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ABSTRACT

Nonlinear acoustic waves are investigated from the viewpoint of a wavepacket.

The wavepacket is defined as a portion of a wave that travels at an independent
phase speed c = c + flu', where c is the sound speed, ]3 is a constant related to

the propagation nonlinearity, and u' is the acoustic particle velocity. During
travel the wave distorts during travel because of the nonlinearity, and
undergoes absorption due to the effects of viscosity, heat conduction, and

relaxation. Some of the most interesting phenomena associated with

nonlinear acoustic waves are the result of the combined effects of nonlinear

propagation (and the resulting distortion of the wave) and of absorption.

These effects are especially at work in shock problems.

The mathematical approach begins with the notion of cumulative wave
distortion, and its development from a nonlinear wave equation. Novel time

domain expressions for acoustic absorption are then developed which are valid
for both linear and nonlinear acoustic waves. These theoretical concepts, for
nonlinear propagation and for absorption, are then combined into a

propagation model which is then evaluated numerically in the spatial domain.
Several specific and diverse examples are emphasized, including: pulse self-

demodulation, oceanic parametric sonar, enhancement of ultrasound heating

by sound-sound nonlinear interaction, and the formation and evolution of
acoustic shoci:s without the need for the so-called equal-area rule in weak

shock theory. Experimental data are used to verify both the theory and the

computational icsults.
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Notation and List of Symbols

Notation symbols:

A first coefficient in a Taylor series for p(p).

A a point of acoustic particle velocity on a sine wave.

Ao an arbitrary amplitude for a function.

Ac.v. control volume cross sectional area, m2.

B second coefficient in a Taylor series for p(p).

C third coefficient in a Taylor series for p(p).
co linear acoustics propagation speed (i.e. the sound speed), m/s.

Ceffective nonlinear acoustics effective propagation speed for a wave
packet, m/s.

Cp specific heat at constant pressure, Joule/(kg.K).

cT isothermal wave propagation speed, m/s.

Cv specific heat at constant volume, Joule/(kg-K).

C.V. control volume.

d distance along x where a shock forms, mn.

e base of the Naperian log, e = 2.71828..

E a point of acoustic particle velocity on a sine wave.

f frequency, Hz.

f arbitrary function to solve the wave equation.

F a point of acoustic particle velocity on a sine wave.

g arbitrary function to solve the wave equation.

i V-I.

j node index for wave packet.

J Joule, or N-m.

k wavenumber, w/c.

k discretization step index.
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complex wavenumber, k = kr + ik i.

Kelvin temperature (e.g. 273.16 K is 0.0 degrees Celsius).

real part of k.

imaginary part of k.

mass, kg.

an integer; e.g. 0, 1, 2 ...

total pressure, Po + p', Pascals (Pa) or N/m2.

acoustic pressure, Pa.
ambient pressure, Pa.

condensation, where s - p'/Po, dimensionless.

entropy, Joule/(kg-K).

time, seconds (s).

temperature, degrees Kelvin.
wave period, seconds.

acoustic particle velocity, m/s. Also see v'.

acoustic particle velocity, m/s, in a local frame.

a specific acoustic particle velocity at x, m/s.

total particle velocity, v + v', m/s.

acoustic particle velocity, m/s. Also see u.

ambient particle velocity (i.e. the flow speed), m/s.

axis, or position on axis, meters (m).

a specific position on the x-axis (m).

mbols:

dissipation work flux, W/m2 .

a time span, s.

work, J/m 3.

thickness of a control volume slab along the x-axis, m.

dissipationless distance to a shock on the x-axis, m.

absorption coefficient, m' 1.

coefficient of nonlinearity, 1 + B/(2A).

a distance between two points on a wave, meters.

Laplacian, a spatial derivative, units m- 1
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V2 second-order spatial derivative, units m 2 .
e dimensionless acoustic Mach number, e-- V/c o.

E a shorthand parameter substitution used in Eq. (B.4).
' dimensionless ratio of specific heats, Cp/Cv.
K heat conduction coefficient, Watt/(m-K).

X wavelength, m.

1l shear viscosity, Pa.s.

'1 transducer efficiency.
lib bulk viscosity, Pa.s.

p total density, po + p', kg/m3.

p' acoustic density, kg/m3.

Po ambient density, kg/m 3.

:r relaxation time, s.

xr pulse duration, s.

co radian frequency, s'l.

Mathematical and other symbols:

equals by definition.

a/at partial derivative with respect to t.

a/ax partial derivative with respect to x.
D/Dt a a/at + v.V. Material time derivative for a C.V. moving at speed v.

<---> implies that.

Ix=a equation notation for function evaluation at x = a.

I.-.I absolute value.

O(sn} remaining terms of s with order integer-n and arger.

a: b a is compared to b, usually on an order of magnitude basis.

n

n2) short hand notation for 2! (n!
2! (n-2)!

Px partial derivative of p with respect to x.
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Abbreviations

BW bandwidth.

broad a description of a signal where BW is not << fc, (e.g. BW > 0.1 fc).
band

c. (Latin; circa ) "approximately."

cc cubic centimeter, (cm)3.
c w continuous wave.

e.g. (L., exempli gratia) "for example."

et alia (L., et al.) "and others."

fc center frequency.

FM frequency modulation.

i.e. (L., id est ) "that is."
narrow a description of a signal where BW << fc.

band

N.B. (L., Nota Bene ) "note well."

op. cit. (L., opere citato) "in the work cited"
or "in the work previously cited".

PE polyethylene.

RTV a silicone rubber, RTV-615 from General Electric Co.

w.r.t. with respect to.
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Chapter I Introduction

Chapter 1

Introduction

Two independent but related experiments conducted during the 1989-1991

period provided the initial motivation for pursuing this Ph.D. thesis in

nonlinear acoustics. The first experiment was conducted by John Halsema

(1992) as part of his MIT Ocean Engineer's thesis work; the second was

performed by me.

Halsema's work, in collaboration with John W. Irza of the Charles Stark Draper

Laboratory [CSDL], involved echo ranging with an assortment of acoustic

waveforms generated by the nonlinear mixing of two acoustic signals; that is,

by the use of a parametric sonar. I had the opportunity to work with Halsema

and Irza at the U.S.S. Constitution pier, Charlestown Navy Yard, Boston and

occasionally on the fine waters of Boston Harbor, during much of the test

program. Halsema's work is fully described in his thesis. One of the nagging

items that I pondered over, while Halsema was working on the hardware and

interpreting his data, was that it would be handy to have a computational

model that could predict, with some accuracy, the type of acoustic waveforms

that he observed in the harbor testing. Modeling of this sort would require

the calculation of nonlinear distortion, waveform mixing, and the full range

of absorption components. At the time, no such model existed either at MIT or

at CSDL. Not only that, but computational means that could model non-CW

pulsed nonlinear waveform mixing was not then available anywhere. As of

early 1993, such tools are emerging in the literature, but with certain

assumptions made on absorption and validity at, or near, the shock formation

distance. The work contained in this thesis, and as implemented
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Chapter I Introduction

computationally, meets the requirements of modeling nonlinear sound waves,

without undue restrictions on absorption, and is valid before, during, and after

shock formation.

The second experiment, which I led, concerned the enhancement of
acoustically generated heating by nonlinear acoustic means. The original idea
was the basis for the final project/paper (see Appendix A) written for MIT

course 6.562, Ultrasound: Physics, Biophysics, and Technology, during the Fall

semester, 1988; the course was instructed jointly by MIT Professors P.P. Lele

and F. Morgenthaler. The paper then led to 1989 and 1990 experiments in Dr-

Lele's MIT Hyperthermia Laboratory, where it was demonstrated that

simultaneous insonification by two confocal MHz-based sound sources gave
more focal heat generation than the thermal superposition of each source

separately. The 1990 experiment was intended to reproduce and confirm the
results of the 1989 experiment. Apart from the positive results of the
experiments, the future initiatives suggested from these experiments were: (1)
the concept should be modeled computationally to fully investigate why the

extra heat generation occurred, and (2) a full scale of experimental tests

should be performed over a wide range of test conditions and within media

such as water, salt water (which is chemically close to the composition of

living animals), and animal tissue (steak, e.g.). The first of these two
initiatives is met in this thesis.

Meanwhile, during this period I was busy with the usual MIT graduate student

activities: courses, qualifying exams, and research in synthetic aperture sonar

[SAS] imaging for my master's degree and thesis (Rolt, 1990). After fully

wringing out SAS in my S.M. thesis and in the related publications that
followed, the only significant contribution that I could see to further that

subject (at the time) was to field a simple, inexpensive, operational SAS system.

I concluded that until someone demonstrated a SAS system of hardware and

processing, and showed images of sunken vessels, submerged acoustic mines

etc., the technology of unclassified SAS would never become as useful and as

widespread as both SAR (synthetic aperture radar) and conventional sidescan

sonar are today. The more I thought about this, the more I realized that the

project would be almost entirely hardware-oriented, and therefore a hard-sell
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Chapter 1 Introduction

to the MIT faculty for a Ph.D. topic. That's why this thesis is not about acoustic

imaging with synthetic aperture sonar.

On the other hand, the substantial overlap of the computational model

requirements between these two sets of experiments, an oceanic sonar one by

Halsema, and a medical ultrasound-based one by me, offered a unique

opportunity to pursue Ph.D. research in an acceptable area that would satisfy

the needs of my sponsor [CSDL], fit into a category appropriate for my

department at MIT [Ocean Engineering], and allow me to work on my own

research area. That's how this research began.

1.1 What is Nonlinear Acoustics?

Nonlinear acoustics is most easily described by first defining linear acoustics.

For the purposes of this thesis, linear acoustics supposes that the

characteristic s h ap e of a sound wave does not change as it travels (or

propagates). During propagation, a dissipationless sound wave may have an

amplitude that increases with distance (say in a convergent pipe, horn, or due

to a converging acoustical lens), it may have a constant amplitude (a sound

wave traveling inside a frictionless pipe), or it may have an amplitude which

decays with distance due to geometrical divergent spreading. In all three

cases, the amplitude of the wave may change, but the overall shape does not.
This assumes that the waves are of the form A .f(x ± cot), where A is the

amplitude, f is the wave function shape (e.g. cosine), x is position, c is a

constant sound speed and t is time. Sound waves having such characteristics

are solutions to the linear dissipationless (i.e. lossless) wave equation.

Most simply put, and in the context of this thesis, lossless nonlinear waves

have shapes which do change as the wave propagates. Lossless nonlinear

acoustic waves are also sensitive to the initial amplitude of the wave. Hence, in

contrast to the previous dissipation-free linear acoustic example, we now have

a wave function f which is sensitive to amplitude, position, and time. In the
linear case, the function f was independent of A , x, and t; in the nonlinear

case, the function f depends precisely on these quantities. The shape-change

17



Chapter 1 Introduction
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Fig. 1-1 Linear versus nonlinear waves. In the absence of dissipation,
the linear wave never changes shape (except in an amplitude
scale due to geometric spreading), while nonlinear waves
always change shape as they travel.
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Chapter 1 Introduction

character of a nonlinear acoustic wave is both a property of the material in

which the wave propagates, as well as a result of the convective parts of the

nonlinear wave equation. Schematic illustrations for linear waves which

don't change shape, and nonlinear waves which do change shape, are shown

in Fig. 1-1.

The introduction of acoustic dissipation also causes the wave shape to change

in both the linear and nonlinear acoustic cases; that is why the dissipation-

free case was used to mark the distinction between linear and nonlinear

acoustic waves.

1.2 Prior Work in Nonlinear Acoustics

The nonlinear acoustics literature, up to the late 1950s and early 1960s, is quite

sparse. The classic papers written on the subject range from the 1755 work of

Euler up to the 1930's work by Fay and Fubini. Blackstock (1969) wrote a very

complete review of the antique work in nonlinear acoustics from this period.

I will not review the material among the papers described by Blackstock;

rather, I refer the interested reader to his excellent paper and to the related

paper that was an outgrowth of Blackstock's Ph.D. thesis (Blackstock, 1962).

Though seldom mentioned in the literature, the mathematics considered and

computationally used to model the focused explosive detonator for an atomic

bomb, would have required substantial knowledge and understanding of many

of the nonlinear acoustic principles brought to light much later on. It is

entirely possible that considerable knowledge in nonlinear acoustics emerged

from the Manhattan Project of World War II, especially considering the work

by Bethe and Teller (1941), but only declassification of these documents will

reveal the state of knowledge at the time.

Since the 1950s and 1960s, however, the field has expanded considerably, and

the published literature in nonlinear acoustics since then is vast. The

biannual meetings of the Acoustical Society of America have regular sessions

devoted to various aspects of nonlinear acoustics. In addition, every two years

or so, the International Symposium on Nonlinear Acoustics, or the ISNA
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Chapter I Introduction

meetingl, is usually held at, or near, a center for nonlinear acoustics

research.

1.2.1 Prior Work in Nonlinear Acoustics at MIT

A number of papers in nonlinear acoustics have been produced at MIT, the

first being a landmark paper by Professor R.D. Fay of the Electrical

Engineering Dept. in 1931. Fay was later affiliated with the Underwater

Acoustics Lab. of MIT during World War II. Fay renewed his interest in

nonlinear and finite wave propagation in papers from 1956 and 1962. During

the middle 1950s, K. Uno Ingard and his student D.C. Pridmore-Brown of the

Physics Department studied the interaction and scattering of sound by sound

(1955). This work was considered controversial; as recently as 1990, some of

their results were still debated 2. L. Wallace Dean III (1962), from the Physics

Dept. and the Research Laboratory of Electronics, studied the interactions

between sound waves. Dean also theoretically examined the problem Ingard

had studied, for both beam-beam intersection, and beam-beam intersection in

the presence of a hard object.

Two graduate students in the MIT Physics Department, L.N. Litzenberger (S.M.

1969, Ph.D. 1971) and L.P. Mix (Ph.D., 1971), studied linear and nonlinear ion

acoustic waves within ionized plasmas and within magnetic fields, both

students being directed by Prof. G. Bekefi. Ion acoustic waves are, in the words

of Litzenberger, "... quite similar to ordinary sound waves in neutral gases

except that long-range Coulomb interactions between charged particles rather

than short-range collision forces between molecules dominate the
phenomenon."

S.W. Zavadil, an Ocean Engineering graduate student (O.E., 1976), created a

computer code to model the nonlinear distortion of sinusoidal waves in viscous

fluids, but he did not include relaxation nor heat conduction terms in the

model, and his model was only valid for weak nonlinear waves; i.e. it would not

handle shocks. He compared his model to that of Keck and Beyer (1960), and

the agreement was very good.
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Professor P.P. Lele of the Mechanical Engineering Dept, established a

Laboratory for Medical Ultrasonics and Cancer Hyperthermia Center, and

guided many graduate students throughout the last three decades. A number

of the experiments done in the ultrasound/hyperthermia lab were related to

nonlinear effects, principally including those by N. Senapati (1973) on

cavitation and R. Handler (1976) on nonlinear sound absorption. Part of

Handler's thesis was a section that estimated the harmonic generation for a

focused sound beam using a model based on the work by Cook (1962). Handler

was looking for an explanation for acoustically-induced thermal tissue

damage. Handler concluded that the harmonic generation was an insufficient

mechanism but cavitation might be sufficient.

J.A. Halsema's thesis (1992) and experiments, as mentioned at the beginning of

this chapter, are both the most recent and apparently the first MIT-based

foray into parametric sonar. Halsema used a .30-meter diameter piston

transducer to radiate pulsed sound waves at roughly two frequencies: 184 kHz

cw and a noise-like waveform in the range 169- to 179-kHz. By driving each of

these frequency bands at large amplitude, he achieved nonlinear mixing of

the two waves in the water, and created a difference frequency wave ranging

from 5 to 15 kHz. These experiments were primarily performed in Boston

Harbor, from the U.S.S. Constitution pier in Charlestown MA.

1.2.2 The State-of-the-Art in Nonlinear Acoustics

The state-of-the-art in nonlinear acoustics continues to unfold. As previously

noted, every two or three years there is an International Symposium on

Nonlinear Acoustics; the two most recent were hosted by the University of

Texas, Austin (USA) in 1990 and the University of Bergen, Bergen (Norway) in

1593. The University of Texas/Applied Research Laboratory group in Austin,

and the University of Bergen are recognized throughout the world as two of

the principal research centers in nonlinear acoustics. In addition, nonlinear

acoustics is playing a more important role in the use of ultrasound in medicine

for therapeutic and diagnostic purposes, and it is intricately linked with the

study of cavitation and sonoluminesence.
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Chapter 1 Introduction

Today, there are principally four different approaches to the solution of

nonlinear acoustics problems. The first, the oldest and most obvious, is the

experimental approach. The second is the so-called phenomenological

approach (in this thesis, I instead use the term wave packet approach, or

WPA). The third is based on the use of Burgers' equation (Burgers, 1939)

which Blackstock (1964) fully covers. Trivett and Van Buren (1981) created a

computational model based on Burgers' equation that used Fourier

decomposition to solve the propagation problem entirely in the frequency

domain. They compared the results for a single frequency 300 Hz cw plane

wave example with a phenomenologically-based computer model by Van

Buren (1975) for the spectral level of the fundamental and a number of the

harmonics, and the agreement was superb. Their model was limited, however,

to a single cw waveform input, and not to a plurality of pulsed waves at

different frequencies. Both models, Trivett and Van Buren (1981) and Van
Buren (1975) used an(,n) = al(wl)n 2 where n=2,3, ... etc. and a is the

absorption coefficient for the fundamental frequency, to account for
frequency-dependent absorption. This model accounts for sensible dissipation

due to viscosity and heat conduction (in fresh water e.g.), but it does not

account for relaxation absorption (in sea water or in air e.g.).

The fourth approach involves developing the wave equation in a parabolic

form, and obtaining numerical solutions thereafter. This is the most popular

computational method of record today, and is often the starting point for many

papers authored by researchers at UTexas, Bergen and in the former Soviet

Union (FUSSR). Presently there are at least two variants: one is a frequency-

domain based method having origins in the FUSSR, and lately referred to as

the KZK equation, initialed after the key theorists (Khokhlov, Zabolotskaya and

Kuznetsov) who studied the problem during the late 1960s and early 1970s (see

Zabolotskaya and Khokhlov, 1969; and Kuznetsov, 1971). The books by Beyer

(1975), Rudenko and Soluyan (1977), and Novikov et al. (1987) each have

sections which describe the mathematical development leading to the present

form of the KZK equation. The other variant is the dissipationless Nonlinear

Parabolic Equation, or NPE, of McDonald and Kuperman (1987) which is more

amenable to time domain solutions. The NPE has the ability to model wave
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Chapter I Introduction

propagation in the ocean in the presence of a sea surface, a seabed, and within

a refracting water column. Thus it is useful for evaluation of broad

propagation effects of linear and nonlinear waves as they are influenced by

oceanic range- and depth-dependent features. What the NPE presently lacks,

however, is a good absorption model. The NPE code includes an absorptive

layer near the edges of the computational boundary to circumvent any

numerical difficulties, but it does not include absorption (other than by weak

shock theory, once shocks form) within the ocean waveguide itself 3. This

contrasts the statement made by Too and Ginsberg (1992) 4 , who claimed the

NPE uses dissipation both for numerical purposes, as well as for ordinary

sound attenuation. The only attenuation included in the present form of the

McDonald and Kuperman NPE for propagation is due to weak shock theory.

The separate work by Too and Ginsberg, an adaptation of the NPE code for

special purposes such as the near field study of nonlinear sound radiation

from sound sources, included a first-order approximate dissipation term.

A brief summary of other techniques used in solving nonlinear acoustics

problems appears in Physical Ultrasonics by Beyer and Letcher (1969),

including: Fubini's method (1935); the perturbation analysis for the viscous

case; the analytical methods of Fay (1931), Mendousse (1953), and Rudnick

(1958); hybrid analytical-numerical methods by Fox and Wallace (1954), and

Cook (1962); the use of Burgers' equation, particularly on a method by

Blackstock (1964); and finally on Blackstock's (1966) bridging of the separate-

region solutions of Fubini and Fay. One further attack on the problem of

nonlinear acoustics was by Stepanishen and Koenigs (1987), where they used a

time-dependent Green's function approach. They were able to obtain a closed-

form expression for the radiated field which was proportional to the second

spatial derivative of the square of the pressure envelope, in agreement with a

result obtained by Berktay in the 1960's, but they needed to assume that the

absorption was restricted to that of the primary wave in the pulse. Hence, it

was a clever attack on the problem, it was useful for trendwise calculation of

the radiated field both on- and off-axis, but it was not very useful for real

problems.
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1.3 Technical Approach

The technical approach used in this work is a form of the phenomenological

approach, a term borrowed from the work of Pestorius (1973), in modeling a

sound wave which I refer to as a Wave Packet Approach (WPA). I refer to it as

a Wave Packet Approach because it acts on small pieces of a wave pulse, wave

packets, separately. This approach allows a locally valid wave equation to be

applied that includes absorption and nonlinear effects. I regard the term

phenomenological approach somewhat cumbersome, not only because it is

hard to say, but also because semantically it suggests the model is based strictly

on a physical phenomenon rather than being grounded in mathematics.

Related methods by Fox and Wallace (1954), Cook (1962), Pestorius (1973), Van

Buren and Breazeale (1968a, 1968b), Van Buren (1975), and Handler (1976) all

lacked a number of features which are included here. These features are a

space/time-domain dissipation and a formal justification for using the

phenomenological approach to show that it really does correctly model

acoustic wave propagation from a theoretical basis. The WPA, by its use of

space/time domain dissipation, allows wave propagation before, during, and

after the shock-formed region, and in principle it does so without the use of

weak shock theory. The fundamental reason for the presence or absence of

weak shock theory in a computational model, and the consequent advantages

and disadvantages, will be fully described in a section at the end of Chapter 5.

A few of these key works are now described. Fox and Wallace (1954) used a

graphical analysis, sans computer, as the starting point for their work. For a

one-dimensional dissipationless medium, and starting with a pure tone sound

wave, they divided the distance-to-shock into ten equal steps and proceeded to

partially calculate the harmonic content (primary, plus first and second

harmonics) of the wave, as it propagated from one step to the next. This

allowed them to derive a growth factor for each harmonic, at each of the ten

steps. An appropriate equivalent absorption factor (proportional to 2) was

then introduced for each harmonic, at each step. The authors compared their

model to experimental measurements made in water and in carbon

tetrachloride, and the agreement was very good.
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Cook (1962) used a similar procedure to that of Fox and Wallace, but used the

Bessel-Fubini solution as the starting point, and did the modeling on a "high-

speed computer." Blackstock has reviewed and showed the connection

between the Fubini solution (before shock), and the solution of Fay's

(saturated shock). Cook limited the numerical calculation to as many as 16

harmonics, assumed an 2 absorption dependence, and limited the propagation

distance to 1/20-th of the shock formation distance. This sharply contrasted

with the work of Fox and Wallace, who included only three harmonic terms,

but made their calculations all the way to the dissipationless shock formation

distance. Van Buren (1975) and Handler (1976) both used an approach based

on the work by Cook.

Pestorius (1973) used the phenomenological approach as a basis for modeling

high intensity noise-like waves propagating inside an air-filled tube, and he

applied weak shock theory to account for the extinction of small wave

perturbations by higher amplitude ones. A small dispersive component was

added to the model to simulate the frictional interaction of the tube wall

boundary with the pulse; this gave an absorption coefficient proportional to

Vw, and also added a considerable dispersive feature. He then compared his

computational results with those from in-air pulse tube experimental data, and

the agreement was very good, but it did slightly underestimate the absorption.

An extension of Pestorius' work by Webster and Blackstock (1977) modeled the

saturation of plane waves in air. Part of the work showed a comparison

between experimental wave trace data and computed wave traces using the

Pestorius algorithm.

1.4 A Brief on the Wave Packet Approach (WPA)

Starting with an initial acoustic wave pulse modeled at discrete x-node
locations ... xj-l, xj, Xj+l, ... wave propagation is realized by mapping the

acoustic pressure from a node location xj to a new node location Xj+k, as shown

in Fig. 1-2. Hence, each small segment of the wave, herein called a wave

packet, moves to the j+k location on x at a speed c + /v' (this relation will be

derived on the basis of a wave equation in Chapter 2), where v' is the acoustic

25



Chapter I Introduction
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Fig. 1-2 Phenomenological Approach. In this approach, the wave is
discretized by points, xj, and each point moves on the x-axis at a
different propagation phase speed determined by cj = c + vj,
where vj is the local acoustic particle velocity, is a constant
related to the nonlinearity, and c is the sound speed for linear
acoustics. In linear acoustics, all points xj travel at co.
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particle velocity, and where k is the nodal step size (usually k >> j) which is

equivalent to the distance traveled along x by the wave during a certain time

interval. This wave model assumes forward propagation only, as in a one-way

parabolic equation. This type of propagation algorithm is common to those

previously used by Fox and Wallace (1954), Cook (1962), and others since.

The missing items from Pestorius' work were: a justification for using the

phenomenological approach (via a wave equation); sound wave absorption

that included viscous, relaxation, and heat conduction losses (Pestorius used a

dissipation term that was valid for wall friction, but he intentionally did not

include the losses for the propagating wave outside the wall boundary layer of

the tube walls; hence his algorithm is incomplete for modeling unbounded

waves in planar, cylindrical, or spherical propagation); and a general

discussion for why weak shock theory was able to qualitatively represent the

behavior of noise-like shock wave propagation modeled without the ever-

present unbounded dissipation mechanisms of viscosity, heat conduction and

relaxation.

Other earlier uses of the phenomenological approach by Fox and Wallace

(1954) and by Cook (1962) also lacked a rigorous wave equation justification. I

originally planned to simply apply the phenomenological approach without

worrying about whether it satisfied wave propagation notions including:

conservation of mass, momentum, and energy (in the same manner as

previous investigators). But as I progressed further, I decided that the lack of

a formal justification would provide fertile ground for an officious professor

attending the oral defense to ask a simple, yet hard-to-answer question. So I

attempt to answer this question herein, and thus accomplish two things: to

provide the justification absent from all previous phenomenological
approaches, and to shortstop the question from being asked at my defense, by

tackling it here.

The main distinction between the phenomenological approach used by others,

and my so-called wave packet approach (WPA) is that space/time domain

absorption, of the three significant dissipation types, is included. This

contrasts with other means of solving the nonlinear wave equation by
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integro-differential methods, finite differences, or finite elements. These

methods usually lump the dissipation into a thermoviscous term that is really

only valid at a single frequency (often, the fundamental frequency in the

problem under scrutiny). The precise details of the WPA used will be detailed

in Chapter 4, after a case has been made for the nonlinear wave equation in

Chapter 2, and after the dissipation terms for viscosity, relaxation and heat

conduction have been derived in Chapter 3. These are the tools required

before the WPA can be formally described.

1.5 Contributions Made by this Thesis

This thesis makes four significant contributions to the body of knowledge in

nonlinear acoustics. The first is a computer-based time domain model for both

linear and nonlinear acoustic waves. The central component in the code is a

local nonlinear wave equation. This equation, written as a modification of the

linear wave equation, provides the formal justification for using a wave

packet approach (WPA).

The second major contribution is the formal development of time-domnain

expressions for viscous, relaxation, and heat-conduction sound absorption

coefficients. These expressions collapse into near-exact agreement with those

in the existing literature under the special circumstance of pure tones. In the

case of a sine wave exhibiting cumulative distortion, it can be clearly shown

that the absorption at any point along the wave is uniquely related to the wave

curvature in either p'-x (space) or p'-t (time) format. Hence, this theory

provides a neat way to describe the absorption of a sound wave having

arbitrarily complex shape, and provides a useful alternative to Fourier

analysis as a means of explaining acoustic absorption. The computational

model is sufficiently general to cover propagation in air, fresh water, sea

water, glycerine, or a tissue/rubber model having a relaxation-dominated n

dependence.

The third major contribution is the investigation of the intersection and

interaction of sound beams as a means of increasing thermal deposition in the

sound-sound intersection region. This work was carried out in two ways: one
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by laboratory experiments, and second by the use of the aforementioned

computer code.

The fourth major contribution is an extention to the topic of shock theory, a

special case of nonlinear acoustics. Traditional ways of approaching the
development of weak shocks (where v' < c) have used the so-called equal-area

rule to circumvent multi-valued solutions. This approach traditionally arrives

from a dissipationless propagation model. When the shock occurs, and the

wave becomes mathematically multivalued, the equal-area rule is imposed,

whereby the multivalued part of the wave self-quenches. Hence, even though

there was no dissipation used in the model, the equal-area rule provides

attenuation even though it is unphysically realized. The mathematical

development to attain the equal-area rule comes from conservation of certain

sensible quantities (mass, momentum and energy), but nowhere are the

ordinary attenuation means considered. The approach taken in this thesis

retains all of the usual attenuation mechanisms completely up to the point

where the wave would otherwise become multivalued. The key feature herein

is that the attenuation mechanisms provide adequate means to prevent the

wave shape from becoming multivalued. The summary that can then be made

is if no absorption is included in the propagation model, weak shock theory

does a reasonable job of approximating the wave shape behavior and

absorption at the shock. When absorption is correctly included in the

propagation model, the strong second-order spatial gradient (from viscosity,

relaxation, and heat conduction) at the shock location provides a doublet-like

absorption function which attacks only the energy at the shock, and the need

for weak shock theory disappears. There is, however, a strong reason related

to computational time and resources, for simultaneously using both the

space/time-domain absorption theory developed here and the equal-area rule.

Other contributions in this thesis are comparatively minor in relation to the

four mentioned above. They apply to the specific application examples shown

later in Chapter 5.
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1.6 Thesis Organization

This thesis is divided into six major parts beginning with Chapter 1, the

Introduction, the one you have just read. Certain citations, listed at the end of

the each chapter, include the author(s) name(s), year, and specific information

such as page numbers or comments. The full citation, including paper or book

title, is then included in the Bibliography at the end of the thesis.

The notion of the nonlinear and linear wave equations are derived in Chapter

2, as a means of formally justifying both he phenomenological and WPA

approaches to wave propagation. Chapter 3 handles the three principal

absorption mechanisms intrinsic to waves in fluids: viscosity, relaxation, and

heat conduction. In Chapter 3 there is an occasional interchange of the terms

time-domain and spatial-domain. The main reason for the use of time-domain

is to make the absorption used here distinct from the usual frequency-domain

absorption universally used elsewhere. Absorption in a time-domain sense

happens to be implemented here in a spatial-domain only because I use an x-

label for the propagation axis rather than a time axis, and the choice of the x-

labeling scheme is purely due to my preference for think of waves

propagating in space rather than in time. Chapter 4 combines the ideas in

Chapters 2 and 3 into a sensible computer model, and creates the WPA as a

combination of the phenomenological approach and space/time absorption.

Chapter 5 presents the reader with the most practical consequences of this

thesis, and the most fun, because it covers a wide range of nonlinear

propagation problems. Some of these problems, where experimental

comparison is available, provide a degree of confirmation that the model is

correct.

Chapter 6 wraps up the thesis with discussion, conclusions, and some

suggestions for future work. Several Appendices are included, followed by a

full Bibliography for all the citations used in each chapter.

1see ISNA in the bibliography, various years.
2 Westervelt, P.J. (1990). See this paper in Frontiers of Nonlinear Acoustics,

12th ISNA.

30



Chapter I Introduction

3In the NPE User's Manual, from the subroutine damper: "there is no damping
incorporated in the ocean itself nor is any icorporated in the sedimentary
bottom; that is, no damping is incorporated from the 'nsurface' at the ocean
surface down to the 'nsedbot', the bottom of the sediment."

4From the paper by Too and Ginsberg: "McDonald and Kuperman introduced a
linear damping term in NPE for two reasons. Damping is needed to account
for dissipation due to viscosity, heat transfer, and relaxation. In addition, it
was intended to prevent the reflection of sound waves from the bottom of the
simulation grid." See Too and Ginsberg (1992), p. 60, for this quote and for
the first-order dissipation term.
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Chapter 2

Nonlinear and Linear Acoustics

This chapter discusses the notions of nonlinear and linear acoustics. The

development of each is a spinoff of the combined equations of mass,

momentum, and state for a fluid in a small control volume. When these

equations are combined, a wave equation results. A first-order term

approximation results in the linear wave equation, while the retention of

first- and second-order terms results in a nonlinear wave equation. The

development of a nonlinear wave equation into one that reduces to a linear

wave equation provides a justification for using the wave packet approach

(WPA) in solving nonlinear acoustic wave propagation problems.

2.1 Introduction

One of the goals in this chapter is a mathematical justification of a WPA for

nonlinear acoustic propagation. In the related work of Fox and Wallace (1954),

Cook (1962), and Pestorious (1973), no attempt was made at a mathematical

justification for using the approach beyond pointing to the excellent

agreement with experiments, a realistically powerful but somewhat
incomplete defense. I give explicit reasons for the agreement here, by

reconciling the WPA with a nonlinear wave equation.
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Chapter 2 Nonlinear and Linear Acoustics

Three principal characteristics are needed to justify the use of a WPA for

nonlinear acoustics:

* first, when the wave amplitudes are small, linear acoustic waves are

produced which don't change shape as they propagate. Thus a linear

wave equation must be satisfied;

* second, that when the wave amplitudes are not small, the wave will

change shape, or distort, as it propagates;

* third, that when a compression part of a wave advances in proximity

with an adjacent rarefaction, a shock front is formed, which travels

with roughly the average propagation speed of the compression and

rarefaction fronts.

Since these three characteristics have been observed experimentally in real

gases and liquids, they are regarded by all as. the truth. The WPA will produce

the first phenomenon as long as losses are included, and the second

phenomenon with or without the inclusion of losses. Both of these features

require the use of a nonlinear acoustic wave equation, which is one of the

goals in this chapter. Weak shock theory, applied as a special case of the WPA,

provides an excellent model of the third phenomenon; however, the detail as

to why the weak shock method works is lacking. Providing the answers to the

why questions is one of the basic premises in this thesis, leading to more

insight into nonlinear acoustic phenomena.

2.2 Mass Balance

Consider the Eulerian control volume shown in Fig. 2-1. The fluid control
volume has thickness Ax and cross section area A v, where A v. is

perpendicular to the vector v'. The limits on the thickness Ax are that it be

much smaller than any acoustic wavelength taking passage, but much larger

than the molecular mean-free-path. The first limit presents no problem for

an analysis such as follows here, while the second limit is a sensible one,
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imposed by the entire notion of using a continuum-mechanics control volume

approach.

To keep both the algebra and the corresponding mathematical bookkeeping

manageable, the analysis is limited to one-dimension (-D) along the x-axis. In

many other acoustics and fluids works, the 1-D analysis gives the important

features in relatively few pages. I do likewise here.

The important variables for this analysis are the pressure p, density p, and the

particle velocity v. The variables p, p, and v are total quantities, and are

respectively related to the acoustic quantities by the following relations:

total = ambient + acoustic

P = Po + p' , (2.1a)

p = Po + p' , (2.1b)

v = vo + v' . (2.lc)

The ambient variables are assumed constant, and henceforth in this thesis the

ambient flow v will be assumed zero.

Returning to the control volume (C.V.) shown in Fig. 2-1, the aim is to balance

the mass. The mass flux passing through the C.V. is pvAC v, which may then be

separately evaluated on two sides of the C.V., once at x and again at x + Ax. The

difference of the mass flux on each C.V. side (by subtraction) must equal the

time rate-of-change of the mass enclosed inside the C.V. Formally, this is

pvAc.v.lx - pvAcv.l+ = (pAAt (2.2)

Rearranging Eq. (2.2), and using the fundamental theorem of calculus for

partial derivatives, the result is

pvx + Vpx + Pt = 0, (2.3)

where x and t subscripted variables are a notation convention for partial

derivatives. Note that

vPx + Pt - Dp/Dt
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where the material derivative

D/Dt /at + v.V

Eq. (2.3) is a nonlinear equation for mass conservation. To make it more

useful, the full variables for density p and velocity v may be expanded into

their ambient (with subscript "o") and acoustic quantities (with prime ' ) via

Eqs. (2.1 a-c):

(po+ P')vx + v'Px + Pt = 0 . (2.4)

To linearize Eq. (2.4), only the first-order acoustic quantities are retained

because the assumption is made that products of two or more acoustic

quantities (resulting in second-order or larger-order terms) give values that

are numerically trivial as compared to the first-order terms. The result is

povx + Pt = 0 . (2.5)

Note that each of the two terms in Eq. (2.5) has only a single primed (acoustic)

variable, and so it is called a first-order mass conservation equation.

2.3 Momentum Balance

The same type of approach used to balance the mass in the C.V. is used to

balance the momentum. Fig. 2-2 shows the same C.V. as in Fig. 2-1 with

momentum now under consideration. We consider the time rate-of-change of

the momentum in the C.V., so we need not only the forces acting on the C.V. at

its left and right surfaces, but also the momentum flux quantity (pv).v. On each

side, at x and at x + Ax, these are respectively

pAC.v. + pv2 A.v. ;

pAc.v. is obviously force (pressure.area), and pv 2Ae.v. is the force flux due to

the particles at speed v crossing into (or out of) the C.V. By the same type of

procedure previously used for the mass, the difference of the forces on the

sides of the C.V. must equal the time rate-of-change of the momentum inside
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the C.V., or:

(pA,.v. + pv2 Ac.v.)lx - (pAc.v. + pV2Ac.v.)[x+Ax - at (PAc Ax v), (2.6)

where the fluid is assumed lossless and irrotational. Rewritten in subscripted

partial derivative form, Eq. (2.6) becomes

(pv)t + (pv2 )x + Px = 0 . (2.7)

Expanding Eq. (2.7) into component terms yields:

pvt + pv.vx + v (pt + (PV)x} + Px = 0 . (2.8)

Eq. (2.8) is immediately simplified by recognizing that Eq. (2.4) makes the
bracketed term, (Pt + (pv)x), equal to zero. Hence Eq. (2.8) becomes

pvt + pv-Vx + Px = 0 . (2.9)

The density and particle velocity are then expanded into ambient plus acoustic

variables:
- P = (Po + )vt + (Po+ p')v'V . (2.10)

Eq. (2.10) is a nonlinear momentum equation having first-, second- and third-

order terms. The first-order approximation is the linear momentum equation

given by

-Px = Povt . (2.11)

2.4 Equation of State: a Pressure-Density Relation

The mathematical relations for pressure-density (p-p) may be written in terms

of a Taylor series expansion. Most authors1 use series expansions of p(p),

rather 2 than series expansions of p(p). It will be more convenient (later) to

use the former approach, hence for now we write

= + A + B s2+ Cs3 + (s4 ) , (2.12)
1! 2! 3!
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where A poc 2, and the condensation s p/po. Then by rearranging Eq. (2.12),

and substituting Eq. (2.1a)

p = P- = poc2 [s + 2A S2 + -- s3 + O(s4 )] . (2.13)
2A 6A

In the event that s 2 , and higher-order terms in s, are considered small

compared to the first-order term s, then we have a linear equation of state

p' = poc 2 s = c2 p' . (2.14)

2.5 The Wave Equation: Linear & Nonlinear Forms

Now that we have the basic mass, momentum, and state equations to work with,

wave equations may now be developed for both linear acoustics, and for
nonlinear acoustics.

Linear Acoustic Wave Equation

The linear acoustic wave equation is derived from the linear equations of mass,

momentum and state; these are respectively Eqs. (2.5), (2.11) and (2.14). The

usual procedure is to take dt on the mass equation (2.5), take dldx on the

momentum equation (2.11), and add the results. This eliminates the cross

partial derivative d2/(dtdx) terms. Then the acoustic density p' is eliminated by

substitution of the equation of state, Eq. (2.14), so that the entire equation is in

terms of the acoustic pressure p'. The result is

a2 p' = I a2p, (2.15)
ax2 c2 at2

Other manipulations are possible to write the wave equation in terms of p' or v'

(see Jensen et al., 1994), where each variable merely substitutes for p' in Eq.

(2.15). Eq. (2.15) is in the general form of a standard 1-D linear wave equation

which admits arbitrary solutions f(x+cot) and g(x-cot). Note that the shape of

the wave never changes as the wave travels, and that every point and every
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portion along the wave travels at the same speed c, independent of the

pressure amplitude of the wave.

Nonlinear Acoustic Wave Equation

The procedure for deriving the nonlinear wave equation is the same as the

linear case, but there are many more terms to deal with. What follows is

considerable algebra, but it is shown here for completeness as it is seldom

written out fully. Starting with the nonlinear mass equation, Eq. (2.4), take

d/dt, with the result

- Ptt = PoVtx + PxVt + p'Vtx + Ptvx + V'Ptx · (2.16)

Then take dldx on the nonlinear momentum equation (2.10), with the result

Pxx = - povt - Pxvt - p'vxt - (Po + p')(vx)2 - (po + p')v'vxx - pxv'vx . (2.17)

Adding Eqs. (2.16) and (2.17) eliminates the underlined terms in each equation.

The result is

Ptt = Pxx + (Po + P')(Vx)2 + (o + p')v'vxx + px'v - - 'tVx . (2.18)

Eq. (2.18) appears formidable, but there are a few modifications that may be

made to make it more closely resemble a familiar wave equation. First, we need

to rewrite the entire equation singularly in terms of p', or p'. Because of the

way the equations have been developed thus far, it will be easier to eliminate

p'. This is done by using the last of the three equations, the equation of state

(2.13) which is repeated here,

p' = pc2 [+ s + B + Os +(s 4)],
2A 6A

with s p7po. To eliminate p' from Eq. (2.18), we need to take a second-order
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spatial derivative on the equation of state. The result is

Pxx = co2 { xx + B [() 2 xx + C [ 2p(p) 2 + (p) 2 Pxx]
A po 2A 2

+ 0(s 4). (2.19)

In Eq. (2.19) we see that there are three Pxx terms; rewriting Eq. (2.19) with

these terms grouped together we have

Pxx pxx c 2 { + A (-). + -C ()2 + 2 { . (p 2 + C '(x 2Po AO + 2A Co Apo Ap 2

+ O0s4 }. (2.20)

Eq. (2.20) was written by combining Eq. (2.13) with the impedance relation:

p' = poc 2 Is + B s2 + -Cs3 + O(s4)] = pocoV',p = p 0 [+2A 6A

and by noting that

Po V ~ 1Co + ~ vo (2.21)
po Co [1+ Bs+ Cs2++ O( s (3)] C

2A 6A

Now that we have what we want (Pxx) from the equation of state, we can

substitute Eq. (2.20) into Eq. (2.18), thus eliminating the acoustic pressure

variable p' as we had intended:

X1B (vo' + (v') 2...} + c2 B (px)2 + C p()2
A pxo 2 A Co A po A p

+ po(v)2 + p'(v;)2 + pov'vx + p'v'vx + pv'vx - Ptvx - v'Ptx . (2.22)
.... 2 --.- .... 3 ---... 4 -... 5 ----- ----6- -7 - 8---

One assumption made in writing Eq. (2.22) is that the O (s4 ) term, a fourth-order

product of acoustic variables, has been omitted due to smallness. Eq. (2.22) may

be further simplified by additional assumptions, so we must deal with the
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overlined and underlined terms which are all second- and third-order

products of acoustic variables. The first term, labeled 1, can be discarded

because the accompanying term in the braces {--) is considerably larger. This

is shown by rewriting the brace term as

B Po + CP } P. Px 

The term inside the braces may be evaluated as follows. For either fresh or sea
water, B/A is about 5, and C/A is about 35; hence if po >> 7p' then the (C/A)p' term

may be discarded. For air, B/A is about 0.4 and C/A is about 0.24; hence if po >>

.63p' then the (C/A)p' term may be discarded. Because p >> p' even for a large

amplitude sound in water or air, the (C/A)p' term is safely ignored 3, so we can

safely discard term 1 in Eq. (2.22).

Terms 3 and 5 in Eq. (2.22) are discarded not only because they are third-order

products of acoustic variables, but because they are also much smaller than
terms 2 and 4 respectively, again because p >> p'. Term 6 is discarded because it

is a third-order product of acoustic variables, which we assume small

compared with the first- and second-order terms. With terms 1, 3, 5, and 6

discarded, and discarding any other third-order products, we have

= Px c 1 + () + o2 B (px)2 v + p(vx) 2 + povvxx
A o A po

ptvx - v tx (2.23)

By using the relation given in Eq. (2.21), we can rewrite the derivatives of v'

in Eq. (2.23) in the iurm of density p':

tt = Pxx 2 1 + AB (Y )+ 2 B (x) 2 + (c2/p)(p) 2
A P APx Co

2+ Pxxo ( + P'(co)2(p x)2 - o p' p p tx

i X O _ ) Po P Po
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or reorganized as

Ptt = Pxx c 2 { 1 + + 1) } + (c2/po)( +

PO -PPx P(-o)PtX (2.24)

Eq. (2.24) is further rewritten to convert the time derivatives on the right side

to spatial derivatives, by using the wave space-time duality convention that

a/at <---> -co . a/ax .

This makes the right side of Eq. (2.24) entirely populated either by Pxx terms, or

by Px terms. Hence

Pt = Px c2 { 1 + B + 2)(o) )(px)2 . (2.25)

The double underlined term in Eq. (2.25) has entirely positive constants, and

the single underlined term is both positive-valued and second-order due to the

square exponent. We shall discard this term on the basis that it is second-order

compared with the remaining effectively first-order terms.

More interesting however is the form of the rest of Eq. (2.25): it has the form

of a linear wave equation if the brace term, i.e. { .... , is considered to be a

modification of c. Taking the brace term as a modification of c 2, then the

non-underlined part of Eq. (2.25) is treated as a linear wave equation with

first-order acoustic terms, and we discard the underlined terms which are

fully second-order:
2

Ptt = Ceffective Pxx, (2.26)

where 2 ffective = c { 1 + (+ 2 ) co } (2.27)

Recalling that C = p from Eq. (2.21), we can compare the magnitude of the

brace components in Eq. (2.27):

1: ( + 2) 
A P

44



Chapter 2 Nonlinear and Linear Acoustics

For air the term B/A + 2 = 2.4, and for water B/A + 2 = 7, so the largest value we

can consider is 7, hence

1: 7 
Po

But previously we imposed a requirement that p >> p'; thus even 7 << 1 so the

B/A + 2 term is much smaller than 1 in Eq. (2.27). Thus an approximation for

the effective wave speed in the control volume is

Ceffective = co + (2 + 1) v' . (2.28)2A

Note that the effective wave speed for the packet of fluid is greater, or lesser,

than c depending on the sign (+ or -) of the particle velocity v'. The term,

B/(2A) + 1, also allows us to identify where the nonlinear effects of propagation

manifest themselves. In the absence of a material nonlinearity, B equals zero;

likewise the higher-order coefficients in the p-p series expansion in Eq. (2.12)
equal zero. The remaining term, A poc 2 , would make the p-p relationship

linear. Hence, with B=O, the remnant nonlinearity in Eq. (2.27) is due to the

higher-order terms from the conservation of mass and momentum, i.e. the

convection terms. Hence B/(2A) + 1 compares the nonlinearity of the fluid

material, the "B/(2A)" part, to the convection nonlinearity imposed by the

mathematics of mass and momentum conservation, or the "+1" part. In fresh

or sea water B/(2A) is approximately 2.5, so the fluid material provides 71% of

the nonlinearity as compared to the convection terms. In air however, the

situation is the opposite: B/(2A) is approximately 0.2, so the fluid material

provides only 17% of the nonlinearity as opposed to the mass-momentum

convection contribution. This discussion is consistent with an independent

discussion and analysis by Blackstock4 .

In Chapter 3, it will be shown that B/A = 7-1, where y is the ratio of specific

heats, Cp/Cv. The use of -1 is more common for propagation in gases, and

allows Eq. (2.28) to be written as

Ccffctive = Co + ( ) v' (2.29)
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B/A is called the parameter of nonlinearity, after Beyer (1960). Unfortunately,
many other authors also use #/ = 1 + B/(2A) as the parameter of nonlinearity in

their works. I will use Beyer's original convention, and refer to as the

coefficient of nonlinearity, per Hamilton and Blackstock (1988), which lumps

together the nonlinearity of both the material and the convection
mathematics. Thus Eq. (2.27) is also written as

Ceffective c + 3v' . (2.30)

In summary, Eq. (2.30) provides a quasi-linear representation of wave speed

for a control volume, based on a nonlinear wave equation that was written to

mimic a linear wave equation. Since this wave speed is only useful within any

particular control volume where the particle velocity is nearly uniform, the

wave must be divided into separate segments, or wave packets, in order to use

Eq. (2.30). This also provides a neat framework for applying acoustical

absorption to each wave packet separately, a topic which will be thoroughly

derived and discussed in Chapter 3.

2.6 Justification for the Wave Packet Approach

The development of Eq. (2.30) presented here appears to be unique;

fortunately it agrees with different derivations by Earnshaw (1858), Pierce5 ,

Blackstock (1993) and others. What it also provides is a mathematical

justification for the wave packet approach WPA mentioned in the

Introduction. In review, the WPA models wave propagation as a mapping from

a node location xj to a new location Xj+k, where each small segment of each

wave, herein called a wave packet, moves to the j+k node location on x at a

speed c + 3v'. The mathematics given in this chapter used the usual

conservation of mass and momentum, and relied on a nonlinear equation of

state to make a physical link between p and p. The outcome was that the

effective speed of a portion of a wave, within the bounds of a small control
volume, is also c + v'. So using the WPA implies satisfaction of conservation

of mass and momentum, and utilizes the correct modeling of the nonlinear
components for both the material and the convection terms. The WPA will
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result in wave propagation with wave shape distortion due to the cumulative

effects of the nonlinearity, so long as the propagation path is sufficiently

discretized. Details on the discretization are left to Chapter 4.

The only major items absent from the WPA are energy conservation and

dissipation. Likewise, it is worth pointing out that conservation of energy is

not a requirement in deriving the wave equation, but it is almost always

introduced thereafter. In the absence of dissipation, the local energy density

must remain constant from the propagation step j to j+k along x, and this can

easily be accounted for in a computational model. Hence, like most acoustical

approaches, we don't derive conservation of energy, we rather impose it upon
our math model.

Real propagation always encounters dissipation effects, therefore the
combined dissipation effects of viscosity, relaxation and thermal conduction

must be included. These topics are the subject of the next chapter.

1Beyer, R.T. (1975), pp. 98-100.
2Novikov et al., (1987), p. 10.
3Beyer, R.T. (1975), p. 100; and Beyer, R.T. (1972), p. 208.
4 Blackstock, D.T. (1993), short course in Nonlinear Acoustics, pp. D 6-7.
SPierce, A.D. (1989), p. 568.
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Chapter 3

Time Domain Absorption

This chapter studies the phenomena

sound waves in fluids is mainly a

phenomena: viscosity, relaxation,

transfer from sound waves has been

these three absorption mechanisms is

of implementation in a time-domain

of acoustic absorption. Absorption of

consequence of a combination of three

and heat conduction [Radiative heat

shown to be a weak effectl]. Each of

discussed in this chapter, with the goal

computational framework.

It is worth noting here that most previous works dealing with acoustic

absorption of nonlinear waves have adopted the use of terms like excess

absorption or nonlinear absorption. These concepts are somewhat misleading

because they suggest that there is some special form of absorption at work in a

nonlinear acoustic wave, when in fact there isn't. This Chapter eventually

will show that the absorption of a wave depends on its shape, specifically it

depends on 2 u, because the absorption processes always attempt to straighten
the wave. The association with excess or nonlinear absorption is an outgrowth

of cumulative nonlinear distortion, and the apparent and mysterious increase

in the attenuation coefficient for large amplitude problems which dates to the

1930's, and from the attempt by acousticians to explain why it occurs. These

descriptions persist today. The simple fact is that nonlinear acoustic

propagation means that the wave shape will change during propagation, and

so the absorption character will also change.
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3.1 Absorption Due to Viscosity

Classical theories of sound wave absorption assume an e-ax amplitude

dependence; that is, that the envelope of the wave decays with propagation

distance. The same result is accomplished by assuming a complex propagation

constant k, such that k = kr + iki where kr and ki are the real and imaginary

parts of k. For a wave with ei(ot-kx) dependence, this results in a propagating

wave component ei(wt'krx), multiplied by a decayed exponential part eax,

where a = ki. The constant a for the classical viscous intensity attenuation for

a pure tone wave 2 is given by

a(o) = ( I + rb) 2 (3.1)
p~c

where and b are respectively the shear and bulk viscosities of the fluid.

One practical difficulty with using the classical theory is that it assumes a

sinusoidal dependence of the wave, as witnessed by the c)2 -term in Eq. (3.1). In

the strictest sense, this requires that the wave be continuous for all time, and

hence would have a line spectrum at the single frequency . A sinusoidal

sound pulse with base frequency co would have a spectrum predominantly at co,

but would still have adjacent sideband energy. Two basic ways have been used

to deal with this problem. The first, and the most common particularly in

nonlinear acoustics, is to ignore the absorption at frequencies other than at ,

which is an assumption that the wave is narrow-band. The second way is to

take the Fourier spectrum (using an FFT) at each propagation range, apply an
appropriate e'a(0°) a x weight in each frequency bin (which both reduces and

tapers the frequency spectrum), and then take the inverse Fourier spectrum

(using an IFFT) to establish the new wave shape; Ax is the distance the wave

travels between each FFT-IFFT step. This procedure requires many FFT-IFFT

steps. Similar spectral estimation procedures, i.e. pre-FFT, were used by Fox

and Wallace (1954), and by Cook (1962). A fundamental difficulty with the FFT-

IFFT approach is that, as the waveform steepens towards a shock, Gibbs ripple

phenomena will be introduced into the time waveform after each IFFT step.

This is one reason why the frequency domain approach for absorption in a
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nonlinear propagation problem is often limited to problems not involving

shocks.

The approach presented here avoids the frequency domain entirely and does

not require a narrow band pulse. However, it does require the accurate

calculation of acoustic absorption, so the classical equation for absorption

based on a narrow band wave is insufficient. This motivated the search for,

and the development of, time/space domain equivalent expressions for viscous,

relaxation, and heat conduction absorption. The viscous absorption will be

described first.

Consider now the plane wave illustrated by cross section in Fig. 3-1. The

Figure shows the pressure p versus x-distance at a single time to as if the pulse

were frozen in time. The waveform is not necessarily sinusoidal, nor need it

be periodic. The pressure amplitude is P in a fixed reference frame, thin slab

of the wave indicated by the x-thickness x, located at x. The instantaneous

energy density within the slab is the sum of the instantaneous kinetic and

potential energy densities 3 in the slab, and is given by

2
E = P (3.2)

poc2

The instantaneous energy density units for Eq. (3.2) are equivalently

Pa- N _ N-m 
m 2 3 3

The instantaneous energy density for the slab moves at the wave speed c. The

energy flux for the slab is then

Io = Ec . (3.3)

The units for Eq. (3.3) are in Watts per square-meter, hence the symbol I o is

used to denote an energy intensity. In the absence of any absorption, I for

the slab of the wave would be a constant as the wave propagates along the x-

direction. We'll temporarily set Eq. (3.3) aside and return to it shortly.
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/
PC %'

Fig. 3-1 Frozen acoustic waveform:

f 0

p and v'.
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Acoustic absorption is reconciled by considering the equation for momentum

in the presence of viscous losses. This equation is given (in linearized form 3)

by

au = -Vp + (4 + )V 2 u, (3.4)
at

where u is the acoustic particle velocity (note: u and U are used in this

chapter for particle velocity rather than v' which was used in Chapter 2; this

is done to avoid confusion with the volume V which will be used later in this

Chapter). The linearized version of this equation is used here to simplify the

analysis and because the portions which are to be retained from Eq. (3.4) are

due strictly to the viscous loss terms. This equation is called by such names as

the momentum, the Newton, or the Navier-Stokes equation. It can be derived

by considering the force balance across a slab-like element of fluid, such as

shown in Fig. 3-1. A similar derivation, without viscous dissipation, was

previously shown in Chapter 2.3. Eq. (3.4) is the linearized form of the

momentum equation, with the inclusion of the viscous friction force opposing

the fluid acceleration. The units of Eq. (3.4) are N/m3, which is a force density.

In the absence of viscosity ( and 7rb both equal zero), Eq. (3.4) offers a balance

of the conservative forces (or specifically, force densities). Thus

(41 + qb)V2 u3

is a dissipation force density acting on a slab of fluid. The work density on the

fluid slab furnished by the viscosity is given by the product of the dissipation

force density and the distance over which the force is applied, and evaluated at

Xo:

Aw = X (4 + b) I(V 2 u)x I (3.5)

where w is the work density, and Ax is the distance along x. An implicit

assumption in Eq. (3.5) is that the particle velocity u is constant (UO) as it

travels across the slab Ax. The vertical brackets for the absolute value, I...I,

indicate the magnitude because organized work (energy) removed from the

fluid by viscosity is always positive, independent of the direction of the
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particle velocity, and redistributed into disorganized thermal vibration (heat).

The use of the absolute value will later be removed for very deliberate reasons,

the main one being, in the words of Prof. Henrik Schmidt, that they don't

really occur in nature. The use of the absolute value, for now, gives us some

mathematical latitude, and later on in this chapter, we will find we really don't

need it.

To illustrate, assume that the particle velocity u is given by

u = Umax' sin(ot - kx).

Substituting this into Eq. (3.5), and recognizing that the work must be positive

(because viscosity is insensitive to particle velocity direction), the work

density is then

Aw = Ax · (q +1b) k2 IUmax sin(cot-kx)l

One more item to note is that, in calculating the work density Aw, there is only

one acoustic phase present in each slab, and it has particle velocity magnitude

Uo = Po/lpc. The single acoustic phase having magnitude Uo is merely another

way of saying that the trigonometric argument, wto-kxo, is a constant at the

location x, at time to and that

U0 = IUmax sin((ot 0 -kx 0 )l

Hence, the work w would then be

Aw = x - (4 + b). k2 . Uo.

Returning now to the general case where the form of u is unspecified, the

work w is deposited into the fluid slab as heat, so the slab experiences an

increase in temperature; work Aw is in units of N.m/m 3 , or Joules/m 3, and has

the same units as the energy density, Eq. (3.2). The dissipation work flux al,

which is an intensity loss of the fluid slab, is the product of the work w and

the particle speed U of fluid in the slab which does the work:
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Al = Uo Aw = U Ax ( + b) I(V2u)lx . (3.6)

The units for Eq. (3.6) are, like Eq. (3.3), W/m2 . Eq. (3.6) is the incremental

intensity loss for the fluid slab, as the particle velocity u travels across the Ax-

thick slab. To find the total slab intensity loss of energy for the entire

propagation distance, the incremental intensity loss must be summed from the

starting point on x (which is taken as x=O) to the end point on x where all the

acoustic energy has been dissipated (or more specifically, transformed into

heat). To accomplish this, the incremental slab thickness Ax is replaced by the

differential dx, and the summation is made by the use of a continuous integral.

The integral, as written, represents the accumulating intensity loss of the slab
of interest as we follow the slab wave packet during propagation from x=O to

x-oo. Hence time evolves from t=O to t=oo.

Itotal = (' nr + ib) JO U I(V2 u)XoI dx

This result is very general, and hence for most purposes, it is practically

useless because it requires that the shape and amplitude of the wave be fully
known throughout the propagation path. In the next Chapter on
computational methods, where the findings from this chapter and Chapter 2
are implemented, it will be shown that propagation-absorption occurs
piecewise. This means that for small-enough propagation steps, we can locally

assume that the wave shape doesn't change and that the wave amplitude decays

in some reasonable fashion. Making these assumptions, the general form is

given by

Itotal = U (3 1 + b) I(V2U)xI . 0 e- x dx , (3.7)

and the rationale follows. First, the magnitude U of the particle velocity u is

taken to be a constant in defining the viscous work, per Eq. (3.5). This is a

reasonable assumption, because the increment Ax is small. Hence the

magnitude of u in the slab, U, may be passed through the V2 operator; a

sinusoidal wave example of this was shown several paragraphs ago. This step

allows the calculation of the work, and hence intensity loss, for a single slab of
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the medium. This i the first mathematical limit that must be taken: to assume

that U stays constant over Ax. But when the integration in Eq. (3.7) is

performed, the magnitude U must decay as the wave propagates along x. So

the V2u is exterior to the integral over x, because it is referenced to a single

slab at x = x,; however, there must be a suitable function used inside the

integral to correctly account for the decaying amplitude of the wave. An

obvious choice would be the decaying exponential function because this is

consistent with both historical observations in acoustic experiments, and

matches the convention of using a complex propagation constant k within the

argument of a wave function e-i(°ct±kx). Inserting the function into Eq. (3.7)

allows further algebraic manipulation, and the integration may now be

completed over sensible limits: in this case for 0 < x < , because the

exponential decay doesn't provide complete attenuation of the wave energy

until x reaches infinity. The result is

Itotal = U ' (4 i + ib) u I(V2)lx 1 (3.8)

Eq. (3.8) is the summation of all the differential intensity losses of the wave

packet (for the initial slab at x=O) for the full propagation distance traveled.

This must also equal the wave intensity previously provided by Eq. (3.3) since

the intensity, which is an energy flow, must be conserved. By setting Eq. (3.3)

equal to Eq. (3.8), and rearranging terms, the decay variable a is:

( 4 + b) 
X(o) 3 IV2U . (3.9)

po c IUol Ix0

Eq. (3.9) is the most general form for viscous acoustic absorption because it

holds for any realizable, continuous acoustic waveform over small paths. It

shows that the viscous dissipation coefficient is spatially dependent. Under

the special circumstance when the waveform is sinusoidal, Eq. (3.9) is then

constant, and independent of space:

(4 + b) W2
a = 3 (3.10)

po c
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which is the familiar result for the classical viscous intensity absorption

coefficient based on Stokes' viscosity approach 1 ,2, and shown previously in Eq.

(3.1). If Eq. (3.10) is divided by two, and nrb=O per Stokes' assumption, the

classical viscous pressure absorption coefficient results. Eq. (3.10) is included

here only as a sanity check on the approach taken to find Eq. (3.9), which is

an energy-intensity balance using the dissipation force density provided by

the Navier-Stokes momentum equation. The usefulness of Eq. (3.9) is that it

provides a direct means of calculating viscous sound wave absorption in the
spatial domain for a wave which is not necessarily a pure tone. This allows the

correct absorption to be calculated, based on the physical grounds of the
preceding analysis, of wide-band signals having any physically realizable
waveform. The spatial domain derivatives may easily rewritten for derivatives

in the time domain, if the propagation direction variable is in t for time,

instead of x for space.

Temkin (1981) used an energy-dissipation method similar to the one developed

here, to arrive at Eq. (3.10), but his analysis assumed a pure tone wave.

3.2 Absorption Due to Relaxation

The notion of relaxation phenomena is well illustrated by Figure 3-2, after
Kinsler et al.3 For a fluid pressure p = Po at t > 0, the pressure ratio p/Po goes to

1, while the ratio of the condensation s -- p'/p to Po/(poc 2) requires a finite

time to reach 1. The interval is called the relaxation time, at which the

condensation ratio reaches 63.2% of its final value. Sea water and atmospheric

air each have two4 relaxation times, :lr and 2, for most practical acoustical

problems of interest. Fresh water has no significant relaxation time.

Kinsler et al. describe3 the acoustic pressure as

p' = po c2 (1 +-- ) s + Otk ) . (3.11)at
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Fig. 7.1. Response of a relaxing fluid to a
sudden increase in pressure.

Fig. 3-2 Relaxation illustration; from Kinsler et al. (1982).
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Eq. (3.11) may be substituted into the linearized momentum equation (3.4) used

earlier in order to see how the relaxation process manifests itself in acoustic

absorption. Making this substitution, ignoring the viscous terms (because

they have already been dealt with in the previous section), and dropping the

prime (') superscript on the acoustic variables for notational ease, the

relaxation-modified momentum equation becomes

po u -Vp - c2 V X . (3.12)
at at

Eq. (3.12) strongly resembles Eq. (3.4), except that the viscous force density has

been replaced by a relaxation force density, which is the right-most term.

Using a similar procedure to that used in the previous section, the relaxation

force density is isolated to calculate the work density due to the particle
velocity within a Ax slab of fluid centered at xo, where u' = Uo and p' = Po, per

Fig. 3-1. The relaxation work (density) and the relaxation intensity loss come

from the right-most term in Eq. (3.12) after successive multiplication by Ax

and Uo.

Respectively, they are

Aw = ax. c2I(V)l (3.13)

and

AI = UO Ax c2 (Vpt)lx I (3.14)

We would like to substitute Eq. (3.11) into (3.14) but we need p(p) rather than

p(p), so Eq. (3.11) is then rewritten for acoustic density as a function of

pressure:

P P,-'_+rl 2 a2p' -r 3 a3p' 4 4p,3.15)
c 2 C2 t C2 t2 2 3 C2 4 (3.15)0c co t coat2 co at coat4

Eq. (3.15) is merely a rewritten form of Eq. (3.11), but now takes the form of an

infinite series of partial derivatives. This poses no great problem because Eq.
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(3.15) is merely a rewritten form of Eq. (3.11), an that equation is finite,

bounded and convergent, so we know that Eq. (3.15) behaves the same way.

Adopting once again our notion of a Ax-thick continuum slab of fluid, we can

always take the local p' versus x trace of the wave to be composed of a single

effective local frequency component. This is tantamount to a local curve fit of

a very small piece of a sine wave to the p'-x curve that exists for our Ax

neighborhood. This allows us to replace any space derivative by ik and any

time derivative by -iw. Making these substitutions, and by inserting Eq. (3.15)

into (3.14):

AI = UO Ax X co2 p' [ (1 - 022 + 4r4 .... ) + io(1 - C022 + 0414 .... )] (3.16)
Co

Also note the two identical infinite series. Since their antecedents were

convergent, these are as well and we can rewrite them as

1 - 02x2 + (04,4 .... (3.17)+ 02 2 '3.17)

Making this substitution and disregarding the imaginary part (which would

lead to a phase term related to dispersion) we find

AI = U. Ax .- -o02 p' 1 (3.18)
Co 1 + )2r2

Eq. (3.18) is the relaxation intensity loss for a fluid slab of thickness Ax. To

find the total relaxation intensity loss, a summation must be made over all slabs

along x that the wave travels through. Like the previous section, we assume a

non-changing wave shape and an exponential decay dependence to obtain a

useful intensity loss expression. These are reasonable assumptions for small

paths. Thus taking the sum of all such losses due to relaxation dissipation:

Itotal = U Uo 2 p' 1 Jo e- X dx . (3.19)
Co 1 + 02z 2
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Eq. (3.19) is then set equal to Eq. (3.3), in the same fashion as the previous

section, and then solved for the intensity absorption coefficient due to

relaxation:

a = c 22 (3.20)
Co 1 + 02r2

By inspection Eq. (3.20) can be seen to have the correct behavior for values of

co, relative to 1. When is ao << 1, a(x) = ro2 /co, thus having the same 0)2

dependence as viscosity and heat conduction losses. When ao >> 1, a(x) =

1/(Tco), i.e. it becomes constant.

Eq. (3.20) provides an intensity value for a; for pressure, Eq. (3.20) must be

divided by two, which then exactly agrees with the result from Kinsler et al.5

The theoretical approach given here makes certain non-obvious assumptions

about internal energy and specific heat, and the consequence is that the above

equations correctly estimate the location in frequency of the relaxation 'knee'

(going from w2 -dependence to a constant), but drastically overestimate the

absolute level of a. A frequency-based approach that does consider these

parameters is given by Lindsay7 (1960) which will not be repeated here

because it is beyond the scope of my aims, and because it requires several

pages of work to arrive at a relatively simple result: a coefficient, much

smaller than 1, which reduces the levels of a given in Eq. (3.20).

Since we really seek a time-domain expression for the relaxation loss, we have

to unwind the above analysis into a more useful form. We had previously

supposed in our Ax-thick slab that only one effective frequency species

existed, and so we replaced time and space derivatives by -iWe and i k

respectively. By applying the reverse procedure we obtain:

1 
2 V2u

a(xo ) = (3.21)
1 + r2 c 2 V

This procedure in writing Eq. (3.21) from (3.20), or deriving Eq. (3.21) directly

for that matter, is only correct if the notion of a single local frequency
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approximation holds. This doesn't cause any major hardship however because

we use a separate Eq. (3.21) for each Ax-thick slab in the wave packet, and the

shape of the wave will change during travel due to absorption. Hence the

assumptions about the local frequency content and the wave shape being

constant throughout travel from x=O to x=o were merely used to find the form

of a(xo); when we actually implement a(x o ) we always do it in a sensible way,

for small travel distances of the wave packet, and we always use a different
local a(x o ) for each x along the wave. In this way, we don't violate the spirit

of the local assumptions made, and the analysis still holds firm.

Note that in a fluid having two distinct relaxation times, r and 2, there would

be two distinct expressions for al and a2, and fluids or fluid-like tissues may

also have manifold relaxations with a different r for each one.

A comment must now be made concerning the approach. The relaxation

momentum in this section was treated independently from the viscous

momentum in the previous section. The choice of deriving them separately

was deliberate, for ease of reader understanding as well as the prevention of

errors by the writer. The derivation of the viscous, the relaxation, and the
(forthcoming) heat conduction absorption coefficients are also handled
separately in most acoustics papers and texts; once derived, they may be
lumped together to form effective dissipation coefficients. See Table 7.1 in

Kinsler et al. for example comparison of viscous and thermal coefficients, and

experimentally observed absorption coefficients among several gases and

liquids.

3.3 Absorption Due to Heat Conduction

The previous two sections, 3.1 and 3.2, both used versions of the momentum

equation to obtain absorption due to viscosity and relaxation, respectively. The

approach towards viscous absorption, via Navier-Stokes, was intuitive because

it came directly from the momentum equation. The approach for the

relaxation was slightly less intuitive, but it was equally physical because a

relation was found for momentum in terms of the relaxation behavior of the
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fluid. A similar approach will be used once again here to develop the

space/time domain absorption due to heat conduction, and it will involve

writing the unsteady heat conduction equation in a modified form, so as to

resemble momentum. The procedure thereafter is straight forward, and is

similar to the procedures used in 3.1 and 3.2.

The starting point for this section comes from Kirchoff and Fourier, via

Pierce 8 . Pierce writes the heat conduction equation as

pT = c V2T, (3.22)
Dt

where K is the heat conduction coefficient, se is entropy , and T is temperature.

Using several thermodynamic relations, Pierce then rewrites Eq. (3.22) as

C atC (P' - p/c2) = KV2 (p'- p/c2) , (3.23)

where cT is the isothermal wave propagation speed, and c is the ordinary

linear acoustic sound speed. After some manipulation and elimination of

higher-order terms on the left side, Eq. (3.23) leads to

Cp (v'Co A) = c(y-) V2 p', (3.24)

where A and B are terms in a p(p) expansion and v' is the acoustic particle

velocity. For small v', the left hand side is close to zero as compared to the

right hand side; this is consistent with the domination of conduction via the

right side. If the acoustic process were purely adiabatic, with no heat

conduction loss, then K = 0, and the right side becomes zero and the left side

dominates. Both of these conditions are stated by Pierce (1989, page 14). The

interesting feature of Eq. (3.24) is the K(r-1) rather than just K, which in effect

alters the heat conduction coefficient to a lower value. We'll return to this

comment momentarily.

Experimentally, for acoustic waves of interest in air, or in water, the measured

sound speed is much closer to being adiabatic than isothermal. Newton's
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(1686) calculation of the speed of sound in air was too slow by 16% (i.e. by a

factor of y) because he unwittingly made an isothermal assumption; the

discrepancy was not resolved until Laplace some 130 years later. Hence,

propagation is substantially close to being adiabatic (without heat transfer)

insofar as sound speed is concerned, but there is still a slight amount of

energy given up to heat conduction. By assuming D a on the left side of
Dt at

Eq. (3.22) then we may rewrite

TDse as Cp 

using the thermodynamic relation Cp - T(ds/dT)p. This assumption makes the

aT
left side of Eq. (3.22) always exist, as p Cp at , and is hence dominant relative to

the right side. This means that the heat conduction must be weak or

nonexistent (i.e. =0); assumptions like these would give the adiabatic sound

speed but not the appropriate heat conduction loss. Hence, weak conduction is

needed, so we incorporate a modified conductivity, (Y- l), based on the

arguments used to find Eq. (3.24). The result is

oCp = K(- 1) V2p ', (3.25)
Cp at

which bears strong similarity to

aT
Po Cp a = Ic V 2 T, (3.26)

per White (1982) for unsteady heat conduction in a fluid or solid that does not

undergo the passage of compressions or rarefactions. To account for the

acoustic wave passage, the c(y-1) must be used instead of . More detailed

discussions for the passage of acoustic modes and thermal (entropy) modes are

found in Pierce (1989) pages 13-14, 34-36, 522-523; and in Morse and Ingard

(1968) pages 270-300.

The remaining task is to write the temperature of the fluid in a slab of Ax

thickness in terms of the acoustic particle velocity u used previously, since
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this would in turn provide a thermal conduction equivalent to the momentum

equation and allow the development of time domain absorption due to thermal

conduction. The following relations for ideal adiabatic gases are used (Van

Wylen and Sonntag, 1978):

pVY = constant, pV = M, (3.27)

where V is the volume and M is mass. Assuming the fluid changes from the

ambient state (with subscript "o") to a new state due to an acoustic passage, and

combining these two relations, the result is:

p/po = (p/pY . (3.28)

Eq. (3.28) is then combined with

pV/T = constant

to yield
T = T(p/po)7 - l. (3.29)

with p = p + '. Eq. (3.29) is then substituted into Eq. (3.25), using the

approximation from Eq. (2.21) that p/po v'/co. The result is

Poat -C (y-l) V2 u . (3.30)

Eq. (3.30) is now precisely in the form of an equivalent dissipation momentum

due to the influence of heat conduction. To proceed to the solutions for

space/time domain and frequency domain absorption coefficients, one need
only recognize that the right-hand side coefficient of Eq. (3.30), (-1)K/Cp, is

multiplied by V2 u. This is exactly the same as the viscous dissipation case

where ( + b)V2U was the dissipation momentum in Eq. (3.4). Since (y-1)r/Cp

and ( + b) are both respective sets of constants, we may substitute (y-l)/iCp

for ( +1 b) in Eqs. (3.9) and (3.10) to find the viscous time- and frequency-

dependent intensity absorption coefficients without having to perform all the

intermediate steps again. Thus, in the space/time domain
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a(xo)= - (Y -1) V2u , (3.31)
Cp po c IUIol IXo

while in the frequency domain

a = c(Y- 1) 2 (3.32)
Cp pO c 3

Eqs. (3.31) and (3.32) are absorption coefficients for intensity, and so they

must be divided by two for acoustic pressure use. After division by two, Eq.

(3.32) agrees with the result given by Kinsler et al. (1982, p. 148).

A concluding remark for this section concerns the comparison of equivalent

equations of state, written in two different ways: one with the nonlinear

coefficients A, B, C etc. per Chap. 2.4, and the other using y corrected from

Beyer (1975), p. 99, using Gradshteyn and Ryzhik (1965)):

P = Po [1 + A s + B ... (3.33)
PO po 2!

and

P = Po [1+ s +Y(- 1) s 2 ... ] (3.34)
2!

Traditionally, Eq. (3.33) is used for liquids, while (3.34) is used for gases.

However, Eq. (3.33) is equally valid for gases by comparing the coefficients to

the corresponding ones in Eq. (3.34). The resulting conversion is B/A = y-l,

and so the heat conduction absorption coefficients given by Eqs. (3.31) and

(3.32) may be written in terms of B/A rather than y for use with liquids. Also

note that in the hypothetical case where y= 1, the isothermal condition for an

ideal gas, then B/A=O, which implies there is no material-related nonlinearity.

As an added note, I include the following remark from Blackstock and

Hamilton (1993, p. D-14):

"WARNING: Do not make the mistake of taking the mathematical replacement too literally. The

ratio of specific heats y for liquids is not 1 + B/A. In the case of water, for example, y = 1.0006

whereas 1 + B/A 6."
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3.4 Why the Absorption Coefficient is Always Negative

In the first section in this Chapter, I liberally used an absolute value term for

both V2 u and for the acoustic particle velocity. This section explains why the

mathematical artifice of the absolute value really isn't needed, and why the

absorption coefficient a must always be negative from a mathematical sense to

be consistent with the obvious observations that acoustic waves decay due to

losses. The remarks made in this section apply to acoustic losses of all three

types, viscous, heat conduction, and relaxation, because they each rely on the

ratio of V2 u to u.

Consider Fig. 3-3, which shows part of an acoustic wave, where the total

pressure is plotted against spatial position x, all viewed at one instant of time.

The places on the wave where the slope of the wave is constant, thus V 2 u =0,

are clearly marked (i.e. where the curvature is changing sign and direction).

In between each of these regions, the shape of the curve is either concave or

convex; mathematically, this means that V2 u is either positive or negative. If

we consider drawing a hypothetical straight line from one point where V2 u = 0
to the next, then we can define a local particle velocity, ulo c, from this line.

The interesting feature that emerges is that when V 2 u is positive, Uloc must be

negative; when V2 u is negative, loc must be positive. Hence the ratio of V2 u

to loc must always be negative. This means that we didn't really need the

absolute values used previously in this Chapter, and explains why the

absorption coefficient must be negative. Sensibly, we knew the absorption

coefficient must be so, because absorption processes always work to straighten

out the wave. One could also argue that the absorption coefficient may be

positive, but behavior of absorption always gives rise to a decaying

exponential and so there is always a negative sign which must be present.

This is more of a semantic argument than a physical one however.

There is some subtlety present in Fig. 3-3 that you won't find anywhere else

thus far, i.e. you won't find it in any other text or paper on acoustics. It is that

the absorption coefficient really depends on two things: first V2 u, and second

on the notion of a local particle velocity Uloc, where the local particle velocity

(and hence local acoustic pressure) is defined relative to a local ambient
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Fig. 3-3 V2u and u versus x; uloc is defined in between V2 u = 0 locations.
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pressure and not necessarily the ambient pressure extant in the problem.
There is also an assumption made that ulo c is defined from some straight line

connecting the pertinent V2 u=O locations. This assumption is probably close to

being correct, but there is no proof thus far. It turns out that this idea m us t

occur for there to be a solid connection between the Fourier-based methods for

correctly obtaining acoustical absorption in wide band or transient problems.

Having made these statements about the nature of acoustic dissipation, and the
role of the ratio of V2 u to Uloc in a wave packet slab Ax, the reader must be very

careful in interpreting the notation in this chapter. The absorption

coefficients are always functions of the neighborhood o er which the

calculation occurs. This means that the energy density, and hence local

acoustic particle velocities, cannot be merely defined by using the ambient

pressure as a reference. A local ambient must instead be defined. This is a

major assumption that has been made in developing this entire chapter, and

hence it provides part of the foundation for the entire thesis.

3.5 Absorption of Linear and Nonlinear Acoustic Waves

Now that the three major absorption mechanisms have been separately

established for space/time domain use (Eqs. (3.9), (3.18) and (3.30)1, consider

how these act on various types of waveforms.

We will first consider an acoustic sine wave, as shown in Fig. 3-4. From the

preceding discussions, and for sufficiently low frequencies, all three

absorption phenomena combine to give an a proportional to 02 . Hence

absorption, acting on a propagating sine wave, imparts a decaying envelope

on the amplitude of the wave as it travels. However, the wave retains its

sinusoidal appearance, so the absorption does nothing to alter the frequency

content of the wave: an acoustic sine wave influenced by absorption is still a

sine wave. This is illustrated by the absorption weighting function, also

shown in Fig. 3-4.
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Fig. 3-4 Sine pressure wave (with decay taper)
and accompanying V2 u.

Fig. 3-5 Sawtooth pressure wave and accompanying 2 u.
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FROM
BAY· ._ -

ACCELERATION - -av/lx

t t. - -

VISCOUS FORCE= a v/ax z

NON-DISSIPATIVE
PART

FIG. 1. Pressure, elastic force, and frictional force in a plane
wave traveling along Ox. Completed to a full wave, the dissipative
part would have the wavelength 2X2.

Fig. 3-6 J.S. Mendousse's (1953) concept. Mendousse had the notion that
the viscous dissipation acting on a nonlinear wave was
proportional to V2 u. He also made the assumption that the
absorption is virtually zero everywhere in a sawtooth wave
except in the shock region, and he approximated this by fitting a
portion of a high frequency sine wave in the region of each
half shock.
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Chapter 3 Time Domain Absorption

Now consider an acoustic sawtooth wave, reminiscent of the teeth on a

carpenter's sawblade, as depicted in Fig. 3-5. For convenience, the

fundamental wavelength, or cTp where Tp is the wave period, is the same as

the sine wave in Fig. 3-4, and the peak amplitudes in both Figures are the

same. Since the wave is not composed of a single frequency, the simple

sinusoidal absorption coefficient a(o) used for Fig. 3-4 cannot be used here;
instead, the space/time domain absorption a(x,) must be used, from section 3.1.

The absorption weighting for the sawtooth wave is then a doublet function,

with the spikes of the doublet acting on the maxima and minima in the

sawtooth: the peak and the trough; elsewhere along the wave, the absorption

is zero. Note that the wave pictured could be a linear acoustic wave (which

won't undergo cumulative distortion during travel) or a nonlinear acoustic

wave (which will distort with travel). The key is that they both have a

sawtooth shape and so they will both experience doublet-like dissipation near

the saw teeth peaks. The linear acoustic wave will of course rapidly be

dissipated and the teeth will become rounded. The nonlinear acoustic version

however, will try to maintain its sharp teeth state because the amplitude are

high enough (via the 6/v' term in the wave speed) to feed the shock. So the rate

at which the shock is fed by the nonlinear distortion exactly balances and so

the sawtooth shape is maintained, at least for a while. This is called a stable

shock condition.

The idea of the doublet acting on the sawtooth wave is not new, since it was

first proposed by Mendousse (1953). His illustration is repeated here as Fig. 3-

6. The illustration also shows the difference between a true doublet acting on

a perfect, sharp-cornered sawtooth wave per Fig. 3-5, and a realistic doublet-

like 72 u. acting on a sawtooth wave with dull rounded teeth.

Mendousse used, in his own words, a "simplified-picture theory" to obtain both

the viscous dissipation region (at the doublet) and the non-dissipation region

(everywhere else besides the doublet region). Mendousse's work lay dormant

for over ten years before it received considerably more attention as the study

of nonlinear acoustics became more popular (i.e. there was more funding).

The space/time domain development of viscous absorption in section 3.1, as

illustrated acting on a sine wave and a sawtooth wave, proves Mendousse's
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hypothesis albeit in more rigorous fashion. Mendousse made the assumption

of the viscous dissipation force and showed it in the Figure reproduced here;

the work shown in section 3.1, in contrast, started with the Navier-Stokes

equation, lifted the viscous force term from it, and proceeded into a balance of

the stored energy density flux (or intensity) for the wave initially, and set it

equal to the integral of the energy density flux loss due to dissipation. The
result was a space/time domain form of the dissipation coefficient a(xo). An

extension of the same basic procedure also resulted in similar expressions for

space/time domain absorption for relaxation and heat conduction phenomena.

These components for heat conduction and relaxation could likewise be shown

in a similar fashion as Mendousse's reproduced illustration in Fig. 3-6.

Lighthill (1956) wrote a monograph on the subject of the dissipation of

nonlinear sound waves, but his treatment of viscous absorption and relaxation

is written, like later works, in terms of rather than in the space/time

domain. Blackstock (1988) discussed work by Carstensen (1982), where an

operational definition of absorption was based on a = -V.I/(21), where I is the

sound intensity and a is the total absorption in a nonlinear acoustic wave.

These could be regarded as alternate ways to deal with absorption.

3.6 Absorption of Liquids, Solids and Bio-Materials

In the theory presented in preceding chapters, it was assumed that the three

fundamental absorption characteristics apply to fluid materials such as liquids

and gases, and hence the absorption always has an o2-dependence to it, except

near a relaxation frequency. This is generally true. In other materials, like

solids and biological materials, this isn't exactly correct. Many materials,

including viscoelastic rubbers and animal tissue, exhibit absorption that has

more of an o-dependence, rather than a o 2-dependence. These materials also

have absorption characteristics for wave types other than the fluid

compression-rarefaction one considered in this thesis. These other wave types

include shear and interface waves.
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I won't digress further on these matters other than to make the reader aware

of them. Absorption dependent on could, in principle, be constructed by the

use of multiple relaxation frequencies, by staggering them across the

frequency axis. The staggering could be uniform, or it could be irregular. A

uniform, and fairly close placement of relaxation frequencies would give an

absorption curve resembling An, where n is non-integer 0 < n < 2. If the

placement of these frequencies were far apart, then discrete steps in

absorption would be seen, as in the case of sea water and in air.

I haven't taken the time to thoroughly dig into the literature on the

absorption of rubbers and bio-materials in an attempt to quantify the known

data (other than the papers by Goss et al., 1978, 1980), and to see if any such

steps occur. My guess is that they don't, because the composite nature of such

materials leads to a blurring of the many relaxation frequencies, rendering an

absorption vs. frequency plot relatively smooth, and with a tidy exponent of

uniform n. The only other obvious test that could be made is to test such

materials at both very high and very low frequencies, and look for a departure

from n .

After I had formulated the time-domain absorption coefficients in this

chapter, I noted that none of the three could account for the approximate o-

dependence of most biological tissues, except for a cascade of relaxation

frequencies. Sometime later, during the writing of this document, I read a

preliminary draft of a presentation abstract by Li and Blackstock (1993) where

they had modeled the absorption of finite-amplitude ultrasound (i.e. nonlinear

ultrasound) in biomedical tissue by modeling the tissue as a medium with

multiple relaxation frequencies. This is apparently not a new idea since I also

found that Fry (1952) observed the o-dependence could be explained by a

spectrum of relaxation processes. A good summary of the linear dependence of

absorption with frequency for biomaterials is given among several papers in

the book Ultrasonic Biophysics, edited by Dunn and O'Brien Jr. (1976), which

begins with the classic paper by Pohlman (1939).

A more recent view of relaxation dissipation, based on polymers, but generally

applicable to other materials, is given by Hartmann et al. (1994). This paper
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reviews the theoretical attempts to fit the observed measurements to various

equivalent mechanical models involving springs and dampers (dashpots). The

best fit occurs using the Havriliak-Negami (HN) model; Hartmann et al. also

point out that the HN model equation "is equivalent to a particular distribution

of relaxation times, that is, a continuous distribution of single relaxation time

models or Maxwell models."

Pressure alpha for fresh water
and sea water

0.
Z

Cm

Ca

+ alfa, fw

a alfa, sw

9

frequency, Hz

Fig. 3-7 Pressure absorption coefficient versus frequency for
fresh water and sea water based on sinusoidal input wave of any amplitude.
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Fig. 3-8 Pressure absorption coefficient versus frequency for a
viscoelastic fluid-like material having a relaxation-dominant n
dependence. This example shows two a for 1 and for co1.4

Lastly, Figs. 3-7 and 3-8 show the absorption coefficients calculated in the

space/time domain (i.e. using the material in this Chapter) for several of the

fluids and quasi-fluids used in this thesis. The) were obtained directly by

calculation based on viscosity, heat conduction, and relaxation parameters for

sinusoidal waves.

1see Stokes, G.G. (1851), and Pierce, A.D. (1989), p. 13.
2 Kinsler et al. (1982), p. 146-147, by including the bulk viscosity.
3 Kinsler et al. (1982), Fig. 7.1 on p. 142.
4 Mellen, R.H. et al. (1979) identify a third chemical relaxation involving

magnesium and carbonic acid, that exists between the relaxation for B(OH) 3

and MgSO4. This relaxation is not included in the model for this thesis,
although it could be readily added.
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5 op. cit., p. 145, eqn. (7.21).
7Lindsay, R.B. (1960), pp. 334-351. especially 347-349.
8Pierce, A.D. (1987). See pp. 13-14, Eq. (1-4.6), and pp. 34-36. Pierce used s for

entropy, whereas in this thesis Se is used to avoid confusion with the
condensation s.
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Chapter 4

Computational Approach

This chapter describes the computational approach used to model nonlinear

propagation of acoustic waves and shocks. It treats a number of issues

separately, and each of these is implemented in an ensemble in the computer

code used to model the time-domain nonlinear propagation of acoustic waves

in lossy fluids.

4.1 The Wave Packet Approach

In the derivation of the nonlinear wave equation shown in Chapter 2, the
speed of any particular point on a wave was shown to be c = c o + pv. In essence

this means that different points on the wave travel at different speeds, in an

uncoupled manner. The coupling comes from the dissipation components

shown in Chapter 3, because each particles' speed maps directly to acoustic

pressure, and thereby can influence neighboring particles by the action

(predominantly) of the V2 v absorption terms. The notion of allowing wave

parts, or particles, to travel at different speeds based on the nonlinear wave

speed and of using this model in a computational algorithm was first done by

Fox and Wallace (1954). Other investigators have also used the same basic

technique, including Cook (1962), Van Buren and Breazeale (1968), Pestorius

(1973) and others. These authors each used different approaches to inject

dissipation into their models, although most used some version of a Fourier

approach, and most avoided allowing solutions that would form shocks.

Pestorius excluded dissipation in the fluid and included tube-wall boundary
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dissipation, but again, like his predecessors, used a Fourier approach to apply

it in the model. Pestorious referred to his propagation model as a

phenomenological approach; other investigators may have also used this

term. I have instead adopted the term wave packet approach (WPA) in this

thesis because the approach combines the nonlinear propagation part used

previously by these and other authors with space/time domain dissipation that
allows quasi 1-D linear, nonlinear, and shock problems to be modeled.

The implementation of the WPA is simple. A finite duration, initial acoustic
waveform is defined in the program by the use of a control file called DECK.

This file contains information about the frequency, amplitude and duration of
the pulse, as well as the type of fluid for the problem. The waveform is

discretized into point sampling, with npoints (20 or greater) per base
wavelength in the problem. The program automatically determines

propagation step size, deltax, based on how strong the nonlinearity is and/or

based on the fundamental absorption of a linear acoustic wave. The
propagation step size automatically changes as the waveform propagates;
deltax is smaller for a shock, and it increases as the shock diminishes and as

the linear acoustic problem eventually prevails. For a typical nonlinear
acoustic problem, deltax is set equal to 1/30-th of the dissipationless plane
wave shock distance, which is on-par with Van Buren and Breazeale (1968),

who used 1/20-th of the dissipationless plane wave shock formation distance.
These are both conservative step sizes, since geometrical spreading (i.e. non
plane wave) and absorption always extend the actual shock formation distance
beyond the dissipationless plane wave estimate.

The program, pulse.out, reads the information from DECK and then proceeds.

The two basic steps involved are propagate all points on the wave, and apply

absorption on the whole wave. The wave distortion results largely from the

nonlinear wave speed, and so each point on the wave (i.e. each Ax slab, or

wave packet) moves at a slightly different speed than its neighbors. This

causes the wave shape to slowly deform after each full wave, deltax step.

Hence the self-distortion of an acoustic wave occurs cumulatively. After each
step, 2v is calculated for each point on the wave based on a three-term Taylor

series estimate (e.g. see Abramowitz and Stegun, 1972), after which the actual
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dissipation for each point can be separately calculated, and applied. So long as

both the self-distortion (from the nonlinear propagation) and dissipation

occur gradually, by choosing a propagation step size small enough, then the

actual combined nonlinear-dissipation effects present will manifest
themselves in a smooth manner, and mimic the behavior of real acoustics.

Thus the WPA proceeds, computationally, by marching the wave pulse in

discrete steps along the direction of sound propagation. A key question then

is: what should the propagation step size be? This is answered by considering

two limits: a limit distance based on the sound absorption for a linear acoustic

wave, and the limit distance at which a shock forms for a nonlinear, but

lossless, acoustic wave. These will be explored next.

4.2 Propagation Step Size per Linear Acoustic Absorption

The initial propagation step size from a linear acoustic absorptive wave

viewpoint is determined from the consideration of the intensity loss in a wave

as it travels. We start with

I(x) = Io - AI, (4.1)

which was a starting point for calculating the absorption coefficient in
Chapter 3. I(x) is the intensity of a slab in a wave packet at x, I o is the initial

intensity of the slab in the wave packet, and AI is the incremental intensity
loss. As in Chapter 3, we can take the initial intensity in the slab, I1, and the

downstream intensity I(x) as having the same units, of the form

.2

o = poc = pC v ' 2 (4.2)

P new 12
(x)po = Vnew , (4.3)

with v' as the initial particle velocity in the slab, and we define v'new as the

particle velocity in the same slab after the Al loss. For this discussion and for
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notational simplicity, the loss in intensity, A , can be considered to be due to

viscosity only, and given by

Al=I + Ib)* v', Ax V2v. (4.4)

Losses due to heat conduction or due to relaxation will take a very similar form.

Making these substitutions, we have

v'new = v' 1- [41+b] Ax. V2 v (4.5)3 pcvO

The term inside the radical is the part we need to concentrate on. Since

absorption occurs incrementally, in small quantities, for each incrementally

small propagation step Ax, then the underlined term above must be much less

than one. Writing this and solving for the propagation distance step Ax we

have

Ax << (4.6)

T + nb] v 2 v
3 pcvo

If the wave is sinusoidal, the term [ + 'lb ] V 2 v/(pcv'O) is known as the

viscous absorption coefficient for intensity; hence:

Ax << ll/intensity,
or

AX << 0.5/apressure.

If the wave is not pure tone sinusoidal, but rather composed of several

frequencies, the above restriction should then be applied for the highest

frequency in the wave. This will ensure that the propagation step size Ax will

always be small enough for any frequency in the problem. Hence, the

requirement placed on the allowable size for the propagation of a linear
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Fig. 4-1 Development of the distance to shock for a

plane dissipationless sinusoid.
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acoustic wave is that the step size should be much smaller than the inverse of

the intensity or pressure attenuation coefficient for the highest frequency in

the problem.

4.3 Propagation Path Step Size per Shock Distance Method

The second way to determine the initial propagation step size is to consider at

what distance the wave will form a shock, i.e. the shock formation distance.

Then we let the computational propagation step size be some small fraction of

this number. The term shock refers to a near-vertical section in a p-t, or p-x

waveform, where the near-vertical part has a slope magnitude that is

substantially larger than any other part of the wave, either now or at any

previous view of the waveform. Mathematically, shocks are often assumed to

have a perfectly vertical segment (i.e. infinite slope) with the peak-to-peak

thickness in x or t being identically zero. In practice and in this work, a shock

has a large but finite slope, and a non-zero thickness across the shock as

measured from the 95% to the 5% values of the peak-to-peak extent.

Other authors have described the shock formation distance from a number of

distinct approaches. The two shown here seem the most appropriate to the

WPA; the first was also identically shown in Stephens and Bate (pp. 485-486,

1966).

Consider the single pressure cycle of a dissipationless plane wave train shown

in Fig. 4.1, in which there are two points labeled E (at a wave crest) and F (at a

zero crossing). As the wave travels in the positive x-direction, the wave will

distort and eventually a shock will form. If we define the distance from the

wave location to the shock formation location as d, we can write the following:

for E: (d + /4)/At = co + 3v', (4.7)

and
for F: d/At = co, (4.8)

and recall that / = B/(2A) + 1. Solve each for d and then solve simultaneously:
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At = A./(43v') . (4.9)

Hence the distance to shock is

AX = /(43e) = (i/2)/(Pek), (4.10)

where the acoustic Mach number is given by e = v'/co. Strictly speaking, this

result gives the distance to full saturation across the shock front; i.e. a

vertical discontinuity in acoustic pressure occurs fully from peak-to-peak

(trough). Full saturation therefore means a full sawtooth wave. For an

initially sinusoidal wave, the shock will actually form at the acoustic pressure

zero crossing first; as the wave proceeds thereon, the shock will then occupy

more of the peak-to-peak amplitude until full saturation occurs, and the

sawtooth wave results. Note the the use of the word saturation implies that the

spectrum of an initially sinusoidal wave (a delta function at the wave

frequency w) shifts until the resulting spectrum (of the sawtooth wave) is

filled harmonically above w.

A second wave to calculate the shock formation distance is to find the distance

at which the shock first forms. For an initially sinusoidal wave, the shock will

first form near a zero crossing in pressure. Consider two points of acoustic

particle velocity on a sine wave, A and F, where A is very small and close to F,

and F is again at zero acoustic velocity. Along x, the point spacing between A

and F is 8, and we again assume that the shock begins to form at d somewhere

on the x-axis.

for A: (d + 8)/At = c + 3v', (4.11)

and
for F: d/At = Co, (4.12)

and recall that p = B/(2A) + 1. Solve each for d and then solve simultaneously:

At = 8/(3v') . (4.13)

Since we began with a sine wave, the maximum slope (dv/dx) at the zero

crossing is

max slope = k Vmax = (VA-VB)/ = A/8 (4.14)
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where k = w/cO. If we note that v' in Eq. 4.13 is really A, we can substitute Eq.

4.14 into Eq. 4.13, then multiply by co to find the distance to shock:

AX = 1/(fPek) , (4.15)

which is exactly the same result given by Blackstock (1993) from a different

approach. The distance AX is an underestimate because it ignores the effect of

dissipation and geometric spreading which tend to retard shock formation. In

fact, if there is sufficient dissipation due to the various acoustic losses, or

sufficient spreading, or the sound pulse isn't that strong, or some combination

thereof, a shock will never form. A useful estimate for whether a wave will

form a shock, in the plane wave case, is given by the Gol'dberg number / [p.

120 in Nonlinear Acoustics by R.T. Beyer, (1975)], which is the dimensionless

ratio of 1/a for linear absorption to the shock formation distance AX, where a

is the pressure absorption coefficient.

Generally speaking, if r << 1 then the wave will not form a shock and if r is

small enough, the wave will behave in a linear acoustic manner. This

situation is the one that applies to the most problems that acousticians study,

but they seldom use this particular argument as justification. Instead, they

rely only on the argument of a small acoustic Mach number e = v'/c which,

they reason, is enough to discard the higher order terms in the wave equation.

This is fallacious reasoning. If e is small, then it is safe to discard higher order

terms in the wave equation, but only within the confines of the control

volume specified for wave equation derivation. Outside this control volume, if

F is large enough, the wave will distort and may even form a shock. So even

though the Mach number is small, the problem may still be nonlinear. The

only safe way to determine if an acoustic problem is linear (if r << 1) or

nonlinear is by a calculation of the Gol'dberg number, or by some equivalent

calculation. Wave equation considerations are not enough.

On the other hand, if r is approximately 1 a shock will form. If r >> 1, then a

shock will form and it will probably saturate.

The evaluation of the Gol'dberg number, and variations on it for planar (as

shown here), cylindrical, or spherical geometries is discussed at length in
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many papers and texts on nonlinear acoustics (especially by Blackstock) and

so it will not be further reviewed. Computationally, it will always be safe to

calculate the Gol'dberg number r for a plane wave and apply it to cylindrical

or spherical problems because spreading always retards the formation of the

shock since the wave intensity decreases with propagation. So the planar

Gol'dberg number provides a conservative estimate of whether a shock will

form, and the dissipationless shock distance AX provides a conservative shock

distance estimate. Computationally, the sensible choice for the size of a

discrete propagation step would then be some fraction of the smaller of either

the Ax (from the linear acoustic approach in section 4.2), or the shock

formation distance AX in this section.

4.4 Other Comments

Strictly speaking, the coefficient of nonlinearity /1 should be evaluated at

every distinct discretization point along the wave. Hence the fluctuation of 

along the wave will mimic the wave behavior; an example is a sinusoidal

pressure wave, where p along the wave has a small sinusoidal deviation about

the mean value. A recent paper by Cotaras and Morfey (1993) offers separate

polynomials to evaluate /B for sea and fresh water, based on the relations for

sound speed c of Chen, Millero et al. (see Cotaras and Morfey, 1993, for the full

references of Chen, Millero et al.), so a pressure-, temperature- and salinity-
sensitive p could be implemented. For now, however, fixed values for in

fresh water, sea water, air, glycerin and tissue-like fluids are used.
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4,349,898.... i
43.25.LJ SONIC WEAPON SYSTEM

William Drewes, Bronxvllle, New York, and Edward M. Vlicki, Elm-
wood Park, New Jersey, assignor to William Drewes

14 September 1982 (Class 367/138); filed 9 November 1978

This formidable weapon emits no ordinary sound, but rather a pumped
beam of parametric sound which it generates and collimates in a highly
imaginative manner. A further degree of sophistication is contributed by a
laser 19 which, together with an interferometer and a frequency analyzer,
measures the movement of the target 18. A jet engine 12 is aptly called the
raw acoustic source. The sound it generates passes through a set of 1 I tubes
which are closed at their ends by synchronously rotating shutters, lik siren
blades, that supposedly transform the continuous spectrum of the jet noise
into a line spectrum of 11 components spaced at octave intervals from to

5120 Hz. The sound is collimated in a narrow beam by a 50-ft dianm reflector
16, and directed toward the target. With acoustic intensities so high that the
air behaves nonlinearly, the 5120-Hz component pumps the 2560-Hz com-

ponent, which in turn pumps the 1280-Hz component, and so on. The com-
ponents of interest are at 5, 10, and 20 Hz, which presumably are in the
range of resonances of the structures to be destroyed. By virtue of the pump-
ing phenomenon, these low-frequency components are confined in the same
narrow beam as the highest (5120-Hz) component. Consequently, they
propagate without spreading loss, and maintain an intensity suflcient to
destroy large buildings at a range of 5000 ft. This thing could be quite
annoying until someone finds a way to quiet it.-LB

1407 J. Aost..Soc Amr ?r34). Apri 1983 '
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Chapter 5

Applications and Phenomena

This chapter is devoted to specific applications in several areas of nonlinear

acoustics. Each application uses the wave packet approach (WPA) propagation

model described in Chapter 1 and justified in Chapter 2, each uses the
absorption terms derived from the time domain viewpoint in Chapter 3, and

each is implemented computationally using the methods shown in Chapter 4.

The applications begin with parametric sonar and medical ultrasound heating;

these two topics were the original motivators for the thesis.

The next two items considered are pulse self-demodulation, and shock waves.

The self demodulation of a pulse, a description first provided by H.O. Berktay

(1965), is a classic demonstration of nonlinear acoustics. Shock waves, the
ultimate result of nonlinear acoustic steepening, are next considered. The

main issue of exploration is the concept of the "equal-area rule" for handling

the purely mathematical result of a multi-valued acoustic wave. Multi-valued

acoustic waves cannot exist in the same way that a breaking surface
hydrodynamic wave exists, and yet the lossless mathematical theory popular
today permits such a solution. This unphysical result is handled by the the
equal-area-rule of weak shock theory, which reshapes the wave to remove the

multi-value part of the wave. This method also induces a form of energy

dissipation even though the mathematics include none of the conventional

absorption types (viscosity, heat conduction, relaxation). Why does this

method give reasonable results as compared to experiments? What happens

when the usual absorption phenomena are also included in the propagation
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model? Is the equal-area-rule even necessary? These are important questions

that have not, apparently, been investigated thoroughly.

5.1 Parametric Sonar

Parametric sonar, the notion of using nonlinear acoustic mixing in the water
to form a difference frequency tone fd, where fd = f2-fll, from two parent

tones at fl and f2, and where fd <<fi or f2, was and probably still is the most

useful application of nonlinear acoustics. The benefit is that a highly

directive source is obtained at the difference frequency because the sonar
main beam at fl and f2 forms a virtual line array of fd sources in the water

that are phased to add constructively along the beam axis, and virtually nil

elsewhere. So the parametric source is highly directive even though it issues

from a real source (i.e. the sonar transducer) having a dimension (diameter
e.g.) which is usually much smaller than a wavelength at d (co = Ad fd). To

obtain the same directionality at d would require a sonar transmitter with a

much larger aperture, sometimes impractically so. The disadvantage of the

parametric sonar is that it is notoriously inefficient, on the order of 35 to 70 dB

below the level of the acoustic primaries f and f2. At the very best, the

parametric sonar is on the order of 1% efficient, a number on-par with the

best explosive and sparker sources. Parametric sources in general are

described in the books by Novikov et al. (1987), in the NUSC book Nonlinear

Acoustics 1954 to 1983, and among many other citations in the bibliography.

This section will specifically deal with replicating the parametric sonar work

of Halsema (1992), work that was performed in Boston Harbor. The features of

the actual experiment are shown in Table 5-1.

During the conversion efficiency test, the measurement hydrophone was

placed 293 m from the source and two electrical signals were added, and then

amplified to drive the single sonar transducer. One signal was pulsed cw at 184

kHz and the second was pulsed pseudorandom modulated sequence (PRMS)

centered at 174 kHz with a 10 kHz bandwidth. These two signals were
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Table 5-1 Parametric Sonar, Boston Harbor Experiment

sea water, sound speed co 1485 m/s, measured

transducer:

diameter .33 m

elec. input 75 W, each signal

Qacoustic 13.7

efficiency ll .16 (off resonance)

DI 40.7 dB

pulse duration Xr 51 ms

primary signals:

SL 222 dB re gPa, 1 m each

fl

f2

hydrophone range

measured results:

difference frequency

acoustic level

conversion efficiency

(i.e. p' = 126 kPa surface, each)

184 kHz cw

174 5 kHz pseudorandom

293 m.

10 kHz ± 5 kHz

171 dB re pPa

-51 dB re primaries

N.B. parameters taken from, or adapted from, Halsema (1992).
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superposed, amplified and used to drive the sonar piston transducer. The pulse

duration for both signals, driven simultaneously, was 51 milliseconds, a long

duration required by the maximum length sequence used to create the PRMS.

I made a few slight modifications in my simulation. I use two cw waveforms

purely out of convenience and due to array space limitations on the computer,

and I use Q = 2.9 rather than the actual, Q = 13.7; this allows the waveforms to

quickly reach steady state. The use of 184 kHz and 174 kHz cw signals, the

primaries, allow a pulse duration of 0.6 millisecond, hence giving 110 and 104

full cycles respectively of the primaries, and eventually after nonlinear

mixing, approximately 6 cycles at the difference frequency of 10 kHz. Fig. 5-1

shows the waveform 'launched' into the water. There is no distortion here, as

this is the startup waveform. The figure is an acoustic pressure vs. time trace,

which is then converted and 'flipped' to be viewed in a p'-x format. This was

done purely out of convenience because it is easier to see nonlinear self

distortion of the wave in a position format rather than in a time format (as

viewed on an oscilloscope e.g.). In this type of view, which will be used

throughout this thesis, the wave always travels to the right. The individual

cycles are nearly impossible to see on this scale, but the interference of the

two frequencies is clear, with the formation of deep amplitude nulls.

Figs. 5-2 and 5-3 show a pair of p'-x plots, taken at positions close to the

transducer. The plots shown on the top are the actual p'-x trace that would be

observed, while each bottom plot is a low pass filtered version of the

accompanying plot above. Since we expect a difference frequency near 10

kHz, the filtering is low pass with a Hanning taper. The -3 dB limit was set at

approximately 11 kHz, thereby placing a null at approximately 22 kHz. The

Hanning taper provides a -32 dB peak sidelobe and a -18 dB per octave rolloff

in the sidelobe response, to ensure that the primary waves will be -54 dB

relative to any difference frequency wave. The plots were obtained at 2 and 4

meter distances which would technically place them in the near field of the

transducer (near field limit is approx. 10.3 m). The model used here is a quasi-

plane wave, so there is no appearance of near field minima and maxima.
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-1 -x- 0.2 -3 00 00 0 -y- 3 00 0 00

Fig. 5-1 Computational model of the Boston Harbor parametric sonar
experiment. Startup waveform. Two cw tones, at 174 kHz and
184 kHz are transmitted simultaneously for 0.6 ms, giving about
104 and 110 cycles of each wave respectively. The
interference between them gives rise to the amplitude
modulation. Scales: p' in Pascals, x in meters.
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soSO2nO I *Xt ' * y -y 300

fiIt-0nO I . 2.2 Oam -y, '0

Fig. 5-2 Computational model of the Boston Harbor parametric sonar
experiment. x = 2.0 m data. Upper: unfiltered; lower: filtered
at 11 kHz low pass Hanning. Difference frequency wave at 10
kHz clearing visible in lower graph. Conversion efficiency
approximately -49.5 dB. Scales: p' in Pascals, x in meters.

94

-i -

-- ;



Chapter 5 Applications and Phenomena

stnopO4O 3 -a. 4.2 .30XX0 y. 3000

Fig. 5-3 Computational model of the Boston Harbor parametric sonar
experiment. x = 4.0 m data. Upper: unfiltered; lower: filtered
at 11 kHz low pass Hanning. Difference frequency wave at 10
kHz clearing visible in lower graph. Conversion efficiency
approximately -48.9 dB. Scales: p' in Pascals, x in meters.
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The filtered portions of each plot clearly show the emergence of the

difference frequency wave, although it is not visible in the unfiltered

versions. The much greater attenuation at 174 and 184 kHz, compared to the

attenuation at 10 kHz, will tend to eventually strip the high frequency

components from the pulse and leave only the low frequency parts. Thus

taking measurements (or computational data in my case) close to the source,

and using low pass filtering approximates the natural low pass filtering of

acoustic wave propagation in a fluid like sea water.

There are both good and bad features to the filtered plots in Figs. 5-2 and 5-3.

The good feature is that the effective conversion efficiency, 20 loglo(p/252e3),

where p is the acoustic pressure at 10 kHz, varies from -49.5 dB to about -48.9

dB. These are on-par with the -51.2 dB measured results obtained by Halsema

(1992) using the cw-PRMS experiments where the conversion was measured in

a 10 kHz band. Note that in Halsema's experiment, the acoustic level was

measured at 293 m, the component at 10 kHz was obtained by spectral analysis,

and then extrapolated back to the source by accounting for spreading and

absorption. Parametric sonars exhibit the property that the primary

waveform(s) distort quickly, in a short distance, thereby forming the

difference frequency components. Careful study of the parametric sonar

papers in Nonlinear Acoustics 1954 to 1983, a series of published reprints

bound together as a book, reveals this typical behavior where the parametric

source strength eventually peaks and then decays thereafter as an ordinary

sound wave.

The bad feature that is especially evident in Fig. 5-3 is the upward slant (left to

right) in the difference frequency envelope. It is a consequence of the slight

but consistent difference in the absorption of the compression and rarefaction

sides of the primary waveforms. It's such a small difference that it isn't at all

obvious on the large scale of the unfiltered plot, but it does emerge in the

filtered versions. This is a wholly unphysical result, an outgrowth of a

computational inconsistency and not of any underlying real physics. Since

the center section of the primary sound pulse is steady, i.e. in a region well

away from the turn-on and turn-off transients of the sonar transducer source,

then the center section of the sound pulse will be symmetric about the
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ambient pressure. Nonlinear effects will cause the wave to distort but in a

symmetrical fashion, and likewise, because of the wave symmetry about the

ambient pressure, the absorption will also be symmetric. That's reality.

However, on the computer, where I calculate absorption directly from the

wave shape, using 2 u, u and the associated constants of viscosity, heat

conduction, and relaxation, there is room for slight differences in absorption

from compression to rarefaction even when the wave is symmetrical. A

fundamental problem as a result is that, in observing the wave at greater

distances from the source, the offset in the waveform becomes more

prominent. We can also observe by close-up inspection of the primaries that

they have proceeded from being distorted in Fig. 5-2, to being saturated in Fig

5-3. The offset described above is probably related to the differences in

absorption when the wave saturates, i.e. it is most shocked. In contrast, on the

observation scale of the primary waves, this defect is not even noticeable.

However, it does tend to contaminate some of the features of nonlinear

acoustics and makes observation close to the source necessary. This suggests

one of the aims of future research, to improve the computational algorithm so

that it free of this defect.

To briefly summarize then for the case of the parametric sonar, the calculated

value for conversion efficiency is slightly larger than found by Halsema

(1992), but the differences are slight when considering the differences in the

experiment parameters vs. the ones used here. Furthermore, considering that

this approach is entirely novel, and that this scenario is the first attempt at

verifying the theory and approach, the agreement is quite good. The modeled

scenario also revealed some unphysical results which emerge more fully as

the waveform proceeds.

5.2 Pulse Self-Demodulation

The self demodulation of a pulse is one of the most interesting features of

nonlinear acoustic phenomena. An example is the best way to describe it, so I

offer Fig. 5-4 as an example. The series of oscilloscope snapshots is taken from

Moffett, Westervelt and Beyer (1970) and shows the transformation of a
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sinusoidal pulse of 10 MHz into a pulse that doesn't at all resemble the initial

pulse. The series of snapshots was obtained by increasing the separation

between the source and the receiver. The explanation for this behavior,

which only occurs in large amplitude waves, seems mystifying and is perhaps

so since most investigators of the phenomenon haven't come up with a simple

explanation for it. Until now. First I'll provide the simple explanation, which

follows easily once space/time domain absorption is understood, and then I

will show a computational example.

A simple explanation for pulse self demodulation

Turning again to Fig 5-4, we see the first snapshot in the upper-left corner, as

received at x = 4.5 cm. This shows the usual characteristic of a mechanical

oscillator (the acoustic transducer) that requires Q cycles to reach steady-state,

a center region where the transducer vibrates at constant amplitude, and a

trailing section where the transducer exhibits a decaying amplitude envelope

after electrical shutdown. Note that these are oscilloscope traces, so the pulse

acts as though it is moving to the left. The trailing edge disappears off the

photo, so we never really see the end of the pulse. The next two snapshots, at x

= 7.5 and 10.5 cm respectively, show the onset of distortion in the pulse

envelope. The distortion occurs in a very deliberate manner and it is entirely

related to both the nonlinear distortion of the large amplitude waves in the

pulse, and the enhanced absorption for a distorted wave. The vertical scale

also decreases by factors of 5 and 25 respectively.

Here's how it works. Mentally divide the pulse into three discrete regions: A.

the rise-time region on the left; B. the steady-state constant-amplitude region

in the center; and C. the decay region on the right. In the upper of A are the

compression half cycles, which are amplitude weighted by the rise-time

envelope of the transducer. This gives them the appearance, close-up, of

skewed half-cycle sine waves, and their skew is in the backward direction (to

the right). Because this is a large amplitude pulse, the nonlinear phase speed

c = c + v causes the compression half cycles in A to advance to the left, which

makes them less distorted and more like pure sinusoidal half-cycles. By un-

distorting them, they will absorb at the same rate as would an ordinary sine
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wave of the same frequency. We can make a similar argument for the

rarefaction half-cycles in region C. These half-cycles were pre-distorted in

the forward direction (to the left) in the tail of the pulse and they will

undistort due to nonlinear effects. Therefore as the wave pulse progresses, the

compressions in A and the rarefactions in C will undistort, and hence absorb

at a rate on-par with an ordinary sine wave of the same frequency. One the

other hand, the rarefaction half-cycles in A and the compression half-cycles

in C will distort even more than they were to begin with. This causes them to

absorb at a greater rate than anything else in the problem. Last, the full

cycles in the center section B., will distort in symmetrical fashion (the sine

wave equally distorts in both compression and rarefaction half-cycles into a

sawtooth wave). So the center section B will distort and hence be absorbed at a

rate increasing with propagation distance.

The differential absorption in region A (bottom rarefaction absorbs faster

than the top compression) causes the envelope to distort, and this causes a

positive displacement of the local mean pressure of the wave pulse. In the

opposite sense in region C, a negative displacement of the local mean pulse

pressure occurs. These offsets are what eventually turn up as the transient

self-demodulation witnessed in the further snapshots in the figure. It only

remains for the propagation to occur, and the absorption to eliminate the

original pulse carrier frequency. Eventually, only the much-lower frequency

transients survive. Hence the entire process is due to the combined effects of

nonlinear distortion, enhanced absorption for non-sinusoidal waves, and also

because parts of the wave pulse were pre-distorted to begin with. It is worth

stating, even if this is an obvious overstatement, that a large amplitude steady-

state cw tone can never exhibit the behavior described above, because there is

no predistortion offered by the leading and trailing edges of the sound pulse.

The preceding argument, and the space/time domain view on absorption for

that matter, can also be reconciled in the frequency domain, although the

issue of windowing and the accompanying bandwidth for the window, tends to

obscure things. That's all I wanted to say about the simple explanation. Now

for the computational example.
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FIG. 3. Primary pulse (of reduced length), 5 s/division. 15 FIG. 4. Secondary signal received at 6.3 m. Scales: 0.044
V,applied to 2-MHz projector. mV/division, 5 ps/division.

1185 J. Acoust. Soc. Am., Vol. 66, No. 4, October 1979 M. B. Moffett and P. Mello: Parametric acoustic sources 1185

Fig. 5-5 Oscilloscope snapshots from Moffett et al. (1979). The left figure
is a representative sound pulse at 2 MHz in fresh water, with
approximate pressure amplitude of 533 kPa. The right figure is a
filtered (600 kHz low pass) snapshot received at 6.3 meters away.
The transient self-demodulation from the transducer turn-on and
turn-off is evident. The filtered pressure amplitude is
approximately 70 Pa.

A computational example of pulse self demodulation

The computational example chosen follows an experiment of Moffett and Mello

(1979). This one is more realistic than the one used in the preceding section

since it was performed in fresh water rather than in carbon tetrachloride. All

physical aspects of the experiment were approximately replicated in the

computer model. The main difference was that they used a pulse duration of 30

gs and I only used 20 Ats for computer economy. Two oscilloscope snapshots

from their paper are shown here in Fig. 5-5. The computer model waveforms

at startup, 0.2 m (unfiltercd and filtered), and 1.0 m (unfiltered) are shown in

Figs. 5-6, 5-7, and 5-8.
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I lltti' I~ll~ !1 111i,

Fig. 5-6 Startup waveform for pulse self demodulation, in p'-x format.
x-scale in meters, acoustic pressure p' scale in +/- e6 Pa.

Fig. 5-7 Waveform for pulse self demodulation at 0.2 m distance, in p'-x
format. x-scale in meters for both plots. Unfiltered upper plot:
200 kPa to -600 kPa; Filtered lower plot: -2000 to 6000 Pa.
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K

FILT 0.94 -x- 1.02 -600 -y- 600

Fig. 5-8 Filtered Waveform for pulse self demodulation at 1.0 m distance,
in p'-x format. x-scale in meters, p' scale +/- 600 Pa.
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First, at 0.2 m distance (Fig. 5-7), the filtered plot shows the obvious emergence

of the self demodulation that is too fine to be observed on the unfiltered

version. If there were no further self distortion in this Figure, and the only

remaining effects were geometrical spreading due to a finite beampattern and

absorption of the 2 MHz carrier signal both out to 6.3 meters, then the self

demodulation transients would have amplitudes of about 164 Pa, which is

approximately a factor of two different from the experimental filtered data.

This agreement is only crude at best, since the source levels used in the

computer model were extrapolated from Moffett et al. Another reason for a

lack foi erfect agreement is that the E-27 hydrophone used to make the

experimental measurements was non-ideal for the task. Consider that the E-27

is considerably larger than a wavelength in size at 2 MHz, has a very narrow

beampattern at 2 MHz (which could easily cause misalignment problems), has

a mounting baffle that could contribute diffraction ripples in the hydrophone

response, is only rated for a uniform free-field voltage sensitivity from 100

kHz to 400 kHz, and has an unknown 'response above 700 kHz. In addition, the

E-27 is a reversible transducer so it can operate as a transmitter as well as a

receiver; when used as a transmitter, the E-27 at max power is not capable of

transmitting the level it was receiving in the Moffett et al. experiment even at

6.3 meters distance. So there is every chance that the E-27 was contaminating

the measurement in a host of ways, including its own nonlinear response. The

E-27 hydrophone design and performance specifications are included as

Appendix C.

Assuming (optimistically) that the E-27 did not greatly influence the results in

Moffet et al., we need an explanation for the discrepancy between the

measured data (from Moffett et al.) and the computed data, especially

concerning Fig. 5-8. The Fig. 5-8 result shows the same basic increase in the

local pressure with increasing x-position in the pulse that was observed in the

parametric sonar case.

To summarize then, the computational model, and hence the theory presented,

gives early indications that pulse self demodulation approximately agrees with

experiments, certainly on a qualitative level, and perhaps on a quantitative

104



Chapter 5 Applications and Phenomena

level as well. The pulse self demodulation test is probably the toughest test for

not only the wave packet theory because it requires a decent model for the

nonlinearity, the absorption, and for their combined effects, but also for the

computational model. The close-to-transmitter data is encouraging, but the far

field results are poor.

5.3 Medical Ultrasound Heating

A series of two experiments were performed during 1989-1990, to demonstrated

that intersecting large-amplitude beams of focuses ultrasound would deposit

more heat than the heat deposited separately by each focused beam. The

complete report written at the end of the second experiment, which

summarizes both, is included here as Appendix A. Only the salient features of

the experiment will be introduced here.

Two confocal (coincident foci) ultrasound beams, one at 0.9 MHz and the other

at 1.5 MHz, were first driven individually, and then simultaneously upon a

thermocouple to see if the simultaneous drive generated more heat than would

be deposited by ordinary superposition. The idea was to use the high intensity

region of the coincident foci to enhance sound-sound interaction, with one

wave helping to speed the saturation process for the other, and vice versa.

The results showed an increase of about 1 degree Celsius extra heat when

driven together than by the numerical superposition of the temperature gain

in individual trials.

Numerical modeling of such an interaction process poses some difficulty,

especially if one attempts to treat everything in the problem. To circumvent

this potentially cumbersome enterprise, a first-cut simple approach was taken.

The approach assumes that the two beams are uncorrolatcd with each other (a

safe assumption since the frequencies are different), the mixing region was

nominally a 1 cm cube, the wavelengths are all smaller than the intersection

region, and the pulse durations were 0.1 seconds. Hence a great many waves

passed through the interaction cell, so the whole process can be modeled by
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treating the local acoustic pressure in an ergodic sense, both spatially and
temporally. This allows the calculation of an effective ve for the particle

velocity. Since both waves had about the same particle velocity based on

energy deposition from the thermocouple, then the effective increase in Ve is

1.4. To simplify further, this increase in acoustic particle velocity was instead

attributed to the coefficient of nonlinearity J3 in the interaction region only.

The procedure was simple thereafter. Two separate runs of the propagation

code gave the pressure wave for both the 0.9 and 1.5 MHz pulses. These were

then used as inputs to the propagation code having a model for an elastomer

(in which the thermocouple was encapsulated). The model treats only

longitudinal wave propagation, shear waves not being considered; this is an

assumption which may or may not be valid. A second, near-identical,

propagation code was modified for the enhanced coefficient of nonlinearity .

Thus, using the 0.9 MHz wave input to both the modified and unmodified codes,

the difference in the energies between the two exiting waveforms determines

whether the interaction is present. One could argue that this type of approach

is 'rigged' from the start to work; I agree, but the central issue is whether the

resulting interaction is significant.

The simulation showed that the exit waveform energy for the interaction case

(modified program) was about 97.7% of the exit waveform energy for the

separate runs with the unmodified code. To cast that in terms of the

parameters used to describe the actual experiments, Oheat = 1.02, which is in the

right direction, but underestimates the experimental value of 1.06. What does

this mean, and what are the other possible sources of error? One error source

not considered is the influence of the acoustic particle velocity on the

thermocouple and attendant wires, as discussed by Handler (1976), which

would tend to add friction to the problem. Another error source present in the

experiment, but not present in the computer model is the heat conduction in

the wires themselves. The absence of shear waves has already been mentioned

as a possible error source.

Clearly, to really answer the question of the significance of the nonlinear

interaction, a better model must be used that incorporates all these things and
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in which they may be isolated to see their effect on the ensemble experiment.

For now, there is qualitative agreement between the computed results and

those from the experiments.

5.4 Shock Waves

This section explores the development of the shock layer, and includes a

general discussion and explanation for weak shock theory and why it works.

The model used is the same one used in demonstrating pulse self-demodulation.

The approach is to choose one cycle of the wave pulse, and, for each

propagation interval, identify the thickness of the shock based on 5% to 95%

of the peak-to-peak amplitude. These measured shock thicknesses are also

compared with a viscous calculation of the shock thickness based on a

thermal-modified expression from Blackstock's notes (1993), which was in

turn based on the theory of G.I. Taylor.

The workhorse for this example will be the same one used for pulse self

demodulation. The computer model already incorporates the expression for

the shock thickness given by Blackstock (1993) based on viscosity; the model

also incorporates the effect of heat conduction in an ad hoc manner, since in

the case of dissipation it can be shown that heat conduction losses take the

same basic form as those for viscosity (see Chap. 3 for details).

To recap, the initial starter pulse was a 2 MHz pulse having a peak pressure

amplitude of 553 kPa directly exiting the source transducer. The

dissipationless shock formation distance for this problem is approximately 0.11

m. Fig. 5-9 shows one cycle in the steady-state region from the starter pulse,

and the shock thickness (using the term loosely since it hasn't actually

formed) is 26.2e-5 m, which is almost a half-wavelength. Note that by

convention the shock thickness is arbitrarily measured from the 5% to 95% of

the peak-to-peak values. Fig. 5-10 shows a similar single steady-state cycle

after 0.1 m of propagation, a distance quite close to the dissipationless shock

distance. Here the shock thickness is now 11.78e-5 ni. Finally, Fig. 5-11 shows

the single cycle after 0.32 m of propagation, with a shock thickness of 3.4e-5
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Fig 5-9 Startup waveform for shock study. Scale is p'-x, and wave

travels to the right. p' = 553 kPa, f = 2 MHz, fresh water case with

viscosity and heat conduction. 5% to 95% of peak-to-peak pressure

amplitude locates the span of the shock.
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Fig 5-10 Shock study waveform at 0.1 m distance. Scale is p'-x, and wave

travels to the right. f = 2 MHz. fresh water case with viscosity and

heat conduction. 5% to 95% of peak-to-peak pressure amplitude

locates the span of the shock. span = 11.78e-5 m.
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stopOn320 0.2951 -x- 0.29573 -200000 -y- 200000

Fig 5-11 Shock study waveform at 0.32 m distance. Scale is p'-x, and wave

travels to the right. f = 2 MHz, fresh water case with viscosity and heat

conduction. 5% to 95% of peak-to-peak pressure amplitude locates the span of

the shock. span = 3.4c-5 m.
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Table 5-2 Shock Thickness vs. Propagation Distance

travel dist.
(m)

starter pulse 0.00

0.10

0.20

0.26

0.38

0.44

0.50

0.60

0.70

0.80

5% to 95%
shock thk (m)

26.2 e-5

11.8 e-5

5.5 e-5

3.6 e-5

3.4 e-5

3.5 e-5

3.8 e-5

4.6 e-5

5.0 e-5

5.7 e-5

notes:

1. initial undistorted half-wavelength = 36.5 e-5 m

2. theoretical calculation for 5% to 95% shock thickness based on

Taylor's theory, per notes by D.T. Blackstock (1993, modified by

K.D. Rolt for heat conduction): shock thickness = 2.02 e-5 m

3. dissipationless shock dististance = 0.12 m

" saturation dist = 0.36 m

4. end of nearfield = 0.035 m
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m. Other shock thicknesses for various propagation distances are given in

Table 5-2, along with accompanying notes. It may be noted that the shock

thickness reaches a minimum, and then gradually increases. The increase is

mostly due to the reduction in amplitude of the waves, and minimally due to

the decrease in the slope of the p-x in the shock. The slope of the shock will

"unwind" back to the slope on the parent undistorted pulse once the wave

pressure amplitude returns to a level where energy can no longer be usefully

convected into the shock region; i.e. the local problem then behaves in the

manner of linear acoustics. When this occurs, the absorption doublet

influences the wave faster than the energy can convect (and hence distort)

into the shock region, and so the shocks become more rounded until they

vanish. When this occurs, the remaining energy is merely an "old-age" linear

acoustic sine wave of greatly reduced amplitude.

The shock layer, once stabilized, represents the ongoing battle between the

energy dumped in by both the compression and rarefaction sides of the shock,

and the dissipation forces at work. The significant observation to make, which

Mendousse suggested in 1953 for viscosity, is that the V 2u operator in all the

dissipation terms prevents the wave from ever actually becoming multivalued.

As multivalueness is approached, the 72 u term merely changes into a sharper,

more potent, doublet. Dissipation always wins at the shock front, because the

doublet can keep pace with any energy the shock can provide, at least as far as

the weak shock analysis here is concerned.

This brings me to the last point of discussion on shocks, the matter of weak

shock theory and the equal-area rule. Weak shock theory is developed from

the conservative equations of mass, momentum, and energy as applied across a

shock boundary. The outgrowth is the equal-area rule, which allows shocks to

form, become multivalued, and to then be quenched in a sensible manner by

finding the place at which the areas swept out under the multivalue region

are equal. One this vertical line is found, marking an equal area on the left,

and the other on the right, the offending multivalue regions are merely

chopped off, and the problem may proceed. Though this is a handy way to

solve some problems, it does allow the multivalue wave to occur and it (at

present) doesn't provide the ordinary attenuation of viscosity, heat
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conduction, and relaxation. On the other hand, the work shown in this thesis

provides these things, and if the step sizes are small enough, and the

computational algorithm is clean, then the equal are rule need never be

applied again. But is this a good idea? In a word, no. The beauty of the equal

area rule is computation speed, at the expense of accuracy of the waveform at

the shock region. The method also gives a very easy way to understand energy

loss in a shock wave once the wave is fully saturated. The method of

absorption introduced here provides the loss at the shock in a direct manner,

without resorting to unphysical conditions, but it is also computationally much

more demanding and work to smooth out the kinks remains to be done. The

ultimate recourse would be to use some combination of both; the wave packet

approach provides sensible p'-x or p'-t curvature at the shock region while

the equal area rule cleans up any stray acoustic particles that might have

sneaked through the shock barrier. This would be extremely helpful in

problems where the shock is strong and the full propagation is desired out to

great distances. The equal area rule easily handles large propagation step

sizes, while the wave packet approach is much more severely limited. Hence,

the methods introduced here augment weak shock theory, and provide a

different viewpoint for explanations that can't be grasped as well by staring

down a KZK or NPE equation.
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Chapter 6

Conclusions and Future Work

This thesis has attacked the broad problem of nonlinear sound waves, their

propagation and their absorption, in a way that roughly combines ideas used

by earlier workers using the phenomenological approach, and follows the
thread idea furnished by Mendousse in (1953). Where Mendousse departed was

in the high frequency approximation of the wave at the shock edges; this was

probably a good idea since computers hadn't evolved to any great unclassified

extent by that time, and the methods shown here demand significant

computation to be useful.

A number of specific conclusion remarks have been made in the previous

chapter, in conjunction with discussion of several case studies used to partially

validate the model presented here. The comment/conclusion that I have to

offer concerning my unified approach to solving nonlinear propagation
problems in the way that I have attempted is that it appears to work, I believe

it to be broadly correct, and I think there is enough validation among the

examples in Chapter 5 to make the point. I find it both refreshing and scary,

as I write this final Chapter, that I have attacked an old problem in fluids and

acoustics in a relatively simple and unique way, but that I have not fully

succeeded in proving my thesis by bonafide agreement with experiments from

the literature. Instead, I have stretched out on a limb, so to speak, with an idea

that is partially proven, and computationally still needs some housekeeping

(or overhaul). To summarize the conclusions and contributions:
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Conclusions

1. A simple propagate-absorb model for nonlinear acoustics does

compare qualitatively with a variety of otherwise unrelated

experiments.

2. In some cases, the agreement between experiment and the model

used here is quantitative as well.

3. The agreement of shock thicknesses with theory is extremely

good.

4. Use of nonlinear acoustics as a test of the wave packet time/space

domain absorption model is probably the most severe one that

could be used.

The agreement (in 1 and 2 above) suggests that there is some

truth to the absorption model.

5. More work needs to be done in cleaning up the long distance

behavior of the solutions (i.e. at distances beyond those shown

here).

The problem has been isolated to errors in the absorption model,

and not in the propagation model.

Contributions

1. Models for time/space domain absorption that agree with theory

for pure tones, and provide absorption coefficients for wide-band

signals.

These models don't care if the problem is linear or nonlinear,

only the shape of the wave (in a p'-x or p'-t format) is important.
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2. The phenomenological propagation model for nonlinear

acoustics, best represented by the thesis work of Pestorius, a

model which omits conventional absorption and uses weak-shock

theory (via the equal-area rule), has been joined by the wave

packet approach which includes conventional absorption.

Conventional absorption provides the mechanism for formation

of stable, smooth, shocks without the use of weak shock theory.

Discussion of Sources of Error

There is always some merit in baring one's intellectual soul however, as it gets

the ideas out on the street where others can view them, and add comments,

criticism, or help. The reader will find that this work is a noble attempt to

solve a tough problem, which if left to the theory alone, looks great. Ahhh,

but then I made the ultimate mistake of trying to prove the theory by

experiment.

The increase in the error of the computed results bears some discussion here,

and will probably be something that I will spend some time on in the next few

months, and perhaps the next few years as well. You could refer to these

things self-criticism.

Local mean pressure, based on neighboring locations
on a wave where V2 u = O.

I think that the idea of some local mean pressure as the reference for defining

a local energy density, is a correct one, especially if one tries to reconcile

sound absorption in the time/space domain from the viewpoint of a wave

packet that 'sees' only what its neighbors are doing, and has no knowledge of

what the true ambient fluid pressure is. A possible problem question is: should

the local reference be a straight line between neighboring V 2u = 0 points, or

should it be some curve? I don't know the answer to this question; if I did, I

would have presented the material in this thesis in a more direct manner, and

I would have hidden or omitted the labor needed to get to the right answer.
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This whole question is conveniently sidestepped if one opts for a Fourier
approach, by taking a windowed transform of the wave, applying a sensible

absorption law to the frequency bins (an w2 weighting for viscosity e.g.), and

then inverse transforming. I readily acknowledge the utility, speed, and

proven reliability of Fourier methods, but I'm not satisfied because they don't

really explain to me why absorption works at all. The Fourier approach

divides the waveform into a superposition of fundamental and harmonics, and

the absorption acts in an independent manner on each of the fundamental and

harmonics. This is troublesome, conceptually, because in a shock problem

where the wave is sawtooth-like, the absorption acts almost exclusively in the

shock front, and practically nil elsewhere. The Fourier approach would have

us believe that the absorption acts everywhere, on each separate harmonic.

Another difficulty that I'm not happy with is that you need to window the

waveform in some fashion. You could of course not window, assuming you had

infinite computational resources and speed, but practically everyone needs a

window. If I pose the question: what is the absorption of some arbitrary point

Q on a waveform?, the Fourier-based method relies on taking a window in the

region of my point Q, transforming it into the magnitude and phase spectrum,

applying absorption, then inverse transforming. The calculation becomes

more accurate the wider the window is. I counter this with still another

question: why is it necessary to use a wider window when I am only interested

in a point Q, or the neighborhood of point Q within the limits of continuum

mechanics? The answer to this question is tied to the rules of the transform:

the transform has no ability to resolve accurately unless it can grab enough of

the wave. There are much more mathematical ways of stating this (go check a

math or ngineering book if you are really so inclined), but the result is that

if the window is too small, the resulting spectrum will be wider and wider

band. The transform is giving us an answer, and it's a ccrrect answer, but it

isn't the answer to our question. If the window is truly acting only in the

neighborhood of my point Q, then the spectrum will be constant and uniform

across all frequencies.

So using the transform method, to me, for finding acoustical absorption

involves a paradox. This puzzle is partly responsible for the direction that I

have taken in deriving space/time domain absorption. My approach involves
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only looking at point Q and its neighborhood (necessary because 2u is needed

to find the energy loss). So I have donned the physicist's hat in trying to

explain how absorption works, no matter whether it is for a linear or

nonlinear acoustic problem. I do this partly because the Fourier-based method

doesn't really answer the question of how it works, and partly because Fourier

methods have a tough time when the waveform forms a steep sharp-cornered

shock. The absorption model I have introduced is hence interesting, it

explains a lot especially when applied to a nonlinear acoustics problems like

shock waves and pulse self-demodulation, but it isn't fully mature. So there is

potential source of error because I don't have a firm answer for how to define

the local reference for pressure (or particle velocity).

Numerical Issues

The numerical issues that could cause problems are the same ones that plague

programmers everywhere. The two main ones are numerical stability, and the

encroachment of roundoff error into the solution.

Because I am not using finite differences to propagate my waves, the Courant

condition of making the time step small enough so that no node are

overstepped doesn't apply. My reference frame is really a retarded coordinate

frame, one that effectively follows the wave as it travels. Thus the wave really

doesn't move, but it may distort depending on how nonlinear the problem is

relative to absorption. Furthermore, the propagation part of the numerical

code was tested for very long range propagation and the result was that linear

acoustic problems didn't change shape, while nonlinear acoustic problems

distorted, became multivalued, but remained smooth and symmetric.

Only when the absorption is applied do the numerical solutions become ragged

or uneven. The unevenness has been shown to be especially related to

nonuniform absorption of compression shock to rarefaction shock even

though the parent undistorted wave was symmetric about the ambient

pressure. This is a result of the inability to calculate a smooth even second

derivative when the waveform forms a shock. It actually could be that there is

a related form of the Courant condition hidden, that demands smaller step sizes

in order to ensure smoothness in the solution. Intrinsically, because I am
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implementing numerical versions of actual loss mechanisms (viscosity, heat

conduction, and relaxation), the loss mechanisms should actually help stabilize

the solution in the same way that they smooth a wave pulse in the real world.

But the numerical implementation, if forced to work in too large steps, can

upend the stability. In my case, my solutions don't blow up, they just absorb in

an uneven fashion.

Roundoff error might also be a source of error here, but roundoff error in a

numerical solution, especially one in performed with double machine

precision, are usually related to making the step size excessively small.

Summary

Moving on to the future work department, the computational implementation

needs attention, because it is not 100% consistent in calculating the local

absorption. Once this task is met, then there are a whole host of other

benchmarks in the acoustics community that could be brought to bear on the

approach. A large raft of sanity checks will be needed. Comparisons with the

NPE- and KZK-based methods would also be useful and likewise educational.

Last, the unconventional approach taken here is probably due to my lack of

excessive exposure to the fine groups studying nonlinear acoustics in Austin

Texas; Bergen, Norway; Rochester, NY; and in the FUSSR. Had I attended

graduate school in one of these places, then I probably never would have gone

this route. I hope that I have learned something here, that I have helped

broaden the knowledge base for others, and that I can broaden my own scope

in nonlinear acoustics by understanding more fully the works that have been

done by others.

120



Appendix A - Ultrasound Experiment II

"An Experiment in Parametric
Part II"

for

MIT 2.77

Ultrasonic Heating,

Research in
of Ultrasound

Biolo
and

,gical Effects and Applications
Other Non-Ionizing Radiations

Fall 1990

by

Kenneth D. Rolt

6 March 1991

121



Appendix A - Ultrasound Experiment II

INTRODUCTION

A previous paper [Rolt, 1988] suggested that the nonlinear interaction of sound

with sound as issued from intersecting sound beams could be exploited to

produce nonlinear heat generation. An experiment was later performed [Rolt,

1990] at the MIT Hyperthermia Laboratory to confirm or deny this suggestion.

The concept posed by the 1988 paper and attempted in the 1990 experiment was

simple: using two fixed-amplitude, focused ultrasound transducers (labeled B

and Y respectively) arranged with coincident foci, transmit B with a pulse of
duration seconds and frequency fB and measure the temperature rise; then

independently transmit Y with a duration pulse at frequency fy and measure

the temperature rise. The temperature changes for these two trials are ATB

and A Ty respectively, and the temperature rise may be measured with a small

thermocouple probe; finally, simultaneously transmit a duration pulse from

both B and Y and measure the temperature rise, which we call ATB+Y. We then

define the dimensionless ratio

ATB+Y
Cheat = T

ATB + ATy ,

where heat is, by definition, the measure of the nonlinear heat generation

due to the intersection and interaction of two sound beams. If the process of

-two sound beams interacting is a linear process, then the principle of
superposition should hold and Cheat should equal 1.0. If the process is

nonlinear, then Cheat > 1.0 and the extra heat is due to sound energy

transforming itself from the parent transmit frequencies for B and Y, into a
spectrum of frequencies which are usually comprised of the original
frequency and harmonics of that frequency. This has been called self-

modulation of a finite amplitude (large amplitude) sound wave. [See: Beyer,
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1974; Saito and Tanaka, 1990; Baker, Anastasiadis and Humphrey, 1987; and

NUSC, 1983 for further reference].

The results of the first set of experiments [Rolt, 1990] were that:

* in 7 separate tests at different power levels and intermediate

angles, 5 of 7 showed that cheat > 1.0 (average of the 7 tests was

1.02)

* in the 8th test, for repeatability, (7 B; 7 Y; and 13 B+Y) the

average heat was 1.05.

* for all trials Cheat , on average, was about 1.036.

These results suggested that there was a nonlinear increase in heat generation

in the confocal region of two simultaneously-pulsed focused ultrasound

transducers as compared to the heat generation from two transducers working

independently, and that the temperature increase is attributed to nonlinear

interaction of sound with sound. However, the lack of sophistication in the

experiment, the lack of simultaneous spectral analysis to identify cavitation,

and the relatively small number of trials at different power settings,

prevented the postulation of, nonlinear heat generation from being proved.

The recommendation was to repeat the experiment under superior conditions

(better control of transducer positioning), with simultaneous measurement of

ambient spectrum to identify cavitation, and calibration of the thermocouple

to give an absolute measurement of temperature. These recommendations led

to the work described in this paper.

Finally, it should be noted that it has previously been recognized that the

heating of materials or tissues by ultrasound may be enhanced by the

nonlinear interaction of sound as it travels from a source to the intended

target area. This has been discussed in some detail by Bacon and Carstensen,

1990, and Hynynen 1985. This is merely a consequence of the formation of
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Table I -

frequency

head

polystyrene lense

tuning box; cable

VCA

amplifier

pulse duration '

Transducer Systems

B Y

1.5 MHz 0.9 MHz

#4 #1

36/101 38/101

box # 1; E box # 2; 9'

red (blue failed) yellow

IFI, 130 W EIN, 200 W

0.1 seconds

Y

encapsulated
thermocouple

* v - . . t 

I - ,

Figure 1 - Arrangement for Tcmperature
Measurement of Intersecting Focused

Ultrasound Transducers
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higher spectral components during wavefront flight, and it is these higher

spectral components which enhance the heating. This work allows for this

sort of nonlinear increase, but still further proposes to divide the sound source

into a plurality of separate sources, which then interact with each other at the

confocal region.

OBJECTIVES AND EXPERIMENTAL DESIGN

As in the previous experiment, the objective was to determine if the heating

within the confocal (intersecting) region of two focused sound beams

generated heat in a nonlinear way.

The experimental set up was considerably more sophisticated and more

reliable (no water tank leaks) than the previous experiment. A simplified

illustration of the set up is shown in Figure 1. The same quartz ultrasound

transducers, with attendant transducers heads, lenses, and water-sealing cones

(flanges) from the 1990 experiment were used here. Each transducer head-

cone combination contains degassed water, and the water is sealed into each

unit by means of stretched TrojanM latex condoms. Small air bubbles are

removed from the sealed unit by the use of a syringe which is designed to

attach to a special valve on the body of the water-seal cone. Thus each

transaucer assembly is ensured to be free of any air bubbles for the duration

of the experiment.

Table I lists the components of each transducer and drive assembly, and

identifies them as the color-coded B (blue) and Y (yellow) system, and the

details of the entire apparatus are included in the Appendix. The general

arrangement for the experiment is shown in Figure 1, and the schematic is

shown in Figure 2.

Each transducer head is mounted on a separate positioning mechanism. The

1.5 MHz Blue head was mounted on a six degree-of-freedom, motorized

computer controlled platform, and was inclined to about 540 from the vertical.

The 0.9 MHz Yellow head was mounted on a five degrec-of-freedom, manually
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controlled platform, with the transducer aimed straight down. Thus the

intermediate angle between the transducers was 54°, which is about the same

as the previous experiment. The position resolution of each platform was

about 1 mm.

Each transducer was calibrated for voltage vs. radiation pressure (as measured

in grams) using a Mettler PC 440 electronic scale. The calibration data are

included in the Appendices.

The thermocouple used for the experiment was constructed in the MIT

Hyperthermia Lab via a capacitive discharge butt weld technique. The

thermocouple bead (the junction of the two dissimilar wires, in this case

chromel and constantan) was observed under a microscope and found to be

free of oxide, and the weld bead was not much larger than the wire diameter

(.003 inches or .076 mm). This thermocouple was then encapsulated in a 5.5 cm

diameter, .75 cm deep petri dish mold using GE RTV 615 silicone rubber. This

encapsulant was chosen for it's reasonable match to the pc of wader, because

it's transparent, and because of the relative ease to degas the two components

after mixing by means of a laboratory vacuum. This encapsulant al'o absorbs

ultrasound to the same order of magnitude, per unit thickness, as certain type

of human tissue (see Appendix, and Goss et al., 1978, 1980). The direct-current

(DC) resistance across the thermocouple leads was checked after welding, after

encapsulation, and after the experiment to verify electrical continuity.

The encapsulated thermocouple (hereafter referred to as the thermocouple)

was mounted on a block of wedge-absorber polyethylene, similar to the

glassfibre ones employed in air acoustic anechoic chambers. The

polyethylene block was then placed at the bottom of an 8 gallon capacity

acrylic-walled tank, and suitably weighted to prevent floatation and

thermocouple movement. Several other polyethylene wedge absorbers were

also randomly placed in the tank to enhance the absorption, and to reduce the

quantity of degassed water needed to fill the tank.

The thermocouple was precalibrated using a cold reference ice bath, and the

Grass polygraph was also precalibrated for operation from 20 to 60 C.
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With the thermocouple and transducers thus arranged and calibrated, a series

of pulses were issued from each transducer, starting with the Yellow 0.9 MHz

system, to align each transducer focus with the thermocouple. The separate

positioning systems were found to be an improved arrangement over the

previous experiment.

When the two transducers were suitably arranged with foci coincident with

the thermocouple, the experiment could now commence. The initial protocol

for the experiment was in two parts: the first was a low/medium power test

involving 10 pulses for B only, 10 pulses for Y only, and then 10 pulses for

simultaneous B and Y transmission. The second part of the experiment was to

repeat the first part but now at a higher drive level. While both tests were
being conducted, a small Panametrics transducer (fr = 6 MHz) steered at the

confocal region, would simultaneously measure the ambient noise by means of

a Hewlett-Packard 8553 B spectrum analyzer. This was intended to identify

finite amplitude harmonics, stable cavitation, and unstable cavitation.

The computer was programmed to give a 0.1 second duration pulse; this acted as

a simultaneous trigger for the two voltage controlled amplifiers (VCAs). The

VCAs were, in turn, connected to their respective color-coded Wavetek

waveform generators. The Waveteks then were connected to respective color-

coded tuning boxes, and then on to the B and Y transducers. The relatively

long pulse duration, combined with the fast rise time of the electronics

(capable of operation to at least 35 MHz) and the simultaneous triggering

ensures overlap of the acoustic waves from the transducers as they travel

through the confocal region and gives adequate opportunity for nonlinear

effects to occur.
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EXPERIMENT RESULTS

LowlMedium Power:

Blue (1.5 MHz)

500 mV (12.8 W)

average
c = .166

= 8.58

trial # hnxes on nnlvpranh nner

1

2
3
4
5

8.6
8.8
8.4
8.5
8.6

6
7
8
9
10

8.8
8.8
8.5
8.5
8.3

harmonics: 2 nd
3 rd

-20 dB from primary
none observed above -35

Yellow (0.9 MHz)

400 mV (1.3 W)

average = 7.31
T = .247

trial # boxes on olveraoh oaner

1

2
3
4
5

6
7
8
9
10

7.6
7.1
7.1
7.2
7.7

7.4
7.0
7.0
7.5
7.5

harmonics: 2nd
3 rd

none observed above -35 dB
t. It It t t
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Blue (1.5 MHz, 500 mV, 12.8 W)

and & Yellow (0.9 MHz, 400 mV, 1.3 W)

trial

p a pe r

average = 16.93

c = .369

# hnxe on

1

2
3
4
5

6
7
8
9
10

harmonics: primaries about 1 dB apart
2n d -22 dB from primaries
3 rd none observed above -35

High Power:

Blue (1.5 MHz)

1000 mV (45.6 W)

average = 31.64
o = .71

harmonics:

trial

1

2
3
4
5

6
7
8
9
10

2nd
3 rd

# boxes on DolveraDh DaDer

31.8
31.6
30.6
31.4
32.6

31.4
31.4
31.0
33.2
31.4

-19 dB
-30 dB
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nonlvranh

16.8
16.8
16.6
16.8
16.8

16.8
17.0
16.8
18.0
16.9

dB
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Yellow (0.9 MHz)

800 mV (4.9 W)

average = 29.45
ca = .478

trial # hoxe. on nolvpranh naner

1

2
3

4

5

6
7
8

9
10

29.4
29.5
29.4
29.2
29.4

29.1
29.5
30.8
29.0
29.2

harmonics: 2 nd
3rd

-26 dB
none observed above -35 dB

Blue (1.5 MHz, 1000 mV, 45.6 W)

and & Yellow (0.9 MHz, 800 mV, 4.9 W)

trial # boxes on rDolvraDh rnaer

average = 62.7

harmonics:

1 - 10

11

12

scale overload

63.2

62.2

1.5 MHz about 3 dB below 0.9 MHz
2nd
3 rd
4th

-25 dB re 1.5 MHz
-30 dB re 1.5 MHz
-32 dB re 1.5 MHz
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Calculations:
N.B. One box on the polygraph paper equals 0.80 C.

boxes + deviation OC

Low/Medium Power: B only 8.58 + .17 6.86
Y only 7.31 + .25 5.85
linear sum 15.89 + .42 12.7

B+Y 16.93 .37 13.5

heat = 16.93 = 1.065
15.89

High Power: B only 31.64 ± .71 25.3
Y only 29.45 + .48 23.6
linear sum 61.09 + 1.19 48.8

(2 trials only) B + Y 62.7 + .5 50.2

cheat = 62.7 = 1.026
61.09

DISCUSSION AND CONCLUSIONS

The discussion of the results, and the experiment conclusions are divided into

four parts: first, the penetration of the ultrasound into the encapsulant are

discussed; second, the results of the low/medium power tests are discussed;

third, the results of the high power tests are discussed; and fourth, the

conclusions are given.

I. Ultrasound Penetration into Encapsulant

The experiment set up, using the 0.9 MHz (yellow) transducer at normal

incidence and inclining the 1.5 MHz transducer at an angle was done for

convenience in aligning the focus of each transducer upon the thermocouple,

since it was more difficult and time consuming to realize focal alignment with

two transducers directed at angles not parallel to the x-, y-, and z-translation

of the positioning mechanism (as in the 1990 experiment). Thus, the 0.9 MHz

transducer was quickly aligned, while the 1.5 MHz transducer required more

alignment time.
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Figure 3 illustrates the geometry for the 1.5 MHz blue transducer. The main

radiation axis is shown emanating from the lense into the water (layer 1) at a

540 angle from the normal, and it penetrates the silicone rubber (layer 2) at

angle 02. Since cl > c2, the waves will always propagate from the water and

into the rubber. We observe this by assuming that any wavelength in layer 1

projects a trace wavelength at the 1-2 interface, and this trace wavelength

must likewise match the projected wavelength in layer 2. This is merely

Snell's law [Kinsler and Frey et alia, 1982], and thus

projected trace wavelength = L = n = cn
sin 01 sin 02 f

cl = c2 1480 = 1025

sin 01 sin 02 sin 54 sin 02 , 02 = 34.070.

The inclination angle of a small streak of cavitation bubbles embedded in the

rubber (about 1 cm from the thermocouple, and created during focal

alignment but not during the actual measurements) was measured at 33.70

from the normal, experimentally confirming this result.

The propagation of the oblique 1.5 MHz waves may also be viewed using the

SAFARI code [Schmidt, 1987], and this is shown as a contour plot of

transmission loss in Figure 4. The focused transducer is replaced in the model

by a similarly focused line array; at the extreme left side of the figure, note

the dashed lines showing the focusing lense, and the dark solid line for the

line array. The silicone rubber location is shown by the two parallel dashed

lines at .1117 and .1187 meters depth. The air-water interface exists at zero

133



Appendix A - Ultrasound Experiment II

4 Z

0,=54 °

X

S

cc

o2

Figure 3 - Refraction of oblique focused waves
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depth, and the remaining regions above and below the silicone rubber are

water. The thermocouple location is shown by a small black triangle at depth =

.1115 meters, and range = .0817 m. Note that the thermocouple is not exactly at

the focus center due to the refraction of the silicone rubber. The SAFARI

model creates full-wave solutions for two-dimensional wave propagation

problems in layered media. In this case, the approximations made are that the

circular-symmetry focused transducer is replaced by a similarly sized, 100-

element focused line array (X/2 spacing), and the model is 2-D (range and

depth). The contours represent the sound field intensity in 6 dB increments,

and absorption is included for both sound waves in the water, and for

longitudinal (sound) and shear waves in the rubber. The input file for the

model is included at the top of the figure.

I. LowlMedium Power Tests

The calculations on page 12 show that the linear sum for the B and Y systems

resulted in a 12.7 C temperature increase, whereas when B and Y were

operated simultaneously the temperature increase was 13.5 C. This resulted in

a 0.8 C higher temperature for the same electrical input power, and resulted
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SAFARI FIP
P NC L
1.5E6
40000000
0 1480 0 0 0 1.0 0 0
0.1117 1025 287 0.1476 .4428 1.02 0 0
0.11873 1480 0 0 0 1.0 0 0
0.05587 100 .493E-3 35.9 3 .1152
0 0.20 50 1
240. 1E8
2048 1 1000
0 .00016 12 .00004
0 .16 12 .02
0 24 6

o F= 1500000.0 Hz SAFARI-FIP

Range (m)
Figure 4 1.5 MHz Xmit Contour
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in a Cheat of 1.065, which favorably agrees with the results from the 1990

experiment.

A statistical analysis test of the null hypothesis [see Snedecor, 1950] shows that

the evidence of the two sets of data (Blue only, and Yellow only) differentiates

the AT for the Blue and Yellow systems into two populations with unequal

means (see Appendices for calculation summary). Hypothesis tests were also

done for B vs. B+Y, and for Y vs. B+Y with similar results. In layman's terms,

this shows that the data are statistically independent and therefore good for

our purposes.

The presence of ambient second harmonics during the B, Y, and B+Y tests

strongly suggests the presence of nonlinear effects either from the drive

levels themselves, or from interaction effects. The second harmonics could

also be a consequence of stable cavitation, but this could not be confirmed due

to the local oscillator spectral line of the analyzer interfering with the

measurement of stable cavitation subharmonics. Third and fourth harmonics

were not observed suggesting that the system could be driven harder, and

there was no evidence of broadband impulsive noise suggesting that there was

no unstable cavitation. Microscope inspection of the encapsulated
thermocouple after the entire low/medium and high power tests showed no

evidence of cavitation bubbles anywhere along the thermocouple wire.

To assess these remarks on cavitation, we may estimate the acoustical intensity

in Watts/cm 2 at both the surface of the lense and at the focus for each of the

Blue and Yellow transducers and compare them to established values for

cavitation threshold in the literature. This is done by the following:

lense projected area = (6.2)2 = 30.19 cm 2
4

Blue (1.5 MHz): 12.8 W (input power from calibration)

Yellow (0.9 MHz): 1.3 W " . "

lense surface intensity: Blue: 12.8/30.2 = 0.42 W/cm2

Yellow: 1.3/30.2 = 0.043 W/cm2
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focal diameter df = 1.22 -a,a, [Gooberman, 1968]

where = wavelength, f = focal length (101 mm),

a = lense radius (31 mm)

Blue (1.5 MHz): df = .321 cm

Yellow (0.9 MHz): df = .535 cm

focus section area Afocs = a (df)2 , cm2
4

Blue (1.5 MHz): Af = .0809 cm2

Yellow (0.9 MHz): Af = .2248 cm2

focal intensity: Blue: 12.8/.0809 = 158 W/cm2

Yellow: 1.3/.2248 = 5.78 W/cm2

These estimates for focal intensity assume no absorption in either the water or

in the silicone rubber.

To account for absorption we multiply the absorption-free intensity by the

following {GE 615, per Appendix: = 1.44 dB cm-1 MHz- 1 ):

Yellow (0.9 MHz):

o110.9 = 1.296 dB/cm

a0.9 = 110.9/8.686 = 0.149 Nepers/cm

power 0a.9 = 2 ao.9 = .298 Nepers/cm

coefficient of transmission at normal incidence = 0.95

[see Kinsler et al., 1982]

IY-focus = (5.78 W/cm2 ) (0.95) e-(.2 98 * .35 cm) = 5 W/cm2

Blue (1.5 MHz):

1t1.5 = 2.16 dB/cm

0X 1.5 = 1l.5/8.686 = 0.249 Ncpers/cm

power a1.5 = 2 al.5 = .497 Nepers/cm

138



Appendix A - Ultrasound Experiment 11

coefficient of transmission at oblique incidence = 0.48

(540, or 360 grazing) [see Kinsler et al., 1982]

IB-focus = (158 W/cm2) (0.48) e-( 4 9 7 * .7 cm) = 54.3. W/cm2

These values suggest two things. First, the AT for the yellow and blue systems

were both about 6 C and yet the intensities at the focus were an order of

magnitude different. This implies that the blue system (1.5 MHz) did not have

it's true focus aligned with the thermocouple; instead a focal sidelobe was

present. This is reasonable because the two transducers could not have been

moved any closer to each other ith the lenses and the 540 separation angle

used. Noting the focal displacement due to refraction in Figure 4, it is entirely

possible that the blue system was not adequately aligned. Thus, the theoretical

peak focal intensity is 54 W/cm 2 for the 1.5 MHz system, however the actual

intensity at the thermocouple was reduced by an order of magnitude because

the temperature increases were about the same. If we assume that the yellow

system was properly aligned with the thermocouple, then we may assume that

the intensity for each of the systems was about 5 W/cm 2 , and it is these

intensities which are responsible for the heat generation.

The second feature is that the peak focal intensities in degassed water are well

below the estimates for unstable cavitation, and below the levels considered

for stable cavitation [Lele, 1987]. So the extra heat supplied by two

transducers firing simultaneously cannot be attributed to either cavitation

phenomena.

From the thermocouple data listed in the Appendices, the thermoelectric

voltage change for the temperature range from 20 to 26 C (for a pulse from

either the Blue or the Yellow system) is:

26 1.556

20 1.192

6 C .364 mV
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The thermoelectric voltage change for the temperature range 20 to 32 C (for

the simultaneous pulsing from both Blue and Yellow systems) is:

32 1.924

20 1.192

13 °C .732 mV

From these two numbers we may estimate the dimensionless nonlinearity
parameter T/C associated with the thermocouple by the same ratio used in

finding heat; that is:

'5T/C = 732 1.0055
(.364 +.364)

Likewise from the Appendices, we note that the amplitude linearity for the

Grass polygraph oscilloscope is 2% full-scale. Since full-scale for this

experiment was 40 C, then a 12 C temperature rise represents, at worst, 30% of

the full-scale error, or .6%. The dimensionless nonlinearity parameter for the

oscilloscope recorder is then 1.006. We note that the parameters for both the
thermocouple and for the oscilloscope recorder are below the heat parameter;

the combined nonlinearity associated with the thermocouple and the recorder

is the multiplication of the two, which gives 1.015. This is still too small to

account for the heat = 1.065 from the experimental data.

One final comment is that the contamination of the heat transfer between the

B, Y, and B+Y experiments. The thermocouple wire and the encapsulant

together provide the heat conduction path for the thermocouple bead. During

the solo trials for B, and for Y, the temperature rise was about 6 C. With both B

and Y transmitting, the temperature rise was about 13 C. Since the

temperature rise was about twice as high during the B+Y trials as it was during

the solo B, or solo Y trials, then the heat transfer rate would likewise be twice

as fast. What this empirically suggests is that the heat conduction during the

B+Y trials was more severe than in the B and Y trials, and so the B+Y trial was

contaminated more than the B or the Y. The heat transfer mechanism reduces

the maximum temperature that either the B+Y, the B, or the Y could reach, but

it influences the B+Y about twice as much as the B, or the Y trials. This means
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that the heat transfer mechanism actually reduces the value of heat. A heat

transfer model could estimate the amount of the reduction, but for the

purposes of this report, it is sufficient to note that the heat transfer

comparison between the solo trials, and the simultaneous trials, is a source of

experimental error that reduces Cheat. This is in contrast to the errors

associated with the thermocouple and the recorder.

The lack of unstable cavitation at the thermocouple site, the statistical

goodness of the low/medium power data, the lack of sufficient nonlinearity in

the thermocouple and in the chart recorder, and the general agreement with

the results from the 1990 experiment strongly support the existence of

nonlinear heat generation from confocal ultrasound transducers.

III. High Power Tests

The high power tests were inconclusive because the polygraph pen plotter

exceeded its range, which gave identical maximum temperature values for

each B+Y pulse. This was avoided by offsetting the scale on the polygraph thus

allowing the pen to freely travel, but the linear range for the pen was still

overwhelmed and the measurements were therefore of no use. It is expected

that the nonlinear heat generation at the confocal region should be improved,

and that aheat would exceed the value of 1.065 from the low/medium power test;

this is suggested on the basis that nonlinearities found in parametric sonar

(the creation of sum and difference frequencies) are enhanced at higher

drive levels, but below the level where the shock threshold is reached.

IV. Conclusions

This experiment confirmed the results of the 1990 experiment, and appear to

prove the notion of nonlinear heat generation from a plurality of confocal,

independent transducers. The experiment was improved over the 1990

experiment by having the two transducers on separate positioning
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mechanisms, by using a transparent encapsulant having absorption clcase to

that for mammalian tissue, by calibrating the thermocouple, and by using a

spectrum analyzer to monitor harmonics and (potential) cavitation. The main

defect in the experiment, the difficulty in aligning the angled transducer (in

this case, the 1.5 MHz), was largely due to the 101 mm focal length. This

prevented the two transducer from being closer than 540 apart; placing them

even this close created the alignment problem. This may be overcome by

using any one of the lenses available having longer focal lengths. Long focal

lengths were originally avoided because it was thought that there would be too

much wave attenuation, and thus hampering the possible nonlinear effects

due to reduced amplitudes at the confocal region.

The 1990 and 1991 experiments both show considerable promise in the

nonlinear heat generation; the next experiment should improve still further

on the experimental set up (longer focal length lenses), and should also be

conducted at three power settings: low power (to establish a linear threshold),

medium power, and high power. The last two settings would prove whether

the effect improves at higher amplitudes, as it does in parametric sonar [NUSC,

1983].
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APPENDICES

EQUIPMENT DATA

encapsulant: GE RTV 615 silicone rubber compound
p 1.02 g/cc, cp = 1027 m/s @ 20 C, [Folds, 1974].

pcp = 1.048 x 106 kg m- 2 s- 1 (water pcp = 1.48 x 106,
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ratio =.708).
DC resistance before/after experiment: 108 

signal generator

amplifiers

two Wavetek Model 278 (Blue and Yellow systems)

Yellow: EIN RF Power Amp., Model 3100 L , = 200W into
50 2, 250 kHz to 105 MHz.

Blue:

spectrum analyzer

IFI, Inc. Farmingdale NY. Model M2600, = 130 W,
500 kHz to 35 MHz.

Hewlett -Packard 8553 B, 1 to 110 MHz

polygraph

VCA

GRASS polygraph, model 7, Grass Instrument, Quincy MA
(for thermocouple monitoring)

oscilloscope amplitude linearity = 2% full scale deflection

(voltage-controlled amplifiers), MIT Hyperthermia Lab.

transducers Yellow: 0.9 MHz, head 1
polystyrene spherical lense 38/101

(i.e. #38, f = 101 mm)
slight melt distortion noticed on concave lense

surface.
acrylic cone 20/51 {i.e. 51 mm)

Blue: 1.5 MHz, head 4
polystyrene spherical lense 36/101, no label
on cone

B and Y transducer cones sealed with TrojanTM latex
condom

Panametrics V 3026, 6 MHz/0.5" diameter (for harmonics
and cavitation measurements.)

Omega Engineering, Inc., P.O. Box 4047,
Stamford, CT 06907-0047

butt-welded .003" (.076 mm)
both having Teflon-coated wire;
max range -200 to 900 C; emf:
limits of error: + 1.7 C or 0.5%

diameter chromel-constantan
ANSI code E

-8.824 to 68.783 mV
error above 0 °C
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linearity (from: The Temperature Handbook, Omega Engineering 1990;

type E, pp. Z-52, -53)

°C thermoelectric voltage. mV

0 0.000

20.
21
22
23
24
25

26
27
28
29
30

31
32
33

1.192
1.252
1.313
1.373
1.434
1.495

1.556
1.617
1.678
1.739
1.801

1.862
1.924
1.985

delta. mV

.060

.061

.060

.061

.061

.061

.061

.061

.061

.062

.061

.062
.061

TRANSDUCER CALIBRATION

Each transducer system is precalibrated so that the relation between input

voltage for a continuous wave (cw) drive and radiation pressure (as measured

by an electronic scale) is known. Since .069 grams is roughly equivalent to 1

electrical Watt for these quartz transducers, a maximum voltage may be

specified so as not to overdrive the transducer.

The blue VCA failed just prior to the test (after we had aligned the foci of the

two transducer systems), and so we were forced to substitute the red VCA. The

calibration for the blue system (using the red VCA) was then performed after

experiment. The calibration differed by about a factor of 2, giving about 45

Watts input power at maximum input voltage on the blue system, but this was

done only in single-shots during the experiment (the pulse duration was

always 0.1 seconds for all tests, and the duty cycle was less than 1%.)
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Yellow 0.9 MHz system:

head 1, 9-foot cable, yellow Wavetek, yellow amp., yellow VCA
tuning box #2: tap 34, cap right .63, L2 left 34.25, L1 top 3.38

millivolt._

200
300
400
600
800

1000
1200
1400
1600
1800

2000
2200

Pra m s

.021

.054

.092,

.198

.336

.525

.722,
.945
1.208
1.527

1.770
2.062

.091 check

.735 check

(29.88 W)

Blue 1.5 MHz system:
head 4, cable E,
tuning box #1:

millivolts.

200
300
400
500
600

700
800
900
1000
1100

1200

blue Wavetek, blue amp., blue VCA
15.41 left dial, 1.11 right dial

gram.s

.084

.172

.291

.436
.614

.817
1.054
1.303
1.580
1.931

2.290 (33.19 W)
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Blue 1.5 MHz system recalibration after blue VCA failure:
head 4, cable E, blue Wavetek, blue amp., red VCA
tuning box #1: 15.41 left dial, 1.11 right dial

millivolts. grams

200 .150
300 .346
400 .580
500 .880
600 1.230

700 1.637
800 2.106
900 2.600
1000 3.148 (45.6 W)

N.B. .069 g 1 Watt; radiation pressure measured with Mettler PC 440

electronic scale.

ENCAPSULANT PROPERTIES

General Electric RTV-615 two part silicone rubber.

p = 1.02 g/cc

optical refractive index 1.406

thermal range -60 to 204 C
conductivity 0.00045 gm-cal/sec, cm2 , C/cm;

or 0.11 BTU/hr, ft2, F/ft.

specific heat 0.3 cal/gram, C.

mixing ratio: 10 parts A, 1 part B

measured ultrasonic properties [Folds, 1974]:

p = 1.02 g/cc cp= 1083 m/s @ 0 °C
cp = 1025 m/s @ 20 C

dcp/dT = -2.9 C-1ms-1

for a 2.5 cm thick sample:
@ 500 kHz, transmission loss TL = 1.4 dB; @ 1 MHz, TL = 3.2 dB

so ATL/(AF thk) = a = 1.44 dB cm-lMHz-
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This value compares to the same order of magnitude with those printed in Goss

et alia 1978, 1980 for mammalian tissue.

STATISTICAL ANALYSIS SUMMARY

# trials D.O.F. mean sum of squares

Blue only: 10 9 8.58 .0276
Yellow only: 10 9 7.31 .0609

Z = 18 x = 1.27 Sx2 = .0885

pooled variance S2 = .0885/18 = .004916

/S2 (n + n2) _ /.004917 +10) = .0313
nln2 - V (10)( )

t =-X = 1.27 -= 40.5
Si .0313

d.o.f. = 18, and using Table 3.8, p. 65 in Snedecor (1950)

P< .01

# trials D.O.F. mean sum of squares

Blue only: 10 9 8.58 .0276
B + Y: 10 9 16.93 .1361

Z = 18 x = 8.35 Sx2 = .1637

pooled variance S2 = .1637/18 = 9.09e-3

S S2 (n l + n2) .00909( 1010) = .0426
= - nlnv2

t = ~ . = 8.35 = 195
Si .0426

d.o.f. = 18, and using Table 3.8, p. 65 in Snedecor (1950)

P< .01
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Yellow only:
B + Y:

# trials

10
10

D.O.F.

9
9

Z= 18

mean
7.31

16.93

x:= 9.62

sum of squares

.0609

.1361

Sx2 = .197

pooled variance S2 = .197/18 = .0109

S- = /S 2 (n + n2) = /+ .0468
nln2 (10)(10)

t = - = 9.62 = 205
Sy .0468

d.o.f. = 18, and using Table 3.8, p. 65 in Snedecor (1950)

P<.01
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Appendix B

Exponential Decay of Acoustic Waves:
an Alternate Approach

In Chapter 3, the exponential decay of acoustic waves was established by an a d

hoc approach. This Appendix provides the same result in a more direct

manner. The following will show the emergence of the exponential decay

from a time domain viewpoint by considering only the loss due to viscosity.

The math steps could likewise be duplicated for the contributions by heat

conduction and by relaxation, but it is sufficient to show the basic steps here.

We start with the intensity dissipation term (3.6)

AI = U.· Ax. (4 + b) I(V2 u)lxol , (B.1)

and we write the intensity loss in a slab of an acoustic wave as

I = 0Io - AI. (B.2)

Using various substitutions from Chapter 3, we can write this strictly in terms

of the acoustic particle velocity:

(A + rib) 
u2 = 2 [ 1 - Ax. I V2Ix o l]. (B.3)

po c IUol

Now let

('11 + b) 2Ux

3- c sub: IV2 u (B.4)
po c IUol
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so that (B.3) becomes

u2 = u 2 [ 1 - .Ax] . (B.5)

Since acoustic intensity is directly proportional to u2 , we can then write:

I = Io [1- e.Ax] , (B.6)

where e.Ax is always much smaller than 1. We can now write a number of

serial equations like (B.6), using one for each small Ax-thick slab the wave

propagates through:

I1 = I [1- e.Ax], (B.7a)

12 = I [ 1- eAx], (B.7b)

13 12 [1- e.Ax], (B.7c)

and In = In1l [1- e.Ax]. (B.7n)

An implicit assumption made is that e is the same in each equation; this is a

reasonable assumption because each step Ax is assumed small enough that the

spectral content, and hence V2 u in each slab, is approximately the same.

Combining equations (B.7) together so eliminate all I-terms except I and In we

have:

In = I [ 1 - e.Ax] n , (B.8)

Expanding the terms in (B.8) we obtain:

n n

In = o [ 1 - en-x+ + 2.( 2 )(Ax)2 - 3.( 3 )(Ax)3 ....] . (B.9)

Let's also assume that n.Ax = x, so Ax = x/n. This allows us to assume that we

have many thin slabs, and we can further assume that x is some finite
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distance, so as the number n increases, Ax decreases. Making the substitution

that Ax = x/n:

n n

In = I o [ 1-x + e2.(2 )(x/n)2 -3.(3 )(x/n)3 *...] . (B.10)

The last assumption is to let n become large in the limit for a given finite value

of x, or In = l(x) for large n, henc-

I(x) = o [ 1- l + x 2 2 3 !X3 ] , (B.11)
1! 2! 3!

or

I(x) = Io e' E , (B.12)

(4T + 1b)
where recall that = . I V I

p c UolJ 

Eqn. (B.12) may also be rewritten for either the acoustic particle velocity u' or

for the acoustic pressure p', rather than for intensity as shown. In both of

these cases, the more familiar pressure absorption coefficient variable a is
used, where e/2 = a. The coefficient a applies in both of these cases because

the acoustic pressure and particle velocity are accurately related by the
approximate impedance relation p' = pcou'.

As a last note in this appendix, and recalling from Chapter 3, it was stated that

the absorption coefficient must always be negative by virtue of the local ratio

of 2 u to Uloc which is always negative. This would seem to confound the

preceding analysis, since there's already a negative sign in the exponent of

Eq. (B.12). An added negative sign would make Eq. (B.12) into an exponentially

increasing function. The paradox is solved by recalling that this 'problem'

was created artificially by assuming that

I = Io - Al

in Eq. (B.2) and thereby assuming the form of Eq. (B.3) as:

('-T1 + rib)
U2 = U 2 [ 1 - Ax- 3 V2UlXol];

p c Uo1
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note the negative signs in both of these Eqns. The use of the negative sign was

an a priori assumption that energy is lost in the wave, in Eq. (B.2), and that the

actual sign of V 2u and loc was unimportant since the absolute values took care

of them in Eq. (B.3). The confusion is removed entirely now by saying that Eq.

(B.2) may be left alone, but that Eq. (B.3) must be written with a + sign if the

absolute values are entirely removed. Finally, the absolute values are really

unecessary in the analysis, as stated in the end of Chapter 3, but they are

useful in the beginning of Chapter 3 in the development of time domain

absorption, and they are extremely useful in the computational world

especially if sign errors plague the programmer. Res ipsa loquitur.
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Type E27 Transducer

*n3 ~ ~ ~ ~ - - --. -

Fig. E27-1 - Type E27 transducer

FCE=1TION: A reciprocal transducer and a standard hydrophone for ultrasonic
frequencies.

DRSIN: An array of seven PZT disks in a hexagon configuration and cemented
directly to a butyl rubber acoustic window.

Mg4UNCY BANGE: 80 to 700 kHz
FFF: See Fig. E27-2
TVR: See Fig. E27-3
ALXZM DEPTM : 17 m

TAPE2;TI RgRANMG: 0 to 350C
MAXI1MlM D2IING -3IA: -2- oo
ELSC 7CAL -PE7DANON : See Fig. E27-4
DllgTY: Same in the horizontal (XY) and vertical (XZ) planes

(see Fig. E27-5)
EIGMCT: 1.8 kg (4 lbs)

SIPPVIG EGHT: 4.5 kg (10 lbs)
fOMiL CABLE LENfCf: 30 m

CABLE CODE: coaxial center high signal
coaxial shield low signal

April 1991
B27

1

s t t --_~l

.2.2~ -- -- ,-,---
,- IL1I �Liqf�--i�i_-:
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-1,683 PICOFARADS MEASURED AT END OF 30-M CABLE

40 100 400 1000 4000

Frequency in kHz

Fig. E27-2 - Typical FFVS for Type E27 transducer with 30-n cable.

E27
April 1991
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