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1 Introduction.

The standard framework in which economists evaluate environmental policies is cost-benefit

analysis. Consider, for example, a carbon tax to reduce global warming. By distorting

relative prices, this policy would impose an expected flow of costs on society in excess of

the government tax revenues it generates. Presumably, it also yields an expected flow of

benefits. Households and firms would burn less fuel, less CO2 would accumulate in the

atmosphere, global mean temperatures would not rise as much, and the damage caused

by higher temperatures would be correspondingly smaller. The standard framework would

recommend this policy if the present value of the expected flow of benefits exceeds the present

value of the expected flow of costs. Any debate among economists would likely be over the

expected costs and benefits, or over the choice of discount rate.

This standard framework ignores three important characteristics of most environmen-

tal problems and the policies designed to respond to them. First, there is almost always

uncertainty over the future costs and benefits of adopting a particular policy. With global

warming, for example, we do not know how much average temperatures will rise with or

without reduced CO2 emissions, nor do we know the economic impact of higher tempera-

tures. Second, there are usually important irreversibilities associated with environmental

policy. These irreversibilities can arise with respect to environmental damage itself, but also

with respect to the costs of adopting policies to reduce the damage. Third, policy adoption

is rarely a now or never proposition. In most cases it is feasible to delay action and wait for

new information, or at least begin with policies that are limited in their scope and impact.

Environmental policy involves two kinds of irreversibilities, and they work in opposite

directions. First, policies aimed at reducing ecological damage impose sunk costs on society.

These sunk costs can take the form of discrete investments; for example, coal-burning utilities

might be forced to install scrubbers, or firms might have to scrap existing machines and invest

in more fuel-efficient ones. Or they can take the form of flows of expenditures, e.g., a price

premium paid by a utility for low-sulfur coal. In either case, such sunk costs create an

opportunity cost of adopting a policy now, rather than waiting for more information about
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ecological impacts and their economic consequences. This opportunity cost biases traditional

cost-benefit analysis in favor of policy adoption.

Second, environmental damage can be partially or totally irreversible. For example,

increases in GHG concentrations are long lasting; even if radical policies were adopted to

drastically reduce GHG emissions, these concentrations would take many years to fall. Also,

the damage to ecosystems from higher global temperatures (or from acidified lakes and

streams, or the clear-cutting of forests) can be permanent. This means that adopting a

policy now rather than waiting has a sunk benefit, i.e., a negative opportunity cost, which

biases traditional cost-benefit analysis against policy adoption. Hence it may be desirable

to adopt a policy now, even though the traditional analysis declares it uneconomical.'

At issue is whether these irreversibilities are important, and if so, what their overall

effect is. The answer is likely to depend on the nature and extent of uncertainty. In general,

two types of uncertainty are relevant. The first is economic uncertainty, i.e., uncertainty

over the future costs and benefits of environmental damage and its reduction. In the case

of global warming, even if we knew how large a temperature increase to expect from any

particular increase in GHG concentrations, we would not know the resulting cost to society

- we cannot predict how a temperature increase would affect agricultural output, land use,

etc.2 The second type is ecological uncertainty, i.e., uncertainty over the evolution of the

relevant ecosystems. For example, even if we knew that we could meet a specified policy

target for GHG emissions over the next forty years, we could not predict the resulting levels of

atmospheric GHG concentrations at different points in time, nor could we predict the average

global equilibrium temperature increase and how that increase would vary regionally.3

'This point was made some two decades ago by Arrow and Fisher (1974), Henry (1974), and Krutilla and
Fisher (1975), and has been elaborated upon by Fisher and Hanemann (1990), among others.

2Likewise, there is considerable uncertainty over the costs of acid rain; even if we could predict the increase
in acidity in lakes and rivers from NOX emissions, the impact on fish and other organisms is uncertain, and
hence so is the social cost. For most environmental problems there is uncertainty over the future social cost
of the environmental degradation, and thus over the social benefit of any policy response.

3Even given assumptions about economic growth in different parts of the world, predicting GHG emissions
(in the absence or presence of policy intervention) is difficult, and subject to considerable uncertainty. For
a forecasting model of CO2 emissions with an explicit treatment of forecast uncertainty, see Schmalensee,
Stoker, and Judd (1998). For general discussions of the uncertainties inherent in the analysis of global
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Recent studies have begun to examine the implications of irreversibility and uncer-

tainty for environmental policy, at times drawing upon the theory of irreversible investment

decisions.4 Kolstad (1992) developed a three-period model to study the implications of cost-

benefit uncertainty for the adoption of an emissions-reducing policy that can involve sunk

costs. In his model, the accumulated stock of pollutant is permanent. Emissions can be

reduced in the first or second periods, and between these periods there is a reduction in

uncertainty over the net benefits from a lower stock of pollutant. He shows that if there is

no sunk cost of policy adoption, the faster is the rate of learning, the lower is first-period

emissions. This is a version of the result of Arrow and Fisher (1974) and Henry (1974);

because the stock of pollutant is permanent, society should pollute less now if there is uncer-

tainty over the future damage from the pollutant. But Kolstad goes on to show that if the

cost of policy adoption is at least partly sunk, the effect of uncertainty on the initial level of

emissions is ambiguous.5

Hendricks (1992) developed a continuous-time model of global warming similar to the

one in this paper. As I do, he studied the timing of policies to irreversibly reduce emissions,

allowing for a (partially) irreversible accumulation of the pollutant. The particular form of

uncertainty he considers is over a parameter linking the global mean temperature increase

to the atmospheric GHG concentration, and he allows for learning by assuming that the

uncertainty over this parameter falls over some fixed period of time. He focuses on how the

speed of learning affects the timing of policy adoption.6

warming, see Cline (1992) and Solow (1991). Similar uncertainties exist with respect to acid rain. For
example, we are unable to accurately predict how particular levels of NOX emissions will affect the future
acidity of lakes and rivers, or the viability of the fish populations that live in them.

4 For an introduction to and overview of the literature on irreversible investment, see Dixit (1992) and
Pindyck (1991). For a more detailed treatment, see Dixit and Pindyck (1994).

5 Kolstad (1996) also obtains this general result in the context of a two-period model. In related work,
Hammitt, Lempert, and Schlesinger (1992) use a two-period model to study implications of uncertainty for
adoption of policies to reduce GHG emissions, and show that under some conditions it may be desirable to
wait for additional information. Kolstad (1994) and Kelly and Kolstad (1998) also examined GHG emission
policy in the context of a growth model with uncertainty and learning about the value of an unknown
parameter. Kolstad finds that temporary emission-reduction policies dominate permanent ones, and Kelly
and Kolstad characterize the rate of learning in a Bayesian context and show its implications for policy.

6 Although he did not do so, Hendricks could also use his model to study the implications of the degree
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Finally, related studies by Chao (1995) and Narain and Fisher (1998) deserve mention.

Chao examines randomly arriving catastrophic damage from GHG emissions, where the

probability of arrival is increasing the emissions rate. Narain and Fisher also develop a

model with both ecological and economic irreversibilities. The uncertainty is with respect to

the Poisson arrival of a "catastrophe" that drives utility permanently to zero, with a mean

arrival rate that is an increasing function of the stock of pollutant. Hence the probability

of a "catastrophe" over any period can be reduced by investing in pollution reduction. This

kind of uncertainty has a very limited effect - it simply increases the effective discount rate.

In this paper, I assume that information arrives continually, but there always remains

uncertainty over the future evolution of key environmental variables, and over the future costs

and benefits of policy adoption. I focus on how irreversibilities and uncertainty interact

in affecting the timing and design of policy. The next section begins by laying out the

basic analytical framework, and shows how policy design and timing can be treated as

an optimal stopping problem. I consider policies, which entail a flow of sunk costs, to

reduce emissions of a pollutant which accumulates. In Section 3, I consider a model with

economic uncertainty, i.e., there is uncertainty over the future social cost of any given stock

of pollutant. I first consider the case in which policy adoption implies reducing emissions to

zero, and then the case in which the size of the reduction can be chosen optimally at the time

of adoption. In addition, :Iexamine the policy timing problem for both linear and convex

economic benefit functions. In Section 4, I allow for gradual emission reductions, again

in the presence of economic uncertainty. Section 5 examines the implications of ecological

uncertainty by allowing the evolution of the stock of pollutant to be stochastic. Section 6

concludes.

of irreversibility of environmental damage, by varying the parameter that describes the rate of natural GHG
removal from the atmosphere. Conrad (1992) also developed a continuous-time model of emission control,
in which the social cost of pollution is a quadratic function of the stock of pollutant, with a coefficient that
fluctuates as a geometric Brownian motion. The linear-quadratic structure implies that emissions will be
zero (a maximum rate) if this coefficient exceeds (is below) a critical value. He shows that this critical value
is a declining function of volatility. However, the only irreversibility is with respect to the stock of pollutant,
so the results are along the line of those in Henry and Arrow and Fisher.

4



2 Analytical Framework.

In order to get at the basic issues and obtain results that are reasonably easy to interpret,

I introduce a model that captures the basic stock externality associated with many envi-

ronmental problems in as simple a way as possible, while still allowing for key sources of

uncertainty. Let Mt be a state variable that summarizes one or more stocks of environmental

pollutants. For example, M might be the average concentration of CO2 in the atmosphere,

the acidity level of a lake, forest, or the concentrations of a mix of pollutants that make up

urban smog. Let Et be a flow variable that controls Mt, e.g., the rate of CO 2 or SO 2 emis-

sions. I will assume that absent some policy intervention, Et follows an exogenous trajectory.

Ignoring uncertainty for the time being, the evolution of Mt is given by:

dM/dt = PE(t) - 6M(t), (1)

where is the natural rate at which the stock of pollutant dissipates over time.7

I will assume that the flow of social cost associated with the stock variable Mt is specified

by a function B(Mt, Ot), where St shifts over time, perhaps stochastically, to reflect changes

in tastes and technologies. For example, if M is the GHG concentration, shifts in 0 might

reflect the development of new agricultural techniques that reduce the social cost of a higher

M, or alternatively, demographic changes that raise the cost.

One would generally expect B(Mt, Ot) to be convex in Mt (at least when Mt is sufficiently

large). However, for simplicity I will initially assume that B is linear in M, i.e.,

B(Mt, Ot) = -tMt . (2)

7This is a simplified version of a basic diffusion model used by Nordhaus (1991) to compare costs and
benefits of policies to reduce greenhouse gas (GHG) emissions. That model supplements eqn. (1) with an
adjustment process for temperature:

dT/dt = a[M(t) - T(t)],

where T is the increase in mean temperature from GHGs, M is atmospheric GHG concentration from
industrial activity, and a is a delay parameter. Associated with a higher T is a (global) economic cost
resulting from, among other things, land loss due to a rising sea level, and reduced agricultural output due
to climate change. I am simplifying things by dropping the variable T and associating an economic cost
directly with M. Also, note that at this point eqn. (1) is deterministic; later I will introduce ecological
uncertainty by generalizing this equation so that M follows a controlled diffusion process
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Note that uncertainty over the future costs and benefits of policy adoption can be introduced

by letting 0 follow a stochastic process.

The implications of uncertainty and irreversibility are easiest to see by focusing on policies

that are introduced at a specific point in time, and that have a long-term impact on the

evolution of Et, although I will also consider policies that are introduced gradually. Consider

a policy introduced at time T that changes the evolution of Et for t > T. It would presumably

impose a flow of costs on society, some portion of which will be sunk. I denote the present

value (at time T) of the expected flow of sunk costs associated with this policy by K(ET, w),

where w is a vector of policy characteristics. For example, might describe an absolute

reduction in Et, or a reduction in the expected rate of growth of E,. 8

Initially, I will assume that policy adoption involves a once-and-for-all reduction in Et to

some new and permanent level E1, with 0 < E1 < Eo. I will also begin by assuming that

the social cost of adopting this policy is completely sunk, and its present value at the time

of adoption is a convex function of the size of the emission reduction, which I denote by

K(El).9 The policy objective is to maximize:

W = £o B(M, Ot)ert dt - £oK(El)e -r, (3)

subject to eqn. (1). Here, T is the (in general, unknown) time that the policy is adopted,

Eo - E1 is the amount that emissions are reduced, o denotes the expectation at time t = 0,

and r is the discount rate. Thus we have an optimal stopping problem - we must determine

when it is optimal to commit to spending K to reduce Et, given the (possibly stochastic)

dependence of Mt on Et, and given the stochastic evolution of St.

8For example, we might have an emission level Et that, absent a policy intervention, will grow stochasti-
cally according to:

dEt = cEEtdt + aEEtdZE .

Then, a policy might involve a one-time reduction in ET (thereby reducing the expected value of Et for all
t > T), or it might involve a reduction in aE, the expected rate of growth of Et.

9 Note that the policy might entail a flow of sunk costs over time (e.g., expenditures for insulation on all
new homes). All that matters is that adopting the policy implies a commitment to this flow of costs, so that
we can replace the flow with its present value at the time of adoption.
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3 Economic Uncertainty.

I introduce economic uncertainty by allowing the social benefit function to shift stochastically

over time. I will begin by assuming that policy adoption implies reducing E from its initial

level E 0 to zero. I also assume for now that the cost of emissions reduction as a linear

function of the size of the reduction, and B(Mt, O) is a linear function of Mt. Hence if it is

optimal to reduce E at all, it is indeed optimal to reduce it to zero. Later I will make the

cost of reducing emissions a convex function of the size of the reduction, and let the size of

the reduction be a policy choice variable.

I introduce uncertainty by letting 0 follow a geometric Brownian motion:

dO = aOdt + aOdz. (4)

This means the current flow of social cost from a level of pollutant Mt is known, but the

future flow of social cost is always uncertain, and the amount of uncertainty grows with the

time horizon. Thus we learn about the social cost of pollution as time passes, but the flow

of social cost in the future will always be unknown. Of course one might argue that for some

environmental problems, most or all of the uncertainty over social costs will eventually be

resolved. (In effect, this means that a in eqn. (4) will fall over time.) For problems such as

global warming, acid rain, and species extinction, there is little evidence of such a resolution

of uncertainty (as opposed to a continuing evolution of our assessment of social costs).

Suppose the cost of reducing E from Eo0 to zero is given by K = kEo. We want a policy

adoption rule that maximizes the net present value function of eqn. (3) subject to eqn. (4)

for the evolution of 0, and eqn. (1) for the evolution of M. This problem can be solved using

dynamic programming by defining a net present value function for each of two regions. Let

WN(0, M) denote the value function for the "no-adopt" region (in which Et = Eo), and let

WA(o, M) denote the value function for the "adopt" region (in which Et = 0).

Since B(Mt, Ot) = -OtMt, we know WN(0, M) must satisfy the Bellman equation:

rWN = -OM + (Eo- M)WMN + OW N+ o a2 02Wo. (5)

(Partial derivatives are denoted by subscripts, e.g., WM = OWN/aM.) Likewise, WA(O, M)
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must satisfy the Bellman equation:1 °

rWA = -eM - 6MWM + a0WA + W a22 WA (6)

These two differential equations must be solved for WN(0, M) and WA(O, M) subject to

the following set of boundary conditions:

WN(0, M) = 0, (7)

WN (*, M) = WA(0*, M)- K, (8)

W (*, M) = W A (', M). (9)

Here, 0* is the critical value of 0 at or above which the policy should be adopted. Condition

(7) reflects the fact that if 0 is ever zero, it will remain at zero thereafter. Condition (8)

is the value matching condition; it simply says that when 0 = 0* and society exercises its

option to adopt the policy, it incurs a sunk cost K = kEo and hence receives the net payoff

WA(0*, M)- K. Condition (9) is the "smooth pasting condition;" if adoption at 0* is indeed

optimal, the derivative of the value function must be continuous at 0*.

These differential equations and associated boundary conditions have the solution:

WN(, M) = A - O a ) (10)
r + -a (r - a)(r + - a)'

and

WA(, M ) = OM (11)
r+-a'

where A is a positive constant to be determined, and, from boundary condition (7), -y is the

positive root of the quadratic equation a2y-(y - 1) + ay - r = 0, i.e.,

1 /(aL 1\2 2r
7 2 - + >1 (12)

°1Eqns. (5) and (6) can be written in more compact form as

rW = -OM + (1/dt)£t(dW).

Thus the social return on WN or WA has two parts, the flow of social cost -OM, and the expected rate of
increase in W (or "capital gain").
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Note from eqn. (10) that WN has three components. The first term on the right-hand

side of (10) is the value of the option to adopt the policy at some time in the future. The

second term is the present value of the flow of social cost resulting from the current stock

of pollutant, M. (The current stock, M, decays at the rate 6, while 0 has an expected rate

of growth a, so the present value is -OM/(r + 6 - a).) The third term is the present value

of the flow of social cost that would result if emissions continued at the rate Eo forever.

(The present value of the flow of cost from emissions Eo now is PEoO/(r + 6 - a), but

the present value of of the flow of cost from emissions Eo now and in all future periods is

/,EoO/(r + 6 - a)(r - a).) This last component of social cost is reduced by the value of the

option to reduce emissions, i.e., the first term. Once the policy has been adopted, E = 0

and the value function WA applies. Then the only social cost is from the current stock of

pollutant.

There are still two unknowns, the constant A and critical value 0* at which the policy

should be adopted, and they are determined from boundary conditions (8) and (9):

A (-l [(r - a)(r + 6 - a)- ' (13)

0= ( K ) [(r-a)(r + 6 - a) (14)

Eqns. (13) and (14) apply for any sunk cost of policy adoption, K. If we make use of

our assumption that K = kEo, these equations become:

A (k ) k )(r+ )] Eo, (15)(r - a)(r + 5 - a)h' Eo 

so that the value of the option to adopt the policy is linear in Eo, and

0* = ( k(r- a)(r 6-)/Eo (16)

Note that in the absence of any uncertainty or irreversibilities, it would be optimal to adopt

the policy when 0 reached a level such that:

= k. (17)(r - a)(r + -a)
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The left-hand side of eqn. (17) is just the present value of the flow of social cost from one

extra unit of emissions now and throughout the future (adjusted for the absorption rate 3),

and the right-hand side is the cost of permanently reducing emissions by one unit. Hence

eqn. (17) is a standard cost-benefit calculation. We can rewrite the equation in terms of a

critical value 0* that triggers policy adoption:

0* = k(r - )(r + - a)/3.

When there is uncertainty, this critical level 0* is simply increased by the factor yl/(- - 1).

Note that an increase in a implies a decrease in -y and hence an increase in 0*. The more

uncertainty there is over the future social cost of the pollutant, the greater is the incentive

to wait rather than adopt the policy now, and hence the greater must be the current cost in

order to trigger adoption. An increase in the discount rate r increases the value of the option

to adopt the policy and thus also increases 0*. The cost, K, is paid in the future when the

policy is adopted; hence an increase in r implies a greater reduction in the present value of

that cost, so that the option to adopt is worth more but it should be exercised later. An

increase in 6, the rate of "depreciation" of the stock of pollutant, also increases 0*; a higher

value of a implies that the environmental damage from emissions is more reversible, so that

the sunk benefit of adopting the policy now rather than waiting is lower.

Also, observe that an increase in the initial rate of emissions Eo leaves 0* unchanged (but

increases the value of society's option to adopt the emission-reducing policy). The reason is

that K = kEo, so that 0* is independent of Eo, and A increases linearly with E 0. Finally,

0* is also independent of M. Because B(M, 0) is linear in M (so that the value functions

WN and WA are linear in M), any given level of Mt implies the same reduction in social

welfare if the policy is adopted at time t as it does if the policy is not adopted. Hence

WN(0, M) - WA(0, M) is independent of M, and so is 0*.

We can frame this timing problem in terms of a comparison of the opportunity costs of

current adoption with the corresponding opportunity "benefits" by calculating W* - Wo,

where W* is the value function when the adoption decision is made optimally, and Wo is the

value function when the policy is adopted immediately. Suppose 0 < 0*, so that it is not yet
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optimal to adopt the policy, and W* = WN. Since Wo = WA -K, W*-Wo = WN-WA+K,

or

W* - Wo = K +AO - (18)

The first term on the right-hand side of (18) is the direct cost of current adoption. The

second term is value of the option to adopt, and since adoption implies "killing" this option,

it is an opportunity cost of current adoption. The last term is the present value of the

additional flow of social cost from continued emissions, and thus is an opportunity "benefit"

of current adoption. Since 0 < 0* and W* - W0o > 0, the direct cost and opportunity cost

outweigh this opportunity benefit, and adoption should be delayed.

Note that as the model is currently structured, it would never be optimal to reduce

emissions by anything less than 100 percent (assuming it would optimal to reduce emissions

at all). The reason is that with K = kEo, the value of the option to adopt the policy,

AO"', is linear in E 0, so that WN and WA are linear in M and E0. Shortly we will make

K a nonlinear function of the reduction in emissions, and examine policies that involve a

one-time partial reduction in emissions, as well as gradual incremental reductions.

A Numerical Example.

A numerical example will help to explore the characteristics of the solution. Suppose

that a = 0 (so that the social cost per unit of M is expected to remain constant), r = .04,

o = .02, a = .20, 3 = 1, Eo = 300,000 tons per year, 00 = $20 per ton, and k = 6667 so

that K = kEo = $2 billion. Then, from eqns. (12), (13), and (14), y = 2.0, A = 1,953,125,

and 0* = $32 per ton. Hence at the current value of 0o = 20, the policy should not be

adopted. However, the value of the option to adopt it in the future, AOv , is $0.78 billion.

The policy should be adopted when 0 reaches $32 per ton; at that point A v = $2.0 billion,

and boundary conditions (8) and (9) are satisfied. Figure 1 shows this solution graphically

for the case in which M = 0 (so that WA = 0 for all values of 0). Note that 0* is found at the

point of tangency of WN with the line WA - K, and since M = 0, WA - K is a horizontal

line at -K. (If M were greater than zero, we would have WA = -OM/(r + 6 - a), so we

would rotate both the WN(0) curve and the line WA - K downwards.)

11



(x o109) 1,0
8
7
6
5

4
3
2
1
0

-1
-2

-4-5-4

-e

-1

-I(

Figure 1: Solution for M = 0.

1 1U11 U

* 100

90

'80

70

60

50

40

3C

21

0 0.1 U. v. u.

Figure 2: 0* as a Function of a, 6 = .01, .02.

12

-a)

.01

orA f

.A

,, ,, u~~~~~~~~~~~~~1 .91&U..

iP



Figure 2 shows O* as a function of a for 6 = .01 and .02. Note that * rises sharply with

a. This is partly due to the fact that we have framed the policy problem as an all-or-nothing

proposition, but it nonetheless suggests that assessing uncertainty over the future costs and

benefits of emission reduction may be particulary critical to the policy adoption decision.

As mentioned in the Introduction, environmental policy debates often focus on the dis-

count rate. However, for many environmental problems, the range of plausible discount

rates is much smaller than the range of plausible degrees of uncertainty. It is therefore use-

ful to examine the sensitivity of * to both r and a. This can be done by calculating the

semi-elasticities dlogO*/dr and dlogO*/da, which are given by:

d log 0* (2r + - 2a) 1
dr (r- )(r + 6- ) 'y(- 1)a 2 V(a1/aJ2 )2 2r/,a2

and
dlog0* (2r + 2a2/a2 - a)((a/a2 - )2 + 2r/a2 )-/ 2 - 2

da y( - 1)a 3

Table 1 shows these semi-elasticities, along with *, for different values of r and a. (In

all cases, a = 0, = .02, K = $2 billion, and Eo = 300,000 tons per year.) Note that

a .01 change in r results in approximately the same percentage change in * as does a .1

change in a. But this does not mean that the discount rate is a more important determinant

of environmental policy. First, plausible values of the real discount rate are confined to a

small range - for analyses of global climate change, for example, between .02 and .05. But

plausible values for a (or the standard deviation of other stochastic state variables) can fall

within a much larger range. Second, most traditional cost-benefit analyses of environmental

policy are done by implicitly assuming that a = 0. Hence even if the correct value of a is

only .2 or .3, just accounting for uncertainty can matter a lot.

3.1 Convex Costs and Partial Reduction in Emissions.

We now consider policies that only partially reduce emissions. We will assume that the sunk

cost of the policy is a quadratic function of the amount that emissions are reduced:

K = k(Eo - E1) + k 2(Eo - E 1) 2 , (19)
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Table 1: Semi-elasticities of 0*.

r a O* d log 0*/dr dlog 0*/da

.04 .2 32.0 33.33 3.33

.04 .4 59.71 27.23 2.89

.04 .6 101.47 23.48 2.43

.04 .8 158.38 21.25 2.04

.02 .2 13.96 52.64 4.47

.06 .2 56.56 24.54 2.77

.08 .2 87.48 19.47 2.43

where Eo0 - E1 is the amount of the reduction, and k1, k 2 > 0. Thus the cost of a 1-unit

(permanent) reduction in E is k(E) = -dK/dEl = kl + 2k 2(Eo - El). We must again find

a rule (in the form of a critical value 0*) for the optimal timing of policy adoption, but now

we must also determine the optimal size of the reduction, i.e., the optimal value of El.

As before, let WN(0, M) and WA(0, M) be the value functions for the "no-adopt" and

"adopt" regions respectively. WN(0, M) must again satisfy the Bellman eqn. (5). However,

eqn. (6) is no longer the correct Bellman equation for WA(0, M). After adoption of the

policy, dM/dt = PE1 - SM, so we must include an additional term, PE1Wj, where E1 is

the emissions level after policy adoption. Hence WA(0, M) now satisfies:

rWA = -OM + (E 1 - ,M)Wm + aoWoA + 22 W@. -

The solution for WA(0, M) is therefore:

WA(0, M)= OM Er ±
r+J-aI (r - a)(r + 6- a)'

while the solution for WN(0, M) is again given by eqn. (10), i.e.,

WN(0, M) = A - M - +E0rS6-a ( - a)(r + - a)'

(20)
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Since E1 is chosen optimally, it depends on 0 at the time of adoption, i.e., on O*. Hence

although boundary condition (7) will still apply, conditions (8) and (9) become:

WN(0*, M) = WA(0*, M) - K(E*(0*)), (21)

and
Wo(0*, M) = WA(0 * M) dK dE* (22)

' ' dE* dO*

Using eqns. (20) and (19), we choose E* to maximize the net payoff from policy adoption:

OM /3ElO
max[WA(0, M; E)-K(E)] = - Om - ( )(+

E r+- a (r - a)(r + 6-a)

- k(Eo - E) - k2 (Eo - E) 2 , (23)

so that

E* = Eo + 2k 2 2k 2(r - a)(r + 6 -) (24)

We now substitute this expression for E* into boundary conditions (21) and (22), and then

use these conditions to find 0* and the constant A. Making the substitutions and denoting

p - (r - a)(r + - a), we find that 0* must satisfy the quadratic equation:

(- - 2)202 - 2p(-y - 1)/3kO + p2 k1 = 0.

Because WA(0) - WN(0) - K(E*(0)) is convex in 0, 0* is the largest root of this quadratic

equation, i.e.,

*-P(- )kl Y(Y- 2) 
- /3(7-2 ) [ 1+ 1 ( 1)2 .(25)

Then, A is given by:

/32 /3k, kA = (26)
4k 2p2(0*)r- 2 2k2p(O*)-l 4k2(0*) (26)

Given 0*, we can find E*(0*) from eqn. (24). It is easy to confirm that as a increases (so

that y decreases), 0* will increase and E* will fall. However, we must account for the fact

that E* must lie between 0 and Eo.

Let Oma, denote the value of 0 for which E* = 0. From eqn. (24), we see that 0,, =

pkl//3+2pk2Eo/. Hence E* > 0 implies that 0* < 0m,, = pkl//3+2pk2Eo/3, or equivalently,
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that y > 2 + kl/k 2Eo.11 If a is sufficiently large so that y < 2 + kl/k 2Eo, eqns. (25) and

(26) will no longer apply. Instead, E* is constrained to be zero and so is no longer a choice

variable. In that case the solution to the optimal timing problem is again given by eqns.

(13) and (14) (with K = klEo + k 2Eo2). Also, we must have E* < E 0, but this will always

be the case; observe from eqns. (24) and (25) that E*(0*) < Eo for any -y > 2.12

Figure 3 illustrates this. First, it shows the conventionally calculated NPV from policy

adoption, when E1 can be chosen optimally according to eqn. (24). That NPV is equal to:

(,/p)[Eo - E*(O)]O - K(E*(O)).

This NPV is a quadratic function of 0, and applies for values of 0 for which 0 < E* (0) < Eo;

in this range, the NPV is increasing in 0. Also shown is the value of the option to adopt

an emission-reducing policy, which is equal to A0d. The critical value 0* is at the point

where the option value A0v is just tangent to this NPV, i.e., where the value matching and

smooth pasting conditions (21) and (22) hold. Figure 3 shows this solution for the following

numerical example: E = 300, 000 tons per year, kl = 5000 and k2 = .0055 (so that the cost

of reducing E to zero would be about $2 billion), a = .045, and as in the earlier example,

a = 0, r = .04, a = .02, and = 1. In this case, a policy is never adopted for 0 < 0mi = 12

(even if a is reduced to zero), and 0 m, = 20. For a = .045, y = 6.8, so that 0* = 17, i.e.,

0* < Oma so that E* > 0. From eqn. (24), we see that E* = 110, 606 tons per year.

The amount that emissions are reduced depends on the degree of uncertainty over the

future benefits from a reduction, and on other parameters. Figure 4 shows the dependence

of both E* and 0* on a for this numerical example. (In the figure, * is multiplied by 104

so that it can be plotted with E* on the same scale.) When a = 0, the standard NPV rule

applies; the policy should be adopted if 0 > 12. If 0 is just slightly greater than 12, the

policy is adopted but emissions are reduced only very slightly. (The reason is that in this

numerical example, a = 0, so that if a = 0, 0 cannot rise in the future.) As a is increased,

1Thus the condition from eqn. (25) that ^ > 2, which implies that a2 < r - 2, will always be satisfied.

12It might appear from eqn. (24) that if 3 is very small, E* will exceed E0. But as p becomes smaller, 0*
becomes larger, so that E* < Eo always.
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the critical value 0* also increases, and E* falls. Note that for a > .063, E* = 0, so that 0*

is given by eqn. (14) (with klEo + k 2Eo2 substituted for K) rather than eqn. (25).

We can likewise determine the dependence of 0* and E* on other parameters from eqns.

(14), (24), and (25). For example, a higher initial level of emissions, E 0, does not affect the

critical value 0*, but does imply a commensurately higher ending level E* (so that the size

of the reduction is unchanged). Also, an increase in kl increases 0*, but an increase in k2

has no effect on 0*, although it increases E*.

3.2 Convex Benefit Function.

We have assumed that the benefit function B(M, 0) is linear in M, which makes the optimal

policy rules independent of M. This was convenient, but for most environmental problems,

the damage from a pollutant is like to rise more than proportionally with the stock of the

pollutant. Then the optimal policy rule will depend on the stock. To explore this, we

again make the cost of an emission reduction linear in the size of the reduction, and assume

emissions must be reduced to zero once a policy is adopted, so that K = kEo. But now we

let the benefit function B(M, 0) be quadratic in M:

B(M, ) = -tMt 2 . (27)

The value functions WN(0, M) and WA(0, M) for the "no-adopt" and "adopt" regions

will again satisfy the Bellman equations (5) and (6), but with the term -M replaced by

-OM2 in each equation. Boundary conditions (7) - (9) also apply. These equations have

the following solution:

WN(0, M) = AO -23 2E0
r+ 2 - - ( - a)(r + 2 - a)(r + - a)

2,3EoOM (28)
(r + 26 - a)(r + 6 - a)'

and

WA(,M) = - M 2 (29)
r+26-a'

where A is a positive constant to be determined, and y is again given by eqn. (12). Note

that the right-hand side of eqn. (29) and the second term on the right-hand side of eqn. (28)
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is the present value of the flow of social cost from the present stock of pollutant, M. The

third and fourth terms on the right-hand side of eqn. (28) are the present value of the flow

of social cost from future emissions at the rate E0. The first term on the right-hand side of

(28) is the value of the option to reduce emissions to zero.

Using boundary conditions (8) and (9), the constant A and critical value 0* are:

A t -- 1 2=2Eo + 2(r - )M 
k= E) l (r -a )(r + 2- )(r + -) ' (30)

and
0* (r - a)(r + 26 - a)(r + 6 - )ky (31)

2,(y - 1)[/Eo + (r- ca)M] '

The critical value 0* now depends on M; a higher value of M implies a higher marginal

social cost from additional emissions, and therefore a lower value of 0 at which it is optimal

to begin reducing emissions. (For the same reason, a higher M increases the value of the

option to reduce emissions.) The rising marginal social cost of emissions likewise implies

that the higher is the current emission level, Eo, the lower is 0*. As before, a higher cost of

emission reduction, k, and a higher decay rate, , lead to a higher value of 0*.

Most important, uncertainty affects the optimal adoption rule the same way it does when

B(0, M) is linear in M. The parameter a affects 0* through the multiplier (y - 1)/y, and y

is given by the same equation (12) as before. Hence making the benefit function convex in

M affects the optimal policy adoption rule, but it does not affect the way that rule depends

on uncertainty over the future social costs of pollution. The critical value 0* for the certainty

case is multiplied by the same factor as before.

4 Gradual Emission Reductions.

In the preceding section we assumed that there would be only one opportunity to adopt an

emissions-reducing policy. This is not terribly unrealistic; given the political difficulties of

reaching a concensus and introducing a major new environmental policy, it is unlikely that

regulations could be revised frequently. On the other hand, assuming that such regulations

could never be revised (once a new policy is in place) is extreme. Rather than making
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arbitrary assumptions about the allowed frequency of policy change (or making assumptions

about "menu costs" of policy change so that the frequency is endogenous), I will assume the

opposite extreme - that the level of emissions can be reduced gradually and continuously.

Comparing the optimal policy in this case with that from the preceding section provides

insight into how the frequency with which regulations can be introduced or changed affects

the optimal timing and design of policy.

In this section I will again assume that the cost of any incremental emission reductions is

completely sunk, which is equivalent to assuming that emissions can only be reduced. (This

assumption can easily be relaxed by making the cost of emission reductions only partly

sunk.) Policy makers must observe both 0 and the stock variable M, and decide when and

by how much to mandate emissions reductions in response to changes in these variables.

For this problem to be of interest, either the benefit function or the cost function must

be convex. I will assume that the benefit function B(O, M) is linear in 0 and M, and that

the cost of the policy is a quadratic function of the amount that emissions are reduced, as

in eqn. (19). Thus the cost of a 1-unit reduction in E is AK = kl + 2k 2(Eo - E1). Letting

ml = k1 + 2k 2Eo and m 2 = 2k2, the cost of an incremental reduction is:

AK = ml - m 2E. (32)

Since Bt = -tMt, the payoff flow from a small reduction in the stock of pollutant, AMt,

is just ABt = -tAMt. If emissions are reduced incrementally by an amount AE at time

t = 0, the corresponding change in Mt is

AM = EJ 1 - e6t] (33)

so the social benefit from an incremental reduction in emissions at time t is:

AW = t ABe - r(r- t dr = fl,AE/p, (34)

where p - (r - a)(r + 6 - a). Given the current Ot, we must determine how far to reduce

emissions initially, and how to make further reductions in response to changes in 0.

This is analogous to the incremental investment and capacity choice problem in Pindyck

(1988). Suppose Et = E currently, and let W(E; 0, M) be the value function given this E,
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and given 0 and M. Let AF be the value of society's option to (permanently) reduce E by

one unit. Note that the cost of exercising that option is AF(E; 0, M) + AK(E), and the

payoff is AW(0). Then AF must satisfy the Bellman equation:

rAF = (E - SM)AFM + aOAFo + la2 02 AFoe , (35)

subject to the boundary conditions:

AF(E; 0, M) = 0, (36)

AF(E; O*, M) = AW(O*)- AK(E), (37)

AF(E; O*, M) = AWo(0*). (38)

Since AW and AK are independent of M, AF will be independent of M, and the solution

has the usual form:

AF = a, (39)

with > 1 again given by eqn. (12). Emissions should be reduced whenever 0 exceeds the

critical value 0*(E), with dO*/dE < O. The constant a and the critical value 0*(E) are found

from boundary conditions (37) and (38):

O* (E) = yp(ml - m 2E) (40)

a= -~ (ml- m2E) (4)a = (;~f (mj~ri~ 2 EF' (41)
To interpret (40), note that p(ml - m 2E)/,3 is the amortized sunk cost of an incremental

reduction in emissions, normalized by the absorption rate . Since B(O, M) is linear, in

the absence of uncertainty it would be optimal to reduce emissions to the point where this

amortized sunk cost is just equal to 0, the social cost per period of an incremental unit of the

stock of pollutant, M. With uncertainty, the threshold exceeds this amortized sunk cost by

the multiple y/(y - 1). Also, note that as E is reduced, 0* rises (and a falls). Depending on

the initial value of 0, it may be optimal to initially reduce emissions by some large amount,

and then later reduce emissions gradually when 0 increases and hits the boundary 0*. For
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any value of E, 0* is increased if a increases, and is decreased if the decay rate increases.

Finally, given 0*(E), we can determine the optimal emissions level E*.

Monte Carlo Simulation.

In this model, uncertainty affects the initial level of mandated emissions reductions, and it

also affects the maximum allowed emissions level over time. I used a numerical example and

ran a Monte Carlo simulation to examine the magnitude of these effects and its dependence

on a. In this example, the initial emissions level is Eo = 300, 000 tons per year, the cost

function parameters are k = 5000 and k2 = .0055 (so that the cost of reducing E from

300,000 tons per year to zero would be about $2 billion), and r = .04, a = .02, and = 1.

I set a = .01, so that even absent uncertainty, emissions will gradually be reduced as 0

increases. I varied a from 0 to .15, in increments of .005. For each value of a, I ran 10,000

simulations of the evolution of 0 and the corresponding optimal emissions level E*.

Figure 5 shows the results of this Monte Carlo simulation for the mean optimal emissions

level initially, and after 20 years. Note that when there is no uncertainty (i.e., a = 0),

emissions are initially reduced from 300,000 to about 70,000 tons per year, and then reduced

gradually to zero as 0 and the corresponding social cost of pollution rises. As a is increased,

the initial allowed emissions level increases, reflecting the value of waiting. Emissions are

still reduced over time (although reductions occur stochastically when a > 0), but the mean

value of E* after 20 years also increases with a.

Figure 6 shows the mean and median times until the optimal emissions level has been

reduced to zero. Both the mean and median times should increase monotonically with a,

because increases in a increase the threshold 0*(E) for every value of E. In the figure, the

mean time decreases for a > .13, but this is an artifact of the Monte Carlo simulation. (In

each run, the model was simulated for 1000 years, and for large values of a, there will be

runs for which it takes longer than this for E* to reach zero. In addition, the number of

runs at this tail of the distribution is very small.) Note that because the distribution of the

time until zero emissions is asymmetric, the mean time will exceed the median time for all

a > 0. The difference between the mean time and median time illustrates an important
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Figure 5: Mean Optimal Emissions Level at t = 0 and 20 Years.
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Figure 6: Mean and Median Times until Emissions are Reduced to Zero.
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aspect of the effects of uncertainty. There is a value of waiting (i.e., reducing emissions less

than would be the case otherwise) because of the possibility that 0 will not increase as much

as expected. For a > 0, there are indeed realizations in which it takes a very long time for

0 to grow to the point where eliminating emissions is justified.

5 Ecological Uncertainty.

So far, the only form of uncertainty that we have considered has been over the parameter 0

that shifts the benefit function B. In this section, I will assume that 0 remains fixed, but

that there is uncertainty over the evolution of M. Specifically, I replace eqn. (1) by:

dM = (E - M)dt + adz. (42)

Thus even if the trajectory for Et were known, future values of M would be uncertain (and

normally distributed)?13

For uncertainty of this kind to have any effect on policy timing or design, the benefit

function B(O, M) must be convex in M. The reason is that if this function were linear in

M, stochastic fluctuations in M would have no effect on the expected marginal social return

from reductions in E, and thus could not affect the optimal policy. This would be true even

if the cost of emission reduction, K(E), were a nonlinear function of the size of the reduction.

We will therefore assume that the benefit function is quadratic in M, i.e., B(M, 0) =

-OMt 2 . For simplicity, we will also assume that the (sunk) cost of an emission reduction is

linear in the size of the reduction, and that emissions must be reduced to zero once a policy

is adopted. Thus the cost of policy adoption is K = kE o.

We can now proceed as before, writing the Bellman equations for the value functions WN

and WA in the "no-adopt" and "adopt" regions:

rWN = -OM 2 + (3Eo - M)WN + 2 2W M, (43)

13It might seem more natural to assume that future values of M are lognormally distributed, i.e., to
describe the evolution of M by

dM = (fE - 6M)dt + aMdz,

so that M could never become negative. I use eqn. (42) instead because it simplifies the numerical solution
of the model. The basic results would still apply if M were lognormally distributed.
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rWA = -M 2 - SMWA + 1a2WAM . (44)

The value functions must also satisfy the boundary conditions:

WA(O) = 0, (45)

WN(M*) = WA(M*) - K, (46)

WN (M*) = WA(M*), (47)

where M* is the critical value of M that triggers policy adoption. Note that condition (45)

applies to the slope of WA(M) at M = 0, and not the level. Because M follows an arithmetic

(rather than geometric) Brownian motion, M = 0 is not an absorbing barrier, so we do not

have a simple boundary condition for the value of WA(O). However, since B(M, 0) = -OM2 ,

and WA applies when E = 0, WA must reach its maximum at M = 0.

There is now only one state variable (M), so that eqns. (43) and (44) are ordinary

differential equations. The solution of (44) and boundary condition (45) for WA is:

M 2 0 20
WA(M) = - (48)

r+ 2 r(r + 2)

This is just the present value of the flow of social cost from the current stock of the pollutant,

M, accounting for stochastic fluctuations in M (even when M = 0). Note that an increase in

a implies an increase in the magnitude of WA. This is an implication of Jensen's inequality;

WA is a convex function of M.

Without restrictions on the parameter values, eqn. (43) for WN does not have an ana-

lytical solution. We will see shortly how this equation can be solved numerically for WN(M)

and, simultaneously, for the critical value M*. First we will consider the special case of

6 = 0, for which WN(M) does have an analytical solution.

5.1 Environmental Damage Completely Irreversible (6 = 0).

When = 0, the solution for WA(M) in eqn. (48) reduces to:

WA(M) = -(rM2 + a 2)/r 2 . (49)
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As for eqn. (43), the homogeneous solution has the form WN = Ble* M + B 2e02M, and the

particular solution is a quadratic in M. By direct substitution, the solution for WN is:

WN(M) = BeOM _ O(rM2 + a2) _ 2f3EoO(fEo + rM)
r( T2 r3 (50)

where

=- Eo [1- 1+2ra2/32E] > 0, (51)

and B is a constant that must be determined. The first term on the right-hand side of

eqn. (50) is the value of the option to adopt the policy. The second term is the present value

of the flow of social cost from the current stock of the pollutant, M, allowing for stochastic

fluctuations in M in the future. The third term is the present value of the flow of social

cost that would result if emissions continued at the rate Eo forever, again accounting for

stochastic fluctuations in M (which now also has a deterministic component of growth).

The constant B and the critical value M* can be found from the solution for WA(M)

along with the value-matching and smooth-pasting conditions (46) and (47):

B = 2 EoOe - M > 0, (52)
r2 o

and
M 8Eo -a

2 r 2 K1M* = + ---- (53)
E -Eo ( 1- + 2ru2 /,/ 2E32 2OEo (53)

This solution has properties that we would expect. Note in particular that aM*/oK > 0,

dM*/Or > O, OM*/90 < 0, and &M*/a > 0. Thus stochastic fluctuations in M create an

incentive to delay policy adoption. As a numerical example, and for comparison to results

shown below for the more general case of > 0, we will set r = .04, K = 4, Eo = .3, /3 =

1, and 0 = .002. Then, if a = 0, the policy should be adopted immediately for any value of

M. However, if a = 1, the policy should only be adopted when M > M* = 6.74, and when

a = 4, the policy should be adopted when M > M* = 16.21,

5.2 General Case.

For the more general case of > 0, WN(M) and the critical value M* must be found

numerically. This is done by utilizing the solution for WA(M) given by eqn. (48), along
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with the boundary conditions (46) and (47). To obtain a numerical solution, we begin with

a candidate number (e.g., a best guess) for M*; call this MO. We then use eqns. (48), (46),

and (47) to get WN(MO) and WMN(M*), and we solve eqn. (43) backwards to determine a

corresponding candidate solution for WN(M) for all M between 0 and MO. To be the actual

solution, the candidate solution must satisfy one regularity condition for all values of M

between 0 and MO, and a second condition at M = 0. First, since an increase in M always

implies a reduction in the flow of current and future social benefits, we must have WMN < 0

for all values of M between 0 and M*. Second, because of the convexity of B(M, 0), we must

have WMM < 0 at M = 0.14 Thus the candidate number for M* is repeatedly adjusted up

or down (in smaller and smaller steps) until both of these conditions are satisfied.

Numerical Example.

This solution method is easiest to see in the context of a numerical example. We will

measure the stock of pollutant, M, in millions of tons, the emission rate in millions of tons

per year, and the value functions WA and WN and adoption cost K in billions of dollars.

Since the benefit function is B = -M 2 , we measure 0 in billion dollars/(million tons)2 . We

set K = 4, Eo = .3, 0 = .002, a = 1, a = 0, and, as before, r = .04, a = .02, and , = 1.

As Figure 7 shows, the solution for M* in this example is 13.05. The figure shows

candidate solutions for WN (M) corresponding to different values of M*, along with WA(M) -

K. Note that for candidate values of M* below 13.05, WN(M) > 0 for small values of M,

and for candidate values of M* above 13.05, WMM(M) > 0 for small M. The solution

procedure searches over candidate values of M*, using an increasingly narrow range.

Table 2 shows the critical value M* for values of a ranging from 0.3 to 4.0, and for 6

equal to 0 and .02. The table shows that M* increases with a, but it also shows how M*

increases with 6. A higher 6 implies a lower (or negative) rate of drift for M - emissions

are more reversible, so the present value of the flow of social cost for any current value of M

is lower, and a higher M is needed to justify the sunk cost of policy adoption.

14 1f 6 = O, we will have WMNM < 0 for all values of M between 0 and M*. However if 6 > 0 this condition
must apply only at M = 0, since 6M is increasing in M.
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Figure 7: Solution Method for Stochastic M.
(Note: K = 4, Eo = .3, a = 1, 0 = .002.)

Table 2: Solutions for M*.

(r = .04, 6 = 1, K = 4, Eo = 0.3, 0 = .002)

M*
a = 0 =.02

0.3 5.48 11.08

0.5 5.73 11.59

0.8 6.28 12.45

1.0 6.74 13.05

2.0 9.59 16.47

4.0 16.21 25.75
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6 Conclusions.

I have focussed largely on a one-time policy adoption to reduce emissions of a pollutant. If

the policy imposes sunk costs on society, and if it can be delayed, there is an opportunity

cost of adopting the policy now rather than waiting for more information. This is analogous

to the incentive to wait that arises with irreversible investment decisions. In the case of

environmental policy, however, this opportunity cost must be balanced against the opportu-

nity "benefit" of early action - a reduced stock of pollutant that might decay only slowly,

imposing irreversible or nearly irreversible costs on society.

In the simple models presented in this paper, an increase in uncertainty, whether over

future costs and benefits of reduced emissions, or over the evolution of the stock of pollutant,

leads to a higher threshold for policy adoption. This is because policy adoption involves a

sunk cost associated with a discrete reduction in the entire trajectory of future emissions,

whereas inaction over any small time interval only involves continued emissions over that

interval. This is true even for gradual emission reductions - a small reduction is a reduction

in the entire trajectory. Hence in my framework greater uncertainty always leads to greater

delay, although the effect is smaller the smaller is the decay rate, 6.

The validity of this result depends on the extent to which environmental policy is indeed

irreversible, in the sense of involving commitments to future flows of sunk costs. It seems to

me that this kind of irreversibility is often an inherent aspect of environmental policy, both

for policies that are in place (e.g., the Clean Air Act), and for policies under debate (e.g.,

GHG emission reductions). Nonetheless, the assumption of complete irreversibility made in

this paper (i.e., all costs of policy adoption are sunk) may be extreme. Richer models are

needed to explore the implications of relaxing this assumption somewhat.

In these models. economic and ecological uncertainty were treated separately. Ideally,

we would like to allow both 0 and M to evolve stochastically at the same time. This can be

done, but then the value functions WA(0, M) and WN(0, M) will satisfy more complicated

partial differential equations that must be solved numerically. Solution methods for such

models are discussed in Pindyck (1996), but are beyond the scope of this paper.
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