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Topology of Combinatorial Differential
Manifolds

Laura Anderson

Sul)mitted o te Depaxtmei)t, of Mathematics o March 1, 1994 III ]a.rtl,-Il

fulfillment ol' the requirements for te degree of Ph.D. iii Nia-then-ia-tics.

Abstract
The central proWen-I we atack is to sow tt a con-II)ina-toria.1 differential

manifolds ("D ma-mfolds) axe piecewise Imeax ma.rid'olds W scceed lei this aim
for all CD niamfolds nvolvii-Ig oil.), Euclidea-D oneiited nia-trolds, nd we give
evidence for he geiieral case.
The ma. i or app

jo seps roach a-re as follows:

W defitie a, nw notion of a, triangulatiori of an oriented rriatroid,
so thaf te I)omida.r.), of the star of any simplex in a, D manifold is a
triangulation of some oriented natroid Or central pro1)len-i is teir reduced
to showing tl)a.t any oriented inafrold triangulation is a. PL sphere.

* We show hat very uniform total] y cyclic oented ma-troid as a. triangu-
]action NvIi1ch is a PL shere(--. Te mAra-1 proWem is ter rduced further to
showing tat, aiy to triangulation,- of fixed oriented matrold ha-ve a, PL
coniii-ion refinemetit.

e We giv a candidate for sch a, common rfinement. This candidate can e
defined for triangulations of ny oented matroid, nd e sow that it is in
geiieral a regular cell complex.

* Finafl�,, -v sow tat tis (candidate really is a. oalition efinement for ny
two tangulations of a, Eclidean orient-led ma-trold.

ID Chapter 5 we gj�7e 'jpplicalims of this work o he Hicory of matroldpolytopeS.

'Thesis Supervisor: Dr. Rol)ert, MacPherson, Pror(-_',ssor of Ma-thema-tics
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Chapter 

Introduction

Combinatorial differential manifolds (CD manifolds) were introduced by Gelfand
and
MacPherson in [GM] as a combinatorial analog to differential manifolds. Their
application in [GM] led to a combinatorial formula for the Pontriagin classes,
and they show promise for a number of applications in geometry and topology.
This thesis explores some of the many open questions on the properties of CD
manifolds. Our main aim is to show that all CD manifolds are piecewise linear
manifolds. We succeed in this aim for all CD manifolds involving only Euclidean
oriented matroids and give progress on the general case.

The theory of CD manifolds relies heavily on the theory of oriented matroids.
Essentially, an oriented matroid is a combinatorial model for a real vector space,
and a CD manifold is a simplicial. complex together with a collection of oriented
matroids which play the role of a tangent bundle. The well-developed theory of
oriented matroids lends some powerful machinery to the study of CD manifolds.
In return, the results described here on CD manifolds have application in oriented
matroid theory, particularly in the theory of matroid polytopes.

1.1 The General Idea
A CD manifold is a combinatorial analog to a differential manifold, encoding
not only the topological structure but also some combinatorial remnant of the
differential structure. We will make this precise in the next chapter. In the
meantime, we offer here a brief translation dictionary between the language of
smooth manifolds and the CD language.

The basic idea of CD manifolds is given by the translation:

A real vector space +-+ An oriented matroid

Differential manifold = an n-dimen- - CD manifold = a simplicial. complex X
sional topological manifold and an n- of pure dimension n a cellular refine-
dimensional vector space at each point ment f( of X and a rank n oriented

matroid at each cell of �
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In particular, there is a natural way to convert a triangulation of a differential
manifold into a CD manifold. To see the usefulness of this, we note the following
natural translations.

Grassmannian G(k, n = all k-dimen- Combinatorial Grassmannian
sional subspaces of a real rank n vector M(k, Mn = all rank k strong images
space of a rankn oriented matroid Mn

Sphere bundle=bundle derived from a CD sphere bundle=bundle derived
real vector bundle by replacing each from a matroid bundle by replacing
fiber with the unit vectors in that fiber each oriented matroid with the poset

of all its rank strong images

Translations like these allow us to find combinatorial analogs to some of our
favorite topological methods, as described in the next section.

1.2 Earlier Work on CD Manifolds

This section is by necessity brief. The only published papers on CD manifolds are
[GM] and [M], from 1992 and 1993, respectively. We describe here relevant work
on combinatorial Grassmannians as well.

In [GM] Gelfand and MacPherson used CD manifolds to find a combinatorial
formula for the Pontrjagin classes of a differential manifold. Their method converts
a differential manifold to a CD manifold, then combinatorially mimics Chern-
Weil theory to calculate Pontrjagin classes. They utilized the natural notions of
Grassmanians and sphere bundles that exist for CD manifolds.

The CD notion of sphere bun 'dles comes from the Topological Representation
Theorem (cf. [FL], [BLSWZ]), which states that any rank r oriented matroid can
be represented by an arrangement of pseudospheres on the unit sphere Sr-1. This
tells us that the fibers of a CD sphere bundle really are topological spheres. The
combinatorial Grassmannians are topologically more mysterious. The combinato-
rial Grassmanniar, of the previous section is a finite poset. There is a canonical
map � : G(k, n) --+ (M(k, Mn)) from the real rassmannian to the order complex
of this finite poset. This map has no hope of being a homeomorphism, but we can
hope that the two spaces are topologically similar. The Topological Representa-
tion Theorem tells us that (M(1, M)) and (M(n - , M)) are homeomorphic
to the corresponding Grassmannians. Babson in [Ba] showed that (M(2, M-))
and G(k, Rn) are homotopic, though they need not be homeomorphic. Little else
is known about the topology of (M(k, Mn)).

8



The central. problem we address is:

Conjecture 13.1 All CD manifolds are piecewise linear manifolds.

That is, we wish to show that the boundary of the star of any simplex in a
CD manifold is a sphere.

In Chapter 3 we find a set of axioms for the boundary of the star of a sim-
plex in an oriented matroid. This suggests a definition of a triangulation of
an oriented matroid. The boundary of the star of a simplex is a triangula-
tion of the oriented matroid at any cell of that simplex. We can then generalize
Conjecture 13.1 to:

The PL Con .ecture: If M is an oriented matroid, then any triangulation of
M is a PL sphere.

In Section 31 we prove this conjecture for realizable oriented matroids In
Section 32 we prove that only totally cyclic oriented matroids have triangulations,
and then that any totally cyclic uniform oriented matroid has a triangulation
which is a PL sphere.

This might lead one to expect that the PL Conjecture holds. It is hard to
imagine that an oriented matroid could have topologically different triangulations.
We make this more concrete in Chapter 4 by the notion of a common refinement
of two oriented matroid triangulations. If an oriented matroid M is Euclidean then
we show that any two triangulations of M have a common refinement. Together
with our results of Section 32 this implies:

Theorem 13.1 The P Conjecture holds for all Euclidean oriented matroids.

Corollary 13.1 Any CD manifold involving only Euclidean oriented matroids is
a P manifold.

For triangulations of more general oriented matroids we define a candidate for
such a refinement and show that it is a regular cell complex.

Triangulations of oriented matroids are closely related to triangulations of
convex polytopes. In Chapter we make this more explicit by defining triangu-
lations of matroid polytopes. We show that every uniform matroid polytope
has a triangulation which is a PL ball and give evidence that every triangulation
of a matroid polytope is a PL ball.

9
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Chapter 2

Preliminaries

Note: In the Appendix we summarize all the definitions and results we need from
oriented matroid theory.

2.1 Definitions
The following definitions are from M].

Note: Throughout the following, a "simplex" will be considered as simply
a finite set (its set of vertices). For instance, a simplex is "independent" in an
oriented matroid M if that set of vertices is independent in M. This introduces a
dilemma of notation, which we resolve as follows: if A is a simplex, we use JAI to
denote the order of the set A, and we use II AI I to denote the geometric realization
of the simplex A. For any simplicial complex X, we denote the set of O-cells of X
by X0.

Definition 21.1 (From [M]) An n-dimensional combinatorial differential man-
ifold is a triple (Xj, M) such that:

1. X is a pseudomanifold of dimension n (i.e., a simplicial complex of pure
dimension n such that every (n - l)-simplex is contained in exactly two
n-simplices)

2. k is a cell complex refining I X II: every cell o, of k is contained in a simplex

IIA(o,)Il of IIXII

3. M is a function assigning to each cell of fC a rank n oriented matroid
M(o,) with elements star(A(o,))O.

We have the following axioms:

e The rank of (A(o,))O in M(o,) is equal to the dimension of IIA(o,)Il.

9 (Linear independence) If A' is a simplex in the boundary of star A(a), then
A' is independent in M(a).

10



* (Convexity) If A' is in the boundary of star A(a), then no other simplex is
in the convex hull of A' in M(a).

* (Continuity) If is in the boundary of o, then M(o,')((staro,)') is a spe-
cialization of M(or).

For instance, given a differential manifold N and a smooth triangulation 
IJXII -- N we 'can associate an oriented matroid to any point p E I X II as follows:
Let IAII be the minimal simplex of IIXII containing p. Then there is a unique
piecewise linear map fp I I star(A) I I -- U C Tp)(N) (the "flattening" at p) such
that fp(p = and for every simplex A' of star(A), dpfpIjjAj = dp77111&,,,. Then
fp((star A)O) is a configuration of vectors in Tp)(N) defining an oriented matroid
M(p). (See Figure 21.)

Figure 21: The minimal triangulation of
at three points

S' and the resulting oriented matroids

In this way we get an oriented matroid M(p) at every point p of IIXII We
say the triangulation is tame if there is a regular cell complex X refining I X II
such that M is constant on every cell of A For instance, all piecewise analytic
triangulations are tame. Any tame triangulation of N gives a CD manifold in this
way.

2.2 An Example
This example follows from [M]. We include it here to help the reader get a feel
for CD manifolds. Since all oriented matroids involved are rank 2 and all rank 2
oriented matroids are realizable, the reader may visualize with confidence.
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Consider the triangulation of S' shown in Figure 21. We will derive the
corresponding CD manifold (XJM). Here X is just the hollow tetrahedron
with 0-simplices a, b, c, and d.

The following lemma is easy, and a useful thing to keep in mind throughout
the next chapter or two of this thesis.

Lemma 22.1 A(a)+ is always a circuit of M(a).

Proof: Our first axiom for CD manifolds tells us that A(o,) has rank JA(0' I -
in M, so some subset of A(a) is dependent in M(a). But our linear independence
axiom tells us that any proper subset of A(a) is independent in M. Thus A(o)
is the support of a circuit C in M.

We proceed by induction on JA(a)J. If A(o,)l = 1 2 or 3 then the convexity
axiom tells us that C = A(o,)+, since every proper subset of O') is a simplex in
the boundary of starA(or).

Say we know the result for IA(or)l - 1. Note that C will be a circuit of M(or')
for every cell a' in the interior of IA(a)JI, since our weak maps between cells in
the interior of JJA(or)JJ must preserve this circuit. Thus for any one E A(or we
may assume that or has in its boundary a cell such that A(r = A(a - fsI.
We know M(cr) --+ M(r), and thus some circuit of M(r) is contained in C. Any
proper subset of A(o) except A(r) is a simplex in the boundary of stax(A(r)),
and thus is independent in M(r). By ou'r induction hypothesis and the vector
elimination axiom for oriented matroids, the only two circuits of M(r) supported
by A(r) are A(,r)+ and A(r)- So C has the same sign on all elements of A(,r),
i.e., on all elements of A(a - sJ. But this is true for any s E A(or). Thus
C = a)+.

QED
Thus the interior of each maximal simplex , of X is a single cell of k, and

the oriented matroid on that cell has the single circuit .
At each vertex x of X, the oriented matroid M(x) is uniquely defined by the

convexity axiom. For example:

b

M(JaD=

d

Figure 22:

It remains to find the cell decomposition of the 1-simplices of X and the
oriented matroids at these cells.

12
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1W

C
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a b

c

-

ba

Consider the cell w, of la, b which has ar in its boundary. Then M(Wj) --+
M(Jaj). This, together with the independence axiom and Lemma 22.1, uniquely
determines M(wi).

c

a *�� � b
M(O) I)=

Figure 23:

Similarly, if W2 is the cell of la, b which has b} in its boundary, then we have:

C

a bM(CO 2)=

Figure 24:

So we see that w, :� W2- Figure 25 then
oriented matroids for the 1-simplex a, b:

(01 ( 0

gives the cell decomposition and

O'2lal JbI

�c

b-

-"""'�d �

a

Figure 25: Cell decomposition and oriented matroids for a I-simplex of Ex. 

The final cell decomposition of X is shown in Figure 26.
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a

b d

L;

Figure 26: The cell decomposition of S' derived in Example 
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Chapter 3

Triangulations of Oriented
A4atroids

3.1 Definition, Connection to CD Manifolds
The axioms for a CD manifold restrict to give axioms for the boundary of the star
of any simplex in a CD manifold. Looking back at the axioms for CD manifolds,
we see obvious restrictions for all but the continuity axiom. The following lemma
uses the continuity axiom to give one more condition.

Lemma 31.1 Let be a cell of a CD manifold, M be the oriented matroid at
01, and L be the boundary of star(A(a)). Let be a simplex of L L = linkL(W),

and M = M(a)1w)(LO). Then:

L is a pseudomanifold.

e If v is a simplex of L, then v is independent in M,� and conv(v = v in M".

Proof: That L is pseudomanifold with independent simplices follows immedi-
ately from the same facts for L.

Let v be a simplex of L, and assume by way of contradiction M,, has a circuit
v+ X_, for some x E Lo. If N is some basis of M,, containing v then ±(v+x-) are
the only two circuits supported on N U f xj: if there were another such circuit,
circuit elimination would give us a circuit supported on N.

Consider a cell of our CD manifold such that A o,' = A ) U w and C ba'.
(See Figure 31.) Then we know M(o,') --+ M(a), so every vector in M(o,') contains
a vector of M(a).

Let N be a basis of M1w containing v. Then in M(o,')Iw some vector is
supported on a subset of NU I x . This vector must contain a vector of M(o,) 1w,
by Lemma A.2. By our observations above, the only two vectors this could be are
±(v+x-). Thus M(a') contains a vector V = +w-v+x-, where W1,W2 C W-

By Lemma 22.1, we know also that W = (o,')+ is a vector of M(a'). Com-
posing these two vectors, we get the vector W V = A(a)+w+v+x- in M(o,') By
Lemma A.1 every vector is a composition of conformal circuits, so M(o,) contains

15



V

O=A(c)

Figure 3- 1: Figure for Lemma 3 1

a circuit Bx- , where C A(a') U v Certainly A(a') g since A(o,')+ is itself a
circuit. But any subset of A(o,') U not containing all of A(o,') is a simplex of the
boundary of star(A(o,')). So x is in the convex hull of a simplex in the boundary
of star(A(o,')), contradicting the convexity axiom for CD manifolds. Thus we have
conv(v = in M,,.

QED
This result suggests the following definition:

Definition 31.1 If M is a rank n oriented matroid with ground set E a trian-
gulation of M is an (n - I)-dimensional simplicial complex L such that:

L =E.

* L is a pseudomanifold.

* If w is a simplex of L then is independent in M and conv(w = in M.

* Either

n = and L = So, or

n > and if is a simplex of L then linkL(W) is a triangulation of
(M1w)(linkL(W)O)-

The intuitive idea of an oriented matroid triangulation is:

Proposition 31.1 If an oriented matroid M can be realized as a configuration
C of unit vectors in R with in their convex hull, then the triangulations of M
are exactly the triangulations of the unit sphere by sectors from great spheres with
vertices the set C.

Proof: We show first, by induction on n, that every such triangulation L of the
unit sphere gives a triangulation of M. Note that if n = then the unit sphere
consists of two points, and L is a triangulation of M.

For any n it is clear that L will satisfy the first three axioms for a matroid
triangulation. To see the final axiom, let a be a simplex of L. Then the vertices of
linkL(a) give a configuration of unit vectors R n / 0,) , and linkL(O') projects radially
to a triangulation of the unit sphere in Rn/(a). Thus our induction hypothesis
tells us that L satisfies the final axiom.

16



The converse, that every triangulation of M gives a PL triangulation of the
boundary of P, is proven by the following proposition.

QED

Proposition 31.2 If L is a triangulation of a rank n oriented atroid M and
M has a realization V C Rn as an arrangement of unit vectors in Rn' let L]
denote the corresponding PL immersion of JIL11 into R n. Then every ray OA in
Rn intersects the interior of exactly one simplex of L].

Proof: For any such ray OA we will assume A is a unit vector, and use point-
set topology on the unit sphere.

We induct on n. If n = I then L = So and all is clear.
Let Q be the set of unit vectors A in R n such that OA intersects L and

assume by way of contradiction Q� Sn-1. Certainly Q is a non-empty closed set
of dimension n - , and so it has a boundary. Let q be a vertex on 0Q. Then q
is in the interior of conv([a]) for some non-maximal simplex a of L.

Now consider the oriented matroid M = M(link(o,)0)1a. The projection
Rn -* Rn/([OJ) gives a realization of M,. Our induction hypothesis then tells us
that [link(a)] is a sphere, and every half-space OA + ([o,]) intersects [link(o,) in
exactly one point in Rn. Thus [link(o,)] is linked to [o,]) in Rn, and so [star(o') is
an n-ball with q in its interior, contradicting q E aQ. Thus every ray intersects
at least one simplex of [L].

Now, let R be the set of unit vectors A in Rn such that OA intersects more than
one simplex of [L], and assume by way of contradiction R 54 0. Certainly R is a
closed set of dimension n - not containing V, and so M :� 0. Let r be a vertex
on aR. Then r is in the interior of conv([oJ) n conv([,r]) for some non-maximal
simplices a,,r of L. Again, looking in Rn/([o,]) and R n / [,r]) 7we see that [star(o,)]

and [star(r)] are n-balls with r in their interior, contradicting r E aR. Thus every
ray intersects exactly one simplex of [L].

QED
In Chapter we will return to the use of matroid triangulations as a tool for

studying polytopes. Our more immediate interest in matroid triangulations comes
from the following proposition.

Proposition 31.3 If o, is a cell of a CD manifold, M(a) is the oriented matroid
at o-, and L(o,) is the boundary of the star of a, then L(o,) is a triangulation of
M(O').

17



Proof: The first three link axioms follow immediately from the definition
of CD manifolds. Let be a simplex of L(a). Then Lemma 31.1 tells us that
linkL (W) satisfies the first three requirements to be a triangulation of MIW) (linkL W)O)

To see the last, let v be a simplex of linkL(,) (w). Then v U w is a simplex of L(w),
and so we see again by Lemma 31.1 that linkL(W) satisfies the final requirement
to be a triangulation of M1w)(linkL(W)O)-

QED
Recall from the introduction:

The PL Conjecture: If M is an oriented matroid, then any triangulation of
M is a PL sphere.

As a corollary to Proposition 31.3 we have:

Corollary 31.1 If the P conjecture holds then

(XJ, M a CD manifold =� X a PL manifold.

Thus the notion of triangulations allows us to study questions about CD man-
ifolds by considering only individual oriented matroids and their associated links.
This will be our line of attack in the following chapter, where we show that all
CD manifolds involving only Euclidean oriented matroids are PL manifolds and
that all CD manifolds are normal.

This approach also puts these questions about CD manifolds into a broader
context in oriented matroid theory. As Lemma 31.1 suggests, results on tri-
angulations of oriented matroids will have applications in the theory of convex
polytopes.

As a corollary to Proposition 31.1 we have:

Corollary 31.2 The P conjecture holds for realizable oriented matroids.

In Chapter 4 we will prove the PL Conjecture for the much broader class of
Euclidean oriented matroids.

3.2 Existence of h-iangulations
We first make life easier by restricting to uniform oriented matroids. Lemma A.3
says that any oriented matroid is the weak map image of a uniform oriented
matroid of the same rank, and the following lemma is easily verified.

Lemma 32.1 If Ml and M2 are two simple rank n oriented matroids, M2 is a
weak map image of Ml, and L is a triangulation of M2, then L is a triangulation

Of Ml -

18



Proof: Recall that M2 is a weak map image of Ml iff every circuit of Ml
contains a circuit of M2. Thus any simplex of L which is independent in M is
independent in Ml, and convm, (w = implies convm, W = W.

Assume by way of contradiction that for some simplex w in L, we have linkL(w)
is not a triangulation of M21w. Consider such an of maximal order. Certainly
linkL(W) is a pseudomanifold with simplices independent in Ml. If v is a sim-
plex of link(w) and x E link(w)' such that vx- is a circuit of M11W, then by
Lemma A.2 vx- contains a circuit of M21w, contradicting our knowledge that L
is a triangulation of Ml.

So there must be some simplex v of link(w) such that linkii�,k(,, (v) = link(w U v)
is not a triangulation of M21(w U v). But this contradicts the maximality of w.

QED

Corollary 32.1 If the P Conjecture holds for all uniform oriented matroids,
then it holds for general oriented matroids as well.

With this assumption of uniformity, we get the following existence theorem.

Theorem 32.1 For any simple uniform oriented matroid M, the following are
equivalent:

1. M totally cyclic.

2 M has a triangulation which is a P sphere.

3 M has a triangulation.

Proof: We prove (1) =�> 2) =:�, 3) =:�> (1).

(1) * 2): We construct a sequence S1, S2,..., SK of simplicial. spheres. Each
Si will have vertex set E C E and will be a triangulation of M(Ei), and each
Si will be obtained from Si-, by a stellar subdivision. The final sphere will be a
triangulation of M. The key oriented matroid fact to keep in mind at each step
is that any oriented matroid of rank r with r 2 or fewer elements is realizable.

Let El be the set of elements of a positive circuit. Then SI is just the boundary
of a rank(M)-simplex, with vertex set El. Once we've constructed Si-,, consider
some element x of M which has not been added to the picture yet, and let E =
Ei- U f x}. Since M(El U x}) is realizable, x is in the convex hull of exactly one
face of Sl. If that face F is not subdivided in S-,, then we construct Si by the
stellar subdivision of putting x in the middle of Fl. If F wa's first subdivided in
the sphere S by the point y, then by realizability of M(F U x, y}), we know x is
in the convex hull of exactly one of these smaller faces in star(y). If that smaller
face 2 isn't, subdivided in Si-,, then we construct Si by putting x in the middle
of 2. Otherwise, we keep looking in the same way until we find the unique face
of Si-, with x in its convex hull, and construct Si with a stellar subdivision. It is
easy to check that each Sj is an oriented matroid triangulation.

19



(3) =:�- (1): We prove this by induction on rank(M). Certainly it's true for rank
2 oriented matroids. Now, for a rank r oriented matroid, suppose M were acyclic,
and let p be an extreme point of M. By the final condition of the definition, the
link of p in our given triangulation is itself a triangulation of M/jp})(star(p)O).
But Mlfp} is acyclic, contradicting our induction hypothesis. Thus M must be
totally cyclic.

QED

20



Chapter 4

Refinements of Triangulations

We now know that every uniform oriented matroid has a triangulation which is a
sphere. Thus to prove the PL Conjecture, it suffices to prove:

Conjecture 40.1 ( PL Conjecture, Reduced) Given any two triangulations
LI, L2 of an oriented matroid, there exists a regular cell complex RM(L1, L2) which
is a common refinement of Li and L2-

Thus any two triangulations of an oriented matroid are P equivalent.

Below we will describe such a common refinement for two triangulations of
a realizable oriented matroid. We will then give a description of this refinement
purely in terms of the oriented matroid (without referpence to the particular
realization). Thus we can define this "refinement" even for two triangulations of
a non-realizable oriented matroid.

The quotation marks are there because for a non-realizable oriented matroid
it's not obvious that the "refinement" really is a common refinement of our two
triangulations. Indeed, R(L1, L2) is in general only defined as a poset, and it's
not immediately obvious that this poset is even the face lattice of a regular cell
complex. In Section 42 we give a way of looking at R(L1, L2) that makes it
clear that Rm(Li, L2) really is a regular cell complex.

In Section 43 we show R(L1, L2) is a common refinement of L and L if

M is Euclidean. The property of being Euclidean is a purely combinatorial one.
Thus from a purely combinatorial setup (a triangulation of a Euclidean oriented
matroid) we derive a topological result (a PL sphere).

We do not yet have a proof that R (LI, L2) is a common refinement of LI
and L2 in general. However, it is hard to imagine what else it might be. That a
reasonable R(LI, L2) can be defined at all is a heavy plausibility argument for
Conjecture 40.1.

4.1 The Realizable Case
For a realizable oriented matroid we can see this refinement as follows: Imagine
our oriented matroid is realized as a configuration of unit vectors in Rn, and each
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triangulation Li, i = 1 2 is drawn on the unit sphere by sectors from great spheres.
All these pieces of great spheres divide Sn-I into cells. These cells are regular (that
is, the boundary of each cell is a sphere) since each cell is the intersection of two
convex sets in Sn-l. Denote the resulting cell complex by R(Lj, L2). As a
corollary to Proposition 31.2 we have:

Corollary 41.1 For M a realizable oriented matroid and LI and L2 as above,
RM (LI, L2) is a common refinement of Li and L2 

A simplex o of LI and a simplex of L2 intersect to give a cell of Rm(Li, L2 if

and only if the convex hull of intersects the convex hull of on the unit sphere.
That is, a and intersect to give a cell if and only if there is some point p on the
unit sphere that can be expressed as a linear combination in two ways:

8 t

P=Ea, =Ept as, A > Vs, .
S'E01 FEr

Thus
a"s PtF= 0 a,,Pt 0 V7

9'Ea 4E T

Thus a and give a cell of our refinement if and only'if 0 is in the convex hull of

a -,r).

4.2 General Definition
Let's restate this last conclusion in pure oriented matroid language:

Definition 42.1 If LI and L2 are two triangulations of an oriented matroid M,
then we define

or = or
Rm(Li, L2) (or,,r E Li x L2 : either &�- is a vector of M for some

& C O7 C r

This set is ordered by inclusion: (&,l < o,,,r) if C o and C r.

This definition makes sense even for non-realizable M. If M is not realiz-
able then R(Ll, L2) is only defined as a poset, and it is not obvious even that
RM(Ll, L2) is a regular cell complex.

We can make a slicker definition using the Lawrence construction. (cf. BLSWZ])
Given an oriented matroid M with elements E, we let MD "M doubled") be the
oriented matroid obtained from M by replacing each element x of E with two
antiparallel elements X, X2. Thus MD has elements El E2, with MD (El) 2-
MD(E2) _- M, and xx+ is a circuit of MD for every x E M. Then ML is an2
acyclic oriented matroid, called the Lawrence polytope A(M*) associated to
M*.
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Definition 42.2 Let L, L2 be two triangulations of M and let MD be as de-
scribed above. Consider LI as a triangulation of MD(El) and L2 as a triangula-
tion of MD(E2). Then we define Rm(Li, L2) to be the poset of covectors of A(M*)
of the form a where is a simplex of Li and is a simplex of L2, ordered by
inclusion.

It is not hard to see that this definition is equivalent to the preceding definition.

It also makes sense to talk about refinements of more general simplicial com-
plexes on the elements of M:

Definition 42.3 Let L, L2 be two simplicial complexes on subsets of the ele-
ments of M with all simplices idependent in M, and let MD be as described
above. Consider LI as a simplicial complex on a subset of El, L2 as a simplicial
complex on a subset of E2. Then we define R(Ll, L2) to be the poset of covectors
of A(M*) of the form ,r+, where is a simplex of LI and is a simplex of L2,

ordered by inclusion.

To reinforce the intuition that o+Ir+ represents a geometric intersection of 
and , we often denote a cell of the form o+Ir+ by olnlr.

Note that if the covector o+Ir+ is an element of R(Ll, L2), then any face of
that covector is also in R(LI, L2). This tells us:

Proposition 42.1 Rm(Ll, L2) is a subcomplex of the covector complex of ML.

We summarize reassuring properties of Rm(Ll, L2) in the following proposi-
tion.

Proposition 42.2 1., Rm (Li, L2) is the face lattice of a regular cell complex.

2. If X and Y are two simplicial complexes (not necessarily disjoint) then
Rm (X U Y, L = Rm (X, L) U Rm (Y, L).

3. Th e dim e nsio n of a cell I n I is I a I 17-1 - rank M (a U r - .

4. If LI and L2 are triangulations of M, then

9 If M is uniform then RM (Li, L2) is a pseudomanifold of pure dimension
rank(M - .

9 If M is any oriented matroid then

dim(Rm(Li, L2) = rank(M - .
Every cell of dimension rank(M - 2 is contained in exactly two cells

of dimension rank(M - .
Every cell of the form aln la is in the boundary of some cell of di-

mension rank(M - .
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This last statement is somewhat unsatisfying - we certainly hope R(Lj, L2)

is a pseudomanifold of pure dimension for any M. In the next section we shall
see that it is a pseudomanifold of pure dimension if M is Euclidean.

Proof: The first and third statements are corollaries of the preceding propo-
sition, and the second follows directly from the definitions.

To prove the fourth, we first prove that every cell a I n r of dimension rank(M) -
2 is contained in exactly two cells of dimension rank(M - .

There are three possibilities here: either = is a codimension one simplex,
or la I = rank(M - 1, Ir I = rank(M - 2 or vice-versa. In the latter two cases the
result follows immediately from L2 being a pseudomanifold. In the first case, we
know a is contained in exactly two maximal simplices a U Is, I and a U IS2} of Li
and is contained in exactly two maximal simplices r U t,} and r U It2} of L2-

The recursive axiom for oriented matroid triangulations implies that in the rank
oriented matroid MD1a we have circuits s+S+ and tt+. Thus we may assume

S+t+ is a circuit in 1a. Composing the corresponding vector in MD with the1 1
vector T+ I we get the vector (a U Is, )+ (7- U t,})+ in MD, and hence the cell
(a u fsl})Inl(,r u t,}) in R(Lj, L2)- Similarly, (a U I21)lnl(-r U It2j) is a cell.
Because st+ is not a vector of MD1a, we see (a u fsl})Inl(,r U ft2}) is not a2

cell of RM(L,,L2), and similarly (aU IS2})Inl(,rU t,}) is not a cell. So nl is
contained in exactly two top-dimensional cells.

The third statement of the proposition tells us no cell has dimension greater
than rank(M - 1. Now we show any cell of Rm(Li, L2) of the form In I (for
instance, a cell corresponding to a 0-simplex) is contained in a rank(M) 1-
dimensional cell. Thus R(Lj, L2) has dimension exactly rank(M - .

Let In I be a cell of Rm(L,,L2)- Order the elements of somehow:
IS1, S2, - -, Sk}. Let a = & U ISk+l, ., s,j be a maximal simplex of L Let
W = & U I w.+,,..., w,,j be a maximal simplex of L2- We now extend M with two
lexicographic extensions: let M' = M U S,, 8, II where s, is the lexicographic
extension by IS ... S+j (so s, E conv(a)) and s is the lexicographic extension2 n
by [s+s+...s+w+ w+] (so s, E conv(w)).

2 k k+
Now, Rm,(fs,,s,,,},L2) has a 1-cell Is,,s,,}Inlw. By Lemma A.6 and our

observations above on codimension one cells, we see that the connected component
of Rm,(Is,, s,,}, L2) containing s,, s,,j I n Iw is a one-dimensional pseudomanifold
with boundary. One boundary point is s In Iw. The only possible other boundary
point is s, I n Ir, where r is some maximal simplex of L2 - Well, r is a really nice
simplex: since M� has vectors r and s-a vector elimination gives a vector
T+ 01+, and thus a cell a In Ir in Rm (Li, L2).

We claim &I n I& is in the boundary of a I n Ir. We know & C a, so we need only
show & C r. We'll show by induction on i that si E r for every i < k.

If i = 1, then consider Rm(Is,, sl}, L2). This has a 1-cell Is,, sl} I n Ir, and so
either si E r or there's a 0-cell s,, sl} I n 1,�, where � C r. Since by Lemma A.7
s, and s, are contravariant, the latter idea is impossible, and so si E r.
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Now assume the result for - 1 and consider the oriented matroid

Mi = US,)

and the simplicial complex

linkL, (f SI, Si-I}),

which is a triangulation of Mi\s,. Both Isil and \fsl.... I i-,} are simplices
of this triangulation, by the induction hypothesis. The elements i and s, are
contravariant in Mi, and so s, E conv(r) in Mimplies i E conv(,r\JsI,..., Si-, )
in Mi. By the convexity axiom for triangulations, this implies i E r 

Sol now we know that every cell of R (L,, L2) of the form In lo, is contained
in a cell of dimension rank(M - 1. In particular, the existence of cells of the form
Jx In If x} promises that the dimension of R(L1, L2) really is rank(M - .

If M is uniform I we know that any cell I n r with a �6 is contained in a cell
&In I;r-, where and r- are maximal simplices. So if M is uniform we can conclude
that R(LI, L2) is a pseudomanifold of pure dimension rank(M - .

QED
To prove the PL Conjecture it remains to show that R(L1, L2) is a common

refinement of L and L2 for any two triangulations L,, L2 of M. Note that by the
previous proposition it would suffice to show that R(a L is a refinement of 
for any single simplex o and any triangulation L. As our first piece of evidence
for this we offer the following propositions.

Lemma 42.1 Let andr be two independent sets in M. If X E conv(O') and 
is the stellar subdivision of a by x, then Rm(Er) is a P refinement of Rm(a,'r).

Proof: We consider two cases:
1. If R(o,,,r = 0, then we want to show Rm(E,,r = 0. Assume by way of

contradiction that Rm(E,,r) has a cell nl,�. Then certainly x E &, and A(M*)
has a covector &,�+. But x E conv(o,) implies that A(M*) has a covector ax-.
Thus, by the vector elimination axiom for oriented matroids, A(M*) has a covector
01+,�+ a contradiction.

2. If Rm(o,,,r) 0, then we want to show Rm(E,,r) is a PL ball. We know that
A(M*) has a covector xa+,r+. In the pseudosphere picture of V*(A(M*)), this
covector is a PL ball with boundary R(01, 7)URm(E,,r)UJx+&+,�+I6 C a,, C }.
Since Rm (cr 7 is a ball (the closure of a single cell), we induct on I to see that
Rm(E, ) is the complement of a PL ball in the boundary of the ball xu+,r+,
and thus is a PL ball.

QED

Proposition 42.3 If L is any triangulation of a uniform oriented matroid M
and is a triangulation of M constructed by a sequence of stellar subdivisions as
in Theorem 32. 1 then Rm(L, S) is a refinement of L.
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Proof: Consider the sequence S, S2, --Sk = of spheres constructed in
Theorem 32.1. We show that R(,r, S) is a refinement of for any r E L.
Lemma 42.1 then gives the inductive step to prove Rm(,r, Si) is a refinement of 
for every i.

We know (S')+ is an element of V*(A(M*)). Also, since every element of 
is in the convex hull of some face of S', we know that for every t E 7 there is a
or S? such that a-t+ is an element of V*(A(M*)). Composing these covectors,
we see that (S10) +7+ is an element of V*(A(M*)). The boundary of this cell in the
pseudosphere picture is a sphere. The only faces of this sphere not in Rm(-r, Si)
are those which are non-zero on every element of So. Thus the complement of
Rm(,r, S) in this sphere is the star of the 0-cell (S10)+ in S10)+,r+ and thus is a
ball. So Rm(,r, Si) is a ball as well.

QED

4.3 For a Euclidean Oriented Matroid
In this section we prove the PL Conjecture for Euclidean oriented matroids, i.e.,
oriented matroids in which all programs are Euclidean. (Note that this includes
all realizable oriented matroids and all rank 3 oriented matroids.)

Lemma 43.1 -If M is an oriented matroid L is a triangulation of M or
JfgJ C E is independent in M, and (Mfg) is a Euclidean oriented matroid
program, then Rm(o,, L) is a refinement of or.

Proof: First we want to deal with the case that some 0-cell in Rm(or, L) is
not of the form I n Ir, with a codimension I simplex of L. In this case we'll
perturb L to get rid of this cell.

Let be a simplex of L not of codimension such that or In Iw is a 0-cell in
Rm(or, L). Let to be an element of w and let = tO, t1, - - tk} be a codimension 1
simplex of L containing w. We perturb M by replacing to with the lexicographic
extension t' b [t+t-t- . . t- ]. Let M' be the resulting oriented matroid. Let L' beo 0 2 k
the simplicial complex obtained from L b replacing to with t'. Then Lemma 32.1

y 0

tells us L' is a triangulation of M.
Let r = (r U t')\to. We then check that or In Ir' is a cell of Rm (a, V). This0

is true because to E conv(lr'), and so composing the vectors o+W+ and t-(,r') in
(M U t')D, we get a vector (Ir/)+.

Now note Rm (a, L) is obtained from RM (a, V) by replacing Rm, (a, starL1 (4))

with Rm(a, starL(tO))- It's then easy to check that the complex fa+,r+t+ : o,r E
RM,(astarL1(t')) collapses to Rm(astarOO)) by a sequence of elementary co-
lapses through the cells RM (a, starL (to)). Thus Rm (or, L) is a retract of Rm, (O, V)
By replacing to with t' we've created no new "bad" 0-cells. Thus by a sequence0
of perturbations we can remove all bad 0-cells from Rm(a, L) to get a refinement
RM,,(a.L") which retracts to Rm(a, L). Below we will show that R,,(a, L") is a
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PL 1-ball. So R(o,, L) is a 1-dimensional retract of a PL 1-ball, and hence is also
a 1-ball.

So, assuming all our O-cells come from codimension I simplices:
We induct on the number of cells of Rm(o,, L). Proposition 42.2 tells us

Rm(o,7 L) has at least one 1-cell. If Rm(o,, L) has more than one 1-cell, then it has
a O-cell of the form In Ir.

Since (M, f 7 g) is Euclidean, we can take a single-element extension M = MUx
such that x E conv(a)nconv(,r). (See Figure 41.) By Lemma 4.2.1, it then suffices

9

Figure 41:

to show that Rm, Q f, x , L) U R (I x, g , L) is a PL 1-ball.
Let r = U It, be one of the two maximal simplices of L containing r. Then

o I n Iri is a cell of Rm (o,, L), and so by Lemma 42.1 either I f , x I n ri is a cell or
IX191InIr1 is a cell. Assume if, x} I n -ri is a cell, so that f x+,rl+ is a vector of
M�. Then in the rank I oriented matroid M�/,r, we have circuits f t+ and f g+
and thus we have the third vector t-g+. This is in fact a circuit since g Ur and
t, Ur are independent sets in M. Thus in M� we have no vector g+t+lr+ , and so
IX,9}InIr1 is not a cell. Thus Rm(fx, g, L) has fewer cells than R(o,, L), and
so by induction it's a 1-ball.

Now consider the other simplex 2 = r U t2J of L containing r. Certainly
o I n Ir2 is a cell of R(o,, L). Assume by way of contradiction that both If, x} in ri
and I f , x I I n Ir2 are cells. Then in M� /r we get vectors f + t and f + t, and thus

vector tt-. But this last vector is also a vector of MIr, contradicting the
recursive axiom for oriented matroid triangulations. Thus Rm(If, x}, L) also has
fewer cells than Rm(a, L), and so by induction it's a 1-ball.

Finally, we note that these two 1-balls have exactly one endpoint in common
and no interior points in common (since their union is a pseudomanifold). Thus
RM (o,, L) is a 1-ball.

QED
While we've been focusing on the PL Conjecture as the foremost property

triangulations should satisfy, it would also be nice to know that Proposition 31.2
generalizes to triangulations of arbitrary oriented matroids. In the next proposi-
tion we use the notion of refinements to generalize Proposition 31.2 tooriented
matroids with Euclidean extensions. t-Ve will use this fact in the proof of Theo-
rem 43. 1.
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Proposition 43.1 If L is a triangulation of M and M = M U x is a single-
element extension of M such that for some element g of M the oriented matroid
program (M, g, x) is Euclidean, then x is in the interior of the convex hull of
exactly one simplex of L.

Proof: Let = g, x}. Then the same argument as in the proof of Lemma 43.1
says that Rm, (a, L) is a path from g to . One end of this path is a cell x In 1W.
This w is the unique simplex of L with x in the interior of its convex hull.

QED

Theorem 43.1 If M is an oriented matroid L is a triangulation of a subset of
M of rank rank(M), o C E is independent in M, and (M, f, g) is a Euclidean
oriented matroid program for every f , E , then R (a, L) is a refinement of a.

Proof: We induct on rank(M). If rank(M = I then L = So and all is
obvious.

So assume we know our result for rank(M - I. We first use this hypothesis
to show that Rm(a, L) is a PL manifold. That is, we will show that the star of a
cell aTI n Ir in Rm(a, L) is a PL ball.

Let �Tlnlr be a cell of Rm(aL). Then its star is the join of &InJ7- with
linkRm(,,L)(&lnl7-). So it suffices to show this link is a PL ball or a PL sphere.
We will find a PL ball or sphere in R/,(ElinkL(,r)), for some E, which is a
refinement of this link.

Let a, be a basis for M/,r)(&). Extend this to a basis al U a2 for (Mlr)(a).

Extend M/,r by adding the negatives of all elements of . Let a' be the set of all
these negatives. Let E be the the simplicial complex consisting of all independent
subsets Of al U C'i U a2. This is the join of a generalized octahedron with a 2 I)-
simplex, and hence is a PL sphere (if 1'21 = ) or a PL ball. So by our induction
hypothesis Rml,(E, linkL(,r)) is a PL sphere or PL ball. It's not hard to check
that R/,(ElinkL(,r)) is a PL refinement of linkRm(,,L)(&InJr)-

Now, to show Rm(a, L) is a ball, we induct on Jul. If Ja = then Proposi-
tion 43.1 tells us Rm(a, L) is a point. The case Ja = 2 is covered by the same
argument as in Lemma 43 1.

For lal > 2 we rely on Lemma A.8 in Appendix. This lemma tells us that
for any collection of cocircuits T,, T2,.. ., T I there exists an extension (M U
IX1i X2 ... Xb g f ) of A g, f ) so that each xi is parallel to f and goes through

T 
The idea is: using this lemma, we'll choose two elements f, g E or and slice

RM (or, L) into a sequence of thin wedges R (ort., L) by stellar subdivisions along
the edge I I f , g} 1. Then we'll show each wedge collapses to one of its faces, so by
our induction hypothesis Rm, (ai, L) is a refinement of ai. Finally, we note that
the union of these wedges is a PL ball, so by Lemma 42.1 we know Rm(a L)
UiRm,(ai, L) is a PL ball.

Now, for the details:
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Assume we know our result for Jal - 1. if nlr is a 0-cell of R(oJ) for
f , g E & C o and Ir I rank(M - 2 we define a rank (rank(M - 1) set H(7-) by:

* If rank(M(7- U (6T\JfgJ)) = rank(M - then let H(,r = r U (6\Jfg}).

(This will be the case if M is uniform, for instance.)

e If not, choose some T C E such that rank(M(,r U (o,\ffg}) U T)
rank(M - 1, rank(M(,r U (\If 1) U T = rank(M), and rank(M(,r U
(o,\JgJ U T = rank(M), and let H(,r) =r U (o,\JfgJ U T.

We first check that every extension of M, g, f ) parallel to f through H(,r is
in conv (If, g}):

If x is parallel to f in M, g, f), then either xf -g- or xf -g+ is a circuit of
M. Assume by way of contradiction xf -g+ is a circuit of M. Then in MIH(,r),
the signed set xf -g+ is a vector. But also x- is a vector in MIH(,r), and so
f -g+ is a vector of MIH(,r). By the independence conditions we put in our choice
of H(,r), we know this is in fact a circuit. But we have a cell In Ir, where f, g E ,
and r,&\Jfg C H(,r), and so the vector ,r- in M gives a circuit fg in
MIH(,r) a contradiction. Thus the extension x is in conv ( f , g ).

We now extend (M, g, f ) by extensions through all our H(,r). (See figure 42.)
Let M' be the resulting oriented matroid.

X =f

X =i

Figure 42: Slicing up Rm(a, L).

This gives an ordered sequence of extensions f = x,1 Xk = g as shown in
Figure 42. (We know this sequence is ordered because it gives a refinement of the
I-simplex f f, g.) Now consider the set of simplices = o,\f f, g}) U xi, xi+,},
for < < k.

Assume by way of contradiction that Rm, (oi, L) has a O-cell of the form &i I n Ir,
where xi, xi+l E &i C ai. Then since xi and xi+, are in conv(ffgl), we get a
o-cen I n Ir in Rm(o,, L), with f, g E - So consider the H(,r) we chose earlier.
An argument like our earlier one shows that the extension x given by H(7-) comes
between xi and xi+, in our order along the edge lffglil a contradiction. So,
just as in Figure 42, each of our cell complexes R,(oi, L) has no O-cells in its
interior.
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To make things really easy from here, we'll take even thinner wedges. For each
xi g, we extend M' lexicographically by [xtg+l to get a new element yi. (See
Figure 43.) Let M" denote the resulting oriented matroid.

X f

=1
5 0

Figure 43: Slicing Rm(a, L) even finer

Each wedge ai has been divided into a = ai\xi U f yi} and Pi = (ai\xi-,) U
fyi}. Our thinner wedges will again have no 0-simplices in their interior.

Now consider any maximal cell a I n Jr of Rm, (ai, L). This cell must have a
codimension one face in Rm,,(ai\xi-,, L) and some face in Rm,,(ai\yi, 4 Thus
this cell collapses to its face in Rm,,(ai\yi, L). So Rm,,(ai, L) collapses to Rm,,(ai\yi, L).
Similarly, Rm,,(Oi, L) collapses to Rm,, (Pi \yi, L). By our induction hypothesis, the
cell complexes Rw(cii\yi, L) and Rm,,(Oi\yi, L) are contractible. Thus Rmll(ai, L)
and Rm,,(Oi, L) are contractible. It is a standard result in PL topology (cf. [RS])
that a contractible PL manifold with boundary is a ball. Thus Rm,,(ai, L) and
RM,,(0i, L) are PL refinements of ai and #i, respectively.

Putting these wedges together, we see U1<i<k(Rm(ai, L)URm(fli, L)) = Rm(U1<i<kaiU
#i, L) is a refinement of U(ai U Oi). Now note that Uai U Oi) is obtained from a
by a sequence of stellar subdivisions, so Lemma 42.1 tells us Rm(a, L) is a PL
refinement of a.

QED

Corollary 4.3.1 The PL Conjecture holds for all Euclidean oriented matroids.
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Chapter 

Connection with 1\4atroid
Polytopes

Las Vergnas in V1] defined a matroid polytope to be an acyclic oriented
matroid in which all elements are extreme. In particular, the vertices of a convex
polytope in affine space define a matroid polytope. Matroid polytopes are the
most natural context to study certain aspects of the theory of convex polytopes,
such as Gale transforms. Our definition of a triangulation of an oriented matroid
suggests a similar definition for a triangulation of a matroid polytope. In fact, we
will make a definition for a triangulation of any totally cyclic oriented matroid.

Definition 5.0.1 If M is a rank n acyclic oriented matroid with elements E a
polytope triangulation of M is an (n - I)-dimensional simplicial complex L
such that

e Lo= E.

e L is a pseudomanifold with boundary.

* If u; is a simplex of L then is independent in M and conv(w = in M.

9 Either

n= 1 or
n> I) and

- if w is a simplex of aL, then linkL(W) is a polytope triangulation
of M1w)(linkL(W)0)-

- if w is a simplex in L - aL, then linkL (W) is a matroid triangulation
of M1w)(1inkL(W)0)-

In [BM] Billera and Munson gave another definition of a triangulation of a
matroid polytope, in terms of single-element extensions of the oriented matroid.
From Proposition 43.1 we can see that the two definitions are equivalent for
oriented matroids in which all extensions are Euclidean. By stating our definition
only in terms of the vectors of the oriented matroid, we avoid the usual anxieties
associated with single-element extensions of oriented matroids (c.f. MR]).
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Proposition 5.0.1 Every uniform acyclic oriented matroid M has a polytope
triangulation which is a P ball.

Proof: Take a single-element extension M Up of M such that M Up is totally
cyclic. Order the elements of M U p as f A el, ea, A, - A , where fel, - - 7 ea}
is the set of extreme elements of M and fbJ are all other elements of M.
Then the proof of Theorem 32.1 gives an algorithm for producing a sequence
of simplicial complexes So, S2,. .. , SK such that each Si is a PL sphere, Si is a
matroid triangulation of the first rank(M) + i elements of M U p, and SK is a
matroid triangulation of M U p. It's then not hard to check that Si - starsi (p is
a PL ball which is a polytope triangulation of the first rank(M) + i - elements
of M.

QED
Note that this proof shows that to every ordering of the elements of a matroid

polytope there is an associated triangulation. It turns out that this association is
the same as the one described by Billera and Munson in [BM] for their notion of
triangulation.

Similarly, we can describe a "common refinement" of any two polytope trian-
gulations and show that it is a regular cell complex. One would expect that any
proof to our conjecture that any triangulation of a totAlly cyclic oriented matroid
is a sphere would also prove that any polytope triangulation is a ball.

As a corollary to the results in the previous chapter we have:

Corollary 5.0.1 If M is an acyclic Euclidean oriented matroid, then any polytope
triangulation of M is a P ball.
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Chapter 6

Conjectures

Conjecture 60.1 Let M be an oriented matroid. A simplicial complex L is a
triangulation of M iff.

9 Lo = E.

e L is a pseudomanifold.

e Each simplex of L is independent in M.

9 If a and are two simplices of L, then ,r- is not a vector of M.

Indeed, I'd be tempted to use this as the definition of a triangulation, if I could
show that it described boundaries of stars in CD manifolds.

Note this conjecture implies that our definition of triangulations is at least as
strong as the definition of Billera and Munson's mentioned on page 31.

Recalling Proposition 43.1, we also conjecture its generalization to arbitrary
oriented matroids:

Conjecture 60.2 If L is a triangulation of M then every single-element exten-
sion of M is in interior of the convex hull of a unique simplex of L.

This is kind of a bizarre conjecture in light of results that the topological
space of single-element extensions of an oriented matroid need not be a sphere
(cf. [MR], in which examples are given of oriented matroids with disconnected
extension spaces). An argument similar to the proof of Proposition 43.1 shows
that the previous conjecture implies this one.

Recall our result from Section 32 that every uniform totally cyclic oriented
matroid hs a triangulation. This suggests the conjecture:

Conjecture 60.3 Every totally cyclic oriented matroid appears in some CD
manifold
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That is, we would like to know that every oriented matroid extends to a differ-
ential structure on some CD manifold. To see the difficulty of this conjecture, we
note the result of Richter-GebertQRG]) that there exist oriented matroids with
"isolated" elements - elements which cannot be perturbed at all. Thus it's not
clear that we can construct the "smoothly varying" oriented matroids we need for
a CD manifold containing such an obstreperous oriented matroid.

It is known (cf. [KI) that not every PL manifold can be given a differential
structure. However, the CD analog is open:

Conjecture 60.4 Every PL manifold can be given the structure of a CD mani-
fold.

If this were true, then the theory of CD manifolds would give new tools for
studying PL topology.
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Appendix A

Oriented 1\4atroids

For a more complete exposition on oriented matroids, see [BLSWZI. This ap-
pendix summarizes those results from [BLSWZ] which we use in this thesis.

Let E be a finite set. A signed subset of E is a function X : E --* I-, 0 +
If X and Y are two signed subsets of E, define their composition X o Y to be

X 0 Y(e) X(e) if X(e) 54 
Y(e) otherwise

Write X for the support of X, X- for X-'(-), and X for X'(+). If X is a
signed set, = X-, and = X, thenme often denote X by o-,r+.

For any two sets and T write S\T for ele E S, e T}.

Definition A.1 (From [BLSWZ]) An oriented matroid is a finite set E to-
gether with a collection V of signed subsets of E such that

1. 0 E V�

2. (symmetry) V = -V,

3. (composition)If X, Y E V then X 0 Y E V,

4. (vector elimination) For all X, Y E V and e E X n Y- there is a Z E V
such that

Z+ (+ Y+)\e,

Z- C (X- U Y-)\e,

and (X\Y) u (Y\X) u (X n Y) u x- n Y- c z.

The elements of E are called the elements of the oriented matroid. The elements
of V* are called the vectors of the oriented matroid.

The motivating example: Consider a finite set E = X I X2.... Xk} of vectors in
R'. For any non-trivial equality F_ aY� = we get a signed set X : [k] -� I-, 0, }
given by X(i) = sign(ai). For a given E, the collection of all such signed sets is
the set of vectors of an oriented matroid.
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Definition A.2 Any oriented matroid which arises in this way is called realiz-
able. Any E E R' which gives the oriented matroid M is called a realization of
M.

A.1 Lots of Terminology, A Few Lemmas
Let M = E, V) be an oriented matroid.

Definition A.3 A circuit of M is a minimal non-0 vector of M.

Note: It is more common to use "circuits" to denote the minimal dependent
sets of an ordinary matroid and to use "signed circuits" for the minimal vectors
of an oriented matroid. Since ordinary matroids never appear in this thesis, we're
letting it slide.

We say a composition X Y is conformal if X(e)Y(e) -;! 0 for every e E E.
We will use the following lemma from [BLSWZ].

Lemma A.1 Any vector X of an oriented matroid is a composition of circuits
conforming to X.

Definition AA A subset I of E is independent if no subset of E is the support
of a vector of M. I is a basis for M if I is an independent set of maximal order.
The rank of M is the order of a basis for M.

Definition A.5 Let A C E and x E E. The convex hull of A is the set
convm(A = AUjx E E there is a subset of A such that Bx- is a circuit of M}

Definition A.6 Two elements x, y of M are parallel if xy- is a circuit of M.
They are antiparallel if x Y+ is a circuit of M.

Definition A.7 M is simple if there is no e E E such that e E V.

Definition A M is uniform if every maximal independent subset of E has the
same order.

Let A C E.
If X E I } is a signed set and A C E, we denote XI E\A by X\ A.

Definition A.9 The deletion M\A of A from M is the oriented matroid (E\A, V\A),
where

V\A = X\A X E V and X(A = 01.

We will also denote M\A by M(E\A).

Definition A.10 Let M = (E, V) be an oriented matroid, and let A C E The
contraction of M by A is the oriented matroid with elements E\A and vectors
JX\A X E }.

36



Definition A.11 M is acyclic if V contains no positive vector. M is totally
cyclic if V contains a positive vector of rank rank(M).

If E E R' is a realization of M, and A C E then:

9 E\A is a realization of M\A, and

e If r : Rn--+ Rn/ (A) is the orthogonal projection, then 7r(E\A) is a realization
of MIA.

e M is acyclic iff E is contained in some open half-space of R'. M is totally
ncyclic i E is not contained in any closed half-space of R .

Definition A.12 If M is acyclic, then x E E is extreme if x conv(E\x).

A.2 Strong Maps and Weak Maps
Definition A.13 Let Ml and M2 be two oriented matroids on the same ground
set E. Then we say there is a strong map from Ml to M2, denoted Ml --+ M2,

if every vector of Ml is a vector of M2.

Strong maps are the oriented matroid analog to linear maps. If M = (E, V)
is an oriented matroid, and A C E, then M(E\A) --+ MIA.

We also have an oriented matroid analog to specializations of vector arrange-
ments:

Definition A.14 Let Ml and M2 be two oriented matroids on the same ground
set E. Then we say there is a weak map from Ml to M2, denoted Ml -,+ M2 if

every vector of Ml contains a vector of M2.

For an example of two oriented matroids with a common weak map image, see
Figure 25.

The first lemma below is quite easy. The second is a corollary of Theorem
7.3.1 in [BLSWZ].

Lemma A.2 If Ml --+ M2 then M1A --+ M2/A.

Lemma A.3 Any oriented matroid is the weak map image of a uniform oriented
matroid of the same rank.

A.3 Duality
Let E = X1, X2.... Xk} C R n be a realization of a simple oriented matroid M.
Let hi be the normal hyperplane to xi, and let ht be the half-space bounded by
hi containing xi.
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This arrangement hi, h2, -, hk} of hyperplanes in R' decompose the unit
sphere Sn-l into regular cells. Each cell can be specified by its relationship to
each hyperplane H - whether it lies on the positive side of H the negative side,
or is contained in H. Thus each cell gives a signed set X E -, 0, + . These
signed sets are exactly the nonzero vectors of an oriented matroid M*, called the
dual to M.

We can define the dual purely in terms of the vectors of M, so that any
oriented matroid has a unique dual. (We won't go through this definition here.)
The vectors of M* are called the covectors of M. So an oriented matroid can be
specified by either its vectors or its covectors.

A.4 Realizability and The Topological Repre-
sentation Theorem

Lemma A Any rank r oriented matroid with less than r 3 elements is real-
izable.

Not every oriented matroid is realizable. However, the Topological Representa-
tion Theorem FL]) tells us that in some geometric sense, every oriented matroid
is "almost realizable".

Let A = SI)IEE be a signed arrangement of pseudospheres, i.e., an arrange-
ment of pseudospheres on Sn-I with a choice of positive side for each maximal
pseudosphere. (For example, see Figure A-1.) Then A decomposes Sn-I into
regular cells, which we can specify just as in the preceding example, with signed
sets X E -, 0, + . Let V (A) be the family of all such signed sets.

Theorem A.1 Topological Representation Theorem: (from [FL])
1. If A = SI)IEE is a signed arrangement of pseudospheres on , then

V(A) is the family of covectors of a simple oriented matroid on E.
2. If (E, V) Z's a rank n simple oriented matroid then there exists a signed

arrangement of pseudospheres A in Sn-I such that V = V(A).
3. V(A = V(A') for two signed arrangements A and A' iff there exists a

homeomorphism h: Sn-l __* Sn-l'such that h(A = A'.

A.5 Extensions
Definition A. 5 Let M = (E, V) be an oriented matroid, and let A c E. M is
an extension of M' by A if M\A = M. We write this M = MU A.

A particular type of extension we'll use in Chapter 4 is the lexicographic
extension:

Proposition A.1 (From V2].) Let M be an oriented matroid I = [el.... ek]

an ordered subset of E, and a = [a,, - , ak E J+, _}k . Then we can describe a
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Figure A-1: A rank 3 arrangement of pseudospheres

single element extension M U x by giving the sign of x on each cocircuit of M as
follows:

aiY(ei) if i is minimal such that Y(ei):� 0
if Y is a. cocircuit of M) thenY(x) 0 if Y(ei) =O for all i.

This extension is called the lexicographic extension of M by [e" ... e";].

If M is realizable then we can see the geometric sense of this inductively. The
extension of M by [e+l is the oriented matroid M U x with x parallel to el. The
extension tf M by [e-] has x antiparallel to el. The extension by e ... e?'et 11

1 1 t t=

is obtained from the extension by eol ... e'i] by nudging x just a bit towards ei+,.
The extension by [e" ... e'e- 1] is obtained from the extension by e ... e, by
nudging x just a bit away from ei+,.

As a consequence of a theorem of Todd (c.f. [T],[BLSWZ]) we have the follow-
ing two lemmas.

Lemma A. 5 Let M = E, V) be an oriented matroid. If O = S1, S2.... I Sk} C E
and M U x Z's the lexicographic extension of M by [s ... S+] then x E conv(o,).

Lemma A.6 If as above is a basis for M then x is not in any circuit of M U x
of rank less than rank(M).

Definition A. 16 Two elements x, y of M are contravariant if they have oppo-
site signs in all circuits containing them.
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Lemma A.7 (From [BLSWZ]) If M = M U x is the lexicographic extension of
by [s+s+... s] then:

1 2 k

1. s, and x are contravariant in M U x.

2. si and x are contravariant in M1jS1,S2 .... I Si_1}

A.6 Euclidean Oriented Matroids
Definition A.17 An oriented matroid program contained in M is a triple
(M, g, f ), where f, E M, 9+ V, and f V*.

An element e is parallel to f in (M, f, g) if ef - is a circuit in M1g.

If M is realizable then e and f are parallel in (M, f, g) if e lies on the ray gf
in an affine realization.

Definition A. 18 An oriented matrold program (M, g, f ) Z's Euclidean if for ev-
ery cocircuit Y of M such that Y(g) :� there exists a single-element extension

= M U p such that p is parallel to f in (M, g, f ) and the extension Y(p = 
makes Y a cocircuit of k. An oriented matroid is Euclidean if all of its programs
are Euclidean.

For instance, any realizable oriented matroid is Euclidean. The element p
extending a program (M, g, f ) then is the intersection of the line gf with the
hyperplane spanned by Y in an affine realization putting g at infinity.

Lemma A.8 (from [BLSWZ]) Let M, g, f ) be a Euclidean oriented matroid pro-
gram, and let (M U p, g, f) be an extension by an element parallel to f. Then
(M U p, g, f ) is again Euclidean.

Note that this does not imply that any extension of a Euclidean oriented matroid
is Euclidean. This will be a cause for concern in Section 43.
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