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Abstract

This report describes how a pair of two-dimensional numerical models (TEA and ELA)
have been coupled to simulate thermal plume dispersion in the vicinity of coastal power
plants. The work follows previous study by Kaufman and Adams (1981), but differs from
most previous studies in that near field mixing is represented explicitly by specifying en-
trainment and mixed discharge fluxes as model boundary conditions. The models have
been applied to two power plants—Brayton Point Generating Station and Millstone Nu-
clear Power Plant. Comparison against field data shows generally good agreement in both
cases, and computational costs are reasonable. Several areas for additional research have

been identified.
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I INTRODUCTION

The general objectives of our research have been to develop and apply improved numer-
ical models to simulate thermal plumes and intake recirculation from coastal power plants.
Our approach is to model flow and temperature in the so-called intermediate and far fields
(i.e., distance greater than several hundred meters from the source) and to parameterize
the near-field mixing (occurring at distances from the source of less than a transition dis-
tance of several hundred meters) through prescribed flux boundary conditions. This ap-
proach was documented in Kaufman and Adams (1981), and Figure 1.1, adapted from their
report, shows the model schematization and parameter definitions for application to a hy-
pothetical power plant with surface discharge and shoreline intake. Note that in this
schematization, waste heat is presumed to reside in an upper layer of constant thickness
while water in the lower layer remains unheated; however lower-Jdayer water may be en-

trained into the discharge plume or drawn into the power plant intake.

Kaufman and Adams (1981) applied this schematization to the Millstone Nuclear Power
Station (on Long Island Sound, near Waterford, Conn.) and the Brayton Point Generating
Station (on Mt. Hope Bay, near Somerset, Mass.) using the two-dimensional numerical
models CAFE and DISPER. The technique worked, but was very expensive due to require-
ments of small time and space steps. Hence only limited model sensitivity and refinement

could be undertaken.

Accordingly, in recent research jointly sponsored by the ELAB/EUP and the MIT Sea
Grant Program, two new and fundamentally different programs were developed. The first,
TEA (Tidal Embayment Analysis), replaces CAFE and computes 2-D currents while the
second, ELA (Eulerian-Lagrangian Analysis), replaces DISPER and computes temperatures
(or the concentrations of a passive tracer). This report describes the adaptation and appli-

cation of these models to the same two power plant sites, as illustrated by the calculations



in the following two sections. Before proceeding, however, the models are briefly reviewed
with emphasis on their application to the power plant schematization of Figure 1.1. Addi-

tional information can be found in the listed references.
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Figure 1.1 Description of surface jet parameters used in model schematization (adapted
from Kaufman and Adams, 1981)



-



II BRIEF MODEL BACKGROUND
2.1 TEA
2.1.1 General

TEA is a two-dimensional harmonic finite element circulation model. Major references
are Westerink et al. (1984, 1985), while additional references include Westerink et al.
(19864, b). In its complete non-linear form, TEA solves the following depth-averaged con-

tinuity and x and y momentum equations

901 Slu(hen)] + %[V(hm)} =0 (2.1)
w8ty = g8 1St - 7o) (22)
Gt gt "% +fu= —g%q + /o1 - T?/p(thn) (2.3)

where h(x,y) is mean water depth, 7(x,v,t) is water surface elevation above the mean,
u(x,y,t), v(x,y,t) are x and y velocity components, f is the Coriolis parameter, g is the
acceleration of gravity, r}S(, T; are the x and y components of surface (wind) stress, rg =

pcelu]u, Tb7 = pce|u|v are the x and y components of bottom friction, and |u| = (u?+v?)%.

Y

The model can be driven by prescribed elevations on open (ocean) boundaries, by pre-
scribed fluxes (e.g., rivers or plant flows) on land boundaries, and by prescribed shear stress
on the surface. Because the model is harmonic, all forcing functions are presumed to be the
sums of periodic components. (Note that steady forcing can be modeled as a periodic forc-
ing with zero frequency.) When the model is driven by forces of a particular frequency, the
primary response in the interior is at the same frequency. However, because of nonineari-

ties, responses at additional frequencies are also created. Through an iterative procedure,



the full nondinear model allows any number of such frequencies to be generated. However,
the model may also be run in a linear mode in which noninear terms are dropped (bottom

friction is linearized) and hence the model responds only at the forcing frequency.

2.1.2 Application to Power Plants

In computing circulation from power plant discharges, two basic TEA runs have been
superimposed. The first is tidal circulation, computed over the entire water depth, by
specifying sinusoidal tidal elevations along open boundaries. In all applications to date, a
single frequency w, representing the M, tide, has been used. The second run simulates the
plant-induced circulation, computed over the upper layer, by specifying steady fluxes repre-
senting i) diluted plant discharge into the upper layer (along the central portion of the
transition circle) with total flow rate SQq, where S is the volumetric near-field dilution;

ii) intake flow out ofthe upper layer (at the shoreline) with total flow aQo where o (0 <
a < 1) is the fraction of intake flow drawn from the upper layer; iii) horizontal entrainment
flow out ofthe upper layer (distributed along the outer portions of the transition circle)
with total flow rate ELQq, where Ep, is the near-field horizontal entrainment rate; and iv) a
downwelling flow necessitated by mass conservation flow out ofthe upper layer (distributed
along distant regions of the shoreline) with total flow rate [Ey + (1 - @)]Qo, where Ey is

the near-field vertical entrainment rate. Note that S=1 + Ey + E,.

Formulae for the near-field parameters Ey, Ey, S, and o, as well as the radius of the
transition circle ry, and the thickness of the upper layer h, have been developed from the
Stolzenbach-Harleman surface jet model (Jirka et al., 1981) and are presented in Kaufman
and Adams (1981). Site-specific values for Millstone and Brayton Point applications are
given in the following sections. In principle these parameters vary with the tidal stage as
does the spatial distribution of fluxes along the transition circle (e.g., the near-field plume

may be deflected to the left during flood tide and to the right during ebb tide, or vice-



versa). Much of this variation may be approximated, in principle, by fitting time-varying
fluxes, at frequencies w and 2w, to the computed tidal variations (at frequency w) of near-

field parameters.

It should be mentioned that, while we have used the non-linear version TEA, we have
encountered instability when including the non-Jinear momentum terms. We believe this
instability is due to the very large velocity gradients that occur due to prescribed near field
boundary fluxes. Hence all results shown are without momentum terms. The consequence
of this approximation is that predicted flow probably recirculates (toward the power plant
intake and the near-field entrainment zone) faster than would occur in nature. However,
comparison of measured and predicted temperatures suggests that this assumption is not
too bad. Furthermore, the neglect of the momentum terms can be justified, in part, by the
fact that computations begin in the intermediate field—after the relatively high momentum

of the near field has been diluted.

2.2 ELA
2.2.1 General

ELA is a 2-D transport model which can be coupled with TEA to solve the advection-

diffusion equation.

ac dc oc_ 190 dc 10 ac ac
> + UK + V-ay— =h B;(.[thxBi + thyay] + I Bj—,[hDyxai + hDy ] + 0 (24)
where c(x,y,t) is concentration, Dxx, Dxy, Dyx, and Dyy are dispersion coefficients, and 6

represents sources, sinks, and vertical boundary fluxes. ELA solves Eq. 2.4 using a split

operator technique involving the backwards method of characteristics (a Lagrangian proce-



dure) for advection, a conventional implicit Galerkin finite element scheme (an Eulerian

procedure) for dispersion, and local explicit calculations for source and sinks.

The treatment of advection is what makes ELA both more accurate and efficient than
many previous transport models. In essence, advection is computed in two steps. In the
first, characteristic lines are computed by integrating the velocity field backwards in time
over a time step At from each node. The feet of the characteristic lines are then used as a
basis for interpolating nodal concentrations from previous time steps. As part of this pro-
ject, Baptista (1987) has studied, both theoretically and numerically, the accuracy of alter-

native Eulerian-Lagrangian schemes.

It should be mentioned that, for periodic flow fields (e.g., tidally driven at a single fre-
quency, as we have assumed), tremendous savings are possible if the model time step in
ELA is set to an integer fraction of the tidal period. In this way characteristic lines only
need to be computed for each time step in the first tidal cycle. They can then be saved and
used to interpolate concentration over succeeding tidal cycles. As a result, calculations
lasting several weeks or more can be conducted at only a small additional cost over that of
the first tidal cycle. Similar savings apply in applications using a steady flow field. Speci-

fic costs are discussed in the following sections concerning the Brayton Point simulation.

The major reference to ELA is Baptista et al. (1984), and additional references include
Baptista et al. (1985, 1986) and Baptista (1987). An informal users’ manual (Kossik et al..
1987) documents the combined use of TEA and ELA, including several computational im-

provements made to the model as part of this project.

2.2.2 Application to Power Plants

For power plant applications, Eq. 2.4 has generally been applied to the upper layer of

constant depth h and concentration ¢ has been replaced by excess temperature AT, which



is the difference between water temperature with and without plant operation. The sink

term thus represents excess heat loss and is expressed as

o=-52T (2.5)
where k is a surface heat loss coefficient (units of £/t) computed from local meteorological
data using formulae presented in Ryan et al. (1974). All calculations to date have used

constant dispersion coefficients whereby Dxx = Dyy = D and Dxy = Dyx = 0.

Excess heat enters the domain via the diluted power plant discharge in the middle of
the transition circle and is represented by specifying an inflow (excess) temperature. The
user may pre-specify steady or time-varying inflow temperatures or, more realistically, may
allow the program to compute time-varying temperatures reflecting transient intake
recirculation and nearfield re-entrainment. The former are referred to as static heat
budget calculations while the latter are termed dynamic heat budget calculations because
the inflow temperatures are computed from a dynamic nearfield energy budget using the
instantaneous intake and entrainment temperatures. At open boundaries, excess
temperature is assigned to be zero for both advection (on flood tide) and dispersion

calculations.

Two features of our modeling that were introduced recently include simulations of wind
drift and vertical diffusion. While a depth-averaged circulation model such as TEA can
simulate the effects of surface wind stress, actual vertical velocity profiles resulting from
wind stress are three-dimensional and near-surface velocities may bear little resemblance to
depth-averaged velocities. This is true whether the full water depth or a constant depth
surface layer is used. In order to analyze in a simple manner the effects of a surface wind
shear on heat transport in the upper layer, a “wind drift” option was added to ELA. The

influence of the wind can approximately be simulated by adding a drift velocity proportion-



al to the wind speed to the velocity field computed by the hydrodynamic model TEA. In
this manner a three-dimensional effect is included in the sense that regions of implied up-
welling and downwelling from a fictitious lower layer are introduced near boundaries. The
excess temperature of upwelling water is assumed to be zero and heat associated with

downwelled water is assumed to be lost from the system.

The option now exists in ELA to compute depth-varying concentrations (or excess temp-
erature) due to vertical diffusion under certain limiting conditions. Consider a vertically
uniform (2-D) flow field, u(x,y,t), v(x,y,t), large water depth (such that ¢ = 0 on the bot-
tom, z = h), spatially homogeneous horizontal and vertical diffusivities defined with re-
spect to the (principal) coordinate axes, and internal loss represented by a first-order decay

coefficient K. The 3-D transport equation (analogous to Eq. 2.4) for ¢(x,y,z,t) then

becomes
%l s -g% = DS + D”W + DS - Ke (2.6)

where the vertical coordinate z is defined positively downward from the water surface.

The zeroth and second vertical moments of the concentration distribution, my(x,y,t)

and mo(x,y.t) are defined as
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Multiplying each term of Eq. 2.6 first by z0 and then by z2 and integrating from top to

bottom yields, after minor manipulations,

-gf-nt—o + ugr% + v-gfyng = Dxxm—az,mo + DWB T _ Kmy (2.9)

ggl + ll-gg—z + VW Dxx%{'ﬁ + Dyy’wg3 + 2Ez (210)

Each of these transport equations is similar to the 2-D transport equation for ¢ and is com-
puted similarly by ELA. If a (half-) Gaussian vertical concentration distribution is as-
sumed, then the computed values of the two dependent variables mg and o2 can be used to

construct

-22/202
¢ = |2 Mo o2%/202 (2.11)
A Uz
If, instead of internal loss, heat (or mass) is lost through surface exchange, an equivalent

first-order decay coefficient can be computed as

2k

K=
T Oz

(2.12)
where k is the surface heat exchange coefficient defined in Eq. 2.5 and the decay coefficient
is equivalent in the sense that the rate of heat loss is the same when integrated over the
water column. In this case, the last term of Eq. 2.9 may be replaced by (2/ w)%kmo/ oz and
Egs. 2.9 and 2.10 now become mildly coupled. Note that these procedures are only approx-
imate because the concentration distributions will not, in general, be Gaussian, especially

under the influence of a surface loss mechanism.
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III APPLICATIONS TO BRAYTON POINT GENERATING STATION

3.1 Site Description

The Brayton Point Generating Station is located in Somerset, Massachusetts, at the
confluence of the Lee and Taunton Rivers at the northern end of Mount Hope Bay. See
Figure 3.1. At low tide, Mount Hope Bay has an approximate length (along its north-
south axis) of 7 mi, surface area of 15.6 mi2, and volume of 8.3 billion ft3. The average
tidal range is 4.4 ft which results in a tidal prism volume of approximately 1.2 billion ft3.
Approximately 70% of the Bay area has an average depth of less than 18 ft at mean low
water while the main shipping channels average 30 ft in depth at mean low water. With
the exception of the abrupt increase in depth at the edge of the shipping channels and the
rapid shoaling in the area of Spar Island, the bottom contours of much of the Bay are ra-
ther even, with a steady increase in depth from the head of the Bay to the two southerly

passages.

Circulation in Mount Hope Bay is driven primarily by tides and secondarily by wind,
and fresh water inflow from the Taunton River at the north end. Residence time within

the bay has been estimated to be within the range of 6 to 12 days (MRI, 1978).

Temperatures within Mount Hope Bay vary with the tidal stage and are quite respon-
sive to meteorological conditions due to the relative shallowness of the bay. In spring and
summer, mild thermal stratification (3°-5°F) may be found while temperatures are general-
ly vertically well mixed in the fall and winter. In mid-summer, surface and bottom temper-
atures beyond the influence of Brayton Point Station’s thermal plume may reach into the

high 70s while water temperatures during winter may occasionally reach the freezing point.

There are presently four generating units at Brayton Point with a combined capacity of

about 1600 MWe. A once-through condenser cooling system is used. The intakes for Units

-13 -



1, 2, and 3 are located on the eastern side of the plant site on the banks of the Taunton
River while the intake for Unit 4 is to the west of the plant site on the banks of the Lee
River. The discharge back to the bay is via a 3200-ft channel which terminates at the
southern tip of the plant site at a venturi designed to promote mixing. Table 3.1 summa-

rizes representative conditions associated with both 3- and 4-unit operation.

3.2 Site Schematization

Site schematization was similar to that described in Kaufman and Adams (1981). Fig-
ure 3.2a shows the finite element grid over Mt. Hope Bay. In accordance with the discus-
sion in Section 2, for modeling the plant-induced flow, the domain had a constant depth of
11.5 ft corresponding to the estimated far-field plume thickness listed in Table 3.1. The
depth was adjusted in shallow areas to account for depths less than 11.5 ft while for the
tidal calculation the full depth was used. The nearfield region was carved out of the

domain in the region surrounding Brayton Point as shown in Figure 3.2b.

Table 3.1 summarizes the near field parameters used as boundary conditions. Note that,
because of the relatively high discharge velocity, the plume intersects the bottom and the

expected dilution is less than for deep water (rg < 1).

Two different sets of discharge and entrainment fluxes were specified at the near-far field
interface, corresponding to the simulation of three- and four-unit operation. In both cases,
three nodal points at the bottom (southern end) of the interface had specified normal fluxes
into the domain representing diluted discharge. Using parameters in Table 3.1, the
temperature of the diluted discharge above the intake temperature was calculated as
14.8°F/(0.65x7.8) ~ 2.9°F for three units and 15.7°F/(0.52x10.3) ~ 2.9° F for four units.
The temperature that was actually specified depended on where static or dynamic heat

budget calculations were performed. The nodes adjacent to the diluted discharge had zero
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normal flux and all the remaining nodes had approximately equal specified entrainment

fluxes out of the domain (and into the theoretical near-field jet region).

The intake for the first three units was simulated by removing flux from three nodes
within the shipping channel inlet. The magnitude of the intake flux depended on the value
of @ describing how much of the intake that was drawn from the upper layer. (Values of
both @ = 0.5 and 1.0 were used.) In the four-unit simulation, the intake for the fourth unit
only was added to the west side of Brayton Point, or on the Lee River boundary, and drew

entirely from the upper layer (a = 1).

To simulate ambient circulation in the domain, the two strings of nodes along the bot-
tom of the bay were designated ocean boundaries. These nodes had specified tidal ampli-
tude of 2.9 ft (as determined from a tidal gauge at the station), period = 44640 sec, and no
phase lag. In addition to the tide, an inflow of 435 cfs from the Taunton River was estab-
lished. Surface heat loss was simulated by making use of actual meteorological measure-
ments recorded during the time period of interest. Average values of the various meteoro-
logical inputs were obtained from the week preceding the day for which the plume field
data were given (August 25, 1976). The average meteorological data were used to compute
a surface heat transfer coefficient of 157 BTU/ft2-°*F-day. The corresponding first-order
decay coefficient (k/h of Eqn. 2.5; equal to 2.5 x 10-6 sec’!) was based on a water depth of
11.5 ft.

3.3 Results

A large number of simulations have been made covering a range of model parameters
and options, plant operating conditions, and tidal phases; clearly, only some results can be

presented. The output presented was chosen to illustrate model capabilities, emphasizing
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simulations for three-unit discharge (so that they can be compared with field data) and

output at one tidal phase (maximum ebb).

Figures 3.3a-d depict current vectors within the surface layer of Mt. Hope Bay for four
tidal phases, produced by combining the output form two TEA runs: ambient currents cre-
ated by tidal forcing and Taunton River inflow computed over the entire water column and
three-unit plant-induced flows over the upper layer forced by prescribed inflows and out-
flows along domain boundaries. For the plant-induced flow, & = 1 (i.e, intake flow drawn
entirely from the upper layer), which is consistent with the assumption implied in Kauf-

man and Adams (1981).

Figures 3.4a-c depict corresponding pathlines simulated by ELA for three particles. A
particle originating near the Taunton River is shown being entrained in the intake, a parti-
cle near the plume center is shown to be transported south and flushed form Mt. Hope Bay,
and a particle on the eastern edge of the plume is shown being recirculated to the plant
intake. Note that, because the power plant intake flow is presumed to come entirely from

the upper layer (a = 1), this represents a worst-case condition for recirculation.

Figures 3.5a-d show contours of excess temperature (in °F) averaged over the surface
layer for four tidal phases, based on the above flow field. Calculations represent quasi-
steady state condition (they are output after 18 tidal cycles) and were made with a disper-
sion coefficient of D = 1.0 m2/s, a time step of At = 31 min, and no wind. The discharge
does not reflect any effects of intake recirculation or near-field re-entrainment of previously
discharged water; i.e., the discharge excess temperature at the end of the near field has
been held constant at approximately 2.9°F, which equals the discharge temperature rise of
14.8°F divided by the effective (shallow water) dilution of 5.1 (equal to the product of rg

and S; see Table 3.1). This condition is termed a static heat budget.
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Figures 3.6a-d, along with Figure 3.5b, indicate sensitivity of computed excess tempera-
ture at maximum ebb to horizontal diffusion coefficient in the range 0 < D < 30m2/s.
Clearly, increasing D decreases temperature gradients, resulting in generally lower temper-
ature near the plume and higher temperature away from the plume. Based on a a qualita-
tive comparison with field measurements (shown later), it appears that D = 1 m?/s is rea-

sonably appropriate for Mt. Hope Bay and this value is used in remaining simulations.

Figures 3.7a-d indicate sensitivity to time step, At, for a short run of elapsed time =
186 min and a diffusion coefficient of D = 10 m2/s (first maximum ebb after initial high
slack). The contours show that, as At increases, the “time-splitting” error increases, re-
sulting in higher temperatures near the discharge. This error is caused by the fact that
ELA performs the operations of diffusion, advection, and heat loss sequentially (in that
order) during a time step. For water in the middle of the bay, which has been transported
for many time steps, the ofder and the number of time steps make relatively little differ-
ence because each parcel of water will have experienced each operation a number of times.
However, water near the discharge is “younger,” and hence the effects are more important.
(The analogy can be made with a baseball game: early in the game, which team is leading
is likely to depend on whether it’s the top or bottom half of the inning; conversely, later in
the game, each team will have had nearly the same number (percentage-wise) of at-bats.)
The present sequence of operations errs on the side of over-estimating temperatures near
the discharge because water parcels that are less than one time step “old” have never been
diffused, those whose “age” is between one and two time steps have been diffused for only
one time step, etc. If the order of operations were reversed, a similar error would occur
tending to underestimate near plume temperature. Note that the magnitude of the error

increases with the size of the diffusion coefficient.
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One way to minimize this error would be to change the order (make diffusion follow
advection) and have the diffusion operation (for each node) be proportional to the age of
the parcel (for those nodes within a travel distance one time step from a boundary). While
this may be tried in the future, the solution for present was to select At based on a trade-
off between accuracy (dictating small At) and computational efficiency (suggesting large
At). The chosen value of At = 31 min (used in all remaining simulations) is identically
1/24 of an M tidal period, preserving the capability to save the feet of the characteristics
for calculation with repeating (tidal) flow fields. The magnitude of the overestimate in
plume temperature using At = 31 minutes can be gauged by comparing Figures 3.7a and

3.7c.

Figure 3.8 illustrates time-varying diluted jet temperature and various heat fluxes when
the near-field temperature boundary condition is varied to reflect recirculation and re-en-
trainment. In particular, Figure 3.8a shows the jet temperature, while Figure 3.8b shows
various heat flux terms including the mixed jet inflow into the domain, and the following
fluxes out of the domain: 1) surface heat loss, 2) horizontal entrainment, 3) intake with-
drawal, and 4) boundary loss used to account for vertical entrainment. The small differ-
ence between the jet influx and the sum of the four fluxes out of the domain represents heat

loss through the open boundaries at the bottom of the domain.

These calculations are termed a dynamic heat budget calculation. Note that the time to
adjust to quasi-steady conditions depends on the distance from the source, and that
intermediate field temperatures seem to reach quasi-steady state after about 3-4 cycles at
temperatures about 50% higher than without recirculation or re-entrainment. Thus, due to
model linearity, results for no recirculation or re-entrainment (static heat budget calcula-
tion) could be scaled to include these effects by multiplying by a factor of about 1.5. Fig-

ure 3.9 shows excess temperature contours with recirculation and re-entrainment for maxi-
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mum ebb, which corresponds to Figure 3.5b. Because the power plant intake flow is pre-
sumed to come exclusively from the upper layer (@ = 1), the simulated recirculation and

re-entrainment (i.e, the factor of 1.5) are probably over-estimated..

To test sensitivity to the intake withdrawal, TEA and ELA were re-run using a = 0.5
(i.e., half of the intake flow from the upper layer and half from the lower layer). The velo-
city vectors (not shown) indicate somewhat less (re-)circulation near the intake, but are
otherwise similar to those shown in Figure 3.3. Figure 3.10 shows the corresponding excess
temperature contours at maximum ebb. Over most of the domain contours simulated with
a = 0.5 (Figure 3.10) and 1.0 (Figure 3.9) are very similar, though near the discharge and

intake, differences of up to about 0.5°F are apparent.

Figure 3.11a shows the time series of heat fluxes for a = 0.5 and Figure 3.11b shows the
time series of discharge, intake, and diluted jet temperatures (obtained from Figure 3.11a)
by dividing by the approximate volume flow rate. Figure 3.11b indicates that simulated
intake recirculation varies from about 0.8 to 1.3° F depending on tidal phase. Note that
this includes both the effects of direct recirculation and far-field temperature build-up. As
discussed in §2.1.2, the simulated recirculation should be viewed as an upper bound because
the simulations of circulation with TEA do not include momentum effects, thus tending to
exaggerate near field recirculation. Based on the water depths near the intake, & = 0.5 is

probably realistic, but some of the remaining calculations have been made with a = 1.0.

Figures 3.12a-b illustrate the effect of wind for conditions otherwise similar to Figure
3.5b which has no wind drift. Part a) is for a steady westerly wind of 3 m/s while part b)
is for a time-variable wind based on measurements leading up to August 25, 1976. (At the
time of maximum ebb, the wind speed being simulated in part b) is the same as that as-

sumed in part a).) In both cases, the wind drift has been taken as 0.5% of the wind speed.
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Figures 3.13a and b reflect our three-dimensional ELA calculations showing excess temp-
eratures at a depth of 0 and 3.5 m (11.5 ft) below the water surface for conditions of E, = 0
(zero vertical diffusion). Figure 3.14a shows normalized measured vertical temperature
profiles at several locations identified on Figure 3.2a and Figures 3.14b and ¢ show simulat-
ed normalized profiles for two values of vertical diffusion. (Considering all phases of the
tide and instances from the source representative of the measurements, it appears that zero

vertical diffusion best represents the data.)

Figures 3.15a - 3.18a show measured excess temperature averaged over a depth of 11.5
feet at four tidal stages on August 25, 1976. These data are the same as presented by
Kaufman and Adams (1981) but, in the present analysis, the ambient temperature used to
establish excess temperatures has been computed differently. (Unlike the former analysis,
where a unique background temperature was selected for each tidal phase, a constant ambi-

ent temperature equal to the lowest observation was used.)

Figure 3.15b - 3.18b show simulated excess temperatures plotted to the same scale, for
comparison with the measurements. The simulations assume a dynamic heat budget, with-
out wind drift, and are made with D = 1 m?/s and @ = 1.0. In general, agreement is rea-
sonably good and the tendency for the simulations to exaggerate excess temperature near

the intake would diminish if lower values of a@ and At were used.

Finally, Figures 3.19 to 3.21 pertain to the present four-unit discharge, using parameters
found in Table 3.1. Figures 3.19a and b show the upper layer velocity vectors based on
output from TEA using a = 0.5. Part a) is for only the power plant (steady state) forcing
while part b) includes the tide and is presented at a phase of maximum ebb. Figure 3.20
shows excess temperature at maximum ebb using output from ELA assuming no wind, D =
1 m?/s, and including a dynamic heat budget. Time series of the various fluxes are shown

in Figure 3.21a, while discharge, intake, and diluted jet temperatures are shwn in Figure
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3.21b. Referring to Table 3.1, because the four-unit discharge temperature rise (AT, =
15.7°F) and shallow water dilution (r¢S = 5.4) are similar to corresponding values for three
units (ATo = 14.8°F and 1S = 5.1), maximum plume temperatures for three and four
units are similar. However, because the four-unit flow rate (Qo) and heat rejection (propor-
tional to QoATy) are approximately 40% and 50% higher, respectively, than for three

units, the size of the isotherms for four units is somewhat larger.

Figure 3.21b indicates that simulated recirculation for four units ranges from about 1.7
to 2.2°F above ambient depending on tidal phase. The difference from the three-unit re-
circulation shown in Figure 3.11b (ranging from 0.8 to 1.3°F) reflects, primarily, the great-
er heat loading and the fact that the intake for unit 4 is drawn entirely from the upper
layers, whereas the intake for units 1-3 are assumed to draw equally from upper and lower

layers (a = 0.5).

3.4 Computational Details

Calculations were performed on a MicroVax II and required the following approximate
CPU times. To compute circulation over a repeated 12.4-hr tidal cycle, TEA requires 15-75
minutes, depending on the number of iterations and harmonics. For calculation with only
one frequency, but iterating to simulate noninear bottom (interfacial) friction, CPU time
is approximately 15 minutes. To compute excess temperatures over the first tidal cycle,
using a time step of 31 minutes, ELA required 38, 58, or 90 minutes as the specified toler-
ance governing the accuracy of the tracking algorithm (value of EPS) was varied from 10-3
to 1074 to 10-5. (Most calculations were performed with EPS = 10-4.) To simulate an addi-
tional 17 tidal cycles (saving the feet of the characteristics) required an additional 18 min-
utes. In total, then, a typical calculation takes about 14 CPU hours. Similar times were

required for the Millstone calculations presented in the following chapters.
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As stated earlier, program efficiencies made to the tracking algorithm in ELA make it
possible to use time steps ranging from minutes to hours. If dispersion coefficients are
independent of time (our assumption) CPU times decrease modestly while storage require-
ments decrease tremendously as time step increases, providing strong motivation to in-
crease the time step. (The motivation is even stronger if time-varying coefficients are
used.) The effect of At on the accuracy of Eulerian-Lagrangian transport models in general
was studied by Baptista (1987) as part of this project. While his study concentrated on
transport of an initial concentration distribution, additional “time-splitting” effects come
into play when considering the introduction of mass (or excess heat) through a boundary
(e.g., a river of the near-field transition circle of our power plant examples). Based on the
sensitivity study (described above), the choice of At = 31 minutes (1/24 of a 12.4-hr tidal
cycle) was chosen as a compromise between the objective of large At, and the desire to
maintain accuracy (insensitivity to At) near boundaries. It is anticipated that a significant
increase in At could be made, allowing increase in efficiency with little decrease in accura-
¢y, if the order of computing dispersion and advection in ELA were reversed (so that advec-
tion would be computed first). and if the dispersion calculations took into consideration

fractional time steps for points near a flux boundary.
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Table 3.1

Near-Field Parameters Computed for Brayton Point Simulation

Parameter

Discharge flow rate
Discharge temperature rise
Discharge velocity

Discharge channel depth
Discharge channel half-width

Discharge channel
characteristic length

Densimetric Froude no.
(based on hy)

Channel aspect ratio
Densimetric Froude no.

(based on &)
Transition radius
Near-field volumetric
dilution
Vertical mass entrainment
Horizontal mass entrainment
Maximum plume depth

Far-field plume depth

Shallow water dilution
correction

Symbol
Qo (cfs)
ATy (*F)
uo (fps)
ho (ft)
bo (ft)
b (ft)

Fo

ho/bo
Fo’

ry, (ft)
gk
E**
En
hpax (ft)
htar (ft)

Is

3-unit values*

1380
14.8
40-64
74-11.9
14.6
10.4 - 13.2

42 -85

0.51 - 0.82
40-7.2

790 - 1120
(1000)

5.6 -10.1
(7.8)

3.6-74
(5.4)

1.0-1.6
(1.3)

22.1 - 31.4
(23.0)

11.1 - 15.7
(11.5)

0.65

4-unit values*

1960
15.7
5.6 -9.1
7.4-119
14.6
104 - 13.2

5.7-11.7

0.51 - 0.82
5.5 -10.0

1080 - 1550
(1000)

7.6 -13.9
(10.3)

54 -10.7
(7.6)

1.3-2.2
(1.7)

30.2 - 43.4
(23.0)

15.1 - 21.7
(11.5)

0.52

*Ranges given refer to variation over tidal cycle. Values in parentheses were used

in simulation.

**These parameters were altered for model use to account for shallowness effects:

Sactual = 1sS; E a

= Ev - (S - Sactua.l)-
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Figure 3.1 Site of Brayton Point generating station. (Note location of generating units
1, 2, and 3 and generating unit 4 on Brayton Point.)
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Figure 3.2 Finite element discretization of Mount Hope Bay
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BRAYTON (3

Figure 3.4 Simulated pathlines of particles released at high slack
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Figure 3.4c Particle originating at plume edge
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IV APPLICATIONS TO MILLSTONE NUCLEAR POWER STATION

4.1 Site Description

The Millstone Nuclear Power Station is located in Waterford, Connecticut, on the north
shore of Long Island Sound. The area of the site is approximately 500 acres. The main
station area of about 80 acres is sited on a point of land which is bounded on the east by
Jordan Cove and on the west by Niantic Bay which forms the entrance to the Niantic

River estuary (see Figure 4.1).

Tides in the Niantic Bayv area are semi-diurnal with mean and spring ranges of 2.7 ft and
3.2 ft, respectively. Water depths range from several to 100 ft. Field data collected at the
site indicate that tidal currents dominate natural water movement in the vicinity of the
station. In particular. the flow into and out of Niantic Bay forms a strong current past the
station along a line running from the plant site through Twotrée Island Channel. Currents
in Niantic Bay are also relatively strong as a result of flow into and out of the Niantic
River. In contrast, the currents in Jordan Cove, even during the strength of ebb and flood
tides, are relatively weak. Thermal- and salinity-induced stratification is not a significant
factor in the vicinity of the plant site although considerable natural temperature variation

is observed, particularly in shallower regions of the shoreline area.

The site consists of three nuclear units with a combined electrical output of approxi-
mately 2730 MWe. Open cycle cooling is employed with condenser cooling water entering
the station through intake structures located on the west side of Millstone Point. After the
water passes through the condensers, the heated water is discharged in a southeasterly
direction through a 1200-ft-long 100-ft-deep quarry and then into Long Island Sound

through a pair of 55-ft-wide channels.
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4.2 Site Schematization

Figure 4.2 shows the finite element grid. With minor modifications, this grid and the

gite schematization are similar to those used by Kaufman and Adams.

For modeling plant-induced flow, the domain had a constant depth of 11.5 feet over
most of its area corresponding to the estimated far-field plume thickness listed in Table 4.1.
As with the Brayton Point Simulations, the depth was adjusted in shallow areas to account
for depths less than 11.5 ft. For the tidal calculations, the full depth was used. As illus-
trated in Figure 4.2, a semi-circular near field region with radius of 475 feet was carved out

of the domain at the tip of Millstone Point.

Near-field mixing parameters, based on the analysis of Jirka et al. (1981), are summa-
rized in Table 4.1. Parameters are listed for both the existing three-unit and the previous
two-unit conditions. Note that, at Millstone, the water depths surrounding the outfall are
relatively deep resulting in negligible bottom effects on the discharge and entrainment (i.e.,

rs = 1.0 for both two and three units).

Different magnitudes of discharge and entrainment fluxes were specified at the near-far
field interface, corresponding to the simulation of two- and three-unit operation. As with
the Brayton Point simulations, nodal points at the southern edge of the transition circle
had specified normal flux into the domain representing the dilute discharge. Using parame-
ters listed in Table 4.1, the temperature of the diluted discharge above the intake tempera-
ture was calculated as 23°F/4.0 ~ 5.8°F for two units and 21.5°F/3.0 ~ 7.2°F for three
units. As with the Brayton Point simulation, the temperature that was actually specified
depended on whether static or dynamic heat budget calculations were performed. The
nodes adjacent to the diluted discharge had zero normal flux and all the remaining nodes
had approximately equal specified entrainment fluxes out of the domain (and into the theo-

retical near-field jet region). The intake was simulated by removing flux from four nodes
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on the western edge of Millstone point. For these calculations, & = 0.5 indicating that half
of the intake flow was drawn from the upper layer and half was drawn from the lower

layer.

Ambient circulation was simulated by specifying time-varying water levels along the
ocean boundary at the southern and eastern sides of the bay. To account for the spatial
variation of tidal flow along this boundary, a phase lag was utilized causing the tide to
propagate from east to west. The tidal period was 44640 sec, the amplitude was 1.35 ft,
and the phase lag was 12 min between the top node on the eastern boundary and the far

western node.

The remaining far-field parameters were selected in order to best match conditions
observed during recent field measurements with three units reported by NUEL (1988).
Measurements were conducted during Aug. 1987 during conditions of near constant (full-
load) station operatibn and generally low winds. Hence near field parameters from Table
4.1 were used directly, with no wind drift. Vertical temperature profiles indicated little or
no vertical differences and hence only 2-D simulations were performed. A horizontal dis-
persion coefficient of D = 50 m2?/s was used based on previous modeling of the two-unit
plume by Stolzenbach and Adams (1979). This coefficient is significantly higher than the
value used at Brayton Point (1.0 m2/s) reflecting increased tidal mixing due to greater
exposure at Millstone Point. Surface heat loss was simulated using a surface heat transfer
coefficient of 157 BTU/ft2" F-day corresponding to a first-order decay coefficient of 2.5 x
10-6sec™! based on a water depth of 11.5 ft. These values are consistent with summertime

meteorological conditions at the site.
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4.3 Results

Simulations are presented for both two and three units. In each case the dynamic heat
budget was used. Initial calculations showed significant sensitivity to time step (more so
than at Brayton Point) and hence a value of 15.5 min was used. As discussed previously,
the sensitivity to time step in ELA increases with the magnitude of diffusion coefficient,

explaining the increased sensitivity at Millstone as compared with Brayton Point.

Figure 4.3 shows simulated plant-induced velocities while Figures 4.4a-d depict surface
velocities for a combination of plant<induced and tidal circulation. The velocities were
computed by TEA for conditions of two-unit discharge. Figure 4.5 depicts corresponding
pathlines simulated by ELA for nine particles released within the domain at high tide.
Depending on their point of release, some particles are entrained at the intake, some are

entrained in the plume, some are flushed from the domain, and some remain in the domain.

Figures 4.6a-d show computed two-unit excess temperatures (in °F) averaged over the
surface layer for four tidal phases, based on the above flow field. Figure 4.7a shows corre-
sponding time-varying fluxes and Figure 4.7b shows time-varying values of discharge, in-
take, and diluted jet temperature over a period of 200 time steps, or a little more than four

tidal periods.

Note in Figure 4.7a that the sum of the surface heat loss, horizontal entrainment, and
intake temperature fluxes is significantly less than the diluted discharge heat flux. The
major reason is that the downwelling flow, necessary to provide for vertical entrainment
and lower layer intake flow, is not modeled explicitly, but is just advected out the open
boundary. Also note that, by the end of the simulation, the diluted jet temperature has
reached periodic steady state at a level of about 7-7.5°F depending on tidal stage. This is
about 20 to 30% greater than the diluted discharge temperature for a static heat budget

(5.8°F). Finally note that the intake recirculation varies between about 0.4 and 1.8°F
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depending on tidal phase. In comparison with Brayton Pt., the effect of the tide in pro-
moting direct recirculation (during flood phase) appears greater, while the effect of far field

build up appears to be less.

Figures 4.8a - 4.11a show simulated surface layer excess temperature contours for three
units, under conditions of maximum ebb, low slack, maximum flood, and high slack, re-
spectively. Except for the different discharge conditions (as assigned from Table 4.1) these
simulations are similar to those for two units presented in Figures 4.6a-d. The correspond-
ing circulation field for three units (not shown) is similar to that for two units (Figures 4.3
and 4.4) except that the influence of the plant-induced circulation extends further into the

domain.

In comparing temperatures for two and three units, note that the three-unit contours are
higher than the two-unit contours throughout the domain. This is due to the fact that, not
only is more heat being discharged, but the near field dilution is reduced (from S = 4.0
with two units to 3.0 with three units). The reduced near field dilution results from the
fact that, with three units, discharge is through a pair of openings in the quarry. The re-
sulting crossectional area of the discharge opening is thus twice as large for three units as
for two units. The resulting decrease in discharge velocity combined with the increase in
channel characteristic length scale (£ see table 4.1) results in a lower Froude number and
hence reduced near field mixing. Note that this situation is in contrast to that that oc-
curred at Brayton Point where discharge from three and four units was through the same
structure, leading to a small increase in dilution with the added units. It can also be men-
tioned that there was a transition period at Millstone where the second quarry cut had
been opened but only two units were operational. In comparison with the original condi-
tion with two units and one cut, the transition condition resulted in much lower discharge
velocities and mixing. These conditions explained the sudden increase in near field and

intermediate field temperatures ohserved following the second cut (NUEL, 1987).
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Figures 4.8b-4.11b show near-surface plume measurements under similar tidal phases,
and plotted to the same scale as the corresponding simulations shown in part a) of each
figure. Measurements were made by Ocean Surveys, Inc., and were reported by NUEL
(1988). It should be noted that the measurements were of dye concentrations and were
scaled to excess temperature. Agreement between measurements and simulations is reason-

ably good, although the following discrepancies can be noted.

First, the higher temperature contours (e.g., 6 and 8°F) are sometimes bigger in the
simulations than the measurements (e.g., high slack). As discussed previously, this may be
explained by the finite time steps and the sequence of diffusion and advection calculations

in ELA that tend to overestimate temperature near the point of discharge.

Second, simulated contours near the open boundary (e.g., the 1.5°F contour for maxi-
mum ebb) are somewhat smaller than measured. This can be explained by the finite size of
the computational domain combined with the assigned boundary condition of zero concen-

tration. A somewhat larger 1.5°F contour would be simulated if the domain were larger.

Third, the simulated low slack isotherms extend considerably further to the east than
the measured isotherm. This is explained by the fact that the measured plume, while
nominally taken at low slack, was actually taken more than an hour into flood phase

(NUEL, 1988).

Finally, the simulated plumes are somewhat rounder (less elongated) than the measured
contours. In part this is due to the formulation of linear TEA which omits the momentum
terms, leading to exaggerated near field circulation. It may also be due to the method of
plume measurement and/or presentation. For example, dye measurements at the Unit 1
intake indicate recirculation of the order of 1.2 to 1.4°F. If the intake were drawing equal-

ly from an upper (thermally influenced) and a lower (ambient) layer—consistent with the
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assumed value of a = 0.5—then upperdayer excess temperature adjacent to the intake
would range from 2.4 to 2.6°F. Yet the measured contours imply that surface tempera-
tures near the intake are less than 1.5°F for all tidal phases. Certainly during high slack

one would expect to see some residual heat (dye) build-up in Niantic Bay.

Figure 4.12a shows time-varying heat fluxes and Figure 4.12b shows corresponding dis-
charge, intake, and diluted discharge temperatures for three units. Note that the diluted
discharge temperature, which ranges from about 8.5 to 9.5°F, is higher than the corre-
sponding temperatures for two units (approximately 7 to 7.5°F) due mainly to the de-
creased near field dilution. The intake recirculation shown in Figure 4.12b ranges from 0.6
to 2.3°F. These values are similar, on average, but greater in range than the values of 1.2-

1.4°F reported (by NUEL, 1988) based on dye measurements.
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Table 4.1

Near-Field Parameters Computed for Millstone Simulation

Parameter

Discharge flow rate
Discharge temperature rise
Discharge velocity

Discharge channel depth
Discharge channel half-width

Discharge channel
characteristic length

Densimetric Froude no.
(based on hy)

Channel aspect ratio

Densimetric Froude no.
(based on {)

Transition radius

Near-field volumetric
dilution

Vertical mass entrainment

Horizontal mass entrainment

Maximum plume depth
Far-field plume depth

Shallow water dilution
correction

Symbol
Qo (cfs)

AT, (°F)

uo (fps)
hg (ft)

bo (ft)

b (ft)

Fo

ho/bo
Fo’

1 (ft)
S
Ey
En

hpax (ft)
hfar (ft)

2-unit values*

2290
23
3.6 -4.5
9.2 -11.7
27.5
15.9-17.9

3.0 -4.3

0.33 - 0.42
24-33

655 - 782
(475)

3.4-4.6
(4.0

~—

1. 7

N
[\)
v!\D

0.8
18.3 - 21.9

9.2 - 11.0
(11.5)

1.0

0. 9

—~ ] ~ ]
—_—_

3-unit values*

4150
21.5
3.1-3.9
9.2-11.7
57.5
23.0 -25.9

2.6 -3.8

0.16 - 0.20
1.8-24

700 - 830
(475)
2.5 - 3.4
(3.0)

7

0

e RN A

9-1.
(1.3
0.6 - 0.7
(0.7
19.4 - 23.2

9.7 -11.6
(11.5)

1.0

~—

*Ranges given refer to variation over tidal cycle. Values in parentheses were used

in simulation
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Figure 4.2 Finite element discretization of Long Island Sound near Millstone Nuclear
Power Station
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V SUMMARY

This report describes how a pair of two-dimensional numerical models—a harmonic
circulation model TEA and an Eulerian-Lagrangian transport model ELA—have been
coupled to simulate thermal plume dynamics in the vicinity of coastal power plants. These
simulations follow previous study by Kaufman and Adams (1981), but differ from most
previous studies in that near field mixing is represented explicitly by specifying
entrainment and mixed discharge fluxes (obtained from a separate near field model) as
model boundary conditions. Combined with the near field simulations, the technique
allows realistic simulation of time-varying temperature throughout the entire receiving
water domain. The programs also allow particles to be tracked and provide a time history
of various heat fluxes, discharge temperature, intake recirculation, etc. Additional model
features added in this study allow simulation of surface wind drift and three-dimensional

spreading due to vertical diffusion.

The models have been applied to two sites—Brayton Point Generating Station on Mt.
Hope Bay in Massachusetts and Millstone Nuclear Power Station on Long Island Sound in
Connecticut. At Brayton Point, simulations were made with both three- and four-unit
operation and the former were compared with field measurements. At Millstone, calcula-
tions were made for both two- and three-unit operation and the latter were compared with

field measurements. In both cases reasonable agreement was achieved.

Computational expense was found to be reasonable, requiring about two CPU hours on a
MicroVax II to perform simulations to quasi steady state in a periodic (tidal) flow field.
This is significantly less expensive than earlier calculations by Kaufman and Adams (1981)

who used more traditional time-stepping models.

In the course of the study, several areas were identified for future research. Regarding

the circulation model TEA, the linear version used in these calculations omits the
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convective acceleration terms in the momentum equation which leads to excess circulation
between discharge and intake. The non-inear version of TEA includes these terms, but was
found to be numerically unstable for these applications. It would also be desirable to allow
the near field boundary fluxes (both the magnitude and their location along the transition
circle) to vary with tidal phase. An initial foray suggested that this was possible in a
harmonic circulation model by introducing periodic boundary fluxes at both the dominant

(tidal) frequency and two times the dominant frequency.

Calculations with the transport model ELA revealed strong sensitivity to the model time
step. In the present formulation, with diffusion and advection computed in that order, the
model overestimates temperatures (concentrations) near inflow boundaries, and the magni-
tude of error increases with At. In view of the computational advantages of using large At
(and the fact that ELA is otherwise well suited for large At; Baptista, 1987), it is recon+
mended that the formulation be changed such that the diffusion calculations follow advec-
tion and that, for locations near an inflow boundary, the time of travel from the boundary
be incorporated in the diffusion matrix. It is also recommended that, in order to realistic-
ally simulate the build-up of background temperatures, outer boundaries be located as far

away from the discharge as possible.
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