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Abstract

Purpose: The linear-quadratic model typically assumes that tumor sensitivity and repop-

ulation are constant over the time course of radiotherapy. However, evidence suggests that

the growth fraction increases and the cell loss factor decreases as the tumor shrinks. We

investigate whether this evolution in tumor geometry, as well as the irregular time intervals

between fractions in conventional hyperfractionation schemes, can be exploited by fraction-

ation schedules that employ time-varying fraction sizes.

Methods: We construct a mathematical model of a spherical tumor with a hypoxic core

and a viable rim, and embed this model into the traditional linear-quadratic model by as-

suming instantaneous reoxygenation. Dynamic programming is used to numerically compute

the fractionation regimen that maximizes the tumor control probability (TCP) subject to

constraints on the biologically effective dose of the early and late tissues.

Results: In a numerical example that employs 10 fractions per week, optimally varying the

fraction sizes increases the TCP from 0.7 to 0.966, and the optimal regimen incorporates

large Friday afternoon doses that are escalated throughout the course of treatment, and

larger afternoon doses than morning doses.

Conclusions: Numerical results suggest that a significant increase in tumor cure can be

achieved by allowing the fraction sizes to vary throughout the course of treatment. Several

strategies deserve further investigation: using larger fractions before overnight and weekend

breaks, and escalating the dose (particularly on Friday afternoons) throughout the course of

treatment.

Key Words: Dynamic optimization, Linear-quadratic, Reoxygenation, Repair, Repopula-

tion.
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Introduction

The linear-quadratic (LQ) model [1, 2] has gained relatively widespread acceptance

among radiobiologists and clinicians as a tool for understanding radiation survival response.

Current variants of the "LQ+time" model [3] capture two of the "four Rs" [4] of radiotherapy:

repair (of sublethal damage) [5] and repopulation [1, 6]. A third R, redistribution (in the

mitotic cycle), has been studied analytically [7, 8] and numerically [9]-[12]. However, it is

unclear whether this factor can be exploited to obtain an improved therapeutic advantage

[13]. The final R, reoxygenation, has only recently been directly modeled in the context of

the LQ model [14], and has instead been incorporated via an exponential decay over time

(independent of therapy) of the cell loss factor [15] or by modeling the resensitization process

[8, 16, 17], which includes redistribution and reoxygenation.

The LQ model has been used to rationalize and refine hyperfractionation schemes that

exploit the differential in a/p3 between early- and late-responding tissues [18, 19], and to

assess accelerated protocols that attempt to mitigate the effects of repopulation [20]. More

recently, the temporal - or dynamic - optimization of a LQ model with different repair rates

for early and late tissues has generated a further therapeutic advantage by incorporating

acute fractions at the beginning and end of treatment [21].

Our study was stimulated by two perceived gaps in the LQ literature. The first gap

is that the elegant analysis in [21] appears to be the only study that systematically investi-

gates the dynamic optimization of the LQ model. It focuses on accelerated regimens (e.g.,

brachytherapy), and the use of temporal optimization to exploit the irregular time intervals

present in traditional non-accelerated protocols has yet to be studied. The second gap is the

failure of the LQ model to capture the dynamics of reoxygenation and repopulation through-

out the course of treatment. These two gaps are closely related, because in vitro and in vivo

evidence suggests that the evolution of tumor geometry during radiation treatment and its
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impact on radiosensitivity and repopulation can be exploited by time-varying fractionation

regimens to further improve the therapeutic ratio. More specifically, hypoxic cells play a key

role in the reduced response to radiation [22]-[24]. As a tumor shrinks during the course of

therapy, diffusion-limited hypoxia decreases and necrotic regions become smaller and may

eventually vanish. Moreover, as explained in [25] and demonstrated for spheroids in [26],

nutrient-deprived cells are less apt to undergo mitosis, and the necrotic debris is eventually

removed; consequently, the net repopulation rate increases as the tumor shrinks. Unfortu-

nately, the LQ model - which typically assumes that the sensitivity and repopulation rate

of a tumor are constant throughout the course of therapy - does not appear to be capable

of tackling these issues, except within the context of a large simulation model [27]. In a

related paper, O'Donoghue [28] ignores incomplete repair but develops a nonspatial model

where the tumor grows exponentially when it is small and Gompertzian when it is big. He

uses this model to investigate the tradeoff between duration of remission and tumor control

probability.

The goal of this paper is two-fold: to incorporate the volume-dependent sensitivity

and repopulation effects into a computationally-tractable, parsimonious LQ model, and to

investigate whether radiotherapy protocols that employ time-varying dose rates can lead to

an improved therapeutic ratio. To this end, a volume-dependent LQ model is constructed

from an idealized spherical tumor model that contains a hypoxic core and a viable rim.

Dynamic programming is used to solve the following optimal control problem: choose the

radiotherapy protocol (a sequence of fractions of varying sizes) to maximize the tumor con-

trol probability, subject to a constraint on the biologically effective dose of the early and late

tissues. A computational study is performed to assess the relative efficacy of dynamic frac-

tionation schedules to exploit: (i) the irregular spacing of fractions (due to weekend breaks

and intra-day vs. inter-day differences), (ii) the difference in repair rates between tumors
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and tissues, and (iii) the evolution of the tumor geometry.

Methods

Model formulation

The model formulation is presented in four steps: (i) the description of the tumor

geometry, (ii) the specification of a cell's sensitivity and repopulation as a function of its

location within a tumor, (iii) the calculation of a tumor's overall sensitivity and rate of

repopulation, and (iv) the construction of an equivalent ordinary differential equation (ODE)

model.

Tumor geometry. We consider a spherical tumor that consists of a hypoxic core and a

viable rim. The tumor's size is defined by its radius R, which changes over time as a result of

radiation killing, necrotic loss and repopulation. If the current radius R is less than ro, then

the tumor contains no hypoxic core. If R > ro then the viable rim consists of the outer shell

of thickness r and the hypoxic core is the inner sphere of radius R - ro. The cell density

is assumed to be constant throughout the entire tumor. The spherical mathematical model

can be thought of as a representation of a multicellular tumor spheroid [29] or as a grossly

simplified caricature of a solid tumor in vivo. A similar approach - yielding qualitatively

similar results - can be employed with other tumor geometries for other forms of cancer

(e.g., a cord with a hypoxic center for squamous carcinoma [30]).

Location-dependent sensitivity and repopulation. In our model, a cell's sensitivity (a,

A) and its net repopulation rate (y) depends upon its radial distance, r, from the center

of the tumor, and on the current tumor radius, R, where r E [0, R]. All three quantities,

which will be defined by a(r, R), P(r, R) and y(r, R), take on a fixed well-oxygenated level

(denoted by co, o and yo) at the tumor surface (i.e., r = R) and decrease linearly as r

decreases. If R > ro then all three parameters drop to zero at the outer edge of the hypoxic

core (i.e., r = R - ro). Furthermore, cells in the hypoxic core are insensitive to radiation,

l�n�-�.�11___11_�__-_
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do not repopulate, and are lost (i.e., necrotic debris is removed) at rate %yN per unit time.

Hence, if R < ro then

a(r,R)= o--(R-r), P(r,R) = 0- (R-r), Y(r, R)=-Yo- (R-r) (1)
ro ro r0

for r E [0, R]. If R > ro0 then

ao(r, R) = o, (r, R) = , -y(r, R) = -N (2)

for r E [O, R- ro], and

(r, R)= °(r - R + ro), P(r, R)= ((r-R+ro), (r,R)= 7°(r - R +ro) (3)

for r E (R - ro, R].

A simpler variant (where the growth fraction is constant throughout the viable rim) of

this "constant crust" model has been shown to capture the in vitro growth characteristics

of multicellular tumor spheroids for several tumor lines [31]. Moreover, experimental evi-

dence shows that the growth fraction [32] and sensitivity [30] in solid tumors decrease as the

distance from the nutrient supply increases. Nonetheless, the constant crust model and the

linear functions in (1)-(3) were chosen for their parsimony (only five parameters are required)

and computational tractability, and the in vitro and in vivo situation is considerably more

complex. The composite function [14, 33] resulting from radiosensitivity as an empirically-

derived function of oxygen level [34] and oxygen level as a function of radial location (via

radial inward diffusion in a cylinder [30]) has a sigmoid shape in the viable rim. Similarly,

while experiments [35] suggest that repopulation may be roughly linear in the oxygen level,

the resulting composite function of repopulation in terms of radius is nonlinear. Incorpo-

rating these composite functions would add a considerable number of parameters and cause

the subsequent analysis to be extremely tedious, while generating little or no change in our

qualitative results.
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A tumor's overall sensitivity and repopulation rate. The spherical tumor model pre-

sented thus far consists of a heterogeneous collection of cells of varying radiation sensitiv-

ity and mitosis capability. We model radiation killing using the LQ+time formula [1]. If

f(a, , y) is the joint probability density function of the three parameters for the various cells

in a tumor of fixed size (the dependence on tumor radius R is suppressed in equations (4)-

(5) below), then the expected surviving fraction of cells after a dose of size d given over the

infinitesimal interval of time At is f e-'d-d 2+7ytf(c, , y)dcad/dy [36]. Rather than calcu-

late this expectation exactly, we follow the approach in [17] and employ two Taylor series

approximations. The approximation e 1 + x + 2 yields

In E[exp(-ad-/3d2 + ,d t)] ~ In E 1 -ad -Fd + At +(4)

Using the approximation In x ~ (x - 1) _ (-)2 in equation (4) and ignoring all polynomial

terms of order 3 and higher (i.e., d3, d2 At, d(At)2, (At)3 ) and the (At)2 term, we get

In E[exp(-cd - d2 + yAt)] -d -'/d 2 + At + 2- (5)

where , /3 and My denote the means and c,2 is the variance of a. Numerical results not

reported here show that the approximation in (5) is very accurate. By equation (5),, the

effective values of ao, p and y are given by &, p- 2 and A, respectively. These quantities

will be referred to as ac(R), /3(R) and y(R), and can be derived by integrating the functions

in (1)-(3) over ` (i.e., the surface area at radius r divided by the total volume) from r = 0

to r = R:

(R) =ao1 R r [(R - r)+]4 (6)

a(R) = o(l- 4ro 3 (6)

4r- 4r 0 R 3 1a22(R -O>)2 3 ro +12 2 r O ro + 3 + r + 6 

I(R) - [1- R + (- ro)+]4 _ [(N1 ro + 3 (8)
Tr-O 4rOR3_ R~~+]
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The equivalent ODE. Suppose an arbitrary dose rate dt is applied over the time interval

[0, T]. The surviving fraction of cells under the traditional (i.e., constant ao and 3 and -y = 0)

LQ model with incomplete repair (with repair rate /u) is

exp (-a dtdt - 20 dt( dse--(t-s)ds)dt) (9)

Expression (9) can be derived by various means (see equation (8) in [37] and references

therein) when o and are constant. To obtain an analogous result for volume-dependent

sensitivity (at, fit) and repopulation (yt), we use the ODE model [2, 37]

At = ht - atdt - 2kut]nt, (10)

ut = ctdt - Lput - 2ku , (11)

where nt is the number of cells at time t, ut is the number of DNA double-strand breaks per

cell that are susceptible to enzymatic processing. The breaks can come together in pairwise

interactions at rate kut, with half of these interactions clonogetically fatal. Double strand

breaks are induced at a rate of ct per unit dose at time t and repaired at rate . A minor

generalization of existing results (for the case t = , t = , "/t = 0) gives a surviving

fraction (after all enzymatic processing is complete) equal to

nT e _f T k T T
= exp- tdtdt- ctdt(mttcde-t-s)ds)dt+ / ydt). (12)

no =2/J

For the case (at = ca, ct = c, yt = 0), equation (12) reduces to equation (9) and = c2k

To capture volume-dependent sensitivity and repopulation, we let Rt be the tumor radius

at time t and substitute (from equations (6)-(8), respectively) c(Rt) for at, 4 ) for ct,

and y(Rt) for -t in equation (12). With these substitutions, equation (12) can be expressed

as the differential equation

t = nt[-y(Rt) - c(Rt)dt - 2 (Rt)dt J F(Rs)de-( t s)ds]. (13)
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Equation (13) assumes that as the tumor dynamically shrinks (from radiation and hypoxic

loss) and grows (from repopulation), the cells instantaneously reconfigure themselves and

change their sensitivity and repopulation parameters. Empirical evidence [38] suggests that

the quickness of chronic reoxygenation varies considerably for different experimental animal

tumors, although this process is generally considered to occur faster than tumor shrink-

age and growth. This "instantaneous reoxygenation" assumption is not too objectionable

because the computational study only considers protocols that have at least eight hours

between fractions.

Because the sensitivity and repopulation functions are expressed in terms of the radius,

we need to express the differential equation in terms of the radius, not the number of cells.

If we let 0 be the density of cells per unit volume in the spherical tumor, then nt = 480RR

and tt = Rdn t = 47rrR2Rt. Substituting these expressions and (6)-(8) into (13) yields the

differential equation

Rt= -[(Rt) -aRt)dt -2,3(R) dt (Rs)de-(t- S)ds] (14)

This equation forms the basis of the optimal control problem.

Problem formulation

The optimization problem is to choose a radiation schedule that maximizes the tumor

control probability (TCP), subject to a constraint on the biologically effective dose (BED)

[39] of the early and late tissues. We employ the commonly used "Poisson model" [40],

which states that the TCP is e-CT, where CT is the number of clonogens (i.e., cells capable

of tumor regeneration) at the end of treatment. We assume that clonogens make up a fixed

proportion, p, of the tumor cells and that clonogens' sensitivity to radiation is no different

than other tumor cells. Mathematically, the problem is to choose T and {dt > 0, 0 < t < T}

to maximize

exp 3 (RT (15)
r )+)

_____�______1___1___�___
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subject to (14),

T dtd + L dt l dse-L(t-s)dsdt < DL, (16)

and

Dt- inf D < DE for 0 < t < T, (17)O<s<t

where

Dt , dds +D 2 d 3 due-E(S-u) duds - t (18)

kE, a E, /YE and DE are the o/3 ratio, repair rate, repopulation rate and BED, respectively,

for the early tissue, and kL, L and DL are the corresponding quantities for the late tissue.

We assume that these parameters are constant and that the late tissue does not repopulate.

Note that the late tissue constraint (16) only needs to be assessed at time T, whereas the

early tissue constraint (17) needs to be imposed throughout the course of treatment. The

reflection mapping on the left side of (17) (referred to as the "one-sided regulator" in [41];

here, "inf' is the infimum, or minimum) is needed to prevent the early tissue from "storing"

negative BED in between fractions. Also, when we refer to the early constraint as "binding",

we mean that it is satisfied with equality on Friday afternoons.

Solution to the control problem

Pontryagin's maximum principle [42] is the most widely used method for solving de-

terministic optimal control problems. By expressing each of equations (14), (16) and (18)

as two ordinary differential equations (e.g., for (14), let Yt = f O(Rs)dse(t-S)ds so that

Y = l(Rt)dt - AYt), it can be shown that the Hamiltonian H is linear in the control

dt. Therefore, the control problem is singular and we have shown that the singularity is

of order one (§6-21 of [43]). In the case where there is no early tissue constraint, we have

solved the equations H = 0 (because the treatment duration T is a decision variable) and

d2 (adt) = 0 to find dt in terms of the various state and adjoint variables, but the resulting
dtexpressions are too complex to derive any fundamental insights into the nature of the opti-t

expressions are too complex to derive any fundamental insights into the nature of the opti-
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mal solution; hence, this analysis is omitted. The early tissue constraint makes this control

problem extremely complex because it needs to be evaluated at each point in time (or after

each fraction if a fractionation scheme is employed). Hence, in the Results section, we resort

to solving problem (14)-(18) numerically using an iterative dynamic programming algorithm

constructed exclusively for singular control problems [44].

Results

Optimal static scheme

We restrict our numerical study to fractionation schemes that have 10 fractions per

week. More specifically, time t = 0 corresponds to the first fraction given on Monday

morning, there are two fractions per day that are separated by eight hours (each fraction's

duration is one minute), and there is no treatment on the weekends. To assess the efficacy

of the optimal solution to (14)-(18), we compare it to the best static (i.e., fraction sizes

do not vary over time) scheme, which is characterized by the fraction size and the total

number of fractions. The optimal design of static regimens can be viewed graphically as

the problem of maximizing a nonlinear objective (TCP) subject to satisfying two inequality

(BED) constraints, as shown in Figure 1. We assume that the hyperfractionation (HF)

regimen (70 fractions x 1.15 Gy) is the optimal (i.e., it solves problem (14)-(18)) scheme

among static policies with 10 fractions per week. We also assume that the late and early

BED constraints (16)-(17) are binding under HF and the resulting TCP in (15) is 0.7.

Parameter values

The 15 parameters and one initial condition in the optimization problem are found by

the following procedure. First, the initial tumor radius Ro is set equal to 0.5 cm, which

corresponds to a typical tumor at the time of presentation. We set the viable rim radius ro

equal to 0.05 cm, which is about three times larger than the oxygen diffusion limit in tumor

tissue [30], in order to reflect the fact that a tumor of this size would be vascularized [45].

/1/�___X__�_____IO__________O�li�bll �11_11__·��·�_
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This value leads to 27.1% of the tumor being viable initially. The cell density 0 = q
4irR3c,

where q is the packing factor and Re is the cell radius. If q = 0.4 and Rc = 10m [46], then

the density is x 108 cells/cm3 , and we use 0 = 108 cells/cm3 . The loss rate for necrotic

debris is taken to be fyN = s hr-1 [47]. The tumor repopulation parameter is chosen so

that the steady-state tumor radius without radiation is 2Ro = 1.0 cm, giving yo = 0.256

hr- 1. Five parameter values are taken from Brenner et al. [21]: kE = 10 Gy, kL = 4 Gy,

A = E = 1n2 hr- 1 and AL = 1n2 hr-'. By Table II of [48] (but using a Dp,,,if of 1.6 Gy/day

rather than 1.8 Gy/day), we set a = 1.6 Gy/day[1 + (2 Gy)kE] = 0.08 Gy/hr.

This leaves five unassigned parameters, ao, Bo, DL, DE and p, which are determined

using our assumptions about HF described earlier. We set DL = 111.5 Gy and DE = 4.59

Gy, which are the resulting BED values under HF. The parameter o0 = 1.78 Gy- 2 is set so

that the time average ratio of -(R) over the course of HF is 10. The parameter ao = 2.5 Gy- 1

is set so that HF is the optimal static fractionation scheme (as determined by an exhaustive

search over the number of doses and dose size, with a dose discretization of 0.05 Gy), and

p = 2.15 x 10- 7 (which is smaller than most estimates in the literature) is set so that HF

achieves a TCP of 0.7.

Numerical Results

The optimal solution to (14)-(18) (using a dose discretization of 0.05 Gy) is displayed

in Figure 2. This scheme administers a total of 66.81 Gy in six weeks, and achieves a TCP

of 0.966, which is a significant improvement over HF's TCP of 0.7. The resulting BED

administered to the early and late tissues is 4.59 Gy and 98.5 Gy, respectively. Hence, the

early constraint is binding under the optimal scheme but the late constraint has a slack of

13 Gy.

The optimal solution in Figure 2 possesses several interesting features. The most

pronounced effect is the large doses on Friday afternoons. These six doses are over 3.5
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times larger on average than the other 54 doses. These large fractions are primarily used to

compensate for the weekend breaks. However, a secondary factor could be that tumors are

also smaller on Friday afternoon than at other times of the week, and smaller tumors are more

sensitive and may attract larger fractions. There is also a significant am-pm effect: 60.0% of

the total dose on Monday through Thursdays is administered in the afternoons (including

Friday in this calculation would introduce the weekend bias). These large afternoon fractions

offset the repopulation during the 16-hour gap until the next morning's fraction. A third

feature of Figure 2 is the intensification of the Friday afternoon doses throughout the course

of treatment. The Friday afternoon fractions in the last three weeks of treatment are 16.8%

larger on average than those in the first three weeks. This escalation over the course of

treatment is due to the fact that ao(R) increases and (to a lesser extent) (R) decreases as

the tumor becomes smaller, making it more desirable to use larger fractions towards the end

of treatment. (If 2tLR increased as the tumor shrank, there would be a tradeoff: larger doses

towards the end of treatment would kill more tumor cells but also cause more late tissue

damage.) Because of the early tissue constraint, the total dose given in each of the last three

weeks is less than the total dose given in each of the first three weeks, in order to compensate

for the larger Friday afternoon doses during the latter half of treatment. Finally, it is also

worth noting that the optimal policy ends on a Friday. Because the value of DE is so low,

the early tissue tends to nearly heal itself over each weekend, and by ending on a Friday the

optimal scheme makes sure to exhaust the allowable early BED.

The large first dose observed by Brenner et al. [21] is absent from Figure 2. This is

probably because the early constraint forces the optimization procedure to choose between

a large Monday morning fraction or a large Friday afternoon fraction in the first week, and

apparently the Friday dose is more efficacious. The absence of the large first dose may

also be due to the fact that we are focusing on traditional (i.e., 10 fractions per week)

I �_ IP �1_1�
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hyperfractionation schemes, whereas Brenner et al. [21] considered accelerated protocols.

Discussion

The foundation of the rationale for current fractionation schemes is the exploitation

of the differences in radiation sensitivity (ca, 3) and repopulation (y) between the tumor

and the normal (primarily late) tissue. More recent results [21] show how the difference

in repair rates can also be exploited by temporally optimizing the dose rate in accelerated

protocols. The results in the present paper complement these ideas by suggesting that

the therapeutic ratio can be further improved by exploiting two other factors: irregular

time intervals between doses caused by overnight and weekend breaks, and the changing

radiosensitivity and repopulation rate of the tumor caused by reoxygenation. The weekend

break was the most pronounced effect in our numerical example, causing Friday afternoon

doses to be about 3.5 times larger than the other doses. The overnight effect was also

significant, with afternoon doses accounting for 60.0% of the total dose administered on

Mondays through Thursdays. The tumor increased its radiosensitivity and repopulation

rates throughout the course of treatment, leading to 16.8% larger Friday afternoon doses in

the latter three weeks of treatment than in the first three weeks of treatment. Sensitivity

analysis (not reported here) shows that these three effects become stronger as the early tissue

constraint is relaxed (i.e., DE or is increased).

Figure 2 shows that the optimal fractionation scheme compensates for irregular time

intervals between doses by administering larger doses before longer breaks and shorter doses

before shorter breaks. We know of no previous work that systematically investigates this

intuitively appealing strategy. Although our numerical study was restricted to hyperfraction

schemes (10 fractions per week), this strategy may also improve conventional (five fractions

per week) and accelerated (15 or 21 fractions per week) protocols.

The optimal radiation policy exploits the reoxygenation process by taking into account
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the fact that as the tumor gets smaller in our volume-dependent LQ model, the tumor's

sensitivity (ce) increases and its ratio decreases. Hence, giving large doses at the beginning

of therapy is wasteful, since some of this dose can kill more cells if it is deferred until the

tumor is smaller. Moreover, as the tumor shrinks, the growth fraction increases and the

cell loss factor decreases, and consequently the repopulation rate increases. This provides

an additional incentive to increase the dose rate (thereby reducing the length of treatment)

when the tumor is smaller. In summary, an optimal radiation policy attempts to exercise

patience when faced with a large tumor: it slowly and methodically chips away at the outer

surface of the tumor, until the hypoxic core or the remaining available BED is sufficiently

small, at which time the dose rate is increased until the end of treatment.

The dose intensification strategy suggested by our analysis has appeared in various

guises in the mathematical radiobiology, clinical oncology and clinical radiotherapy litera-

tures. In two mathematical papers [49, 50] that employ the single-hit multitarget model for

oxygenated and anoxic cells, the numerically computed optimal solution has a dose size that

increases over time, because the oxygenated fraction increases as the tumor gets smaller.

These models do not attempt to capture the tumor geometry and - because these papers

pre-date the widespread adoption of the LQ model - their handling of normal tissue is

necessarily imprecise.

The Norton-Simon hypothesis [51, 52] has had a considerable impact on the thinking of

the clinical oncology community. They use the log-kill assumption [53] (chemotherapy kills a

fixed percentage of cells, not a fixed number of cells) and the Gompertzian growth assumption

[54] (the repopulation rate decreases as the tumor gets larger) to argue for intensification

therapy, where the chemotherapy dose level is increased as the tumor becomes smaller. Our

reasoning is consistent with theirs, in that the mathematical tumor models such as the one

posed here lead to Gompertzian growth over much of the tumor's life [31, 55].

�--�---·r�--------------- ------ �_�__�_��__�__��_____�_
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Dose intensification throughout the course of treatment can also be seen in concomitant

boost (CB) therapy, where daily 1.8 Gy fractions are given for six weeks to the standard large

field, plus an additional 1.5 Gy fraction is delivered to a reduced field on a daily basis for the

last 10-12 days of treatment. The boost appears to be more efficacious when administered

late in treatment rather than early [56], which is consistent with our results. This regimen

is currently being tested against conventional fractionation, hyperfractionation and split-

course accelerated fractionation in the RTOG Trial 90-03. The rationale put forward for

CB [57]-[59] is the reduction in overall time and the lower toxicity generated by the reduced

field; however, Peters [59] mentions that the increased oxygenation and cell proliferation at

the end of treatment may also aid in CB's superior performance.

Several studies [60]-[62] have proposed regimens in which daily doses are escalated

throughout the course of treatment. However, the rationales provided for this approach

are different than ours: these researchers wanted to overcome accelerated repopulation or

stimulate early tissue repopulation during the early weeks of therapy so as to better tolerate

the late treatment. The amount of escalation in [62] (from 1.2 Gy to 1.6 Gy) is of the same

order of magnitude as the escalation of Friday afternoon doses in Figure 2.

The dose intensification strategy generated by our analysis also suggests how one would

optimally schedule combination therapy of a hypoxic cytotoxin such as terapazamine [63]

and radiation: the radiation dose would be increased and the terapazamine dose would be

decreased throughout the course of therapy.

While most studies focus on the tradeoff of tumor and late tissues, we explicitly in-

corporate an early tissue constraint. Although this constraint is more difficult to express

mathematically (see (17)-(18)) and more difficult to handle computationally than the late

tissue constraint, its inclusion provides a more complete view of the problem. Indeed, the

early tissue constraint was omitted in the initial phase of our research, and the resulting
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optimal fractionation schedules would have been fatal to humans. Moreover, the early con-

straint allows one to graphically view the static fractionation protocol design problem as the

constrained optimization problem in Figure 1. This graphical tool, which consists of plotting

TCP iso-curves and BED constraints for early and late tissues, may help address important

questions, such as which BED constraints (i.e., just one of them or both - note that the

optimal solution need not be at the intersection of the two constraints) are binding in the

optimal protocol for various types of tumors.

We conclude with several caveats. Our underlying tumor model is a reasonable one for

prevascular tumors. It is well known [45] that tumors undergo the process of angiogenesis

when they reach about 0.3 cm in diameter, at which time blood vessels are recruited from

the surrounding tissue and a growth surge occurs. However, results of [64]-[66] show that

the necrotic fraction and hypoxic fraction increase with the volume of vascularized tumors,

and blood vessels are densest at the tumor periphery and are absent in the necrotic core.

Hence, our simple model appears to capture the qualitative features of vascular tumors.

Nevertheless, there have been studies suggesting that oxygenation may decrease during the

course of fractionated radiation treatment [67]. Further research is needed to understand

how oe, and y vary in vivo over the course of radiotherapy.

We have attempted to add a degree of biological realism to the LQ model without

imposing too many extra parameters. The LQ+time+incomplete repair model has four pa-

rameters and equations (6)-(8) and (14) have six parameters, the two additional ones being

the thickness of the viable rim and the loss rate of necrotic debris. Hence, while our model is

considerably more complex than the traditional LQ model, our use of one-parameter linear

functions for sensitivity and repopulation leads to a relatively parsimonious, albeit simplis-

tic, model. Nonetheless, our optimization problem (14)-(18) contains 15 parameters and

consequently is nearly impossible to validate. Moreover, small changes in some parameters
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(e.g., 2- or DE) lead to quite different quantitative (although similar qualitative) results.

We also suspect that the actual TCP iso-curves are less flat than pictured in Figure 1 (ex-

ploratory calculations show that they are less flat in the traditional model, where c and 

are constant; e.g., the 0.7 TCP iso-curve that passes through HF also passes through the

50x1.3 Gy protocol), which would lead to a smaller increase in TCP than the impressive

numbers achieved by the regimen in Figure 2. For all these reasons, we put little stock in

the precise quantitative results provided here, and the policy appearing in Figure 2 is not

intended to be interpreted as the optimal dynamic HF schedule. Nevertheless, our results

do suggest that there is untapped potential for the use of dynamic fractionation schemes

that incorporate the overnight effect, the weekend effect and the dose escalation effect. Our

hope is that these types of models and analyses will provide a systematic way of generat-

ing and refining approaches to improve the therapeutic ratio of radiotherapy by temporal

optimization of dose schedules.
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Figure 1. The optimal design of a static fractionation scheme (for 10 fractions per

week) can be viewed as a constrained optimization problem of maximizing the TCP subject

to two BED constraints. The shaded region corresponds to the space of feasible regimens.

The curves outside the feasible regions are TCP iso-curves. The parameter values are set so

that HF is the optimal static policy, has both constraints binding, and achieves a TCP of

0.7.
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Figure 2. The fractionation scheme that optimizes problem (14)-(16) over the class

of policies that administers 10 fractions per week with eight-hour intervals each weekday.

The policy applies a total of 66.81 Gy over six weeks. Distinctive characteristics of the

optimal scheme are that Friday afternoon doses are very large, afternoon doses are larger

than morning doses, and the Friday afternoon doses are intensified throughout the course of

treatment.
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