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ABSTRACT

The different pressure dependence of fluid density and viscosity in going
from the dilute gas to the dense fluid state gives rise to kinematic
viscosities which, in the near supercritical region (1<Pr<4; 1<TrY1.1)
are exceptionally low. The density gradients which exist in any mass
transfer situation will, in the presence of a gravitational field, cause
buoyancy-driven currents which, for a given geometry and Reynolds number,
are two orders of magnitude higher than in ordinary liquids (the comparison
being based upon the ratio of characteristic buoyant and inertial forces).

The diffusion coefficients of benzoic acid and naphthalene in supercritical
SF6, and of benzoic acid and 2-naphthol in supercritical CO2 were measured
with a hydrodynamic technique. Analysis of the data suggests that hydro-
dynamic behaviour at the molecular level is approached as a high viscosity
limit. When experiments were conducted in the presence of bouyant currents,
significant mass transfer enhancements were observed. The solution to
the problem of diffusion in a finite rectangular duct is presented in
analytical and graphical form.

An analysis of diffusion in the light of irreversible thermodynamics
leads to the new concept of infinite dilution fugacity coefficient, and
to an accurate and simple expression for the composition dependence of
the fugacity coefficient. The form and asymptotic behaviour of this
expression have interesting thermodynamic implications.

The behaviour of the system CO,-benzoic acid at solute infinite dilution
was studied by molecular dynamics simulation of the motion of 107 CO,2
and 1 benzene molecules, respectively, modelled as rigid polyatomics.
The different symmetry of CO2 and benzene required the implementation
of two different algorithms within the same computer program. The binary
diffusion coefficient and its temperature and density dependence, as
well as solvent velocity and C-C radial distribution functions were calcula-
ted. Numerical problems were encountered when electrostatic forces were
superimposed upon the site-site Lennard-Jones potential due to the orien-
tation-sensitivity of the coulombic interactions.

Thesis Supervisors : Dr. Robert C. Reid; Dr. Ulrich W. Suter

Title : Professor of Chemical Engineering; Professor of Chemical Engineering
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1: SUMMARY

The technical feasibility of a chemical process is determined by

two types of constraints: thermodynamic (equilibrium) limitations and

kinetic (rate) limitations.

In supercritical fluid extraction, the thermodynamic constraint defines

the maximum achievable solute concentration in the supercritical fluid,

for any given temperature, pressure, and condensed phase composition.

From a kinetic point of view, on the other hand, the objective is

to understand and, eventually, predict, the rate at which mass is transferred

from the condensed to the supercritical phase.

The present work addresses several problems related to kinetic (or

rate) aspects of supercritical fluid extraction, specifically:

· the influence of physical properties and their different behaviour

at slightly supercritical conditions in determining the rate and mechanism

of mass transfer in supercritical fluids

the development of a hydrodynamic technique to measure true and apparent

binary diffusion coefficients in supercritical fluids, where "apparent"

denotes diffusion coefficients measured in the presence of buoyant forces

* the interpretation of experimental data, and the use of hydrodynamic

theory to analyze diffusion in supercritical fluids

· an analysis of diffusion in the light of non-equilibrium thermodynamics

the use of molecular dynamics to study the equilibrium structure

and binary diffusion in mixtures under supercritical conditions and infinite

dilution (i.e., conditions whereby solute-solute interactions are negligible).

1.1: PHYSICAL PROPERTIES AND MASS TRANSFER MECHANISM

A supercritical fluid is rigorously defined as one whose temperature

and pressure are both above their critical values. In the present context,

though, we restrict our attention to the region bounded by 1<Tr<1.1,

and 1<Pr<4 (these are, of course, approximate numbers), where the rate

of change of fluid properties such as the density, specific heat at constant

15



pressure, viscosity, etc. with respect to temperature and pressure is

high and gives rise to behaviour which is unique to this relgion.

The above defined supercritical region is shown shematically in

Figure 1.1, in reduced-density reduced pressure coordinates. Some of

its peculiarities and their relevance to mass transfer wi 1 be discussed

below.

The dimensionless isothermal compressibility,

KI =ia~ne) (1.1)T = aln P)
T

is defined as the relative density change per unit relative pressure

change, at constant temperature. It can be calculated f om an equation

of state, and is shown in Figures 1.2 to 1.5 as a functio~ of temperature

and pressure, for CO2 and SF6 , for the van der Waals (1873) and Peng-

Robinson (1976) equations of state (see Appendix 1). iK'T tends to 1

at low pressure (ideal gas region), 0 at high pressure (den e fluid region),

and diverges at the critical point, where matter is infinit ly compressible.

The fact that K'T is finite at low pressure and infiniteI at the critical

point gives rise to states of matter whose density is co nparable to that

of an ordinary liquid, and which, simultaneously, are m re compressible

than a dilute gas. Such properties are characteristic of the supercritical

region. As an example, at 318 K and 100 bar (Tr = 1.05; Pr = 1.36),

CO2 is - 280 times denser but almost three times more compressible than

at 318K and 1 bar.

From the point of view of mass transfer, it is the different rates

of change of density and viscosity in going from the deal gas to the

dense fluid region that give rise to unique behaviour un er supercritical

conditions. Figure 1.6 shows the density, viscosity and ki ematic viscosity

of C02 (T = 304.2 K; Pc = 73.8 bar) at 310 K (Tr = 1. 2) as a function

of pressure. Although the density of supercritical CO, is liquid-like,

its viscosity, being virtually pressure independent a low pressures,

is less than an order of magnitude higher than the cor esponding dilute

gas value. This is due to the fact that, although both qu

by roughly an order of magnitude near Pc, the finitf

of the dilute gas gives rise to an increase of approxir

16
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of magnitude in density when the pressure is raised up to values slightly

lower than Pc. No such behaviour is displayed by the viscosity.

Consequently, the kinematic viscosity under supercritical conditions

is very low. This is clearly shown in Figure 1.6. Liquid metals, which

combine moderate viscosities with high densities, are normally associated

with extremely low kinematic viscosities. This property, as will be

shown below, attains even lower values in the case of supercritical fluids.

The relevance of these facts to mass transfer is best illustrated

in the case of duct flow under the combined influence of a pressure gradient

and gravity. We consider the situation whereby an incompressible, Newtonian

fluid, under fully developed laminar flow conditions, flows inside a

duct whose walls are coated with a solute that dissolves into the fluid,

under the action of a concentration gradient (thermodynamic phase equilibrium

exists at the interface). The aforementioned concentration gradient

will give rise to a density gradient which will, in turn, alter the velocity

profile. When the concentration (and density) changes are small, it

is an admissible approximation to expand the density about the pure fluid

value in terms of solute concentration, consider linear terms exclusively,

and neglect the composition dependence of other properties (i.e., viscosi-

ty). This simplification (Boussinesq's approximation) gives rise to

the following dimensionless momentum balance, (see Section 3.1).

2 (V+) v V+n _ g, Gr r O (1.2)
Re 

where Gr ( = [(2R)3g Ap/p]/v2) is the Grashof number for mass transfer,

and Re ( = 2R <v>/v), the Reynolds number.

If we now introduce the natural scales for viscous, inertial and

buoyant forces,

Viscous forces - n <v>/2R (1.3)

Buoyant forces - 2R g Ap (1.4)

Inertial forces - <v>2 po (1.5)

the physical significance of the parameter GrRe follows immediately,

Gr (2R g Ap) (<v> 2 po) (n<v>/2R) 2 Buoyant forces
Re2 (n<v>/2R)2 (<v> 2 po) 2

- Inertial forces (1.6)
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Consequently, if different fluids flow inside identical ducts under

diffusive mass transfer conditions at any given Reynolds number, and

assuming comparable density changes (Ap/p), the relative importance of

natural convection (buoyant forces) scales inversely as the square of

the kinematic viscosity of the fluid in question. Thus, fluids with

low kinematic viscosities (i.e., supercritical fluids) can develop appreciable

buoyancy driven flows even with small density gradients.

If we now compare (Figure 1.7) the properties of air, water, and

mercury at ambient conditions (298K, 1 bar) with those of supercritical

CO2 at 310K and 150 bar (Tr = 1.02; Pr = 2.03) in the light of the previous

discussion, some important consequences arise. We note the fact that,

for v, CO2 has the lowest value. The fourth column is the ratio of buoyant

to inertial forces at constant Reynolds number and duct geometry, scaled

with the corresponding value for water. The relative importance of natural

convection, therefore, is more than two orders of magnitude higher in

a supercritical fluid than in ordinary liquids.

When mass transfer in the fluid phase is the controlling step, therefore,

the usual design relationships' for mass transfer in packed beds (Gupta

and Thodos, 1962; Wilson and Geankoplis, 1966; Williamson et al., 1963)

are either unsuitable on account of the absence of a Grashof number,

or do not cover (Karabelas et- al., 1971) the low Schmidt numbers (- 10)

which characterize diffusion of light organic solutes in supercritical

fluids.

Figure 1.8 shows the importance of natural convection in vertical

laminar duct flow under supercritical conditions. Although the figure

itself is not limited to supercritical conditions, the values of the

physical properties used to construct the actual curves are typical of

supercritical fluids (v) and of diffusion of small organic molecules

(molecular weight - 100) in supercritical fluids (Sc = v/ ). In Figure

1.8, D is the duct diameter, and L, the coated length along which diffusion

takes place.

For any value of p/p (interface-bulk density difference divided

by mean density), the region lying above and to the right of the given

curve represents tube geometries for which vertical forced laminar flow

is impossible due to the presence of natural convection. For example,
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given a relative density change as small as 10 3, any aspect ratio greater

than 10- 3 makes it impossible to attain forced laminar flow in an 8mm

vertical duct.

Figure 1.8 is valid for 10- 2 < Sc (2R/L) < 1 and vertical flow.

If the parameter Gr.Sc(2R/L) (a scaled mass transfer Rayleigh number)

exceeds 104, forced laminar flow is impossible (Metais and Eckert, 1964);

this criterion has been used to obtain Figure 1.8. The condition

Gr- Sc- 2R/L < 104 is a necessary but not sufficient criterion for forced

laminar flow, so that the region lying below and to the left of each

curve does not, by itself, guarantee laminar flow.

1.2: HYDRODYNAMIC EXPERIMENTS

The experimental technique involved fully developed laminar flow

of a supercritical fluid in a horizontal rectangular duct (Figure 1.9),

the bottom surface of which was coated with the solute of interest.

The amount of solute that, at steady state, precipitates, upon decompres-

sion, from a measured amount of solvent during the course of a carefully

timed experiment is, for a given temperature, pressure (and hence equilibrium

solubility of the solute in the supercritical solvent), flow rate, and

duct geometry, a function of the binary diffusion coefficient.

The determination of a diffusion coefficient thus involves (at least)

one equilibrium experiment, where the solubility of the solute in the

supercritical fluid is measured, and a diffusion experiment.

In a diffusion experiment (Figure 1.9) a brass plate (4) is tightly

fitted into an enclosure made up of two aluminium hemi-cylinders (1,2);

fluid flows inside the resulting channel (3).

The test section (6) is made by casting molten solute and carefully

machining and polishing after solidification. The plate also contains

a section (5) where laminar flow is allowed to develop, and an outlet

section (7).

Fluid by-pass of the test section is prevented by a Viton gasket

(8) which forces the plate against the upper surface (9'), and by the

labyrinth seal (9) which results when the hemi-cylinders are forced together

(10,11) and Teflon tape is placed between the upper and lower mating
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surfaces (9). The whole assembly is tightly fitted inside a 5 cm (2

inches) stainless steel pipe. 0-ring 13 provides sealing, while 0-ring

12 is notched: the pressure in 3 is thus equal to the pressure outside

1 and 2.

For dilute solutions, the density decreases monotonically away from

the surface if

M,/M 2 > V/V 2 (1.7)

and viceversa. In Equation (1.7), M, and M2 are the solute and solvent

molecular weights, V is the solute partial molar volume, and V2 the

solvent molar volume.

The above inequality (see Section 6.3 for derivation) was satisfied

under all of the experimental conditions tested (see Appendix 2). In

addition, the equilibrium solubility increased with temperature for all

of the systems investigated at every value of the pressure for which

experiments were conducted. This implies that the solubilization was

endothermic under all experimental conditions.

Consequently, when channel 3 was horizontal and constituted the duct's

bottom surface, the flow was unaffected by gravity, and true binary diffusion

coefficients were measured, as explained above, by weighing the amount

of solute that precipitates, upon decompression, from a measured quantity

of solvent, at steady state. Buoyant effects were introduced by rotating

1 and 2 (Figure 1.9) inside the steel pipe. The same experiment then

gave rise to different results, which provided qualitative information

on the importance of natural convection in mass transfer with supercritical

fluids.

The results of such an experiment, for benzoic acid diffusing in

CO2 at 160 bar and 318K, are shown in Figure 1.10 (see also Table 6.20).

The dotted line (mass transfer rate) in Figure 1.10 does not extend to

00 since the diffusion (00) experiment was done at a different flow rate,

and mass transfer rates are a function of fluid velocity. The importance

of natural convection, as well as the potential for experimental error

when using hydrodynamic techniques, can be seen from the fact that a

650% increase in the apparent diffusion coefficient results from a 900

rotation of the flat plate.
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The actual calculation of a diffusion coefficient from experimental

measurements implies knowledge of the solution to the problem of diffusion

from a constant composition source plane into a rectangular duct where

axial fully developed laminar flow of an incompressible fluid takes place.

For the geometry shown in Figure 1.11, the problem to be solved can

be written in dimensionless form,

+ 2c+ 2C) rC + + a2c+
v , = (-2) Pe X +2 + 2 + ] (1.8)

ax+ x ay az

where
a = b/a

B = L/2a

x+ = x/b

y+ = y/b (1.9)

z+ = z/b

c+ = 1 - c/ci

v+ = v/<v>

Pe = <v> L/

with ci, the interface solute concentration, L, the coated length, and

<v>, the cross section average velocity. Equation (1.8) can be simplified

by performing an order of magnitude analysis, defining

- b - y (1.10)

and using the following empirical expression for the velocity profile

(Shah and London, 1978)

v =[1- ( l ] [ [ I (1.11)
v b a

max

m = 1.7 + 0.5 a 14

n = 2 a < 1/3 (1.12)

n = 2 + 0.3 (a - 1/3) a 1/3

where Equations (1.12) were obtained by fitting Equation (1.11) to the

finite difference solution of the momentum balance equation.
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From order of magnitude considerations, diffusion in the axial (x)

and transverse (z) directions can be considered negligible with respect

to axial convection and diffusion away from the source plane (i.e., in

the y direction), once the actual values of the shape factors and physical

properties are taking into account (a, , Pe; see Chapter 5).

The problem then becomes, for a < 1/3,

+ +2 _c
+

+ +2ac m 4B 1 2c(25 - ) - (1-13ax+ m + 1 3a Pe [1 - (al+l1)m] + (1.13)

Equation (1.13) can be solved by variable separation, series expansion,

and integration of the resulting two dimensional solution across the

transverse (z+) direction. The solutions are shown graphically in Figures

1.12 and 1.13. The full expressions are given in Chapter 5. The quantities

plotted in these figures are defined as

<r> = <c>/ci (1.14)

4b 1
Sh- (1 + a) k d(z/a) (1.15)

Xo = x9/ <v> b 2
(1.16)

i.e., the relative saturation, the z-averaged local Sherwood number based

on the hydraulic diameter and a modified inverse Graetz number.

The important point is that <r>, the experimentally measured quantity,

is a function of a( = b/a) and X. Thus, for a given aspect ratio, flow

rate, coated length and channel height, <r> is a function of the diffusion

coefficient. In an experiment, then, the ratio <r> is determined by

measuring c and ci in a diffusion and an equilibrium experiment, respectively,

and calculating X from the mathematical expression plotted in Figure

1.12, to obtain finally,@, from X, x (= L), <v> and b2.

1 .3: EXPERIMENTAL RESULTS AND DATA ANALYSIS

The experimentally measured diffusion coefficients are shown in Figure

1.14 as a function of solvent molar density; the same data are plotted
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0 SF6 Naphtha lene
a SF6 Naphtholene
+ CO2 Benzoic Acid
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FIGURE 1.14: Experimental binary diffusion coefficients as a function
of solvent molar density.
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separately for each system in Figures 1.15 - 1.18. The use of density

instead of pressure as an independent variable is a consequence of the

molecular approach to diffusion, whereby this phenomenon is seen as the

macroscopic consequence of collisions (interactions), whose frequency

(for a given binary system) is a function of the molecules' average velocity

(temperature) and number density (i.e., number of molecules per unit

volume).

The density range over which experiments were made for any given

system was too small to allow generalizations as to the observed linearity

of the data when plotted in log D vs. p fashion.

The measured diffusion coefficients of benzoic acid were always lower,

at any given density, than the corresponding values for naphthalene (in

SF6) and 2-naphthol (in C02), both of which are larger molecules than

benzoic acid. This suggests a possible dimerization of benzoic acid

in the fluid phase, a behaviour experimentally observed in CC1, and CC13H

(I'Haya and Shibuya, 1965), and in its vapour, C6H2,,, CCl and C6H6 (Allen

et al., 1966). This hypothesis is also consistent with the exceptionally

high temperature dependence of the diffusion coefficient of benzoic acid

at constant density (see Figure 1.18), which shows an activation energy

(6.9 Kcal/mol) in good agreement with the experimentally measured values

for the dimerization of benzoic acid in cyclohexane (6.4 Kcal/mol), CCl4

(5.5 Kcal'/mol), and its own vapour phase (8.1 Kcal/mol) (Allen et al.,

1966). These considerations can only be taken qualitatively, since the

overall diffusion coefficient is related in a non-linear way to the dimer-

ization constant.

Although benzoic acid association in the fluid phase has not been

measured in either SF6 or C02, the published equilibrium constants (Allen

et al.) give rise to high associated fractions (69% at 303K in CC1,

for example; see Chapter 6 for detailed calculations), making the dimerization

hypothesis at least plausible.

At any given density, the temperature dependence of the observed

diffusion coefficients is higher than the T1 / 2 hard sphere prediction.

However, for three of the four systems investigated, the quantity rnDT 1

was found to be fairly constant over the range of conditions tested,

suggesting a hydrodynamic (Stokes-Einstein) description. The benzoic

acid-CO2 data, on the other hand, exhibit peculiarities which seem to
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arise from a highly temperature-sensitive effective molecular size, and

cannot, therefore, be expected to show constant nDT l values, as will

be explained below.

From Tables 6.1l4, 6.15 and 6.16, it can be seen that nDT- ' is constant

to within standard deviations (expressed as percent of the mean), of

4.2% (benzoic acid - SF6 ), 9.2% (naphthalene - SF6), and 6.5% (2-Naphthol-

C02), respectively.

The Stokes-Einstein equation (Einstein, 1905)

kT
D = kT (1.17)

relates the diffusion coefficient of a spherical Brownian particle of

radius a to the temperature and viscosity of the surrounding fluid, when

no slip exists at the interface. Equation (1.17) implies the basic concept

nDT = f [size] (1.18)

-1
or, in other words, for hydrodynamic behaviour, a plot of D vs. n should

yield a straight line through the origin with a slope proportional to T.

Figure 1.19 shows the benzoic acid - SF6 results plotted in this manner.

As can be seen, the lines have small but finite intercepts, indicating

deviation from strictly hydrodynamic behaviour, a fact already noted

by Feist and Schneider (1982) in connection with their studies of diffusion

in supercritical CO,.

The general picture that emerges is sketched in Figure 1.20. Hydrodynamic

behaviour is approached at high viscosities; deviations from this limiting

behaviour can be correlated (but not understood) by means of empirical

power law relationships of the type D a n (a < 1) (Hayduck and Cheng,

1971). Supercritical viscosities fall roughly in the range 0.04.n50.1 cp

for 1.1Pr4 and 1Tr-1.06, which corresponds to 110 - 3 n- 1 -2.5 in the

units of Figure 1.20 (a typical liquid viscosity is also shown for compari-

son).

The exact point at which hydrodynamic behaviour breaks down (point

c) cannot, at present, be predicted from first principles for any given

system. However, from Figure 1.20 it can be concluded that predictive

correlations based on the Stokes-Einstein equation (Wilke and Chang,

1955; Scheibel, 1954; Reddy-Doraiswamy, 1967; Lusis-Ratcliff, 1968) will
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overestimate diffusion coefficients in supercritical fluids. This was

indeed found to be the case (see Chapter 6) when each of the above cor-

relations was applied to diffusion of naphthalene in supercritical CO2

and ethylene (Iomtev and Tsekhanskaya, 1964), benzene in supercritical

CO2 (Swaid and Schneider, 1979), as well as 2-naphthol in supercritical

CO2, and naphthalene and benzoic acid in supercritical SF6 (this work),

with the single exception of the Wilke-Chang expression for the naphthalene-

ethylene system.

In addition, at high enough viscosities (or, equivalently, at high

enough pressures for any given temperature), the quantity nDT- 1 approaches

a constant value; geometrically, this is equivalent to saying that, at
-1

small n values, the curve Ocb is well approximated by the line Ob.

As an example, the measured diffusion coefficients of benzene in supercritical

CO2 (Swaid and Schneider, 1979) give rise to an nDT- 1 value that is constant

to within a 4.6% standard deviation (expressed in percentage of the mean)

when n 0.04 cp, irrespective of the temperature and pressure.

Thus, at high enough viscosities, hydrodynamic behaviour is approached,

and this fact can be used to extrapolate experimental data by assuming

constancy of DT1 .

1.4: DIFFUSION AND IRREVERSIBLE THERMODYNAMICS

Kinetic approaches view diffusion as a phenomenon resulting from

gradients in concentration. From the point of view of irreversible thermo-

dynamics, on the other hand, chemical potential gradients, and not concen-

tration gradients, constitute the appropriate driving force for diffusion.

The rationale behind this approach is that the uniformity of chemical

potential (for any given species) throughout a system in which no impermeable

boundaries exist is a condition for thermodynamic equilibrium. Consequently,

if the deviations from this condition are small enough to justify the

assumption of local equilibrium, it is plausible to assume a restoring

(driving) force proportional to chemical potential gradients. This relation-

ship between fluxes and thermodynamic driving forces can indeed be proved

(see Appendix 5) without any additional assumption other than the local

validity of thermodynamics within an overall non-equilibrium situation.



From the standpoint of irreversible thermodynamics, then, we can

write, for isothermal binary diffusion with no viscous dissipation (see

Chapter 7),

11 = - a V , (1.19)

where j, is a solute mass flux, a mixture chemical potential per unit

mass,

M1 M2. (1.20)Ml M1
and a, the corresponding transport coefficient. Equation (1.19) can

be rewritten using the definition of , the Gibbs-Dubem equation, and

the definition of 01, the fugacity coefficient,

1 1
V = Vp1 - M VU2 (1.21)

0 = xl Vl1 + (1 - xl) V 2 (1.22)

f = xl P 1 (1.23)

to obtain a mathematical relationship between solute flux and solute

mole fraction,

-a [1 + n ][1 + ]. 1
Al -M 1+(aln x T,P x1 M2 (1 - X (1.24)

In this thermodynamic approach, however, the transformation of

Equation (1.19) into Equation (1.24) has resulted in the introduction

of a term, [ 1 + (aln 0l/ aln xl)T ], which is absent in the usual

phenomenological descriptions of diffusion. Of the many equivalent phenom-

enological expressions, we choose (Bird et al., 1960)

C2 M M y 12 x (1.25)
P

where c is the total molar concentration. The relationship between a

and$ 1 2, therefore, reads,

2112 1/ 2
t a RT 1 - x M+ (1.26) 

I c x1 M2 1 - X,
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It is customary to define a "thermodynamic" diffusion coefficient

(D1 2) with the same units ofC@1 2, and such that it will equal9 1 2 in

ideal mixtures, in which case

[1 an x+l )T,P 1 (1.27)

or, in other words, when ~ is composition-independent. Consequently,

(ln x iT,2 =D D12 [1 + aln x 1 )TP ] (1.28)

or

2

D12 = M ( xl M 1 (1.29)

D1 2 is normally assumed (Reid et al., 1977) to be less composition-dependent

than 2. Thus, at any given temperature and pressure, a composition-

independent D 2 imposes upon a the requirement that it depend on x as

the dimensionless function

1 + c(o) ( V ) dx
(x =c() (130)

1/2 1/2 .30)

x 1 M 2 1 -x1

where V is a molar volume, and Vi, a partial molar volume.

Whereas the numerator is very specifically dependent upon the binary

system under consideration, the denominator is a universal function of

solute mole fraction and solute/solvent weight ratio. The numerator

being a finite number. we notice that 4p(xl) (and hence a) vanishes at

x - 0 and x *+ 1, in agreement with the fact that p (and hence V) is

an undefined quantity at x + 0 and x + 1.

Figure 1.21 is a plot of the reciprocal of the denominator of Equation

(1.30) (i.e., the universal part of the composition-dependence of a such

that D 2 is composition-independent). At a mole fraction of M/(M, + M2),

i exhibits a maximum value M2/4 M.
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The left hand side of Equation (1.27) represents a conversion factor

between "kinetic" and "thermodynamic" diffusion coefficients, whose theo-

retical implications are discussed in Chapter 7. Here, some of the inter-

esting consequences of the calculated composition dependence of this

function will be outlined.

The explicit form of [1 + (aln cl/ xln xl)Tp] can be obtained from

any given equation of state. For two-parameter cubic equations of state

with composition-independent combining rules (see Chapter 7 and Appendix

1), a highly non-linear and complicated expression results (see Equation

(7.27)). However, when plotted as a function x (from infinite dilution

to saturation) Equation (7.27) is a straight line of negative slope and

unit y - intercept,

1 + an X TP = 1 - K x (1.31)

or, in other words,

,(x=,T,P) = (O,T,P) exp [-K(T,P)x,] (1.32)

where

~l = lim 4,(x) (1.33)
X1 + O

This functionality is shown graphically in Figure 1.22 for the benzoic

acid-CO2 system at 280 bar and 308 K between infinite dilution and saturation,

and is representative of what appears to be a general feature of the

thermodynamic behaviour of binary systems consisting of a non-volatile

solute and a supercritical fluid (see Chapter 7).

Quite apart from the simplicity of Equation (1.31) relative to Equation

(7.27), the parameter K has a physical meaning and an apparent asymptotic

behaviour that could have interesting thermodynamic implications. If

the linearity implied by equation (1.31) is extrapolated to the point

where the factor [ 1 + (ln ,/Dln xl)Tp] equals zero, we obtain

K = 1/ x(l.s.) (1.34)

0 = jl exp[ - x,/ x(l.s.)] (1.35)

where x (l.s.) is the composition (mole fraction) of the mixture when
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308 K. Peng-Robinson equation of state.
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it reaches its limit of stability at the given T and P (Modell and Reid,

1983). Equation (1.35), although obtained from a linear extrapolation

that may not be valid up to the limit of stability, suggests a "natural"

scaling for the concentration, in analogy with the idea of corresponding

states.

Furthermore, when the K values for a given system are plotted as

a function of temperature and pressure (Figure 1.23), it appears that

K approaches a high pressure limit which is independent of temperature

(at 280 bar, the K-values in Figure 1.23 are within 6.5% of the mean).

We may summarize by saying that, according to Equation (1.32), the

fugacity coefficient is the product of a composition-independent term

(¢1, the infinite dilution fugacity coefficient), and an exponential

and explicit composition correction which is not only small, due to the

small values of x , but appears to approach a high pressure limit which

is independent of temperature.

1.5: MOLECULAR DYNAMICS SIMULATIONS

Molecular dynamics is the numerical solution of the many body problem

and the use of statistical mechanics to interpret the results (i.e.,

evolution in time of the velocities and coordinates of the bodies (molecules)

whose motion is being studied).

In this work, 107 CO2 and 1 benzene molecules were considered (Figure

1.24) and treated as rigid polyatomics (i.e. point centers of force with

no internal degrees of freedom), with pairwise additive atom-atom inter-

actions:

U1 = U.. (1.36)iI jJ
where i and j denote sites (atoms) belonging to bodies (molecules) I

and J, respectively.

The dynamic simulation of this system of interacting molecules required

the solution of equations for the translational and rotational degrees

of freedom. For the former, Newton's second law of motion was written
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as two coupled first order equations,

= m- 1 f ({x}, {e}) (1.37)

- v (1.38)

where m, x and v denote the molecule's mass, center of mass coordinates

and velocity, respectively, and the force, f, is the sum of forces on

the molecules' sites, and is a function of the translational x} and

rotational e} instantaneous configuration of the system. The rotational

equations for the solute, a non-linear molecule, are

I-1 K ({x}, e}) (i = 1,2,3) (1.39)
1 1 1

e = ew (1.40)
2 =

where i denotes one of the body's principal directions, and Ii and Ki

are therefore the it h principal moments of inertia and the torque component

along the i principal direction (which, as was the case with f, is

a function of the system's instantaneous configuration). In Equation

(1.40), e and e denote, respectively a vector and a matrix whose elements

are the time derivative and the instantaneous value of the four Cayley-

Klein parameters (Goldstein, 1981) (with appropriate signs and ordering

in the latter case), and w contains the principal angular velocity com-

ponents. The Cayley-Klein parameters represent a non-singular kinematic

description of the rotational degrees of freedom of the rigid body, and

replace the Euler angles (Figure 1.25), which give rise to singular equations

(Murad and Gubbins, 1978), unsuitable for numerical applications.

For the linear solvent, on the other hand,

w I-1 K (x}, e}) (1.41)

i w x 1 (1.42)

where I is the line's moment of inertia, K is the torque, and 1 is a

unit vector parallel to the line.

Equations (1.37), (1.38), (1.41) and (1.42) are frame-invariant,

whereas Equations (1.39) and (1.40) refer to the body's principal axes

of inertia, and imply a linear coordinate transformation at each integration

54



z

FIGURE 1.25: Euler angles.

55

y



step. The resulting system of 1297 of quations is highly coupled due

to the configuration dependence of forces and torques, and was solved

numerically via an Euler predictor, trapezoid corrector algorithm.

The 108 molecules were placed in a unit cell of space-filling geometry

and cubic shape, and periodic boundary conditions were used throughout

(Figure 1.26).

Although C02 has an appreciable quadrupole moment, the introduction

of electrostatic forces into the model was abandoned after simulations

with van der Waals forces and point monopoles exhibited large temperature

and pressure fluctuations. This behaviour was ascribed to the stiffness

caused by the highly orientation-dependent effective electrostatic inter-

actions, and is illustrated in Figures 1.27 and 1.28 where the relative

orientation of two CO2 molecules is defined and the effective dimensionless

(i.e., U/kT, T = 300 K) intermolecular Lennard-Jones, electrostatic and

total energies (which result from the corresponding interatomic pairwise

additive energies), are plotted against carbon-carbon separation. The

salient features of Figure 1.28 are the orientation-sensitivity of the

electrostatic potential, and the effective short range electrostatic

interaction arising from elementary long-ranged Coulombic interactions.

Velocity distributions for the solvent molecules corresponding to

four different run average translational temperatures,

<T(tr)> = 2<KE(tr)> (1.43)
3Nk

with tr denoting translation, KE, kinetic energy, and N = 107, are shown

in Figures 1.29-1.32. The continuous line is the theoretical (i.e.,

Maxwell-Boltzmann) prediction, and the points correspond to <AN(v)>/Av,

where <AN> is the average number of molecules having velocities within

+ Av/2 of v, with Av equal to 5% of the total velocity range considered,

namely, 0 < v* < 3, with

v v v (1.44)
1/2

Vrms(3k<T>) vmsm

i.e., three times the root mean square velocity. The number of times

the ensemble's velocities were analyzed to arrive at <AN> is indicated
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in each case. Simulations were either started from a unimodal velocity

distribution (i.e., all molecules assigned their equipartition velocities

with random orientations), or from the end of a previous simulation.

The radial distribution function for the central carbon atom of the

CO2 molecule is shown in Figures 1.33 and 1.34 as a function of density

and temperature. At the moderate densities considered, fluid structure

is almost exclusively limited to a nearest neighbour shell whose radius

is approximately 4A. The mild secondary peak disappears at higher temper-

atures and lower densities.

Diffusion coefficients were calculated by creating an ensemble of

solute "experiments" shifted in time and computing squared displacements

at corresponding instants with respect to the respective origins (Figure

1.35). This test-particle approach (Alder et. al., 1974) allows the

computation of ensemble averages from the simulation of the motion of

a single solute molecule. The long time behaviour of the mean squared

displacement versus time relationship yields the diffusion coefficient

which is simply 1/6 of the slope of the resulting straight line (Einstein,

1905) (or, more precisely, the slope is 2dD, where d is the dimensionality

of the displacements).

The temperature dependence of the squared displacement history is

shown in Figure 1.36, and the results of four different simulations are

plotted in Figure 1.37 in Arrhenius fashion. The regressed activation
-1

energy should be compared to the 10.9 KJ mole obtained from Swaid and

Schneider's data (1979) for diffusion of benzene in supercritical CO2

at two different temperatures. There being only one solute molecule,

the temperature dependence of properties can, at best, yield semiquantitative

numbers since the very concept of temperature implies a statistical distri-

bution of velocities.

The isothermal density dependence of the squared displacement vs. time

relationship, shown in Figure 1.38, displays interesting trends. The

zero-displacement limit of the linear relationship defines a relaxation

time, which, for a Brownian sphere, is given by (Chandrasekhar, 1943)

T m (1.45)

where n and a are the viscosity of the medium and the radius of the sphere,
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respectively. Furthermore, the short-time (i.e., t << ) behaviour of

<r2> can be obtained from a truncated time expansion which, when squared

and ensemble-averaged, yields

<r2> = (3kT) t2 (1.46)

At a given temperature, (i.e. same initial slope), then, decreasing

the density (i.e., the viscosity) causes an increase in , which dominates

the short-time behaviour, only to give rise to a higher diffusion coefficient,

as expected, for t > (the computed diffusion coefficients are 1.396x10l4

cm2/s at 10.53 mol/lt and 1.649x10 4cm2/s at 7.42 mol/lt). Relaxation

times calculated from Equation (1.45) with experimental C02 viscosities
o

(.05cp at 310 K, 90 bar, 12.2 mol/lt) and 2.49 A (i.e., center of mass

to H atom distance) for a, yield values (5.5 x 10 13sec) in excellent

qualitative agreement with T values obtained from the simulations.

A very interesting theoretical question is raised by the fact that,

although in the simulations the mean squared displacement exhibits a

linear behaviour at long times, the relationship DT 1 = f [size] is

only an asymptotic law approached at high viscosities. This apparent

paradox can be explained by noting that the long time relationship between

<r2> and time can be derived without postulating any explicit form for

the hydrodynamic drag. Alternatively (Chandrasekhar, 1943), starting

from the Langevin equation, the limits <r2> - t2 (t - 0) and <r2> - t

(t ) can again be obtained without postulating any form for the drag

coefficient, , although the drag term itself is, in this approach, pro-

portional to the particle's velocity (with an as yet undefined propor-

tionality constant, ).

We conclude, therefore, that, if is non-linear in n (i.e., B - n6,

for example), the Stokes-Einstein equation (or, more precisely, its form,

i.e., nDT = f [size]) would not describe physical reality; in spite

of this, though, the short and long time limits of <r2> would, of course,

still be parabolic and linear, respectively, and the fundamental relationship

between <r2> and D at long times would still be valid.
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The breakdown of hydrodynamic behaviour in supercritical fluids,

then, is associated with a "hydrodynamic" drag that can best be explained

in terms of a power law relationship between the drag coefficient and

viscosity.

Using the activation energy calculated from the log D vs. T 1 plot

(Figure 1.37), we can estimate a diffusion coefficient at 313.2 K and

10.53 mol/lt from the value obtained at 309.3K and the same density.

This number (1.5 x 10- 4 cm2/s) is to be compared with the value obtained

by graphical interpolation of Swaid and Schneider's data at the same

temperature (2.05 x 10 4cm2/s).

The molecular dynamics prediction is 36.7% lower than the experimental

value. This is an encouraging result, given the facts that no adjustable

parameters were used in this work, and that the ensemble-generating technique

involved just one solute particle.
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2: INTRODUCTION

2.1: PERSPECTIVE

Research in the general area of supercritical fluids has grown consider-

ably over the past few years (Ely and Baker, 1983). The thermodynamic

aspects of this technology have, by far, received much more attention

than the transport aspects.

From the point of view of transport, the goal is to understand and,

eventually, predict, the rates at which mass and/or heat are transferred

within the dense fluid phase. This requires knowledge of the transport

properties of the mixtures involved, as well as of the particular flow

situation being considered.

The present work addresses several aspects of mass transfer in super-

critical fluids. The first question that must be answered, therefore,

is the relevance of the problem itself, i.e., why (if at all) is mass

transfer in a supercritical fluid any different from, say, liquid phase

mass transfer?

Part of this answer is, of course, obvious: the physical properties

of supercritical mixtures are different from liquid properties (see below).

This, by itself, would justify interest in the problem, at least from

the point of view of property measurement, estimation and correlation.

In addition, the unique properties of fluids in the supercritical

region give rise to mass transfer mechanisms which are qualitatively

different from the corresponding liquid phase case. Thus, what is required

in order to understand and predict mass transfer rates in supercritical

fluids is a study of the physical properties and of the peculiar convective

mechanisms that arise as a consequence of those physical properties.

Such an analysis has been done for heat transfer (Nishikawa and Ito,

1969; Harrison and Watson, 1976; Hauptman and Malhotra, 1980; Shitsman,

1974; Nishikawa, et al., 1973; Kakarala and Thomas, 1980; Hall, 1975),

but not for mass transfer.

In this work, physical property measurement and computer simulation

have been done for binary diffusion of aromatic compounds in supercritical

fluids. In addition, the importance of natural convection in mass transfer
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with supercritical fluids has been analyzed in the light of fluid properties,

and observed experimentally.

In Table 2.1, the physical properties of a supercritical fluid (CO2

at 150 bar and 310 K) are compared with those of air and water at ambient

conditions. We notice, in the first place, the very low kinematic viscosity

of the supercritical fluid. As outlined in Section 1.1 and explained

in Chapter 3, this is the reason why, at any given Reynolds number, natural

convection plays a much more important part in the overall transport

mechanism within a supercritical fluid than it does in the case of a

liquid or a gas.

In the second place, the Schmidt numbers corresponding to diffusion

of typical organic solutes (molecular weight - 102) are roughly two orders

of magnitude lower in a supercritical fluid than in a typical liquid,

whereas Prandtl numbers are comparable.

We can therefore complete the answer to the question posed at the

beginning of this section by noting that a supercritical fluid is simul-

taneously as dense as a liquid, more compressible than a dilute gas,

possesses a kinematic viscosity that can be lower than liquid metal kinematic

viscosities, Prandtl numbers similar to those of liquids, and Schmidt

numbers two orders of magnitude lower than the corresponding liquid values.

This is certainly more than enough to justify the study of transport

in supercritical fluids.

Although the properties of supercritical fluids are a consequence

of the existence of the critical point, the analysis, throughout the

present work, is entirely classical. Critical phenomena (Stanley, 1971)

such as the divergence of the specific heat at constant pressure or the

isothermal compressibility of a pure substance at its critical point,

or the vanishing of diffusive fluxes at mixture critical points (Tsekhanskaya,

1968) require entirely different theoretical approaches (Pfeuty and Toulouse,

1978; Ma, 1976). Non-classical behaviour, however, whereby fluctuations

of some characteristic quantity (the order parameter) grow without limit,

is restricted to very narrow regions close to criticality, and these

were not explored in the present work.
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2.2: DIFFUSION IN DENSE FLUIDS: THEORETICAL DIFFICULTIES

Mutual and self diffusion coefficients for low pressure gaseous systems

can be estimated to within - 7.5% accuracy (Reid et al., 1977) from purely

theoretical expressions. The starting point in this case is the Boltzmann

transport equation (Hirschfelder et al., 1964; Chapman and Cowling, 1970;

Huang, 1963; Pauli, 1981). The latter is a non-linear integro-differential

equation for the rate of change of the distribution function and was

derived by Boltzmann in its original form by considering only binary

interactions of point particles and introducing the molecular chaos hypoth-

esis, whereby the position and velocity of a particle are uncorrelated.

The Boltzmann transport equation admits a stationary solution, the

Maxwell-Boltzmann distribution (see Chapter 8). The Chapman-Enskog method

is a successive approximation approach to the solution of the Boltzmann

transport equation, and yields expressions for the transport coefficients

after considerable effort. As soon as fluid density becomes such that

the mean free path is comparable to molecular dimensions, higher order

interactions and the finite molecular size must be taken into account.

In addition, collisional transfer (i.e., the energy and momentum transfer

that takes place instantaneously in a hard sphere collision) becomes

a progressively important transport mechanism which is not considered

in the Boltzmann equation.

As a result, there exists no accurate kinetic theory of dense fluids

that will allow, as with the dilute case, an accurate prediction of the

transport coefficients. Some of the theoretical and experimental approaches

to the problem will be briefly reviewed.

2.3: THEORETICAL APPROACHES

Corresponding states arguments have been applied to the correlation

and extrapolation of self-diffusion data. In this case, one can use

dimensional analysis arguments (Hirschfelder et al., 1964) to show that

the reduced self-diffusion coefficient of a spherical non-polar molecule,
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D+ = D -1 (m/ £)1/2 (2.1)

must be a function of the reduced temperature and volume,

D+ = D+ (v+,T+) (2.2)

where

v+ v - 3 (2.3)

and

T+ = kT/e (2.4)

In Equations (2.1) to (2.4), a and e are a characteristic length and

a characteristic energy, m is the molecular mass, and v, the molecular

volume (i.e., total volume divided by number of molecules).

Even though the detailed functionality implied by Equation (2.2)

may not be known, this approach provides, in principle, an extremely

powerful technique for data correlation and extrapolation.

Equation (2.1) can be transformed, again through dimensional arguments,

by writing

a - (kTc/Pc)1/3 (2.5)

- k Tc (2.6)

m = ML (2.7)

k = RL 1 (2.8)

where L is Avogadro's number, to arrive at D+

D+ D M1 / 2 Pc1/3 (RTc) 5 = D (Tr, Pr) (2.9)

which is the usual starting point for corresponding states approaches

to diffusion.

The extension of these ideas to binary diffusion implies, at the

outset, a degree of arbitrariness in the definition of mixture critical

parameters. Thus, Slattery and Bird (1958), define geometric mean critical

temperatures and pressures,

(2.10)
?C12- -(PC 1 PC2 ) 1 / 2

TC1 2 (Tc1 TC2 ) 1 / 2 (2.11)
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whereas a more common approach is to define

TC12
PC12 = [1/2 (TC/P) 1

3 + 1/2 (T 2/P 2) 1 3 ]3 (2.12)

with TC12 as per Equation (2.11). The denominator of Equation (2.12)

is equivalent to a Lorentz-Berthelot mixing rule for a,

1
012 = 2 (al + 02) (2.13)

The mixture molecular weight is usually defined as a modified harmonic

mean, -+ -+1(2.14)
Ml2 Ml M2

From this short discussion, it should be apparent that, although

corresponding-states ideas can be extremely useful in correlating self-

diffusion data, the extension to binary diffusion can, at best, be considered

as a convenient empiricism, since the definitions of mixture parameters

are somewhat arbitrary. Furthermore, for highly non-spherical molecules,

a two-parameter approach (a, , or Tc, Pc) is not, in general, capable

of describing the system's behaviour. As an example, we consider the

Slattery-Bird (1958) correlation, obtained by statistical analysis of

experimental data in the light of a corresponding states approach,

PD = 3.882 x 10 4 T 1.823 (2.15)r

with

1 / 2

5/6 (2.16)
5/6 2/3T P

c c

and mixture parameters as per Equations (2.10), (2.11), (2.14). Equations

(2.15) and (2.16) are dimensional, with the pressures in atmospheres

and D in cm2/sec. Equation (2.15) was originally derived for self-diffusion

in dilute systems, and extended to dilute binary systems by the authors.

When several dense fluid data (Table 2.2) are plotted according to

Equations (2.15), (2.16), (2.10), (2.11) and (2.14) (see Figure 2.1)

it can be seen that deviations are not associated with high pressures
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FIGURE 2.1: The Slattery-Bird correlation: a two-parameter corresponding
states approach.
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but with the nature of the solutes and solvents. In particular, diffusion

of aromatics is poorly represented by the correlation, except for the

N2 -naphthalene system. On the other hand, Berry and Koeller's (1960)

data for H2 - N2 (69 to 690 bar), CH - C 2H6 (69 to 690 bar) and CH4

- N2 (7 to 172 bar) are well correlated in terms of this two parameter

equation. The C02-naphthalene data include Tsekhanskaya's (1971) studies

of the vanishing of diffusion coefficients at mixture critical points

which are, a priori, beyond the scope of Equation (2.15) (see Chapter 7).

Two-parameter corresponding states arguments, therefore, should be

used with extreme care in dense binary systems, and must be considered,

at best, as helpful correlating guidelines. Mixture composition is not

taken into account by relationships such as Equations (2.10), (2.11),

(2.12) or (2.14), which can only be applied at infinite dilution.

The extension of corresponding states ideas to substances that depart

from strictly conformal behaviour has received considerable attention

recently. In one approach, a reference substance of well-known properties

is used, and conformality with respect to the reference substance is

forced through the introduction of state-dependent shape factors (Murad

and Gubbins, 1977), which are either calculated iteratively or obtained

from empirical fits. For mixtures, pseudo-critical properties are introduced;

this leads to the appearance of cross interaction parameters, which must

be regressed from experimental transport data (Murad and Gubbins, 1981).

Although interesting in principle, this approach is far from standardized

and requires extensive iterative calculations or empirical values for

the shape factors and interaction coefficients.

Alternatively, the reduced transport coefficients (i.e., Equation

(2.9) are expanded in Taylor series about a known (reference) value,

using a third parameter as an expansion variable. This idea is derived

from Pitzer's (1955) original work, so that the acentric factor is the

most commonly used third parameter. Teja (1982) has recently proposed

a modified version of this approach for binary diffusion in liquids by

considering two reference fluids. Two diffusion coefficients are needed

(of different solutes in a given solvent), and the resulting expression

still contains an adjustable parameter.
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The problem of calculating density-dependent diffusion coefficients

in dense fluids is still unsolved. The Enskog (1921) theory is still

widely used in spite of the fact that, in most cases, it does not predict

the observed trends. In this approach, molecules are considered as hard

smooth spheres, whereupon the problem again becomes tractable, since

only binary collisions can exist in a hard sphere fluid. The main result

of this theory, in its unmodified form, and for self-diffusion, can be

written as

(P~~~D)°~~~ X_1~~~ ~(2.17)
(PD) - X

where superscript indicates the dilute limit, and X is the factor by

which collision frequency in a hard sphere fluid differs from the cor-

responding number in a fluid composed of point particles and is given,

for a hard sphere fluid, by

X = 1 + 0.625 boV- 1 + 0.2869 (boV- 1 ) + 0.115 (boV-1 )3 + . (2.18)

where bo is the molar second virial coefficient,

bo = ( 3 )L (2.19)

and V, the molar volume. A derivation of Equation (2.18) can be found

in Chapman and Cowling (1970) and follows from geometric arguments by

taking into account the increase in collision frequency due to the finite

molecular size as well as the decrease in collision frequency due to

the "shielding" effect that close-packed molecules exert on each other

by blocking incoming molecules.

Enskog's ideas were extended to binary (1-2) diffusion by Thorne,

to arrive at

pD12 1 (2.20)

with

X12 1 + 2 no3 (8 - 3a/o12) + 1 n2 a 3 (8-3 a2/o1 2) + ... (2.21)

where n and n2 are number densities, and the hard sphere diameters are

combined according to Equation (2.13).
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As can be seen from Equation (2.18) or its binary equivalent (2.21),

Enskog's theory predicts diffusivities which decrease with density more
-1

rapidly than p . In addition, since X and X12 are both greater than

unity, we must have, according to this theory,

(pD) < (pD)° (2.22)

always. However, experimental measurements for diffusion of aromatics

in supercritical CO,2 (Swaid and Schneider, 1979), as well as aliphatic

and halogenated aliphatic hydrocarbons in He (Balenovic et al., 1970)

are not only consistently above the Enskog prediction, i.e.,

pD > pD (2.23)
(pD)O > (pD)O

exp Enskog

but, in addition, result in ratios greater than unity for several data

points, a fact that cannot be explained by the Enskog theory.

The modified Enskog theory is an attempt to preserve the simplicity

of the basic relationship (i.e., Equation (2.17)), while correcting for

the idealizations implicit in Equation (2.18). This is done, following

Enskog, by postulating that, in the hard sphere equation,

-1
bo V - 1 (2.24)

where z is the compressibility factor, the pressure be replaced by the

"thermal pressure", to arrive at

-1 V PX bo V RT T(Tf) - (2.25)

In this approach, bo is now obtained from

T () RT (1 + X bo v-1) (2.26)

V

and the limit of X bo as V tends to infinity. When P-V-T data, are expressed

as

P = RT [1 + pB(T) + p2 C(T) + ... ] (2.27)V
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we obtain,

bo M (aBT ) (2.28)
V

The modified Enskog theory (Hanley et al., 1972; Hanley and Cohen,

1975) has been used successfully for simple pure dense fluids. In essence,

it is an ad-hoc correction of the original theory that takes into account

the actual properties of a fluid by replacing the hard sphere expression

for X (Equation (2.18)) by Equation (2.25), where X is calculated from

P-V-T data. Tne extension of the modified Enskog theory to binary diffusion

is an interesting possibility, although, from the previous discussion,

it should be evident that such an approach would constitute a semiempirical

modification of an existing theory, rather than a predictive method based

on first principles.

The so called van der Waals picture of transport in dense fluids

(Dymond and Alder, 1966), whereby molecules are considered to interact

via a spherically symmetric potential consisting of a hard core plus

a long-range attractive tail, has served as a basis for a significant

amount of recent work. In order to preserve this intuitive general picture,

empirical correction factors have been introduced to account for non-

sphericity. Thus, the idea of a rough hard sphere fluid (Chandler, 1975)

"composed of spherical particles which collide impulsively, and these

instantaneous collisions are capable of changing the angular momentum

of a particle as well as the linear momentum" leads to a correction factor

A, (the "roughness factor"), such that

DRHS A DSHS (A < 1) (2.29)

where RHS and SHS denote, respectively, rough and soft hard spheres (i.e.,

spheres with and without rotational-translational coupling, respectively).

The roughness factor is used as an adjustable parameter. From equipartition

arguments it follows that A should be independent of temperature for

a given system. In spite of the obvious empiricism of Equation (2.29),

the rough hard sphere approach has received considerable attention (Bertucci

and Flygare, 1975; De Zwaan and Jonas, 1975; Fury et al., 1979; Chen,

1983) and has been widely used for correlating purposes.



Hydrodynamic theory (Einstein, 1905) predicts, for the diffusion

of a Brownian sphere of radius a in a fluid of viscosity n, at a temperature

T, a diffusion coefficient given by

D kT (2.30)
6Tran

where the coefficient 6 corresponds to a no-slip boundary condition,

and becomes 4 in the opposite case whereby the sliding friction coefficient

vanishes. It has long been known that an equation of the form of (2.30),

ice.,

nDT = f [size] (2.31)

can be used to correlate and understand molecular diffusion in dense

fluids. This implies the very remarkable concept of hydrodynamic behaviour

at the molecular level, and is the basis of numerous empirical correlations

which have been used with varied success in the study of diffusion in

liquids (Wilke and Chang, 1955; Scheibel, 1954; Reddy and Doraiswamy,

1967; Lusis and Ratcliff, 1968). For non-spherical molecules of realistic

shape, hydrodynamic theory cannot, in general, provide a predictive equation

due to the difficulty in evaluating the drag. However, Equation (2.31)

is extremely useful for correlating purposes.

The hydrodynamic limit can also be analyzed in the context of hard

sphere theory (Dymond, 1974), according to which

D - T1/2 (V - 1.384 V) a (2.32)
1/2 -1 a (2.33)

n T2 (V - 1.384 V) a (2.33)

where V is the hard sphere close-packed molar volume, and V is the molar

volume. It follows that

-1 -1
Dn T - 1 (2.34)

in agreement with hydrodynamic theory. The hard sphere fluid, then,

shows hydrodynamic behaviour at the molecular level. The temperature

dependence of fluid viscosity predicted by Equation (2.33), though, is

obviously inconsistent with experimental evidence, whereby liquid viscosities
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are strongly (i.e., activated) decreasing functions of temperature.

To remedy this, temperature-dependent hard sphere diameters have been

regressed from experimental data (Fury et al., 1979; Chen, 1983), but

this is obviously in contradiction with the concept of a hard sphere.

From this brief survey, it can be concluded that the prediction of

transport coefficients in dense fluids is, at present, an unsolved theoretical

problem. Existing theories can, at best, serve as useful guidelines

for data analysis and correlation.

2.4: DIFFUSION IN DENSE FLUIDS: COMPUTER SIMULATIONS

The calculation of transport coefficients via computer simulations

can be done using molecular dynamics, a technique first introduced almost

thirty years ago (Alder and Wainwright, 1959; Wainwright and Alder, 1958).

In this approach, the dynamics of a finite number of molecules is simulated

by integrating the classical equations of motion, and the resulting evolution

in time of the positions (and orientations for non-spherical molecules)

and velocities (including angular velocities in the case of non-spherical

molecules) of the molecules is interpreted statistically.

The method, as described above, is deterministic. The dynamic aspect

is necessary for the calculation of transport properties; equilibrium

properties can, in addition to the dynamic approach, be obtained from

statistically generated configurations from which averages can be calculated.

The efficient generation of configurations with their appropriate weighing

factors is accomplished by using the so-called Monte Carlo method, first

introduced over thirty years ago (Metropolis et al., 1953). This represents

the other important technique in the area of computer simulation of fluids,

and will not be considered here since, by its very nature, it cannot

be used to calculate transport properties.

Two theoretically equivalent methods can be used to compute diffusion

coefficients. The Einstein expression

d <[r(t) - r(O)]2> = 2 d D (2.35)
dt

relates the diffusion coefficient of an ensemble of molecules to the

slope of the ensemble-averaged, squared displacement versus time relationship
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at long times. In Equation (2.35) (see Chapter 8 for derivation and

discussion), d is the dimensionality corresponding to r, i.e., the latter

can be calculated along a line, within a plane, or, as in the present

work, in three dimensional space.

The calculation of a diffusion coefficient, then, involves following

the motion of an ensemble of molecules during a time long enough for

the ensemble-averaged squared displacement to grow linearly with time.

Alternatively, one can calculate diffusion coefficients using the

time-correlation formalism (McQuarrie, 1976), whereby

D = - <v(t) v(O)> dt (2.36)

0

In Equation (2.36), v is, again, a d-dimensional vector. Equation

(2.36) can be derived from Equation (2.35) (McQuarrie, 1976); both methods

are therefore theoretically (though not computationally) equivalent.

In this approach, then, one computes the time integral of the ensemble-

averaged velocity autocorrelation, starting from a given (arbitrary)

initial instant, and continuing until the autocorrelation decays to zero,

whereupon the integral is invariant.

The method therefore falls into the category of computer "experiments"

(Gubbins et al., 1983). This apparently contradictory classification

follows from the fact that, given some initial conditions, the temporal

evolution of the system is determined but cannot be known a-priori; the

computer then performs the simulation (the "experiment"), whose results

are finally analyzed and interpreted.

The main problems associated with the molecular dynamics approach

fall into two very different categories. In the first place, for pairwise

additive potentials, the duration of a simulation (given an event of

fixed duration to be studied) is a quadratic function of the sample size.

With current computers, tractable problems are limited to simulations

representing - 10 seconds of real time, and sample sizes smaller than

- 10 3 molecules (or, more generally, 10 3sites in the case of molecular

fluids). This first type of limitation is technical rather than fundamental.

The relative performance of several computers for molecular dynamics

applications is discussed by Ceperley (1981).
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A much more fundamental limitation stems from the lack of basic knowledge

in the field of intermolecular (or interatomic) potentials. Maitland

et al. (1981) summarize our present state of knowledge about potential

functions by considering four categories. Class I includes "functions

which are considered quantitatively accurate". Ar-Ar, Kr-Kr, Ne-Ne,

He-He and Ar-Kr are the only members of this group, with He-Ar, He-Kr

and He-Xe described as "probably of this quality". Class II includes

potential functions obtained by means of reliable methods; in this category,

however, the potentials "have not been extensively tested on a wide range

of properties". Members of this group include Hg-alkali metal, inert

gas-alkali metal and some inert gas-inert gas (He-Ar, He-Ne, for example)

potentials. Class III includes potentials ..." which result from serious

attempts to describe the interactions of non-spherical polyatomic molecules".

The authors recommend procedures to tackle the problem (inclusion of

point monopoles, for example) but conclude that "... the most convenient

representation of this anisotropy has not yet been established". Finally,

in Class IV, the authors include "... the determinations not of full

potential energy functions but merely the parameters that enable a model

potential function to best fit selected data", and conclude that, at

best "... this procedure offers a way of smoothing or of modestly extrapo-

lating the data at hand. To invest such potentials with more value than

this can lead to confusion".

The fact that the technique (i.e., molecular dynamics) is well developed,

whereas the fundamental input to the simulation (i.e., the potential

functions) cannot, at present, be determined with anything even approaching

the same degree of confidence, makes the predictive use of the method

limited at best. In the present context, the word predictive should

be considered incompatible with the very concept of an adjustable parameter.

It is not surprising, therefore, that by far the most significant

contribution of molecular dynamics to date has been the study of model

fluids rather than the predictive calculation of properties for specific

substances. Thus, important phenomena such as the long-time tails in

the velocity autocorrelation function (Alder and Wainwright, 1967; Alder

and Wainwright, 1970) the existence of a phase transition in a hard sphere

system (Alder and Wainwright, 1962), or the equation of state for a hard
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sphere or hard disk solid (Alder et al., 1968) have been successfully

studied with this technique. In fact, in some cases (long-time tails),

the simulated behaviour displayed hitherto unknown features which were

thus first "observed" in a computer simulation and only later predicted

as a general feature of dense fluid behaviour.

The generality and usefulness of such model fluid simulations are

in sharp contrast with the necessarily empirical and restricted information

gathered from specific fluid simulations with ad-hoc potential parameters

(Stillinger and Rahman, 1974). Progress in the fundamental knowledge

of interatomic and intermolecular forces should lead, eventually, to

a completely predictive approach.

2.5: DIFFUSION COEFFICIENTS; EXPERIMENTAL APPROACHES

In the light of the previous discussion, it follows that experiments

must necessarily play a fundamental role in the study of diffusion in

dense fluids. In the particular case of supercritical fluids, the critical

pressures of the solvents of interest (73.8 bar for C02; 50.2 bar for

C2H,; 37.5 bar for SF6, for example) result in high pressure operation,

which makes the study of diffusion under supercritical conditions more

difficult, experimentally, than the study of diffusion in liquids.

Previous studies of diffusion in supercritical fluids are summarized

in Table 2.3. The weight loss method is a static technique whereby the

instantaneous mass of a suspended pellet of diffusing solute is related

to the cell geometry, equilibrium solubility of the solute in the solvent,

diffusion time and binary diffusion coefficient through an analytical

expression resulting from the solution of the appropriate diffusion problem.

In view of the importance of natural convection in supercritical fluids

(see Chapter 3), the assumption of a stagnant solvent may lead to errors.

The use of supercritical chromatography to study diffusion coefficients

represents an application of Taylor dispersion theory (Taylor, 1953;

Taylor, 1954). The diffusion coefficient of a solute injected as a pulse

in trace amounts into a capillary where a solvent circulates in laminar

flow can be calculated from the solute's concentration profile at the

capillary's exit. The diffusion coefficient is then a function of fluid
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velocity, duct radius, concentration profile peak width and solute retention

time.

This technique can be classified as hydrodynamic, since a well charac-

terized flow situation must exist for the theory to be applicable. The

effect of density non-uniformities across the duct's cross section can

always be minimized by modifying the duct's aspect ratio (i.e., increasing

its length to diameter ratio), making this technique preferable to diffusion

cell approaches.

The use of chromatographic techniques to study binary diffusion has

been applied to gaseous (Balenovic et al., 1970) as well as liquid systems

(Ouano, 1972). A comprehensive review can be found in an article by

Maynard and Grushka (1975).

Hydrodynamic techniques can be broadly classified as Fickian or phenome-

nological. This means that diffusion coefficients are obtained from

the solution of a differential equation relating diffusive and convective

transport in a well-characterized flow situation. Not only is concentration

considered as the driving force for diffusion (see Chapter 7), but the

resulting transport coefficient is an average value, resulting from the

assumption of composition-independence. Thus, hydrodynamic methods should

always be used at infinite dilution. This condition can always be approached

with chromatographic techniques (detector sensitivity being the limiting

factor) but needs to be carefully checked when diffusion occurs from

a source of given composition.

In light scattering techniques, (Burstyn and Sengers, 1982; Saad

and Gulari, 1984), on the other hand, the decay rate of the autocorrelation

of scattered light intensity is measured at various scattering angles

by means of a suitable signal detection scheme. The scattering angle

is related to the wave number of concentration fluctuations through Bragg's

equation, whereupon the diffusion coefficient is obtained from the relation-

ship.

r D 2q
2 (2.37)

where r is the autocorrelation decay rate and q, the wave number. The

technique has been used to study binary diffusion in liquid mixtures
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both away from (Czworniak et al., 1975) and in (Burstyn and Sengers,

1982) the critical regime.

The technique is accurate and does not give rise to the experimental

problems associated with hydrodynamic methods. In particular, natural

convection phenomena are entirely absent due to the time scales involved.

In addition, the concentration dependence of D,2 can be measured unambiguously

by performing experiments at various different concentrations. Finally,

the technique has important theoretical implications, especially in the

critical region, which make its use mandatory in the study of non-classical

dynamic critical phenomena (Enz, 1979).

2.6: MASS TRANSFER

Little systematic work (Brunner, 1984) has been done on mass transfer

into a supercritical fluid in practical situations (packed beds, liquid

columns, stirred tanks, etc.). As explained in Chapter 3, significant

enhancements in mass transfer rates are to be expected whenever transport

in the supercritical phase is rate-limiting. This is an important and

interesting problem, and should receive increasing attention in the future.

2.7: OBJECTIVES

In the previous sections, a brief review was presented on the current

status of theoretical and experimental approaches to the study of transport

phenomena in dense fluids. Within this general picture, the main objectives

of this work can be summarized as follows:

* to understand the role of physical properties in determining both

the rate and mechanism of mass transfer in supercritical fluids

* to measure binary diffusion coefficients of different organic solutes

on supercritical fluids and interpret the results

* to study binary diffusion using molecular dynamics computer simu-

lations

The experimental technique (see Chapter 4) selected in the present

work is hydrodynamic. Although both cromatographic peak broadening

(also a hydrodynamic method) and light scattering yield more accurate
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results, the flat plate method, by allowing for the introduction of buoyant

effects, made it possible to verify experimentally some of the qualitative

predictions made in Chapter 3 in connection with the analysis of physical

properties and natural convection.

Although important insights were gained in this way, future studies

should separate the mass transfer and property measurement aspects of

the problem with carefully designed hydrodynamic techniques, and, ideally,

light scattering used to study the former and latter problems, respectively.

As more data become available, the understanding of diffusion in

supercritical fluids will, inevitably, benefit from a more fundamental

approach. In particular, the interesting theoretical implications of

hydrodynamic ideas in the supercritical regime should prove to be more

fruitful than the current emphasis on rough hard sphere theory.

The prediction of transport properties through the use cf computer

simulations is presently limited by the lack of fundamental knowledge

in the area of interatomic and intermolecular potentials. In the present

work, the approach chosen was somewhat different from the usual procedure:

the simulations referred to specific molecules, yet no adjustable parameters

were used. The results are encouraging, though accurate prediction (with

no adjustable parameters) is still more a goal than a reality in the

case of molecular fluids. In addition, the study of infinite dilution

binary interactions poses severe problems related to computer speed and

memory (see Chapters 9 and 1O); the results obtained with a test-particle

approach (Alder et al., 1974), again, are encouraging, but they should

be considered only as a step in the right direction, which enables the

study of a difficult problem without the need for a supercomputer. This

is not t say, however, that the statistical significance of the answers

would not improve from either a large solute ensemble or longer simulations

with completely independent "experiments" (see Chapter 10). Such calcu-

lations, however, require, far more powerful computer resources than

were available for this work
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3. PHYSICAL PROPERTIES AND NATURAL CONVECTION

3.1 MASS TRANSFER AND NATURAL CONVECTION;HYDRODYNAMICS

Mass transfer in a fluid is inseparable from density non-uniformi-

ties. Under the influence of gravity , density gradients give rise to

natural convection currents , the relative importance of which is deter-

mined by fluid properties.

For steady laminar flow of an incompressible Newtonian fluid under

the influence of gravity and an imposed pressure gradient,

n V2v + p g - VP = 0 (3.1)

A second component (solute) will diffuse into the fluid if, for exam-

ple, the latter is in contact with a surface from which the solute dissol-

ves. The resulting concentration gradient will give rise to density

gradients which will, in turn, alter the velocity profile. This coupling

between mass and momentum transfer can be analyzed in those cases where

concentration (and density) gradients are small. Expanding the density

about the pure fluid value in terms of solute concentration, and trun-

cating after the linear term,

p = p + ) (C - c) P - m( - co)] (3.2)
c T,P

Substituting into Equation (3.1),

n V2 v + g po [1 - Bm c] - VP = 0 (3.3)

where co=O has been used. Equation (3.3) has been obtained by linearizing

the density and neglecting changes in viscosity. This decoupling..of

the mass and momentum balance equations is known as Boussinesq's approxi-
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mation and is obviously restricted to small density gradients.

To illustrate Equation (3.3), let us apply it to flow in a duct of

radius R and non-dimensionalize it by defining

1 = P + Po g h (3.4)

n+ = fl/po <v> 2 (3.5)

v+ -v/<v> (3.6)

r = c/c i (3.7)

where <v> is the average fluid velocity in the duct, ci is the solute

concentration at the duct boundary, where phase equilibrium is assumed,

and h is the height of a plane of constant hydrostatic pressure measured

along the direction of gravity (g' is a unit vector collinear with the

direction of gravity)

Vh = -g (3.8).

Substituting into Equation (3.3) and non-dimensionalizing, with R

as length scale,

2 (V+)2v+ - V+n+ g'(Gr ) (3.9)
Re Re 2

We now define Ap as the difference in fluid density at the interface

and in the bulk (pure solvent), and introduce the natural scales for

buoyant, viscous and inertial forces,

Bouyant forces - 2R g Ap (3.10)

Viscous forces n <v>/2R (3.11)

Inertial forces - <v>2 Po (3.12)

The physical significance of the parameter Gr Re-2 follows immedia-

tely,
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Gr (2R g Ap)(<v>2 p) (n <v>/2R)2 Buoyant forces
2 2 2 2 (3 13)

Re2 (n <v>/2R) (<v> pO) Inertial forces

This ratio, then, can be used to investigate the scaling behaviour

of bouyant forces. In the present context, this means comparing the

relative importance of natural convection in different fluids. It is

obvious that such comparisons should be made at equal Reynolds numbers.

If different fluids flow inside identical ducts under diffusive mass

transfer conditions at any given Reynolds number, and assuming comparable

density changes (Ap/p), the relative importance of natural convection

scales inversely as the square of the kinematic viscosity of the fluid

in question. Thus, fluids with low kinematic viscosities can develop

appreciable buoyancy-driven flows even with small density gradients.

3.2 PHYSICAL PROPERTIES IN THE SUPERCRITICAL REGION

The role of the kinematic viscosity in determing the relative impor-

tance of natural convection has already been shown. Supercritical fluids

have exceptionally small kinematic viscosities as a consequence of the

very different behaviour of density and viscosity in going from the dilute

gas to the dense fluid region.

In what follows, attention will be focused on the region 1 < Tr <1.1

1 < Pr < 4 , where most of the changes associated with the passage from

the dilute gas to the dense state occur.

The dimensionless isothermal compressibility is the relative change

in density per unit relative change in pressure, at constant temperature,

K' gln p al = gin V ) = p KT (3.14)
T i -T dln PT

For a fluid whose volumetric properties can be adequately described

by a cubic equation of state, for which the most general formulation

is (Schmidt and Wenzel,1980)
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RT a
RT 2 (3.15)
V-b V + uVb + wb

K can be written as
T

K' z(-K) (3.16)
T 1 (2 + u)[1 - z(1 - K)]

1 - K 1 + UK + WK

where u,w are numerical constants which depend on the particular equation

of state being used (Appendix 1) and K=bV- 1. The dimensionless isothermal

compressibility is unity for an ideal gas, zero for an incompressible

fluid, and infinite at the critical point.

Figures 3.1 to 3.4 show the behaviour of this quantity for CO02 and

SF6, in the region 1.01 < Tr < 1.1, .1 < Pr < 4, for two different cubic

equations of state. At 318 K and 100 bar (Tr = 1.05 ; Pr = 1.36 ), C02

is 280 times as dense but almost three times more compressible than

at 318 K and 1 bar. This unique combination of high density and high

compressibility is one of the distinguishing features of supercritical

extraction (Paulaitis et al.,1983).

Of more immediate concern here is the fact that the low pressure

limit of the dimensionless isothermal compressibility gives rise to

roughly two of the three orders of magnitude by which the density changes

in going from atmospheric to supercritical conditions. This is shown

in Figure 3.5, where the density, viscosity and kinematic viscosity of

CO2 at 310K (Tr = 1.02) are plotted as a function of pressure from 1

to 200 bars.

The viscosity, on the other hand, shows a very mild pressure depen-

dence at low density (ideal gas viscosities are pressure-independent)

and increases by a factor of roughly 6 in the range .8 < Pr < 1.6. Thus,

supercritical viscosities are less than an order of magnitude higher

than ideal gas viscosities.

The combined effect of liquid-like density and moderate viscosity

leads to an exceptionally low kinematic viscosity. The supercritical

region, then, can be viewed as an interesting transitional domain, where

some fluid properties attain unique values, not necessarily intermediate
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by the Peng-Robinson equation of state.
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between the ideal gas and the liquid extremes.

If we now compare (Figure 3.6) the properties of air, water and mercu-

ry at 298 K and 1 bar with those of supercritical C02 at 310 K and 150

bar in the light of the previous discussion, some interesting consequences

arise. We note the fact that, for v, CO02 has the lowest value (lower

than for mercury, a liquid metal). The fourth column is the ratio of

buoyant to inertial forces at constant Reynolds number and duct geometry,

scaled with the corresponding value for water. The relative importance

of natural convection, therefore, is more than two orders of magnitude

higher in a supercritical fluid than in ordinary liquids.

It is important to note that this phenomenon is independent of the

free convective currents that originate very close to the critical point

as a consequence of the diverging fluid compressibility.

3.3 FLOW REGIMES

The extent to which natural convection controls the overall transport

mechanism in a supercritical fluid is well illustrated in the case of

vertical flow inside ducts.

Figure 3.7, adapted for mass transfer from heat transfer theory (Me-

tais and Eckert,1964) shows the possible regimes that can exist for verti-

cal flow inside a cylinder under the combined influence of buoyant forces

and pressure gradients. This figure summarizes available experimental

and theoretical knowledge, covers the cases of forced and free convection

both aiding and opposing each other, and is valid for 10-2 < Sc D/L <1.

As can be seen from Figure 3.7, the hydrodynamic regime can be charac-

terized with two parameters: the Reynolds number and the product of the

aspect ratio times the Rayleigh number (which, for mass transfer, is

equivalent to the product of the Schmidt and Grashof numbers). The lami-

nar-turbulent transition in the forced and mixed regimes is shown as

a dashed area of finite thickness.In the free regime, the transition

occurs at an abscissa value of - 109.

For Ra(2R/L) < 109, then, increasing the Reynolds number (at constant

abscissa value), leads to a laminar-turbulent transition. Increasing

the abscissa at constant Reynolds number, on the other hand, give3 rise
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to a forced-free transition. It is very important to notice that the

forced laminar region is bounded on all sides. This means, among other

things, that it is impossible to attain forced laminar flow beyond an

abscissa value of 104, no matter how low the Reynolds number is, or,

in other words, that Ra(2R/L) < 104 is a necessary but not sufficient

condition for forced laminar flow.

This criterion has been used in Figure 3.8, where the area lying

above and to the right of each curve represents geometries for which

laminar flow is impossible in supercritical operation (notice the v and

Sc values). The parameter in Figure 3.8 is the relative density change.

Thus, even with negligibly small density changes (10-3) and aspect ratios

(10-3), forced laminar flow cannot be attained for D > 8 mm. Curves

are shown dotted for D/L > 10-1 since, for Sc = 10, this is the upper

limit for the validity of Figure 3.7.

For packed bed flow, the large contribution of buoyant forces suggests

that the usual mass transfer correlations are unsuitable for design purpo-

ses when supercritical fluids are involved if the controlling resistance

lies in the supercritical phase. Correlations which take into account

buoyant forces have been published (Karabelas et al., 1971), but do not

cover the low Schmidt number range characteristic of diffusion of small

(MW - 100) organic solutes in supercritical fluids.
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4. APPARATUS AND EXPERIMENTAL PROCEDURE

4.1 INTRODUCTION

The experimental aspects of the hydrodynamic technique used in the

present work will be discussed in this Chapter. The theoretical basis

will be presented in Chapter 5.

In essence, the technique involves laminar flow of a supercritical

fluid within a duct of well-characterized geometry. A solid solute dis-

solves into the fluid from a surface at the duct boundary. Diffusion

coefficients and mass transfer rates can then be calculated from a knowl-

edge of the flow'rate, duct geometry and equilibrium solubility of the

solute in the supercritical fluid at the same temperature and pressure,

and from the measurement of the amount of solute that, at steady state,

precipitates upon decompression from a known amount of fluid.

4.2 APPARATUS

A schematic flow sheet of the experimental appartus is shown in Figure

4.1. The solvent gas is compressed by diaphragm compressor K (Aminco

J46-13411) and pumped from a gas cylinder (TK2) to a 2-liter autoclave

(TK1) whose pressure is maintained by an on-off controller (indicator-con-

troller PIC) acting on the compressor's electric drive (M). A manual

pressure regulator, V1 (Matheson Model 4 High Pressure Regulator or

Matheson Model 3064 High Pressure Regulator) eliminates downstream pul-

sations. This is essential for hydrodynamic experiments.

The pressurized solvent is preheated to the desired temperature in

coil CL, which is immersed in a 24 in.x 18 in.x 18 in. water bath, B1,

whose temperature is maintained by heater-circulators A1 and A2 (Thermomix

1460, accurate to within 0.010C). The pressure is displayed on a panel-

mounted guage, PI (Heise guage, 0 - 400 bar, accurate to 0.5 bar). C2,

the diffusion tube, is a 12 1/2 in. long 2in. Sch 160 316 stainless

steel pipe with threaded ends, inside of which is located a flat plate

where the diffusional process occurs. All tubing up to C2's inlet connec-
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tion is 1/8 in. 316 stainless steel. The outlet section is 1/4 in. 316

stainless steel.

A hydraulic jack, J (American Scissor Lift), raises B1 so that, during

an experiment, C2 is immersed in water; B1 is then lowered to allow easy

access to C2, which must be opened between experiments to replace the

flat plate.

The partially saturated fluid emerges from C2 and flows through a

jacketed line (JL) up to valve V2. Bath water is circulated through

the jacket by pump P to maintain the outlet line isothermal and prevent

solute precipitation. V2 (30VM 4882, GA, Autoclave Engineers) is a 1/4in.

manual regulating valve which controls the flow and reduces the pressure

down to atmospheric. In operation, it is maintained at least 200C above

the solute's melting oint in order to avoid clogging due to solid accumu-

lation.

The precipitaed solute is collected in two glass wool packed U-tubes

immersed in an ice bath (B2, a 1500ml beaker); the solvent flows through

rotameters R (Matheson R 7640, Series 603 and 604), and the total amount

is integrated in a dry test meter (DTM, Singer 802). The temperature

at C2's inlet/outlet, and at the DTM's outlet can be read in a panel-moun-

ted digital indicator (TI). A U-tube manometer (U) provides an accurate

reading of the solvent's pressure at DTM outlet conditions.

A secondary (purge) line is also shown in Figure 4.1; its design

allows separate purging of the upstream, downstream and inlet sections

of the equipment. Also shown in Figure 4.1 is C1, a lin.OD x 17in.1

316 stainless steel nipple which increases the holding cpacity provided

by TK1. C1 and TK1 are both protected by separate rupture discs (X1,X2).

The actual experiment involves fully developed laminar flow of a

supercritical fluid inside a horizontal rectangular duct (Figure 4.2),

the bottom surface of which is coated with the solute of interest. The

brass plate (4) is tightly fitted into an enclosure made up of two alu-

minum hemi-cylinders (1,2); flow occurs inside the resulting 1in. x 1/8in.

rectangular channel (3). The plate contains three sections: a section

(5) where laminar flow is allowed to develop, a 1in. w x 3in. 1 test

section (6), and an outlet section (7). The test section is made by

casting the molten solute and carefully machining the surface after sol-
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idification. Fluid by-pass of the test section is prevented by a Viton

gasket (8), which forces the plate against the upper surface, and by

the labyrinth seal (9) which results when the hemi-cylinders are tightened

(10,11) and Teflon tape is placed between the upper and lower mating

surfaces (9).

The whole assembly is tightly fitted inside C2. Sealing is provided

by O-ring 13, while O-ring 12 is notched: the pressure in 3 is thus

equal to the pressure outside 1 and 2.

When channel 3 is horizontal, there are no buoyant effects and true

binary diffusion coefficients can then be determined (this is not true

in general; for the systems and experimental conditions considered in

this work, however, this statement is valid in all cases; see Chapter

6 and Appendix 2 for theoretical development and proof). Arbritrarily

variable buoyant forces can be introduced by rotating 1 and 2 inside

C2. The same experiment should then give rise to different results,

and information can be gathered on the relative importance of natural

convection in supercritical fluids.

As already mentioned above, the calculation of binary diffusion coef-

ficients requires knowledge of the eqvuilibrium solubility of the solute

in the supercritical fluid under the same conditions of temperature and

pressure.

Equilbrium solubilities are measured in separate experiments. The

configuration of equipment is the same as that shown in Figure 4.1, except

for the fact taht C2 is replaced by a in. OD x 12in. 1 316 stainless

steel vertical column packed with the solute under investigation. B1

is also replaced by a smaller, cylindrical water bath. The supercritical

fluid thus flows upward through the bed and, at low enough soovent flow

rates (see below), emerges from the column saturated with the solute.

The experimental procedures for equilibrium and diffusion experiments

will now be discussed.

4.3 EXPERIMENTAL PROCEDURE

C2 is partially pressurized and B1 raised to its working position.

Partial pressurization is attained by opening V1 (with V2 closed) and
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closing the on-off valve immediately following V1 once the desired pres-

sure has been attained. The experiment is only started after a minimum

period of 2-3 hours, during which thermal uniformity inside C2 is at-

tained. It is important to select the pressure for this thermal equilib-

rium period in such a way that only a negligible amount of solute is

dissolved, otherwise, the test section's geometry will be altered even

before the experiment begins.

TK1 is always kept at pressure at least 20 bars higher than the de-

sired value, since V1 can only control if there is a pressure drop across

its body. C2 is then pressurized, and the heated regulating valve V2

opened and manually operated to attain a constant flow rate. The precipi-

tating solute is collected in a pair of U-tubes, the contents of which

are unimportant, since at least 15 minutes are allowed for the system

to attain a steady state while fluid is flowing at the desired rate,

temperature and pressure. The recirculating pump is started and operates

continuously throughout the duration of both this start-up stage and

the actual experiment.

The' back-up U-tubes are removed, and the DTM initial reading is then

recorded. The actual U-tubes are the connected and an accurate timing

of the experiment is started simultaneously.

It is imperative that, throughout the experiment, the flow rate be

kept as constant as possible. In general, flow characteristics are good

when the equilibrium solubility of the system under study is less than

-10- 4 mole fraction. Above this value, the flow is more uniform the

lower the melting point of the solid.

Temperature and pressure readings are taken every 5 minutes. The

duration of the run is determined by the need to collect at least 10mg

of solute (see Appendix 2 and Chapter 6 for a more detailed discussion).

Weighing is done on a Mettler H51-AR balance, accurate to 100 g.

Detailed calculations on the flat plat design, and on the duration, accu-

racy and limitations of the experiment are given in Appendix 2.

Equilibrium experiments are conducted in an entirely similar way,

but neither accurate timing nor constancy of flow rate is important in

this case. The thermal equilibrium stage is also much shorter on account

of the abscence, in this case, of stagnant layers of fluid inside the
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extraction column. In equilibrium experiments, on the other hand, solute

precipitation inside the outlet lines is of more concern than in diffusion

experiments, since the fluid is now saturated with the solute (as opposed

to - 15-20% saturated in a typical diffusion experiment).

Flow rates for equilibrium experiments must be low to guarantee solvent

saturation at the column's outlet. Typical values are 0.8 lt/min at

DTM conditions (Kurnik, 1981).
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5. DIFFUSION IN RECTANGULAR DUCTS

5.1 VELOCITY PROFILE; FULLY DEVELOPED FLOW

The basic geometry of the problem is shown in Figure 5.1. We consider

fully developed laminar flow in the axial (x) direction inside a rectan-

gular duct of height 2b (-b y b) and width 2a (-a z a).

The velocity profile can be expressed empirically as (Shah and London,

1978):

V yjn II yl m
_ = [C1 - ] I [1 - ) I
v b a
max

ca < 1/3

-1.4
m = 1.7 + 0.5a

n = 2

(5.1)

(5.2)

n = 2 + .3(a - 1/3) a > 1/3

where

a = b/a (5.3)

Figure 5.2 is a plot of Equation (5.1). The expressions (5.2) were

obtained by matching the finite difference solution of the momentum balan-

ce equation to the empirical form (5.1) .

From Equation (5.1) we obtain, upon integration over the duct cross

section,

v m+1 n+1 l Y n Izl m-= C -) .( - ) [1 - ( ) ] [ - (-) 
<v> m n b a

(5.4)
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FIGURE 5.1 : Rectangular duct geometry
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b a

ab<v> = [1 - ( ] I1 - ( ) ] dy dz
I . b a

0 0

(5.5)

5.2 DIFFUSION; CONSERVATION EQUATION

The steady state conservation equation for a diffusing solute is

2 2 2ac ac ac ac
v- = D ( -+ - + - )

2 2 2
ax ax ay az

(5.6)

where c is the solute molar concentration and D, the binary diffusion

coefficient. If we now non-dimensionalize by defining,

B = L/2a = L/2b

+
x = x/b

y = y/b

z = z/b

c = (c - ci)/(co - ci)

v = v/<V>

(5.7)

Equation (5.6) becomes

a
+ 2+ 2+ 2+ 2+

+ ac a a c ac
Pe ( ) v - = (5.8)

2 2 2
ax + ax + ay+ az +
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Pe = <v>L / D

In the above expressions, L is the relevant axial dimension, which

will later be identified with the coated (or heated, in the equivalent

heat transfer problem) length; ci is the solute concentration at the

(still undefined) solvent-solute interface, where phase equilibrium is

assumed, and c is the solute concentration at x 0- (which will even-

tually be equated to zero).

Dividing through by ( aPe/2B ), and taking into account that, with

the definitions (5.7),

Y ~ 0(1)

y+ O-1
z (a ) (5.10)

x - 0(25/a)

we have the following scales,

-2
x - convection (a/26) - 2 x 10

y - diffusion ~ (2a/aPe) - 5 x 10

-6 (5.11)
x - diffusion ~ (a/2aPe) - 2 x 10

-5
z - diffusion (2ca/Pe) - 8 x 10

where = 1/8, = 3, Pe - 104 have been used, corresponding to the case

presently considered ( D - 10-8 m 2/s; <v> 10-3 m/s; L ~ 10-1 m; see

Appendix 2 ). So, from order of magnitude considerations, we can neglect

axial and transverse diffusion. This conclusion is by no means general.

The problem now becomes, using Equation (5.4),
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2 ac2
(2E+ - +2) ac+ = A(z+) (5.12)

ax+ aE+2

4a m m-1
A(z+ ) = . ( - ) [1 - (calz+) 

3aPe m+1

(5.13)

i+ - 1 - y+

with boundary conditions

c+(x+,2) = 0

ac+

--v = 0 (5.14)

a (x+,o)

c+(O,E + ) = 1

corresponding to a plane ( = 2b; y = -b) from which the solute dissolves

into a Newtonian fluid moving inside the duct under steady laminar condi-

tions. The fluid contains no solute at the entrance, and the upper plane

( = 0; y = b) is impermeable to mass transfer. Thermodynamic equilibrium

is assumed at the source plane.

5.3 SOLUTION

Equation (5.12) can be viewed as a two- dimensional (x+, +) problem

with a coefficient, A(z+), that depends on a third dimension. Solutions

to the two- dimensional problem must therefore be integrated across the

third dimension's domain (-1 < az+ < 1). We now separate the two- dimen-

sional problem into an axial and a "radial" part,

c+ = H(W+ ) . X(x+) (5.15)
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and rewrite Equation (5.12)

1 1 dX

A(z + ) X dx+

1

2
H( 2+ - + 

2
d H

2
dE+

(5.16)

The full "radial" problem then becomes

2
dH
__- + y2 H ( 2 + -

dE+2

2
;+ ) = (5.17)

H(2) = 0

(5.18)
dH

(- ) = O
+ o
o6

i.e., we have a homogeneous problem in +.

expansion,

We postulate for H a series

H = a +

i=O i
(5.19)

whose coefficients ai will obey some recurrence relationship to be found

from Equation (5.17), while the first boundary condition will give rise

to an eigenvalue problem. Also, from the second boundary condition,

we immediately obtain, upon differentiating Equation (5.19),

a1 = 0 (5.20)

Equation (5.17), in terms of the postulated expansion, becomes
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2a2 + (6a3 + 2aoY2)E + [12a4 + (2al - a)Y2] +2 +

+ [20a5 + (2a2-al)Y
2]E+ 3 + ...

+ [n(n-1)an + (2an-3 - an-4)y2] +

(5.21)

n-2

from which we obtain

a 2 /a = 0

a3/ao

a4/a O

= y2 /3

= y2 /12

a5 /ao = 

a6/ao = y4/45

a7 /ao = - Y4/84

a8/ao = Y4/672

ag/ao = - 6/1620

As can be seen from the

a polynomial in even powers

(5.22)

generic term in Equation (5.21), an/ao becomes

of Y for n > 12. Thus, we can write

a i I
-- ai

ao

a i = C
j=l 1ij

(5.23)

2j
Y (5.24)

where, for example, C6 ,2 = 1/45; C6,j = 0 (j 2 ). The first boundary

condition in Equation (5.18) gives rise to the eigenvalue equation which,
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in the light of Equation (5.24), becomes

co i CO 2j
1 + 2 C Y =0 (5.25)

i=1 j=1 ilj

or, in a more convenient form,

2j i
1 + Y 2 C = 0 (5.26)

j=1 i=1 i ,

Eigenvalues up to 10 in magnitude require an equation of degree 40

or higher in Y. The last a'i containing a non- vanishing Ci,20 coeffi-

cient is a'80 (which contains terms in Y4 0 through y5 0). Ci,j values

for i up to 80 and j up to 20 are shown in Appendix 3. From what has

been said, we conclude that the computational equivalent of Equation

(5.24), for eigenvalues 10, is

26 2j

a = C Y (5.27)
i j=1 i,j

The coefficients of Equation (5.26) are listed in Table 5.1, and

the first five eigenvalues, in Table 5.2. The axial problem has the

formal solution,

X = (const.) exp [-A(z + ) y2 x +] (5.28)

The two- dimensional solution, therefore, can be written, in its

most general form, as

+ W 2 2
C (x+, + ) = C exp[- A(z + ) Y x+][1 + a 5+ + a i+ + ...] (5.29)

n n 1,n 2,n
n=1
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Table 5.1 : Coefficients of the Eigenvalue Equation (*)

n Tn

1 -1 .333333333333

2 .2793650793651

3 -.2319063652397 x 10 -1

4 .1027637853035 x 10 - 2

5 -.2828429817471 x 10- 4

6 .5302430465802 x 10-6

7 -.7204830258760 x 10-8

8 .7420607052348 x 10-10

9 -.5992478391541 x 10-12

10 .3895904572009 x 10- 1 4

11 -.2082920733589 x 10-1 6

12 .9319185747388 x 10-19

13 -.3540455208018 x 10-21

14 .1156354935000 x 10-23

15 -.3281648836384 x 10-26

16 .8167183808737 x 10-29

17 -.1797000439336 x 10-31

18 .3520715535377 x 10-34

19 -.6181214828232 x 10-37

20 .9781035465679 x 10- 40

2n
(*) 1 + 2 Y 4n 0=

n=1
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Table 5.2 : Eigenvalues of EqLLation (5.26)

.9546676

2.9743079

4.9810344

6.9845839

8.9876252
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where n is an eigenvalue index, and a indicates the result of Equation
i,n

(5.24), with Y - n (i.e., for the nth eigenvalue). From the x+- related

boundary condition, we obtain

1 -I C [ 1 + a' a' a' + 2+ ... ] C H' (5.30)

n-1 n 1,n 2,n n-1 n n

Since the form of Equation (5.17) implies that the eigenfunctions,

H' ,are orthogonal with respect to the weighting function (2& - &+Z),

n
we can write (Arpaci,1966)

2

(2+- 2 ) H' d +

n
0

C - (5.31)

where Hn is simply Equation (5.19) divided by a,

I I 1 2

H - 1 + a i a + a. (5.32)
n 1,n 2,n

The numerator and denominator of Equation (5.31) will now be transfor-

med. For the numerator, we write

2 
d Hn 2 2

+ Yn Hn (2X+ - + ) O (5.33)

d2 f

and integrate,
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-2 2-Yn + ( - ) d+" | Hn (25+-5+ )d+
od d+ J (5.3 4)

to obtain, finally,

2

-2 dHn

-Yn -
d+

= Hn (2&+ _- +2) d +

+2
0

(5.35)

where

dHn
0

dE + o

has been used. For the denominator, we multiply Equation (5.33) by

dHn/dYn,

dHn d Hn 2 dHn 2
. + n Hn (25+ - ) O

dYn de dYn

and integrate, to obtain

I

dHn

d&+

12

10
O

dHn d cdHnd +-( ) d +
dE+ dE+ dYn

2

(H) (25+ - +2 ) d + - 0
dYn 

0
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(5.36)

(5.37)

+

(5.38)

dHn

dYn

2
Yn

2

2 2



where use has been made of the following fact

' 2 ' 2

2 ' dHn Yn d(Hn)
Yn Hn ---

dYn 2 dYn

Multiplying Equation (5.33) by Hn and integrating,

2 2

I dHn 2 dHn 2 2 ' n)2 2

Hn ( ) d+ + n (Hn ) (2&+ - ) d+ = O
dI+ o de +

0 0

We now differentiate both sides of Equation (5.40) with respect to

Yn and divide by 2,

2
* * 1 1 ' 2

1 dHn dHn 2 Hn d dH 2 1 d dH

2 dYn dE+ o 2 dYn de + o 2 dY n d +

0O

(5.41)

2

f '2 2 2
+ Yn i (Hn) (2&+ - + ) d+ +n 

2

2

d nfi(Hn) 2d (H 2 (2+ - + ) d + O

dYn
O

Using the two "radial" boundary conditions to eliminate the second

term, plus the fact that

t 2 1 * 1. 

d dHn dHn d dHn dHn d dHn.( ) - 2 - . - . - - 2 . - .
dYn dS+ d&+ dYn d + d + d + dY n

(5.42)

we can rewrite Equation (5.41)
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2

1 dHn dH n

2 dY n d + 0 J

I I

dHn d dHn
S .- - d&+ +

d&+ dS+ dYn

0

(5.43)

2 2

+ Yn (Hn) ( 2 + - +2) d+ + - (Hn) (2+ - ) d+ 0
2 dYn

O O

Subtracting Equation (5.43) from Equation (5.38),

I , 2

1 dHn dHn 2 2
.... _ 8 n (Hn) (2E+ - + ) d +

2 dYn d + o
0

Equations (5.35) and (5.44) constitute the desired expressions, which,

when substituted into Equation (5.31), yield

Cn -

1 dHn 2

2
Yn d O

t I

1 dHn | dHn |

2Yn dYn 2 d +
2

-2

dHn (2)

dYnd n

(5.45)

where (dHn/dE+ ) o - O has been used. Although the transformations are

non-trivial, Equation (5.45) is much easier to use than Equation (5.31).

Substituting Equation (5.45) into Equation (5.29),

(5.44)

I -- 1
c+ (x+.E+,z + ) -2 H [¥n (dHn/dYn) 

n-1 2
exp[ - A(z + ) Y2 x + ]~nX]

where (dHn/dYn) means that the derivative expression should be calcula-
2
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ted formally and evaluated at + 2.

Equation (5.46), together with the definition of Hn (Equation (5.32))

and the numerical values of the coefficients Ci,j (Equation (5.24), Table

5.1) and of the eigenvalues, Yn (Table 5.2), constitute the solution

to the two- dimensional (x+, +) problem. The siplification whereby,

following order of magnitude arguments, lateral diffusion was neglected,

has resulted in a two-dimensional solution that must be integrated across

z+, instead of a full three-dimensional problem.

5.4 CROSS-SECTION AVERAGES

We define a cup-average concentration,

-1 2b

<c(x)> - C 4ab<v> ] J
-2b -2a

2a

J c v dy dz (5.47)

or, equivalently, using the definition of c+ (Equations (5.7)),

<c+(x+)> - [ 4ab<v> -] c+ v dS (5.48)

with S denoting the duct's cross section. Using Equation (5.4) plus

the fact that, for a < 1/3, n - 2,

m+l 3 1

<c> .. . - . ab
m 2 4ab

1/a 2

l - (1- +) 2][l - (alz+l) ] d dz+

I ~~~~~~~~~~~fr.49)
-1/a 0

which can be rewritten, taking into account the symmetry of the z+ pro-

blem, as
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2
3(m+1 )

<0> -- a .
4m

0 0

(5.50)

1/a

[1 - (1 - .+ ) 2[ - (z + ) M] d + dz +

Using Equation (5.46), this becomes

<c+(x+)> -
(5.51)

1/m 2

-3a(m+) I [ - (z + ) ] exp[- A(z+) Yn x+] dz+

2m n-1

0 0

2 '
[1-(1- + ) ]Hn

Yn (dHn/dYn),2

The form of the z+ integral can be made more explicit by using Equa-

tion (5.13), to obtain

2
A(z+) Y x+

2 mYnXo 1
VA ~ ~ ~ ~ ~ ~ -

3(m+1) 1 - (z+ )

where X, is a modified inverse Graetz number,

x D
Xo b

2
<v> b

and z+l has been replaced by z+ since integration is over positive values

of the variable only.

Defining

2
, 2 m Yn Xo
XO (m,n) - --- (5.54)

3 (m + 1)

the z+ integral becomes
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1/a

a [ - (az+) M ] exp [-A(z+) Yn x+3 dz+ =

O

1/a

a i - (z+) ] ex [-

0

Xo(m,n)
-X mn) ] dz+ =

[1 - (az+ ) ]

1

m Xo(m,n)

- (1 - ) exp [ - m ] dn n(Xo,m)
J (1 - n )

We now consider the + integral in Equation (5.51),

2 
(25+ - t+ )Hn

Yn dHn/dYn 

2

dE+ ( 2+
- E+

Yn dHn/dYnj2

0

which, taking into account the definition of Hn, can be expressed, after

integration, as a series

2

1 2 ' 1 4 ; , ,
- f(2+ - + )Hn dE+ = - [ - + X (2 /J)(2a_2,, -aJ-3,n)]
rn rn 3 j =4

0

(5.57)

where a1,n = has been used, and rn is defined below,

r n ' Yn dHn/dYn2

1 32

(5.58)

(5.55)

I
0

(5.56)



Taking into account the expansion, Equation (5.24),

c k+l c 2j

rn -= 2 J Ck,j Yn
k-1 j=l

-1 j I c 

i J 2 (2 a 2 - aj-2,n) - XJ
j-4 j -14

-1 ; 2k

2 1 (2Cj-2,k - Cj-3,k) Yn
k=1

and the + integral becomes, finally,

(2&+ - &+2)HI
dS+ -

82

4/3 + J
j-4

26
-1 j 2k

2 X (2 Cj-2,k - Cj-3,k) Yn

k-1

80 k1 26 2j

2 X J Ck,j Yn
k-1 j-1

Gn

(5.61)

where the summations contain their computational limits, as discussed

in Section 5.3. Equation (5.51) now reads

-3(m+1) N

<c+ ( x + ) > = I n(Xo,m) Gn
2m

n-l

where N is the number of eigenvalues used. For a pure solvent at the

inlet, such as we are presently considering, the cup- average relative

saturation and <c+> are related by

<c+> + r = 1

r = <c>/c i

(5.63)

(5.64)

133

(5.62)

(5.59)

(5.60)

2

0



so we can write

3(m+1) N

r - 1 + I n(Xo,m) Gn
2m n=1

n-1

(5.65)

This is the expression used to calculate binary diffusion coeffi-

cients. For a given aspect ratio (i.e., m), the relative saturation

is only a function of X. Given <v> (solvent flow rate), x (coated

length) and b (duct width), then, the measured r is only a function of

D.

Finally, an expression for the local Sherwood number will be derived.

We define a mass transfer coefficient, k,

ac(x,z)
D = k [ci - <c(x)>]

a (- 2 b)

or, after nondimensionalization and rearrangement,

kb 1 ac+

D <c+> a+ ( ' 2)

The relevant length parameter is 4 times the hydraulic radius

(5.66)

(5.67)

I rh 

4(Cross Section)

Wetted Perimeter

4 (4ab)

2(2a + 2b)

4 1 Bc +

Sh(x+,z+) - - -
1 + a <c+> + 2

The z+ - averaged Sherwood number, therefore, is
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1 + a

4b k

1 + a D

(5.68)

(5.69)
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4

Sh(x+) -
1 + a

1

<C+>

0

aCZ+,X+)

+

From Equation (5.46) we obtain

ac + m

- -2 X (1 /
a+ 2 n-

rn) . exp [-A(z+)
2 c

Yn x+ ] . j
j-l

j-1 2k
2 1 Cj,k Yn

k=1

We now define

1

An - =

nr 80 k+l

k-l

80
Bn' I k 2

k-1

26 2j

jCk, j Yn
j-1

k-1 26 2j

X Ck,j Yn
J-i

where, again, the computational limits have been used in the summations.

The final expression is, therefore,

16m

Sh - -

3(m+1)(1+a)

N

I An Bn * *n(Xom)
n=l

N

I Gn · n(Xom)
n-l

with

1 35

d(z/a)

2

(5.70)

(5.71)

1

(5.72)

(5.73)

(5.74)



2 X0 (m,n)
exp[-A(z+) Yn x+] d(z/a) = exp [- ] d * - n(X,m) (5.75)

(1 - rm)
0 0

The numerical values of An, Bn, Gn can be found in Table 5.3. Figures

5.3 and 5.4 are plots of Equations (5.65) and (5.74), which constitute

the solution to the problem of diffusion in rectangular ducts at high

Peclet numbers and low aspect ratios.

On and n, though well behaved, are non- analytic and must be evalua-

ted numerically.
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Tab'e 5.3 : Expansion Coefficients for Cross- Section Averages

n A B G

-.6242144449211

.1916121727370

-.1136094212907

.4394766591177x10 - 5

o3212078027422xl 0-10

-. 8717135423055

1. 62136522176

-2.606320953153

196572.6180829

26634903493.79

-. 5970396020662
-. 4033326872425x1 -1

-. 1209851681885x1 o 1

.5196364776233x1 -2

.4744797120123x 10 -2
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FIGURE 5.3 : Relative Saturation as a function of modified inverse Graetz
number, for various aspect ratios.
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FIGURE 5.4 : Local Sherwood number (z- averaged) as a function of the
modified inverse Graetz number, for various aspect ratios.
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6. HYDRODYNAMIC EXPERIMENTS; RESULTS AND DISCUSSION

6.1 DIFFUSION COEFFICIENTS; RESULTS

Diffusion coefficients were measured for four different systems,

using the hydrodynamic technique explained in Chapter 4. The results

are summarized in Tables 6.1, 6.2, 6.3 and 6.4. The measured diffusion

coefficients are shown in Figures 6.1, 6.2, 6.3, and 6.4 as a function

of solvent density. The experimentally controlled variables were tempera-

ture and pressure (see Chapter 4); solvent densities were obtained via

the Peng-Robinson equation of state for SF6 (Peng and Robinson, 1976;

see Appendix 1 for a discussion on cubic equations of state); CO2 densi-

ties were obtained from the International Thermodynamic Tables of the

Fluid State (Angus et al., 1976).

The approximation whereby fluid density is calculated without taking

into account solute concentration is only justified for dilute systems.

Equilibrium solubilities for the four systems investigated were measured

with the flow technique described in detail in Chapter 4. Measured equi-

librium solubilities are listed in Tables 6.5, 6.6, 6.7 and 6.8. The

maximum solute weight fractions under experimental conditions (0.02 %

at 338 K and 120 bar for benzoic acid in SF6; 0.34% at 328 K and 120

bar for naphthalene in SF6; 1.06% at 328 K and 200 bar for benzoic acid

in C02 ; 0.28% at 318 K and 250 bar for 2-naphthol in CO2) are extremely

low. Under these conditions, the infinite dilution assumption introduces

no analytically detectable error. Example calculations of a diffusion

coefficient and an equilibrium solubility can be found in Appendix 2.

Diffusion is the macroscopic manifestation of collisions at the mole-

cular level. The time dependence of the mean displacement of a given

ensemble of particles with respect to some arbitrary initial configuration

is a function of molecular velocity (temperature) and packing (density).

Diffusion coefficients (see Chapter 8) can be obtained from the time

evolution of the mean squared displacement of an ensemble of molecules,

and should therefore be interpreted in terms of the relevant variables,

i.e., temperature and density.
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TABLE 6.5 : EQUILIBRIUM SOLUBILITY OF BENZOIC ACID IN SF6

T P 1 04x

(K) (bar) (mole fraction)

328.2 65 1.194
328.2 80 1.491
328.2 120 1.825
338.2 65 1.646
338.2 80 2.076
338.2 120 2.803
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TABLE 6.6 : EQUILIBRIUM SOLUBILITY OF NAPHTHALENE IN SF6

T P 103x
(K) (bar) (mole fraction)

318.2 65 1.978

318.2 80 2.152

318.2 120 2.445

328.2 65 3.184

328.2 80 3.513

328.2 120 3.91 4
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TABLE 6.7 : EQUILIBRIUM SOLUBILITY OF BENZOIC ACID IN CO2

T P 1 0 3 x
(K) (bar) (mole fraction)

318.2 160 2.341

318.2 200 3.580

328.2 160 2.495

328.2 200 3.864
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TABLE 6.8 EQUILIBRIUM SOLUBILITY OF 2 NAPHTHOL IN CO^,

T P 1 4x
(K) (bar) (mole fraction)

308.2 150 4.460

308.2 200 5.408
308.2 250 5.910
318.2 165 5.662
318.2 250 8.655
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I I 1 I I I I I I I I I I 

Solvent Solute
SF6 Benzoic Acid
SF6 Benzoic Acid
SF6 Naphtholene
SF6 Naphthalene
CO2 Benzoic Acid
CO2 Benzoic Acid
CO2 2-Naphthol
CO2 2-Nophthol

Temperature (K) -

328.2
338.2
318.2
328.2
318.2
328.2
308.2
318.2

I I _ I I I I I I I I I I I I

I0 15

p (mol/4t)

I I I

20 25

FIGURE 6.5 : Experimental diffusion coefficients as a function of solvent

density
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Benzoic Acid
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3

FIGURE 6.6 : Experimental diffusion coefficients as a function of solvent

reduced pressure
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Pressure, on the other hand, is only relevant for any particular

system insofar as density is a function of pressure at any given tempera-

ture. This can be clearly seen from the fact that the measured diffusion

coefficients are only slightly higher than typical binary diffusion coef-

ficients in liquids at comparable temperatures and densities, but at

ambient pressure.

For dilute systems, such as the ones presently considered, correspon-

ding states arguments can be invoked in support of the use of solvent

reduced pressure as an independent variable (Paulaitis et al., 1983).

The data are therefore summarized both as a function of fluid density

(Figure 6.5) and solvent reduced pressure (Figure 6.6).

At constant temperature, low density diffusion coefficients are in-

versely proportional to fluid density. This result can be derived theoret-

ically (Chapman and Cowling, 1970). Furthermore, since the pressure

and density of an ideal gas are directly proportional at constant temper-

ature, a logarithmic plot of diffusion coefficients versus pressure approa-

ches a limiting slope of -1 at low densities (Paulaitis et al., 1983).

No equivalent simple relationship exists at high pressure, and the use

of a semilog scale in Figure 6.6 is simply a matter of convenience. Simi-

larly, there exists no accurate theory that will predict the isothermal

density dependence of diffusion coefficients in dense fluids, as will

be discussed below in connection with the Enskog theory. The linear

log D vs. p relationship suggested by Figures 6.1, 6.2 and 6.4 (i.e.,

systems for which more than two points per isotherm at least at one tempe-

rature were measured) has been reported by other researchers who studied

diffusion in supercritical fluids (Swaid and Schneider, 1979; Feist and

Schneider, 1982). In the present case as well as in the above mentioned

studies, though, the ratio of the maximum to the minimum density for

any given isotherm was, at most, three; the smallness of this number

suggests that the observed linearity should be interpreted with caution.

Even though benzoic acid is a smaller molecule than either naphthalene

or 2-naphthol, the measured diffusion coefficients of benzoic acid in

SF6 were smaller than those of naphthalene in SF6 , and the measured diffu-

sion coefficients of benzoic acid in CO, were smaller than those of 2-

naphthol in C02, at the same density (and slightly higher temperature).
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These observations suggest fluid phase association of benzoic acid,

a possibility that will be discussed below in detail.

6.2 DISCUSSION

No rigorous kinetic theory for dense fluids exists that will allow

an a priori calculation of transport properties. A perturbation solution

of Boltzmann's transport equation constitutes the basis of the Chapman

Enskog expressions for the transport coefficients in dilute fluids (Chap-

man and Cowling, 1970; Hirschfelder et al., 1964). Boltzmann's transport

equation (Huang, 1963; Pauli, 1981) contains three fundamental assump-

tions:

- molecules are points and hence have only translational degrees of

freedom

- the position and velocity of a molecule are uncorrelated (molecular

chaos assumption)

- only binary collisions are considered

At high densities, each of these assumptions becomes progressively

less plausible, and, in addition, collisional transfer (i.e., transfer

occuring during an encounter) must be taken into account (Chapman and

Cowling, 1970).

In spite of the fact that it cannot reproduce important experimental

trends, Enskog's dense gas theory (Enskog, 1921) is widely used for cor-

relating purposes, although never in a predictive way. It is, in fact,

fairly common to report experimental data in terms of deviations from

theoretical (Enskog) behaviour (Balenovic et al., 1970, for example).

The simplicity and plausibility of Enskog's assumptions and of the predic-

ted behaviour (i.e., a density correction factor whose reciprocal is

linear in density) are chiefly responsible for this rather unusual situa-

tion.

In this approach, a dense atomic fluid composed of smooth hard spheres

is considered. The assuption of molecular chaos is maintained, and,

since hard sphere collisions are instantaneous, only binary collisions

are taken into account.
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As generalized by Thorne to binary diffusion, the main result of

Enskog's theory for dense fluid diffusion is (Chapman and Cowling, 1970)

o 1
pD - (pD ) X- (6.1)

12 12 12

where superscript o denotes the low density limit, and

3 3
nloa1 01+4a2 n2 ro2 401+02

X12 = + ( ) . ( ) + ... (6.2)
6 01+02 6 01+a2

with n, n2, a01 and 2 denoting, respectively, solute (1) and solvent

(2) number density and hard sphere diameter.

When experimental values of (pD1 2)o are not available, Equation

(6.1) can still be used, with (pD12 )
o calculated from Chapman - Enskog

dilute gas expressions (see below).

For infinite dilution of n (solute) in n2 (solvent), Equation (6.2)

can be rewritten as

3
Irno2 4s+1

X12 = 1 + ( )
6 s+1

(6.3)

s 0 a1/02

where n is now the solvent number density. Equation (6.3) provides

a rational basis for correlating purposes, with 02 as an adjustable para-

meter, and

Lp

n - (6.4)

M

with L, Avogadro's number and M, solvent molecular weight. Since the
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factor (4s+1)/(s+1) varies only from 1 to 4 when s varies from 0 (point

solute) to (Brownian solute), o2 is a better choice for a regression

parameter. In addition, for non-spherical solutes, s retains more phys-

ical significance than a2.

The low density limit of pD was calculated from the Chapman- Enskog

expression (Bird et al., 1960)

1/2

O ) 1 +1 ) ] 

·2 2.2646x 1 0 M (6.5)
2

M2 a1 2 d

where D is in cm2 /s, p in g/cm 3, a in A, and T in K. An average deviation

of 7.5 % was found when 114 experimental low pressure diffusion coeffi-

cients were compared with the corresponding Chapman-Enskog prediction

(Reid et al., 1977). The collision integral, d, was found from Table

5-2 of Bird et al.(1960), where the 12-6 Lennard-Jones potential function

has been assumed. The following combining rules were used for the inter-

molecular potential parameters

1/2

E12 = (1 2)

(6.6)

°1 2 = (a1 + 02)/2

The i and ai values are listed in Table 6.9 and were calculated

from the following expressions (Tee et al., 1966)

1/3
Tc

a (-) = 2.3551 - 0.087w (6.7)

Pc

= 0.7915 + 0.1693w (6.8)
kTc

where P is in atmospheres, T in K, and a in A.

The experimental, calculated and regressed values of X12 are shown
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in Tables 6.10 to 6.13. The regression was done by minimizing the sum

of squared deviations between X12 (experimental) and Equation (6.3),

with 02 as adjustable parameter. In the present context, experimental

means observed pD divided by theoretical (Chapman-Enskog) low pressure

pD. The s values used in the regression were calculated as the ratio

of the respective (Tc/Pc)1 /3 quantities.

The experimental X12 values are plotted in Figure 6.7 as a function

of fluid density, and the calculated, regressed and experimental values

for each system are shown in Figures 6.8, 6.9, 6.10 and 6.11.

As mentioned above, the Enskog-Thorne expression (Equation (6.3))

predicts a linear increase of X12 with fluid density, which, physically,

means that, at constant temperature, the diffusion coefficient decreases

with density more rapidly than p-1.

Deviations from this predicted behaviour have frequently been reported

in the literature (Swaid and Schneider, 1979; Balenovic et al., 1970;

O'Hern and Martin, 1955, for example) and interpreted in terms of the

positive correlation of molecular velocities found by Alder and Wainwright

in their molecular dynamics work (Alder and Wainwright, 1967). Although

it is very qualitative in nature, the currently accepted interpretation

of Alder and Wainwright's results and of observed experimental behaviour

is that a large solute particle will " gather a 'cloud' of carrier mole-

cules which move with it; since collisions by carrier molecules originate

within this 'cloud', there is reduced net momentum transfer and therefore

a reduced retardation of the particle..." (Balenovic et al., 1970).

This deviation from the Enskog prediction can, in some cases, lead

to X12 values which are less than 1 (Swaid and Schneider, 1979; Balenovic

et al., 1970), a fact which cannot be predicted by Equation(6.3).

The experimental X12 values shown in Figure 6.7 reveal some interest-

ing trends. In the first place, theoretically predicted behaviour (X

> 1 and increasing with p ) is displayed by both systems where SF6 is

the solvent, whereas the C02-2-naphthol data do show a slightly de-

creasing X vs. p trend. Balenovic et al.(1970) note that, whenever the

same carrier gas exhibited both types of behaviour, X decreased with

p for large solute/solvent ratios ( He - C3H8 ; He - C4H1O ) and increased

with p for small solute/solvent size ratios ( He - Ar ), in qualitative
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agreement with Figure 6.7 and the interpretation of Alder and Wainwright's

molecular dynamics results. The very high X12 values for benzoic acid

in CO2, on the other hand, can be explained if high pressure associat-

ion of benzoic acid in the fluid phase occurs, a possibility discussed

below. It should also be noted that X12 values for benzoic acid in SF6

are also significantly high, again suggesting association. Furthermore,

X is an explicit function of density (and not of temperature); the fact

that the intermediate density data for benzoic acid show a marked tempera-

ture dependence at constant density (see Figures 6.7 and .10;intermediate

data points, corresponding to 318.2 K, 160 bar, and 328.2 K, 200 bar,

with p = 17.16 mol/lt in both cases) when plotted as experimental X vs. p

again suggests a temperature- dependent dimerization equilibrium of ben-

zoic acid in the fluid phase. This possibility is further substantiated

below in connection with the temperature dependence of the measured dif-

fusion coefficients.

From the previous discussion it can be concluded that the Enskog

theory overpredicts the X12 correction factor, a fact already observed

by other researchers (Feist and Schneider, 1982; Swaid and Schneider,

1979). More significantly, though, this theory predicts a linear increase

of X with density, and X values which are always greater than one. Cor-

rection factors which decrease with density (Figure 6.7; 2-naphthol-CO2

system) or are less than unity (Swaid and Schneider, 1979) cannot be

accounted for by the theory. This is an unfortunate situation, since

the Enskog approach is the only rigorously derived predictive theory

for transport in dense fluids. Modified versions of the Enskog theory,

on the other hand, are really ad-hoc modifications of a hard sphere theo-

ry, and have no rigorous theoretical basis. A reliable molecular theory

of transport in dense fluids is lacking, as discussed in connection with

the computer simulations.

From Figure 6.5 and Tables 6.1, 6.2, 6.3 and 6.4, an interesting

feature regarding the diffusion coefficients of benzoic acid in SF6 and

CO 2 arises. The measured diffusion coefficients of benzoic acid are

lower, at any given density, than those of naphthalene (in SF6) and 2-

naphthol (in C02 ), both of which are larger molecules than benzoic acid.

In each case, moreover, the temperature was slightly higher in the benzoic
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acid experiments. This suggests association of benzoic acid in the fluid

phase, a behaviour experimentally observed in CC14 and CHC13 (I'Haya

and Shibuya, 1965) and in its own vapour, C6H12, CC14 and C6H6 (Allen

et al., 1966).

The dimerization of benzoic acid can only be invoked as an explanation

of observed behaviour if it is quntitatively significant. For the dimeri-

zation equilibrium, we write

2A = A 2 (6.9)

or, in terms of the non-associated fraction (1-x) and the total concentra-

tion of benzoic acid, [AC],

(x/2) [A° (x/2)
K I_ _ (6.10)

2 2
{(l-x) [A]} [A] (1-x)

which can be rewritten as a quadratic equation

2 1
x - x ( 2 + ) + 1 = 0 (6.11)

2K [A °]

Using K = 3660 l/mol (Allen et al., 1966), which corresponds to ben-

zoic acid in CC1, at 303 K , and considering a total benzoic acid concen-

tration of 7x10 -~ mol/l as representative of the actual experimental

conditions, we obtain a 31% unassociated fraction (i.e., 1-x), which
increases to 61.9% at 333 K (K = 710). The dimerization constants of

benzoic acid in carbon tetrachloride (Allen et al., 1966) are intermediate

between the corresponding cyclohexane (5830 1/mol at 308.2 K; 1210 l/mol
at 333.2 K) and benzene (462 1/mol at 303.2 K; 150 l/mol at 333.2 K)

values. Even for the lowest K (i.e., in benzene, at 333.2 K), association

is still significant (1-x 0.849).

Under these circumstances, the very concept of a diffusion coef-

ficient as a molecular property is questionable, since results simply
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refer to a "molecule" that does not exist in reality and, moreover, the

"effective size" of this molecule could be extremely temperature depen-

dent.

The temperature dependence of the measured diffusion coefficients

is interesting, since it provides useful insights into dense fluid beha-

viour, as well as a further confirmation of fluid phase association of

benzoic acid. Hard sphere theory (Dymond, 1974) or its ad-hoc modifica-

tion, rough hard sphere theory (Chandler, 1975) predict a T1/ 2 dependence

of diffusion coefficients at constant density, (slightly modified in

rough hard sphere theory by allowing a mild temperature dependence of

the sphere's diameter). In the hydrodynamic approach, on the other hand,

the Stokes - Einstein expression is used as a starting point,

kT

D -- (6.12)
6nan

where D is the diffusion coefficient of a Brownian sphere of radius a

in a continuum of viscosity n and temperature T, when no slip exists

between the particle and the continuum. Since the viscosity of liquids

is a very strongly decreasing function of temperature, often correlated

in the Andrade form (Andrade, 1930),

n - A exp(B/T) (6.13)

it follows that diffusion coefficients in dense fluids should, according

to this approach, exhibit a stronger tempreature dependence than predicted

by hard sphere theories.

Equation (6.12) can be rewritten as

nD 1

- - - (6.14)
kT 6rwa
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The quantities on the left hand side are all experimentally measura-

ble. The right hand side, however, depends on the validity of the no-slip

assumption and on a, which is unambiguously defined only for a truly

spherical particle (molecule). Consequently, Equation (6.14) will not

be used here to predict diffusion coefficients. The constancy of nDT- 1

for any given system, however, has important consequences that will be

discussed below.

The quantity nDT-1 is shown in Tables 6.14, 6.15, 6.16 and 6.17 for

each of the systems investigated. For SF6 as a solvent(1.24 < Pr < 2.1),

both systems exhibit fairly constant nDT- 1 values, suggesting that hydro-

dynamic arguments may be relevant. As discussed above, the nDT- 1 value

for benzoic acid is slightly lower than for naphthalene, again suggesting

association.

The CO2 - 2-naphthol system (Table 6.16) also exhibits a fairly con-

stant nDT- 1 value. The CO2 - benzoic acid data (Table 6.17) show a pro-

nounced temperature dependence, as can be seen from Figures 6.3 and 6.6.

Although the postulated fluid phase dimerization has not been measured

in CO2, an effective activation energy for diffusion can be obtained

from the two coefficients measured at the same density and two different

temperatures (318K, 328K, Pr = 1.61). This value (6.9 Kcal/mol) is in

good qualitative agreement with the experimental values for the dimeriza-

tion of benzoic acid in cyclohexane (6.4 Kcal/mol), CC 4 (5.5 Kcal/mol),

and its own vapour phase (8.1 Kcal/mol) (Allen et al., 1966). It must

be noted, however, that the overall diffusion coefficient is related

in a non-linear way to the dimerization constant, so the above considera-

tions should only be taken qualitatively.

Figure 6.12 is a plot of the measured diffusion coefficients versus

reciprocal solvent viscosity. Only those isotherms for which three points

were measured are included in the figure, since two points always define

a line. A plot such as Figure 6.12 is a stringent test on whether diffu-

sion in any given system can be described by an equation of the form

nDT- 1 f(size), which implies, for any given system, a zero intercept

and slopes proportional to T (for a temperature-independent molecular

size).
For the benzoic acid-SF 6 system (see Table 6.14), the isotherm has
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308 K

o Nophthalene -SF 6

x Benzoic Acid-SF 6

* 2 Naphthol-CO2

I I , I I , , , . I , , , , I

2 3

FIGURE 6.12 : Experimental diffusion coefficients as a function of re-
ciprocal viscosity at constant temperature (hydrodynamic
test)
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a 1.07 intercept and a 5.57 slope (in the figure's units) when the 65

bar data point (which is two standard deviations away from the mean nDT- 1

value) is not considered; a 2.34 intercept and a 4.46 slope are obtained

from a least squares regression including all three data points. At

338 K, the intercept is .43, and the slope, 6.38. The temperature ratio

is 1.03, whereas the slope ratio is 1.145 (disregarding the 65 bar point

at 328 K). The higher intercept represents less than 15% of the lowest

diffusion coefficient measured for this particular system. For benzoic

acid in SF6, then, Figure 6.12 suggests that hydrodynamic behaviour is

a reasonable, if not entirely accurate, description of reality. The

fact that the slope ratio is higher than the temperature ratio can be

explained by postulating a temperature dependent association of benzoic

acid in the fluid phase. The postulated association, though, cannot

be high, since the temperature dependence of the measured diffusion coef-

ficients for this particular system is not as pronounced as in the benzoic

acid-CO2 case.

The other systems shown in Figure 6.12 exhibit a behaviour that cannot

be described mathematically by a relationship of the form nDT- 1 = f(size),

since the intercepts are clearly comparable to the actual measured diffu-

sion coefficients.

Feist and Schneider (1982) analyzed diffusion coefficients of benzene,

phenol, naphthalene and caffeine in supercritical CO2 at 400C and, from

a D vs. n- 1 plot concluded that the Stokes-Einstein relation did not

apply, since the intercepts were non-zero. Feist and Schneider correlated

their data with a power law relationship D - n-a ( a<1 ), as proposed

by Hayduck and Cheng (1971).

However, when experimental data for six binary systems consisting

of an aromatic solute and a supercritical fluid were analyzed, the quanti-

ty nDT-1 was found to be remarkably constant (these systems will be discus-

sed below; the average nDT- 1 values and the corresponding standard devia-

tions expressed as percentiles of the mean are shown in Table 6.19).

Furthermore, Feist and Schneider's data, as read from their published

plot (no tables are provided in the paper) show nDT- 1 values with maximum

and standard deviations (in percent of the mean) of 31% and 12.4% for

benzene, and 24.6% and 9.2% for naphthalene.
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The above discussion and the small observed deviations in nDT- 1 values

suggest a general picture, shown in Figure 6.13. Hydrodynamic behaviour

is approached at high viscosities; deviations from this limiting behaviour

can be correlated (but not understood) by means of empirical power law

relationships of the type D n-a (a < 1) (Hayduck and Cheng,1971).

Supercritical viscosities fall roughly in the range 0.045nS0.1 cp for

1. 1 PrS4 and 1TrS1.0 6, which correponds to 110-3 n-152.5 in the fluidity

units of Figure 6.13 (a typical liquid viscosity is also shown for compar-

ison).

The exact point at which hydrodynamic behaviour breaks down (point

c) cannot, at present, be predicted from first principles for any given

system. However, from Figure 6.13 it can be concluded that predictive

correlations based on the Stokes-Einstein equation (Wilke and Chang,1955;

Scheibel,1954; Reddy-Doraiswamy,1967; Lusis-Ratcliff,1968) will overesti-

mate diffusion coefficients in supercritical fluids.

In addition, at high enough viscosities (or, equivalently, at high

enough pressures for any given temperature), the quantity nDT-1 approaches

a constant value; geometrically, this is equivalent to saying that, at

small n- 1 values, the curve Ocb is well approximated by the line Ob.

As an example, the measured diffusion coefficients of benzene in supercri-

tical CO2 (Swaid and Schneider, 1979) give rise to an DT- 1 value that

is constant to within a 4.6% standard deviation (expressed in percentage

of the mean) when nO.04 cp, irrespective of the temperature and pressure.

At high enough viscosities, hydrodynamic behaviour is approached,

and this fact can be used to extrapolate experimental data by assuming

constancy of nDT 1 .the systems and equations tested (see detailed discus-

sion below).

The possibility of having non-hydrodynamic behaviour and, simultaneous-

ly, a linear mean squared displacement versus time relationship is dis-

cussed in Chapters 1 and 10. In the present context, it should be pointed

out that this simply means that the "drag" has a power law dependence

on the viscosity.

From Figure 6.13 it can also be seen that the experimental nDT- 1

values should increase ith viscosity at any given temperature, since

tha curve Ocb lies above the straight lines corresponding to constant
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FIGURE 6.13 : Linear (hydrodynamic), power law and transition regimes
for the dependence of the diffusion coefficient upon fluid
viscosity at constant temperature
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nrD values. This behaviour was observed in all of the systems shown in

Table 6.19.

The general picture that emerges from the above discussion will now

be tested by discussing the application of predictive correlations based

on the Stokes-Einstein relation to the supercritical regime. Hydrodynamic

expressions should, according to Figure 6.13, overestimate diffusion

coefficients by some factor which is not, at present, predictable a-prio-

ri.

Several ad-hoc modifications of the Stokes-Einstein relationship

have been introduced for engineering use with the purpose of extending

its use to molecules of arbitrary shape, while preserving its basic form

(nDT-1 = f[size]).

All of these correlations have the form

DI2 = K (T/n2) (6.15)

where D1 2 is the infinite dilution diffusion coefficient of molecule

1 in fluid 2 (of viscosity n2 at a temperature T). Values of K are listed

in Table 6.18 for four different correlations.

The Wilke-Chang, Scheibel, Reddy-Doraiswamy and Lusis-Ratcliff corre-

lations were tested for three of the four systems investigated (CO2-ben-

zoic acid was not included since this system, as explained above, cannot

be studied quantitatively without knowledge of the dimerization constant),

as well as for the C0 2-benzene (308 T 328 K; 80 P 160 bar), (Swaid

and Schneider, 1979); C02-naphthalene (308 T 328 K; 83 P 304

bar), (Iomtev and Tsekhanskaya, 1964) and C2H4- naphthalene (285 5 T

5 308 K; 66 P 304 bar), (Iomtev and Tsekhanskaya, 1964) systems.

The mean values of 105 nDT-1 (cm2UP/sK) and the corresponding standard

deviations (in percentages of the mean) for the systems investigated

are shown in Table 6.19. In the benzene-C02 experiments, chromatographic

peak broadening was used, whereas weight loss within a stagnant diffusion

cell of well characterized geometry was used in the naphthalene studies

of Iomtev and Tsekhanskaya. The chromatographic technique is more accura-

te and reliable, but there is no way of introducing this into the present

analysis. It must also be pointed out that, although the standard devia-
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tions (Table 6.19) are quite small, the constancy of DT- 1 invariably

improved away from the solvent's critical point (for example, at 308.2

K, deviations of up to 32% with respect to the overall mean nDT-1 value

occur in the C02-naphthalene experiments; the maximum deviatio at 328.2

K is 19%). In addition, nDT- 1 increased with fluid viscosity in all

cases. as anticipated above.

The molar volumes at the normal boiling point can be estimated by

other means than through the use of an equation of state. If the Le

Bas additive volume method is used (Le Bas, 1915), the resulting K values

(Table 6.18) were, in all cases, within 3% of the K values used here.

The Le Bas method, though, cannot be used for SF6 systems, since it is

inaccurate for the estimation of molar volumes of simple molecules; for

C02, the recommended value of 34 cm3/mol was used when Le Bas-based K

values were calculated (Reid et al.,1977).

Several conclusions can be drawn from Table 6.19. In the first place,

all correlations overpredict observed diffusion coefficients by a conside-

rable amount, as anticipated in connection with Figure 6.13, with the

single exception of the Wilke-Chang expression for the ethylene-naphthale-

ne case. For diffusion in C02, the Wilke-Chang expression is consistently

less in error.

The ratio of observed to predicted diffusion coefficient cannot be

excpected to remain constant over a wide range of conditions (see Figure

6.13 and the corresponding discussion). Thus, the Wilke-Chang expression

with an association factor of 0.565 (obtained by averaging the three

C02 entries in Table 6.19 under the Wilke-Chang column) gives a diffusion

coefficient which is only 5.9% higher than the experimental value for

benzene in C02 at 313 K and 80 bar (Swaid and Schneider,1979), but, at

160 bar, it overcompensates and the estimate is 14% lower than the experi-

mental value. Once these limitations are understood, though, use of

the Wilke-Chang equation with an association factor of 0.565 leads to

reasonable engineering estimates of diffusion coefficients of aromatic

hydrocarbons in CO2.

For SF6 as a solvent, both the Scheibel and Lusis-Ratcliff expressions

give similar predictions, and the correction factors are smaller, under

the experimental conditions, than either the Wilke-Chang or the Reddy-
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Doraiswamy correction factors. Overpredictions in the benzoic acid case

are exceptionally high; this is consistent with the previous discussion

and the added effect of the postulated fluid phase association of benzoic

acid: the effective molecular size would then be larger than indicated

by the value of the size parameter used to calculate the K value in each

case (Table 6.18).

The situation can be summarized by saying that, at present, no relia-

ble predictive method exists for the calculation of diffusion coefficients

in supercritical fluids. If one experimental value of D 12 (and therefore

of DT- 1) is available, it can be used to estimate diffusion coefficients

in the same system under different conditions by assuming a constant

nDT- 1 value. This extrapolation technique is not recommended for n <

400 P; its accuracy increases with fluid viscosity, that is to say,

the experimental diffusion coefficient should be measured at the highest

possible viscosity, and the constant nDT- 1 assumption should not be used

below the recommended minimum n.

The use of predictive correlations based on the Stokes-Einstein equa-

tion is not recommended. The correction factors are always significant,

and can only be generalized after analyzing large amounts of data. The

emerging trends, moreover, are extremely system specific (at any rate

solvent specific, since all of the solutes considered were aromatic com-

pounds). When such data exist, useful rules can be formulated; they

should never be used over a wide range of conditions, as discussed above.

One such recommendation is the use of the Wilke-Chang expression with

an association factor -= 0.565 for diffusion of aromatic hydrocarbons

in supercritical C02. It is obvious, however, that the way in which

this number was arrived at cannot be called predictive.

6.3 EFFECT OF NATURAL CONVECTION

The importance of natural convection in mass transfer with supercriti-

cal fluids has already been covered in Chapter 3. As discussed in Chapter

4, buoyant effects can be introduced by performing the hydrodynamic exper-

iments with the two hemicylinders (Figure 4.2) rotated at an angle a

with respect to the horizontal inside the high pressure steel enclosure.
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Before analyzing the results of such experiments, the criteria for

the development of stable and unstable density profiles will be analyzed.

In the present context, stable signifies that density increases uniformly

in the direction of gravity, and vice-versa. Thus, a stable profile

will not, by itself, lead to natural convection.

We imagine a plane interface where fluid is saturated with solute,

which diffuses into the bulk solvent under the influence of a concentra-

tion gradient. Let us denote the solute mole fraction by x, and distan-

ces from the interface, measured along a line perpendicular to the inter-

face, by E. The molar volume, molecular weight and density at = 0

are then

V(O) xl(O) V + [1-xl(O)] V2 = V2 [1+x1 (o) (VI/V2 -1)] (6.16)

M(O) = x(O) M + [1-xl(O)] M2 M2 [1+x(O) (M1/M2 -1)] (6.17)

M2 [ 1 + x1(O) (Mi/M2 - 1) ]
P(O) = (6.18)

V2 E 1 + X1 (0) (V 1 /V 2 1) ]

Away from the interface (E - a), on the other hand, we have pure

solvent

V(W) V2 (6.19)

M(X) M2 (6.20)

() - M2/V2 (6.21)

For dilute solutions, such as we are presently considering (see Tables

6.5-6.8), we may assume

Va - V2 f(x) (6.22)
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whereupon the density ratio between interface and bulk fluid becomes,
simply,

1 + x(O)(M 1/M2 - 1)
p(O)/p(-) = (6.23)

1 + 1 ()(V 1/V 2 - 1)

from which we conclude

p(O) > p(-) <=> (M1/M2 ) > V/V 2 (6.24)

Furthermore, x(O) in Equation (6.23) is just a parameter, so that
Equation (6.24) is a general criterion, i.e., whenever the solute to
solvent molecular weight ratio is higher than the corresponding partial

molar ratio, the local density is higher than the pure solvent density,

regardless of the composition dependence of the solute partial molar

volume. This criterion is valid for dilute solutions, where Equation

(6.22) is an accurate description of reality.
Although Equations (6.23) and (6.24) are useful, the analysis must

be pursued further to investigate the full density profile. In general,

we can write

1 dp dp dx1 1
. -=( . ) . (6.25)

p(-) dE dx, dE p(*)

where (dxl/dE) is a monotonically decreasing function of at steady
state. If we now define

A M/M 2 - 1 (6.26)

B -V/V2 - 1 (6.27)

and neglect the composition dependence of B (which is a valid assumption

for dilute solutions but, together with Equation (6.22), needs to be
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modified otherwise), we obtain

1 dp A - B M'/M" - V/V2
(6.28)

p(a) dxI (1+Bxl)2 [ 1 + (V,/V2 - 1) ]2

Thus, we conclude that, for dilute solutions,

M1 /M2 > V/V 2 > density decreases monotonically away from the interface

M1/M2 < V/V 2 => density increases monotonically away from the interface

Schematic profiles are shown in Figure 6.14. For stable profiles,

then, the interface should constitute the bottom of the rectangular duct

if the solute to solvent molecular weight ratio exceeds the partial molar

volume ratio, and the top in the opposite case. In all of the cases

presently considered, stable profiles were developed with the interface

at the bottom, and, consequently, the source plane constituted the bottom

of the rectangular duct; natural convection was introduced by rotating

the hemicylinders away from this equilibrium configuration (see Appendix

2 for detailed calculations).

The results of such experiments are shown, for benzoic acid diffusing

into CO02 at 160 bar and 318 K, in Figure 6.15 and Table 6.20.

The dotted line in Figure 6.15 does not extend to 0° since the diffu-

sion experiment was done at a different flow rate. The importance of

natural convection, as well as the potential for experimental error when

using hydrodynamic techniques, can be seen from the fact that a 650%

increase in the apparent diffusion coefficient results from a 900 rotation

of the flat plate.

6.4 SENSITIVITY ANALYSIS

Detailed examples of an equilibrium and a diffusion calculation are

given in Appendix 2. The accuracy of the measured diffusion coefficients

and the sensitivity to the various sources of experimental error will

be discussed in this section.

A diffusion experiment involves the measurement of r, the fractional

saturation at the exit of the test section (this, in turn, implies the

determination, -in a separate experiment, of the equilibrium solubility
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B<O

A>B; B>O

FIGURE 6.14 : Schematic density profiles for a dilute binary mixture

in which a solute dissolves into the solvent from a plane

(E = O) of constant (equilibrium) composition
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FIGURE 6.15 : Effect of natural convection on the apparent diffusion
coefficient and mass transfer rate : benzoic acid-CO2
@ 318 K and 160 bar
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of the solute in the supercritical fluid at the same temperature and

pressure). For a given aspect ratio, r is a function of the parameter

X,, defined in Chapter 5 as a modified inverse Graetz number,

X0 = L D / <v> b2 (6.29)

The relationship between r and X is given by Equation (4.65), and is

shown graphically in Figure 4.3. In Equation (6.29), L is the coated

length, <v>, the mean fluid velocity, and 2b, the duct height. Since

D is calculated from X, the sensitivity of D to errors in the determina-

tion of r is given by

dD dD dXo <v>b 2 dXo
(6.30)

dr dXo dr L dr

from which we obtain,

din D dln X 1

(6.31)
dln r dln r dln r

dln X0

The qualitative form of the dependence of r upon X can be deduced

without recourse to algebra, once it is realized that X is simply a

dimensionless length, so that r must grow monotonically and approach

unity asymptotically as X0 + . The initial part of this curve is shown

in Figure 5.3. The important conclusion is that the sensitivity of the

measured coefficients to experimental errors in the determination of

r grows without limits as r approaches unity, or, in other words, experi-

ments should be conducted at the lowest possible value of X (and hence

at low relative saturations).

From Equation (6.29) it can be seen that X can be reduced by conduct-

ing the experiments in a short duct at high fluid velocities (the duct
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height is fixed by practical design considerations and will not be conside-

red a variable). It will now be shown that there are physical constraints

which dictate the optimum operating conditions.

The optimum fluid flow rate is determined by the ability of the flow

regulating valve to maintain a constant flow under operating conditions,

i.e., under conditions where solute deposits are melted by contact with

the heated valve and pass through a tapered orfice, designed exclusively

for fluid flow. In the present case, a maximum flow rate of 2 liters

per minute at ambient conditions could be attained with satisfactory

controllability.

The coated length, on the other hand, cannot be reduced indefinitely

without altering the physics of the problem, i.e., without making axial

diffusion significant with respect to axial convection and vertical diffu-

sion (this follows from the order of magnitude analysis (Section 5.3)

where it was shown that axial convection scales as L- , axial diffusion

as L- , and vertical diffusion as L ). This, in itself, is not a physical

constraint; rather, a different analytical solution would be required.

However, the possibility of shortening the coated section is in fact

limited by a very different constraint: the duration of a run becomes

impractically long at very low values of r, given the limitation on <v>.

As an example, consider an equilibrium solubility of 10- 3 mole frac-

tion. Then, at 15% saturation, the mole fraction at the test section's

outlet is 1.5x10 , which amounts to 1.34x10-5 solute moles per minute

for a 2 standard liters per minute solvent flow rate. For a typical

solute molecular weight of 130, this means 1.74x10-3 g/min, or roughly

half an hour to collect 0.05 g of solute, an amount of solute that would

give rise to less than 2% error in weighing, (this follows from the repro-

ducibility of the empty U-tube weighings, which was found to be approxima-

tely 0.001g). Under typical conditions, r is roughly 18%, so the poten-

tial for accuracy improvement by shortening the coated length cannot

be materialized without on-line analysis (which would eliminate weighing),

since weighing requires runs that soon become impractical due to their

duration, when due account is taken of the absolute necessity of maintain-

ing as constant a flow rate as possible throughout the run (it would

take 1.5 hours to collect 0.05 g at 5% saturation, for example). With
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the equipment described in Chapter 4, then, the minimum amount of solid

that must be collected for accurate weighing, and the maximum flow rate

that can be maintained with adequate controllability are the two factors

which determine the accuracy of the measured diffusion coefficients.

If we now substitute typical values ( D 7x10-5 cm2/sec; b = 0.15785

cm; <v> 0.1 cm/s; L = 7.62 cm) we obtain X = 0.21, and r = 0.19247.

Furthermore, the local slope is given by Ar/AX0 - 0.58, so that, finally,

dln D/dln r (r.AX 0 )/(X O.Ar) = 1.56 (6.32)

or, in other words,

AD Ar
i --I 1.56 1--1 (6.33)
D r

In Equation (6.33), Ar/r includes all possible sources of experimental

error affecting the measured value of r, in both the equilibrium and

the diffusion experiments, such as weighing errors, gas measuring errors,

etc. The actual value of IAr/ri for a typical experiment is derived

in Appendix 2. In the present context, the objectives are the derivation

of Equation (6.31) and the calculation of the numerical coefficient in

Equation (6.32).

From Appendix 2, therefore, we obtain 10% as a conservative estimate

for Ar/r, which means that errors in the determination of r lead to

uncertainties of + 16% in D.

Equation (6.31) states the fact that, since D is obtained from X0,

and X0 is linear in D, the relative errors in D caused by inaccuracies

in the measurement of r are simply the relative errors in X due to the

same cause. The final step in the determination of D involves solving

Equation (6.29) for D. The determination of <v> introduces a new source

of error. The fluid velocity is obtained as follows (see Appendix 2 for

an example)
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<v> = x (6.34)
Run duration Duct cross section

In Equation (6.34), the inaccuracies in the determination of the

amount of solvent gas have already been included in Ar/r, so we can write

A <v> AT AV

<V> = T + V (6.35)
<v> T V

where T is the run duration, and V, the solvent molar volume under experi-

mental (i.e., high pressure) conditions.

A typical run lasts 30 minutes; the timing has an uncertainty of

~ 15 seconds, since (see Chapter 4) a run is started after a period during

which steady flow is maintained for at least 15 minutes, whereupon the

actual U tubes are connected and tightened, an operation that lasts approx-

imately 15 seconds.

The solvent molar volume was determined from the International Thermo-

dynamic Tables of the Fluid State (Angus et al., 1976) for C02, and for

the Peng-Robinson equation of state (Peng and Robinson, 1976) for SF6.

The error in this case is less than 5% (this figure would be much higher

if runs had been done close to the critical point of the solvent; see

Tables 6.1-6.4 for actual run conditions).

From the previous discussion, therefore,

IA<v>/<v>I - 0.0083 + 0.05 = 0.0583 - 0.06 (6.36)

so that, finally,

AD
- 1.56x0.1 + 0.06 = 0.216 - 0.22 (6.37)

D

There are, in addition to the above, two sources of error that are,

however, very difficult to quantify. In the first place; erroneous num-
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bers result if the angle a (Figure 6.15) is not zero. Visual inspection

of the flat plate after a run was always conducted, and any diffusion

runs where the solute was etched at any detectable angle were rejected.

Although great care was taken to guarantee a O0 under operating condi-

tions, experimental errors are inevitable and, though small, are difficult

to quantify.

In the second place, experiments were conducted inside a closed tube,

with no possibility for visual observation. The flow was monitored in

two series rotameters (see Figure 4.1) at atmospheric pressure, but,

except for the constancy of pressure and the fact that, at steady state,

the flow through the rotameters reflects the molar high pressure flow,

there was no way of quantifying the instantaneous constancy of fluid

flow.
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7. DIFFUSION AND IRREVERSIBLE THERMODYNAMICS

In the previous chapters, diffusion has been treated in a phenomeno-

logical, or kinetic, way. This characterization refers to these approaches

which view diffusion as a phenomenon resulting from gradients in concen-

tration. From the point of view of irreversible thermodynamics, however,

chemical potential gradients, and not concentration gradients, constitute

the appropriate driving force for diffusion. This represents an entirely

different interpretation of physical reality; moreover, as will be discussed

below, kinetics and thermodynamics predict opposite behaviour at mixture

critical points.

The fundamentals and some of the consequences of the thermodynamic

approach will be discussed in this chapter.

7.1 FORCES AND FLUXES

The integral rate of entropy creation in a closed, isolated binary

system can be written as

d 1 v r 
dt P sdV = J i k dV ( TdV (

k

-jl ·-dV (7.1)
This relationship is derived in Appendix 5. The first integral cor-

responds to viscous dissipation, and ik is therefore a stress tensor.

The second integral corresponds to internal heat fluxes, with a local

heat flux vector, j, a species 1 mass flux, and p a mixture chemical

potential per unit mixture mass,

uM -- M2 (7.2)
M, M2

The third integral corresponds to diffusion. Equation (7.1), then,

is simply a statement of the fact that closed, isolated, macroscopic

systems approach stable equilibrium through irreversible processes involving

viscous dissipation, internal heat fluxes and diffusive currents.
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Although viscous dissipation can be incorporated into what follows,

we shall henceforth restrict our attention to the other two dissipative

processes.

Equation (7.1) can be formally written as

dt psdV = - I [Z Ji Xi]dV (7.3)

where each conjugate J-X pair can be seen to represent the product of

a flux (J) and a convenient driving force (X). Thus, from Equations

(7.1) and (7.3), we can write

J X

VP

Mass flux (jl) +- -- ("force")

VT

Energy flux (q - iJl) +-+ - ("force")

In this context, therefore, diffusion is linked (in an as yet unspecified

way) to chemical potential gradients, whereas in kinetic, mechanistic

or phenomenological approaches, this thermodynamic quantity is replaced

by concentration gradients.

We next address the question of the relationship between forces and

fluxes. If the gradients are small enough, the problem can be treated

in the linear approximation, which, in its most general form, reads

J = LX (7.4)

i.e., each flux is a linear combination of all forces. This implies,

in addition to the diagonal contributions, energy fluxes driven by chemical

potential gradients, and mass fluxes driven by temperature gradients.

These phenomena have been experimentally verified (Dufour and Soret effects,

respectively). Onsager's reciprocity theorem (Onsager, 1931) proved

the symmetry of the matrix L (the "conductance", or transport coefficient

matrix),

aJ. J.
(i = (7.5)
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Considering mass and energy fluxes in the light of Equation (7.4),

we write

VFP VT

J1 = - A' T - B' a V - VT (7.6)

VP VT

q - j C = T - D' = - VP - Y VT (7.7)

with

6 = ST (7.8)

where the last relationship follows from the symmetry of the transport

coefficients.

The present analysis can carry us no further than Equations (7.6)

- (7.8). As is always the case with arguments based on thermodynamics,

one obtains useful relations between quantities of interest, but not

actual values for the properties under study. Before turning our attention

to the behaviour of the actual coefficients (a in particular), the profound

significance of Equations (7.6) - (7.8) should be appreciated. We may

summarize this by stating that, when viewed as a particular case of dissi-

pative processes,

- diffusion appears to be driven by chemical potential (as opposed to

concentration) gradients.

- diffusion can occur as a consequence of temperature gradients and energy

fluxes as a consequence of chemical potential gradients

- the cross proportionality constants (off-diagonal terms in the conductance

matrix) are equal.

7.2 RELATIONSHIP BETWEEN THERMODYNAMIC AND PHENOMENOLOGICAL APPROACHES

If we consider, for simplicity, isothermal diffusion with no viscous

dissipation, we can write

Jl = -a V (7.9)
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We next use the definition of , the Gibbs-Duhem equation, and the definition

of fugacity coefficient,

1 1VP 1= P, VP2Vp Ml V

0 = x V + (-x 1) V 2

fl = x 1 P 1

to obtain

aRT I[I+ (ln)l i [ 1 ] Vx
M1 a lnx, T,P x' M2 (1-x) -

(7.10)

(7.11)

(7.12)

(7.13)

On the other hand, diffusion coefficients are phenomenologically

reported as proportionality constants between flux and concentration

gradients. Of the many equivalent expressions, we choose (Bird et al.,

1960)

J =- c 2 M1M2 VX
- p~~~~ (7.14)

Equating the last two expressions, we obtain, after some rearrangement,

2

1/2] ( ln 1i)RT [ - + M 1-x1/2'(J' M~C M2 '1I (7.15)

Sinceg 2 has units [Length2/time] and a, [Mass x Time/Length3 ] it

is customary to define a "thermodynamic" diffusion coefficient that will

equal9)w2 in ideal mixtures, in which case (Modell and Reid, 1983)

A1

aln x T,P
1

= RT (7.16)

or, in other words, when is composition-independent.

Consequently,

CD = 1 + (aln a ) m _ D1 2 ( 3=l )
12 12 an T,P RT ln x T,P (7.17)

or

D1 2 = M c
I·. 

1/2
(1-x 12

X, ' M ( x ) 1/2 M2 1l-x,
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Little can be said about the actual values of D 2 or a. It is normally

assumed that D 2 is less composition-dependent than 12 (Reid et al.

1977). Taking this assumption to the limit, we can now explore the compo-

sition dependence of a, that is, we force to satisfy

2

1/2 1/212
aC(X1) [ (1-X) + MS ( > ) f (xI) (7 19)
c(x1 ) XI M 1-x1

or -2

a x)[ Ix1/2 1/2
a = c(x1 ) [ I + )1 /2 f(T,P, solute, solvent)(720)

XI M2 l-xM (7.20)

In other words, a concentration-independent D1 2 imposes upon the

requirement that if depend in x, as the dimensionless function

1 + 1 - (V- )dx

(x) = o (7.21)
2

1/2 1/21
(l-xi) 

X M2 1-XI 

where V is now a molar volume.

Since the numerator is finite, we note that vanishes at x - 0

and x + 1, in agreement with the fact that (and hence V) is an undefined

quantity at x - 0 and x + 1. The numerator in Equation (7.21) is very

specifically dependent upon the solute and solvent under consideration.

Moreover, it will yield different numerical values depending on the equation

of state used in its evaluation. Since, however, the numerator is a

finite number, we can focus our attention on the denominator, a universal

function of the weight ratio and mixture composition. Its behaviour

is shown in Figure 7.1, where the function is plotted as a function

of x for various values of M/M 2 . At a mole fraction x = M2/(M1 + M),

W has a maximum value of M2/4 M.

Thermodynamic and phenomenological approaches to diffusion differ

in one fundamental aspect, which goes well beyond unit conversion. For
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a binary mixture, one of the many equivalent ways in which stability

criteria can be expressed is (Modell and Reid, 1983)

(N/N)RT [1 +· )( > o (7.22)
aN, T,P,N2 N aln xl T,P

When the term in brackets becomes zero, the mixture reaches its limit

of stability and a new phase is formed. Critical points are stable limits

of stability. According to Equation (7.13), then, diffusive fluxes vanish

at mixture critical points even when finite concentration gradients exist.

(the same would be true for any limit of stability, but only critical

points, being stable, make experimental verification simple).

The vanishing of diffusive fluxes at mixture critical points has

been experimentally observed, (Tsekhanskaya (1968), Tsekhanskaya (1971)),

and the results have often been reported in the light of Equation (7.14),

that is, as vanishing phenomenological diffusion coefficients. From

the previous discussion, it is obvious that phenomenological formulations

of diffusion coefficients (i.e., Equation (7.14)) cannot account for

this experimentally observed behaviour. At least in the limit where

vanishing thermodynamic driving forces coexist with finite kinetic driving,

forces, therefore, it appears that diffusion can be explained as an entropy

generating relaxation process rather than as a kinetic phenomenon.

7.3 THE KINETIC CONVERSION FACTOR

The behaviour of the conversion factor [1+(aln;l/alnxl)Tp], henceforth

called kinetic conversion factor, will now be analyzed. It will be assumed

that the mixture under consideration can be described, in its equilibrium

properties, through a cubic equation of state, for which the most general

formulation is (Schmidt and Wenzel, 1980)(see Appendix 1).

P RT a (7.23)
V-b V2 + uVb + wb2
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In Equation (7.23), V is a molar quantity, u and w are numerical constants,

and they vary with the particular equation of state being used. Mixture

parameters a and b are obtained from pure component parameters by means

of suitable mixing and combining rules, of which the most popular are

(with i and j denoting it and jth components, respectively,

a = x.x. a..
1 1j

b = x.b.i (7.24)

a. (a.a.)1 /2 [1-k . (1-6.)]
ij 1 (aia ij ij

where kij, the binary interaction coefficient, is the single adjustable

parameter once an equation of state is selected, and 6ij is Kronecker's

delta.

The methods for obtaining pure component parameters are summarized

in Appendix 1, where tabulated values of v and w can also be found.

From the general thermodynamic relationship (where V is now extensive)

V

RTln i - [ )T,V,N[i] V (7.25)R^ln = -P f ~ N~il RT] dV - RTln Z

where N[i] means constancy of all mole numbers except for Ni, we obtain,

with A = a P/(RT)2; Aik aik P/(RT) 2 ; Bi = biP/RT, and B = bP/RT,

1 A 2 k xkAik B
In q i = (Z-1) - In (Z-B) + A

B/u2 - 4w

(7.26)

Z + B (u-/u2-4w)

2In Z+B ( 2 )
which is valid for any cubic equation of state with mixing rules as per

Equation (7.24) (provided both u and w are non-zero) and any composition

and density-independent combining rule (note that Aik is not defined

in Equation (7.26)). From this we obtain, after considerable rearrangement
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L1+ (nx, ) =2 Te +I-Z)

l |nx, TP B4Vu2-B

+(B,-B2) [ 2 (Bn+-ZJ - j

Z + B (-/U2 -4w)2

+ B (u + /u 2- 4w )
2

+

2 xA
k k k ABI

( B B 2 (nB - Z)

[Z+B U-] (- 4w) ][Z+U +U 2-J4w[Z+ 2 ][Z 2

(7.27)

where

c = (Al-A,2)B3 - {A1x1 (2B,-B2) - A2B(1l-x,) + A 12 [B1 (2-3x,) - B2(1-Xl)]}B2

+ A(B,-B2 )B B

b-b2

(7.28)

A+(uZ+2wB)[1-(Z-B)]2 -2[1-(Z-B)] B --A BB)

A - (2Z + uB)[1-(Z-B)]2 (7.29)

Equations (7.27)-(7.29) are only applicable to binary mixtures.

It is hardly worth emphasizing that these expressions are, in principle,

highly nonlinear in composition; in fact, x, appears not only in a non-

trivial explicit form, but also, implicitly, through Z, A and B. However,

for all of the dilute mixtures considered, the calculated kinetic conversion

factor is a linear function of x, from infinite dilution to saturation,

and for all of the equations of state tested (see below). Figure 7.2,

for C02-Benzoic Acid at 308K and 280 bar (Peng-Robinson equation of state,

k.. = .0183) is typical. The significance of this observed behaviour
13follows at once from integration

follows at once from integration

(alnx,)T,P = 1 - K x,

l(Xl) = , exp (-Kx,)

where K is composition-independent, and

1 - limrn l (x)
X1 + 

(7.30)

(7.31)

(7.32)
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FIGURE 7.2: Composition dependence of the kinetic conversion factor from
infinite dilution to saturation, as modelled by the Peng-
Robinson equation of state, for C02-benzoic acid, at 308
K and 280 bar
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In Equation (7.30), 1 has been substituted for the least-squares-

regressed y-intercept, which in all cases, was greater than .999. Also,

the composition-independence of 0 at low values of x has been verified

in all cases. As an example, for C02 -Benzoic Acid, the Peng-Robinson
-6 -10 -6

calculated is 7.527 x 10 when x = 10 and 7.525 x 10 when x

= 10, at 280 bar and 308K.

K has an interesting physical significance. Since the left hand

side of Equation (7.30) vanishes at limits of stability, we write

- k x (s.) = 0 (7.33)

where x(i.s.) is the solute mole fraction at which the mixture becomes

unstable at the given T and P. In writing Equation (7.33) the assumption

of a linear behaviour up to the limit of stability has been made; this

is an obvious idealization, but a useful one in the present context.

Equation (7.31) now becomes

l (xl,T,P) = l (T,P) exp [ - xl/x,(k.s.)] (7.34)

Within the limits of the idealization implicit in Equation (7.33), therefore,

Equation (7.34) suggests a "natural" scaling of concentration, in analogy

with the idea of corresponding states. Figure 7.3 is a plot of the fugacity

coefficient of benzoic acid in supercritical C02 (308K; 280 bar; kij =.0183),

from infinite dilution to saturation, calculated with Equation (7.26)

and with the simplified exponential relationship (Equation (7.31)).

This remarkable agreement was observed in all of the cases tested

(CO2-benzoic acid; C02 -2-naphthol; SF6 - napthalene; SF6-benzoic acid;

Pr 3.4, 1.01 Tr 1.1; Peng-Robinson and Soave-Redlich Kwong equations

of state).
The regressed K-values for the C02-Benzoic Acid system are shown

in Figure 7.4 as a function of temperature and pressure. The binary

interaction coefficients used in Figure 7.4 were obtained by minimizing

the sum of the absolute values of log[x(kij)] - log[x(experimental)]

for each temperature. The experimental solubilities were taken from

Kurnik (1981). The resulting values (used in Figure 7.4) are: 0.013856

(@308.2 K), 0.010308 (@318.2 K), -0.003336 (@ 328.2 K), -0.01272 (338.2 K).
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Figure 7.4 suggests that the fugacity coefficient becomes composition

independent at low pressure. This is in agreement with the concept of

infinite dilution fugacity coefficient, introduced above. More interestingly,

though, K values approach a high pressure limit (at 280 bar, all K values

are within 6.5% of the mean). If this behaviour is general, and K values

can be predicted or correlated, this could simplify high pressure phase

equilibrium calculations, apart from the intrinsic theoretical interest

that such a trend would have.

K was found to be relatively insensitive to k.. in all cases. For

example, at 308 K and 120 bar, for the benzoic acid-C02 system, K=66.81477

for k.. = .013856 (obtained by regressing experimental solubilities),

and K = 68.13017 for k.. = 00.
1j

The fugacity coefficient, then, is the product of a composition-inde-

pendent term (l, the infinite dilution fugacity coefficient), and an

exponential composition correction which is not only small, due to the

small values of x, but appears to approach a high pressure limit which

is independent of temperature.
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FIGURE 7.3: Fugacity coefficient of benzoic acid in C02, at 308 K and
280 bar, as a function of solute mole fraction, calculated
with the Peng-Robinson equation of State (EOS), and with
the exponential decay expression (K).
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FIGURE 7.4: K values for the CO2 benzoic acid system, as a function temper-

ature and pressure.
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8 DYNAMICS OF INTERACTING BODIES : THEORETICAL FUNDAMENTALS

The dynamic simulation of a system of interacting bodies requires

knowledge of the laws of classical mechanics for its implementation,

and of statistical mechanics for its interpretation.

These will be discussed in this Chapter. The following sections

constitute a convenient summary, where the theoretical basis of the work

is presented in a concise and coherent form. It must be said at the

outset, however, that the discussion, although self-contained, is by

no means exhaustive, and references are given throughout to texts and

articles dealing with each of the topics in detail.

8.1 KINEMATICS OF THE RIGID BODY

A rigid body is an idealization. It can be defined,when discrete,

as a set of particles such that the distance between any two of them

is constant. In what follows, molecules will be idealized as rigid polyato-

mics, that is, as point centers of force with no internal degrees of

freedom.

In general, a rigid body has six degrees of freedom, this being the

minimum number of independent quantities that must be specified in order

to define uniquely the position of the system under investigation (Landau

and Lifshitz,1982). Three degrees of freedom pertain to the body's transla-

tional motion,and can be chosen as the coordinates of its center of mass

as measured from an origin (x,y,z) fixed in space (the laboratory or

inertial reference frame). The other three degrees of freedom pertain

to the body's rotational motion, and describe the instantaneous angular

orientation o a set of axes rigidly fixed to the body (x',y',z') with

respect to the set of axes fixed in space. A possible choice of angular

coordinates, known as Euler angles(8,p,4), is illustrated in Figure (8.1).

A vector X is transformed from the fixed to the moving frame (the

latter being rigidly fixed to the body) by the linear relation

A X = X (8.1)
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FIGURE 8.1 : Euler angles
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where A is an orthogonal transformation matrix, which , in terms

of Euler angles, becomes

[ cosncoso-cososinesin'- cosnsin+icosicosqcose sinosinO
A = -sin'csos-cospcossin -sinsino+coscoscos cosnsin (8.2)

sine sino -sine cos~ cose

The explicit form of A can be easily obtained as the product of the

three elementary transformations defined by ,~ and A.

The angular velocities can be expressed, in the x ,y ,z system, in

terms of 4,$,O, as follows (Goldstein,1981)

w = $ sine sin + e cosi
x 

w = sine cosp - e sins (8.3)

W = cose + 
z

where,again,Equations (8.3) can be derived from elementary geometric

considerations.Solving for 4,,$, we obtain

a = w , cos - w t sing
x y

= w , - (1/tge)[w , cosi + w , sina] (8.4)
z y x

4 = (1/sine)[w , cos$ + w , sinO]
y x

The expressions for the rate of change of and diverge for small

0, making Euler angles unsuitable for numerical integration of the equations

of motion. To overcome this problem,we introduce the so-called quaternions

or Cayley-Klein parameters (Goldstein, 1981;Murad and Gubbins,1978)
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e o = -cos- cos l ]
2 2

el = sin -cos [

e2 sine sin[ "]

e3 = cos sin [j]

which satisfy

(8.5)

3 2
E ei = 1 (8.6)

i -o

Differentiating Equations (8.5), and after considerable rearrangement,

we obtain (Murad and Gubbins, 1978)

1
e = ew

T = [eo;e1;-e2;e3]

wT= w ,;w ;w ; o]
x y z

-el -e2 -e3 eo 1
e = eo -e3 e2 el

-e3 -eO el -e2
L-e 2 e1 eo e3

(8.7)

(8.8)

(8.9)

(8.10)

From the definitions (Equations (8.5)) of the Cayley-Klein parameters,

we obtain

- (el+e- 2e 2-e3 )

A = -2(eoe3-e le 2)

2(e1e3+eoe 2)

2(eoe 3 +el e2)

(e2+e2-e1-e 3 )

-2 (eoe1 -e2e3)

2(e1 e3-eoe2) 

2(eoe1 +e2e 3)

(e3 +e-e 2 -el2 )
2(3-e2))]
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Equation (8.7) is the quaternion equivalent of the Euler-based Equations

(8.4), but is singularity-free, and thus provides a convenient and consistent

kinematic description of the rigid body, which can be easily adapted

to numerical integration of the equations of motion.

If a rigid body has a shape that justifies idealizing it as a line,

the Euler angle or quaternion representation cannot be used, since a

line has only two rotational degrees of freedom. The implications of

this fact will be discussed below.

8.2 DYNAMICS OF THE RIGID BODY

The equations that describe the rotational motion of the rigid body

assume a particularly concise form when the set of moving axes (x ,y ,z )

coincide in direction with the body's principal axes of inertia, which

will now be defined (Landau and Lifshitz, 1982).

Assuming the rigid body to be a discrete assembly of masses, the

j,kth component of the inertia tensor can be written as

', 2 ' 
Ijk = m[(xi) 6jk - xjxkJ (8.12)

where m denotes the generic discrete masses, the summation extending

over all such masses, and x is the jth (j=1,2,3) coordinate of the local
j

mass with respect to a set of axes fixed to the body but otherwise unde-

fined. The tensor defined by Equation (8.12) is symmetric and can always

be diagonalized. The particular choice of (x',y',z') that diagonalizes

the inertia tensor defines the principal directions; the diagonal elements

are the principal moments of inertia.

The kinetic energy then becomes,

KE = (m)v 2 + 1 2 ' 2 ' 2 (813)
-- - [ 1(w 1 ) + 2 (w 2 ) + 3 (w 3 ) ] (8.13)

2 2
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where v is the translational velocity of the center of mass, m is the

total mass of the body,and 1,2,3 are the prin'cipal directions. As can

be seen from Equation (8.13), the rotational contribution is now formally

similar to the translational term.

The equations of motion can now be written , as follows. For translation,

in the inertial reference frame,

= (m)-lf (8.14)

and for rotation, in the principal reference frame,

.9 I

Wi = (Ii )
1

- lKi (8.15)

where r is the position vector of the center of mass with respect to

the inertial reference frame,f is the external force,i denotes the ith

(i=1,2,3) principal direction,and w',K' and Ii are therefore the ith
i

principal angular velocity, torque and moment of inertia, respectively.

Equations (8.14) and (8.15) are general, and are obviously independent

of the kinematic description of the rigid body.

8.3 INTEGRATION OF THE EQUATIONS OF MOTION

The force f in Equation (8.14), and the principal torque component

K' in Equation (8.15) are functions of the instantaneous position and
i

orientation of all bodies in the system. Integration of these equations,

therefore, requires expressions for the rate of change of the rotational

coordinates, which will necessarily be explicit in the coordinates themsel-

ves. Thus, the expressions that will be introduced (the kinematic equations)

are necessarily less general than the dynamic equations ((8.14) and (8.15)).

For a non-linear body, with quaternion kinematics, we have
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v = (~m)- l f({r},{e})
(8.16)

x=v

i = (Ii)-1 Ki({r},{e}) (i=1,2,3)
(8.17)

1 
e = e w

The translational equations have been written as two coupled first

order equations, rather than as a single second order expression (Equation

(8.14)). Also, in Equations (8.16), f({r},{e}) denotes the dependence

on all position vectors and quaternions of the force (the same is true

for the torque in Equations (8.17)).

It is important to notice that Equations (8.16) are calculated in

the inertial frame, whereas, in Equations (8.17), i denotes a principal

direction. The torques are calculated in the inertial frame and then

converted to principal torques using the quaternion-explicit form of

A (Equation 8.11))

K AK (8.18)

Linear bodies have two rotational degrees of freedom; Equations

(8.17) must therefore be modified. In this.case, the rotational equations

become

w = (I)-1 K
(8.19)

i- =w xl

where I is now the non-vanishing principal moment of inertia and 1 is

a unit vector, co-axial with the linear body, which specifies the instan-

taneous configuration of the line.
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Equations (8.19) do not require a coordinate transformation, and

are hence conveniently integrated in the inertial frame throughout.

The structure of the rotational Equations for a linear body follows

from the fact that, for such a geometry,

I1 = 12

I3 = 0 (8.20)

w3 = 0

i.e., two principal moments of inertia are equal and the third one vani-

shes; also, a line cannot rotate about its axis, and w must always lie

on a plane perpendicular to the line's axis(Figure 8.2).

The actual integration of Equations (8.16) and (8.17) (or (8.19))

can be implemented in many different ways, according to the particular

numerical algorithm selected.For the translational equations, a second

order predictor-corrector method was chosen, with an Euler predictor

and explicit trapezoid correctors,

x(n+l) = x(n) + t v(n) (8.21)

v(n+1) = v(n) + (m)-1 (6t/2)[f(n+l) + f(n)] (8.22)

x(n+1) = x(n) + (6t/2)[v(n+l) + v(n)] (8.23)

where - denotes predicted values, and f is calculated from the predicted

translational and rotational coordinates. In Equations (8.21)-(8.23),

the superscripts identify the integration step. For non-linear molecules,an

explicit second order predictor-corrector method was also chosen,
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e(n+ l) = e(n) + (6t/2) e(n)(w')(n) (8.2 4 )

wi (n) (n ) + 1 (6t/2)[(Ki)(n+l) + (Ki)(n)] (8.25)

(i=1,2,3)

e(n+l) = e(n) + (6t/4)[e(n+1)(w')(n +1) + e(n)(w')( n)] (8.26)

where torques are first calculated in the inertial frame and then converted

to principal torques using the quaternion-explicit form of the transformation

matrix. Predicted torques are calculated from predicted coordinates

and then converted from the inertial to the moving frame with the predicted

transformation matrix.

For linear molecules, an implicit predictor-corrector scheme was

chosen,

l(n+l ) = (n) + 6t[w(n) x (n) ] .(8.27)

w(n+l) = w(n) + (I)-1 (6t/2)[K(n+l) + K(n)] (8.28)

l(n+i) = l(n) + (6t/2)[w (n+ l) x 1(n+
l) + w(n) x 1 (n)] (8.29)

where, as in Equation (8.25), predicted torques are calculated from predicted

positions and orientations. Equation (8.29) is implicit as a consequence

of the vector product in the right hand side; 3 simultaneous equations

in 1(n+1) result.

8.4 STATISTICAL TREATMENT OF DIFFUSION

The stochastic approach to diffusion originated with Einstein's work
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on the theory of Brownian motion (Einstein, 1905). Many alternative

derivations of the basic relationships have since appeared, but Einstein's

approach is still the simplest and most general. An illuminating and

comprehensive treatment of the general area of stochastic processes can

be found in Chandrasekhar's review article (Chandrasekhar, 1943).

We focus our attention on a mixture of particles of species 1 and

2, and consider the limiting case where the concentration of species

1 is so small that we can neglect 1-1 interactions. We consider a time

interval, AT, with the following characteristics: AT is small with respect

to observed, macroscopic time, but large enough so that the velocity

of any particle at a time t is independent from its velocity at a time

t-AT,

<v(t+dA).v(t)> = <v(AT).v(O)> = O (8.30)

If we now identify particles with molecules, and AT with a characteristic

time for a molecular interaction, then, upon observation at time intervals

ALIT, the system must be described statistically rather than in a deterministic

way.

At thermal equilibrium, the displacement, 6, of type 1 molecules

during an interval AT, projected upon any arbitrary direction, x, is

subject to a probability distribution, 1, which must satisfy

01(6 x) = 1(-6x)
(8.31)

_1(6x) d(6x) = 1

where symmetry follows from a zero net flux condition, and normalization

implies that molecules must be found somewhere in space. The function

01 itself is defined in such a way that the number of molecules of species

1 that, during an interval AT, experience x-displacements between 6x

and 6x + d(6x), is given by

dN1 (6x) = N 1 1(6 x) d(6x) (8.32)
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where N1 is the total number of type 1 molecules under consideration.

Let fl (x,t) be the z,y-averaged number of particles of species 1

per unit volume at a time t and location x. Then, we write

+00

fl(x,t+A-) I fl(X+6xt) 41(6x) d(6x) (8.33)

-0o

Equation (8.33) assumes that the kinematic description of the system

at a time t + AT is independent of the system's history prior to time

t. This is the single major assumption in Einstein's derivation, and,

in the language of stochastic processes, is equivalent to saying that

the evolution in time of fl(x,t) is a Markow chain (van Kampen, 1981).

Expanding both sides of Equation (8.33) in Taylor series,

fl(x,t) + fl AT +

+x

rfl(x,t) + fl 6 + 1 a (6X)2+ ...] 1(6x) d(6x) (8.34)
ax 2 x2

and taking into account that

+WD +O

Jfl(x,t) 1(6x) d(6x) = fl(x,t) 14(6x) d(6x) f l (xt) (8.35)

+ ) 6 x ( 6 ) d(6x) 6 (6 ) d( 6 x) = 0 (8+36)o

((x x)

we obtain

+X

at1 AT (6x) 2 1(6x) d6x) a2 (8.37)
at L2At a-x2

-m
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Since 1 is a probability distribution, Equation (8.37) can be rewritten

as

f <62 > a2fl (8.38)

at 2MA ax2

Equation (8.38), on the other hand, is a species-1 conservation equation,

so we may at once write,

<62>
D12 x (8.39)

28AT

or, taking into account that, since x is arbitrary and 1 symmetric,

2 2 2 <6 >
<6x> = <6y > <6z> = 3 (8.40)

<62>
D12 6-T (8.41)

Equation (8.41) is the fundamental relationship to be used in the

calculation of diffusion coefficients via molecular dynamics.

It is important to realize that at no point in the present derivation

was the assumption of Brownian particles (i.e., particles so large that

species 2 becomes a continuum relative to species 1) introduced. Although

Einstein himself derived Equation (8.39) while considering Brownian motion,

the major advantage of this approach is precisely the generality and

plausibility of the assumptions on which it rests.

The short-time (t < AT) behaviour of the system cannot be described

with this treatment. An analytical equation covering the whole time

range can be obtained for the special case of Brownian particles.

By splitting the force on a Brownian particle into a deterministic

frictional force, proportional and opposed to the particle's velocity,

and a stochastic component representative of random collisions with the
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molecules that make up the continuum, (species 2) we can write a stochastic

differential equation (Langevin's equation)

v = -v + A(t) (8.42)

from which we obtain (Chandrasekhar,1943)

<6> a [t - 1 - exp(-at)] (8.43)

For t 4 A,

< > a t (8.44)

and for t O, expanding the exponential up to second order and simplifying,

(8.45)

It is obvious that, in writing Langevin's equation, we are introducing

important restrictions which are not present in the original Einstein

treatment. The long and short-time limits, however, have a fundamental

significance that is independent of the assumptions built into their

derivation.

For a generic particle (molecule), we write

as a2 6 t2

6(t -) t + (-) - +
at at2 o 2

(8.46)

For t O , we can drop quadratic terms. Squaring, ensemble averaging,

and using equipartition,

<62> = 3kT t2
m

(8.47)

where m is the mass of the particles over which the averaging is done.
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Without making any assumptions on the relative size and mass of the

particles under consideration, we can say that, for times which are short

with. espect to the characteristic inter-particle interaction time, the

dynamics is deterministic, since it can be described by Equation (8.46),

and then <62>at2.

Since Equation (8.46) is time-reversal-invariant, we can call this

a reversible or deterministic regime. Irreversibilities associated with

molecular motion, on the other hand, are characterized by <62> a t, and

we conclude that the onset of irreversible, stochastic behaviour, requires

a finite amount of time, characteristic of interparticle interaction

times. If species 2 can be regarded as a continuum, we can readily identify

B- 1 with At (Chandrasekhar, 1943). Each degree of freedom, then, contributes

to the entropy over a time greater than a characteristic relaxation time.

Entropy is meaningless for t << A.

In Equation (8.42), and assuming the Brownian particles to be spherical',

then is given by Stokes' law,

B6nna (8.48)
m

where n is the viscosity of the medium, a is the radius and m, the mass

of the particles.

8.5 VELOCITY DISTRIBUTIONS

We define a distribution function by saying that the number of molecules

of species i which, at time t, have velocities within an interval dv

of v and positions within an interval dr of r, is given by

dNi(r,v,t) fi(r,v,t) dr dv (8.49)

where Ni is the total number of species i molecules in the system under

investigation. At equilibrium, fi is independent of position and
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time-invariant, so we write

ni fi(v) dv (8.50)

where ni is now referred to unit volume and the integral is three-dimensional

and extends over all possible velocities,i.e. from - to + for each

component.

The particular functional dependence that corresponds to equilibrium

is the Maxwell-Boltzmann distribution,

fi(v) = ni [2T ex - 2kT

For a fixed volume, V, containing Ni molecules of species i, the

number of molecules having velocities within a range dv of v is given

by

dNi V fi dv 4 V v2 fi dv

dNi [mi 3/2 2 m iv 2

dv 4 Ni F2kT 3 v exp[2kT-

which is maximized for

1/2

has a root mean square velocty,

The distribution fi has a root mean square velocity,

1/2

Vrms [
1/2

3 1kT /2 2 1/2
= i = <v >

(8.52)

(8.53)

(8.54)

(8.55)
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a mean velocity,

<v = fNi j4fv fi dv =[ m-- ]

1 O0

and a standard deviation,

2 1/2 -1 2 2 1/2
< > = [N 4Nrv[v - <v> f dv ]

iJ i
0

= [( )3-8 1/2

,r mi
(8.57)

As will be explained later, setting the root mean square velocity

to unity is a convenint way of defining a simulation time scale (having

previously defined a simulation length scale; see Chapter 9). Then,

Equation (8.53) becomes

1.5
dNi 4(3/2) 2 2

1/2 Ni v exp(-1.5 v ) -

dv w

(8.58)

= 4.146 Ni v2 exp(-1.5 v2 )

Equation (8.58) is plotted in Figure 8.3, with Ni 107, which is

the number of solvent molecules used in the simulations.

8.6 EQUIPARTITION AND VIRIAL THEOREM

For a system of N bodies with degrees of freedom per body, the

equipartition theorem (Huang, 1963) can be written as
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FIGURE 8.3 : Maxwell-Boltzmann velocity distribution; N-107
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Pi H > = kT
api

(8.59)

<q-P H > = kT
aqi1

where Pi and qi (i = 1,...,EN) are generalized momenta and coordinates,

and H is the system's Hamiltonian (i.e., its energy expressed as a function

of coordinates and momenta). For smooth spherical or point bodies with

no rotational degrees of freedom, = 3 and q and p are simply the position

and linear momentum vectors, respectively. For rigid bodies, = 6 and

q is a vector whose six components are the three cartesian coordinates

of the center of mass with respect to an inertial reference frame and

the three components of the rotation vector (Landau and Lifshitz, 1982)

along the body's principal directions, while is a vector whose six

components are, respectively, the cartesian components of the body's

linear momentum in the inertial frame, and the principal angular momentum

components. Conjugate momenta and coordinates satisfy Hamilton's equations,

aH

aqi i ( = 1....N)

(8.60)

8pi ' qi (i = 1, ..... EN)
api qi

Restricting our attention to the translational degrees of freedom,

we consider the sum

3N

I qi Pi = r (8.61)
i1

3N 3N

= I qi Pi + I Pi qi (8.62)
i=1 i=1

Time-averaging,
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<r>lim r dt = lim 1 r(T)-r(o)] (8.63)

T' T T ~ T
0

but, since r is not unbounded, we must have

< => = O (8.64)

which simply states the fact that thte time average of a derivative of

a finite quantity vanishes.

Making into account Equations (8.64), (8.60), and (8.59),

3N 3N 3N H

< Pi qi > =- < qip Pi > -3NkT
i1 1 i-1

(8.65)-- 2<KE(t)>

where KE(t) is the translational kinetic energy. The left hand side

of Equation (8.65) is the time average of the sum, over all bodies, of

the scalar product of external force and position.

This can be written as the sum of two terms,

3N 3N

< I Pi i > = -P r.n dF + < I qi fi > (8.66)
i =1 i=1

The first term is the contribution of the collisions against the

bounding surface, with r denoting not the coordinates of a molecule,

but a location on the bounding surface, n is a unit normal vector, and

F denotes the bounding surface. The second summation, then, is the contri-

bution of intermolecular forces, f. We can transform the surface integral,
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-P r.n dF = -P I (V.r) dV = -3PV (8.67)

and rewrite Equation (8.65),

3N
2 <KE(t)> + < C qi fi > = 3PV (8.68)

1=1

Dividing by 2<KE(t)>,

3N
3PV < qi fi>

1 + (8.69)
2<KE(t)> 2<KE(t)>

or, equivalently,

3N N

< qifi> < _-q >

Z= 1 + = 1 + j=1 (8.70)

2<KE(t)> 2<KE(t)>

If the interparticle forces are pairwise additive, the summation

can be expressed in a computationally convenient way,

3N N N N-1 N

I qi i - f - j. f ji = X ij.(ai -s (8.71)
i=1 j=1 j=1 i*j i i j-i+1

i.e., as the sum of the products of interparticle forces and interparticle

separations. Equation (8.70) then becomes,

N-1 N

< I Lj. (qi - j)>
Z = 1 + (8.72)

2<KE(t)>
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where fij is the net force on particle i exerted by particle j, and (qi- j)

is a vector directed from j to i. The double sum is therefore positive

when interactions are, on the average, repulsive, and negative when they

are attractive.
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9. COMPUTER SIMULATIONS; TECHNICAL ASPECTS

9.1 SAMPLE SIZE; BOUNDARY CONDITIONS; CUTOFF RADIUS

The goal of molecular dynamics is the study of the bulk properties

of matter. This is done by following the motion of an ensemble of molecules

and interpreting the "results" (i.e., the evolution in time of velocities,

forces, positions, orientations and torques) statistically (see Chapters

8 and 10 for fundamentals and results, respectively).

The first question that must be addressed, therefore, is the number

of molecules that will be considered in the simulation. Since we are

studying bulk matter, it is obvious that this number should be as high

as possible. For pairwise additive, continuously differentiable potentials,

the simulation is simply a repetitive procedure whereby, at each step,

every molecule "scans" all other molecules in the system, and, due to

pairwise additivity,

F. = f.. (9.1)
--1 ji J

where F is the net force on the ith molecule, and f.. is the force exerted-1J
by the jth molecule on the ith molecule.

In the presently considered case, however, molecules are really rigidity

constraints, and the forces are interatomic, so that Equation (9.1) is

really computed as

Fi = I I fn E= f (9.2)
j~i nEi tcj jfi -

where n and now denote atoms. Thus, for N molecules with n atoms per

molecule, each integration step involves, in principle, S elementary

evaluations
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N(N - 1 )n 2

S -21 (9.3)

As will be explained below, the density of the simulated fluid has

a strong influence on the average duration of a "scan", but, for the

present purposes, or, at any rate, at a given density, the duration of

a simulation is a quadratic function of the sample size and of molecular

complexity, as measured by the number of sites per molecule.

The other factor influencing the duration of a simulation is the

integration step, which is determined by numerical accuracy considerations.

The run duration is only a linear function of the number of integration

steps. Consequently, it is the number and complexity of the molecules

that determines the size of the problem (given an event of fixed duration

to be simulated).

Even with supercomputers, currently solvable problems are limited

to N - 0(103), with n between 1 and 5, and simulations are used to study
-11

events that last - 10 seconds, at typical liquid densities (Ceperley,

1981).

In the present case, N = 108, with one solute and 107 solvent molecules.

For C02 as a solvent and C6H6 as, a solute, S = 54891 elementary evaluations

per integration step, or a total of - 1.7 x 108 evaluations per simulation

(for a 3000 step simulation).

The choice of appropriate boundary conditions is the next important

question that must be addressed. A possible choice would be to enclose

the N molecules inside a perfectly reflecting rigid surface of arbitrary

shape. This approach, however, suffers from a major drawback. For a

spherical boundary of radius R and an effective interaction range Ar,

the fraction of molecules interacting with the surface is 3Ar/R. In

general, the fraction of molecules that, at any given time, interact

with the boundary surface is directly proportional to the product of

the effective interaction range and the surface-to-volume ratio, which,

in turn, is inversely proportional to some characteristic length. For

a typical molecular dynamics simulation at liquid-like densities, the

characteristic length can be estimated as
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1/3

1000 molecules x 5x10- 5 m3 /mol 100 40 A

6.02xl 0 2 3molecules/mol

which means that the fraction of molecules interacting with the rigid

boundaries is - 3x106 times higher than in a 1 cm3 macroscopic system,

for any given effective interaction range.

This problem can be overcome by using periodic boundary conditions,

which have been used in molecular dynamics since the method was originally

proposed (Wainwright and Alder, 1958; Alder and Wainwright, 1959). In

this approach, computations take place in a unit cell which repeats itself

in space. Whenever a molecule eaves the cell, it is replaced by an

"image" which enters through the opposite boundary. This is shown in

Figure 9.1 for a two dimensional system with a quadrangular unit cell.

Thus, periodic boundary conditions not only eliminate the artificial

influence of the boundary surface, but, in effect, treat the system as

infinite, although with an arbitrary periodicity assumption. In the

presently considered case, the unit cell is a cube, since the problem

is three-dimensional. Because of the periodicity imposed by the boundary

conditions, a molecule and its images are never moved independently.

Instead, in considering the interaction between any two molecules a-b

(see Figure 9.1), only the closest of all possible a-b pairs must be

taken into account (a-b4 or b-a5 in Figure 9.1; the choice between these

two is arbitrary and one may conveniently assign a number to each molecule

and, by convention, look at interactions between i and the possible images

of j, including j itself, if i < j, and viceversa).

Periodicity thus introduces an important limitation: because, as

explained above, a molecule and its images are not independent, the range

of the intermolecular (or, in the present case, interatomic) potential

cannot be infinite. This follows from simple geometric reasoning. Consider

particle a (Figure 9.1) and let the cell side have unit size. Coordinates

can be measured from any arbitrary origin: let us place the origin at

the cell's corner nearest to a, and denote vertical coordinates by y,

and horizontal coordinates by x. Then, it is obvious that, whenever
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FIGURE 9.1 : Two dimensional periodic boundary conditions
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1Xb - Xal > 1/2, and only when this condition is met, an image bi of

b exists such that

I Xb - x a l > IXbi - Xal (9.4)

Similar considerations apply to the y (and z, in three dimensions)

coordinates, so we conclude that, to avoid double counting between a

molecule and its images, the range of the interparticle potential cannot

exceed half the cell side's length. In the presently considered case,

a and b would represent molecules, (or, more specifically, their centers

of mass). Having located the closest pair, and only then, are atomic

interactions taken into account. Since, for N = 108, there are 5778

pairs, and, in three dimensions, 27 possible images per pair, it follows

that an efficient algorithm for locating closest pairs without actually

calculating all possible distances is mandatory. Such an algorithm is

shown in Figure 9.2, for a cubic cell.

The actual cutoff radius is determined more conservatively than the

above considerations would suggest. When simulating the dynamics of

rigid polyatomics, the cutoff distance must obey

c - ( a b) (9.5)

where the a's denote the maximum possible distance between a molecule's

center of mass and any one of its sites. Thus, this conservative criterion

guarantees that the closest possible distance between atoms of molecule

a and atoms of molecule b, when b has been discarded in favor of one

of its images, will never equal the cutoff radius. Since any finite

cutoff distance represents a distortion of physical reality, the extreme

form of Equation (9.5) may have to be relaxed whenever a is large, at

the expense of introducing slight inaccuracies in the program. In the

present work, a cutoff radius of 7.4 Angstrom was used throughout (see

Figure 10.1 for molecular geometry).

There is, of course, nothing fundamental about the cubic shape of

the unit cell. It merely provides a simple geometric description, and
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FIGURE 9.2 : Nearest image location in a three dimensional cubic cell
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a convenient start-up lattice "backbone": the molecular centers of mass

are arranged in a face-centered cubic lattice. This structure can be

generated by spatial repetition of a unit cube containing occupied sites

in four different positions (Figure 9.3). The simulation takes place

in a cube of unit size which contains 13 elementary units such as the

one depicted in Figure 9.3. Thus, molecular dynamics simulations with

32, 108, 256,..., 413, ... etc. molecules are common. The details of

the start-up procedure are discussed in Section 9.3.

Periodic and bulk matter are obviously not equivalent concepts, although

this assumption is built into the choice of periodic boundary conditions.

At present, however, there is no better approach to the problem of simulating

bulk matter using a small number of particles. An interesting question

arises when we consider the possible influence of the unit cell's geometry

upon the results. Although systematic studies have not been made, this

problem should be of particular concern when molecular dynamics is used

to study fluid-solid phase transitions, for example, where symmetry consider-

ations play an important role. Thus, one can imagine simulations taking

place in polyhedric space-filling unit cells, or, even more simply, in

deformed cubic cells (parallelepiped cells, for example; Theodorou and

Suter,1984).

In principle, one would hope the computed relaxation, transport and

equilibrium properties of fluids to be independent of these considerations.

This is strongly suggested by the good agreement with experiment obtained

so far with molecular dynamics, unless we assume that cubic symmetry

is more than an accidental choice, and disordered, isotropic matter can

only be described with particular choices of symmetries, an unlikely

but fascinating possibility.

9.2 TIME CONSIDERATIONS

In the area of molecular modelling of matter, computer time considera-

tions are of fundamental importance. Without an efficient code, the

simulations quickly become prohibitively expensive, and, in extreme cases,

too long even in the absence of computer time cost constraints.

The core of a molecular dynamics simulation, as explained in section
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FIGURE 9.3 : Elementary generator of face centered cubic lattice

241



9.1, is the "scanning" procedure, which is repeated N(N-1)n2/2 times

per step, or for large N, - (Nn)2/2 times. Hence, all efforts to improve

code efficiency should be focused on this part of the program.

The optimization of the N(N-1)/2 nearest image scans was already

discussed and is shown in Figure 9.2. Having located the nearest image,

n2 site-site interactions must now be computed. The first step, therefore,

is to check whether the particular site-site distance considered falls

within the cutoff radius. Important time savings follow if the cube-

sphere scan (Figure 9.4) is implemented. In this approach, the site-

site distance is only calculated if each of the components of the site-

site separation is less than rc in absolute value. This is equivalent

to constructing a cube of side 2 rc whose center of symmetry coincides

with one of the sites (one eighth of which is shown in Figure 9.4), such

that all sites falling outside its boundaries are rejected. This cube,

then, is the geometric equivalent of a necessary but not sufficient condition

for a site-site separation to be rc. The sufficient condition, a concentric

sphere of radius rc, is then introduced, but only after having rejected

all sites which do not obey the necessary condition. In addition, since

a distance is the square root of the sum of three squares, the sufficiency

condition is tested with respect to the square of the cutoff distance,

so that a rejected site does not cause the unnecessary computation of

a square root.

The last part of each elementary "scan" involves the actual calculation

of a force and, if needed, an energy. Explicit calculation of the resulting

expressions (see Section 9.4) would make the program prohibitively slow

and inefficient. To overcome this problem, the force and potential are

tabulated at the beginning of the program. There are as many tables

as there are different types of site pairs (i.e., 0-0, C-C, 0-C for pure

CO02 simulations for example). The range 0 < r rc is divided into

a sufficiently fine "grid" (typical simulations employ - 104 elements

per table). The site separation is then assigned an integer value, I,

according to

I = INT (M*R/RC) (9.6)
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where M is the number of elements into which the range 0 r r c is

divided, 6000 in the present work. Since M is such a high number, linear

interpolation is not necessary and the force and potential calculation

are therefore simply table look-ups.

To summarize, the N(N-1)n2/2 "scans" per integration step constitute

the rate-limiting step of the simulation, and have been optimized by

* logical nearest image search (i.e., with no algebraic operations)

(Figure 9.2)

* cube-sphere site-site test (Figure 9.4)

· potential and force tabulation

The influence of density upon the duration of a run follows directly

from the above considerations, once it is realized that, for a given

cutoff radius, the number of sites within a sphere of radius rc scales

as the fluid density. The higher the density, then, the higher the propo-

rtion of sites for which computations have to be made, or, in other words,

the lower the proportion of cube-sphere time saving rejections.

9.3 START-UP; RESCALING; RELAXATION RUNS

There are two different start-up modes: strict start-up and continu-

ation. In strict start-up, the centers of mass of the molecules are

placed in a face-centered cubic lattice, and random orientations and

velocity components are assigned to them (see subroutines PUT, TURN,

START, in Appendix 4). The magnitude of both angular and linear velocities

are the equipartition values, i.e.,

v = (3kT/m) 1 /2 (9.7)
start-up

w = (2kT/I)1/2 (9.8)start-up

where Equation (9.8) corresponds to the case of a linear molecule. For

the general case,

1/2
[w = kT/I.) C i = 1,2,3 ) (9.9)

start-up i 1



where i denotes one of the principal directions. The continuation mode

is used most of the time (i.e., for all of the actual simulations and

most of the "relaxation" runs). Here, the initial configuration (cartesian

and angular coordinates) and velocities (translational and rotational)

are read from a file, generated at the end of the previous run, where

this information is stored.

"Relaxation" runs are shorter (typically 500 to 800 steps) than the

actual simulations. During a "relaxation" run, the system is allowed

to reach an equilibrium state either from a highly ordered condition

(strict start-up), or from the final state of a previous run at different

conditions (continuation).

Whereas the density in any given simulation is fixed by defining

a length scale (/simulation length units) and the number of molecules

in the cube, the temperature fluctuates, since it is given by the kinetic

energy

<KE(t)> = 3NkT (9.10)
2

<KE(r)> = [2(N-1) + 3] kT (9.11)
2

2 < KE(r) + KE(t) >
<kT> - (9.12)

(5N+1)

where (N-1) linear solvent molecules and 1 non-linear solute molecule

have been assumed, and KE(r) and KE(t) denote, respectively, rotational

and translational kinetic energy. Since there is no reason why T will

coincide with the desired value, velocities (both linear and angular)

are repeatedly rescaled during a relaxation run, so as to force the system's

configuration to equilibrate at the desired temperature.

The rescaling frequency is set at the beginning of the run with ten

steps between rescalings a typical value. Rescaling factors are calculated

as follows: let T* be the desired temperature; then, the instantaneous

total kinetic energies will, in general, be different from their equipartition
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values

2(KE(t)) = 1 (9.13
3NkT = 1 (913)

2(KE(r)) + (9.14)
3NkT 3 3N

Since kinetic energies are quadratic in velocites, each linear velocity
-1/2

component is rescaled by a factor a , and each angular velocity component

is rescaled by a factor 1/2

1/2
vi(n+l) = vi(n) (a) i =1, ..., (9.15)

1/2
wj(n+l) = wj(n) (1) j = [1, ..., 2(N-1) + 3] (9.16)

9.4 INTERATOMIC POTENTIALS

The assumed form of the interatomic (or intermolecular) potential

is an input to any molecular dynamics simulation.

Most of the early work involved the idealization of molecules as

point centers of force interacting via pairwise additive, spherically

symmetric potentials, such as the square-well (Alder and Wainwright,

1959), hard sphere (Wainwright and Alder, 1958), or Lennard-Jones (Rahman,

1964) models. Three-body interactions were first taken into account

(Haile, 1978) via a triple dipole Axilrod-Teller potential.

Two different approaches regarding intermolecular potential parameters

were followed in these studies. In the first approach, no attempt was

made to simulate the behavior of any particular fluid; rather, the abstract

Lennard-Jones or hard sphere fluids, for example, were considered as

models, and their properties investigated (Verlet, 1968; Alder and

Wainwright, 1962; Alder et al.,1974). These early idealizations, however,

were also applied to the study of specific atomic fluids (Rahman, 1964)

due to the inherent plausibility of the spherically symmetric, one-center
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assumption for this particular case.

The simulation of rigid polyatomic molecules (i.e., point centers

of force with no internal degrees of freedom), requires the specification

of appropriate interatomic potentials. In addition, choosing the shape

of the polyatomic implies abandoning the abstract approach whereby an

idealized fluid (i.e., Lennard-Jones, for example), is simulated in favor

of a more concrete and realistic description of a given particular fluid.

What is gained in detail and predictive power is lost in generality.

Although the specificity of the problem imposes severe restrictions upon

the choice of interatomic potential parameters, fundamental knowledge

is, in this case, even more limited than for intermolecular potential

parameter estimation. Table 9.1 lists some of the approaches that have

been used to select appropriate potential parameters.

We may summarize the situation by saying that molecules without signifi-

cant electrostatic effects are usually modelled as multi-centered polyatomics

with sites interacting via pairwise additive Lennard-Jones-type potentials;

parameter selection is far from standardized, with fitting techniques

still widely used. The lack of fundamental significance for the site-

site parameter values is clearly shown from the fact that F-F (Singer,

et al., 1977) and C-C (Murad and Gubbins, 1978) parameters had to be

significantly altered (Nose and Klein, 1983) to fit the volumetric properties

of CF,.

Electrostatic effects are even more problematic. Here, the choice

is between a more fundamental description involving localized point monop-

oles, or the use of multipole expansions. The first of these approaches

(Rossky and Karplus, 1979) will be discussed below; apart from stability

considerations, long-range Coulombic forces are not,'inherently appropriate

for use with periodic boundary conditions. The use of multipoles, on

the other hand (Murthy, et al., 1981) is a contradiction in terms, since

it assigns certain features to the potential on an a-priori basis, the

simulation of which is the very essence of the molecular dynamics approach.

In this work, site-site Lennard-Jones potentials were used, although

the introduction of coulombic interactions, as will be discussed below,
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was also studied. Since the use of periodic boundary conditions is incom-

patible with infinite range potentials,. truncation is necessary. In

a simulation where all forces are conservative i.e., where

f = au (9.17)

with f any force and U an appropriate potential, energy is inherently

conserved except for numerical inaccuracies. Therefore, truncation

must always be done with this constraint in mind (unless the cutoff radius

is increased to a point where this effect is negligible, with the consequent

sharp increase in computation time). The shifted force potential (Street

et al., 1978), shown schematically in Figure 9.5 and used in this work,

is defined as follows

F =_dU + dU r r (9.18)
m dr dr 

c

F =0 r > rc (9.19)

rm c
Um --JFm(r) dr (9.20)

where, for the Lennard-Jones case,

= 4[ )12 6 ] (9.21)

F =24 2 - (2 (9.22)

and therefore,
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r [r
m rc rc r r ] rc o c 

(9.23)

(9.24)F=m21 a 2((r) 1 (C) 3] r rc r r c I

Fm and Um, both through the definition (Equations (9.18) and (9.20))

and through the explicit expressions (Equations (9.22) and (9.24)) satisfy

the energy conservation condition, i.e. Equation (9.17).

The Lennard-Jones force has a minimum of

1 /6

a 7
= 1.244455

I Fmi n I = 2.396429 /a (9.26)

so that a percent normalized force error can be defined

iF F1
100 IFinI = 1001.49 ( (a ) - 2 ( )13

1 Fmini - r r c c
(9.27)

Similarly, we define a percent normalized potential error,

100 = 400 (a ) _ (a ) + 6( r _ ) )- 2 ) (9.28)
c c c c c 

The error in the shifted force is independent of r, in ageement

ith Equation (9.18), and is only a function of a/rc. The error in the
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SHIFTED FORCE POTENTIAL (Streett et al., 1978)
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FIGURE 9.5 : The shifted force potential
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potential, on the other hand, depends on r/rc as well as on a/rc.

The true and shifted Lennard-Jones potentials are shown in Figure

9.6, for r/a = 2.4, and Equation (9.28) is plotted in Figure 9.7 as

a function of r/a, for 2.3 < r/a < 3.05, covering the range used in

the simulations. Equation (9.27) is shown in Figure 9.8.

As can be seen, very small errors result from using shifted potentials

for roia 2.4, and no discontinuities are introduced that would violate

Equation (9.17). Truncation does, however, give rise to computed compressi-

bilities which are slightly higher than would result from an infinite

potential, since a weak attractive background has been artificially removed.

If the radial distribution function can be taken as 1 for r > rc, then,

for spherical molecules, the attractive tail can be easily introduced

by adding analytical correction to Equation (8.72), namely

long-range compressibility 4 . N r n ( a) dr (9.29)
correction or spherical 2(1<KE(t)>) ar
molecules r

c

where n is a number density, and U is the intermolecular potential.

An angular-average potential should be used in the above expression for

non-spherical molecules.

- U/kTd
fe d4

Given the largely empirical way in which interatomic potential parameters

have been selected in the past (see Table 9.1), it was one of the objectives

of the present work to use a theoretical approach rather than to fit

parameters to fluid properties. The Slater-Kirkwood equation (Pitzer,

1959; Equation (9.32)) allows the calculation of site-site parameters
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for the general Lennard-Jones interaction between sites i and ; an

additional condition (Equation (9.33')) imposes the minimization of Uij

at a distance equal to the sum of the van der Waals radii

a C

~~~~U iS 1_3.i~~~~~~~~~~~(9.31)
ij 12 6

r r

as follows,

365 a. a.

ij 1/2 1/2 (9.32)(a) + ()

C..
aij 1J (rio + rj ) (9.33)ij 2 io 3,0

where a is the polarizability in ]P, ro is the van der Waals radius,

in , and N is the outer shell effective number of electrons. From Equations

(9.21) and (9.31) we obtain

1/6
a..

id (C ) (9.34)

C2.

Eit 4ai (9.35)ij 4 a..ij

The Slater-Kirkwood approach has been widely used in the molecular modeling

of polymeric materials (Suter, 1979).

From Equation (9.31) it is obvious that the method assumes, at the

outset, a form for U... This represents a problem for molecules where
13electrostatic effects are important since there is no theoretical way

electrostatic effects are important, since there is no theoretical way
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of decoupling these effects to yield rigorous, a-priori electrostatic

and van der Waals-type site-site parameters. For example, knowing the

experimental quadrupole moment of CO2 does not mean that one can model

this molecule by superimposing the corresponding point monopoles to a

Lennard-Jones type potential with Slater-Kirkwood parameters, since the

latter already incorporate electrostatic effects through the polarizability,

albeit in an oversimplified way. This, of course, means that the explicit

inclusion of electrostatic forces with experimentally measured parameters

cannot, at present, be done without simultaneously fitting the Lennard-
Jones parameters so that the overall fluid behavior reproduces some arbi-

trarily selected property (generally pressure). For C02 -benzene simulations,

the site parameters for use in Equations (9.32) and (9.33) are listed

in Table 9.2, and the calculated Lennard-Jones parameters are listed

in Table 9.3. The length parameters a were reduced by .15 in the simu-

lations. The effects of this change are treated in Chapter 10, where

the actual results are presented and discussed.

The simulation of CO2 is not a simple problem. Apart from its linearity,

which requires the implementation of a different kinematic description

than for the generic rigid polyatomic, this molecule has a significant

quadrupole moment (Murthy et al. 1981). In the present work, it was

attempted to take this into account by introducing appropriate point
monopoles, located at the Lennard-Jones sites. Severe numerical problems

originated as a consequence of this, and they are discussed in Chapter

10. Here, the general aspects of long-range interactions and their molecular

dynamics implementation will be treated, with CO2 as the specific example.

The measured quadrupole movment of CO2 (Buckingham and Disch, 1963)

is -1.43448 x 10- 3 9 Cm 2; this represents a considerable electrostatic

effect that should be taken into consideration (as a comparison, the

corresponding value for N2 is -4.67 x 10 Cm 2 , or 307% smaller). For

a C-O site separation = 1.23 A, the quadrupole moment corresponds to

partial charges (in electronic charge units)

ZC = + .5912

(9.36)
Z = - .2956
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It is not a-priori necessary to locate these charges exactly at the

Lennard-Jones sites. However, not doing so requires the introduction

of an arbitrary "switching function" (Stillinger an Rahman, 1974) that

modulates the electrostatic forces in such a way that opposite charges

do not collapse on each other.

The electrostatic contribution to the intermolecular potential energy

for a three-site molecule such as C02, is given by

2 3 3 Z Z

· ,,,1- E' (9.37)
0 i=1 j=1 ij

where e is the electronic charge, and Co, the permittivity of free space.

e = 1.603592 x 10 19 Coul (9.38)

C = 8.854 x 10- 12 J-1 Coul 2 m-1 (9.39)

To study the relative importance of Coulombic interactions, we concen-

trate on two CO2 molecules, whose relative positions are defined in Figure

9.9.

Figures 9.10 to 9.12 show the total, Coulombic and Lennard-Jones

energy, as a function of the carbon-carbon separation for different relative

orientations. The energy has been normalized with kT, with T = 300 K.

The absolute value of the total, Coulombic and Lennard-Jones forces are

shown in figures 9.13 to 9.15, as a function of carbon-carbon separation,

for the same relative orientations. Force has been normalized with kT/1,

with = 1.23 , and T = 300 K. The normalized Coulombic and Lennard-

Jones components are shown in Figures 9.16 to 9.21, for the same relative

orientations. The force components represent forces exerted by J on

I, and are referred to the (x,y,z) coordinate set (Figure 9.9). Potential

parameters used correspond to Equation (9.36) and Table 9.3.
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As explained above, van der Waals and electrostatic potentials cannot

be superimposed without altering the parameters; however, the conclusions

that follow from Figures 9.10 to 9.21 will be used in a qualitative sense

and are valid for any realistic set of parameters.

The most important conclusion to be drawn from Figures 9.10 to 9.21

is the virtual vanishing of pairwise interactions for r > 9 (this is

a conservative figure; as can be seen from the Figures, interactions

are very weak already at r - 7.5 ). This fact is independent of orienta-

tion. Effective fields and forces around any given molecule would vanish

even more rapidly in the presence of more than one molecule, but it s

remarkable that this feature is already clearly displayed for the elementary

binary interaction.

It follows immediately that, because of this cancellation, the effective

electrostatic potential between two multi-site polyatomics is short-ranged

and can be modelled with periodic boundary conditions. This is done

by defining a shifted site-site coulombic potential,

e Z.Z.
U = 1 j( 1 1) r r

(9.40)

U =0 r > r
m c

and the corresponding force,

e2Z.Z.
F = 1 1_ r

m 4we0
2 c

(9.41)

F -0 r> r
m c

this potential gives the correct force for r < rc, and satisfies Equation

(9.17). An unshifted Coulombic potential truncated at rc, on the other

hand, gives rise to an infinite (impulsive) force which is totally unphysical

and which, if overlooked, can lead to severe errors in energy conservation.

A shifted force potential can also be defined; as with van der Waals
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forces, such a potential would satisfy Equation (9.17) and hence energy

conservation. In the present work, Equations (9.40) and (9.41) were

used. The results of the inclusion of electrostatic forces are discussed

in Chapter 10.

Another interesting feature that emerges from Figures 9.10 to 9.21

is the qualitatively different behavior of electrostatic and van der

Waals interactions with respect to molecular orientation. For any given

value of Y and 6, changes in a and/or give rise to important changes

in the electrostatic part of the interaction, whereas the van der Waals

contribution is much less sensitive to orientation. This can be seen

for the energy (Figures 9.10 to 9.12) and for the cartesian components

of the force (Figures 9.16 to 9.18). This is a possible explanation

of the difficulties encountered in simulations where coulombic forces

were included.
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10: MOLECULAR DYNAMICS SIMULATIONS: RESULTS AND DISCUSSION

Unless specified otherwise, the results reported in this Chapter

correspond to simulations. of the motion of 108 molecules, representing

107 C02 and 1 benzene molecules, respectively Interatomic potential

parameters are listed in Table 9.3, and the molecular geometry is shown

in Figure 10.1.

10.1: VELOCITY DISTRIBUTIONS

Velocity distributions for the 107 solvent molecules were calculated

by counting the number of molecules within a certain velocity interval

at different instants ("snapshots"), and averaging over the number of

"snapshots". The velocity range considered was O(<v*<3, where v* is expressed

in units of root mean square velocity (v )
rms

1/2
v = v ") (10.1)

3kT

and T* is the run's nominal temperature, i.e., that temperature towards

which velocities were rescaled during the relaxation run.

The velocity range was divided into 20 intervals. Molecules with

a velocity falling anywhere within a given interval were assigned a nominal

velocity equal to the mid-point velocity. This implies an uncertainty

of 7.5% in v units.

In this way, the incremental number of molecules per unit velocity

interval (AN/Av) can be plotted against molecular velocity, and this

can be compared to the Maxwell-Boltzmann expression (Equation (8.58)).

The results are shown in Figures 10.2 to 10.7. In each case, the

actual number of solvent molecules (107) was used in the Maxwell-Boltzmann

expression (Equation (8.58)); this normalizes all curves in such a way

that the total area equals 107. The number of "snapshots" is indicated

in each case, as well as the run's average translational temperature,

i.e.,

< T(tr) > = 2 < KE(tr) >/3Nk (10.2)
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where N = 107, tr denotes translation, and KE, kinetic energy. The abscissae

corresponding to interval midpoints were dimensionalized with the nominal

root mean square velocity (i.e., velocity corresponding to the run's

nominal temperature), since this was the actual velocity scale used during

the simulation. For the Maxwell-Boltzmann curve, on the other hand,

the run average translational root mean square velocity was used. The

curves represent, then, the theoretical and "experimental" velocity frequency

distributions corresponding to a temperature <T(tr)>.

The agreement with theory is very good in all cases. As an example,

in Figure 10.2, the run's nominal temperature was 328.2 K, which, for

CO2, corresponds to a root mean square velocity of 431.34 ms ; the velocity

intervals for this figure, therefore, have a width of (3/20) vrms, or

64.70 ms . The maximum difference between the Maxwell-Boltzmann and

the computed frequency distribution (in dN/dv units) is - 0.024, which

corresponds to 1.5 molecules (i.e., (AN/Av) Av), or 1.4% of the total

number of molecules.

Non-zero computed dN/dv values span a velocity range which can vary

from 32.5 < v < 1068 ms- 1 (Figure 10.2) to 32.5 < v < 1262 ms- 1 (Figure

10.6). In any given simulation, therefore, molecular velocities vary

by factors of up to 30 or 40.

In the present case, with an integration step of 10 5 sec, a velocity
-1 -4 0

of 32.5 ms corresponds to 3.25 x 10 A/step, which represents 4.4
correspo5 s to 3.25 x 10

x 10-5 of the cutoff radius (7.4 A), or 26.8% of a potential tabulation
-1

length unit. For a velocity of 1262 ms , on the other hand, the cor-
-2 o -3

responding values are 1.26 x 10 A/step, 1.7 x 10 , and 1040%, or 10.4

potential tabulation length units, repectively. Numerically, then, it

can be seen that integration accuracy (i.e., energy conservation) is

favoured by the statistical irrelevance of high energy molecules.

10.2: RADIAL DISTRIBUTION FUNCTIONS

Given a particle i (molecule) located at a certain point in space,

the number of particles located within a spherical shell of mean radius

r and width 6r about i is given by

284



6N 47rr26r
N-1 V g(r) (10.3)

where N is the total number of molecules in a volume V, and g(r) is the

radial distribution function (McQuarrie, 1976), the most important features

of which will now be summarized.

In a structureless fluid, such as an ideal gas, g(r) is unity throughout

since the particles exert no influence upon each other, and hence the

number of particles within any given volume about particle i is independent

of i's presence, and is simply proportional to the volume considered.

Molecules interacting via van der Waals forces, on the other hand,

repel each other strongly at short distances and attract each other at

long distances. This leads to the establishment of local order in dense

fluids (Widom, 1967; Chandler et al., 1983), whereby each molecule is,

statistically speaking, surrounded by a "nearest neighbour shell" (or

g(r) > 1, mathematically). Moreover, g(r) decays abruptly to zero as

r 0 due to the steeply repulsive part of the intermolecular potential,

and becomes unity at large distances, since the influence of the central

molecule (i) is then negligible. Secondary peaks where g(r), though

greater than 1, is smaller than at the nearest neighbour peak, arise

at high densities as a consequence of close packing. These qualitative

features are shown schematically in Figure 10.8. The usefulness of a

function like g(r) is two fold. In the first place, for a given temperature

and intermolecular potential, knowledge of g(r) implies knowledge of

the compressibility (Hirschfelder et al., 1964), since this quantity,

as discussed in Chapter 8 in connection with the virial theorem (Equation

8.72), is a function of the average relative positions and forces between

all possible molecular pairs, and of the temperature; g(r), on the other

hand, is simply the mathematical expression of the distribution of inter-

molecular separations. In addition to this quantitative aspect (which

will not be used here) g(r) provides a very graphical description of

structure and local order in the fluid.

Finally, it must be emphasized that g(r) is a statistical concept.

Order in a fluid cannot be directly observed: it is always inferred

by statistical arguments.
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In the simulations, the radial distribution function of the C02 carbon

centers was computed by dividing the maximum possible intermolecular

distance (i.e., half the side of the cube where the simulation takes

place) into twenty equal intervals. Several "snapshots" of the system

were taken, and the positions of all the C02 centers were recorded.

For every "snapshot", all possible pairs were scanned, and the respective

separations classified into one of the twenty distance intervals. Averaging

over all molecules and all "snapshots", the radial distribution was obtained,

<g (r)> = <AN(r)> V (10.4)
4irr2 Ar N-i

where < > denotes averaging over all molecules and "snapshots", r is

the mid-point of the distance interval, and Ar is (1/40)th of the cube's

side.

Roughly 55 "snapshots" per simulation were taken, which, coupled

with the number of solvent molecules considered (107), implies that each

calculated <g(r)> curve is the average of nearly 6000 "measurements".

The details of the computational procedure used to calculate radial distri-

bution functions with periodic boundary conditions can be found in Appendix

5 (computer program NEUTRAL-2).

The nature of the solute-solvent interaction and its temperature

and density dependence are ideally suited to a distribution function

approach. In this case, one would compute the radial and angular distribution

of C02 centers about the solute molecule's center. However, a smooth

curve cannot be generated from a single solute particle, since the averaging

can only be done over the "snapshots". These can only be increased by

a limited amount (certainly not 100-fold) without making either the duration

of a simulation or the computer memory requirements unacceptable. Increasing

the number of solute molecules, on the other hand, is an even more impractical

approach, since the number of solvent molecules must then be dramatically

increased if the simulation is to be done at infinite dilution conditions.

The important conclusion, therefore, is that the study of the equilibrium

aspects of solute-solvent interactions at infinite dilution requires

computer speed and memory well beyond those used in the present work.
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The effect of density upon the radial distribution function is shown

in Figure 10.9. The higher density (10.53 mol/lt) curve was obtained

from 58 "snapshots"', whereas the lower (7.42 mol/lt) density curve is

the average of 53 "snapshots". The run average temperatures were, respec-

tively, 314.9 K and 316.5 K. Although the densities are moderate, and

the fluid structure is limited almost exclusively to the nearest neighbour

peak in both cases, it can be seen that a mild secondary peak exists

at 10.53 mol/lt, whereas no structure beyond the nearest neighbour peak

exists at 7.42 mol/lt.

As explained above, the interval width corresponds to (1/40)th of

the cell size; since separations are assigned a nominal value equal to

the interval's mid-point, this implies an uncertainty of (1/80)th of

the cell size. For the densities considered in Figure 10.9, the cell

size and the corresponding uncertainties are 25.73 A and 0.32 A (10.53
-3 0 0 0

mol/lt; 6.34 x 10 - 3 molec/A 3 ), and 28.91 A and 0.36 A (7.42 mol/lt;

4.4xl10- 3 molec/A 3).

The effect of temperature at constant density is shown in Figure

10.10, corresponding to simulations at 13.87 mol/lt (8.35 x 10- 3 molec/A3),

with average run temperatures of 304.2 K and 329.8 K, respectively.

The high temperature curve was obtained from 56 "snapshots"; the low

temperature curve, from 53. The cell size corresponding to this density
0 0

is 23.47 A, and the length uncertainty is therefore 0.29 A. As was the

case with Figure 10.9, we see a mild secondary peak gradually disappearing,

this time due to temperature.

The densities considered in these simulations are moderate. As will

be explained below in connection with the calculation of diffusion coeffi-

cients, statistical problems arise at high densities, and this constitutes

one of the most severe limitations of the one-molecule approach to the

calculation of transport properties.

For the densities considered, therefore, we conclude that structure

in the fluid phase is primarily limited to a nearest neighbour shell

whose density is between 35% and 45% higher than the bulk density. The

average radius of this nearest neighbour shell is roughly 4 A . A mild

outer shell (density between 3% and 7% higher than the bulk density)

can be detected, under appropriate conditions; the radius of this outer

shell is roughly 7.5 A.
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10.3: DIFFUSION COEFFICIENTS

Diffusion coefficients were calculated by a method based on Einstein's

statistical treatment of diffusion (Section 8.4). Specifically (see

Equation (8.41)) the theory predicts that, for times greater than a character-

istic relaxation time, the mean squared displacement of an ensemble of

particles with respect to an arbitrary initial configuration increases

linearly with time, the proportionality constant being 6D (or, more generally,

2dD, where d is the dimensionality of space where the diffusion under

study takes place, and D is the particles' diffusion coefficient).

In the present case, with only one solute particle as the sample,

the equivalence between time and ensemble averaging was invoked to generate

an ensemble as explained in Figure 10.11 where is a generic property.

In a simulation, M diffusion "experiments" with n time steps each were

conducted. The position of the single solute particle at the beginning

of each experiment was recorded, and squared displacements at corresponding

time intervals were averaged over the M "experiments", to yield the generic

expression for the i (i = 0, 1, ..., n) mean squared displacement,

shown in Figure 10.11.

The equivalence between time and ensemble averaging is strictly applicable

only if each of the M experiments is statistically independent from the

rest, which, physically, requires that the experiments be non-overlapping.

This was not possible in the present case since the simulations would

have become too long. The reason behind this limitation lies in the

duration of a single experiment, which, as will be seen from the results

below, must be of the order of 1.5 x 10 3 integration steps (with a time

step of 10 5sec) in order to guarantee that the computed mean squared

displacement versus time relationship covers a time span at least three

times greater than the relaxation time.

Given the way in which the ensemble was generated, whenever the solute

particle underwent an interaction which caused an unusual change in its

configuration (position, velocity) or, in other words, a "violent collision",

this event was "felt" throughout the M experiments, and deviations from

linearity in the <r 2 > vs. time curve occured. This, of course, would
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not have happened with an ensemble consisting of truly independent experi-

ments. Since such events become more frequent the higher the density,

deviations from linearity occured in a considerable proportion (- 50%)

of high density simulations. -This is the reason behind the relatively

moderate densities that were used in the present work.

We conclude that the generation of a time ensemble composed of strictly

independent "experiments" from the dynamic simulation of the motion of

one rigid polyatomic solute molecule and as few as 107 rigid polyatomic

solvent molecules is already a problem which requires at least an order

of magnitude increase in computer speed with respect to the machine used

in the present simulations. This can be seen by comparing the length

of a simulation with 21 overlapping experiments of 1600 steps each (-

28 CPU hours for 3200 integration steps, at 31 seconds per step) with

the corresponding requirements for 21 successive experiments of the same

length (- 289 CPU hours for 33600 integration steps, at the same speed).

The above computer speed figure (31 seconds per step) is indicative;

as explained in Chapter 9, this number is a function of the simulated

density.

As discussed above in connection with the calculation of radial distri-

bution functions, the alternative approach is to generate an ensemble

by considering more than one solute molecule, with the corresponding

increase in solvent molecules. Hoheisel (1983) studied binary diffusion

of benzene in dense CO2 using this approach, by considering 62 benzene

and 1310 CO2 molecules, modelled, respectively, as a one center Lennard-

Jones and a one-center Lennard-Jones plus point dipole. Even with these

highly simplified potentials, the simulations required the use of a Cyber

205 computer.

In the present work, 21 "experiments" were conducted in each simulation,

with eighty time steps between successive "experiments", each of which
-12

lasted roughly 1600 time steps (i.e., 1.6 x 10 sec, with an integration

step of 10- 15 seconds). The duration of the "experiments" was varied
-12

in different simulations between a maximum of 1920 (1.92 x 10 sec)
-12

and a minimum of 1440 (1.44 x 10 sec) steps.

Squared displacements with respect to the initial positions were

recorded every fourty time steps. Although the use of periodic boundary
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conditions (see Chapter 9) implies a sudden shift in the coordinates

of a particle whenever it leaves the cube where the simulations occurs,

this was done, for the solute particle, only for force and torque calcu-

lations. For the calculation of diffusion coefficients, on the other

hand, the true coordinates were recorded (i.e., the solute molecule was

allowed to have coordinates greater than one and/or smaller than zero).

This implies two separate book-keeping procedures for the single solute

molecule (see Appendix 5, computer program LINALB).

The temperature dependence of binary diffusion coefficients in super-

critical fluids, as was discussed in Chapter 6 in connection with the

experimental results, cannot be described by a simple power law relationship,

such as the T dependence at constant density predicted by hard sphere

theory. Diffusion coefficients exhibit an activated behaviour, which

has been observed both experimentally (Feist and Schneider, 1982) and

through computer simulations (Hoheisel, 1983).

Figure 10.12 is a plot of the mean squared displacement versus time

for two different simulations at the same density (10.53 mol/lt, 6.34

x 10- 3 molecules/A3) but different temperatures. The temperatures shown

in the figure are run average translational temperatures.

Four diffusion coefficients corresponding to simulations at the same

density (10.53 mol/lt) are shown in Table 10.1, and are plotted in Figure

10.13 in Arrhenius fashion; the least-squares regressed activation energy

is 14.8 KJ mole . This number is to be compared with the 5.1 KJ mole

figure obtained by Hoheisel (1983) at 13.64 mol/lt in his molecular dynamics
-1 - -1

calculations, and with the 10.9 KJ mole and 10 KJ mole (at 9.55 mol/lt

and 14.45 mol/lt, respectively) calculated from the experimental measurements

of Swaid and Schneider (1979), in all cases for the CO2 - benzene system.

The calculated activation energy is therefore 35.7% higher than the experi-

mental value at a similar density.

The activation energy obtained from the Arrhenius plot should be

interpreted with caution, since temperature is not a variable that can

be directly controlled in a simulation. Instead, while volume and (ideally)

energy are held constant, pressure and temperature fluctuate during the

course of a simulation. In addition, the very concept of temperature

is a statistical one, implying a distribution of velocities (see Section
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10.1), whereas there is but one solute molecule in the presently considered

simulations.

If, however, we accept the activation energies calculated from Swaid

and Schneider's experiments (although more than two temperatures were

considered in that work, constant density data were taken at two different

densities and just two temperatures in each case), we must then conclude

that the presently chosen method of ensemble generation not only predicts

the right trends, but also gives reasonable estimates of actual physical

properties.

The calculated standard deviations in the run average translational

temperature and in the run average translational (plus rotational) temperature

are given in Table 10.1. These numbers were obtained from more than

three hundred values, corresponding to an update of key run indicators

(temperature, energy, compressibility, etc.) performed by the program

every ten steps. Even though the relative standard deviations are small,

they represent non-negligible numbers when converted to degrees. This

aspect of the simulations is independent of energy conservation, accuracy

and stability considerations, and is due to the fact that fluctuations

of macroscopic properties scale inversely as the square root of the ensemble

size (Landau and Lifshitz, 1980). Since the duration of a simulation

is a quadratic function of sample size, we must have

<A >/L<> |= (~ N) = - -1/4 (10.5)
L /<O>J2 N2 t

where is a generic property, N, the number of molecules in the simulation,

and t, the run's duration (in CPU units). The first equality follows

from statistical mechanics, the second, from pairwise additivity. From

Equation (10.5) we conclude that reducing a given relative fluctuation

by a factor of two requires increasing the ensemble size by a factor

of four, and leads to a sixteen-fold increase in computer time (given

an event of fixed duration to be simulated).

The isothermal density dependence of the measured diffusion coefficients

is shown in Figure 10.14, for simulations at 310.3K, 7.42 mol/lt (4.47

x 10- 3 molec/3) and 309.3K, 10.53 mol/lt (6.34 x 10- 3 molec/A3 ). The

corresponding diffusion coefficients are shown in Table 10.2. If the
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Table 10.1: DIFFUSION COEFFICIENTS CORRESPONDING

<AT>/<T>(**)

(-)

.0554

.0368

.0476

.0372

<AT>/<T> (***)

(-)

.0257

.0171

.01 72

.0227

D

(cm2/s)

1.396 x 10 4

1.608 x 104

1.850 x 10

2.430 x 10-4

(*) run average translational temperature

(**) relative standard deviation (translational temperature)

(***) relative standard deviation (translational & rotational temperature)

Table 10.2: DIFFUSION COEFFICIENTS CORRESPONDING TO FIGURE 10.14

P

(mol/lt)
7.42

10.53

D

(cm2/s)

1.649 x 10-4

1.396 x 10

298

<T>(*)

(K)

309.3

318.6

321.4

342.3

TO FIGURE 10-13
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NM:

V

5.0

0.0
0.0 0.5 1.0 1.5

Time ( 10- 12 Sec)

FIGURE 10.14: Density dependence of the mean squared displacement versus

time relationship. <T(tr)> - 309.3 K, p - 10.53 mol/lt;

<T(tr)> 310.3K, p - 7.42 mol/lt
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linear part of the mean squared displacement versus time relationship

is projected to zero displacement, we obtain an abscissa intercept which

can be used as an estimate of the relaxation time. Although hydrodynamic

arguments (see Chapter 6) can be used only in a qualitative way, due

to the moderate densities (viscosities) involved, they are extremely

useful in the present context. The relaxation time for a Brownian particle

(Equation (8.48)) is given by

A = 6wn (10.6)

where m and a are, respectively, the mass and radius of the Brownian

particle, and n is the viscosity of the continuum fluid.

Since the viscosity of a dense fluid increases with density at constant

temperature, the trends shown in Figure 10.14 are consistent with Equation

(10.6). The relaxation times are, respectively, respectively, 4.51 x 103 sec at

10.53 mol/lt, and 8.78 x 10- 13 mol/lt at 7.42 mol/lt. At 310K, the corre-

sponding CO2 pressures, calculated from the Peng-Robinson equation of

state, are 85.6 (10.53 mol/lt) and 80 bar (7.42 mol/lt). From Figure

3.5, it can be seen that large changes in viscosity occur precisely in

this region. The detailed discussion of Chapter 6 shows that these arguments

cannot be pursued further in a quantitative way, i.e., since the behaviour

is not truly hydrodynamic, changes in relaxation times cannot be calculated,

but only explained in terms of viscosity changes. However, as was the

case with the interpretation of the experimental results, hydrodynamic

arguments provide an extremely useful framework for data analysis and

interpretation even when Stokes-Einstein-based expressions constitute

a high viscosity limit rather than a quantitative description of molecular

behaviour.

The sharp increase in relaxation times at lower densities introduces

another practical limitation. As explained above, the interval between

successive experiments is 8 x 10 1 4 sec (80 time steps), which represents

- 18% of the relaxation time at a density of 10.53 mol/lt, and - 10%

at the lower density. Thus, although each individual integration step

is faster at low densities (see Chapter 9), the statistical independence

of the individual "experiments" becomes progressively worse, and calls
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for a greater inter-experiment interval, with the consequent increase

in computer time for the same number of "experiments".

In addition, it can be seen from Figure 10.14 that, regardless of

statistical independence considerations, the long relaxation times at

low densities will give rise to results which can appear unphysical if

not adequately interpreted. In fact, the very interesting behaviour

illustrated in Figure 10.14 is a direct consequence of the principles

discussed in Chapter 8. At short times (Equation (8.47)), the mean squared

displacement is quadratic in time, and depends only on molecular mass

and temperature. Thus, for a given solute and temperature, Figure 10.14

simply shows how the longer relaxation time dominates the short time

behaviour of the low density experiment.

In spite of the limitations explained in detail in Chapter 6 regarding

the predictive use of hydrodynamic expressions in the supercritical region,

it is interesting to compare Equation (10.6) with the relaxation times

obtained in the present simulations by extrapolating the linear part

of the mean squared displacement versus time relationship down to zero

displacement. For these purposes, we use the following property values:

m = 1.295 x 10 2 5 kg (mass of benzene molecule)
o

a - 2.5 A (center of mass-to-hydrogen distance)

n - .05 cp (Figure 3.5, 310 K, 90 bar)

to obtain

AT - 5.5 x 10- 13 sec

in excellent qualitative agreement with the results obtained in the simu-

lations.

A very interesting theoretical question is raised by the fact that,

although in the simulations the mean squared displacement exhibits a

linear behaviour at long times, the relationship nDT1 = f [size] (see

Chapter 6) is only an asymptotic law approached at high viscosities.

This apparent paradox can be explained by noting that the long time relation-

ship between <r2> and time can be derived (see Chapter 8) without postulating

any explicit form for the hydrodynamic drag. Alternatively (Chandrasekhaar,

1943, see also Chapter 8), starting from the Langevin equation, the limits

<r2> - t2 (t 0) and <r2> - t (t + ) can again be obtained without

postulating any form for the drag coefficient, , although the drag term
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itself is, in this approach, proportional to the particle's velocity

(with an as yet undefined proportionality constant, 8).

We conclude, therefore, that, if is non-linear in n (i.e., 8 - n6

for example), the Stokes-Einstein equation (or, more precisely, its form,

i.e., DT = f [size]) would not describe physical reality; in spite

of this, though, the short and long time limits of <r2> would, of course,

still be parabolic and linear, respectively, and the fundamental relationship

between r2> and D at long times would still be valid.

The breakdown of hydrodynamic behaviour in supercritical fluids,

then, is associated with a "hydrodynamic" drag that can best be explained

in terms of a power law relationship between the drag coefficient and

viscosity.

Using the activation energy calculated from the log D vs. T 1 plot

(Figure 10.13), we can estimate a diffusion coefficient at 313.2 K and

10.53 mol/lt from the value obtained at 309.3K and the same density.

This number (1.5 x 10 cmn2 /s) is to be compared with the value obtained

by graphical interpolation of Swaid and Schneider's data at the same

temperature (2.05 cm2 /s).

The molecular dynamics prediction is 36.7% lower than the experimental

value. This is a remarkable result, given the facts that no adjustable

parameters were used in this work, and that the ensemble-generating technique

involved just one solute particle.

Linearity in the mean squared displacement versus time relationship

is, by itself, an indication of the correctness of the ensemble generating

procedure. However, since this is, essentially, a test-particle method

(Herman and Alder, 1972; Alder et al., 1974) the accuracy of the calculated

diffusion coefficients should be considered semiquantitative; ensemble

averaging over different runs would obviously make the predictions quanti-

tative; this, however, contradicts the spirit of test-particle studies.

Although, as shown above, the method reproduces the basic trends and

even gives good estimates for the actual properties, the test-particle

approach is not to be interpreted as a predictive substitute of large

ensemble methods, but as a convenient way of studying the basic physical

phenomena within the limits imposed by time sharing and an average mainframe

computer.
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10.4: SIMULATIONS WITH COULOMBIC INTERACTIONS

As mentioned in Chapter 9, the large quadrupole moment of CO2 (-1.43

x 10- 39 Cm2) implies that electrostatic forces should be taken into account

in any realistic simulation of this molecule. In this work, the approach

was to superimpose localized partial charges (point monopoles) upon the

van der Waals interactions, with the resulting potential centered upon

the same site (i.e., the van der Waals and electrostatic sites coincide).

Truncation was done as explained in Chapter 9, the plausibility of the

approach being based upon the effective short range behaviour of the

intermolecular interactions resulting from pairwise additive long-range

interatomic interactions.

This approach introduces, at the outset, problems in the determination

of site-site interaction parameters, due to the fact that the van der Walls

part of the elementary binary interaction contained length and energy

parameters (a, ) calculated from the Slater-Kirkwood formula (Suter,

1979) (Equation 9.32). This equation represents, essentially, a self-

consistent method of describing site-site interactions in terms of a

Lennard-Jones type potential. The fundamental fact about the Slater-

Kirkwood equation, however, is, that the electrostatic properties of the

site are already taken into account through the polarizability and the

effective number of outer shell electrons, which are used to calculate

a and . The redundancy of adding point monopoles is thus evident, at

least in principle.

In the case of CO2, however, the Lennard-Jones parameters calculated

from the Slater-Kirkwood formula do not reproduce experimental P-V-T

behaviour, at least in the supercritical region (this will be discussed

below in detail). One is then forced to try to correct this apparent

inability of a van der Waals potential to reproduce the thermodynamic

behaviour of a substance (C02 ) for which important coulombic effects

have been experimentally measured by introducing electrostatic contributions,

at the expense of internal consistency.

Two characteristics of electrostatic interactions were responsible

for the failure of the attempt to successfully incorporate coulombic

forces into the simulations. In the first place, as was discussed at
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length in Chapter 9, (see Figures 9.10 - 9.21) the effective coulombic

intermolecular force and potential obtained from the elementary pairwise

additive site potentials and forces are both strongly dependent upon

the relative orientation of the molecules, a feature which is, generally

speaking, absent in van der Waals interactions. In the second place,

at distances which correspond, approximately, to the nearest neighbour
o

peak (i.e., - 4 A), although the effective van der Waals potential and

force components are roughly an order of magnitude higher than the cor-

responding Coulombic interactions, this happens as a result of the cancel-

lation of elementary electrostatic site-site forces and energies which

are considerably greater, in absolute value, than the corresponding van

der Waals elementary interactions. This is illustrated in Figure 10.15

and Table 10.3 for a specific case. Figure 10.15 shows the particular

geometry, charge distribution and Lennard-Jones parameters considered;

the resulting elementary energies and forces (the latter exerted on the

1-2-3 molecule along the x-y directions) are shown in Table 10.3.

We therefore, conclude that electrostatic forces introduce stiffness

into the problem. Starting from the charge distribution implied by the

measured quadruple moment of CO,2 (-1.43 x 10- 39 Cm 2 (Murthy et al., 1981))

and the inter-site separations shown in Figure 10.1, we obtain partial

charges of -0.2956 and + 0.5912 on the oxygen and carbon sites, respectively

(in electronic charge units). This was originally superimposed upon

the Slater-Kirkwood Lennard-Jones potential (see Table 9.3).

Although automatic rescaling during relaxation runs was not implemented

until later into the project, these trial runs already showed the essential

"pathology" of electrostatic simulations: large fluctuations in temperature

and compressibility (the latter often preventing the attainment of a

long time limit). The temperature excursions were, in general, short

ranged (timewise), whereas the compressibility fluctuated over times

comparable to the simulation time. After relaxation runs totalling 5000

integration steps at a density of 16.15 mol/lt, the compressibility factor,

which, at the nominal temperature (310K) should have been .295, was apparently

stabilized at a value of approximately 1.2 for the last 1000 steps.

An extensive series of ad-hoc modifications of the van der Waals and

electrostatic parameters was then tested, with the purpose of reproducing
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VAN DER WAALS AND COULOMBIC INTERACTIONS FOR FIGURE 10.15

U(LJ) U(coul)

(10- 20) (10- 20)

fx(LJ) fx(coul) fy(LJ) fy(coul)

(10 2N) (10 2N) (10 N) (10-12N)

+42.179 -9.24
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Pair

1-4 -4.90x10 2 +5.05 +6.369 -126.3 0 0

1-5 -4.38x10- 2 -9.735 +5.009 +226.1 -1.54 -69.53
1-6 -2.03x10 2 +4.302 +2.101 -78.02 -1.292 +47.98

2-4 -4.38x10 -9.735 +5.009 +226.1 +1.54 +69.53

2-5 -5.46x10- 2 +20.2 +5.203 -505.0 0 0

2-6 -4.38x10 -9.735 +5.009 +226.1 -1.54 -69.53

3-4 -2.03x10 2 +4.302 +2.101 -78.02 +1.292 -47.98

3-5 -4.38x10 - 2 -9.735 +5.009 +226.1 +1.54 +69.53

3-6 -4.90x10 - 2 +5.05 +6.369 -126.3 0 0

-3.68x10 - 1 -3,6x10 0 0

-

Table 10 3:



the true compressibility factor. These modifications included

· increasing the energy parameters (c) by 20% to reduce the compressibility

factor

C reducing the length parameters (a) by - 5% to reduce the compressibility

factor

· modifying the quadrupole moment by changing both the charge distribution

and the site separation

* modifying all of the above parameters to reproduce the empirical

three site plus point quadrupole potential parameters proposed by

Murthy et al. (1981), where the point quadrupole is different from

the experimental one

The essentially empirical nature of this procedure makes a detailed

account of the effect of each of the above changes irrelevant for the

present purposes. The essential points, however, can be summarized as

follows:

· large electrostatic charges increased temperature fluctuations and

gave rise to pressure fluctuations over time scales comparable to

the duration of a relaxation run (- 103 time steps)

· no single combination of parameters was found that could reproduce

the compressibility. The best fit (and dynamic behaviour) were obtained

with an ad-hoc modification of the Murthy et. al. (1981) parameters;

the actual values are listed in Table 10.4. Since the compressibility

factor fit (see Section 10.5), though improved with respect to the

unmodified Slater-Kirkwood prediction, was still not satisfactory,

this empirical approach was abandoned.

The most interesting feature of C02 simulations with electrostatic

forces was the observation that, with the potential parameters listed

in Table 10.4, temperature excursions were not coupled with poor energy

conservation. In fact, the simulations which were carried out with the

potential parameters as per Table 10.4 exhibited good energy conservation

coupled with large temperature excursions (.928% standard deviation for
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Table 10.4: EMPIRICAL SITE PARAMETERS FOR CO2 SIMULATION

C-C energy parameter (K) 34.8

C-C length parameter (A) 2.646

0-0 energy parameter (K) 99.72

0-0 length parameter (A) 2.863

C-O energy parameter (K) 58.92

C-O length parameter (A) 2.755

C-O separation (A) 1.16

O charge (e) -.214

C charge (e) +.428
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the former, 470C (maximum) for the latter, and, in a second run, .91%

and 42°C, respectively). This seems to suggest that, although the algorithm

is robust enough to handle a potential with moderate Coulombic components,

the dynamics are sufficiently different as to require a much larger sample

size.

The interesting and important problem of simulating the dynamics

of CO2, taking into account the significant electrostatic forces without

resorting to purely empirical and time consuming fitting techniques,

therefore, remains unsolved.

10.5: COMPRESSIBILITY FACTORS

Compressibility factors are calculated through the virial theorem.

The expression was developed in Chapter 8 (Equation 8.72). As discussed

in chapter 9, the most common approach in molecular dynamics is to obtain

site or molecular parameters by fitting P-V-T behaviour. This approach

was not followed here, the purpose being to perform a simulation with

no adjustable parameters. This is especially justified in the case of

the determination of diffusion coefficients, for which (see Chapter 6)

the fundamental variables are density (and not pressure) and temperature.

Because of the significant coulombic contribution to the effective

intermolecular potential of C02, the use of the Slater-Kirkwood parameters

gives rise to compressibility factors which are considerably higher than

the true values.

Table 10.5 lists results corresponding to sixteen simulations; <T>

is the average translational and rotational temperature; P is the CO2

pressure corresponding to <T> and V, as read from a P-V-T diagram derived

from the International Thermodynamic Tables of the Fluid State (Angus

et al., 1976) (Schmitt, private communication); Z(MD) is the compressibility

factor as calculated from the simulation by averaging the instantaneous

values printed every ten iterations (this value coincides, to within

a fraction of one percent, with the long-time limit of the time average

value calculated by the program as the simulation proceeds); P(MD) is,

therefore, the pressure as calculated by the simulation; is the absolute

value of the percent error (i.e., p - 1 x1OO). Values in parenthesis
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in the temperature column indicate standard deviations expressed as percent

of <T>. Elec #1 and Elec #2 denote two simulations performed with the

parameters listed in Table 10.4. The last column, ATmax, is the maximum

temperature difference that occured during the simulation.

It should be noted that the last two runs correspond to the best

behaviour attained in the simulations with electrostatic charges. The

average ATmax for non-electrostatic simulations was 32.6 K, the corresponding

value for the best electrostatic simulations was 44.3 K. This confirms

the previous discussion on the temperature behaviour of simulations with

Coulombic forces. In addition, it must be noted that high values for

non-electrostatic runs coincide with low temperature simulations (Tc=304.2K),

whereas the electrostatic simulations were done at temperature levels

where ATmax is substantially lower for the purely van der Waals simulations.

From Table 10.5 it must be concluded that the use of Slater-Kirkwood

parameters is not satisfactory for the modelling of the thermodynamic

properties of CO2. The improvement obtained by introducing localized

electrostatic charges indicates that potential improvement efforts should

be oriented along these lines, but the problem of temperature (and pressure)

fluctuations remains a significant challenge.

10.6: SUMMARY

The test particle approach predicts diffusion coefficients to within

- 35% of experimental values, and, more importantly, reproduces the main

trends, without adjustable parameters. This allows the semiquantitative

study of infinite dilution diffusion processes without recourse to super-

computers.

Results can be obtained, in the test particle method, within a narrow

density range. At high densities, frequent deviations from linearity

in the mean squared displacement versus time relationship occur, probably

as a result of the insufficient statistical independence of the diffusion

"experiments" in the light of the increased frequency of strong interactions.

At low densities, the limitations result from the large relaxation times.

In the present work, diffusion exhibited Arrhenius behaviour; the

resulting activation energy is within - 35% of the value calculated from
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experiments at two different temperatures.

Velocity distributions are in excellent agreement with the theoretical

(Maxwell-Boltzmann) prediction. Radial distribution functions have been

generated for the carbon centers of the CO2 molecules. The trends exhibited

provide qualitative information on fluid structure and its density and

temperature variation. Quantitative information can only be obtained

from radial distributions by generating an ensemble of curves with an

extremely narrow distance grid, and averaging over these histograms to

eliminate the resulting noise.

The use of unmodified Slater-Kirkwood parameters is inappropriate

for the modelling of P-V-T properties of C0 2 ; coulombic interactions

must be taken into account, but this introduces stiffness which, even

in cases where energy conservation is acceptable (which could only be

attained by reducing the electrostatic forces), gives rise to large temper-

ature excursions.
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11 CONCLUSION

Supercritical fluids have exceptionally low kinematic viscosities.

As a consequence, the inevitable density gradients which characterize

mass transfer give rise, in the presence of a gravitational field, to

buoyancy-driven flows which, for a given Reynolds number, are more than

two orders of magnitude higher than in ordinary liquids (as measured

by the ratio of characteristic buoyant to inertial forces).

Whenever the controlling resistance to mass transfer lies in the

supercritical phase, significant buoyancy-driven mass transfer enhancements

result. This has been verified experimentally in the present work.

Future work should address this interesting aspect in a quantitative

way.

Hydrodynamic behaviour at the molecular level is approached as a

high viscosity (low fluidity) limit. Although constancy of nDT- 1 within

a given system can be assumed for data extrapolation provided n O.004cp,

the real need is for a fundamental theoretical understanding of the way

in which the hydrodynamic limit is approached.

The concept of an infinite dilution fugacity coefficient, as well

as a simple and accurate expression for the composition dependence of

the solute fugacity coefficient in a binary mixture, from infinite dilution

to saturation, have resulted from an analysis of diffusion in the light

of irrreversible thermodynamics. These preliminary ideas merit more

detailed consideration, and may have interesting thermodynamic implications.

A test-particle molecular dynamics study of binary diffusion in a

rigid polyatomic ensemble with solute and solvent having different symmetry

properties has been done. The results are encouraging, contain all the

basic physics, and yield semiquantitative predictions for binary diffusion

coefficients. The Einstein plots of mean squared displacement versus

time constitute a very convenient representation of the relaxation behaviour

and of the transition from a deterministic to a stochastic regime. The

basic kinetic and thermodynamic characteristics of an equilibrium system

(Maxwellian velocity distribution, pair distribution functions) can be

obtained with as little as 108 molecules, due to the use of periodic

boundary conditions.
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The ensemble generating technique allows the study of infinite dilution

interactions without recourse to supercomputers.

The rigorous (i.e., using a-priori site site potential parameters)

dynamic simulation of CO2 , taking into account the electrostatic properties

of this particular molecule represents a challenging problem. The orien-

tation-sensitivity of the coulombic interactions make the problem stiff,

and multiple time steps methods must be implemented.
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APPENDIX 1 CUBIC EQUATIONS OF STATE

In the present context, an equation of state is a mathematical rela-

tionship between T,P,V, and N, that is, the absolute temperature, pressu-

re, volume and number of moles of a single phase system, which can have

one or more components (throughout this Appendix, V denotes total (extensive)

volume, whereas V denotes molar volume). As an example, the equation

of state of an ideal gas is

PV = NRT (Al-1)

Equation (Al-1) is an example of an analytic equation of state.

Its use, however, is limited to the low pressure, high temperature region

where the system behaves effectively as an ideal gas. A variety of equa-

tions of state are commonly used; to describe the behaviour of real gases,

dense fluids and liquids.

Cubic equations of state originate from the work of van der Waals,

who proposed the equation that' bears his name in his doctoral thesis

(van der Waals, 1873)

a

( P + ,- ).( V - b ) = RT (A1-2)
2

V

or, in extensive form,

2
aN

( P + --- ).( V - Nb ) = NRT (A1-3)
2

V

where a and b are parameters whose determination is discussed below.

All existing cubic equations of state are modifications of the van der

Waals equation. Their usefulness stems from the fact that a cubic poly-

nomial in V is the simplest analytic relation that can qualitatively

describe vapour-liquid equilibrium. For a single component, this means
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two criticality conditions aP

( ) = 0 (A1-4)

av T=Tc

2
a P

( - ) = 0 (A1-5)
2

av T=Tc

plus the existence of three distinct real roots in some range of tempera-

ture and pressure, bounded by an upper (critical) temperature and an

upper (critical) pressure.

Although a cubic equation of state can describe qualitatively the

behaviour of real gases and liquids, two important limitations should

be taken into consideration. In the first place, density fluctuations

become unbounded close to the critical point ( Stanley, 1971 )9 and,

as a consequence, no analytic equation of state is accurate in this re-

gion, even though Equations (A1-4) and (A1-5) are still true. In the

second place, an Equation such as (A1-2) cannot possibly describe phase

equilibrium below the triple point of a pure substance, where the solid

phase must be taken into consideration. An additional parameter and

an equation of higher order in V are needed.

A cubic equation is characterized by its form and its parameters.

The former can be written, in a general way (Schmidt and Wenzel, 1980)

RT a
P = (A1-6)

2 2
V-b V + uVb + wb

where u and w are integers. Values of u and w for several cubic equations

of state are shown in Table Al-1.

Parameters a and b are determined by means of methods which, in gene-

ral, are modifications of the original van der Waals approach. Applying

the criticality conditions (Equations (A1-4) and (A1-5)) to Equation

(A1-2), we obtain, with T=T c and P=Pc,
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2
27 (RTC )

a = - -- (A1-7)
64 Pc

RTc
b -- (A1-8)

8 Pc

or, in other words, temperature-independent parameters.

Equations (A1-7) and (A1-8) can be considered particular cases of

a more general type of functionality,

2
(RTc)

a = a a (A1-9)

PC

RTc
b = n b (A1-10)

Pc

where , B, a and b vary according to the particular equation of state

selected, and are introduced to improve agreement with experimental data.

In Equations (Al-9) and (A1-10), a and B are, in general, temperature

dependent whereas a and b are constants. Values of a, B, a and b

are shown in Table Al-1 for several different equations of state.

Mixture parameters a and b are obtained from pure component parame-

ters by means of suitable mixing and combining rules, of which the most

commonly used are

a = xi xj aij

b = xi bi (Al-11)

aij = (ai aj) [12 - kij( - ij)]

where kij, the binary interaction coefficient, is the single adjustable

parameter once an equation of state is selected, and 6ij is Kronecker's
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APPENDIX 2 EQUIPMENT DESIGN; EXPERIMENT DESIGN AND CALCULATIONS

A2.1 FLAT PLATE DESIGN

The flat plate is shown schematically in Figure 4.2. The coated

section's width (2.54 cm) was determined by practical considerations:

the high pressure steel tube (C2 in Figure 4.1) into which the whole

assembly shown in Figure 4.2 is introduced had to be less than 5 cm (2

inches) in nominal external diameter; otherwise, the high pressure end

connections would have become prohibitively expensive and much more complex

than the threaded connections used in this work.

The entrance section (Figure 4.1) was designed in order to allow

the development of a steady velocity profile. The hydrodynamic entrance

length (Lhy) is defined (Shah and London, 1978) as "the duct length required

to achieve a maximum duct section velocity of 99% of that for developed

flow when the entering fluid velocity profile is uniform", and is given,

in dimensionless form, by

+ Lhy

hy D Re (A.2-1)hy h

where Dh is the duct hydraulic diameter, and Re, the Reynolds number.

In the present case, since the aluminium hemi-cylinders were shorter

than the steel tube, the approximately 5 cm long empty inlet section

was packed with glass wool to guarantee the flatness of the profile at

the duct's entrance.

For a rectangular duct of height 2b, width 2a, and aspect ratio a

= 2b/2a (see Chapter 5), the hydraulic radius is given by

Dh Cross section b
r (A.2-2)h 4 Perimeter 1 + a

Furthermore, the Reynolds number can be written as

Re = 4b G (A.2-3)
1+a n
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where G is the mass flow rate per unit area, which, in terms of the solvent

flow rate at ambient conditions becomes

it 1 Mmin] L 1 3__)
(~-ln) x 7; 'see' x 1 ( 1G = F in) 60 se V t mol) x 4ab(m2)

= 4.16666 (vFMab) x 10-6 (A.2-4)

where V0 is the molar volume of the solvent gas at ambient conditions,

which, for the present purposes, can be taken as 22.4 lt/mol, and M is

the solvent's molecular weight. The hydrodynamic entry length becomes,

therefore,

Lhy = Lhy(l4b )2 ( FM (1) x 4.1666 x 10-6 (A.2-5)
hy - Lhy + a V o ab n

Equation (A.2-5) is dimensional, and will yield Lhy in meters if

F, M, V, a and b have the units indicated in Equation (A.2-4), and n

is expressed in kg/ms. Values of Ly are tabulated in Shah and London's

monograph, as a function of a; widely differing values are given, the

table in question being a compilation of results from different investi-

gators. In the present case, the most conservative (i.e., highest) value

was selected,

Li = 0.08 (A.2-6)
hy

-2
For a typical flow rate of 2 liters per minute, a = 1.27 x 10 m,

b = 1.587 x 10- 3 m, a = 0.125, V - 22.4 It , n - 5 x 10- 5 kg/ms, (a
mol

conservatively low value), Lhy is then given by

-4
Lhy = 9.4 x 10 M (m) (A.2-7)

or, in other words, a minimum required hydrodynamic entry length of 41

mm for CO2 , and 137 mm for SF6 . Two different flat plates were used:

for CO2 experiments, the entry length was 12.70 cm, and 15.24 cm for

the SF6 experiments.
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The coated length was determined by the requirement that the relative

saturation at the flat plate's outlet should be neither too high (see

sensitivity analysis, section 6.4) nor too low (see minimum weighing

requirements in section 6.4). For an aspect ratio of 1/8, a 20% relative

saturation implies LD/<v> b2 - 0.2 (see Figure 5.3). With <v> - 0.1

cm/s, D - 7 x 10- cm2/s, and b = 0.15875 cm, we obtain L = 7.2 cm.

The actual value used was 7.62 cm.

Typical <v> values are obtained from the flow rate, F, duct cross

section, 4ab, and solvent molar density under experimental conditions.

For F - 0.09 mol/min, and 4ab = 0.80645 cm2, and a molar density of 15

mol/lt, we obtain <v> = 0.12 cm/s, or a mean residence time of - 1 minute.

Before every run, a period of at least 15 minutes was allowed for after

opening the flow control valve, during which solvent gas was vented (see

Figure 4.1) while steady conditions were gradually attained.

A2.2 SAMPLE EQUILIBRIUM AND DIFFUSION CALCULATIONS

As an example of typical equilibrium and diffusion calculations,

the determination of the solubility and diffusion coefficient of benzoic

acid in SF6 at 65 bar (Pr = 1.73) and 328.2 K (Tr = 1.03) will be explained

in detail.

Two equilibrium experiments were conducted simultaneously. The run

duration was 40 minutes. The following numbers were obtained (values

in parenthesis refer to the second experiment)

(a) Mass of benzoic acid collected (g) = .03781 (.03042)

(b) Moles of benzoic acid collected = 3.0992 x 10 4 (2.4934 x 10 )

(c) DTM final minus initial reading (t) = 62.703 (52.013)

(d) Atmospheric pressure (mm Hg) = 759.8

(e) Ambient temperature (C) = 23.6

(f) Temperature-corrected ambient pressure (mm Hg) = 756.88

(value read from tables supplied by barometer manufacturer)

(g) Average temperature of DTM outlet (C) = 24.2 (24 .7)

(obtained by averaging initial and final readings)

(h) Average overpressure at DTM outlet (in) = 0.4 (0.4)
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(i) Ambient pressure DTM outlet conditions (mm Hg) =

2.54 x (h) X 826 x 760 x 9 .88 756.88)
101325 x 100

(where 826 Kg/m3 is the density of the outlet U-manometer fluid)

(j) Solvent moles through DTM =

[ (c) 273.2 (1) 1(c) X 273.2 (ig 7 2.558 (2.119)
22.4179 273.2 + (1) 760

(where 22.4179 is the ideal gas molar volume, in moles/it, at 1

atmosphere and 0° C)

(k) Solute mole fraction = C (b ) = 1.211 x 10 (1.1766 x 10

These two results differ by 2.91%, and the average value can be

taken,

(1) Average mole fraction - 1.194 x 10-4

For the diffusion run, we write

(m) Mass of benzoic acid collected (g) = 0.00853

(n) DTM final minus initial reading (t) = 77.670

(o) Atmospheric pressure (mm Hg) = 774.60

(p) Ambient temperature (C) = 19

(q) Temperature-corrected ambient pressure (mm Hg) = 772.206

(r) Average temperature at DTM outlet (°C) = 21.6

(s) Average overpressure at DTM outlet (in) = 0.6

(t) Ambient pressure DTM outlet conditions (mm Hg) -

_[(q) +2.54 x (s) x 826 x 760 x 9.8] =773.131

101325 x 100
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(u) Solvent moles through DTM =

(n) 273.2 Ct) 1
[ 22.4179 x 273.2 + (r) x760 = 3.26626

(v) Solute mole fraction (u) + (m)/122 2.14057 x 10-5

(w) Relative saturation = [(v)/(Q)] = .17928

(x) Xo (from mathematical solution; Chapter 5) = .188615

(y) Run duration (s) - 3600.82

(z) > b2 = 9.26 x 10- 5 cm2 /s

(where <v> has been calculated as follows,

(O) mol 0.80645 cm = 0.1484 cm/s; fluid density() s mol 0.80645 em2

from the Peng-Robinson equation of state)

A2.3 EXPERIMENTAL ERRORS

The sensitivity of the calculated diffusion experiments with respect

to experimental errors in the determination of r, the relative saturation,

was analyzed in Section 6.4. In the present section, a numerical value

for Ar/rl will be estimated.

In the first place, since r is a ratio of two mole fractions (i.e.,

the solute mole fraction at the exit of the test section in equilibrium

and diffusion experiments), we can write, for error estimation,

jAr = Ax, Ax. I (A2-8)
r- I Xlldiff I Xi equil

where x is the solute mole fraction. From Section A2.2, it follows

that x is determined by weighing the solid that precipitates in the
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U-tubes upon decompression and measuring the corresponding amount of

gas that flows through the system.

Weighings were found to be reproducible to within 0.001 g, and the

amount of solute collected varied from a minimum of 0.0085 g (low pressure

benzoic acid - SF6 experiments) to values above 0.2g (high pressure benzoic

acid - CO2 experiments) for the diffusion experiments (i.e., weighing

errors ranged from 0.5 to 11.8%).

Weighing errors in equilibrium experiments were always lower (for

a given system, temperature and pressure) than in the corresponding diffusion

experiment, since the mss of solute collected was always greater in

the former case. This fact will be used below in the actual evaluation

of tAr/ri.

The determination of the amount of gas flowing through the dry test

meter involved reading the instrument (accurate to + .005 lt), and calculating

the number of moles as per Section A2.2. This, in turn required reading

the temperature at the test meter's outlet (thermocouple accurate to

+ 0.2 OC), the pressure differential across the outlet line (U-tube manometer

accurate to 0.1 inch), the atmospheric temperature (± 0.5 OC) and the

atmospheric pressure (± 0.1 mm Hg). From Section A2.2 (item (u)), it

follows that, for error analysis, we can write

nI = IDTMI I+ AP I T0 (A2-9)
jn DTM Po T,

where n is the number of solvent moles, DTM is the dry test meter reading,

and P and T,, the temperature and pressure at DTM outlet conditions,

respectively. The ambient temperature contributed to errors in the determi-

nation of the ambient pressure since the latter was always corrected

by means of a manufacturer-supplied double-entry table, the independent

variables of which were temperature and pressure. Pressure errors, therefore,

can be estimated as follows,

AAP. - 0.1 (temperature) + 0.1 (manometer) + 0.1 (U-tube)
PI o - (21760

- 3.95 x 10 (A2-10)
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For temperature and instrument reading errors, on the other hand,

ATo 0.5 -3I TO 298 = 1.678 x 103 (A2-11)

ADTM ~ 0'005 -4
AD -005 = 3.125 x 10 (A2-1 2)

where a conservatively low value of solvent throughput (i.e., 16 lt)

has been used (see Section A2.2 for typical values).

From Equations (A2-9) to (A2-12), we obtain, finally,

|8n| - 0.00241 (A2-13)

The important conclusion here is that weighing errors are by far

the most important in terms of their contribution to Ar/rl, for which

we can now write

r 2 [0.0024 + o.04 ] = 8.48 x 10 (A2-14)

where a typical diffusion weighing error of 4% was used (corresponding

to a collected solute amount of 0.025 g), and diffusion errors were conserva-

tively equated to equilibrium errors.

We can therefore summarize by saying that the relative saturation

can be determined to within + 8.5%, this being a conservative estimate

except for low pressure benzoic acid-SF6 experiments, where weighing

errors of up to 11% can exist in diffusion experiments due to the small

amount of solute collected.

A2.4: DENSITY PROFILES

In Chapter 6, it was shown that, for dilute solutions, density decreases

monotomically away from the solute-fluid interface if

M > LV (A2-15)
M 2 V2

Where M and M2 denote solute and solvent molecular weight, respectively,

while V and V2 denote solute partial molar volume and solvent molar
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volume, respectively. In this section, it will be shown that inequality

(A2-15) was indeed satisfied for all of the conditions and systems tested,

a necessary condition for the elimination of buoyant effects in the hydro-

dynamic experiemtns (Chapter 6).

A simple, sufficient condition will first be developed that enables

to test whether (A2-15) is satisfied with minimum computations. The

isothermal pressure dependence of the equilibrium solubility of solute

1 in fluid 2 is given by

(alnx) = (V ,. ) / 1 + lnx) TP] (A2-16)

which simply states the fact that, if the solubility increases with pressure,

the molar volume of the solid solute is larger than its partial molar

volume in the fluid phase (V1
s > V,). This provides a quick, conservative

test of (A2-15) (i.e., a sufficient but not necessary condition for (A2-15)

to be true),

M2 > V2 M2 > (A2-17)M, V, M2 V,

but

M2 V2M2 > V- i > M> L> (A2-18)

In other words, in cases where the solubility increases with pressure,

consideration of the pure solute and solvent densities provides a sufficient

condition for monotomically decreasing densities away from the interface

which can be easily checked.

In the general case, we write

V = x, V + (1-x,) V2 (A2-19)

or, equivalently,

V V-
_ - - (1 - 1 ) --(1 -x1 )

V.L V? - V2
(A2-20)

V2 Xl X2

where V2 = V2 has been used (this is only valid in dilute solutions).
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Using the Peng-Robinson equation of state (see Appendix 1) with binary

interaction coefficients (kij) regressed by minimizing the sum of absolute

values of log [x1(eq)/x,(eos)], where eos denotes the equation of state

prediction and x(eq), the measured solubility, Table A2-1 was generated,

with the second form of the right hand side of Equation (A2-20) used

in the computations.

From Table A2-1 we conclude that inequality (A2-15) was satisfied

for all of the conditions and systems tested; the flow was therefore

stabilized by gravity, in all cases.

A2.5 CHEMICALS USED

The purity and suppliers of the chemicals used in this work are listed

below:

Benzoic acid Baker 99.9+ %

Naphthalene Baker 99.9+ %

2- Naphthol Aldrich 99%

C02 Matheson 99.8%

SF6 Matheson 99.8%
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TABLE A2.1: BUOYANT STABILITY

T P

(K) (bar)

SF 6-benzoic acid

SF 6-naphtha lene

CO2 -benzoic acid

CO2-2 Naphthol

328

328

328

338

338

338

318

318

318

328

328

328

318

318

328

328

308

308

308

318

318

65

80

120

65

80

120

65

80

120

65

80

120

160

200

1 60

200

150

200

250

1 65

250

1 .194x10 14

1 .491x10

1 .825 x1 0 4

-141 .646x10- 2.076xl 0

2.803xl 0-

1 .978x10- 3

2.152x10- 3

2.445x10- 3

3.184x10- 3

3.513x103

3.914x10- 3

2.34x10- 3

3.580xl 0-3

2.495x10- 3

3.864x1 0-3

4.460x10 4

5.408x10 1 4

5.910xl 0

5.662x10- 4

8.655x10 1

329

.128 .8356

.116

.184 .8767

1 72

-4.789

-2.651

-0.790

-7.448

-3.901

-1 .237

-1 .084

-0.325

0.515

-2.663

-1.157

0.159

.004 2.7727 -14.774

-2.330

-.004 -6.916

-3.472

.076 3.2727 -2.557

-0.468

0.538

.078 -3. 425

-0.109

System x, (eq) kij V1/V 2

CALCULATIONS



APPENDIX 3 Ci,j COEFFICIENTS FOR EQUATION (5.27)

The following Appendix contains the Cit.j coefficients defined in

Equation (5.27), for i up to 80, and j up to 26. Coefficients corresponding

to each i value are printed under the hesding "Coefficient a i ", and

j should be read by lines.
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APPENDIX 4 COMPUTER PROGRAMS

A4.1 COMPUTER : TECHNICAL DETAILS

All the computer simulations were run at the Massachusetts Institute

of Technology's Chemical Engineering Department Computer Facility.

The computer is a Data General "Eclipse" MV 4000 32 bit data processing

system.
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A4.2 COMPUTER PROGRAM EQUIL
_,.,
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APPENDIX 5: THE INTEGRAL ENTROPY BALANCE IN IRREVERSIBLE THERMODYNAMICS

The following derivations follow closely the treatment of the subject

by Landau and Lifshitz (1982).

A5.1: MASS BALANCE; CONSERVATION EQUATIONS

For an arbitrary volume V, fixed in space, conservation of species

1 can be written as

at I Pw, dV = (pwl v * n) df - j1 * n df (A.5-1)

The first term on the right hand side is the convective transport

of species 1; the second term corresponds to diffusive transport. The

derivation of a differential equation for the conservation of species

1 is the first step in our analysis: we are ultimately interested in

a relationship between the diffusive flux and the appropriate driving

force(s).

Using Green's theorem, we rewrite Equation (A.5-1),

at f paw dV = - V * (pv + J dV (A.5-2)

Therefore,

J [al + (Pl v + jL)] dV = O (A.5-3)

But this is independent of our choice of V; we must therefore have

am + V (P v + J,) = o (A.5-4)at

Invoking continuity for the fluid as a whole,

P + V pv = (A5-5)at

The required equation follows from combining the last two expressions

(a v v VW) V * = 0 (A.5-6)
P at
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or, in a more concise form,

PDw + V · Jl = (A.5-7)Dt - -(A 5-7)

where D/Dt is the material derivative operator.

A5.2: THERMODYNAMIC DEFINITIONS

When diffusion is analyzed from the perspective of irreversible thermo-

dynamics, it is convenient to introduce a mixture chemical potential.

We start from the fundamental equation for a binary system,

dU = TdS - PdV + p, dN1 + p 2 dN2 (A.5-8)

If we impose the constraint of constant mass, we have

dN2 = (M) dN (A.5-9)
M2

and Equation (A.5-8) referred to unit mass of fluid, now reads

du = Tds - Pdv + pdw, (A.5-10)

with

Ml M2 (A.5-11)M1 M2

A5.3: ENERGY AND ENTROPY RELATIONSHIPS

Diffusion is one of the dissipative processes that contribute to

entropy generation in a fluid. We must therefore obtain an expression

for the rate of entropy generation. Starting from a differential energy

balance, we will use continuity, thermodynamics and the equations of

motion to obtain a differential entropy balance. The integrated form

of this equation gives the rate of entropy generation as a result of

dissipative processes. We first derive the differential balances.

Consider a volume element fixed in space. Energy conservation yields

[ ( + u)] = - V [pv ( + h) - v * + ] (A.5-12)t 2 -
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The right hand side is the sum of reversible convective transport, irre-

versible viscous dissipation, and irreversible heat transfer. We now

rewrite the left hand side,

The 1st~e~pv and 4t (A 5-13)a [p (p + u)] = 
2 P + av au(A5-13)-t =2p-t + 2 a a + at 3at at

and use continuity to transform the 1st and 4th terms in the right hand

side, thermodynamics for the 3rd term, and the equations of motion for

the 2nd term. Starting with the latter,

av av i aa

pv · -t -x vi x ppv i [(v.V)vi] (A.5-14)

The 1st and 4th terms in Equation (A.5-13) can be rewritten, using

continuity, as follows,

2- t+ u ax - + V) Vi pv (A.5-15)
2 at at 2

Because of Equation (A.5-10) we can put (3rd term of Equation (A.5-13)),

au as P a, (A.5-1

a= t P at at

and substit ite Equations (A.5-14), (A.5-15) and (A.5-16), and the thermo-

dynamic relation

= -- T .- (A.5-17)
ax. ax. x. 

1 1 i 1

into Equation (A.5-13), to obtain

- [ ( + u)] -( + V) p v + pT as + +
at 2 2 t at

aw- I as aw ]
+ at p ax. ax ax.

a CT ik

i ax k Pv i [(v.V_) vi] (5-18

whic] can be simplified with:-the help of Equation (A.5-6) and the identity

p v [(v v vi = v V ( V2) (A 5-19)
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to obtain

at p(u + 2V = - [ pv (h + V2 - V · J +

pT [ as Vs] °vDik
+ pT [a + v * Vs] + vi (A.5-20)at - D_

Adding and subtracting V_ q, and noting that

aak avi
v ik = V (v ) -ik axk (A.5-21)i ax ikaX

we obtain the important relationship

at [P (u + )] = - V * [pv (h + V )] - v * a + q] +

av.
+ pT (as + v Vs) - p V · J + V * q- aik (A.5-22)

at - ik axk

Comparing Equations (A.5-12) and (A.5-22),

av.
pT Ds =ik xk (q - Vp (A.5-23)

Dt ik axk

This is the required differential entropy balance.

A5.4: THE INTEGRAL ENTROPY BLAANCE

The rate of change of entropy in a volume fixed in space is given

by

dt ps dV at (ps)dV [ (P at+ s a dV

The integrand, using Equation (A.5-23) and continuity, can be written

as follows,

av.
as p [1 [ V q- p,)-j - I V]- V psv (A.5-24)at at = [k axk ..
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Therefore,

d Iv.
dt psdV = - (V psv) dV + [a aX - V 

(A.5-25)

The left hand side of Equation (A.5-25) (and hence the right hand

side) is positive or zero for any isolated system. Restricting our attention

to this case,

IV * ps v dV = (ps v n)df - 0 (A.5-26)

since there can be no flow across the boundaries of an isolated system.

Similarly,

V * (q- pj ) dV= V. (T dV + f (T ) · VTdV 

[( T ) * n] df + J( T2 ) · VT dV I (T2 ) * VT dV (A.5-27)

where isolation has again been invoked to eliminate the surface integral.

The integral entropy balance for an isolated binary system then becomes

p dV T2 ) V TdV - ~ ·T dV (-A.5-28)dt Is. dV dV 2 ITdO dV (A-5-28)

Closed, isolated, macroscopic systems approach stable equilibrium

in an irreversible way, the mechanisms involved being viscous dissipation,

heat flow and diffusion (first, second and third integral, respectively,

in the right hand side of Equation (A.5-28)).
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NOTATION

A = roughness factor (Chapter 2), dimensionless

A = z-dependent coefficient (Chapter 5), dimensionless

A = defined in Equation (6.26), dimensionless

A = reduced attractive parameter in a cubic equation of state (Chapter 7)
dimensionless

A = inertial-principal transformation matrix (Chapter 8), dimensionless

An = expansion coefficient defined in Equation (5.72), dimensionless

a = rectangular duct half-width, L

a = radius of a Brownian sphere (Equation 1.17; Section 1.5; Chapter 2;

Chapter 6; Chapter 8), L

a = attractive parameter for cubic equations of state (Chapter 3;
Chapter 7; Appendix 1), ML 5/t2mol 2

ai = ith coefficient of series expansion (Equation (5.19)), dimensionless

a'i = scaled ith coefficient (ai/a o) (Chapter 5), dimensionless

a'. = scaled ith coefficient evaluated with the nth eigenvalue (Equation
(5.24)), dimensionless

a.. = parameter for a 12-6 type interaction energy (Equation (9.31)),
lJ ML 14/t 2

B = empirical linear coefficient in a density-explicit virial expansion
(Chapter 2), L3/M

B = defined in Equation (6.27), dimensionless

B = reduced repulsive parameter in cubic equation of state (Chapter 7),
dimensionless

Bn = expansion coefficient (Equation (5.73)), dimensionless

b = rectangular duct half-height, L

b = repulsive parameter for cubic equations of state (Chapter 3;
Chapter 7; Appendix 1), L 3/mole

bo - molar second virial coefficient, L3/mole
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C = empirical quadratic coefficient in a density-explicit virial
expansion (Chapter 2), L6/M2

Cn = expansion coefficient (Equation (5.29)), dimensionless

Ci j = expalision coefficient (Equation (5.24)), dimensionless

C.. = parameter for a 12-6 type interaction energy (Equation (9.31)),
1J ML8/t 2

c = solute molar concentration, moles/L3

c = total molar concentration (Section 1.4; Chapter 7), moles/L3

Ci = interface solute molar concentration, moles/L3

c+ = 1 - c/c i [ or (c-ci)/(co-ci); but c = 0 throughout], dimensionless

Co = inlet solute molar concentration, moles/L3

D = duct diameter (Section 1.1; Chapter 3), L

D = diffusion coefficient, L2/t

= diffusion coefficient, L2/t

Dh = hydraulic diameter, L

d = dimensionality of space, dimensionless

e i = ith (i = 0,1,2,3) Cayley-Klein parameter, dimensionless

F = force (Section 9.1; Section 9.4), ML/t2

Fm = modified force for shifted force potential (Chapter 9), ML/t2

f = force, ML/t 2

f = fugacity (Section 1.4; Chapter 7), M/Lt2

f = distribution function (Section 8.5), t 3/L6

f = area element (Appendix 5), L2

Gn = expansion coefficient, defined in Equation (5.61), dimensionless

Gr - Grashof number [(2R)3 g (Ap/p)/V2], dimensionless

g - radial distribution function, dimensionless

g - acceleration due to gravity (Section 1.1; Chapter 3), L/t2
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F' = unit vector, parallel to gravity, dimensionless

H = "radial" part of two-dimensional solution to rectangular duct
diffusion problem, dimensionless

H = Hamiltonian (Chapter 8), ML2/t2

Hn = scaled "radial" expansion, defined in Equation (5.32), dimensionless

h = relative height of constant hydrostatic head plane, L

h = enthalpy per unit mass (Appendix 5), L2/t2

I = moment of inertia, ML2

J = generalized flux in irreversible thermodynamics (Chapter 7),
variously defined

j = mass flux, M/L2t

K = torque, ML2/t2

K = proportionality constant for semi-empirical hydrodynamic expressions
for the diffusion coefficient (Table 6.18), variously defined

K = exponential decay factor for solute fugacity coefficient (Section
1.4; Chapter 7), dimensionless

KT = isothermal compressibility, Lt2/M

KT = reduced isothermal compressibility, dimensionless

k = Boltzmann's constant, ML2/t2K

k = mass transfer coefficient (Section 1.2; Chapter 5), L/t

k = thermal conductivity (Table 2.1), ML/t3K

kij = binary interaction coefficient, dimensionless

L = coated length in duct flow, L

L = Avogadro's number (Chapter 2; Section 6.2), mole -1

L = generalized transport coefficient (Chapter 7), variously defined

1 - unit vector, parallel to linear molecule, dimensionless

M - molecular weight, M/mole

m = mass, M
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m = velocity profile exponent (Section 1.2; Chapter 5), dimensionless

N - # of molecules in a simulation

N - # of moles (Chapter 7; Appendix 1; Appendix 5)

N' = molar flux, moles/L2t

n = velocity profile exponent, dimensionless

n = number density (Chapter 2; Chapter 6), 1/L3

n = unit normal vector (Appendix 5), dimensionless

P = pressure, M/Lt2

p = linear momentum, ML/t

Pe = Peclet number (<v. L/D), dimensionless

q = heat flux, M/t 3

q = generalized coordinate (Chapter 8), L

q = wave number (Chapter 2), 1/L

R = gas constant, ML2/t2 mole K

R = duct radius (Section 1.1; Section 3.1; Section 3.3), L

Re = Reynolds number (2R <v>/v), dimensionless

Ra = Raleigh number ((2R)3 g Ap/p /v D), dimensionless

r = position, displacement, relative position (variously defined), L

r = relative saturation (c/ci) (Section 1.1; Section 1.2; Chapter 3;
Chapter 5; Chapter 6; Appendix 2), dimensionless

rc = cutoff radius, L

rh = hydraulic radius, L

Sc = Schmidt number (v/D), dimensionless

Sh - Sherwood number (4 rh k/D), dimensionless

s - entropy per unit mass, L2/t2K

s = hard sphere solute/solvent ratio (Chapter 6), dimensionless

T = absolute temeprature
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T+ = reduced temperature (kT/c), dimensionless

t = time, t

U = interaction energyv ML 2/t2

U = internal energy (Appendix 5), ML 2/t2

U = numerical constant for cubic equation of state, dimensionless

u = internal energy per unit mass, (Appendix 5), L2/t2

V = molar volume, L3/mole

V = total volume (Equation (7.1); Equation (7.25); Chapter 8; Appendix
5), L3

V , = close-packed molar volume for a hard-sphere fluid, L 3/mole

v = velocity, L/t

<v> = cross section-average velocity, L/t

v+ = reduced velocity (v/<v>), dimensionless

v = molecular volume (Section 2.3), L3

v+ = reduced molecular volume (v/a3) (Section 2.3), dimensionless

v = molar volume (Appendix 5), L3/mole

w = angular velocity, 1/t

w = numerical constant for a cubic equation of state (Chapter 3;
Chapter 7; Appendix 1), dimensionless

X = axial part of two-dimensional solution to rectangular duct diffusion
problem, dimensionless

X = generalized force (Chapter 7), variously defined

X o - modified inverse Graetz number (xD/<v>b2), dimensionless

x - duct axial coordinate, L

x+ = dimensionless axial coordinate (x/b)

xi = species i mole fraction (Chapter 6; Section 1.4, Chapter 7),
dimensionless

x - inertial coordinate (Section 1.5; Chapter 8), L
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x' = principal coordinate, L

y = duct "radial" coordinate, L

y+ = dimensionless "radial" coordinate (y/b)

y = inertial coordinate (Chapter 8), L

y' =- principal coordinate, L

z = duct transverse coordinate, L

+ =- dimensionless duct transverse coordinate (z/b)

z = inertial coordinate (Chapter 8), L

' =- principal coordinate, L

z - compressibility factor (RV/RT) (Chapter 2; Chapter 3; Chapter 7;
Section 8.6), dimensionless

Greek Symbols

a = aspect ratio for rectangular duct (b/a), dimensionless

= transport coefficient, (Section 1.4; Chapter 7), Mt/L3

a = flat plate inclination with respect to horizontal position (Figure
1.10; Figure 6.15), degrees

ai - polarizability of site i (Equation 9.32), L 3

aO - angle used in specifying the relative orientation of two linear
molecules (Figures 9.9 to 9.21), degrees

aX = coefficient of the attractive parameter in a cubic equation
of state (Appendix 1), dimensionless

B = aspect ratio for rectangular duct (L/2a), dimensionless

Bm = mass coefficient of volume expansion (Section 3.2), L3/mole

0 - transport coefficient (Chapter 7), M/Lt K

B - frictional time constant (Chapter 8), t

B = -angle used in specifying the relative orientation of two linear
molecules (Figures 9.9 to 9.21), degrees

B = coefficient of the size parameter in a cubic equation of state
(Appendix 1), dimensionless
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r = scattered light autocorrelation decay rate, t1

rn = defined in Equation (8.61), ML2/t

_Yn = nth eigenvalue (Chapter 5), dimensionless

Y = transport coefficient (Chapter 7), ML/t3K

Y = angle used in specifying the relative orientation of two linear
molecules (Figures 9.9 to 9.21), degrees

6 = transport coefficient (Chapter 7), M/Lt

6 = displacement (Chapter 8), L

6 = angle used in specifying the relative orientation of two linear
molecules (Figures 9.9 to 9.21), degrees

= energy parameter for interaction potential, ML2/t2

in = viscosity, M/Lt

e = Euler angle, dimensionless

= chemical potential per unit mass, L2/t2

species i chemical potential, ML2/t2 mole

v - kinematic viscosity, L2/t

= transformed coordinate for duct flow (b-y), L

5+ = dimensionless transformed coordinate (1-y+)

- defined in text (Chapter 2)

= distance measured away from a constant composition solute source
plance (Chapter 6), L

In - modified pressure (P + pgh), M/Lt2

n+ = dimensionless modified pressure [n/po <v>2]

p = density, M/L 3

Ap - interface-bulk density difference, M/L3

a - size parameter for a binary interaction, L

a.. - ijth component of stress tensor (Chapter 7; Appendix 5), M/Lt2

Xr - relaxation time, t
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* = fugacity coefficient, dimensionless

On = cross section-average integral (Equation (5.55)), dimensionless

4) = association factor in the Wilke-Chang expression (Chapter 6),
dimensionless

4) = Euler angle (Chapter 8), dimensionless

Oi = species i probability distribution function for one-dimensional
displacements (Chapter 8), L

X = Enskog frequency factor, dimensionless

= composition-dependence function for the thermodynamic transport
coefficient, a, such that D 2 is composition-independent (Chapters
1 and 7), dimensionless

'Pn = cross section-average integral defined in Equation (5.75), di-
mensionless

= Euler angle (Chapter 8), dimensionless

d = collision integral for diffusion, dimensionless

X = acentric factor, dimensionless

Xi = species i weight fraction (Appendix 5), dimensionless

Subscripts

1 = solute

2 = solvent

A = solute (Tables 6.18 and 6.19)

B = solvent (Tables 6.18 and 6.19)

c = critical property

I - molecule I

i - interface (Section 1.2; Chapter 3)

i = ith site (Section 1.5)

i - ith principal direction (Equation 1.39; Equation 8.17)

J = molecule J
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n = nth eigenvalue

o = solute inlet conditions

r = reduced quantity

Superscripts

+ = dimensionless quantity

O = dilute limit

T = transposed

Overbars

- partial molar quantity

= denotes value of a property for a specie in a mixture

= time derivative

Underbars

= vector

-= matrix, tensor
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