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TABULATION OF SYMBOLS

= temporal mean velocity at any point in a circular pipe.
= mean velocity over the pipe section.

= thickness of the laminar sublayer.

]
e = effectivity (e = ;—).
‘ o
£ P Fad 2 2 o S -, o — g-ﬁ " D -
f = friction factor for pipes (f = ax P/g ._2)
= distance between the parallel plates.
= constant of the turbulent exchange (X = 0.40 approx.).
= absolute roughness height.
— - q - dp
= friction factor for parallel plates ()\- X ( T _2)
= mixing length.

Hopr R P

M = dynemic coefficient of viscosity.

Q::kinematic coefiicient of viscosity.

V= distance to any point from the center of the pipe.

R = pipe radius.
P = density.
Re& = Reynolds Number.

"f=-shearing stress.

1' = ghearing stress at the wall.

0
= temporal mean velocity in direction of flow.
u' = component in the direction of flow of the difference
between u and the velocity at any instant of time.
v! = component normsl to the flow of the difference
between u and the velocity ab any instant of btime.
yo'=_distance'from the wall of a rough »pipe to points at

which the mean velocity is zero.

Note -~ Figures in parentheses designate references

listed in the appendix.
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The purpose of this Investigation is to 1llustrate
2 nmetuod for the calculation of friction which is thouzht to
ve simpler and more widely epplicable than the existing
methods. Von XKarmén's similerity concept of the turovulent

flow pattern (1) h

©

s produced many satisfactory results.
However, the logarithmic velocity distribution developed
from this concept is not valid, for example, in the center
of a pipe line or at the outer part of the boundary layer of
a flat plate. Here the correlation between the u' and v!
velocity components is not perfect. This equation would

require that 1 become equal to zero since

ané the slope does not vanish for y finite. The mixing
length is zero, of course, only at the wall.

It has been pointed out by H. Peters and C. G.
Rossby (2) that the solution of many problems involving
boundary layer theory might be simplified by the assumption
of 2 maximum value for the mixing length. Nikuradse'sg
measurements in pipe lines indicate a maximum value for 1
of 0,07 of the diameter, a value varying slightly with the
Reynold's Number. Tollmien obtained the same constant in
the mixing zone of a two dimensional jet with 1 = 0.68D,

b thie width of the nixing zone. The value was 0,073

wles

for the circular jet with d the diameter. Rossby obtained

the result 1 = 0.065‘% for the atmosphere, where H is the



thickness of the layer of variasble stress. This constant
therefore appears to have considerable significance.

A few simple problems have been solved by making
use of this constant in an attempt'to establish the valid-
ity of this assumption. Near the wall the stress was
‘assumed constant with linear increase of the mixing length
with normal distance from the wall. Furthér out, the
mixing length was given the constant value 1 = cd, where c
0.07 and 4 is some length dimension of the flow; the stress
was assumed to diminish rapidly in this region. At the
boundary of separation between these two layers continuity
in velocity, stress, and mixing length Was satisfied. The

velocity gradient is zero at the center line.
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Smooth Circular Pipes.- 1In the pure laminar sub-
leyer next to the pipe wall, the velbcity distribution can
be obtained from the equation of Navier-Stokes in cylindri-
cal coordinates:

Ye, 1), 1520 }20 d De
WS ¥ 297 * B30 s+33) “ox =P aw

The flow is assumed to be radially symmetrical, hence
b H

5 = 0
oy
Also,
bc C bc(f DC
.3?2 + FE + -7? 5—- Equation of Continuity

Since c?:= 0 and Ch = o,
de
v = O
Z
Therefore, for steady flow,

De, dc, dec, 50 de
P it "P(5—~'+ 9?3*“'+ Cy_i;?+ ngwuq

Hence,
2
d7c 1 de
( L 2y
A r dr
or,
2
ap r _ , d cZ . de
dz}&'" er dr
d ¢
-~ ar (Idr)



dp rdr _
dz A
Since
T _de

w_ ar

M

dp rdr _
dz A

Hence, integrating from O to R,
dp R

ftg =dz 2

I
=

Also, the velocity is given by

2
c = %E + Xi1ln r + K2

Z 4;Q

Since the fluid clings to the pipe wall, the velocity at the

wall must be zero.

velocity is a maximum at the center of the pipe.

putting
= 0 when r = R
(s1¢} . _
i = O whenr =20

the velocity equation becomes

_dpl 2 _ .2
T 4’k(R r°)
Lettlnb R~y =
- -1 4dp (2 _
= - Indz (y 2Ry)

Neglecting the squared term and substituting for

terms offtg,

Also, from symmetry consilderations, the

Therefore,

ap
an in
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P 11.5
The value y = 81 = e has been fixed Dy
—— (TO\ [

ex~eriment by Niluredse as a reasonable limit for the recion
influenced by laminar friction.

There is theoretical justification, as 1s shown by
2 simple derivation, that the stress varies as given by the

equation

T=-T % See Appendix

Talzing this variation into account and assuming linear in-
crease of the nixing length with normal distance from the
nipe wall, the veloclty equation in the region (81ﬁyﬁo.s5 R)

takes the form

¢ -C 1+Q£
max. =0 - _{ Q\Ig - 1n R
R
1

!

r\t““’

I

2] b

T,
()

where C 1is a constant.
However, the complication of this equation as compared with
that of the well-known simpler form derived on the assumption
of constant stress did not seem to justify its use in this

case. Therefore, assuming ageain that

}-

= Ky
tut that

T =T, See Appendix
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Hence '
c . INP
= 5.4 + 5.75 logy, —;)—ﬁ

’\i'_r.o_
the center section

be assuned constant over

=

Let
equel to 0.14 R, 2nd let the stress e @iven

of the pipe and
vy

T =T, ofgga See APPe“‘iLX
o

0 2 -t
Then, since T: (3 l‘“(%%) , the
11

3 ‘Q 2=y

1 T/0 f 3
J/{T—o O.léR*/‘” 0.806R

Integrating between tile limits 0.35 R and ¥,

c - c .. 3/2
Q:598 _ 5,00 - 5.88 (&)

T,

FI‘OI‘.’I (II), at y = 0055 iy

velocity ecuation 1is

jor]
:
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Hence,
’T_:(.j_ 5/0
[ R—-y ~
(III) = 5.8 + 5.75 log,, —Fg R -~ 5.88(_#)
To \

O.35R <« y £ R
The mean velocity is given by the integration of
equations (I), (II), and (III) over the respectlve portions

of the cross section.

= 25 S — rdr
& 7 )i

y °tr
2 lraue® 1%t o, e

212 3 T
R ,!'r Lo

-

292
- 11.5 = (11.5)°Y

T T

-1.21 R®log, —V-F‘-’- R + 2.88 R°log,, —:)ﬁ R

of

0

'+ 0.85 R® +1p13910g10

_ 2? {R +[5.1 - 1.%.31 (11.5)°¥°
'R”
® T
[11 .58 _ 9. op] 1%_ 51‘)2 + 2.88 B® log,, -—:)?— R
O
P

<‘rblcﬁ
o




Substitution for ¢ by means of ihe Tormula

gives
1 5810
= = 0.80 4 —2 - A0 L 105310\‘f Rey

NT £(rey)®  N'T mey

The equation of von Kdrmdn— Nikvradse ig
‘ .
W‘=-O.80+2103‘0WRe7 See APPQ“‘“X
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Rough Circulsr Pipes - In this case there is no

nar subleyer. Assuming, as for smooth pipes, that

T ='Tb, 1l =Xy for y 4 0.35R,

dc
dy

CcC =

C
To
(3

\ _ 1
r)

1

T Iny + ¢

Since ¢ = 0 vhen y = Tos

= 5.75 logy, %—
(0]

which 1s customarily written as,

J+y
(1) S 5.5 logy —2
,s'r Yo
-9
in order that ¢ = O when y = O.
As for smooth pipes (y > 0.35 R, 1 = 0.14R)
©~C5.35 /2

i

- 5
3.00 - 5.88 (Bﬁi)

0O

°0.35R _ .

\K""%_
WJ:E; 10 ?g
e

From (I),
0.39R
5 1 EALOAC A
5.75 logyq v,

substituting,

T

Y4
C_ = 0.37 + 5.75 log - 5.80 (Bﬁi)
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The mean velocity is obtained by the integration of
equations (I) and (II) over the cross section.

T

A o B‘—.. -3

,>|H
=N II - !O‘q
(e}

The best value of the effectivity for sanded
surfaces, as deternmined from measured values of the friction
fector substituted in the above equation, 1s 30. Ience, the
equation is

= 2 loglo % + 1l.74 For sanded surfaces

-

See Appendix
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Infinite Parallel Smooth Plates.~- The velocity
equations are the same as those for the circular pipe, and arc
obtained in the same manner by making similar assumptions
concerning the variqtlon of the mixing length and the stress
In the pure laminar sublayer next to the plates, the velo-
clty distribution can be obtained from the equation of Navier-

Stokes in rectangular coordinates.

du . .0 U
(3(a + ugs + v;i + wiZ) = - 5— P&y + }&(Bxﬂ +.bj -%z

" Also,

: , |
_%%.+ 3; + %g = 0 Equation of Continuity

Let u = £(y), where y is measured normal to a plane midway ' !
between the two plates. Let x be in the direction of ilow.

Let.v=0

w=20 i
- !
Thenﬁ%% = 0 and the continuity is satisfied. ;
|
Hence, 1
&®u _ ap
ee | OX i
But
dS
a;%_: O, since u = £(y)

3
Hence EE = & constant.

d.' .
= a% 4 C1
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P

u = + ey + €z

9
20
j; Sl

The velocity 1s zero at the plate, and from symmetry con-
siderations, the velocity 1s a meximum midway between the

two plates. Putting

Wl

u=0 wvhen y = +

u=2 1 [5% - (3]

dy dx @
_ o Gu_dp
h('_/(dy = Y

Assuming constant stress near the wall, T =7,

_dp
==
Hence,
LTS c
u=-—y +
M

Putting u=0wheny = + %

(v - %) for y positive

To ,.
= (v +

Since'rb is negative for positive y, and positive for

) for y negative.

ol fay

negative y,



s DR G BT AT

S s T T XS TSP S TR SRS AT T

%
= 2L (5 - ) %-ysé\l
(’ 4
(D) r"_‘_'g
= =——F—\) (%+y) %+y431

Theoretically, the stress varies

T--7 &

as Ziven by

However, assuming, as Tor circular pipes, that

T =T,
1=K (% - y) for y positive 311:%
1=K (% + y) for y negative 81§%
In the renge (0 <y < %) let t = 1_21.
(- 2<y<0) Lot t =1§1+y.
To |
(11) 2= = 5.4 + 5.75 log;, —F—

T
C

Assuming 1 = 0.07 h for the range

\

- y “ 0.175h

+

¥y < 0.175h

- ¥, and in the range

(-C.175h < y < 0.175h), end let the stress be assumed to

_ _ oy
T "To 0.65n

Then,
T
(IIT) %= = 4.00 + 5.75 log

ﬁq =10 0

3
—& n - 16.65 (£)

,»/,‘3
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The above development 1s almost unnecessary since

the velocity is a function of only one variable as for the

circular pipe. Therefore, it is obvious the velocity

x
4

equetions must be the same with y replecing r and & re-

ol

h h
2

2
u

NT N T

& e o '(
«5"59.

= - 0.74 + 5.74 log,, ——\)F h - 74.6 :)C

_9

g (

!
Sl

T .
Let A.= _"9—25 = %p (%> - =2
(,/gu ’ F/gu

Then,

; 4.6
= = = 1.13 + 4 log,. Rey N\ - ”":_r——

NN




Ellintical Pipes of Small Eccentricity.- The
equation of the ellipse in polar coordinates with the pole

at the center is

2 b

1l -e cos%e-

Y W

‘'where e is the eccentricity.

-
=

For small values of the eccentricity, the velocity

b

can be defined in terms of distance out from the wall along
the radius vector. This 1s a good approximation for small
eccentricity only. With this approximation the velocity
eoguations will be of the same form as for the circular pipe,'
and continuity in velocity, stress, and mixing length will
be satisfiled at all points of the elliptical section.

The mean velocity is obtained by integration over

the ellipse. Hence
AW ¢

Y 1 e rdrd e

{%f‘fa" | 0/\&?(3
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The integration with respect to r does not differ from that

over the circular Dipe section. Therefore,

E V° N )
75

(
(°
/\EE
9.88 1< logy, —\)(3— r} q-6
w

2
_2(168) v° _ 37.4 _V .
ab T wab T, 1/2
(Tr) (?;) 5
aw T
1 2 1.25 2
.+ﬁ§5 r deﬂ.ﬂbb r 1lnrde~-
0 TO v 0
2e88 [ r 2
+Tl"xb log;lo -—@\) rd o~
where 0
Vs
rde = 4b d& = 4b Fle, T)
A 1 - e? sine
0
and. I .
de __2Trb
r df; b T 5 5 = 5
e” cos“g- qll - e
Also, 0 |
A FA1Y 5
r 1n r dé& = EQ Ol = ln _Gb ~— 4.9
© 1-e“cos” & 1-e“cos”“®
0o T

<

2. 2 2
_Tp%1n B _ Y

()

ln(l—e9cos ) a6
1-g 1-e” cos {}-

-
2w
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=t
—JL“.t 2“, u/z-
2] 2 o 2
ln luom cosp 11’1 l"" < . [~
é e ~ 6) ag = 4 (0 c S(];n '9‘) a6

1-e” coa? & 5 1-¢“ sin“6

This integral can e expressed in terms of % P, (z) Dby

transforming Laplace's first integral for the Legendre

function pn(z),

A uin
1 P2/ n
pn(z) = (z + \1 Z 1l cos©) 4d-o

0
Differentiating with resvect to n,
.\
0 _ 1 . 2 _n n . 2_- .
bR pn(z) == (z + \‘ z“ =1 cos @) 1n(z+ \iz 1 cosé)d 6
0

since the resulting integrand is continuous in both - and n.

Then letting €& = 2¢

Wa
) o \, 5 n
Sa pn(a) = (z +\ 2 =1 cos 26')" 1n (z +
0 22 - 1 cos o9 )ds'
Substituting cos 2€=1 - 2 s:}.nze-
T/,
0 5 5 oNz9-1
Ee pn(z) =2 (z + N z°- (1 L sin“e) " x
y 2z *\z® -l
o‘v 2.1
1n (1 - 2¥27h cinPs)d e
Z -H’ ziz’-l
T
,[ )
9 (3 2 IQ_-! . <
+'§%(Z + Zg—l) (1- =12 - 51n?e)n X
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2
u\ Z "'l - en
[®]
.z + z7=1
Then,
1 9-e”
z = -2-
1—82
7 + z7=1 = L
1l-¢
Therelore,
A
2 o
g T (l 228 ) = 2 (l-egsin%})n ln(1~edsin%&)d€+
e N 1

N A
- 2 In\1l=-e (1“828j.nge-)n
‘[dl-ez

or LA

(1—egsin%&)n in (l—eésin%93d6—=

L
) )
+ 1n\ 1-¢° (1-e“sin“s )™ a &
0

Putting n = - 1

T/,
Tn(l—e 51n Gide- '“'d —e [ "-92 ﬂ
(1-e SLn-eJ an 1-¢2 n=-1
0 10%
+ 1n 1—eﬂ d &
1-6°8in“6-
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In Murphy's expression of pn(z) as a hypergeometric function,

)QQ
() o > (o) (ne2) .. () (on) (Aom) . (2m1om)

1 1 T
D £ .=
o r=0 (r1)? 5~ 5%
B!
= F(n+l, - n; 1; 5 - % z)
when \l—z\ < 2(1—3) <2, 0« S <1
let w = (% -3 z)
Then
P (z)= E; (n+1(n+2) ——-=(n+r).(-n) (1-n) -=-(r-1-n) ot
n r=0 (r'\g
b' o0
2) === (n+r) . (-n) (1-n) =—(r-1-
[B—H pn(z)] ___Z(n-!-,o) (n+r).( g)( n)--(r-i-n)  r
n=1l r=0 (r!) n=-~1
since the terms containing the factor (n+l) vanish.
B o0
1:9-—=(r=2L (1) (2)—==(r) .1
[_ﬁpn(z)] :Z ( r)i:g'!)( Lo=olz)
) n=-1 r=0
o0
= Z %;Wr
r=0
= - 1n (l-w) = - (1 + 2z)
.
= -1nid14+2 =2
2 2 5
1-e
Hence, 7
T 2 2
2 2
lMle&nnﬁid&_Eﬂn 13__3' n%@ﬁ%%:_g
(1-e“sin e 1-e° "L ©N1-e?
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Therefore, the expresslon for the mean velocity

is

S 33 ¥° 150 _ ¥

S

= . 172
Al TCo ab (Tb) wa {EQ !
R

(e,

2ol

2 1 2-6° | - ,
2.88b {}l-e )1ln %(l+ = 2= )=1n\ 1-e

-+ '2—13- L -+
Ieh [3) 2}
Ql—e a l-e
A !TO
2 v
1 ~
a =g
Letting

)
|
()
0
®
o®

il

0

1 =‘_O.8O+_—§_8_1‘9_p._

(2]
NT £(rey)” *

(over)

100

PR —
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For these cases tihie above method seems Lo give
sa}isfactory results. The velocity gradient is zero at the
cegﬁer;line, as 1t obviously should be from symmetry con-
siderations. In narticular, the equation defining the

friction factor for the circular pipe obtained by this

"method agrees very closely with the experimental data and

with the equation of von Kérmén-Nikuradse. Except for small
values of the Reynolds Number where the flow is laminar, the
difference between the two ecquations is negligible (see
graph in Appendix). |

The frictlon factor for thé elliptical pipe is
smaller than that for the circular pipe at the same Reynolds
Numver as is seen from a comparison of the two equations.
This is to be expected since the minor axis 2b of the ellinse
was used in defining the Reynolds Number. The equation for
the élliptical pipe becomes the equation for the circular
pipe, as ;t obviously must, as the eccentricity approaches
zero since F(e, .%‘) approaches 1-23- . |

It may be concluded from the good agreement of the
equation for the circular pipe with experimental data and
with the equation of von Kérméﬁ—Nikuradse that Peters and
Rossby'é assumption of a maximum value for the mixing length
is justified. Furtier, 1% constitutes a definite inprove-
ment in the method of calculating friction factors. The
velocity sradient is now zero and the mixing length finite

at the center line, thus bringing the equations into better



dis

soreenent with the physical facts. The consideration of the
nerallel flat nlates and of the ellintical vipe indicates

toiat the method might be extended rathsr generally to dro-

blems in which the velocity mey be defined as above and in
vnich the stress is unidirectional. The existence of

secondery flows, as, for example, in the corners of the

rectangular duct, would require o more general method of
solution, but would in no way affect the validity of the
original assumption.

This method might be extended further to the flat
plate. But here, although much is known concerning the

frictional drag, little is known concerning the velocity

distribution. It 1s therefore improbable that much addi-

tional information concerning the validity of this assumption

- =)

would e obtained from a consideration of this problem.

~
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