
Predicting Circulation and Dispersion

Near Coastal Power Plants:

Applications Using Models TEA and ELA

by

E. Eric Adams
and

Douglas J. Cosler

Energy Laboratory Report No. MIT-EL 87-008
December 1987



fi

,i·

W-



Predicting Circulation and Dispersion

Near Coastal Power Plants:

Applications Using Models TEA and ELA

by

E. Eric Adams

and

Douglas J. Cosler

Energy Laboratory

and

R. M. Parsons Laboratory
for

Water Resources and Hydrodynamics
Department of Civil Engineering

Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Sponsored by

Northeast Utilites Service Company
and

New England Power Company

under

M.I.T. Energy laboratory Electric Utility Program

Energy Laboratory Report No. MIT-EL 87-008

December 1987



k

il-



Abstract

This report describes how a pair of two-dimensional numerical models (TEA and ELA)

have been coupled to simulate thermal plume dispersion in the vicinity of coastal power

plants. The work follows previous study by Kaufman and Adams (1981), but differs from

most previous studies in that near field mixing is represented explicitly by specifying en-

trainment and mixed discharge fluxes as model boundary conditions. The models have

been applied to two power plants-Brayton Point Generating Station and Millstone Nu-

clear Power Plant. Comparison against field data shows generally good agreement in both

cases, and computational costs are reasonable. Several areas for additional research have

been identified.
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I INTRODUCTION

The general objectives of our research have been to develop and apply improved numer-

ical models to simulate thermal plumes and intake recirculation from coastal power plants.

Our approach is to model flow and temperature in the so-called intermediate and far fields

(i.e., distance greater than several hundred meters from the source) and to parameterize

the near-field mixing (occurring at distances from the source of less than a transition dis-

tance of several hundred meters) through prescribed flux boundary conditions. This ap-

proach was documented in Kaufman and Adams (1981), and Figure 1.1, adapted from their

report, shows the model schematization and parameter definitions for application to a hy-

pothetical power plant with surface discharge and shoreline intake. Note that in this

schematization, waste heat is presumed to reside in an upper layer of constant thickness

while water in the lower layer remains unheated; however lower-layer water may be en-

trained into the discharge plume or drawn into the power plant intake.

Kaufman and Adams (1981) applied this schematization to the Millstone Nuclear Power

Station (on Long Island Sound. near Waterford, Conn.) and the Brayton Point Generating

Station (on Mt. Hope Bay, near Somerset, Mass.) using the two-dimensional numerical

models CAFE and DISPER. The technique worked, but was very expensive due to require-

ments of small time and space steps. Hence only limited model sensitivity and refinement

could be undertaken.

Accordingly, in recent research jointly sponsored by the ELAB/EUP and the MIT Sea

Grant Program, two new and fundamentally different programs were developed. The first,

TEA (Tidal Embayment Analysis), replaces CAFE and computes 2-D currents while the

second, ELA (Eulerian-Lagrangian Analysis), replaces DISPER and computes temperatures

(or the concentrations of a passive tracer). This report describes the adaptation and appli-

cation of these models to the same two power plant sites, as illustrated by the calculations
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in the following two sections. Before proceeding, however, the models are briefly reviewed

with emphasis on their application to the power plant schematization of Figure 1.1. Addi-

tional information can be found in the listed references.
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Figure 1.1 Description of surface jet parameters used in model schematization (adapted
from Kaufman and Adams, 1981)
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II BRIEF MODEL BACKGROUND

2.1 TEA

2.1.1 General

TEA is a two-dimensional harmonic finite element circulation model. Major references

are Westerink et al. (1984, 1985), while additional references include Westerink et al.

(1986a, b). In its complete non-linear form, TEA solves the following depth-averaged con-

tinuity and x and y momentum equations

t + .[(h+1+)] + [v(h+ )] = 0 (2.1)

- + u fv + -au + u + va u- fv =-ga + S/(h+q) - 7 rb/p(h+rl) (2.2)

- + u + v' + fu = -g + /P(h+l) - r/P(h+l) (2.3)

where h(x,y) is mean water depth, q(x,y,t) is water surface elevation above the mean,

u(x,y,t), v(x,y,t) are x and y velocity components, f is the Coriolis parameter, g is the

acceleration of gravity, S, r, are the x and y components of surface (wind) stress, rb =

pCf uu. rb= pcfu v are the x and y components of bottom friction, and u = (u2 +v2 ).
The model can be driven by prescribed elevations on open (ocean) boundaries, by pre-

The model can be driven by prescribed elevations on open (ocean) boundaries, by pre-

scribed fluxes (e.g., rivers or plant flows) on land boundaries, and by prescribed shear stress

on the surface. Because the model is harmonic, all forcing functions are presumed to be the

sums of periodic components. (Note that steady forcing can be modeled as a periodic forc-

ing with zero frequency.) When the model is driven by forces of a particular frequency, the

primary response in the interior is at the same frequency. However, because of non-lineari-

ties, responses at additional frequencies are also created. Through an iterative procedure,
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the full non-linear model allows any number of such frequencies to be generated. However,

the model may also be run in a linear mode in which non-linear terms are dropped (bottom

friction is linearized) and hence the model responds only at the forcing frequency.

2.1.2 Application to Power Plants

In computing circulation from power plant discharges, two basic TEA runs have been

superimposed. The first is tidal circulation, computed over the entire water depth, by

specifying sinusoidal tidal elevations along open boundaries. In all applications to date, a

single frequency w, representing the M2 tide, has been used. The second run simulates the

plant-induced circulation, computed over the upper layer, by specifying steady fluxes repre-

senting i) diluted plant discharge into the upper layer (along the central portion of the

transition circle) with total flow rate SQo, where S is the volumetric near-field dilution;

ii) intake flow out of the upper layer (at the shoreline) with total flow aQo where a (0 <

a, < 1) is the fraction of intake flow drawn from the upper layer; iii) horizontal entrainment

flow out ofthe upper layer (distributed along the outer portions of the transition circle)

with total flow rate EhQo, where Eh is the near-field horizontal entrainment rate; and iv) a

downwelling flow necessitated by mass conservation flow out of the upper layer (distributed

along distant regions of the shoreline) with total flow rate [Ev + (1 - a)]Qo, where E, is

the near-field vertical entrainment rate. Note that S = 1 + Eh + E,.

Formulae for the near-field parameters Eh, Ev, S, and a, as well as the radius of the

transition circle rt, and the thickness of the upper layer h, have been developed from the

Stolzenbach-Harleman surface jet model (Jirka et al., 1981) and are presented in Kaufman

and Adams (1981). Site-specific values for Millstone and Brayton Point applications are

given in the following sections. In principle these parameters vary with the tidal stage as

does the spatial distribution of fluxes along the transition circle (e.g., the near-field plume

may be deflected to the left during flood tide and to the right during ebb tide, or vice-
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versa). Much of this variation may be approximated, in principle, by fitting time-varying

fluxes, at frequencies w and 2w, to the computed tidal variations (at frequency w) of near-

field parameters.

It should be mentioned that, while we have used the non-linear version TEA, we have

encountered instability when including the non-linear momentum terms. We believe this

instability is due to the very large velocity gradients that occur due to prescribed near field

boundary fluxes. Hence all results shown are without momentum terms. The consequence

of this approximation is that predicted flow probably recirculates (toward the power plant

intake and the near-field entrainment zone) faster than would occur in nature. However,

comparison of measured and predicted temperatures suggests that this assumption is not

too bad. Furthermore, the neglect of the momentum terms can be justified, in part, by the

fact that computations begin in the intermediate field-after the relatively high momentum

of the near field has been diluted.

2.2 ELA

2.2.1 General

ELA is a 2-D transport model which can be coupled with TEA to solve the advection-

diffusion equation.

c CC1c ac a D c 0c]-+ [ hDXx + 9 [ hDy hY (2.4)

where c(x,y,t) is concentration, Dxx, Dxy, D~y, and Dyy are dispersion coefficients, and 

represents sources, sinks, and vertical boundary fluxes. ELA solves Eq. 2.4 using a split

operator technique involving the backwards method of characteristics (a Lagrangian proce-
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dure) for advection, a conventional implicit Galerkin finite element scheme (an Eulerian

procedure) for dispersion, and local explicit calculations for source and sinks.

The treatment of advection is what makes ELA both more accurate and efficient than

many previous transport models. In essence, advection is computed in two steps. In the

first, characteristic lines are computed by integrating the velocity field backwards in time

over a time step At from each node. The feet of the characteristic lines are then used as a

basis for interpolating nodal concentrations from previous time steps. As part of this pro-

ject, Baptista (1987) has studied, both theoretically and numerically, the accuracy of alter-

native Eulerian-Lagrangian schemes.

It should be mentioned that, for periodic flow fields (e.g., tidally driven at a single fre-

quency, as we have assumed), tremendous savings are possible if the model time step in

ELA is set to an integer fraction of the tidal period. In this way characteristic lines only

need to be computed for each time step in the first tidal cycle. They can then be saved and

used to interpolate concentration over succeeding tidal cycles. As a result, calculations

lasting several weeks or more can be conducted at only a small additional cost over that of

the first tidal cycle. Similar savings apply in applications using a steady flow field. Speci-

fic costs are discussed in the following sections concerning the Brayton Point simulation.

The major reference to ELA is Baptista et al. (1984), and additional references include

Baptista et al. (1985, 1986) and Baptista (1987). An informal users' manual (Kossik et al..

1987) documents the combined use of TEA and ELA, including several computational im-

provements made to the model as part of this project.

2.2.2 Application to Power Plants

For power plant applications, Eq. 2.4 has generally been applied to the upper layer of

constant depth h and concentration c has been replaced by excess temperature AT, which
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is the difference between water temperature with and without plant operation. The sink

term thus represents excess heat loss and is expressed as

0 = _ \T (2.5)

where k is a surface heat loss coefficient (units of /t) computed from local meteorological

data using formulae presented in Ryan et al. (1974). All calculations to date have used

constant dispersion coefficients whereby Dxx = Dyy = D and Dx = Dy = 0.

Excess heat enters the domain via the diluted power plant discharge in the middle of

the transition circle and is represented by specifying an inflow (excess) temperature. The

user may pre-specify steady or time-varying inflow temperatures or, more realistically, may

allow the program to compute time-varying temperatures reflecting transient intake

recirculation and near-field re-entrainment. The former are referred to as static heat

budget calculations while the latter are termed dynamic heat budget calculations because

the inflow temperatures are computed from a dynamic near-field energy budget using the

instantaneous intake and entrainment temperatures. At open boundaries, excess

temperature is assigned to be zero for both advection (on flood tide) and dispersion

calculations.

Two features of our modeling that were introduced recently include simulations of wind

drift and vertical diffusion. While a depth-averaged circulation model such as TEA can

simulate the effects of surface wind stress, actual vertical velocity profiles resulting from

wind stress are threedimensional and near-surface velocities may bear little resemblance to

depth-averaged velocities. This is true whether the full water depth or a constant depth

surface layer is used. In order to analyze in a simple manner the effects of a surface wind

shear on heat transport in the upper layer, a "wind drift" option was added to ELA. The

influence of the wind can approximately be simulated by adding a drift velocity proportion-
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al to the wind speed to the velocity field computed by the hydrodynamic model TEA. In

this manner a three-dimensional effect is included in the sense that regions of implied up-

welling and downwelling from a fictitious lower layer are introduced near boundaries. The

excess temperature of upwelling water is assumed to be zero and heat associated with

downwelled water is assumed to be lost from the system.

The option now exists in ELA to compute depth-varying concentrations (or excess temp-

erature) due to vertical diffusion under certain limiting conditions. Consider a vertically

uniform (2-D) flow field, u(x,y,t), v(x,y,t), large water depth (such that c = 0 on the bot-

tom, z = h), spatially homogeneous horizontal and vertical diffusivities defined with re-

spect to the (principal) coordinate axes, and internal loss represented by a first-order decay

coefficient K. The 3-D transport equation (analogous to Eq. 2.4) for c(x,y,z,t) then

becomes

0c ac dec a2c 2 C 2C+ + = Dx D + D + -zz - Kc (2.6)

where the vertical coordinate z is defined positively downward from the water surface.

The zeroth and second vertical moments of the concentration distribution, mo(x,y,t)

and m2(x,y,t) are defined as

h h
mo = c dz and m2 = cz2 dz (2.7)

and the standard deviation az(x,y,t) of the vertical distribution is

az /m 2/mo (2.8)
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Multiplying each term of Eq. 2.6 first by zO and then by Z2 and integrating from top to

bottom yields, after minor manipulations,

Amo auTl+ DmO_ + 2 mo -2 mo (2.9)

t+ u-F + vU = D a: +Dy-- + 2Ez (2.10)

Each of these transport equations is similar to the 2-D transport equation for c and is corn-

puted similarly by ELA. If a (half-) Gaussian vertical concentration distribution is as-

sumed, then the computed values of the two dependent variables mo and oz can be used to

construct

c= m e-Z2/2az (2.11)

If, instead of internal loss, heat (or mass) is lost through surface exchange, an equivalent

first-order decay coefficient can be computed as

K= k (2.12)

where k is the surface heat exchange coefficient defined in Eq. 2.5 and the decay coefficient

is equivalent in the sense that the rate of heat loss is the same when integrated over the

water column. In this case, the last term of Eq. 2.9 may be replaced by (2/7r)"kmo/oz and

Eqs. 2.9 and 2.10 now become mildly coupled. Note that these procedures are only approx-

imate because the concentration distributions will not, in general, be Gaussian, especially

under the influence of a surface loss mechanism.
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III APPLICATIONS TO BRAYTON POINT GENERATING STATION

3.1 Site Description

The Brayton Point Generating Station is located in Somerset, Massachusetts, at the

confluence of the Lee and Taunton Rivers at the northern end of Mount Hope Bay. See

Figure 3.1. At low tide, Mount Hope Bay has an approximate length (along its north-

south axis) of 7 mi, surface area of 15.6 mi2 , and volume of 8.3 billion ft3. The average

tidal range is 4.4 ft which results in a tidal prism volume of approximately 1.2 billion ft3.

Approximately 70% of the Bay area has an average depth of less than 18 ft at mean low

water while the main shipping channels average 30 ft in depth at mean low water. With

the exception of the abrupt increase in depth at the edge of the shipping channels and the

rapid shoaling in the area of Spar Island, the bottom contours of much of the Bay are ra-

ther even, with a steady increase in depth from the head of the Bay to the two southerly

passages.

Circulation in Mount Hope Bay is driven primarily by tides and secondarily by wind,

and fresh water inflow from the Taunton River at the north end. Residence time within

the bay has been estimated to be within the range of 6 to 12 days (MRI, 1978).

Temperatures within Mount Hope Bay vary with the tidal stage and are quite respon-

sive to meteorological conditions due to the relative shallowness of the bay. In spring and

summer, mild thermal stratification (3°-5 F) may be found while temperatures are general-

ly vertically well mixed in the fall and winter. In mid-summer, surface and bottom temper-

atures beyond the influence of Brayton Point Station's thermal plume may reach into the

high 70s while water temperatures during winter may occasionally reach the freezing point.

There are presently four generating units at Brayton Point with a combined capacity of

about 1600 MWe. A once-through condenser cooling system is used. The intakes for Units
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1, 2, and 3 are located on the eastern side of the plant site on the banks of the Taunton

River while the intake for Unit 4 is to the west of the plant site on the banks of the Lee

River. The discharge back to the bay is via a 3200-ft channel which terminates at the

southern tip of the plant site at a venturi designed to promote mixing. Table 3.1 summa-

rizes representative conditions associated with both 3- and 4-unit operation.

3.2 Site Schematization

Site schematization was similar to that described in Kaufman and Adams (1981). Fig-

ure 3.2a shows the finite element grid over Mt. Hope Bay. In accordance with the discus-

sion in Section 2, for modeling the plant-induced flow, the domain had a constant depth of

11.5 ft corresponding to the estimated far-field plume thickness listed in Table 3.1. The

depth was adjusted in shallow areas to account for depths less than 11.5 ft while for the

tidal calculation the full depth was used. The near-field region was carved out of the

domain in the region surrounding Brayton Point as shown in Figure 3.2b.

Table 3.1 summarizes the near field parameters used as boundary conditions. Note that,

because of the relatively high discharge velocity, the plume intersects the bottom and the

expected dilution is less than for deep water (rs < 1).

Two different sets of discharge and entrainment fluxes were specified at the near-far field

interface, corresponding to the simulation of three- and four-unit operation. In both cases,

three nodal points at the bottom (southern end) of the interface had specified normal fluxes

into the domain representing diluted discharge. Using parameters in Table 3.1, the

temperature of the diluted discharge above the intake temperature was calculated as

14.8° F/(0.65x7.8) 2.9°F for three units and 15.7'F/(0.52x10.3) 2.9'F for four units.

The temperature that was actually specified depended on where static or dynamic heat

budget calculations were performed. The nodes adjacent to the diluted discharge had zero
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normal flux and all the remaining nodes had approximately equal specified entrainment

fluxes out of the domain (and into the theoretical near-field jet region).

The intake for the first three units was simulated by removing flux from three nodes

within the shipping channel inlet. The magnitude of the intake flux depended on the value

of a describing how much of the intake that was drawn from the upper layer. (Values of

both a = 0.5 and 1.0 were used.) In the four-unit simulation, the intake for the fourth unit

only was added to the west side of Brayton Point, or on the Lee River boundary, and drew

entirely from the upper layer (a = 1).

To simulate ambient circulation in the domain, the two strings of nodes along the bot-

tom of the bay were designated ocean boundaries. These nodes had specified tidal ampli-

tude of 2.9 ft (as determined from a tidal gauge at the station), period = 44640 sec, and no

phase lag. In addition to the tide, an inflow of 435 cfs from the Taunton River was estab-

lished. Surface heat loss was simulated by making use of actual meteorological measure-

ments recorded during the time period of interest. Average values of the various meteoro-

logical inputs were obtained from the week preceding the day for which the plume field

data were given (August 25, 1976). The average meteorological data were used to compute

a surface heat transfer coefficient of 157 BTU/ft2- ' F-day. The corresponding first-order

decay coefficient (k/h of Eqn. 2.5; equal to 2.5 x 10-6 sec-1) was based on a water depth of

11.5 ft.

3.3 Results

A large number of simulations have been made covering a range of model parameters

and options, plant operating conditions, and tidal phases; clearly, only some results can be

presented. The output presented was chosen to illustrate model capabilities, emphasizing
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simulations for three-unit discharge (so that they can be compared with field data) and

output at one tidal phase (maximum ebb).

Figures 3.3a-d depict current vectors within the surface layer of Mt. Hope Bay for four

tidal phases, produced by combining the output form two TEA runs: ambient currents cre-

ated by tidal forcing and Taunton River inflow computed over the entire water column and

three-unit plant-induced flows over the upper layer forced by prescribed inflows and out-

flows along domain boundaries. For the plant-induced flow, a = 1 (i.e, intake flow drawn

entirely from the upper layer), which is consistent with the assumption implied in Kauf-

man and Adams (1981).

Figures 3.4a-c depict corresponding pathlines simulated by ELA for three particles. A

particle originating near the Taunton River is shown being entrained in the intake, a parti-

cle near the plume center is shown to be transported south and flushed form Mt. Hope Bay,

and a particle on the eastern edge of the plume is shown being recirculated to the plant

intake. Note that, because the power plant intake flow is presumed to come entirely from

the upper layer (a = 1), this represents a worst-case condition for recirculation.

Figures 3.5a-d show contours of excess temperature (in F) averaged over the surface

layer for four tidal phases, based on the above flow field. Calculations represent quasi-

steady state condition (they are output after 18 tidal cycles) and were made with a disper-

sion coefficient of D = 1.0 m2/s, a time step of At = 31 min, and no wind. The discharge

does not reflect any effects of intake recirculation or near-field re-entrainment of previously

discharged water; i.e., the discharge excess temperature at the end of the near field has

been held constant at approximately 2.9' F, which equals the discharge temperature rise of

14.8' F divided by the effective (shallow water) dilution of 5.1 (equal to the product of rs

and S; see Table 3.1). This condition is termed a static heat budget.
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Figures 3.6a-d, along with Figure 3.5b, indicate sensitivity of computed excess tempera-

ture at maximum ebb to horizontal diffusion coefficient in the range 0 < D < 30m2/s.

Clearly, increasing D decreases temperature gradients, resulting in generally lower temper-

ature near the plume and higher temperature away from the plume. Based on a a qualita-

tive comparison with field measurements (shown later), it appears that D = 1 m2/s is rea-

sonably appropriate for Mt. Hope Bay and this value is used in remaining simulations.

Figures 3.7a-d indicate sensitivity to time step, At, for a short run of elapsed time =

186 min and a diffusion coefficient of D = 10 m2/s (first maximum ebb after initial high

slack). The contours show that, as At increases, the "time-splitting" error increases, re-

sulting in higher temperatures near the discharge. This error is caused by the fact that

ELA performs the operations of diffusion, advection, and heat loss sequentially (in that

order) during a time step. For water in the middle of the bay, which has been transported

for many time steps, the order and the number of time steps make relatively little differ-

ence because each parcel of water will have experienced each operation a number of times.

However, water near the discharge is "younger," and hence the effects are more important.

(The analogy can be made with a baseball game: early in the game, which team is leading

is likely to depend on whether it's the top or bottom half of the inning; conversely, later in

the game, each team will have had nearly the same number (percentage-wise) of at-bats.)

The present sequence of operations errs on the side of over-estimating temperatures near

the discharge because water parcels that are less than one time step "old" have never been

diffused, those whose "age" is between one and two time steps have been diffused for only

one time step, etc. If the order of operations were reversed, a similar error would occur

tending to underestimate near plume temperature. Note that the magnitude of the error

increases with the size of the diffusion coefficient.
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One way to minimize this error would be to change the order (make diffusion follow

advection) and have the diffusion operation (for each node) be proportional to the age of

the parcel (for those nodes within a travel distance one time step from a boundary). While

this may be tried in the future, the solution for present was to select At based on a trade-

off between accuracy (dictating small At) and computational efficiency (suggesting large

At). The chosen value of At = 31 min (used in all remaining simulations) is identically

1/24 of an M2 tidal period, preserving the capability to save the feet of the characteristics

for calculation with repeating (tidal) flow fields. The magnitude of the overestimate in

plume temperature using At = 31 minutes can be gauged by comparing Figures 3.7a and

3.7c.

Figure 3.8 illustrates time-varying diluted jet temperature and various heat fluxes when

the near-field temperature boundary condition is varied to reflect recirculation and re-en-

trainment. In particular, Figure 3.8a shows the jet temperature, while Figure 3.8b shows

various heat flux terms including the mixed jet inflow into the domain, and the following

fluxes out of the domain: 1) surface heat loss, 2) horizontal entrainment, 3) intake with-

drawal, and 4) boundary loss used to account for vertical entrainment. The small differ-

ence between the jet influx and the sum of the four fluxes out of the domain represents heat

loss through the open boundaries at the bottom of the domain.

These calculations are termed a dynamic heat budget calculation. Note that the time to

adjust to quasi-steady conditions depends on the distance from the source, and that

intermediate field temperatures seem to reach quasi-steady state after about 3-4 cycles at

temperatures about 50% higher than without recirculation or re-entrainment. Thus, due to

model linearity, results for no recirculation or re-entrainment (static heat budget calcula-

tion) could be scaled to include these effects by multiplying by a factor of about 1.5. Fig-

ure 3.9 shows excess temperature contours with recirculation and re-ntrainment for maxi-
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mum ebb, which corresponds to Figure 3.5b. Because the power plant intake flow is pre-

sumed to come exclusively from the upper layer (a = 1), the simulated recirculation and

re-entrainment (i.e, the factor of 1.5) are probably over-estimated..

To test sensitivity to the intake withdrawal, TEA and ELA were re-run using a = 0.5

(i.e., half of the intake flow from the upper layer and half from the lower layer). The velo-

city vectors (not shown) indicate somewhat less (re-)circulation near the intake, but are

otherwise similar to those shown in Figure 3.3. Figure 3.10 shows the corresponding excess

temperature contours at maximum ebb. Over most of the domain contours simulated with

a = 0.5 (Figure 3.10) and 1.0 (Figure 3.9) are very similar, though near the discharge and

intake, differences of up to about 0.5' F are apparent.

Figure 3.11a shows the time series of heat fluxes for a = 0.5 and Figure 3.11b shows the

time series of discharge, intake, and diluted jet temperatures (obtained from Figure 3.11a)

by dividing by the approximate volume flow rate. Figure 3.11b indicates that simulated

intake recirculation varies from about 0.8 to 1.3' F depending on tidal phase. Note that

this includes both the effects of direct recirculation and far-field temperature build-up. As

discussed in §2.1.2, the simulated recirculation should be viewed as an upper bound because

the simulations of circulation with TEA do not include momentum effects, thus tending to

exaggerate near field recirculation. Based on the water depths near the intake, a = 0.5 is

probably realistic, but some of the remaining calculations have been made with a = 1.0.

Figures 3.12a-b illustrate the effect of wind for conditions otherwise similar to Figure

3.5b which has no wind drift. Part a) is for a steady westerly wind of 3 m/s while part b)

is for a time-variable wind based on measurements leading up to August 25, 1976. (At the

time of maximum ebb, the wind speed being simulated in part b) is the same as that as-

sumed in part a).) In both cases, the wind drift has been taken as 0.5% of the wind speed.
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Figures 3.13a and b reflect our three-dimensional ELA calculations showing excess temp-

eratures at a depth of 0 and 3.5 m (11.5 ft) below the water surface for conditions of Ez = 0

(zero vertical diffusion). Figure 3.14a shows normalized measured vertical temperature

profiles at several locations identified on Figure 3.2a and Figures 3.14b and c show simulat-

ed normalized profiles for two values of vertical diffusion. (Considering all phases of the

tide and instances from the source representative of the measurements, it appears that zero

vertical diffusion best represents the data.)

Figures 3.15a - 3.18a show measured excess temperature averaged over a depth of 11.5

feet at four tidal stages on August 25, 1976. These data are the same as presented by

Kaufman and Adams (1981) but, in the present analysis, the ambient temperature used to

establish excess temperatures has been computed differently. (Unlike the former analysis,

where a unique background temperature was selected for each tidal phase, a constant ambi-

ent temperature equal to the lowest observation was used.)

Figure 3.15b - 3.1Sb show simulated excess temperatures plotted to the same scale, for

comparison with the measurements. The simulations assume a dynamic heat budget, with-

out wind drift, and are made with D = 1 m2/s and a = 1.0. In general, agreement is rea-

sonably good and the tendency for the simulations to exaggerate excess temperature near

the intake would diminish if lower values of a and At were used.

Finally, Figures 3.19 to 3.21 pertain to the present four-unit discharge, using parameters

found in Table 3.1. Figures 3.19a and b show the upper layer velocity vectors based on

output from TEA using a = 0.5. Part a) is for only the power plant (steady state) forcing

while part b) includes the tide and is presented at a phase of maximum ebb. Figure 3.20

shows excess temperature at maximum ebb using output from ELA assuming no wind, D =

1 m2/s, and including a dynamic heat budget. Time series of the various fluxes are shown

in Figure 3.21a. while discharge, intake, and diluted jet temperatures are shwn in Figure
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3.21b. Referring to Table 3.1, because the four-unit discharge temperature rise (ATo =

15.7' F) and shallow water dilution (rsS = 5.4) are similar to corresponding values for three

units (ATo = 14.8 F and rS = 5.1), maximum plume temperatures for three and four

units are similar. However, because the four-unit flow rate (Qo) and heat rejection (propor-

tional to QoATo) are approximately 40% and 50% higher, respectively, than for three

units, the size of the isotherms for four units is somewhat larger.

Figure 3.21b indicates that simulated recirculation for four units ranges from about 1.7

to 2.2' F above ambient depending on tidal phase. The difference from the three-unit re-

circulation shown in Figure 3.11b (ranging from 0.8 to 1.3' F) reflects, primarily, the great-

er heat loading and the fact that the intake for unit 4 is drawn entirely from the upper

layers, whereas the intake for units 1-3 are assumed to draw equally from upper and lower

layers (a = 0.5).

3.4 Computational Details

Calculations were performed on a MicroVax II and required the following approximate

CPU times. To compute circulation over a repeated 12.4-hr tidal cycle, TEA requires 15-75

minutes, depending on the number of iterations and harmonics. For calculation with only

one frequency, but iterating to simulate nonlinear bottom (interfacial) friction, CPu time

is approximately 15 minutes. To compute excess temperatures over the first tidal cycle,

using a time step of 31 minutes, ELA required 38, 58, or 90 minutes as the specified toler-

ance governing the accuracy of the tracking algorithm (value of EPS) was varied from 10-3

to 10-4 to 10-5. (Most calculations were performed with EPS = 10-4.) To simulate an addi-

tional 17 tidal cycles (saving the feet of the characteristics) required an additional 18 min-

utes. In total, then, a typical calculation takes about 1 CPU hours. Similar times were

required for the Millstone calculations presented in the following chapters.
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As stated earlier, program efficiencies made to the tracking algorithm in ELA make it

possible to use time steps ranging from minutes to hours. If dispersion coefficients are

independent of time (our assumption) CPU times decrease modestly while storage require-

ments decrease tremendously as time step increases, providing strong motivation to in-

crease the time step. (The motivation is even stronger if time-varying coefficients are

used.) The effect of At on the accuracy of Eulerian-Lagrangian transport models in general

was studied by Baptista (1987) as part of this project. While his study concentrated on

transport of an initial concentration distribution, additional "time-splitting" effects come

into play when considering the introduction of mass (or excess heat) through a boundary

(e.g., a river of the near-field transition circle of our power plant examples). Based on the

sensitivity study (described above), the choice of At = 31 minutes (1/24 of a 12.4-hr tidal

cycle) was chosen as a compromise between the objective of large At, and the desire to

maintain accuracy (insensitivity to At) near boundaries. It is anticipated that a significant

increase in At could be made, allowing increase in efficiency with little decrease in accura-

cy, if the order of computing dispersion and advection in ELA were reversed (so that advec-

tion would be computed first), and if the dispersion calculations took into consideration

fractional time steps for points near a flux boundary.
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Near-Field Parameters
Table 3.1

Computed for Brayton Point Simulation

Parameter

Discharge flow rate

Discharge temperature rise

Discharge velocity

Discharge channel depth

Discharge channel half-width

Discharge channel
characteristic length

Densimetric Froude no.
(based on ho)

Channel aspect ratio

Densimetric Froude no.
(based on to)

Transition radius

Near-field volumetric
dilution

Vertical mass entrainment

Horizontal mass entrainment

Maximum plume depth

Far-field plume depth

Shallow water dilution
correction

Symbol

Qo (cfs)

ATo ( F)

uo (fps)

ho (ft)

bo (ft)

to (ft)

Fo

ho/bo

Fo'

rt (ft)

S**

Ev**

Eh

hmax (ft)

hfar (ft)

rs

3-unit values*
1380

14.8

4.0 - 6.4

7.4 - 11.9

14.6

10.4 - 13.2

4.2 - 8.5

0.51 - 0.82

4.0 - 7.2

790 - 1120
(1000)

5.6 - 10.1
(7.8)

3.6 - 7.4
(5.4)

1.0 - 1.6
(1.3)

22.1 - 31.4
(23.0)

11.1 - 15.7
(11.5)
0.65

4-unit values*
1960

15.7

5.6 - 9.1

7.4 - 11.9

14.6

10.4 - 13.2

5.7 - 11.7

0.51 - 0.82

5.5 - 10.0

1080 - 1550
(1000)

7.6 - 13.9
(10.3)

5.4 - 10.7
(7.6)

1.3 - 2.2
(1.7)

30.2 - 43.4
(23.0)

15.1 - 21.7
(11.5)

0.52

*Ranges given refer to variation over tidal cycle. Values in parentheses were used
in simulation.

**These parameters were altered for model use to account for shallowness effects:
Sactual = rsS; E = Ev - (S - Sactual).Vactual
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Figure 3.2 Finite element discretization of Mount Hope Bay
a) Entire bay
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IV APPLICATIONS TO MILLSTONE NUCLEAR POWER STATION

4.1 Site Description

The Millstone Nuclear Power Station is located in Waterford, Connecticut, on the north

shore of Long Island Sound. The area of the site is approximately 500 acres. The main

station area of about 80 acres is sited on a point of land which is bounded on the east by

Jordan Cove and on the west by Niantic Bay which forms the entrance to the Niantic

River estuary (see Figure 4.1).

Tides in the Niantic Bay area are semi-diurnal with mean and spring ranges of 2.7 ft and

3.2 ft, respectively. Water depths range from several to 100 ft. Field data collected at the

site indicate that tidal currents dominate natural water movement in the vicinity of the

station. In particular. the flow into and out of Niantic Bay forms a strong current past the

station along a line running from the plant site through Twotree Island Channel. Currents

in Niantic Bay are also relatively strong as a result of flow into and out of the Niantic

River. In contrast, the currents in Jordan Cove, even during the strength of ebb and flood

tides, are relatively weak. Thermal- and salinity-induced stratification is not a significant

factor in the vicinity of the plant site although considerable natural temperature variation

is observed, particularly in shallower regions of the shoreline area.

The site consists of three nuclear units with a combined electrical output of approxi-

mately 2730 MWe. Open cycle cooling is employed with condenser cooling water entering

the station through intake structures located on the west side of Millstone Point. After the

water passes through the condensers, the heated water is discharged in a southeasterly

direction through a 1200-ft-long 100-ft-deep quarry and then into Long Island Sound

through a pair of 55-ft-wide channels.
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4.2 Site Schematization

Figure 4.2 shows the finite element grid. With minor modifications, this grid and the

site schematization are similar to those used by Kaufman and Adams.

For modeling plant-induced flow, the domain had a constant depth of 11.5 feet over

most of its area corresponding to the estimated far-field plume thickness listed in Table 4.1.

As with the Brayton Point Simulations, the depth was adjusted in shallow areas to account

for depths less than 11.5 ft. For the tidal calculations, the full depth was used. As illus-

trated in Figure 4.2, a semi-circular near field region with radius of 475 feet was carved out

of the domain at the tip of Millstone Point.

Near-field mixing parameters, based on the analysis of Jirka et al. (1981), are summa-

rized in Table 4.1. Parameters are listed for both the existing three-unit and the previous

two-unit conditions. Note that, at Millstone, the water depths surrounding the outfall are

relatively deep resulting in negligible bottom effects on the discharge and entrainment (i.e.,

rs = 1.0 for both two and three units).

Different magnitudes of discharge and entrainment fluxes were specified at the near-far

field interface, corresponding to the simulation of two- and three-unit operation. As with

the Brayton Point simulations, nodal points at the southern edge of the transition circle

had specified normal flux into the domain representing the dilute discharge. Using parame-

ters listed in Table 4.1, the temperature of the diluted discharge above the intake tempera-

ture was calculated as 230 F/4.0 _ 5.80 F for two units and 21.5'F/3.0 _ 7.20 F for three

units. As with the Brayton Point simulation, the temperature that was actually specified

depended on whether static or dynamic heat budget calculations were performed. The

nodes adjacent to the diluted discharge had zero normal flux and all the remaining nodes

had approximately equal specified entrainment fluxes out of the domain (and into the theo-

retical near-field jet region). The intake was simulated by removing flux from four nodes
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on the western edge of Millstone point. For these calculations, a = 0.5 indicating that half

of the intake flow was drawn from the upper layer and half was drawn from the lower

layer.

Ambient circulation was simulated by specifying time-varying water levels along the

ocean boundary at the southern and eastern sides of the bay. To account for the spatial

variation of tidal flow along this boundary, a phase lag was utilized causing the tide to

propagate from east to west. The tidal period was 44640 sec, the amplitude was 1.35 ft,

and the phase lag was 12 min between the top node on the eastern boundary and the far

western node.

The remaining far-field parameters were selected in order to best match conditions

observed during recent field measurements with three units reported by NUEL (1988).

Measurements were conducted during Aug. 1987 during conditions of near constant (full-

load) station operation and generally low winds. Hence near field parameters from Table

4.1 were used directly, with no wind drift. Vertical temperature profiles indicated little or

no vertical differences and hence only 2-D simulations were performed. A horizontal dis-

persion coefficient of D = 50 m2/s was used based on previous modeling of the two-unit

plume by Stolzenbach and Adams (1979). This coefficient is significantly higher than the

value used at Brayton Point (1.0 m2/s) reflecting increased tidal mixing due to greater

exposure at Millstone Point. Surface heat loss was simulated using a surface heat transfer

coefficient of 157 BTU/ft2 - F-day corresponding to a first-order decay coefficient of 2.5 x

10-6sec-1 based on a water depth of 11.5 ft. These values are consistent with summertime

meteorological conditions at the site.
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4.3 Results

Simulations are presented for both two and three units. In each case the dynamic heat

budget was used. Initial calculations showed significant sensitivity to time step (more so

than at Brayton Point) and hence a value of 15.5 min was used. As discussed previously,

the sensitivity to time step in ELA increases with the magnitude of diffusion coefficient,

explaining the increased sensitivity at Millstone as compared with Brayton Point.

Figure 4.3 shows simulated plant-induced velocities while Figures 4.4a-d depict surface

velocities for a combination of plant-induced and tidal circulation. The velocities were

computed by TEA for conditions of two-unit discharge. Figure 4.5 depicts corresponding

pathlines simulated by ELA for nine particles released within the domain at high tide.

Depending on their point of release, some particles are entrained at the intake, some are

entrained in the plume, some are flushed from the domain, and some remain in the domain.

Figures 4.6a-d show computed two-unit excess temperatures (in F) averaged over the

surface layer for four tidal phases, based on the above flow field. Figure 4.7a shows corre-

sponding time-varying fluxes and Figure 4.7b shows time-varying values of discharge, in-

take, and diluted jet temperature over a period of 200 time steps, or a little more than four

tidal periods.

Note in Figure 4.7a that the sum of the surface heat loss, horizontal entrainment, and

intake temperature fluxes is significantly less than the diluted discharge heat flux. The

major reason is that the downwelling flow, necessary to provide for vertical entrainment

and lower layer intake flow, is not modeled explicitly, but is just advected out the open

boundary. Also note that, by the end of the simulation, the diluted jet temperature has

reached periodic steady state at a level of about 7-7.5 F depending on tidal stage. This is

about 20 to 30% greater than the diluted discharge temperature for a static heat budget

(5.8° F). Finally note that the intake recirculation varies between about 0.4 and 1.8° F
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depending on tidal phase. In comparison with Brayton Pt., the effect of the tide in pro-

moting direct recirculation (during flood phase) appears greater, while the effect of far field

build up appears to be less.

Figures 4.8a - 4.11a show simulated surface layer excess temperature contours for three

units, under conditions of maximum ebb, low slack, maximum flood, and high slack, re-

spectively. Except for the different discharge conditions (as assigned from Table 4.1) these

simulations are similar to those for two units presented in Figures 4.6a-d. The correspond-

ing circulation field for three units (not shown) is similar to that for two units (Figures 4.3

and 4.4) except that the influence of the plant-induced circulation extends further into the

domain.

In comparing temperatures for two and three units, note that the three-unit contours are

higher than the two-unit contours throughout the domain. This is due to the fact that, not

only is more heat being discharged. but the near field dilution is reduced (from S = 4.0

with two units to 3.0 with three units). The reduced near field dilution results from the

fact that, with three units, discharge is through a pair of openings in the quarry. The re-

sulting crossectional area of the discharge opening is thus twice as large for three units as

for two units. The resulting decrease in discharge velocity combined with the increase in

channel characteristic length scale (; see table 4.1) results in a lower Froude number and

hence reduced near field mixing. Note that this situation is in contrast to that that oc-

curred at Brayton Point where discharge from three and four units was through the same

structure, leading to a small increase in dilution with the added units. It can also be men-

tioned that there was a transition period at Millstone where the second quarry cut had

been opened but only two units were operational. In comparison with the original condi-

tion with two units and one cut, the transition condition resulted in much lower discharge

velocities and mixing. These conditions explained the sudden increase in near field and

intermediate field temperatures observed following the second cut (NUEL, 1987).
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Figures 4.8b-4.11 lb show near-surface plume measurements under similar tidal phases,

and plotted to the same scale as the corresponding simulations shown in part a) of each

figure. Measurements were made by Ocean Surveys, Inc., and were reported by NUEL

(1988). It should be noted that the measurements were of dye concentrations and were

scaled to excess temperature. Agreement between measurements and simulations is reason-

ably good, although the following discrepancies can be noted.

First, the higher temperature contours (e.g., 6 and 8' F) are sometimes bigger in the

simulations than the measurements (e.g., high slack). As discussed previously, this may be

explained by the finite time steps and the sequence of diffusion and advection calculations

in ELA that tend to overestimate temperature near the point of discharge.

Second, simulated contours near the open boundary (e.g., the 1.5' F contour for maxi-

mum ebb) are somewhat smaller than measured. This can be explained by the finite size of

the computational domain combined with the assigned boundary condition of zero concen-

tration. A somewhat larger 1.5' F contour would be simulated if the domain were larger.

Third, the simulated low slack isotherms extend considerably further to the east than

the measured isotherm. This is explained by the fact that the measured plume, while

nominally taken at low slack. was actually taken more than an hour into flood phase

(NUEL, 1988).

Finally, the simulated plumes are somewhat rounder (less elongated) than the measured

contours. In part this is due to the formulation of linear TEA which omits the momentum

terms, leading to exaggerated near field circulation. It may also be due to the method of

plume measurement and/or presentation. For example, dye measurements at the Unit 1

intake indicate recirculation of the order of 1.2 to 1.4' F. If the intake were drawing equal-

ly from an upper (thermally influenced) and a lower (ambient) layer-consistent with the
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assumed value of a = 0.5--then upper-layer excess temperature adjacent to the intake

would range from 2.4 to 2.6' F. Yet the measured contours imply that surface tempera-

tures near the intake are less than 1.5'F for all tidal phases. Certainly during high slack

one would expect to see some residual heat (dye) build-up in Niantic Bay.

Figure 4.12a shows time-varying heat fluxes and Figure 4.12b shows corresponding dis-

charge, intake, and diluted discharge temperatures for three units. Note that the diluted

discharge temperature, which ranges from about 8.5 to 9.5 F, is higher than the corre-

sponding temperatures for two units (approximately 7 to 7.5' F) due mainly to the de-

creased near field dilution. The intake recirculation shown in Figure 4.12b ranges from 0.6

to 2.3° F. These values are similar, on average, but greater in range than the values of 1.2-

1.4'F reported (by NUEL, 1988) based on dye measurements.
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Table 4.1
Near-Field Parameters Computed for Millstone Simulation

Parameter

Discharge flow rate

Discharge temperature rise

Discharge velocity

Discharge channel depth

Discharge channel half-width

Discharge channel
characteristic length

Densimetric Froude no.
(based on ho)

Channel aspect ratio

Densimetric Froude no.
(based on 04)

Transition radius

Near-field volumetric
dilution

Vertical mass entrainment

Horizontal mass entrainment

Maximum plume depth

Far-field plume depth

Shallow water dilution
correction

Symbol

Qo (cfs)

ATo (F)

uo (fps)

ho (ft)

bo (ft)

o (ft)

[o

ho/bo

]o'

rt (ft)

S

Eh

hmax (ft)

hfar (ft)

rs

2-unit values*
2290

23

3.6 - 4.5

9.2 - 11.7

27.5

15.9 - 17.9

3.0 - 4.3

0.33 - 0.42

2.4 - 3.3

655 - 782
(475)

3.4 - 4.6
(4.0)

1.7- 2.7
(2.2)

0.7 - 0.9
(0.8)

18.3 - 21.9

9.2 - 11.0
(11.5)

1.0

3-unit values*
4150

21.5

3.1 - 3.9

9.2 - 11.7

57.5

23.0 - 25.9

2.6 - 3.8

0.16 - 0.20

1.8 - 2.4

700 - 830
(475)

2.5 - 3.4
(3.0)

0.9 - 1.7
(1.3)

0.6 - 0.7
(0.7)

19.4 - 23.2

9.7 - 11.6
(11.5)

1.0

*Ranges given refer to variation over tidal cycle. Values in parentheses were used
in simulation

-84-



z
w
Li,
0Cc3

z
a

W WL.

0 c
CL CL C1 , 

·

CL
Z

w

0
""

1-%' z
0
.J

-0AN ' <~~~~cr

80
0co N
-o

,',
x J

cutj 

Cr

0
-

c~

C.

C 4 o

_ .

-85-

;-5

,r
r r

.rr. rr r
·. . · rr



Q

zc

o
Cr

C©

CJ o.~c~

E~

ov::

s i
Q1c:

r
o

o
c 

._

V,

a; ._

C;

C

LO

In
-

-86-

F3
ri:

m ~



,1`

ICo
Ei

7

I

C)

,o

O

F-c

©

-ia)-

C-

C

a)

U

a)

._Cl

a

-87-

po

I -

F



I I

t1, , I
I I I

II 1
! I

'I I

-88-

II
... I

-C0

w

IU)

-J
m

tI,
/ I

1 1

! I I

t
I

I

c

C1-

C

,-e

;Q

CrF

E~
to,;

QC
C

.

O

C
C:

t

I

t

t

p

t

l

I

I

t



r

t / 1

I

I
1

I

fit

i, I 

/

/

/

!

!

I

-J
0
I-

__1

<I

_J

A:XlI

E

I I

I
/

II

I
I

t

/
I r

: C

-I/ . Z
C.;

,tC El
t _

.

W.

I

I I t I

I I·

I

Nl
I,,

-89-

-/ 
I

t

t

1

t

I



U

1

I
I

I
I/, i I

I
I

1

1,

I
I 

I I I

I I

I

E.
_ I.

-90-

-i
C

I-

-J

w
I--
(n
N.

E

I

I

/

lc
l o

C

E

=

"1 C:
I 

i C..; 't
C;

_

6 i aC
. E

11% i
I

I

_ .

l

l

I

c,:

I

l

I

l

I
l



I 

c! S-op.,

i hC

c

f~
l l: :.II I -,tI wI

\ i 

I Ii
I

i

i

"1- I

*I

I

-91-

-J

-iJ

I

E 

I

14
C-·

I



1
v

>

. -

3
X

c
cr

C

c~

C

v-

c

Ok3

c 

cCa; 
Cz
.C

i; X

Ct;

I t

-92-

r-



*0

Q
5-.

C.; -

c

M' )C

ct1
X D

Z-iC
_ _

C.' -

4 X

* Ct

._

-93-



Er,

C4

u

C

Cc

-94-



r

-95-



c
rtj

C-CC1:
.-

t:L
-z

. . .... .J

-96-



-97-



I I d

. . 1 $-- -

I t

c

E

e Ct

C v~ c

Cq 0 = 

+- - V:~ t ,
_ Qs

eo . °I W X

+- u- t 

'¾

I,

I,

If:

( K:

I.

ij ,

i -

C0 3Vd fM0- -V3JHV~~~~~~' 

-98-

I1

J

Li

-

J

4,

iLj

.L-

HiI

__1

._? _-

L

.1 =T .=

Ar\

4J

i i In h-.I _I~L! i.-- _C C 

. C

··
I _-

i i

.t _E- 

t;r

I 6 .Q 

. O

Li

n
0
-i(*f)

..
"::

'I

i
0

. s~~~

, J -- --I

.-A- .- I -- T- - I-- -

<V-'

i r

t

I

· ·



r
-0

r"

I-

1 V

C)~ .

II I I
! i .I -~:-CIZ

C '~
C- -.c

-W.' r

0,- .v C

~C~ -
fL C;

e
t-;

C

-o 

r_

© Ci

-99-

LL

LL

f--

r-L

,.

z

-J
..i
llr
.C::

C) 0 0 0
r", N~~~~~~~~~~~~C'

I i i"--i-"---

i~~~~~~~~~~~~~~~~~



c;

E
>:
IZ 

FE

:z

.

C

ccC;

c:~

cZ

0-

-100-

L.-

r''~~" '-I~- -~~I-'~" · -~~~ ~-~~- --··--- ·-------- -·-·-
i

I

I

II

I

I

I

I

. W-



N
i -

or;c

(-i.. _

1 . ! i 
I --C

< X _ 

00k C"00

. t

L29I U.

a
;

Z -

C:

U.

I :

-I<
,. I

00: C. 3

I; 

'k 

7

-"> z LI

&~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

IL C,,~. i 

t- t

z

II 

-101-

'-0

II

ts
Cb
C

! =~d

I ¢-
, 0

Cr.~~

a)

E
I )L

C15

00

C)

; 

r-

.

i

i

I

z Z, I--,

t)

t-I

.1

LI



c.
ct
v,

c-

c

c.
C-

L

V,c
-

Cc
*;-,

E:

o,

;
_. t_

x

C-

; C._ccl
t,-
,....

o ...

-102-

- , ---- - ----

.



I I

l ;;·T~T;-S . I -

C -G 

Cr

I

Ocs Zi 

2 '
W-.
U ;
O

C

bC

~z ObE

_ _
_ _

_ i

I - C-Ct p
I c I

I I

-103-

1w-

6 i
I I ; I . z .~~~~~~-. I . I ., ., ; -i' 4W~~~~~~~~- a 

I- ~ ~ ~ ~ ~ ~ --- ~~' , .--I z : i C~~~~~~~~ZC :

· L
-P

U
3

c
uh

r
L

·J

I
ZI
I

II

't 

i

or,
CD

--i



c.-

C;

E

C.

C
m

-,:CC;

.

-104-

CI=

a

i 
t

i



z

o

z

C_

t

I

.7

,, I i
N

-105-

-- 

.i

,- = , 

I

- O 

,-x
3 - ; >1 i i

V) -( -___
1U-

i LL
I; i

co I

t l.

Pt

!

:3
,

OC
-

00

::

ta::bb

-

CREF,
V;

C

cc

I-

._p
cZZ

31

I~ Q·I·

l 

-

-C

I1

s^·l

o

IiC) 

II

C.)j 's~~~~~~~~~~~~~III
i"
l

i

I

I . .



.... '

c:

r-

C-

cr
._EF

C-c-ro

r

-,c

C:CC;

,-.,

c,:Y /

a; cC;

C:
-

E4

-106-

r - - ,- -

L ----- - ---- - - - - - - - --- - -- - - - - - - - --- - --- -l



I?:

N, 
a 

0 S

z ;i i
l C > 2

-107-

z
.

-

.t k

r,

C - '

I .,re
_ : -

-> 

_ t v 
_ _ 

c
C

C

0
C)ECCceQu
1F1

a))
f--

tD1c

~z

i
In
ru

0

it

w

Zc z
11,

0
1-

/ 1

.1

.47

1,4

I

IIt

al

L



0

+ 0

+ _

C
o
ED

4)
0

fJ)C)'
70)

I

I

Ia / ;,
/' ,.- ' f ~~~~~~~~~~i 'I j

. i t fj 

!

*1-s/ )
(.: Els - S/C**)

M, 0O

CC L 31Y M014 J..¥3'H

-108-

CS-O

c
C

c

-C

.3_

t _

C _

.,~ C

e
T~, ~.

=~

/

I
I

'

_I,

Li
1

C-

if)

z
0

-i
__

r

K

7

E 

L C

-

. =

S]

C;

C f_
_ 

- -

-

I I !

I

.



C.
I I 

j

b .bD~~~~~~~~~~~~~~~~~~~0I e 
_ Me

I X d

-o
3r

I - ~~~~2 .2 ~~- l -_

_ i f s c
I rr= C: 

(V W(N C

cE4'

C

14vc;

I-

Ld -

C
c-

I, r

C:

C

._

At .

C

C;

-109-

CVw
-Ij

Li
If

.r-

-- z

Li

022-i-i
s

0 0 0 0
C)O~~( O O O

i

i

I



-110-



V SUMMARY

This report describes how a pair of two-dimensional numerical models--a harmonic

circulation model TEA and an Eulerian-Lagrangian transport model ELA-have been

coupled to simulate thermal plume dynamics in the vicinity of coastal power plants. These

simulations follow previous study by Kaufman and Adams (1981), but differ from most

previous studies in that near field mixing is represented explicitly by specifying

entrainment and mixed discharge fluxes (obtained from a separate near field model) as

model boundary conditions. Combined with the near field simulations, the technique

allows realistic simulation of time-varying temperature throughout the entire receiving

water domain. The programs also allow particles to be tracked and provide a time history

of various heat fluxes, discharge temperature, intake recirculation, etc. Additional model

features added in this study allow simulation of surface wind drift and three-dimensional

spreading due to vertical diffusion.

The models have been applied to two sites-Brayton Point Generating Station on Mt.

Hope Bay in Massachusetts and Millstone Nuclear Power Station on Long Island Sound in

Connecticut. At Brayton Point, simulations were made with both three- and four-unit

operation and the former were compared with field measurements. At Millstone, calcula-

tions were made for both two- and three-unit operation and the latter were compared with

field measurements. In both cases reasonable agreement was achieved.

Computational expense was found to be reasonable, requiring about two CPu hours on a

MicroVax II to perform simulations to quasi steady state in a periodic (tidal) flow field.

This is significantly less expensive than earlier calculations by Kaufman and Adams (1981)

who used more traditional time-stepping models.

In the course of the study, several areas were identified for future research. Regarding

the circulation model TEA, the linear version used in these calculations omits the
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convective acceleration terms in the momentum equation which leads to excess circulation

between discharge and intake. The non-linear version of TEA includes these terms, but was

found to be numerically unstable for these applications. It would also be desirable to allow

the near field boundary fluxes (both the magnitude and their location along the transition

circle) to vary with tidal phase. An initial foray suggested that this was possible in a

harmonic circulation model by introducing periodic boundary fluxes at both the dominant

(tidal) frequency and two times the dominant frequency.

Calculations with the transport model ELA revealed strong sensitivity to the model time

step. In the present formulation, with diffusion and advection computed in that order, the

model overestimates temperatures (concentrations) near inflow boundaries, and the magni-

tude of error increases with At. In view of the computational advantages of using large At

(and the fact that ELA is otherwise well suited for large At; Baptista, 1987), it is recom-

mended that the formulation be changed such that the diffusion calculations follow advec-

tion and that, for locations near an inflow boundary, the time of travel from the boundary

be incorporated in the diffusion matrix. It is also recommended that, in order to realistic-

ally simulate the build-up of background temperatures, outer boundaries be located as far

away from the discharge as possible.

- 112 -



VI REFERENCES

Baptista, A., E. Adams, K. Stolzenbach. 1984. The solution of the 2-D unsteady,
convective diffusion equation by the combined use of the FE method and the method of
characteristics. Report No. 296, R. M. Parsons Laboratory, MIT.

Baptista, A. M., E., Adams, K. Stolzenbach. 1985. Comparison of several Eulerian-
Lagrangian models to solve the advection-diffusion equation. Proc. of Int'l Symp. on
Refined Flow Modeling and Turbulence Measurements, U. of Iowa, Iowa City, Iowa.

Baptista, A., E. Adams, K. Stolzenbach. 1986. Accuracy analysis of the backwards
method of characteristics. 6th Int'l Conf. on Fin. Elem. in Wat. Res., Lisbon.

Baptista, A. 1987. Solution of advection-dominated transport by Eulerian Lagrangian
methods using the backwards method of characteristics. Ph.D. thesis, Dept. of Civil
Engineering, MIT.

Jirka, G. H.. E. E. Adams, K. D. Stolzenbach. 1981. Properties of buoyant surface jets.
Journal of Hydraulics Division, ASCE 107.

Kaufman, J. T., E. E. Adams. 1981. Coupled near and far field thermal plume analysis
using finite element techniques. Report No. MIT-EL 81-036, MIT Energy Laboratory.

Kossik, R. F. et al. 1987. User's manual for ELA: A two-dimensional Eulerian-Lagrangian
transport model. MIT Dept. of Civil Engineering.

Marine Research, Inc. 1978. Bravton Point investigations, Aug.-Oct. 1977. Quarterly
Progress Report, Falmouth. Mass.

Northeast Utilities Environmental Lab (NUEL). 1987. Monitoring the marine environment
of Long Island Sound at Millstone Nuclear Power Station, \'aterford, Connecticut:
Summary of studies prior to Unit 3 operation. Northeast Utilities Environmental Lab,
Waterford, Connecticut.

Northeast Utilities Environmental Lab (NUEL). 1988. Monitoring the marine environment
of Long Island Sound at Millstone Nuclear Power Station, Waterford, Connecticut:
Three-unit post-operational studies, 1986-1987. Northeast Utilities Environmental Lab,
Waterford, Connecticut.

Ryan, P. J., D. R. F. Harleman, and K. D. Stolzenbach. 1979. Surface heat loss from
cooling ponds. Water Resources Research 10(5):930-938.

Stolzenbach, K., and E. Adams. 1979. Thermal plume modeling at the Millstone Nuclear
Power Station. Report to Northeast Utilities Service Company.

- 113 -



r.

I


