steps t, we have matrices Q(1), . . . , Q(N2+1), which are ver-

tices of P, and non-negative coefficients λ1, . . . , λN2+1 (all of which may be different

at different time steps) such that

C(t) =
N2+1
∑

i=1

λiQ
(i),

and
N2+1
∑

i=1

λi = N2.

This invariant implies for all t, C(t) ∈ N2P, which means that the packet-scheduling

algorithm, for any fluid policy, maintains backlog at most N 2 per input port and per

output port at all time steps. We present the algorithm below and prove it maintains

the invariant at all time steps inductively. Note that the invariant holds at time t = 0

since here C(0) = 0 and so we could initially set for all i, λi := N2/(N2 + 1), and

Q(i) := 0.

89

Algorithm 5

For t ≥ 0, given C(t) and fluid matrix F (t+1), construct packetized matrix P (t+1) as

follows:

Since F (t+1) ∈ 1
s
F ⊆ P, this fluid matrix can be decomposed as

F (t+1) =
N2+1
∑

j=1

γjR
(j),

where for all j, γj ≥ 0 and R(j) are vertices of P, and the sum of γj’s is 1. It is this

decomposition that we compute in polynomial time for speedup s = log2 N + 1 for

Banyan networks in Section 4.7. Now, if we assume Invariant 5 holds for time step t,

we have

C(t) + F (t+1) =
N2+1
∑

i=1

λiQ
(i) +

N2+1
∑

j=1

γjR
(j).

The sum of λi’s and γj’s is N2 + 1. Let

T :=
N2+1
∑

i=1

λiQ
(i) +

N2+1
∑

j=1

γjR
(j).

Caratheodory’s theorem now tells us that T can also be expressed as a weighted sum

of just N2 + 1 matrices from the set {Q(i)} ∪ {R(j)}, with the weights summing to

N2 + 1. This follows from the fact that we have N 2 equalities defining T and one

equality constraining the sum of the λi’s and the γj’s, all these equalities being defined

on the variables {λi}∪{γj}. Here, the decomposition can be done in polynomial time:

as long as there are more than N 2 + 1 matrices with positive weights, we can reduce

this number by taking any nonzero vector y in the null space of the matrix defining

the N2 + 1 equalities and modifying the variables {λi} ∪ {γj} in the direction y until

one more variable becomes 0. This variable is then removed from consideration and

the process is repeated until we are down to at most N 2 + 1 matrices with positive

weights. Rename these matrices to be {Q(1), . . . , Q(k)} and the corresponding weights

to be {λ1, . . . , λk}. If k < N2 + 1, then for i : k + 1 ≤ i ≤ N 2 + 1, rename Q(i) := 0

and λi := 0.

90

Since the sum of λi’s is N2 +1, one of them must be at least 1. Let i′ be the least

i such that λi ≥ 1. Set P (t+1) to be Q(i′). Subtract one from λi′ . Thus,

C(t+1) = C(t) + F (t+1) − P (t+1) =
N2+1
∑

i=1

λiQ
(i),

with
∑N2+1

i=1 λi = N2, proving the invariant holds at time step t + 1. We have shown

that the packet-scheduling algorithm maintains, for any fluid policy, backlog at most

N2 per input port and per output port. 2

4.5 Speedup Required for 4× 4 Banyan Networks

In Section 4.3 we exhibited a constant fluid policy on a 4 × 4 Banyan network that

required speedup 4/3 for maintaining bounded backlog. Using the results of Section

4.4 above, we show that in fact speedup s = 4/3 is necessary and sufficient for

maintaining bounded backlog for arbitrary fluid policies on the 4×4 Banyan network.

F =











F11 F12 F13 F14

F21 F22 F23 F24

F31 F32 F33 F34

F41 F42 F43 F44











= 1
3











0 0 F13 F14

0 0 F23 F24

F31 F32 F33 F34

F41 F42 F43 F44











+ 1
3











F11 F12 0 0
F21 F22 0 0
F31 F32 F33 F34

F41 F42 F43 F44











+1
3











F11 F12 F13 F14

F21 F22 F23 F24

0 0 F33 F34

0 0 F43 F44











+ 1
3











F11 F12 F13 F14

F21 F22 F23 F24

F31 F32 0 0
F41 F42 0 0











Figure 4-5: We obtain the upper bound on speedup for the 4 × 4 Banyan network by

decomposing any 4× 4 fluid policy into four parts as shown above.

From the above discussion, it is sufficient to show 3
4
F ⊆ P for the 4× 4 Banyan

network. To show this, decompose any fluid matrix F into a linear combination of four

matrices, each with the four entries in one corner set to 0, as shown in Figure 4-5. The

weight of each matrix is 1/3. We then use the fact that one can further decompose any

of these four matrices into a convex combination of packetized matrices. This follows

since the subgraph corresponding to one of these matrices with a corner deleted, is the

91

complement of a so-called comparability graph. A comparability graph is such that its

edges can be oriented so they form a directed, acyclic, transitive graph D = (V, A).

Here transitive means that for any nodes u, v, w, if (u, v) ∈ A and (v, w) ∈ A, then

also (u, w) ∈ A. In figure 4-6 we exhibit such an orientation of the complement of the

subgraph obtained when the bottom right corner of the link graph of the 4×4 Banyan

network is removed. It is well known (see e.g. [27]) that complements of comparability

����������

	
���

Figure 4-6: This is the complement of a 4× 4 Banyan network link graph with the corner

removed. The edges are oriented so that edges between nodes in U and nodes in V are

directed towards V , edges between U and W are directed towards W , and edges between

V and W are directed towards W . Therefore this is a directed, acyclic, transitive graph.

graphs are perfect. Thus any fluid matrix can be written as a convex combination of

packetized matrices. Doing this for all four quadrants results in a nonnegative, linear

combination of valid packetized matrices, with the sum of weights at most 4/3. This

shows that 3
4
F ⊆ P. We can then use packet-scheduling Algorithm 4 above with

4/3 speedup to build, for any given fluid policy, a packetized policy that maintains

backlog at most 16 packets per input port and per output port.

92

4.6 Speedup Required for 8× 8 Banyan Networks

We determine, through detailed analysis of polytopes and computations using the

package cdd+2, that the necessary and sufficient speedup to keep backlog bounded

on 8×8 Banyan networks is 4/3. This section can be skipped without loss of continuity

by readers interested in the results of later sections.

2

3

4

1

6

7

5

8

2

3

4

1

6

7

8

5

INPUT OUTPUT
PORTSPORTS

8 x 8 BANYAN NETWORK

Figure 4-7: An 8× 8 Banyan network.

4.6.1 Lower Bound on Speedup for 8× 8 Banyan Networks

The lower bound of 4/3 on the speedup required to maintain bounded backlog follows

from a similar argument as for the lower bound on the 4 × 4 Banyan network in

Section 4.3. Consider the constant fluid policy that sends the following fluid matrix

at each time step:

2cdd+ is, according to its author Komei Fukuda, an “implementation of the Double Descrip-
tion Method [42] for generating all vertices (i.e. extreme points) and extreme rays of a gen-
eral convex polyhedron given by a system of linear inequalities.” See http://www.cs.mcgill.ca/ ˜
fukuda/soft/cddman/node2.html for details.

93

F =



















































1

2
0 0 0 0 1

2
0 0

0 1

2
0 0 1

2
0 0 0

0 0 1
2

0 0 0 0 1
2

0 0 0 1
2

0 0 1
2

0

1

2
0 0 0 1

2
0 0 0

0 1

2
0 0 0 1

2
0 0

0 0 1
2

0 0 0 1
2

0

0 0 0 1
2

0 0 0 1
2



















































.

One can verify that F satisfies the clique constraints (4.1), and so is a valid fluid

matrix. A total of eight units are transmitted by each fluid step. However, at most

six packets corresponding to positive-valued entries in F can be sent in any packetized

step. Indeed, at most three of the eight 1/2’s in F printed in boldface can be sent in

one packetized step, and the same holds for the other eight 1/2’s in F . Thus, for any

packet-scheduling algorithm using speedup less than 4/3, backlog will be unbounded.

Next, we determine an upper bound that matches this lower bound on backlog.

4.6.2 Upper Bound on Speedup for 8× 8 Banyan Networks

We determine that 4/3 speedup is sufficient3 to maintain bounded backlog for any

fluid policy on the 8× 8 Banyan network. We use the characterization in Theorem 7

that if 1
s
F ⊆ P, then speedup s is sufficient to maintain bounded backlog for any

fluid policy. Our strategy is to show that for every vertex v of F , we have (3/4)v ∈ P,

which implies the 4/3 upper bound on required speedup. The main difficulty is that

the number of vertices of F is too large to efficiently enumerate and check individually.

To address this problem, we show, using properties of the Banyan network including

certain symmetries of its link graph, that for a relatively small subset T of the vertices

3In fact, our technique determines the necessary and sufficient speedup to keep backlog bounded
for any fluid policy. However, since we rely on computations by cdd+ to show this, we included the
direct proof that 4/3 speedup is necessary to maintain bounded backlog in Section 4.6.1 above.

94

of F (defined below), we have

min{s ≥ 1 :
1

s
F ⊆ P} = min{s ≥ 1 :

1

s
T ⊆ P}.

We next use the software package cdd+ to enumerate the elements of T . We then

consider each element v ∈ T individually, and calculate min{s ≥ 1 : 1
s
v ∈ P}. Lastly,

we take the maximum of the previous calculation over all v ∈ T , and show it equals

4/3.

Outline

We outline the steps involved in determining min{s ≥ 1 : 1
s
F ⊆ P} = 4/3 for

8× 8 Banyan networks.

1. We first define the polytope FTIGHT that consists of all F ∈ F in which a certain

set of clique constraints (defined below) is tight. We show

min{s ≥ 1 :
1

s
F ⊆ P} = min{s ≥ 1 :

1

s
FTIGHT ⊆ P}. (4.3)

This allows us to focus on the set of vertices of FTIGHT , rather than all the

vertices of F .

2. We determine the number of linearly independent clique constraints for the 8×8

Banyan network, which is an upper bound on the number of positive entries in

any vertex in FTIGHT . We use this fact to classify the set of vertices of FTIGHT

into four (overlapping) groups, each defined by a property that is used in step

4.

3. We define the group of automorphisms Γ of the link graph of a Banyan network,

which represent the symmetries in the link graph. We show that for any vertex

v of FTIGHT , for Γ(v) the orbit (defined below) of this vertex under the group

of automorphisms, we have

min{s ≥ 1 :
1

s
v ∈ P} = min{s ≥ 1 :

1

s
Γ(v) ⊆ P}.

95

Thus, in calculating (4.3), it suffices to find min{s ≥ 1 : 1
s
T ⊆ P} for T a

subset of the vertices of FTIGHT whose orbit Γ(T) includes the set of all vertices

of FTIGHT .

4. We characterize a subset T of the vertices of FTIGHT whose orbit Γ(T) includes

the set of all vertices of FTIGHT , using the classification of vertices into groups

with certain properties from step 2. We use cdd+ to enumerate the elements

of T .

5. We calculate min{s ≥ 1 : 1
s
v ∈ P} for each v ∈ T by solving a linear program.

The maximum of this calculation over all v ∈ T is shown to equal 4/3.

1. Clique Constraints and FTIGHT

We start by considering the correspondance between links in a 2m × 2m Banyan

network and certain cliques in its link graph. We associate each link in a Banyan

network with the clique of nodes in the link graph corresponding to the input, output

pairs whose (unique) paths through the Banyan network contain this link. Consider

any link l between stages h and h+1. By construction of the Banyan network, this link

is connected to 2h consecutive input ports and is also connected to 2m−h consecutive

output ports. Furthermore this set of input ports is of the form [p2h + 1, (p + 1)2h]

for some integer p with 0 ≤ p ≤ 2m−h − 1, and similarly this set of outputs is of the

form [q2m−h + 1, (q + 1)2m−h] for some integer q with 0 ≤ q ≤ 2h − 1. We refer to

the clique in the link graph corresponding to this set of input, output pairs as Q
(m)
h,k

where k = p2h + q is an integer between 0 and 2m − 1.

We drop the superscript m in Q
(m)
h,k when it is clear from the context. For a 2m×2m

Banyan network, we let

Q := {Qh,k : 0 ≤ h ≤ m, 0 ≤ k ≤ 2m − 1}.

When we refer to Qh,k ∈ Q throughout this section, we implicitly assume h and k

satisfy 0 ≤ h ≤ m, 0 ≤ k ≤ 2m − 1. We sometimes abuse the notation and refer to

Qh,k ∈ Q as a clique in the link graph, where we mean the set of nodes corresponding

96

2 3 4 5 6 7 81
1
2
3
4
5
6
7
8

2 3 4 5 6 7 81 2 3 4 5 6 7 81
1
2
3
4
5
6
7
8

1
2
3
4
5
6
7
8

2,0
Q

2,1
Q

2,2
Q

2,3
Q

2,7
Q

2,6
Q

2,5
Q

2,4
Q

QQ Q Q Q Q Q Q

0,7
Q

0,6
Q

0,5
Q

0,4
Q

0,3
Q

0,2
Q

0,1
Q

0,0
Q

h=1

h=3h=2

h=0

Input
Ports

Output Ports Output Ports

Input
Ports

Output Ports

Input
Ports

Input
Ports

Output Ports

2 3 4 5 6 7 81
1
2
3
4
5
6
7
8

1,0
Q

1,2
Q

1,4
Q

1,6
Q

1,7
Q

1,5
Q

1,3

1,1
Q

Q

3,0 3,1 3,2 3,3 3,4 3,5 3,6 3,7

Figure 4-8: The set of cliques Q = {Qh,k}0≤h≤3,0≤k≤7 for an 8× 8 Banyan network. Each

clique Qh,k is represented by a rectangle of input, output pairs corresponding to the nodes

in the clique. For example, Q0,0 is the set of nodes corresponding to {(1, j) : 1 ≤ j ≤ 8}.

to the input, output pairs in Qh,k. The set of cliques Q for the 8× 8 Banyan network

is shown in Figure 4-8.

The set Q is especially useful since a consequence of Lemma 7 of Section 4.1.1

above is that any clique in the link graph is contained in some clique in Q. Also,

each clique in Q contains 2m nodes. We therefore refer to this set of cliques as the

maximum cliques for the link graph of a Banyan network. The following lemma, which

we prove for general, N × N Banyan networks, deals with constraints connected to

the set of maximum cliques Q.

Lemma 8 For any N × N Banyan network, for any F ∈ F , there is an F ′ ∈ F

such that F ≤ F ′ and for any Qh,k ∈ Q, we have
∑

(i,j)∈Qh,k
F ′

ij = 1. Furthermore, if

97

F is {0, 1}-valued, then there is a {0, 1}-valued F ′ with properties as in the previous

sentence.

Proof: Take any F ∈ F such that for some clique Qh,k ∈ Q, we have
∑

(i,j)∈Qh,k
Fij < 1. Let lh be the link between stages h and h + 1 of the Banyan

network for which the set of input, output pairs whose paths contain lh is Qh,k.

If h < m, consider the 2 × 2 switch element uh+1 in stage h + 1 of the Banyan

network that has lh as an incoming link. The sum of entries in F corresponding to

the input, output pairs whose paths contain an incoming link to switch element uh+1

equals the sum of entries in F corresponding to the input, output pairs whose paths

contain an outgoing link from uh+1. Thus, for at least one of the outgoing links of the

switch element uh+1, the corresponding clique Qh+1,k′ ∈ Q satisfies
∑

(i,j)∈Qh+1,k′
Fij <

1. Let lh+1 be such an outgoing link from switch element uh+1. We can repeat the

previous argument to produce a sequence of links l = lh, lh+1, . . . , lm, each of whose

corresponding clique Qh′,k′ satisfies
∑

(i,j)∈Qh′,k′
Fij < 1. We can apply the same

argument in the reverse direction (as long as h > 0) to produce a sequence of links

l0, l1 . . . , lh, each of whose corresponding clique Qh′,k′ satisfies
∑

(i,j)∈Qh′,k′
Fij < 1.

Now l0, l1, . . . , lh, . . . , lm is a path from some input port i to some output port j

of the Banyan network. We increase the value of Fij until one of the cliques Qh′,k′

associated with a link in this path satisfies
∑

(i,j)∈Qh′,k′
Fij = 1. This will not violate

any other clique constraints, since for each clique in the link graph, there is a clique

in Q that contains it, by Lemma 7 of Section 4.1.1. Since the only cliques in Q that

contain (i, j) are those associated with a link in the (unique) path l0, l1, . . . , lh, . . . , lm

from i to j, no clique constraint is violated.

We repeat this entire procedure until
∑

(i,j)∈Qh,k
Fij = 1 for each clique Qh,k ∈

Q. This requires at most N(log2 N + 1) iterations, since at least one link has its

corresponding clique-sum increased to equal 1 at each iteration.

If F is {0, 1}-valued, then the above procedure produces F ′ that is also {0, 1}-

valued.4 2

4In fact, the second sentence in the lemma is a direct consequence of Lemma 7 of Section 4.1.1.

98

Let FTIGHT be the set of all F ∈ F such that for any Qh,k ∈ Q, the sum
∑

(i,j)∈Qh,k
Fij = 1. Since P is R+ down-monotone, that is D ∈ P and 0 ≤ D′ ≤ D

implies D′ ∈ P [49], the lemma above implies

min{s ≥ 1 :
1

s
F ⊆ P} = min{s ≥ 1 :

1

s
FTIGHT ⊆ P}.

Thus, to prove a 4/3 upper bound on required speedup, it suffices to show for each

vertex v of FTIGHT, we have (3/4)v ∈ P.

We prove the following lemma, which gives a useful property of vertices of FTIGHT .

Lemma 9 For the 8 × 8 Banyan network, for any vertex v of FTIGHT , any i ∈

[1, 4], and any j, j ′ ∈ [1, 8] with j 6= j ′, at least one entry in the set S := {(2i −

1, j), (2i, j), (2i− 1, j ′), (2i, j ′)} must have value 0 in v.

Proof: For every clique in Q its intersection with S is either the empty set, S,

{(2i− 1, j), (2i, j)}, {(2i− 1, j ′), (2i, j ′)},{(2i− 1, j), (2i− 1, j ′)}, or {(2i, j), (2i, j ′)}.

If for each entry in S, the value in v were positive, we could increase the value of

each entry in {(2i − 1, j), (2i, j ′)} by some small δ > 0, and decrease the value of

each entry in {(2i− 1, j ′), (2i, j)} by δ, so that all still had values in (0, 1). Since the

sum over all the other clique constraints for cliques in Q would be unchanged, the

resulting v′ would be in FTIGHT . Similarly, we could decrease the value of each entry

in {(2i− 1, j), (2i, j ′)} by some small δ′ > 0, and increase the value of each entry in

{(2i − 1, j ′), (2i, j)} by δ′, so that all still had values in (0, 1). This proves that v is

not a vertex [13], contradicting our assumption, so the lemma holds. 2

2. The Number of Linearly Independent Maximum-Clique Constraints

We now consider the set of linear constraints that define the polytope FTIGHT. We

have F ∈ FTIGHT iff all of the following hold:

Maximum-Clique Constraints:5 For each Qh,k ∈ Q, we have
∑

(i,j)∈Qh,k
Fij = 1.

(4.4)

5Recall that we justified calling Q the set of maximum cliques, since as discussed just befor the
proof of Lemma 8 above, every clique in the link graph is contained in a clique in Q, and each clique
in Q contains 2m nodes.

99

Non-negativity Constraints: For each (i, j), we have Fij ≥ 0.

For the 8 × 8 Banyan network, there are 32 maximum-clique constraints and 64

non-negativity constraints. However, some of the maximum-clique constraints are

redundant. We specify a set C ⊆ Q of 20 cliques whose corresponding maximum-

clique constraints are linearly independent, and for which the other 12 maximum-

clique constraints are linear combinations of these 20 constraints.

C := {Q0,0, Q0,1, Q0,2, Q0,3Q0,4, Q0,5, Q0,6, Q0,7,

Q1,0, Q1,2, Q1,4, Q1,6,

Q2,0, Q2,2, Q2,4, Q2,6,

Q3,0, Q3,2, Q3,4, Q3,6.}

We verified using cdd+ that the set of maximum-clique constraints corresponding to

the cliques in C are linearly independent. It may be helpful to consult Figure 4-8 to

visualize the structure of the cliques in the next lemma.

Lemma 10 For the 8 × 8 Banyan network, the maximum-clique constraint corre-

sponding to each clique in Q\C can be expressed as a linear combination of maximum-

clique constraints corresponding to cliques in C.

Proof: For k ∈ {1, 3, 5, 7}, the maximum-clique constraint corresponding to

clique Q1,k is implied by the maximum-clique constraints for Q1,k−1, Q0,k−1, Q0,k.

In particular, for such k and for any 8 × 8 matrix (xij), we have
∑

(i,j)∈Q1,k
xij =

∑

(i,j)∈Q0,k−1
xij+

∑

(i,j)∈Q0,k
xij−

∑

(i,j)∈Q1,k−1
xij. Similarly, for k ∈ {1, 5}, the maximum-

clique constraint corresponding to clique Q2,k is implied by the maximum-clique con-

straints for Q2,k−1, Q1,k−1, Q1,k+1. For k ∈ {3, 7}, the maximum-clique constraint cor-

responding to clique Q2,k is implied by the constraints for cliques Q2,k−1, Q1,k−2, Q1,k.

Again similarly, for k ∈ {1, 3, 5, 7}, the maximum-clique constraint corresponding to

clique Q3,k is implied by the maximum-clique constraints for cliques

Q3,k−1, Q2,(k−1)/2, Q2,(k+7)/2. 2

Since there are 20 linearly independent maximum-clique constraints, any vertex

100

of FTIGHT can have at most 20 non-zero entries [13]. We use this fact to prove the

following lemma. Again, it may be helpful to consult Figure 4-8 to visualize the

structure of the cliques described in the lemma.

Lemma 11 Any vertex v of FTIGHT for the 8× 8 Banyan network has at least one of

the following properties:

1. There is an entry (i, j) such that vij = 1.

2. For some k ∈ {0, 2, 4, 6}, for each clique Q0,k, Q0,k+1, Q1,k, Q1,k+1, there are

exactly two entries whose corresponding values in v are positive.

3. For some k ∈ {0, 1, 2, 3}, for each clique Q2,k, Q2,k+4, Q3,2k, Q3,2k+1, there are

exactly two entries whose corresponding values in v are positive.

4. For every pair of rows 2i − 1, 2i, one of the rows has exactly two entries with

positive value in v, and the other row has exactly three entries with positive

value in v. Also, the same is true for every pair of columns 2j − 1, 2j. Also,

for each Qh,k ∈ Q, there are at least two entries in Qh,k whose corresponding

values in v are positive.

Proof: We show that any vertex v of FTIGHT that does not have Properties 1, 2,

or 3 above, must have Property 4. Assume v does not have Property 1; that is, for all

i, j ∈ {1, . . . , 8}, vij < 1. Since v satisfies the maximum-clique constraints (4.4), we

have that in each clique Qh,k ∈ Q, there are at least two nodes whose corresponding

value in v is positive. If we further assume v does not have Property 2 above, then

for each i ∈ {1, 2, 3, 4}, the pair of rows 2i− 1, 2i must contain at least 5 entries with

positive value in v; since v is a vertex, it can have at most 20 entries with positive

value, so each pair of rows 2i−1, 2i must contain exactly 5 entries with positive value

in v. Since each row must contain at least two entries with positive value (otherwise

Property 1 holds, which we assumed was not the case), we have for each pair of

rows 2i − 1, 2i that one must contain exactly two entries with positive values in v

and the other must contain three such entries. If we further assume v does not have

101

Property 3, a similar argument can be applied to every pair of columns 2j − 1, 2j,

showing that v must have property 4. 2

We use the above lemma, combined with symmetries of the link graph discussed

in the next step, to classify the vertices of FTIGHT in step 4.

3. The Automorphism Group of the Link Graph

We reduce the number of vertices of FTIGHT that need to be considered by taking

advantage of certain symmetries of the link graph. This is similar to the technique

used by Deza et al. [20] to characterize the vertices of the metric polytope; Deza et

al. use the symmetry group of this polytope to enumerate orbits (defined below) of

the vertices, as well as to characterize certain relations between these orbits. Here,

we explore certain symmetries of the polytope P, which can be expressed in terms of

the automorphism group of the link graph.

The automorphism group Γ for a graph G = (V, E) with nodes V and edges E is

defined to be the set of bijections from V to V that preserve edges; that is, a bijection

γ : V → V is in Γ iff for all pairs of nodes n1, n2 ∈ V (with n1 6= n2) there is an edge

in E between n1 and n2 if and only if there is an edge in E between γ(n1) and γ(n2).

Note that Γ so defined is indeed a group. For a matrix F with an entry corresponding

to each node in V , we let γ(F) denote the matrix with (i, j) entry equal to Fγ((i,j)).

For a set T of such matrices, we let Γ(T) := {γ(F)}F∈T,γ∈Γ denote the orbit of the set

T under Γ. For any γ ∈ Γ, for any S a stable set (clique) of nodes in V , we have γ(S)

is also a stable set (clique) of nodes in V . The main property of the automorphism

group that we use below is stated in the following lemma.

Lemma 12 For Γ the automorphism group of the link graph of a 2m × 2m Banyan

network, for any γ ∈ Γ, any F ∈ F , and any s ≥ 1, we have (1/s)F ∈ P iff

(1/s)γ(F) ∈ P.

Proof: If (1/s)F can be expressed as a convex combination
∑

λjR
(j) of vertices of

P, then (1/s)γ(F) can be expressed as the convex combination
∑

λjγ(R(j)) of vertices

of P; here, for each j, γ(R(j)) is a valid packetized matrix (that is, the entries with

value 1 form a stable set in the link graph) since automorphisms of the link graph

102

map stable sets to stable sets. 2

The lemma above implies for T ⊆ FTIGHT such that Γ(T) is the set of vertices of

FTIGHT, we have

min{s ≥ 1 :
1

s
FTIGHT ⊆ P} = min{s ≥ 1 :

1

s
T ⊆ P}. (4.5)

We now consider some specific automorphisms for the link graph G = (V, E) of a

Banyan network. For any w, l : 0 ≤ w ≤ m−1, 0 ≤ l ≤ 2m−w−1−1, define the bijection

from V to V that swaps the consecutive sets of rows R1 := [(2l)2w + 1, (2l + 1)2w]

and R2 := [(2l + 1)2w + 1, (2l + 2)2w] as

γrows

R1↔R2
((i, j)) :=



























(i + 2w, j), if i ∈ R1

(i− 2w, j), if i ∈ R2

(i, j), otherwise.

Similarly, for each w, l : 0 ≤ w ≤ m− 1, 0 ≤ l ≤ 2m−w−1− 1, define the bijection from

V to V that swaps the consecutive sets of columns C1 := [(2l)2w + 1, (2l + 1)2w] and

C2 := [(2l + 1)2w + 1, (2l + 2)2w] as

γcolumns

C1↔C2
((i, j)) :=



























(i, j + 2w), if j ∈ C1

(i, j − 2w), if j ∈ C2

(i, j), otherwise.

Define the bijection γflip : V → V such that γflip((i, j)) := (j, i). Lastly, let γ identity

denote the bijection mapping each (i, j) to itself. All the bijections defined above are

automorphisms of the link graph, since for each h, k : 0 ≤ h ≤ m, 0 ≤ k ≤ 2m−1, they

map the clique Qh,k onto a clique, and for every edge in the link graph, its endpoints

are contained in at least one such clique Qh,k. Also, each of the automorphisms

defined above is its own inverse.

4. Classifying the Vertices of FTIGHT using the Automorphism Group of

the Link Graph for 8× 8 Banyan Networks

For each of the four classes of vertices of FTIGHT in Lemma 11, we find a subset

103

of such vertices whose orbit under the automorphism group Γ contains the original

class. This will allow us, by (4.5) above, to look at each vertex v in the four resulting

subsets and calculate min{s ≥ 1 : 1
s
v ∈ P}; the largest value obtained is then the

speedup required to maintain bounded backlog for the 8× 8 Banyan network.

We consider each of the four properties in Lemma 11 in turn. We denote the set

of vertices of FTIGHT that have Property i from this lemma by Ti. For each Property

i, we use the automorphism group to show for the subset T ′
i ⊆ Ti that satisfies certain

additional properties (specified below), we have Ti ⊆ Γ(T ′
i). Then we enumerate the

elements of T ′
i using cdd+.

The program cdd+ takes a set of linear inequalities as input, and outputs the

vertices of the polytope defined by these inequalities; one may specify that only

vertices of the polytope that make a specified subset of the inequalities tight should

be found.6 Each time we used cdd+, we input the maximum-clique constraints

(4.4) corresponding to each clique in C, and the non-negativity constraints. We also

specified certain non-negativity constraints to be tight, depending on the subcase

being considered. In each subcase, cdd+ produced the list of corresponding vertices

in less than two days. It is necessary to consider the subsets T ′
i since the number

of elements in each set Ti is so large that cdd+ could not enumerate them without

the computation involved overflowing the 1Gb RAM of the computer (with 2.2 GHz

processor) we used.

Vertices of FTIGHT with Property 1

First, consider the subset T1 of vertices of FTIGHT for the 8 × 8 Banyan network

such that Property 1 holds from Lemma 11. That is, for each v ∈ T1, there is an

entry (i, j) such that vij = 1. Let T ′
1 denote the set of vertices v of FTIGHT for which

v11 = 1 and v55 = v77 = 0. We will prove the following lemma.

Lemma 13 T1 = Γ(T ′
1).

Proof: Since automorphisms of the link graph are bijections we have Γ(T ′
1) ⊆ T1.

To show the opposite inclusion, take any v ∈ T1, and let (i, j) be some entry such

6The cdd+ software can also perform more general computations, but we describe only the
functions we used.

104

that vij = 1. It suffices to consider v such that i ≤ 4 by the following argument: If

we show for each v with corresponding i ≤ 4 that there exists a v ′ ∈ T ′
1 and γ ∈ Γ

such that γ(v′) = v, then this would imply for any v ∈ T1 with i ≥ 5 there exist a

v′ ∈ T ′
1, γ ∈ Γ such that γ(v′) = γrows

{1,2,3,4}↔{5,6,7,8}(v); thus, γrows

{1,2,3,4}↔{5,6,7,8} ◦γ(v′) = v,

so v ∈ Γ(T ′
1), which would imply T1 ⊆ Γ(T ′

1) thus proving the lemma. We use a

similar argument many times below, but omit the detailed explanation, indicating

only the automorphism(s) involved.

Arguing as above, it suffices to consider v such that i ≤ 2, since for v with i ∈ [3, 4],

we have γrows

{1,2}↔{3,4}(v) has an element in the first two rows with value 1. Similarly, it

suffices to consider v such that i = 1, since for v with i = 2, we have γ rows

{1}↔{2}(v) has

an element in the first row with value 1.

We can apply a similar procedure to the columns, showing it suffices to consider

v ∈ T1 such that v11 = 1. By Lemma 9, one of the entries (5, 5), (6, 5), (5, 6), (6, 6) in

v has value 0. Using a subset of the automorphisms {γrows

{5}↔{6}, γ
columns

{5}↔{6}}, it suffices

to consider v with value 0 at (5, 5). By a similar argument, using a subset of the

automorphisms {γrows

{7}↔{8}, γ
columns

{7}↔{8}}, it suffices to consider v with value 0 at (7, 7). In

summary, we have argued that it suffices to consider v ∈ T1 such that v11 = 0 and

v55 = v77 = 0. Such a v is in T ′
1, and so is in Γ(T ′

1). We have thus shown T1 ⊆ Γ(T ′
1),

proving the lemma. 2

We enumerated each vertex in T ′
1 using cdd+. There are 17148 such vertices. An

example of a vertex in T ′
1 is given in Figure 4-9.































1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0































Figure 4-9: A vertex of FTIGHT in T ′
1.

Vertices of FTIGHT with Property 2

Next, consider the subset T2 of vertices of FTIGHT for the 8×8 Banyan network such

105

that Property 2 holds from Lemma 11. That is, for some k ∈ {0, 2, 4, 6}, for each

clique Q0,k, Q0,k+1, Q1,k, Q1,k+1, there are exactly two entries whose corresponding

values in v are positive. We define T ′
2 ⊆ T2 to be the set of vertices v of FTIGHT such

that for one of the nine subcases 1a, 1b, 1c, 2a, 2b, 2c, 2d, 2e, 2f below, the entries of

the 2× 8 matrix in this subcase marked with a + correspond to the positive-valued

entries of the first two rows of v, and the entries marked with a 0 correspond to the

0-valued entries in the first two rows of v.

Case 1a:







+ + 0 0 0 0 0 0

0 0 0 0 + + 0 0





 ,

Case 1b:







+ + 0 0 0 0 0 0

0 0 0 0 + 0 + 0





 ,

Case 1c:







+ 0 + 0 0 0 0 0

0 0 0 0 + 0 + 0





 ,

Case 2a:







+ 0 0 0 + 0 0 0

+ 0 0 0 + 0 0 0





 ,

Case 2b:







+ 0 0 0 + 0 0 0

+ 0 0 0 0 + 0 0





 ,

Case 2c:







+ 0 0 0 + 0 0 0

+ 0 0 0 0 0 + 0





 ,

Case 2d:







+ 0 0 0 + 0 0 0

0 + 0 0 0 + 0 0





 ,

Case 2e:







+ 0 0 0 + 0 0 0

0 + 0 0 0 0 + 0





 ,

Case 2f:







+ 0 0 0 + 0 0 0

0 0 + 0 0 0 + 0





 .

We now prove the following lemma.

106

Lemma 14 T2 ⊆ Γ(T ′
2).

Proof: It suffices to consider the set of v ∈ T2 such that for each clique

Q0,0, Q0,1, Q1,0, Q1,1, there are exactly two entries whose corresponding values in v are

positive. This follows since if Property 2 holds from Lemma 11 for some k ∈ {2, 4, 6},

then using a subset of automorphisms {γrows

{1,2,3,4}↔{5,6,7,8}, γ
rows

{1,2}↔{3,4}} as in the proof

of Lemma 13, we can find a γ ∈ Γ such that Property 2 holds for k = 0 for γ(v). In

arguing below that it suffices to consider v ∈ T2 with certain additional properties,

we employ automorphisms in Γ that preserve the properties previously argued for; by

the end of the argument, we will have shown that it suffices to consider v ∈ T2 that

have the properties defining T ′
2, thus proving the lemma.

It suffices to consider the set of v ∈ T2 such that not only for each clique

Q0,0, Q0,1, Q1,0, Q1,1 are there exactly two entries whose corresponding values in v

are positive, but also v11 > 0. The latter property can be obtained by using a subset

of the automorphisms {γcolumns

{1,2}↔{3,4}, γ
columns

{1}↔{2}, γ
rows

{1}↔{2}}. We now have that one of the

positive-valued entries in v among the entries in Q1,0 is (1, 1), and from above we have

that there are exactly two positive-valued entries in v among Q1,0. We consider two

cases below (each with subcases), which depend on the row that the positive-valued

entry of v among the entries Q1,0 \ {(1, 1)} is in.

Case 1: For (i1, j1) the entry in Q1,0 \ {(1, 1)} = [1, 2]× [1, 4] \ {(1, 1)} with positive

value in v, we have i1 = 1.

It suffices to consider (i1, j1) ∈ {(1, 2), (1, 3)}, since if (i1, j1) = (1, 4), then

γcolumns

{3}↔{4}(v) has positive entries at (1, 1) and (1, 3).

Recall that in each of Q0,0 = {1} × [1, 8], Q0,1 = {2} × [1, 8], Q1,0 = [1, 2] ×

[1, 4], there are exactly two entries with positive value in v; in this case, the

two entries with positive value in row 2 must occur in a subset of columns

[5, 8]. By similar arguments as above, using a subset of the automorphisms

{γcolumns

{5,6}↔{7,8}, γ
columns

{5}↔{6}, γ
columns

{7}↔{8}}, we can assume v2,5 > 0, and the other entry

in row two with positive value (i2, j2) is in {(2, 6), (2, 7), (2, 8)}. It suffices to

consider v such that (i2, j2) ∈ {(2, 6), (2, 7)}, since if (i2, j2) = (2, 8), then

107

γcolumns

{7}↔{8}(v) has positive entries at (2, 5) and (2, 7). Also, it suffices to consider

v for which j1 ≤ j2 − 4, since for v such that this is not the case, γrows

{1}↔{2} ◦

γcolumns

{1,2,3,4}↔{5,6,7,8}(v) has this property, and preserves the other properties we have

discussed.

Thus, we have argued that it suffices to consider v ∈ T2 such that: v11 >

0; v25 > 0; of the two remaining positive-valued entries in the first two rows of

v, one (i1, j1) is in {(1, 2), (1, 3)} and the other (i2, j2) is in {(2, 6), (2, 7)}; and

j1 ≤ j2 − 4. In other words, v belongs to Case 1a, 1b, or 1c in the definition of

T ′
2 above.

Case 2: For (i1, j1) the entry in Q1,0 \ {(1, 1)} = [1, 2]× [1, 4] \ {(1, 1)} with positive

value in v, we have i1 = 2.

It suffices to consider (i1, j1) ∈ {(2, 1), (2, 2), (2, 3)}, since if (i1, j1) = (2, 4),

then γcolumns

{3}↔{4}(v) has positive entries at (1, 1) and (2, 3).

Of the two entries with positive value in Q1,1 = [1, 2]× [5, 8], one must be in the

first row and the other in the second in order that there are exactly two entries

with positive value in v in each row, which we assumed above was the case. Let

(1, j ′) be one such entry and (2, j2) be the other. By similar arguments as above,

using a subset of {γcolumns

{5,6}↔{7,8}, γ
columns

{5}↔{6}}, we can assume j ′ = 5. Also, it suffices

to consider v such that (2, j2) ∈ {(2, 5), (2, 6), (2, 7)} since if (2, j2) = (2, 8),

then γcolumns

{7}↔{8}(v) has this property. Lastly, it suffices to consider v for which

j1 ≤ j2 − 4, since for v such that this is not the case, γcolumns

{1,2,3,4}↔{5,6,7,8}(v) has

this property, and preserves the other properties we have discussed.

Thus, we have argued that it suffices to consider v ∈ T2 such that: v11 > 0; v15 >

0; of the two remaining positive-valued entries in the first two rows of v, one

is (2, j1) ∈ {(2, 1), (2, 2), (2, 3)} and the other is (2, j2) ∈ {(2, 5), (2, 6), (2, 7)};

and j1 ≤ j2 − 4. In other words, v belongs to Case 2a,2b,2c,2d,2e, or 2f in the

definition of T ′
2 above.

In summary, we argued above that in proving T2 ⊆ Γ(T ′
2), it suffices to show for

each v ∈ T2 corresponding to one of the nine subcases above, that v ∈ Γ(T ′
2). Since

108

every vertex of FTIGHT corresponding to one of the nine subcases above is by definition

in T ′
2, we have proved the lemma. 2

We enumerated each vertex in T ′
2 by using cdd+ to enumerate the vertices corre-

sponding to each subcase 1a, 1b, 1c, 2a, 2b, 2c, 2d, 2e, 2f separately.7 Figure 4-10 gives

an example of two vertices in T ′
2.































2
3

0 0 0 1
3

0 0 0
0 1

3
0 0 0 0 2

3
0

0 0 2
3

0 1
3

0 0 0
0 0 0 1

3
0 1

3
0 1

3
1
3

0 1
3

0 1
3

0 0 0
0 1

3
0 0 0 0 0 2

3

0 1
3

0 0 0 2
3

0 0
0 0 0 2

3
0 0 1

3
0































,































2
7

0 0 0 5
7

0 0 0
0 0 5

7
0 0 0 2

7
0

2
7

0 0 0 0 0 0 5
7

0 3
7

0 2
7

0 2
7

0 0
0 4

7
2
7

0 0 0 0 1
7

0 0 0 1
7

0 5
7

1
7

0
0 0 0 4

7
2
7

0 0 1
7

3
7

0 0 0 0 0 4
7

0































Figure 4-10: Two vertices of FTIGHT in T ′
2. The vertex v on the left is in subcase 2e of T ′

2;

this vertex v is such that min{s ≥ 1 : (1/s)v ∈ P} = 4/3. The vertex on the right is in

subcase 2f of T ′
2.

Vertices of FTIGHT with Property 3

Note that for T3 the set of vertices of FTIGHT for the 8 × 8 Banyan network such

that Property 3 holds from Lemma 11, we have T3 ⊆ Γ(T2), because for any v ∈ T3,

we have γflip(v) ∈ T2. This, and Lemma 14, imply the following lemma.

Lemma 15 T3 ⊆ Γ(T ′
2).

Since we enumerated the elements of T ′
2 already, no new vertices need to be enu-

merated in this case.
7In order to reduce the run-time of cdd+ on each of the above nine cases, we specified

that certain entries (which depend on the subcase being computed) among the bottom six rows
[3, 8] × [1, 8] be set to 0. For subcases 2a,2b,2d, we set v53 = v77 = 0; by Lemma 9 any ver-
tex of FTIGHT has value 0 in at least one entry in {(5, 3), (5, 4), (6, 3), (6, 4)}, and using automor-
phisms in {γcolumns

{3}↔{4}, γ
rows

{5}↔{6}} (which do not affect the set of positions in the first two rows with

positive entries in v) it suffices to consider vertices v in which v53 = 0. A similar argument im-
plies that it suffices to consider vertices v such that v77 = 0. Using similar arguments, we jus-
tify setting v53 = 0 in subcases 2c,2e; setting v55 = v77 = 0 in subcases 1a, 1c; and setting
v53 = v75 = 0 in subcase 1b. In each of the nine subcases defining T ′

2, we specified to cdd+

which entries must be set to 0, but did not specify that the entries corresponding to a + be strictly
positive; thus, the output in each case is the set of vertices of FTIGHT with 0’s in the first two
rows as specified by the case and with some entries set to 0 in the other rows as specified in this
footnote. The number of vertices output by cdd+ in each case is given in the following table.
Case: 1a 1b 1c 2a 2b 2c 2d 2e 2f
Vertices: 10792 33252 131452 1548 2796 11248 14776 70640 401552

109

Vertices of FTIGHT with Property 4

Lastly, we consider the vertices v ∈ T4 of FTIGHT for the 8 × 8 Banyan network

such that Property 4 holds from Lemma 11. That is, for every pair of rows 2i− 1, 2i,

one of the rows has exactly two entries with positive value in v, and the other row

has exactly three entries with positive value in v. Also, the same is true for every

pair of columns 2j − 1, 2j. Also, for each Qh,k ∈ Q, there are at least two entries in

Qh,k whose corresponding values in v are positive.

Using a subset of the automorphisms {γrows

{1}↔{2}, γ
rows

{3}↔{4}, γ
rows

{5}↔{6}, γ
rows

{7}↔{8}}, it suf-

fices to consider v such that for every pair of rows 2i − 1, 2i, row 2i − 1 has exactly

two entries with positive value in v, and row 2i has exactly three entries with positive

value in v. Similarly, it suffices to consider v that in addition to the properties al-

ready mentioned, have the property in the previous sentence for each pair of columns

2j − 1, 2j.

Let T ′
4 denote the set of vertices satisfying the above properties and all the prop-

erties described in the First Case or all the properties described in the Second Case

below:

First Case: The number of entries in Q1,0 with positive value in v equals the number

of entries in Q1,2 with positive value in v.

It suffices to consider v for which there are exactly two entries in Q1,0 (and

so also in Q1,2) with positive value. This follows since the only other possible

number of such entries is three, and in this case γrows

{1,2,3,4}↔{5,6,7,8}(v) has exactly

two entries in Q1,0 and also in Q1,2 with positive value.

Second Case: The number of entries in Q1,0 with positive value in v does not equal

the number of entries in Q1,2 with positive value in v.

One of the cliques Q1,0, Q1,2 must have exactly two entries with positive value

in v, and the other must have exactly three such entries. It suffices to consider

v for which exactly two entries in Q1,0 have positive value, since otherwise

γrows

{1,2}↔{3,4}(v) has this property. Similarly, since one of the cliques Q2,0, Q2,1

has exactly two entries with positive value in v, and the other has exactly

110

three such entries, it suffices to consider v for which exactly two entries in Q2,0

have positive value (otherwise γcolumns

{1,2}↔{3,4}(v) has this property). Similarly, it

suffices to consider v for which exactly two entries in Q2,3 have positive value,

since otherwise γcolumns

{5,6}↔{7,8}(v) has this property. Lastly, it suffices to consider

v for which exactly two entries in Q1,4 have positive value, since otherwise

γrows

{5,6}↔{7,8}(v) has this property.

The above argument implies the following lemma.

Lemma 16 T4 ⊆ Γ(T ′
4).

Two examples of vertices in T ′
4 are given in Figure 4-11.































2
3

0 0 0 0 0 0 1
3

0 0 0 1
3

0 1
3

0 1
3

0 0 2
3

0 0 1
3

0 0
0 1

3
0 0 1

3
0 1

3
0

1
3

0 0 0 2
3

0 0 0
0 1

3
1
3

0 0 0 0 1
3

0 0 0 1
3

0 0 2
3

0
0 1

3
0 1

3
0 1

3
0 0































,































0 0 0 3
5

2
5

0 0 0
0 2

5
0 0 0 2

5
0 1

5

0 0 0 1
5

0 0 4
5

0
3
5

0 1
5

0 0 1
5

0 0
0 0 4

5
0 0 0 1

5
0

0 1
5

0 0 3
5

0 0 1
5

0 2
5

0 0 0 0 0 3
5

2
5

0 0 1
5

0 2
5

0 0































Figure 4-11: Two vertices of FTIGHT in T ′
4. The vertex on the left is in the first case of T ′

4.

The vertex on the right is in the second case of T ′
4.

We did not use cdd+ in this case, but instead enumerated the vertices of T ′
4

directly. One way to enumerate each element of T ′
4 is to first enumerate each possible

subset S of 20 elements of {(i, j) : 1 ≤ i ≤ 8, 1 ≤ j ≤ 8} such that for each

k ∈ [1, 4], there are exactly two elements of S in row 2k − 1, three elements of

S in row 2k, two elements of S in column 2k − 1, three elements of S in column

2k, and each clique Qh,k ∈ Q contains at least two elements of S. For such an S,

there is at most one vertex of FTIGHT with positive values in each entry of S, and

if there is one it can be found by a single matrix inversion; this follows since there

are exactly 20 linearly independent maximum-clique constraints corresponding to the

set of maximum-cliques C defined in step 2, that in addition to the non-negativity

constraints define FTIGHT . There are 1344 vertices in the First Case above, and 243

in the Second Case above.

111

We let T := T ′
1 ∪ T ′

2 ∪ T ′
4. By the lemmas above, we have that the set of vertices

of FTIGHT is contained in Γ(T).

5. Testing each vertex in T

We enumerated each element of the subset T of vertices of FTIGHT in step 4 above.

We now calculate min{s ≥ 1 : 1
s
v ∈ P} for each v ∈ T . This can be done by solving

the following linear program, which we call LP1, for each v ∈ T :

min
∑

λi such that

v ≤
∑

λiD
(i),

∀i, λi ≥ 0,

where {D(i)} is the set of vertices of P. This linear program has, in addition to the

non-negativity constraints, 64 inequality constraints–one for each entry in v. The

number of variables λi is the number of vertices of P, which is quite large. By the

definition of P, its vertices are 8 × 8, {0, 1}-valued matrices that satisfy the clique

constraints (4.1). By Lemma 8, each vertex D(i) of P can be dominated by a vertex

of P for which the maximum-clique constraints (4.4) are tight. We then have that

the following linear program LP2 has the same optimum value as LP1 above:

min
∑

λj such that

v ≤
∑

λjM
(j),

∀j, λj ≥ 0,

where {M (j)} is the set of vertices of P for which the maximum-clique constraints

(4.4) are tight. Here, the number of variables λj is the number of such vertices, which

we show in the following lemma is 4096.

Lemma 17 For the 8× 8 Banyan network, there are exactly 4096 = 212 vertices of

P that satisfy the maximum-clique constraints (4.4).

Proof: For each vertex M (j) of P that satisfies the maximum-clique constraints,

there is exactly one entry in each maximum-clique Qh,k ∈ Q with value 1 (the other

7 entries have value 0). Thus, there are exactly eight entries in M (j) with value 1.

We count how many ways there are to choose the eight entries in M (j) with value 1.

112

There are eight entries in Q1,0 = [1, 2] × [1, 4], each of which could be set to 1.

Having set the values of M (j) for entries in Q1,0, there are four possible entries in

Q1,2 = [3, 4]× [1, 4] that could be set to 1 (due to Q2,0 and Q2,1). Similarly, there are

eight possible ways to set the values in entries Q1,5 = [5, 6] × [5, 8]. Having set the

values of M (j) for entries in Q1,5, there are four possible entries in Q1,7 = [7, 8]× [5, 8]

that could be set to 1 (due to Q2,6 and Q2,7). We have shown that there are (8 · 4)2 =

210 ways to set the values of M (j) in entries ([1, 4]× [1, 4]) ∪ ([5, 8]× [5, 8]).

Having set the values of M (j) in entries ([1, 4] × [1, 4]) ∪ ([5, 8] × [5, 8]), we now

examine how many ways there are to set the values of the remaining entries. The

two columns corresponding to the two entries in [1, 4] × [1, 4] that have been set to

1 cannot contain another entry with a 1 (due to Q3,0, Q3,1, Q3,2, Q3,3). Similarly, the

two rows corresponding to the two entries in [5, 8] × [5, 8] that have been set to 1

cannot contain another entry with a 1 (due to Q0,4, Q0,5, Q0,6, Q0,7). This leaves two

columns and two rows in [5, 8]× [1, 4] that could have an entry set to 1. Since each

row (and each column) can have at most a single entry set to 1, there are 2 ways to

select the two entries in [5, 8]× [1, 4] to be set to 1. A symmetric argument gives that

there are 2 ways to select the two entries in [1, 4]× [5, 8] to be set to 1. Thus, there

are a total of exactly 210 · 22 = 4096 ways to set the entries in M (j), showing that

there are 4096 vertices of P that satisfy all the maximum-clique constraints. 2

A way to reduce the size of the linear program LP2 is to include only the inequality

constraints corresponding to entries in v that are positive valued (in addition to the

non-negativity constraints), since the inequality constraints corresponding to 0-valued

entries of v are implied by the non-negativity constraints. Since as shown in step 2

above, there are at most 20 entries in any vertex v of FTIGHT that have positive

value, we can reduce the number of inequalities connected with the maximum-clique

constraints to 20.

We solved the resulting linear program for each v ∈ T using Matlab, and found

that the maximum over all v ∈ T of the optimum value is 4/3. We thus determined

that 4/3 is an upper bound on the speedup required to maintain bounded backlog for

8× 8 Banyan networks.

113

4.7 A Greedy Algorithm for Decomposing Fluid

Matrices

We now give a greedy algorithm for decomposing any fluid matrix on a Banyan

network. This algorithm is an extension of the maximal matching algorithm used by

Smiljanić on N ×N crossbar switches [51].

Theorem 8 For a Banyan network with N input ports, we exhibit an algorithm (Al-

gorithm 6 below) that, for any F ∈ 1
log2 N+1

F , decomposes F into a convex combination

of N2 + 1 vertices of P; the algorithm runs in time polynomial in N .

An immediate corollary is 1
log2 N+1

F ⊆ P. Using Algorithm 6 below as a subroutine in

Algorithm 5, we have our main theorem for Banyan networks, which gives an upper

bound on the speedup required for maintaining bounded backlog for any fluid policy.

Theorem 9 For a Banyan network with N input ports, we have a packet-scheduling

algorithm using speedup log2 N+1 that maintains bounded backlog for any fluid policy,

and that runs in time polynomial in N .

We now prove Theorem 8.

Proof of Theorem 8: It suffices to show for any F ∈ 1
log2 N+1

F , that one can

compute in time polynomial in N , a decomposition of (log2 N + 1)F into a non-

negative, linear combination

(log2 N + 1)F =
N2
∑

j=1

γjR
(j), (4.6)

with ∀j, R(j) a valid packetized matrix, and
∑N2

j=1 γj ≤ log2 N + 1. This follows

since if we set R(N2+1) := 0, and γN2+1 := log2 N + 1 −
∑N2

j=1 γj, we have F =
∑N2+1

j=1
γj

log2 N+1
R(j), the desired convex combination. The greedy algorithm below

produces the decomposition (4.6). We use the notation that for a stable set S of the

link graph G of a Banyan network, χS denotes the N × N packetized matrix with

value 1 at entries corresponding to elements of S and with value 0 otherwise.

114

Algorithm 6

Let F be a given fluid matrix in 1
log2 N+1

F .

1. Set F̂ ← (log2 N + 1)F and set j ← 1.

2. Repeat while F̂ 6= 0:

• Find a maximal stable set in the link graph G restricted to the set of nodes

with positive value in F̂ . Call it Sj.

• Set γj ← min(k,l)∈Sj
F̂kl.

• Set R(j) ← χSj .

• Set F̂ ← F̂ − γjR
(j) and then increment j by 1.

Since at each iteration of step 2, at least one entry of F̂ is set to 0, the algorithm

terminates after at most N 2 iterations. Upon termination, we have (log2 N + 1)F =
∑N2

j=1 γjR
(j). It remains to show that the sum of γj’s is at most log2 N + 1.

For a fixed node (k, l) in G, we denote the neighborhood of (k, l) as N ((k, l)) :=

{(u, v) : (k, l) = (u, v) or an edge connects (k, l) to (u, v)}.

Denote the last iteration of step 2 of the algorithm by i. Let (k, l) be a node in stable

set Si. For any iteration j ≤ i we have that Sj either contains (k, l) or contains a node

(u, v) that is connected to (k, l) by an edge in the link graph. The previous sentence

follows since otherwise {(k, l)}∪Sj is a stable set whose corresponding elements of F̂

are positive at time step j, which would contradict Sj being maximal. Thus we have

i
∑

j=1

γj ≤
∑

(u,v)∈N ((k,l))

Fuv.

The sum on the right hand side is the sum of fluid whose path through the switch

network includes at least some link in the (unique) path from input k of the first stage

to output l of the last stage. Since for any valid fluid matrix (that is, any element of

F), the total fluid traversing any link in the switch network is at most 1, the total

115

fluid sharing at least one link with the path from k to l is at most the number of

links on this path. For a Banyan network with N input ports and output ports (so

with log2 N stages), all path lengths are one more than the number of stages in the

network. Thus, we have bounded
∑i

j=1 γj by log2 N + 1 as desired. 2

By a similar argument, it can be shown for any layered, unit-capacity, unique-

path, multistage switch network, that speedup equal to the longest path length in the

network is sufficient for maintaining bounded backlog.

We now bound the running time of Algorithm 6. First, we show that it is possible

to construct all the maximal stable sets Sj from step 2 in total time O(N 3 log2 N).

As a subroutine to the construction, we check whether adding a new node to a stable

set of the link graph G of a Banyan network results in a stable set. In order to do

this efficiently, we keep track of which of the N(log2 N + 1) constraints in the link

graph G are covered by the stable set S under consideration, where we say that a set

S of nodes covers a constraint if at least one node in S is in the corresponding clique.

Then we can check, for any node (k, l) in G, whether {(k, l)} ∪ S is a stable set by

checking if none of the log2 N + 1 constraints whose corresponding cliques contain

(k, l) are covered by S.

We construct maximal stable set S1 by sequentially considering each of the nodes

of G with positive corresponding entries in (log2 N + 1)F , keeping those with no

constraints currently covered and then setting all their constraints to “covered.” This

takes time O(N 2 log N). For j ≥ 2, we construct the maximal stable set Sj by

starting with the stable set Sj−1 and removing the set of nodes (call it Zj−1) whose

corresponding entries in F̂ were set to 0 during iteration j − 1. Also, all constraints

covered by a node in Zj−1 are set to “not covered.” We then augment Sj−1 \ Zj−1

to form a maximal stable set in G restricted to the nodes with positive value in F̂ ,

by considering in turn each node in ∪(u,v)∈Zj−1
N ((u, v)) with positive value in F̂ ; for

each such node, if all its constraints are not covered, we add it to the stable set and

cover all its constraints. The resulting stable set Sj is maximal since adding any node

with positive value in F̂ and not in ∪(u,v)∈Zj−1
N ((u, v)) to Sj−1 \ Zj−1 would result

in a set that is not stable (otherwise Sj−1 is not maximal).

116

Computing the maximal stable set at iteration j ≥ 2 takes time O(|Zj−1|N log2 N),

since the algorithm checks, for each node (u, v) in Zj−1, for each node (k, l) in the

neighborhood of (u, v), whether the log2 N +1 constraints of (k, l) are covered. Since

for each node (u, v), there is at most a single j ≥ 1 such that (u, v) ∈ Zj, we have
∑

j≥1 |Zj| ≤ N2. Because the maximum size of a stable set of G is N , the other parts

of step 2 can be computed in time O(N) per iteration. Thus, the total run time of

Algorithm 6 is O(N 3 log2 N).

4.8 Chapter Summary

In this chapter, we have considered under what conditions there exist packet-scheduling

algorithms that maintain bounded backlog for arbitrary time varying fluid policies for

an N ×N Banyan network. First, we showed that in contrast to the crossbar switch,

Banyan networks require speedup in order to maintain bounded backlog for arbitrary

fluid policies. Next, we developed the concept of required speedup, and computed

the exact speedup required for the 4× 4 Banyan network, and obtained logarithmic

bounds on the speedup required for a general N×N Banyan network. Computing the

exact speedup required for general Banyan networks, and other networks of interest,

remains an interesting and stimulating open problem.

In the next chapter, we bound backlog and speedup for general, input-queued

switch networks, which may not be layered, may have links with non-unit capacities,

and may have multiple paths connecting a source to a destination. The techniques and

algorithms used to derive bounds for general networks are based on those introduced

in this and the previous chapter.

117

118

Chapter 5

General Input-Queued Switch

Networks

We define and analyze backlog for general, input-queued switch networks, which we

simply call general networks. In contrast to Banyan networks, we allow general net-

works to be non-layered, have links with positive-integer capacities, and have multiple

paths between each source-sink pair. We prove an upper bound on the speedup re-

quired to maintain bounded backlog on a general network for any fluid policy; this

bound is derived by analyzing integral and fractional static flows through the general

network. In Section 5.3, we apply this upper bound to show that for any ε > 0,

speedup ε plus the network dilation (defined below) suffices to maintain bounded

backlog for any fluid policy.

General networks are defined in terms of a directed graph, in which nodes represent

crossbar switches and arcs (directed edges) correspond to links connecting crossbar

switches. Queueing is only allowed at data sources and sinks. Recall from Chapter 4

that one time step is the time required for a single crossbar switch to transmit a packet

across its switch fabric and through an outgoing link. Using graph terminology, a time

step is the time required to leave a node and traverse an outgoing arc from that node.

We say a set of packets is sent at a time step to mean each packet in the set leaves

its source node and traverses the outgoing arc from its source node during that time

step.

119

We model fluid and packetized policies for general networks by flows over time,

which we define below. We first explain why it is necessary to consider flows over time

rather than static flows when analyzing non-layered networks. For layered networks,

such as Banyan networks, packets sent at different time steps (that is, corresponding

to different packetized steps) never use the same link at the same time. For example,

as packets of packetized step P (t+1) traverse links that enter the first stage of a Banyan

network, the packets of P (t), sent one time step earlier, traverse links that enter stage

2. In a non-layered network, such as the one depicted in Figure 5-1, packets sent at

different time steps could traverse the same arc (representing a link) at the same time

step. For example, a packet sent at time t from source a1 to sink b1 and a packet

sent at time t − 1 from source a3 to sink b3 would both traverse the same arc (the

only horizontal arc in the figure) during time step t + 1. To ensure that the number

of packets traversing each arc by a packetized policy in one time step is at most the

arc’s capacity, each packetized step P (t) for a general network will encode how many

packets sent at time t traverse each arc at each time step. Each fluid step F (t) will

encode the sum of fractional packets sent at time t that traverse each arc at each

time step. This information is conveniently encoded using flows over time, described

in the next section.

5.1 Model and Definitions

First, we define a general network. Next, we define a packetized policy as a sequence of

integral, multicommodity flows over time (also defined below) with certain properties

on a general network. We define fluid policies similarly, except we omit the integrality

constraint. The cumulative difference and backlog are then defined.

We use notation and definitions for networks and flows from Fleischer and Skutella

[22], some of which we reproduce below.

120

a1

b2

b3

a2

b1
a3

1 1

1

1 1

1

1 1

1

Figure 5-1: A general network with three communicating source-sink pairs

(a1, b1), (a2, b2), (a3, b3) where each arc has unit capacity. Here, the dilation d of the general

network is 4.

5.1.1 Definition of General Network

A general network N (V, A) has a set of nodes V and arcs (directed edges) A. Each

arc e ∈ A is assigned a positive integer capacity U(e) that represents the maximum

number of packets that can traverse that arc in one time step. We also consider

a set of terminals S ⊆ V that can be partitioned into sources S+ and sinks S−.

We assume that each source v ∈ S+ has a single outgoing arc e(v) and no incom-

ing arcs. Similarly, we assume that each sink v ∈ S− has a single incoming arc

e(v) and no outgoing arcs. We are given a set of communicating source-sink pairs

{(a1, b1), . . . , (am, bm)} ⊆ S+×S−, which we call T . We let the dilation d of a general

network be the maximum number of arcs in any simple path (that is, a path with no

cycles) between a communicating source-sink pair. An example of a general network

is given in Figure 5-1.

5.1.2 Definitions for Static Flows

We start by defining single-commodity, static flows. A static flow x through general

network N (V, A), with single source-sink pair (a, b), assigns every arc e ∈ A a flow

121

value xe such that for each node v ∈ V \ {a, b}, the flow conservation constraints

∑

e∈δ−(v)

xe =
∑

e∈δ+(v)

xe,

are obeyed, where δ−(v) denotes the set of incoming arcs to v and δ+(v) the set

of outgoing arcs from v. A maximum flow from a to b is a nonnegative, feasible

flow whose value over arc e(b) (equivalently e(a)) is the maximum such value of any

nonnegative, feasible flow from a to b. A single-commodity, static flow is cycle-free if

in each cycle of arcs in the general network, there is some arc with flow value 0.

In the multicommodity setting, we consider a set of commodities M := {1, . . . , m},

each of which is defined by a single source-sink pair (ai, bi) ∈ T . A static multicom-

modity flow x through N (V, A) assigns every arc-commodity pair (e, i) a flow value

xe,i such that xi := (xe,i)e∈A is a single-commodity flow as defined above for each

i ∈M . We call x feasible if it obeys the capacity constraints
∑

i∈M xe,i ≤ U(e), for all

e ∈ A. A static multicommodity circulation y is a static multicommodity flow such

that for each commodity i ∈M , no flow leaves any source or arrives at any sink (that

is, ∀i ∈ M, ye(ai),i = ye(bi),i = 0). A static, multicommodity flow x is cycle-free if for

each commodity i ∈M , xi is a cycle-free, single-commodity flow. We represent static

(multicommodity) flows by lower case letters, and (multicommodity) flows over time,

defined next, by upper case letters.

5.1.3 Definitions for Multicommodity Flows Over Time

We consider multicommodity flows over time through a general network N (V, A),

with no storage at intermediate nodes. Again, we consider a set of commodities

M := {1, . . . , m}, each of which is defined by a single source-sink pair (ai, bi) ∈ T .

Time is considered discrete, and one time step is set to be the transit time in traversing

an arc (which is assumed to be the same for all arcs). A multicommodity flow over

time F through a general network, for each commodity i ∈ M , arc e ∈ A, and time

step k > 0, assigns a flow value Fe,i(k) such that the following flow conservation

122

constraints
∑

e∈δ−(v)

Fe,i(k) =
∑

e∈δ+(v)

Fe,i(k + 1),

are obeyed for each commodity i ∈ M , each node v ∈ V \ S, and each time step

k > 0. We say a multicommodity flow over time F has time horizon [t1, t2] if for each

i ∈ M , each arc e ∈ A, and each k /∈ [t1, t2], we have Fe,i(k) = 0. Sometimes for

convenience of notation we refer to Fe,i(k) for k ≤ 0, implicitly assuming Fe,i(k) = 0

in this case.

A multicommodity flow over time F is said to be feasible if for each arc e ∈ A,

and each time step t > 0, we have

∑

i∈M

Fe,i(t) ≤ U(e).

The sum of two multicommodity flows over time F and F ′ is the multicommodity

flow over time F ′′ such that for each commodity i ∈ M , arc e ∈ A, and time step

k, we have F
′′

e,i(k) = Fe,i(k) + F
′

e,i(k). The difference between two multicommodity

flows is defined similarly. Two multicommodity flows over time F and F ′ are called

time-shifted versions of each other if for some integer t, ∀i ∈ M, ∀e ∈ A, ∀k, we have

Fe,i(k) = F ′
e,i(k − t).

A static multicommodity flow or multicommodity flow over time is called non-

negative (integral) if the flow of each commodity over each arc at each time step is

nonnegative (an integer).

5.1.4 Definition of Packetized Policy and Fluid Policy

A packetized policy for a general networkN (V, A) is a sequence of packet transmissions

such that for each arc in the network, the number of packets traversing that arc at

any time step is at most that arc’s capacity. A packetized policy is represented by a

sequence of nonnegative, integral, multicommodity flows over time {P (t)}t>0 (through

the general network) with the following three properties:

• For all t > 0, in packetized step P (t), packets can leave source nodes only at

123

time step t. That is, for all t > 0, for each source-sink pair (ai, bi) ∈ T , and

∀k 6= t we have P
(t)
e(ai),i

(k) = 0.

• For all t > 0, P (t) has time horizon [t, t + d − 1]. This means that the multi-

commodity flow over time P (t) only uses paths of length at most d, the dilation

of the general network.

• For all t > 0, G(t) :=
∑t

h=1 P (h) is a feasible, multicommodity flow over time.

A fluid policy for a general network N (V, A) is a sequence of fractional packet

transmissions such that for each arc in the network, the sum of fractional packets

traversing that arc at each time step is at most that arc’s capacity. A fluid policy is

represented by a sequence of nonnegative, multicommodity flows over time {F (t)}t>0

through the network with the three properties above (with P replaced by F).

A packet-scheduling algorithm is said to use speedup s ≥ 1 if we require that any

fluid policy satisfy the following additional constraint:

For all t > 0, G(t) :=
∑t

h=1 F (h) is a feasible, multicommodity flow over time for the

general network with reduced capacities U ′(e) := U(e)/s.

5.1.5 Definition of Cumulative Difference and Backlog

Consider the feasible, multicommodity flow over time G(t) :=
∑t

h=1 P (h). For a com-

municating source-sink pair (ai, bi) ∈ T and arc e ∈ A, the number of commodity i

packets that have traversed e, cumulatively through time step k > 0 in the flow over

time G(t), is
∑k

j=1 G
(t)
e,i(j). The cumulative difference quantifies how much this number

of packets differs from the corresponding sum of fluid. More precisely, the cumulative

difference for i ∈ M over arc e ∈ A through time step k > 0 due to {F (h)}h≤t and

{P (h)}h≤t is defined as

C
(t)
e,i (k) :=

k
∑

j=1

t
∑

h=1

(F
(h)
e,i (j)− P

(h)
e,i (j)).

We require each packet-scheduling algorithm, at each time t, given the first t steps of a

fluid policy {F (h)}h≤t, to output a packetized step P (t) such that for each commodity

124

i ∈ M , for each arc e ∈ A, for each time step k > 0, we have C
(t)
e,i (k) > −1. This

constraint ensures that for each arc, for each time step, for each source-sink pair, the

cumulative number of packets scheduled by the packetized policy can only exceed the

cumulative fluid scheduled by the fluid policy by less than 1 packet.

The backlog for a source-sink pair (ai, bi) ∈ T at time t is the real number B(i, t) :=

(C
(t)
e(bi),i

(t+(d−1)))+; this quantifies how much the packetized policy is lagging behind

the fluid policy in terms of the cumulative amount of data delivered from source ai to

sink bi due to {P (h)}h≤t and {F (h)}h≤t by the end of their time horizon. The backlog

for a source v ∈ S+ is the sum of backlog over all (ai, bi) ∈ T with ai = v. Similarly

the backlog for a sink v ∈ S− is the sum of backlog over all (ai, bi) ∈ T with bi = v.

5.2 Upper Bound on Required Speedup for Gen-

eral Networks

We can represent each static multicommodity flow x through a general network by

the set of values {xe,i}e∈A,i∈M . Considering this set of values as a vector in R|A||T |,

let F ⊆ R|A||T | denote the set of nonnegative, feasible, static multicommodity flows1.

Let F ′ denote the set of flows in F that are cycle-free. Let P ⊆ R|A||T | denote the

convex hull of integral, nonnegative, feasible, static multicommodity flows. Note that

both P and F are polytopes, and P ⊆ F . We denote the dimension of P by dim(P),

which is at most |A||T |.

Theorem 10 For s ≥ 1 such that 1
s
F ′ ⊆ P, for any ε > 0, there is an algorithm

using speedup s + ε that maintains bounded backlog for each source and sink, for any

fluid policy, on a general network.

Before proving the above theorem, we contrast it with Theorem 7 for Banyan

networks, which gives tight bounds on the required speedup to maintain bounded

backlog in terms of the polytopes F and P defined for Banyan networks. The upper

bound in Theorem 10 for general networks is not tight, in general. That is, a smaller

1We do not specify particular demands for each communicating source-sink pair.

125

speedup than min{s ≥ 1 : 1
s
F ′ ⊆ P} may suffice to maintain bounded backlog for

arbitrary fluid policies. For example, consider the general network in Figure 5-1 with

three source-sink pairs (a1, b1), (a2, b2), (a3, b3), and all arcs with unit capacity. We

have min{s ≥ 1 : 1
s
F ′ ⊆ P} ≥ 3/2 for the polytopes corresponding to this general

network. This follows since, first, the static flow F that sends 1/2 unit between each

source-sink pair is feasible and cycle-free, so is in F ′. The sum of flow values over

arcs leaving each source in any P ∈ P is at most 1, however, since any integral,

feasible static flow through the general network sends at most a single unit. Thus,

for s < 3/2, we have (1/s)F /∈ P, and so the upper bound given by Theorem 10 is

at least 3/2. We prove in Appendix B, however, that for any ε > 0, speedup 1 + ε

suffices to maintain bounded backlog for any fluid policy on this general network.

The main idea in the proof is that a packetized policy for a general network, which

is a sequence of flows over time, could send three packets–one between each of the

three source-sink pairs–at each odd time step during some interval of time, and send

no packets at each even time step during this interval of time; here, no arc is ever

traversed by more than one packet in a single time step, and 3/2 total packets, on

average, are transmitted per time step during the interval.2

Proof of Theorem 10: Given s ≥ 1 such that 1
s
F ′ ⊆ P and ε > 0, we present

a packet-scheduling algorithm for a general network that maintains bounded back-

log for any fluid policy. The algorithm processes batches of consecutive fluid steps

and produces corresponding batches of packetized steps, using pipelining, just as in

Algorithm 2 of Chapter 3.

The number of fluid steps input in any batch (and also the number of packetized

steps output in any batch) is set to be the positive integer α := d2s(d− 1)/εe+d− 1,

for d > 1 the dilation of the general network3. We use pipelining so that each batch

of packetized steps will be scheduled 2α time steps after the corresponding batch of

fluid steps. It is also possible to schedule each batch of packetized steps only α time

2In the proof in Appendix B, the algorithm sometimes sends other combinations of packets than
the pattern described here.

3We assume d > 1 since backlog can be kept bounded with no speedup for any general network
with dilation d = 1.

126

steps after the corresponding batch of fluid steps, so that the first step of a batch

of packetized steps is scheduled just after the last step of the corresponding batch

of fluid steps; however, waiting 2α time steps after the beginning of a batch of fluid

steps, as we do here, allows amortization of the run time of the algorithm over α time

steps.

For each batch of α consecutive packetized steps output by the algorithm, the

last d − 1 packetized steps of the batch are each the all zero flow over time. Thus,

for any β ≥ 1, by just after time step βα, all packets sent by the packetized policy

at or before this time step have reached their sinks, so cannot interfere with packets

scheduled in the next batch. Instead of using speedup s, a slightly greater speedup of

s + ε is needed to offset the d− 1 packetized steps at the end of each batch in which

no packets are sent.

Before describing the computation that outputs each batch of packetized steps,

we define the static multicommodity flows {f (β)}β≥0, {p(β)}β≥0 on the same general

network N (V, A) on which the packetized and fluid policies are defined. These static

flows are used by the algorithm to keep track of backlog at the end of each batch.

For β ≥ 1, e ∈ A, and i ∈M let

f
(β)
e,i :=

∑

k>0

βα
∑

h=(β−1)α+1

F
(h)
e,i (k), (5.1)

p
(β)
e,i :=

∑

k>0

βα
∑

h=(β−1)α+1

P
(h)
e,i (k). (5.2)

For convenience of notation, let f (0) = p(0) denote the all zero static flow.

Using these static flows, the backlog for a source-sink pair (ai, bi) ∈ T at the end

of batch β can be conveniently represented as

B(i, αβ) =





β
∑

j=0

f
(j)
e(bi),i

− p
(j)
e(bi),i





+

. (5.3)

127

The following invariant will be shown to hold for each batch of fluid steps pro-

cessed:

Invariant 6 For any β ≥ 0, we have for some k ≤ dim(P) + 1, k nonnegative,

integral, feasible, static multicommodity flows denoted by q(1), . . . , q(k), nonnegative

coefficients λ1, . . . , λk, and a nonnegative, static multicommodity circulation y such

that





β
∑

j=0

(f (j) − p(j))



− p(β+1) − p(β+2) =
k
∑

l=1

λlq
(l) + y,

and
k
∑

l=1

λl < (α− (d− 1))(dim(P) + 1).

The invariant above4 and (5.3) imply for any β ≥ 0, for time step αβ we have the

following bound on backlog for source-sink pair (ai, bi) ∈ T :

B(i, αβ) < [2α + (α− (d− 1))(dim(P) + 1)]U(e(bi)).

For any source-sink pair (ai, bi) ∈ T and any time t > 0, the total amount of fluid that

can be scheduled between the beginning of the batch containing t and time step t is

at most α+(d−1)
s+ε

U(e(bi)). This implies the backlog for any source-sink pair (ai, bi) ∈ T

at any time t > 0 is at most α+(d−1)
s+ε

U(e(bi)) more than maxβ≥0 B(i, αβ). Thus, the

invariant above implies backlog is bounded for all source-sink pairs for all time steps.

Batch Computation

We now describe the pipelined process of computing a batch of α packetized steps

given a batch of α fluid steps, showing inductively that Invariant 6 is maintained

for each batch. Initially, for 1 ≤ t ≤ 2α, the algorithm sets P (t) to be the all zero

flow over time; thus, the invariant above holds for β = 0 with k = 1, λ1 = 0, q(1)

the all zero static multicommodity flow and y the all zero static multicommodity

circulation. The batch count β is initially set to 1. We first give an outline of the four

4Note that for any static multicommodity circulation, such as y as described in the invariant
above, for any source-sink pair (ai, bi) ∈ T we have ye(bi),i = 0.

128

steps involved in producing a batch of packetized steps given a batch of fluid steps.

Outline of Batch Computation

For β ≥ 1, given new batch of consecutive fluid steps F ((β−1)α+1), . . . , F (βα), the

algorithm constructs the batch of packetized steps P ((β+1)α+1), . . . , P ((β+2)α) as follows:

1. First, the given batch of fluid steps is used to compute the static multicom-

modity flow f (β), as defined above. The properties of a fluid policy specified in

Section 5.1.4 are used to show that s+ε
α+d−1

f (β) is a nonnegative, feasible, static

multicommodity flow. We find a nonnegative, static, multicommodity circu-

lation y′ such that s+ε
α+d−1

f (β) − y′ is a cycle-free, nonnegative, feasible, static

multicommodity flow, and so is in F ′.

2. Using the assumption that (1/s)F ′ ⊆ P, we have that s+ε
s(α+d−1)

f (β) − y′/s ∈ P.

By Caratheodory’s theorem, and the definition of P, we can write

s+ε
s(α+d−1)

f (β) − y′/s as a convex combination of nonnegative, integral, feasible,

static multicommodity flows.

3. We multiply each coefficient of the convex combination from the previous step

by s(α+d−1)
s+ε

, which by our choice of α is at most α − (d − 1). We add the

resulting linear combination to the similar linear combination
∑k

l=1 λlq
(l) from

Invariant 6 for the previous batch β − 1. We show this sum can be expressed,

by Caratheodory’s theorem5, as a linear combination with at most dim(P) + 1

terms and with sum of coefficients less than (α− (d− 1))(dim(P) + 2).

4. If there is a coefficient in the linear combination from the previous step with

value at least α − (d − 1), we let q denote the corresponding element (that

is, nonnegative, integral, feasible, static multicommodity flow) of the linear

combination.6 We convert the static flow q into a flow over time, and set all but

the last d − 1 packetized steps output to be time-shifted versions of this flow

5This is the same technique used in Algorithm 5 of Chapter 4 for Banyan networks.
6If each coefficient in the linear combination from the previous step has value < α− (d − 1), all

packetized steps output in this batch are set to the all zero flow over time.

129

over time. The remaining packetized steps output are set to the all zero flow

over time. This is shown to maintain Invariant 6 for the current batch β.

Full Description of Batch Computation

For β ≥ 1, given new batch of consecutive fluid steps F ((β−1)α+1), . . . , F (βα), the

algorithm constructs the batch of packetized steps P ((β+1)α+1), . . . , P ((β+2)α) as follows:

1. Consider the nonnegative, multicommodity flow over time

H(β) :=
∑βα

h=(β−1)α+1 F (h), which has time horizon [(β−1)α+1, βα+d−1]. Since

the algorithm uses speedup s+ε, we have H (β) is a feasible multicommodity flow

over time for the general network with reduced capacities U ′(e) = U(e)/(s+ ε).

Recall that we defined the static multicommodity flow f (β) earlier such that for

each i ∈M and each arc e ∈ A,

f
(β)
e,i =

∑

k>0

H
(β)
e,i (k).

Considering the time horizon of H (β), we have for each arc e ∈ A,

∑

i∈M

f
(β)
e,i ≤

α + d− 1

s + ε
U(e).

Thus, s+ε
α+d−1

f (β) is a nonnegative, feasible, static multicommodity flow, and so

is by definition in F . We find7 a nonnegative, static, multicommodity circu-

lation y′ such that s+ε
α+d−1

f (β) − y′ is a cycle-free, nonnegative, feasible, static

multicommodity flow, and so is in F ′.

2. By Caratheodory’s theorem, the static multicommodity flow

s+ε
s(α+d−1)

f (β) − y′/s ∈ (1/s)F ′ ⊆ P can be expressed as a convex combination of

k′ ≤ dim(P) + 1 nonnegative, integral, feasible, static multicommodity flows

s + ε

s(α + d− 1)
f (β) − y′/s =

k′

∑

j=1

γjr
(j).

7Such a circulation can be found in polynomial time; see for example [15].

130

Letting γ′
j := s(α+d−1)

s+ε
γj for all j, and letting y′′ := α+d−1

s+ε
y′, we have

f (β) =
k′

∑

j=1

γ′
jr

(j) + y′′,

and by the definition of α above,

k′

∑

j=1

γ′
j =

s(α + d− 1)

s + ε
≤ α− (d− 1).

3. Assuming Invariant 6 holds for β − 1, we have for k, {λl}, {q(l)}, y as specified

in the invariant,

β
∑

j=0

(f (j) − p(j))− p(β+1) =
β−1
∑

j=0

(f (j) − p(j)) + f (β) − p(β) − p(β+1)

=
k
∑

l=1

λlq
(l) + f (β) + y

=
k
∑

l=1

λlq
(l) +

k′

∑

j=1

γ′
jr

(j) + y′′ + y. (5.4)

The sum of the λl’s and γ′
j’s is less than (α− (d− 1))(dim(P) + 2). Let

T :=
k
∑

l=1

λlq
(l) +

k′

∑

j=1

γ′
jr

(j).

Caratheodory’s theorem now tells us that T can also be expressed as a nonneg-

ative, weighted sum of at most dim(P)+ 1 elements from the set {q(l)}∪{r(j)},

with the weights summing to less than (α− (d− 1))(dim(P) + 2). Reset {λl},

{q(l)}, and k so that
∑k

l=1 λlq
(l) is such a nonnegative, weighted sum. By (5.4),

with the reset values of {λl}, {q(l)}, and k, we have

β
∑

j=0

(f (j) − p(j))− p(β+1) =
k
∑

l=1

λlq
(l) + y′′ + y. (5.5)

4. We now select packetized steps P ((β+1)α+1), . . . , P ((β+2)α) such that

131

P ((β+1)α+1), . . . , P ((β+2)α−(d−1)) are time shifted versions of each other, and such

that P ((β+2)α−(d−1)+1), . . . , P ((β+2)α) are the all zero flow over time. If each λl

is less than α − (d − 1), then setting P (t) to the all zero flow over time for

t ∈ [(b + 1)α + 1, (b + 2)α], the invariant is maintained at the end of batch β

and we are done.

Otherwise, for some l′ ≤ k we have λl′ ≥ α − (d− 1). In this case, we convert

the nonnegative, integral, feasible, static flow q(l′) into a flow over time X with

time horizon [1, d] as follows: First, set X to be the all zero multicommodity

flow over time, and set y′′′ to be the all zero static multicommodity flow. Next,

for each commodity i ∈ M , the single-commodity static flow q
(l′)
i := (q

(l′)
e,i)e∈A

is decomposed into a set of simple, unit-capacity paths {π1, . . . , πn} from ai to

bi, and a set of nonnegative cycles c1, . . . , cu. We incorporate the cycles into y′′′

by setting y′′′ ← y′′′ + (α + d− 1)
∑u

u′=1 cu′. Each path πj = (e1, . . . , er) ∈ Ar is

added to the flow over time X in the natural way, where for each r′ ∈ {1, . . . , r}

we set Xer′ ,i
(r′)← Xer′ ,i

(r′)+1. Lastly, for t ∈ [(β +1)α+1, (β+2)α− (d−1)],

we set P
(t)
e,i (k) := Xe,i(k− (t− 1)), the flow over time X shifted forward in time

by t − 1 time steps. Set P ((β+2)α−(d−1)+1), . . . , P ((β+2)α) to be the all zero flow

over time. Since for any k > 0 and any e ∈ A,

∑

i∈M

(β+2)α
∑

h=(β+1)α+1

P
(h)
e,i (k) ≤

∑

i∈M

q
(l′)
e,i ≤ U(e),

we have that
∑(β+2)α

h=(β+1)α+1 P (h) is a feasible multicommodity flow over time.

Since each batch of packetized steps ends with d− 1 steps in which no packets

are sent, and assuming (by inductive hypothesis)
∑(β+1)α

h=1 P (h) is a feasible mul-

ticommodity flow over time, we have that for t ≤ (β + 2)α the third property

specified in Section 5.1.4 holds for the packetized policy so far constructed. The

other two properties hold as well, by our construction.

132

By our selection of packetized steps for this batch, we have ∀i ∈M , ∀e ∈ A,

p
(β+2)
e,i :=

∑

k>0

(β+2)α
∑

h=(β+1)α+1

P
(h)
e,i (k) = (α− (d− 1))q

(l′)
e,i − y′′′

e,i.

Thus, by (5.5) we have





β
∑

j=0

(f (j) − p(j))



−p(β+1)−p(β+2) =

(

k
∑

l=1

λlq
(l)

)

+y′′+y−(α−(d−1))q(l′)+y′′′.

Setting λl′ ← λl′ − (α− (d− 1)), the sum of λl’s is now less than

(α− (d− 1))(dim(P) + 1); setting y ← y + y′′ + y′′′, we maintain Invariant 6 for

batch β. 2

5.3 Upper Bound on Required Speedup in terms

of Network Dilation

We prove the following theorem.

Theorem 11 For d the dilation of a general network, for F ′ the set of cycle-free

elements of F , we have (1/d)F ′ ⊆ P.

This theorem, in conjunction with Theorem 10 above, implies that for any ε > 0,

there is an algorithm using speedup d + ε that maintains bounded backlog for each

source and each sink, for any fluid policy, on a general network.

Proof: We present an algorithm that given any f ∈ F ′, outputs a decomposition

f =
j′
∑

j=1

γjr
(j), (5.6)

where for each j ≤ j ′, γj ≥ 0 and r(j) is an integral, feasible, nonnegative, static

multicommodity flow, and
∑j′

j=1 γj ≤ d.

This algorithm is an extension of Algorithm 6 from Chapter 4 for similarly decom-

posing a fluid step for a Banyan network. The main additional difficulties for general

133

networks are that there may be multiple paths between each source-sink pair, and

arcs may have non-unit capacities. The algorithm is given next, followed by a proof

that it produces a decomposition as in (5.6).

Algorithm 7

The input is a cycle-free, nonnegative, feasible, static multicommodity flow f ∈ F ′.

1. Set j ← 1. Set f̂ ← f .

2. While f̂ 6= 0 (where 0 is the all zero, static multicommodity flow):

3. Set Û ← U ; that is, store the arc capacities in Û .

4. For i = 1 to |M |:

5. Find an integral, cycle-free, maximum flow g between source-sink pair

(ai, bi) through the general network with the following capacities:

For each arc e ∈ A, its capacity is Û(e) if f̂e,i > 0, and is 0 otherwise.

Set r
(j)
i to be the flow g.

6. For each arc e ∈ A, set Û(e)← Û(e)− r
(j)
e,i .

7. End for loop.

8. Set γj to be the largest value such that f̂ − γjr
(j) is nonnegative.

9. Set f̂ ← f̂ − γjr
(j) and then increment j by 1.

10. End while loop.

The algorithm above consists of an inner loop (lines 4− 7) nested inside an outer

loop (lines 2− 10). In each iteration j of the outer loop, the flow f̂ , which stores the

difference between f and the partial decomposition of it
∑j−1

k=1 γkr
(k) computed so far,

is passed to the inner loop. The purpose of the inner loop is to compute an integral,

feasible, static multicommodity flow r(j) such that for each commodity i ∈ M , we

have

134

• For each e ∈ A, r
(j)
e,i > 0 only if f̂e,i > 0, and

• r
(j)
i is maximal in the sense that no more flow can be sent from ai to bi without

violating the capacity constraints or decreasing the flow between a different

source-sink pair.

Since f is by definition cycle-free, we have at each iteration of the outer loop that

f̂ is cycle-free. Thus, the outer loop iterates while there exists an i ∈ M such that

f̂e(bi),i > 0. This implies that at the end of each iteration j of the outer loop, the

flow of some commodity over some arc in f̂ is reduced to 0 at line 9. The algorithm,

therefore, terminates after at most |A||M | iterations of the outer loop. Denote the

last iteration of the algorithm by j ′. Since f̂ = 0 just after iteration j ′, we have

f =
j′
∑

j=1

γjr
(j).

It remains to show
∑j′

j=1 γj is at most d.

Just before the last iteration j ′ of the outer loop, there exists a source-sink pair

(ai, bi) ∈ T and a simple path (e1, . . . , ek′) from ai to bi, such that f̂ek,i > 0 for each

k ∈ {1, . . . , k′}. We show that
∑j′

j=1 γj ≤ k′.

For any iteration of the algorithm j ≤ j ′, we have for some k ≤ k′ that

∑

i′∈M

r
(j)
ek,i′ = U(ek). (5.7)

The previous statement follows since otherwise, an additional unit of flow would have

been scheduled between ai and bi along path (e1, . . . , ek′) at line 5 at iteration j of the

outer loop. For each j ≤ j ′, let q(j) denote the smallest index k such that (5.7) holds.

Then at line 9 at iteration j of the outer loop, the total flow from all commodities

in f̂ over arc eq(j) is reduced by γjU(eq(j)). For each k ≤ k′, since the total flow in

f̂ along arc ek remains nonnegative and was at most U(ek) to start with, we have

135

∑

j:q(j)=k γj ≤ 1. Therefore,

j′
∑

j=1

γj =
k′

∑

k=1

∑

j:q(j)=k

γj ≤ k′.

Since k′ is at most the network dilation d, and f =
∑j′

j=1 γjr
(j), we have (1/d)f ∈ P,

which proves Theorem 11. 2

136

Appendix A

A.1 Proofs of Claims from Section 2.6.1

In Section 2.6.1, we define for fixed N , fixed s ≥ 1, the function

g(m) :=
m

s
(HN −Hm),

and we claim for m : 1 ≤ m ≤ N,

g(m) ≥ 0, (A.1)

m(g(m + 1) + 1/s) = (m + 1)g(m), (A.2)

1

s
(ln(N + 1)− 1) < g(1) ≤

1

s
ln N, (A.3)

1

s
((N + 1)/e− 2) < max

m:1≤m≤N
g(m) < N/(es). (A.4)

Here we prove these four claims. The proof of (A.1) is trivial.

Proof of (A.2): Starting with the left hand side of Equation A.2, we have

m(g(m + 1) + 1/s) = m[
m + 1

s
(HN −Hm −

1

m + 1
) + 1/s]

= m[g(m) +
1

s
(HN −Hm)]

= mg(m) +
m

s
(HN −Hm)

= (m + 1)g(m).

2

137

Proof of (A.3): We have in general for 1 ≤ m ≤ N :

ln(N + 1)− ln(m + 1) =
∫ N+1

m+1

1

x
dx ≤ HN −Hm ≤

∫ N

m

1

x
dx = ln N − ln m, (A.5)

where the inequalities are strict for m < N . Since g(1) = 1
s
(HN −H1), the above set

of inequalities for m = 1 implies (A.3). 2

Proof of (A.4): For N ≤ 4, the first inequality in (A.4) is trivial. For N ≥ 5, letting

m := b(N + 1)/ec − 1, we have

g(m) =
1

s
(b(N + 1)/ec − 1)(HN −Hm) >

1

s
((N + 1)/e− 2)(HN −Hm).

It remains to show HN −Hm ≥ 1. By our choice of m, we have (N + 1)/e ≥ m + 1.

Combining this inequality with (A.5), we have HN−Hm ≥ ln(N +1)− ln(m+1) ≥ 1,

which completes the proof of the first inequality in (A.4).

To prove the second inequality in (A.4), we need only consider the case in which

N ≥ 3, since it is straightforward to verify this inequality for N ≤ 2. By (A.5), we

have g(m) ≤ m
s

ln(N/m). For real-valued x ∈ [1, N], the function f(x) := x ln(N/x)

attains its maximum value only for x = N/e, at which f(N/e) = N/e. Since this

maximum value is never attained for any integer m, we have for all m, g(m) < N/(es),

proving the second inequality in (A.4). 2

A.2 Proofs of Claims from Section 2.7.2

Here we prove the following three claims, for g(m) as defined in the previous section,

for 1 ≤ s ≤ HN − 1, and for M := max{j : HN −Hj ≥ s}:

1. M < N/es.

2. For fixed N and s, g(m) is increasing for m : 1 ≤ m ≤M .

3. g(M) < M + 1.

138

Proof of 1: By our assumption 1 ≤ s ≤ HN − 1, we have N ≥ 4. Thus,

N/es ≤ N/e ≤ N − 1, so dN/ese < N . Then by (A.5) we have

HN −HdN/ese < ln N − lndN/ese

≤ ln N − ln(N/es)

= s,

in which the first inequality is strict since the inequalities in (A.5) are strict for

m < N . Thus, M < N/es. 2

Proof of 2: Fix N and s. If M = 1, there is nothing to show. Else, for 1 ≤ m ≤M−1

we have HN −Hm > s ≥ 1. Thus, g(m + 1) − g(m) = 1
s
(HN −Hm − 1) > 0, which

proves g(m) is increasing for m : 1 ≤ m ≤M . 2

Proof of 3: We have

g(M) =
M

s
(HN −HM)

=
M

s
(HN −HM+1 + 1/(M + 1))

< M +
M

s(M + 1)

< M + 1, (A.6)

where the third line follows since HN −HM+1 < s. 2

139

140

Appendix B

Recall the general network depicted in Figure 5-1 of Section 5.1. We refer to this

general network as N . It has three source-sink pairs (a1, b1), (a2, b2), (a3, b3) and

each arc has unit capacity. We prove the following theorem, which was claimed in

Section 5.2.

Theorem 12 For the general network depicted in Figure 5-1 of Section 5.1, for any

ε > 0, speedup 1 + ε is sufficient to maintain bounded backlog for any fluid policy.

Proof: We define a packet-scheduling algorithm that processes batches of consec-

utive fluid steps and uses pipelining, as in the algorithm in Section 5.2. The number

of fluid steps in any batch (and the number of packetized steps in any batch) is set

to be the even integer α := 2d 6/ε+1
2
e. We use pipelining so that each batch of pack-

etized steps is scheduled α steps after the corresponding batch of fluid steps. For

each batch of packetized steps output, the last three steps are the all zero flow over

time. This ensures that packets sent in different batches cannot traverse the same

arc simultaneously.

We use the static multicommodity flows {f (β)}β≥0, {p(β)}β≥0 defined in (5.1) and

(5.2) of Section 5.2 to keep track of backlog at the end of each batch. Recall from

Section 5.2 that the backlog for a source-sink pair (ai, bi) ∈ T at the end of batch β

can be conveniently represented as

B(i, αβ) =





β
∑

j=0

f
(j)
e(bi),i

− p
(j)
e(bi),i





+

. (B.1)

141

The algorithm here maintains the following invariant.

Invariant 7 For any β ≥ 0, for any commodity i ∈ {1, 2, 3}, we have

B(i, αβ)− p
(β+1)
e(bi),i

≤ 0.

Using a similar argument as that used in Section 5.2 to prove Invariant 6 im-

plies bounded backlog for all time steps, we have that Invariant 7 implies backlog

is bounded (for all source-sink pairs) for all time steps. Before describing the batch

computation, we prove the following lemma, which will allow us to show the batch

computation is well-defined.

Lemma 18 For the general network N , for β ≥ 1, if Invariant 7 holds for batch

β − 1, then

B(3, αβ) + B(1, αβ) ≤ (α + 1)/(1 + ε),

B(1, αβ) + B(2, αβ) ≤ (α + 1)/(1 + ε),

B(2, αβ) + B(3, αβ) ≤ (α + 1)/(1 + ε).

Proof: From the structure of the general network N , we have for any t > 0 that

the fluid sent from a3 to b3 at time t and the fluid sent from a1 to b1 at time t + 1

traverse the same arc (the only horizontal arc in Figure 5-1) at time step t +2. Since

each link in N has unit capacity, and the algorithm uses speedup 1 + ε, we have that

the sum of this fluid is at most 1/(1 + ε). That is,

F
(t)
e(a3),3(t) + F

(t+1)
e(a1),1(t + 1) ≤ 1/(1 + ε).

By the flow conservation constraints and the structure of N , any fluid sent from

source ai traverses arc e(bi) exactly three time steps later. We thus have for sinks b3

and b1 that

F
(t)
e(b3),3(t + 3) + F

(t+1)
e(b1),1(t + 4) ≤ 1/(1 + ε). (B.2)

142

The flow conservation constraints and the structure of N also imply that for each

i ∈ {1, 2, 3}, F
(t)
e(bi),i

(t′) = 0 unless t′ = t + 3. If we sum the expression (B.2) over

the time steps t ∈ [(β − 1)α, βα], we get from the previous sentence, and using the

definitions of f (β), p(β) from (5.1), (5.2), that

f
(β)
e(b3),3 + f

(β)
e(b1),1 ≤ (α + 1)/(1 + ε). (B.3)

By (B.1), we have for the backlog at the end of batch β,

B(i, αβ) ≤
(

B(i, α(β − 1))− p
(β)
e(bi),i

)+
+ f

(β)
e(bi),i

.

Assuming Invariant 7 holds for batch β − 1, we then have by the previous inequality

and (B.3) that

B(3, αβ) + B(1, αβ) ≤ (α + 1)/(1 + ε). (B.4)

Similar arguments as above imply the other two inequalities in the lemma. 2

Batch Computation

We now describe how the algorithm computes each batch of packetized steps,

showing inductively that Invariant 7 is maintained for each batch β ≥ 0. Ini-

tially, for 1 ≤ t ≤ α, we set P (t) := 0, the all zero flow over time. The invariant

thus trivially holds for β = 0. For β ≥ 1, given new batch of consecutive fluid

steps F ((β−1)α+1), . . . , F (βα), the algorithm constructs the batch of packetized steps

P (βα+1), . . . , P ((β+1)α) as follows.

The goal of the packet-scheduling algorithm is to schedule packets such that each

source ai sends a total of dB(i, αβ)e packets during time steps [βα+1, (β +1)α], and

such that no packets are sent during the last three time steps of this interval. This

will maintain the invariant for batch β.

We show how the algorithm works in the case in which

B(1, αβ) ≥ B(2, αβ) ≥ B(3, αβ).

143

The other 5 possible orderings of B(1, αβ), B(2, αβ), B(3, αβ) are treated symmetri-

cally by the algorithm.

We partition the interval of time steps during which this batch of packetized steps

will be sent, that is [βα+1, (β+1)α], into the following four consecutive subintervals.

(We use the convention that the interval [x, y] is empty if x > y.)

I1 := [βα + 1, βα + 2dB(3, αβ)e],

I2 := [βα + 1 + 2dB(3, αβ)e, βα + 2dB(2, αβ)e],

I3 := [βα + 1 + 2dB(2, αβ)e, βα + dB(1, αβ)e+ dB(2, αβ)e],

I4 := [βα + 1 + dB(1, αβ)e+ dB(2, αβ)e, (β + 1)α]

Assuming that Invariant 7 holds for the previous batch β − 1, Lemma 18 and our

choice of α imply dB(1, αβ)e+ dB(2, αβ)e ≤ (α + 1)/(1 + ε) + 2 ≤ α− 3. Thus, the

above partition is well defined, and I4 contains at least three time steps.

The algorithm behaves differently during each of the above four intervals. During

the odd time steps of I1, each source sends a packet, and during the even time steps

of this interval, no source sends any packets. During the odd time steps of I2, sources

a1 and a2 each send a packet, and during the even time steps of this interval, no

source sends any packets. During I3, only source a1 sends a packet, and it does so at

each time step in I3. During I4, no packets are sent.

One can verify that each source ai sends a total of dB(i, αβ)e packets during

time steps [βα + 1, (β + 1)α], and that at most one packet traverses each arc at each

time step. Since no packets are sent during I4, which contains the last three time

steps, each destination bi receives a total of dB(i, αβ)e packets during time steps

[βα + 1, (β + 1)α]. Thus, for all i ∈ {1, 2, 3}, we have B(i, αβ) − p
(β+1)
e(bi),i

≤ 0, and

so Invariant 7 is maintained for batch β. By induction, the invariant holds for all

batches β ≥ 0, and the theorem is proved. 2

144

Bibliography

[1] Micah Adler, Petra Berenbrink, Tom Friedetzky, Leslie Ann Goldberg, Paul W.

Goldberg, and Mike Paterson. A proportionate fair scheduling rule with good

worst-case performance. In ACM Symposium on Parallel Algorithms and Archi-

tectures, San Diego, CA, USA, June 2003.

[2] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory, Algo-

rithms, and Applications. Prentice Hall, Englewood Cliffs, NJ, 1993.

[3] William Aiello, Eyal Kushilevitz, Rafail Ostrovsky, and Adi Rosén. Adaptive

packet routing for bursty adversarial traffic. In Proceedings of the 30th Annual

ACM Symposium on the Theory of Computing (STOC), pages 359–368, 1998.

[4] Matthew Andrews, Baruch Awerbuch, Antonio Fernandez, Tom Leighton, Zhiy-

ong Liu, and Jon Kleinberg. Universal-stability results and performance bounds

for greedy contention-resolution protocols. Journal of the ACM, 48(1):39–69,

2001.

[5] Matthew Andrews and Lisa Zhang. The effects of temporary sessions on network

performance. In Proceedings of the eleventh annual ACM-SIAM symposium on

Discrete algorithms (SODA), pages 448–457, San Francisco, California, United

States, 2000.

[6] Jon C. R. Bennett and Hui Zhang. WF 2Q: worst-case fair weighted fair queue-

ing. In INFOCOM (1), pages 120–128, 1996.

145

[7] M.A. Bonuccelli and M.C. Clo. EDD algorithm performance guarantee for peri-

odic hard-real-time scheduling in distributed systems. IEEE IPPS/SPDP, pages

668–677, April 1999.

[8] M.A. Bonuccelli and S. Pelagatti. Optimal on demand packet scheduling in

single-hop multichannel communication systems. IEEE IPDPS, May 2000.

[9] Allan Borodin, Jon Kleinberg, Prabhakar Raghavan, Madhu Sudan, and David P.

Williamson. Adversarial queuing theory. Journal of the ACM, 48(1):13–38, 2001.

[10] C. Caramanis, M. Rosenblum, M.X. Goemans, and V. Tarokh. Scheduling algo-

rithms for providing flexible, rate-based, quality of service guarantees for packet-

switching in Banyan networks. In Proceedings of the 38th Annual Conference on

Information Sciences and Systems (CISS), pages 160–166, Princeton, NJ, 2004.

[11] Cheng-Shang Chang, Wen-Jyh Chen, and Hsiang-Yi Huang. Birkhoff-von Neu-

mann input buffered crossbar switches. In INFOCOM (3), pages 1614–1623,

2000.

[12] A. Charny. Providing QoS guarantees in input-buffered crossbar switches with

speedup, Ph.D. dissertation, MIT, August 1998.

[13] V. Chvatal. Linear Programming. W.H. Freeman, San Francisco, CA, 1983.

[14] R. Cole, K. Ost, and S. Schirra. Edge-coloring bipartite multigraphs in

O(E log D) time. Bolyai Society–Springer-Verlag Combinatorica, 21(1):5–12,

2001.

[15] T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms. The MIT

Press, Cambridge, MA, 1994.

[16] R. Cruz. A calculus for network delay. I. network elements in isolation. IEEE

Transactions on Information Theory, 37(1):114–131, January 1991.

[17] R. Cruz. A calculus for network delay. II. network analysis. IEEE Transactions

on Information Theory, 37(1):132–141, January 1991.

146

[18] J. G. Dai and Balaji Prabhakar. The throughput of data switches with and

without speedup. In INFOCOM (2), pages 556–564, 2000.

[19] A. Demers, S. Keshav, and S. Shenker. Analysis and simulation of a fair queue-

ing algorithm. Journal of Internetworking: Research and Experience, 1(1):3–26,

1990.

[20] Antoine Deza, Komei Fukuda, Dmitrii Pasechnik, and Masanori Sato. On the

skeleton of the metric polytope. In J. Akiyama, M. Kano, and M. Urabe, editors,

Lecture Notes in Computer Science, Springer-Verlag, 2098:125–136, 2001.

[21] Nick G. Duffield, T. V. Lakshman, and Dimitrios Stiliadis. On adaptive band-

width sharing with rate guarantees. In INFOCOM (3), pages 1122–1130, 1998.

[22] Lisa Fleischer and Martin Skutella. The Quickest Multicommodity Flow Prob-

lem. William J. Cook and Andreas S. Schulz (eds.): Integer Programming and

Combinatorial Optimization, Lecture Notes in Computer Science 2337, Springer,

Berlin, 2002.

[23] H.N. Gabow. Using euler partitions to edge color bipartite multigraphs. Inter-

national Journal of Computer and Information Sciences, (5):345–355, 1976.

[24] Michael John Girone. Tracking switch fluid policies: Bounding lookahead. Mas-

ter’s project, Massachusetts Institute of Technology, Department of Electrical

Engineering and Computer Science, February 2002.

[25] A.V. Goldberg and S. Rao. Beyond the flow decomposition barrier. Journal of

the ACM, (45):783–797, 1998.

[26] Mark Goudreau, Stavros G. Kolliopoulos, and Satish Rao. Scheduling algorithms

for input-queued switches: Randomized techniques and experimental evaluation.

In INFOCOM, pages 1624–1643, 2000.

[27] M. Grotschel, L. Lovász, and A. Schrijver. Geometric Algorithms and Combina-

torial Optimization. Springer–Verlag, Berlin Heidelberg, 1993.

147

[28] Ellen L. Hahne, Alexander Kesselman, and Yishay Mansour. Competitive buffer

management for shared-memory switches. In ACM Press Proceedings of the thir-

teenth annual ACM symposium on Parallel algorithms and architectures, pages

53–58, 2001.

[29] P. Hall. On representatives of subsets. The Journal of the London Mathematical

Society, (10):26–30, 1935.

[30] J. Hopcroft and R.M. Karp. An n5/2 algorithm for maximum matchings in

bipartite graphs. SIAM Journal on Computing, (2):225–231, 1973.

[31] J. Y. Hui. Switching and Traffic Theory for Integrated Broadband Networks.

Kluwer Academic Publishers, Boston, 1990.

[32] T. Inukai. An efficient SS/TDMA time slot assignment algorithm. Communica-

tions, IEEE Transactions, 27(10):1449–1455, 1979.

[33] J.R. Jackson. Scheduling a production line to minimize maximum tardiness.

Research Report 43, Management Science Research Project. 1955.

[34] Anthony C. Kam and Kai-Yeung Siu. Linear complexity algorithms for qos

support in input-queued switches with no speedup. IEEE Journal on Selected

Areas in Communications, 17(6):1040–56, June 1999.

[35] S. Keshav. An Engineering Approach to Computer Networking. Addison–Wesley

Pub Co, Boston, MA, 1997.

[36] J. M. Kleinberg. Approximation algorithms for disjoint paths problems, Ph.D.

dissertation, MIT, May 1996.

[37] C. E. Koksal. Providing quality of service over high speed electronic and optical

switches. Ph.D. dissertation, MIT, September 2002.

[38] D. Konig. Graphok és alkalmazásuk a determinánsok és a halmazok elméletére

[hungarian]. Mathematikai és Természettudományi Értesito, (34):104–119, 1916.

148

[39] D. Konig. Uber trennende knotenpunkte in graphen (nebst anwendungen auf de-

terminanten und matrizen). Acta Litterarum ac Scientiarum Regiae Universitatis

Hungaricae Francisco-Josephinae, Sectio Scientiarum Mathematicarum [Szeged],

(6):155–179, 1932-34.

[40] J. E. Marsden and M.J. Hoffman. Elementary Classical Analysis, Second Edition.

W.H. Freeman and Company, New York, 1993.

[41] Nick McKeown, Venkat Anantharam, and Jean C. Walrand. Achieving 100%

throughput in an input-queued switch. In INFOCOM (1), pages 296–302, 1996.

[42] T.S. Motzkin, H. Raiffa, GL. Thompson, and R.M. Thrall. Contributions to

theory of games; editors, H.W. Kuhn and A.W.Tucker, volume 2. Princeton

University Press, Princeton, RI, 1953.

[43] Abhay K. Parekh and Robert G. Gallager. A generalized processor sharing

approach to flow control in integrated services networks: The single-node case.

ACM/IEEE Transactions on Networking, 1(3), June 1993.

[44] Abhay K. Parekh and Robert G. Gallager. A generalized processor sharing

approach to flow control in integrated services networks: The multiple node

case. ACM/IEEE Transactions on Networking, 2(2), April 1994.

[45] A. Pattavina. Switching Theory, Architectures and Performance in Broadband

ATM Networks. John Wiley and Sons, New York, 1998.

[46] Balaji Prabhakar and Nick McKeown. On the speedup required for combined

input and output queued switching. Technical Report CSL-TR-97-738, Stanford

University, CA, 1997.

[47] M. Rosenblum, M. X. Goemans, and V. Tarokh. Universal bounds on buffer size

for packetizing fluid policies in input queued, crossbar switches. In Proceedings

of IEEE INFOCOM, Hong Kong, China, 2004.

149

[48] M. Rosenblum, R. Yim, M.X. Goemans, and V. Tarokh. Worst-case delay

bounds for packetizing time-varying fluid schedules for a single server in a packet-

switched network. In Proceedings of the 38th Annual Conference on Information

Sciences and Systems (CISS), pages 1553–1559, Princeton, NJ, 2004.

[49] A. Schrijver. Combinatorial Optimization. Springer, New York, 2003.

[50] Alexander Schrijver. Bipartite edge-colouring in O(∆m) time. SIAM Journal on

Computing, 28:841–846, 1999.

[51] Aleksandra Smiljanić. Flexible bandwidth allocation in high-capacity packet-

switches. IEEE/ACM Transactions on Networking, 10(2), April 2002.

[52] A. Stamoulis and J. Liebherr. S2GPS: slow-start generalized processor sharing.

In Proc. of Workshop on Resource Allocation Problems in Multimedia Systems

(held in conjunction with IEEE Real-Time Systems Symposium.), University of

North Carolina at Chapel Hill, December 1996.

[53] Anastasios Stamoulis and Georgios B. Giannakis. Deterministic time-varying

packet fair queueing for integrated services networks. In IEEE Global Telecom-

munications Conference, volume 1, pages 621–625, 2000.

[54] John A. Stankovic, Marco Spuri, Krithi Ramamritham, and Giorgio C. But-

tazzo. Deadline Scheduling for Real-Time Systems. EDF and Related Algorithms.

Kluwer Academic Publishers, Boston, 1998.

[55] Vahid Tabatabaee, Leonidas Georgiadis, and Leandros Tassiulas. QoS provision-

ing and tracking fluid policies in input queueing switches. In INFOCOM, pages

1624–1633, 2000.

[56] Éva Tardos. A strongly polynomial algorithm to solve combinatorial linear pro-

grams. Operations Research, 34:250–256, 1986.

[57] Leandros Tassiulas. Linear complexity algorithms for maximum throughput in

radio networks and input queued switches. In Proc. IEEE Infocom ’98, pages

533–539, 1998.

150

[58] Leandros Tassiulas and Leonidas Georgiadis. Any work-conserving policy sta-

bilizes the ring with spatial re-use. IEEE/ACM Transactions on Networking,

4(2):205–208, 1996.

[59] J. von Neumann. Contributions to the Theory of Games, volume 2. Princeton

University Press, Princeton, New Jersey, 1953.

[60] R. Wenger. Helly-type theorems and geometric transversals. In: J.E. Goodman

and J. O’Rourke, editors, Handbook of Discrete and Computational Geometry,

CRC Press, 1997.

151

