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ABSTRACT

The focus of this thesis was the design, implementation, and evaluation of a set of automated
algorithms to detect nasal consonants from the speech waveform in a distinctive feature-based
speech recognition system. The study used a VCV database of over 450 utterances recorded from
three speakers, two male and one female. The first stage of processing for each speech waveform
included automated 'pivot' estimation using the Consonant Landmark Detector - these 'pivots'
were considered possible sonorant closures and releases in further analyses. Estimated pivots
were analyzed acoustically for the nasal murmur and vowel-nasal boundary characteristics. For
nasal murmur, the analyzed cues included observing the presence of a low frequency resonance in
the short-time spectra, stability in the signal energy, and characteristic spectral tilt. The acoustic
cues for the nasal boundary measured the change in the energy of the first harmonic and the net
energy change of the 0-350Hz and 350-1000Hz frequency bands around the pivot time. The
results of the acoustic analyses were translated into a simple set of general acoustic criteria that
detected 98% of true nasal pivots. The high detection rate was partially offset by a relatively large
number of false positives - 16% of all non-nasal pivots were also detected as showing
characteristics of the nasal murmur and nasal boundary. The advantage of the presented
algorithms is in their consistency and accuracy across users and contexts, and unlimited
applicability to spontaneous speech.

Thesis Advisor: Kenneth N. Stevens
Tide: Clarence J. LeBel Professor of Electrical Engineering
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Chapter 1

1.1 Introduction

A multitude of speech recognition models have been developed over the past two

decades. Many of these models use general pattern matching techniques, with little or no

speech specific knowledge. In the pattern-matching approach, a model contains a training

set and an operating set of words. The training set contains a selection of words from the

lexicon and is adapted over time to more closely resemble the speaker's pronunciation.

The operating set includes a set of words spoken by the speaker that need to be identified.

During the word identification process, each word from the operating set is compared

against the training, pre-recorded set, and the match with the highest accuracy (based on a

number of different techniques that are specific to each model's implementation) is

selected as the identified word. Pattern matching models have proven successful when

the conditions under which the training set is recorded match the operating environment

exactly, resulting in limited-vocabulary, speaker-dependent, isolated-word recognition

systems. The same pattern-matching algorithms, however, show little tolerance for

differences between the operating and training environment conditions. For example, any

noise present in the operating environment that differs from the noise in the training

environment diminishes the accuracy with which a statistical model identifies the words

spoken by the speaker. The accuracy levels can sometimes be retrieved with additional

re-training and adaptation. In adverse conditions, however, such as noisy environments or

telephone conversations, re-training does not necessarily help performance [6]. Statistical

speech perception models also proved more or less inadequate in dealing with speakers

having accents or speech disorders and impediments. For these reasons, there is a need



for a different approach in modeling speech perception that will result in systems that are

more independent of the environment and speaker. In addition, there has been interest in

creating models that would attempt to imitate ways in which humans process speech. The

contributions of such a model then, would not only be limited to the industry and

production of more robust speech recognition systems, but would stand as a direct

quantitative measure of accuracy for phonetic and linguistic theories.

The goal of the Lexical Access From Features (LAFF) project is to develop a

speech perception model that would more closely resemble the process by which human

listeners are able to extract word sequences from running speech. As a part of the LAFF

project, the goal of this thesis is to quantify the acoustic characteristics of nasal

consonants and nasalized vowels in American English and incorporate them in an

automated speech recognition system. Nasal consonants were chosen because their

production and perception has been studied extensively, yet their detection has been a

problem for some recognition systems. Nasalized vowels have been included in this study

because the production and perception studies for nasal consonants have indicated their

presence as important acoustic information in nasal detection.

Once quantified, the acoustic characteristics of nasality would be included in

automatic detection systems designed for use in a speaker-independent, continuous-

speech environment.

1.2 Acoustic Studies of Speech

The LAFF project is based on the hypothesis that words are represented in

memory as sequences of segments, each consisting of bundles of distinctive binary

features. These feature value pairs make up a universal set that is used by people
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worldwide - any one language uses a subset of features from this set. The feature pairs

are such that a change in the value of one feature could result in the production or

perception of an entirely different word. For example, while the vocal tract positioning is

almost identical in the word pair bat/pat in English, the distinguishing factor between the

two initial consonants, and thus words, is whether the vocal folds are vibrating during the

consonant production.

Within the feature system, there are two types of distinctive features - articulator-

free and articulator-bound [10]. Articulator-free features classify segments into broad

classes that can be roughly described as vowels and general classes of consonants by

referring to the characteristics of the type of constriction formed in the vocal tract [24].

Articulator-bound features specify which primary articulator is used to make the

constriction in the vocal tract and possible secondary articulators that may be involved in

the final sound output.

1.2.1 Articulator-free features

By describing the type of constriction formed in the vocal tract, articulator-free

features establish one of the broadest classifications between segments - the distinction

between vowels and general classes of consonants. Vowels are produced with a relatively

open vocal tract and uninterrupted airflow. The acoustic consequence of such a vocal

tract configuration is high energy across all formants and continuous movement of the

formants throughout the duration of the vowel. The production of a true consonant, in

contrast, involves a sequence of movements that produces a narrowing in the vocal tract

and that subsequently releases that narrowing, acoustically resulting in two

discontinuities in the spectrum - one at the time of closure and another at release.

16



Because an articulator-free feature is one that has no dedicated articulator to implement

it, the narrowing in the vocal tract can be implemented with the lips, tongue blade, or

tongue body. Acoustically, we consider articulator-free features as introducing landmarks

- the most salient points in an utterance around which information about the underlying

distinctive features can be extracted.

1.2.2 Articulator-bound features

Articulator-bound features specify which articulators are active in the vowel or

consonant production, and how these articulators are shaped and positioned. There are

seven articulators that determine the set of articulator-bound features; they are (1) the

lips, (2) the tongue blade, (3) the tongue body, (4) the soft palate or velum, (5) the

pharynx, (6) the glottis, and (7) adjustments of the tension of the vocal folds [24]. Each of

these articulators can be maneuvered in one or more ways to determine the binary value

of the corresponding feature. Because the ways in which the articulators can be

manipulated are directly related to the type of constriction made, acoustically we consider

articulator-bound features as being reflected in the signal pattern surrounding the

landmarks [1]. The landmark times mark the movement and changes in the primary and

secondary articulators and for this reason, these times in the signal are most salient in

terms of the acoustic characteristics specific to the particular articulator.

1.2.3 Production of Nasal Sounds

A nasal segment is a true consonant in the sense that it is produced by forming a

complete closure at some point along the length of the oral region of the vocal tract. The

fact that there is a full closure within the vocal tract results in a reduced spectrum
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amplitude in the mid- and high-frequency regions, and two acoustic discontinuities - one

at the time of the constriction formation (closure) and one at the constriction release

(release). The constriction in the oral region is made with the lips, the tongue blade, or

the tongue body, similar to other true consonants, such as stops. The principal difference

between the nasals and other true consonants is that the velum is lowered and

velopharyngeal port open immediately preceding the closure, during the closure, and

immediately following the release of the nasal consonant. Because there is an alternative

path for the airflow through the nose, there is no pressure increase behind the constriction

and the vocal folds will continue to vibrate in a normal manner throughout the closure.

This region in the spectrum, during which the vocal folds continue to vibrate despite the

full closure and during which the airflow is redirected from the mouth to the nose, is

called the nasal murmur. Another characteristic of the nasal segment is that the opening

of the velopharyngeal port usually starts during the segment preceding the nasal

consonant and the closing can extend into the segment following the nasal consonant. If

the preceding or subsequent segment is a vowel, we term the acoustic modifications to

the spectrum of the vowel, due to the open velpharyngeal port and additional airflow path

through the nasal cavity, as the nasalization of the vowel.

The production of every nasal segment is therefore characterized by some

combination of these three events: acoustic discontinuity, nasal murmur, and vowel

nasalization. For this reason, estimation of the nasal feature in the speech signal is

equivalent to testing for the presence of each of the three events.

18



In terms of the discussed articulator-free and articulator-bound features, the time

of the acoustic discontinuities (one at the time of closure and another at the time of the

release) is marked with a landmark, as they denote the time when a narrowing is made or

released in the vocal tract. Because the velum is lowered during the production of a nasal

segment and the airflow is redirected through the nasal cavity, thus causing no build-up

of pressure, the landmark belonging to a nasal segment is that of a sonorant consonant

[+consonantal], [+sonorant]. Acoustic properties measured around the landmark time will

reflect the lowering of the soft palate which will be captured by the value of the [nasal

(soft palate)] articulator-bound feature.

1.2.4 Previous Studies of Nasal Sounds

There has been a large amount of research on both the production and perception

of nasal consonants and nasalized vowels. The following are summaries of some of the

work done on nasal consonants and nasalized vowels.

" Hattori and Fujimura performed a study in the late 1950's on nasal consonants

and nasalized vowels [11]. They reported that the principal features of nasal

consonants are a strong resonance located at about 300 Hz, damping of the higher

formants, and the presence of an antiformant whose location is dependent on the

place of articulation. Despite the difference in the antiformant frequency,

however, the overall spectral shape of nasal consonants appeared very similar.

" Using an analog vocal tract synthesizer, House and Stevens found that the major

characteristics of vowel nasalization were a weakened and broader first formant,
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and overall lower amplitude vowel level compared to non-nasalized vowels [12].

The weaker overall vowel level was a direct consequence of a weaker and broader

first formant.

Hypothesizing that the points of maximal spectral change on either side of the

syllabic peak are potential nasal transitions, Mermelstein used four simply

extractible acoustic parameters to automatically detect nasals in segmented speech

[16]. The four parameters were the relative energy change in the frequency bands

0-1, 1-2, and 2-5 kHz, and the frequency centroid of the 0-500 Hz band. Using

multivariate statistics on some 524 transition segments from data of two speakers,

Mermelstein achieved 91% correct nasal/non-nasal decision rate. He also noted

that the accuracy in a speaker-dependent training system was superior to speaker-

independent training.

* In his Master's thesis, Glass reported that the most robust acoustic property of a

nasal consonant is a steady, low frequency resonance, which dominates the

spectrum [8]. This resonance is characterized by a temporal and spectral stability.

By calculating the amount of low frequency energy (below 350 Hz) relative to the

energy of the adjacent band (350-1000 Hz), Glass found an effective way of

separating nasal consonants from most semivowels. In the same study, Glass

stated that the most robust acoustic property of a nasalized vowel was the

presence of an extra resonance in the first formant region; depending on the type

of the vowel, this resonance might appear above or below the first formant.

20



" Chen proposed using the parameters A1-P1* for non-low and Ai-Po* difference

for other vowel types (in decibels) to capture the spectrum modifications of

nasalized vowels [2], [3]. A1 is the parameter denoting the peak spectrum

amplitude of the first formant prominence, Pi is the spectrum amplitude of a peak

near 1 kHz, and Po is a spectrum prominence due to a nasal resonance in the range

150-400 Hz. The adjusted acoustic measure of nasalization, A1-Pi* and A1 -Po*,

were independent of the vowel type.

* In her proposition for a nasal detection module algorithm, Chen combined the

parameters for vowel nasalization with a set of parameters that indicate the

presence of a nasal murmur [1], [4], [5]. The parameters for the nasal murmur

include the location of the lowest resonance, steady-state spectral shape of the

nasal murmur as determined by the RMS difference between consecutive frames,

and the spectral tilt typical of nasal murmurs as measured by the difference in

energies across five frequency bands. The vowel nasalization parameters are those

described in [3]. Chen reports that more than 80% of the nasals can be detected

correctly with this algorithm.

All of these studies have contributed greatly to the understanding of nasal

consonant recognition and perception, but often their results have not been included in

speaker-independent, continuous speech recognition systems. Reasons for this include the
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lack of a sufficient quantitative form for the data or the fact that many of the collected

measurements involved human interpretation and in some cases correction [8].

Using the data from previous studies and building an automated nasal detection

module within the LAFF system would provide further insights in the acoustic

characteristics of nasal consonants. An automated parameter extraction and decision

system would allow for a greater body of naturally spoken data to be examined and

quantified. The results of such a system would be directly applicable to the speech

recognition systems and would give further insights to phoneticians interested in

conducting studies in human speech production and perception.

1.3 Summary

While there is clear evidence that the speech signal is rich in acoustic information

regarding its content, there has been little application of speech-specific knowledge to

existing speech recognition systems. Consequently, today's systems are mostly speaker-

dependent or designed to operate on a very limited vocabulary, which greatly hinders

their applicability.

A survey of past work indicates that while acoustic characteristics of speech

segments are well studied, they are not always directly applicable to automated speech

recognition systems. Their inapplicability is often due to the lack of a sufficiently

quantitative form for the presented parameters or because the conducted measurements

often require human interpretation and correction.

The primary motivation for this thesis is to examine a number of characteristics

and parameters of nasal consonants in American English, and to attempt to incorporate
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them in an automatic nasal consonant detection module within the LAFF system. This

detection system would operate in a speaker-independent, continuous-speech

environment.

The research in this thesis is organized in three stages. The first stage includes

automated extraction of parameter values based on previous studies on nasal consonants.

As the first step in the automated extraction, Chapter 2 describes the landmark estimation

process and performance on a database of utterances. Chapter 3 begins the second stage

of processing by introducing the notion of acoustic criteria when processing landmarks

for further acoustic characteristics. The following three chapters, Chapters 4, 5, and 6,

propose a set of acoustic cues that can separate nasal from non-nasal landmarks, and

quantify them in terms of acoustic criteria. In the last stage of nasal module design,

Chapter 7 describes the resulting detection system and its performance on the described

database. We conclude the thesis with the performance results and future work that would

allow this module to operate in a continuous speech environment.
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Chapter 2

2.1 Landmark Estimation

In Chapter 1 we discussed the characteristics of a feature-based speech

recognition system, and its potential contributions to the industry and future speech

studies. We concluded that a feature-based nasal detection module, as illustrated in

Figure 2.1, requires three stages of acoustic processing:

1. Estimate the landmark times and types,

2. Use statistically significant acoustic measurements to analyze the signal around

the landmark points,

3. Use the values obtained through acoustic measurements to determine whether the

secondary articulator involved in the production of the segment is soft palate.

Chapter 2 continues to formulate a feature-based nasal detection module by

describing the landmark estimation process on a three-speaker vowel-consonant-vowel

(VCV) database of utterances. As the first step in the nasal detection, the landmark

estimation output governs the design of the next stage of acoustic processing by

specifying which points in the signal should be tested for nasality. Chapter 3 next

introduces the concept of acoustic criteria that can be applied to these points to classify

them as nasal and non-nasal. In Chapters 4, 5 and 6 we formulate a set of acoustic criteria

that can perform this classification as automated algorithms in MATLAB'. Defining

acoustic criteria for nasality concludes the second processing stage in the nasal detection.

MATrix LABoratory (MATLAB) 6.1.0.450 is property of the MathWorks, Inc.



Lastly, Chapter 7 proposes rules by which these criteria are combined in a nasal detection

module, and evaluates their effectiveness on the VCV database.

Utterances in the
database

Landmark Estimation Landmark estimation stage
The utterances are examined for
landmark types and times, and
passed to the articulator-specific

Landmark times and processing.

types

Acoustic processing for
nasality

Measurement of s
parameters specifi
Points around the I
for acoustic characi
articulator. For nas

Property2 value secondary articulat
Property2_value

Propert I _value

tatistically significant
ic to the articulator
indmark are examined
eristics specific to each

al detection, the
or is the soft palate.

Evaluation of Property values Determining the articulator-bound features
to determine the [nasal] feature based on the observed acoustic properties

Acoustic properties measured in the previous
stage are combined to determine values of the
feature bundle for the given segment. For nasal
segments we are interested in the value of the
distinctive feature [nasal].

Nasal landmarks Non-nasal landmarks

Figure 2.1 - An illustration of the processing required for the nasal detection in a feature-based system. The
landmark estimation provides the locus for all articulator-bound feature processing. Once landmarks are estimated,
further signal processing is focused on and around the landmarks when determining the primary and secondary
articulators. For articulator-bound feature [nasal], the processing examines the acoustic evidence for nasal murmur
and/or vowel nasalization by measuring 10 parameters and comparing them against a quantified expectation.

Further discussion on the acoustic criteria can be found in Chapters 3 through 6.
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Chapter 2 is organized in three sections. The first section describes the VCV

database of utterances used in this study. The next section outlines the landmark

estimation algorithm and analyzes its performance on the described database. The last

section discusses implications of the landmark estimation performance for the design of

the nasal detection module.

2.2 Database Description

This study focuses on using a restricted VCV database to study the acoustic

characteristics of nasal segments. A restricted database is more likely to have a full set of

acoustic cues for nasality as opposed to an impoverished set that might occur in other

contexts or in casual speech. Some studies also suggest that stressed syllables are

probably articulated with greater care and effort than casual speech, resulting in a more

robust acoustic signal and more reliable acoustic features [ 19].

The analysis database is made with three native speakers of American English

(two male and one female) who were between the age of forty and seventy when the

recordings were made. The format of each utterance is a vowel at the initial and final

position, and a true consonant in the center of the utterance. There are 6 vowels and 26

consonants in the database. Consonants belong to the classes of sonorant (nasal, glide,

and liquid) and obstruent (stop, fricative, and affricate) consonants. The database totals

453 utterances, which were passed through an anti-aliasing filter with a cut-off frequency

of 7.5 kHz before being digitized at 16 kHz. The 7.5 kHz cut-off frequency allows

relevant high-frequency frication noise in female speech to be captured.
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The next section outlines the Consonant Landmark Detector (CLD) developed by

Liu at MIT's Speech Communication Group, which is used for landmark estimation in

this database, and its performance results [13], [14].

2.3 Consonant Landmark Detector

The basis of the LAFF project is the separation of acoustic processing of the

speech signal into that of establishing landmark times and types, and using these times as

starting points when extracting further acoustic characteristics. The Consonant Landmark

Detector (CLD) developed by Liu at MIT is an automated system that provides the

landmark processing required for the evaluation of all articulator-bound and some

articulator-free features [13]. The CLD module analyzes the digitized speech utterance to

produce three types of landmarks as defined by Liu:

1. glottis (g) - time when the vocal folds transition from freely vibrating to not

freely vibrating and vice versa,

2. sonorant (s) - time when a sonorant consonant closure is formed or released,

3. burst (b) - stop or affricate bursts and points where aspiration or frication ends

due to a stop closure.

The three landmark types determine what further acoustic processing is

appropriate for a given landmark. Factors that cause glottal vibration to cease, for

example, are buildup of intraoral pressure due to a supraglottal constriction, vocal-fold

spreading, or reduction of subglottal pressure. During the nasal segment production,

however, the lowering of the soft palate opens an alternative path for the airflow and
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there is no change in the intraoral pressure or vocal fold vibration. Because each nasal

segment in this database is both preceded and followed by a vowel, utterances with nasal

segments will have vocal folds vibrating continually throughout the nasal production. For

these reasons, [g] landmarks in a VCV database do not appear to mark an acoustic change

in the signal that could result from the soft palate movement. Similarly, the signal around

[b] landmarks is expected to show a silence interval followed by an abrupt increase in

energy at high frequencies. This property of [b] landmarks suggests that nasal detection

should not focus around these landmark points. Unlike the previous two landmark types,

however, a sonorant landmark is an acoustic manifestation of a sonorant closure or

release in Liu's detection scheme. Consequently, a portion of the signal around this type

of landmark is a prime candidate for examining the signal for soft palate activation and

nasal production. Figure 2.2, adopted from Liu, illustrates the landmark tree implemented

by the CLD. The diagram also shows the dependence between the articulator-bound

feature processing and landmark type.

The subsequent sections in this chapter focus mainly on the calculation and

performance of sonorant landmarks because of their relevance to the nasal detection. The

CLD used in landmark estimation and described below is unchanged from Liu's doctoral

thesis [13]. The reader can refer to the thesis for all details not included in the overview.
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[+consonantal] [-consonantal]
vowel, semivowel, [h], glottal stop

[+sonorant] [-sonorant]
nasal, acoustically
abrupt [1]

[+continuant] [-continuant]
fricative stop

affricate

Figure 2.2 - The landmark tree adopted from Liu. From this diagram, it is evident that the articulator-bound
feature processing is highly dependent on the information from the CLD in selecting the appropriate acoustic
analysis. For nasal detection the landmarks of interest are [+consonantal], [+sonorant].

2.3.1 Overview of the sonorant landmark calculation

Calculation of sonorant landmarks can be separated in general processing

common to all landmark types and specific tests for sonorant cues. General processing

includes computation of the broadband spectrogram using the short-time processing

techniques, with a 6 ms Hanning window taken every 1 ms and a 512-point DFT. The

resulting spectrogram is divided into the following six frequency bands before being

passed through fine and coarse processing:

Band 1: 0.0 - 0.4 kHz
Band 2: 0.8 - 1.5 kHz
Band 3: 1.2 - 2.0 kHz
Band 4: 2.0 - 3.5 kHz
Band 5: 3.5 - 5.0 kHz
Band 6: 5.0 - 8.0 kHz.

Frequency bands are chosen such that Band 1 monitors the presence or absence of glottal

vibration. Bands 2-5 are used to detect spectral changes of sonorant consonants and
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onsets/offsets of aspiration or frication noise associated with stops, fricatives, or

affricates. Band 6 spans the remaining frequency range and is used in combination with

other bands to detect silence intervals in stop consonants. Following the spectrogram

calculation, energy changes in the six bands are found using a two-pass strategy. Both

passes employ the same processing steps except that the first pass uses coarse parameter

values to find the general vicinity of a spectral change and the second pass uses fine

parameter values to localize it in time [13]. Once the 6-band energy is computed, a 6-

band rate-of-rise (ROR) is found by taking an overlapping dB first difference of the

energy in each band. Using a peak-picking algorithm originally described by Mermelstein

[16], Liu finds ROR ±peaks whose absolute value is greater than 9dB for coarse

processing, and 6dB and 9dB for fine processing. For details of the algorithm, the reader

should refer to Liu's doctoral thesis. Detection of energy peaks as a function of time

concludes the general processing stage common to all landmark types.

To find sonorant [s] landmarks, the CLD only considers voiced regions of the

utterance. Because [g] landmarks are indicators of the time when glottal vibration turns

on or off as determined by the energy change in Band 1, sonorant landmarks can only

exist in the regions of the signal bounded by a +g landmark on the left and -g landmark

on the right2. Within the voiced region, peaks in Bands 2-5 are grouped based on the sign

and temporal proximity; that is all peaks or dips that happen somewhat coincidentally

make up a group that is passed to the next processing stage. There are usually a number

of such groups within each utterance. In each group, the largest peak or dip is termed a

pivot and considered a likely candidate for a sonorant landmark. The information

2 For further information regarding the [g] landmark estimation and analysis, the reader can refer to Liu's
doctoral thesis.
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regarding the remaining peaks in the group is used when determining whether the pivot

passes the landmark requirements. For ease of understanding, Figure 2.3 presents the

visual output of the CLD for utterance [ana]. The broadband spectrogram tops the figure,

followed by the plots of energy in each frequency band as a function of time. The band

number is located to the left of each plot. The added notation in Figure 2.3 highlights two

groups of energy fluctuations that are considered to occur somewhat coincidentally: the

first group has 3 energy peaks and the second 4 dips in Bands 2-5. The largest peak in

each group across the 4 frequency bands is a pivot, also noted on the diagram.

To become a sonorant landmark, each pivot needs to pass three criteria of

sonorant regions labeled steady-state, abruptness, and staggered peaks criteria. Table 2.1

summarizes the theoretical basis and expectation for each test.

Name of test Theoretical basis
After the primary articulator has made a complete closure, the vocal folds continue to

Steady-state vibrate and the vocal tract shape is relatively constant, resulting in a relatively
unchanged low frequency content during the constricted interval.

Abruptness test Acoustic manifestation of a sonorant release or closure is a rapid change in the F2 to
F4 range - decrease in the energy for sonorant closure and increase for a release.
Another measure of high-frequency abruptness for sonorant consonant states that

Staggered-peak peaks in each group must occur somewhat coincidentally with each other and their
pivot.

Table 2.1 - Overview of the criteria used in the sonorant landmark estimation. Summary of the
requirements that each pivot has to pass before it is promoted to a sonorant landmark. The table illustrates
the theoretical basis for each of the tests in the CLD.

Pivots that pass all three criteria become sonorant landmarks. The three criteria

also determine whether the landmark is located at the time of a sonorant closure or

release, while the sonorant landmark time is the same as the time of the pivot. Pivots that

pass the abruptness and staggered-peak criteria, but not the steady-state, are classified as

the specially introduced fourth landmark type - vocalic [v] landmark.

31
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to the same group
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the same group

Figure 2.3 - The visual output of the CLD gives the broadband spectrogram of the utterance and the energy in
each frequency band plotted as a function of time. The frequency band number is noted on the left of each plot -
information regarding the band ranges can be found in the text. After the energy of each frequency band is
analyzed in terms of somewhat rapid energy changes, the peaks and dips are grouped based on their temporal
proximity and sign. The largest peak/dip in each group is named a pivot and considered a likely candidate for a
sonorant landmark.

The origin of all [v] landmarks in utterances processed by the CLD is thus a pivot

that passed two of three requirements for a sonorant landmark. The remaining pivots that

do not meet the sonorant or vocalic landmark criteria are discarded. Figure 2.4

summarizes the process by which pivots are analyzed for sonorant landmark
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characteristics. Once all pivots have been examined, the landmark types and times are

saved to be written to a text file. This point concludes the sonorant detection within the

CLD.

pivot

INF

testiAbruptness 
NOPivot 

discarded

YES

Staggered- Pivot discarded
eak tes

YES

teady-state Vocalic [v] landmark

tYES

Sonorant [s] landmark

Figure 2.4 - Illustration of the decision process used to determine whether a pivot is promoted to a
sonorant landmark. Table 2.1 summarizes the theoretical basis for each test.

2.3.2 Sonorant landmark performance on the VCV database

Liu chooses a sonorant landmark to mark the time in the utterance when a

sonorant closure or release is made [13]. The sonorant class of consonants in Liu's
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detection scheme includes only nasals and acoustically abrupt [1] segments; glides and

liquids are classified as semivowels and described as [-consonantal]. Assuming that [m],

[n], [rj], and [1] are all acoustically abrupt in a VCV database, each of the above segments

should have two landmarks: [-s] to designate the time of the sonorant closure and [+s] of

sonorant release. Although sonorant landmarks in a VCV database are expected to appear

in pairs, the CLD does not enforce this property. A sonorant closure or release can and

often does exist without a corresponding sonorant pair in a VCV database due to CLD

performance errors or in instances when closures and releases are not acoustically abrupt.

For this reason, we adopt the sonorant landmark (closure or release) as the basic unit

when evaluating the accuracy of the sonorant landmark detection in this database.

The described VCV database of 3 speakers and 6 vowels has 72 sonorant

segments (definition for a sonorant consonant is adopted from Liu and includes nasals

and acoustically abrupt [1] segments). With the utterance [irji] missing in the database for

one speaker due to a corrupted file, this number is adjusted to 71 acoustically abrupt

sonorants - 53 nasals and 18 acoustically abrupt [1] segments - each with an expected

landmark at the sonorant closure, [-s], and release, [+s]. We thus expect 71 sonorant

closures and releases for a total of 142 sonorant landmarks. Table 2.2 contrasts the actual

against the expected performance.

Further analysis into the output of the CLD reveals two types of error:

1. Some sonorant closures and releases are undetected by the CLD - we will

refer to these as deletions in the rest of the study,

2. Some sonorant landmarks are placed at non-sonorant segments, which we

label insertions for the remainder of the study.
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-s +s Total

Nasal 31 39 70
Actual Abrupt [1] 3 11 14
number

Other 121 46 167

Nasal 53 53 106
Expected Abrupt [1] 18 18 36

Other 0 0 0

Table 2.2 - An overview of the CLD performance results for the described VCV database. This table
indicates that some of the sonorant closures and releases were undetected by the CLD, while some sonorant
landmarks were erroneously placed within non-sonorant segments.

In order to fully analyze each of the error types and rates, we require a means to

further classify estimated sonorant landmarks based on the location within the utterance

where they occurred. Hand-classifying each sonorant landmark as

1. true positive - placed at a closure or release for a nasal or [1],

2. or false positive - placed within a vowel, semivowel, at a vowel-

semivowel/semivowel-vowel (VS/SV) boundary, or vowel-obstruent/obstruent-

vowel (VO/OV) boundary,

produces the desired detection rates. The sub-classification of true and false positives also

gives insight in the structure of detections and insertions. Table 2.3 shows the number of

true and false positive sonorant landmarks distributed across the six groups. The list of

utterances, landmark times and types, and their classification into one of the six groups

can be found in Appendix A. If we define the detection rate to be

DetectionRate = Detectionsx100%, (2.1)
Expected _ Sonorant _ Landmarks

the detection rate of the sonorant landmarks for this VCV database is 59.2%.
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Total Is] Expected Is]
Comment -s +s landmarks landmarks

Nasal 31 39 70 106
True positive

Abrupt 1 3 11 14 36

Within Vowel 77 21 98 --

VS/SV 5 13 18 -

boundary False positive
VO/OV 39 11 50 -

boundary

In semivowel 0 1 1

True positive 34 50 84 142
Total

False positive 121 46 167 --

Table 2.3 - This table gives insight into the structure of the false positives and detection rates. Each
sonorant landmark produced by the CLD can be hand-classified as a true or false positive. True positives
(detections) are landmarks at closures and releases for nasals and [I]s. While each sonorant segment in this
database is expected to have exactly two sonorant landmarks - one for the closure and one for the release -
the actual results show that sonorant landmarks had anywhere between zero and two landmarks. False
positives can be exhaustively classified in four categories, depending on whether they were inserted in a
vowel or semivowel segment, at a vowel-semivowel/semivowel-vowel boundary, or vowel-
obstruent/obstruent-vowel boundary.

Qualitatively such a low detection rate means that for each detected sonorant landmark,

almost one other is missed. Detection rate is higher for nasals than for acoustically abrupt

[1] segments, which is in agreement with Liu's observation for the original CLD

databases [13]. Furthermore, based on a limited number of tokens, it appears that

sonorant closures are better detected when they are adjacent to certain vowel types. To

illustrate this, Table 2.4 shows the number of detected sonorant landmarks based on the

adjacent vowel. Although more speakers/tokens are needed in order to make a conclusive

claim, it appears that the sonorant landmark detector does not perform well if the

sonorant closures are adjacent to a nonlow back vowel.
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a a C i o U
-s 8 6 9 9 2 0
+s 9 10 9 6 10 6

Total 17 16 18 15 12 6
Detection 17/24 16/24 18/24 15/22* 12/24 6/24
Rate (%) (70.8) (66.7) (75.0) (68.2) (50.0) (25.0)

*The number of expected sonorant landmarks for vowel [i] is different because of the missing utterance
[iji] for one speaker.

Table 2.4 - Distribution of detected sonorant landmarks based on the adjacent vowel. For example, a
detected [-s] landmark at a sonorant closure before the vowel [a] would contribute one token to the [-s]

entry under the vowel [a] in the table. This sub-classification illustrates the disparity between the detection
rates of sonorant landmarks adjacent to non-low, back vowels compared to the rest.

A plausible explanation for the poor performance is that the low frequencies of

the first and second formants, which are characteristic of nonlow, back vowels, cause

them to have relatively weak energy at higher formants. The low energy at frequencies

above the second formant in the vowel segment in turn produces a rather smooth

transition from the vowel to the sonorant closure that does not satisfy the required energy

abruptness criterion. Failure to meet this criterion precludes the pivot from further

landmark consideration. In support of this hypothesis is the trend of the detection rate -

the lowest detection rate is for the vowel [u], which has the lowest frequencies for F1 and

F2. If this hypothesis is true, the sonorant landmark detector in the CLD could use the

information regarding the adjacent vowel type to calibrate its criteria. This calibration

could be implemented as a second pass in the landmark estimation: once the vowel types

and times are determined, the sonorant landmark estimation within the CLD could lower

the energy threshold requirement for pivots adjacent to the nonlow, back vowels and

reexamine them.

Examination of insertions, and in particular the disproportionate number of

sonorant landmarks inserted in vowel segments, reveals that about 50% of vowel
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insertions are either at the beginning of the utterance, for the onset of voicing, or at the

end of the utterance as the voicing ceases and the speaker's voice becomes aspirated. For

continuous and spontaneous speech with longer utterances, we expect the vowel

insertions as a percentage of total insertions to decrease significantly. Insertions at

obstruent segments, in semivowels, and those placed near the center of a vowel do not

appear to be specific to the VCV database used in this study.

2.4 Designing the system in terms of the [s] landmark performance

The analysis so far described the detection rate and error types of the sonorant

landmark detection and CLD in isolation from the nasal detection module. This section

characterizes the implications they have on the design of the nasal detection module.

Design concerns are organized in two sections based on the error type.

2.4.1 Design considerations of the nasal detection module due to deletions

Because a feature-based speech recognition system relies on estimated landmarks

for further articulator-bound feature processing, low sonorant landmark detection rate of

the CLD presents a substantial problem for the nasal detection. With a deleted landmark,

feature-based nasal detection has no information that an acoustically abrupt change

occurred and will not examine the signal for further acoustic characteristics. A

methodical approach to this problem suggests two possible solutions:

1. Modifications to the CLD algorithms are able to raise the detection rate to a

sufficiently high level such that the nasal detection module need not address

the case of deleted landmarks. One such enhancement, as we have already
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speculated, could include lowering the energy abruptness threshold or

restricting the threshold to certain bands for a pivot based on the type of the

adjacent vowel.

2. The design of the nasal detection module accounts for deletions by

evaluating possible nasal contexts in the signal other than the landmark

points. The additional processing may include testing [v] in addition to [s]

landmarks because of their origin as sonorant landmark candidates that failed

the steady-state criterion.

In this study we choose to address the problem of low sonorant detection rate

from within the nasal module. The reasoning behind this approach is that several

articulator-bound modules within the LAFF project are either already developed or in

progress based on the existing CLD developed by Liu. Customizing the CLD for sonorant

landmarks would thus require that the nasal detection module include its own version of

the CLD when added to the LAFF system. Following in the same fashion, if more

articulator-bound feature modules were to include their own customized CLD, the

separation between the articulator-free and articulator-bound feature processing that is the

basis of the LAFF project would no longer exist. Sonorant landmark estimation in

addition depends on [g] landmarks to establish voiced and unvoiced regions in the

utterance. Modifications could thus require changes in the processing of both [g] and [s]

landmarks to enhance its performance.

Working with the existing CLD algorithm, we change the focus of our analysis

from sonorant landmarks to pivots and examine whether pivots can be used to

compensate for the low detection rate of sonorant landmarks. As described earlier, pivots
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have to pass a set of three criteria to become sonorant landmarks. Based on which criteria

they satisfy, pivots are either promoted to sonorant [s] or vocalic [v] landmarks, or

discarded. This decision process raises the following questions as suggested by Chen [1]:

How many deletions originate as a pivot that was erroneously promoted to a vocalic

landmark or discarded based on the three criteria, and how can we use this information to

compensate for the low sonorant detection rate?

The first step in answering these questions is to hand-label each sonorant closure

and release in the database, and compare these times against the pivots produced by the

CLD. Table 2.5 outlines the number of sonorant closures and releases that were examined

by the CLD as pivots and their final classification.

Missing
Pivots Pivots pivots or

Sonorant promoted promoted Discarded Total pivots Expected
type to [s] to [vI Pivots pivots replaced pivots

landmarks landmarks by [g]
landmarks

Nasal 70 7 26 103 3 106

Abrupt 14 2 18 34 2 36
ills

Total 84 9 44 137 5 142

Table 2.5 - The pivot analysis suggests that pivot detection rate for sonorant closures or releases is
significantly higher than that of sonorant landmarks. If pivots are used as possible nasal context in an
utterance instead of sonorant landmarks alone, 137 of existing 142 sonorant closures and releases would be
examined for possible nasal characteristics.

Table 2.5 shows that 97.2% of nasal closures and releases, and 94.4% of abrupt

[l]s, are examined as pivots during the CLD processing. For nasals, approximately 7% of

examined pivots are falsely promoted to vocalic [v] landmarks and 25.2% are discarded.

Even larger percentage of pivots is erroneously rejected for abrupt [l]s; about 6% of
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abrupt []s are classified as [v] landmarks, while about 53% of pivots are falsely

discarded. For the remaining <4% of nasals and laterals that did not have a pivot, the

majority were a consequence of a CLD processing rule which requires that no pivots exist

in the proximity of [g] landmarks. In these utterances the placement of a [g] landmark

close to the sonorant closure or release caused that portion of the signal not to be included

in the pivot analysis, ultimately resulting in a deleted sonorant landmark. In one instance

a missing pivot was caused by an acoustically non-abrupt transition between the vowel

[u] and a nasal. Pivot analysis data can be found in Appendix B.

Selecting a pivot instead of a sonorant landmark as a possible nasal context in the

nasal detection module guarantees that >96% of all sonorant closures and releases will be

examined for nasality. The drawback to this approach is that in the VCV database of 453

utterances and 71 sonorant segments, the CLD examines 1,483 pivots, thus significantly

increasing the amount of processing needed for the nasal detection. In order to avoid this

increase in the computational requirement, we require that the acoustic criteria for

nasalization be ranked based on their effectiveness in separating nasal from non-nasal

pivots. By employing the most effective criteria first, we minimize the required

computational power by rejecting most non-nasal pivots early without calculating

parameters used for the remaining criteria. More on the implementation of the ranked

processing scheme can be found in Chapter 7.

2.4.2 Design considerations of the nasal detection module due to insertions

Figure 2.2, adopted from Liu, suggests that following the landmark estimation

sonorant landmarks need only be separated into those belonging to nasals and
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acoustically abrupt [I]s. The high insertion rate of sonorant landmarks within non-

sonorant segments requires that nasal detection also accounts for and rejects false

positives. Including the classification of the false positives from previous sections, Figure

2.5 alters the original landmark tree implemented by Liu to account for the observed

performance characteristics of the sonorant landmark detection.

[+sonorant]

[+consonantal] [-consonantal]
vowel, semivowel, [h], glottal stop

[-sonorant]

asals Abrupt [1] False positives

Landmarks at vowel- Landmarks in vowel Landmarks at vowel-

semivowel/semivowel- obstruent/obstruent-
vowel (VS/SV) boundary vowel (VO/OV) boundary

Figure 2.5 - The landmark tree proposed by Liu is modified to account for the sonorant landmark insertions seen
in the CLD performance. Insertions of sonorant landmarks within non-sonorant segments require that nasals are
detected from acoustically abrupt [l]s and false positives, which include sonorant landmarks placed in vowel,
semivowel, and obstruent segments. The variety of non-nasal groups suggests that a larger number of parameters
need to be used to successfully separate nasal from non-nasal sonorant landmarks.

The inserted landmarks effectively expand the number of classes under the

sonorant landmark group to nasals, abrupt [I]s, vowels, semivowels, and obstruents. With

such a wide variety of segments and boundaries, the design of the nasal detection module

requires a number of measurements to successfully separate nasals from the remaining
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groups. In Chapters 3-6, we propose and test the effectiveness of 10 acoustic cues in

separating nasal from non-nasal sonorant landmarks. Because these parameters are based

on a number of past studies, the focus of our discussion is on their formulation within a

set of automated algorithms in MATLAB that are used to extract them. The question that

we attempt to answer is whether we can select a subset of cues that can be formulated as

automated algorithms that will successfully separate nasal from non-nasal landmarks.

Selecting a subset of these measurements in Chapters 3 through 6, and combining them

into a feature-based module in Chapter 7 concludes the goal set out at the beginning of

this study, which is to design a successful automated feature-based nasal detection

module.

2.5 Summary

Chapter 2 describes the landmark estimation on a vowel-consonant-vowel (VCV)

database as the first processing stage in the nasal detection module. In landmark

estimation we use Liu's Consonant Landmark Detector to produce three types of

landmarks: [glottis], [sonorant], and [burst] landmarks. Based on the acoustic event

described by each landmark type, we focus further discussion on sonorant landmarks as

prime candidates for nasality.

The performance of the CLD for this particular database is characterized by a low

detection rate of sonorant closures and releases, and a high rate of sonorant landmarks

inserted within non-sonorant segments. Sonorant segments are detected at a rate of

59.2%, where nasals are better detected than abrupt [I]s. Both findings are in accordance

with the results reported in Liu. Inserted landmarks can be exhaustively classified in four
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groups; sonorant landmarks inserted within vowel and semivowel segments, at vowel-

semivowel/semivowel-vowel, and vowel-obstruent/obstruent-vowel boundaries.

The low detection rate of sonorant landmarks prompts the discussion of pivots as

potential candidates for nasality. This analysis concludes Chapter 2 with two

recommendations:

1. The final nasal detection module should focus its processing on all pivots

examined by the CLD - combined they have been shown to capture >96% of all

sonorant closures and releases in our VCV database,

2. The acoustic criteria should be designed in such a way as to minimize the

computational power required by the nasal detection module.
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Chapter 3

3.1 Acoustic Criteria as the Basis for Nasal Detection

In Chapter 2 we described the first stage in the three-stage model of a nasal

detection system by detailing the process of landmark estimation on a vowel-consonant-

vowel (VCV) database of utterances. In the following four chapters, we use the 2501

nasal and non-nasal sonorant landmarks estimated and hand-labeled in Chapter 2 to

design the second processing stage - formulating a set of acoustic criteria that can

successfully classify these landmarks as nasal or non-nasal through automated

algorithms. In other words, in the remaining chapters we focus on finding promising

acoustic cues that can successfully classify each sonorant landmarks as nasal or non-

nasal. The design process is divided between four chapters for clarity. In Chapter 3 we

describe the meaning and significance of the acoustic criteria in nasal detection and

general processing of the signal and data analysis common to all chapters. Chapters 4, 5,

and 6 propose a set of acoustic cues and examine their effectiveness at detecting three

events that are associated with the production of nasal segments in American English -

vowel-nasal boundary, nasal murmur, and nasalized vowel. Each chapter concludes with

a definition of an acoustic criterion or criteria for the specific event and an analysis of its

performance when applied to the set of estimated sonorant landmarks from Chapter 2.

Chapter 7 combines the results of Chapters 2 through 6 by applying the formulated

acoustic criteria on the 1483 pivots estimated for this VCV database and examining their

performance in separating nasal from non-nasal pivots.

'The semivowel segment group of estimated sonorant landmarks from Table 2.3 is not used in the
measurements presented in the next three chapters - analysis on a single-member group is thought to have
limited significance for the overall results.



3.2 What are acoustic criteria?

When testing a pivot or landmark for nasality, the nasal detection module

analyzes the portion of the signal immediately preceding and following the pivot or

landmark time. For a pivot located at the time of a nasal closure in a VCV database, for

example, the preceding signal portion is a vowel, and is specifically expected to exhibit

signs of vowel nasalization. The portion of the signal following the pivot time, on the

other hand, follows the nasal closures and is expected to show characteristics of nasal

murmur described in Chapter 1. To classify a pivot as nasal then, is to confirm that the

signal surrounding the pivot time exhibits some combination of the nasal boundary, nasal

murmur, and vowel nasalization cues. A non-nasal pivot, by the same token, fails to

exhibit such acoustic characteristics. A non-nasal pivot can be a true sonorant landmark

or pivot placed at the closure of an abrupt [1], or a false positive - a sonorant landmark or

pivot located within a vowel or semivowel segment, at a vowel-semivowel/semivowel-

vowel (SV/VS) or vowel-obstruent/obstruent-vowel (VO/OV) boundary. The regions

surrounding these pivots will have diverse acoustic characteristics, which will generally

differ from those of the vowel nasalization and nasal murmur. Figure 3.1 illustrates the

utterance [ama] with two pivots - the first located within the initial vowel at 76ms and

the second pivot located at the time of the nasal closure, around 184ms. From the

diagram, it is evident that characteristics of the signal on at least one side of the pivot

time differ for a nasal and non-nasal pivot. The goal of the acoustic criteria is to capture

this acoustic difference.
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Figure 3.1 - This figure contrasts a non-nasal and nasal pivot. The non-nasal pivot is located within a vowel
segment, around 76 ins, and while the signal around it may exhibit properties of a nasalized vowel, it fails to
exhibit characteristics of a nasal murmur. The nasal pivot at 184 ins, on the other hand, exhibits characteristics
of both - the nasalized vowel precedes the pivot time and the nasal murmur characteristics are reflected in the
portion of the signal following the pivot time.

3.3 Acoustic criteria around the landmark point

Sonorant landmark determines what portion of the signal around the landmark

point should adhere to the specific acoustic criterion. The sign associated with the

sonorant landmark indicates the general trend in the change of the spectral energy in

Bands 2-5 - a [-] sonorant landmark indicates decreasing energy due to a more

constricted vocal tract, while a [+] landmark implies increasing energy most often

associated with a constriction release. Each sonorant landmark thus divides the signal
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into a region with higher and lower energy levels. To detect nasals in a set of nasal and

non-nasal sonorant landmarks 2 estimated on a VCV database is to verify that the signal

around the landmark point exhibits a combination of the following properties:

" The change in energy displays characteristics of a vowel-nasal or nasal-

vowel boundary,

* The decrease in energy is due to a nasal closure - consequently, the

region of the signal with a lower energy level shows properties of the

nasal murmur,

* The portion of the signal adjacent to the landmark with a higher energy

level displays properties of a nasalized vowel.

The role of the acoustic criteria for nasality is to test the signal around the sonorant

landmark and determine whether it shows characteristics of the above three events. As

such, acoustic criteria can be divided into a criterion for the nasal boundary, nasal

murmur, and nasalized vowel depending on whether they examine the acoustically abrupt

transition, or region of lower or higher energy level.

An acoustic criterion for nasality usually consists of an acoustic cue or a set of

acoustic cues, and the quantified expectation regarding their behavior. The cues selected

for an acoustic criterion show some special property when measured in the portion of the

signal around a nasal that differs from making the same measurements around a non-

nasal segment. Figure 3.2 illustrates an example of an acoustic cue, AC1, for the nasal

murmur. When measured in the portion of the signal following a nasal [-s] landmark, the

2 Because our discussion in Chapter 4,5, and 6 is based on a set of 250 nasal and non-nasal sonorant
landmarks from Chapter 2, we reserve the discussion on how pivots convey the expectation of acoustic
characteristics for Chapter 7.
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range of values for this cue is [0,0.5]. Measured in the signal following a non-nasal [-s]

landmark, however, the same cue exhibits a significantly different behavior, with the

values falling in the [0,3] range. Knowing that ACI will behave differently when

measured at nasal and non-nasal sonorant landmarks allows us to incorporate the

knowledge of its quantified behavior within the automated nasal detection module. If

measuring AC 1 in the portion of the signal following a [-s] or preceding a [+s] landmark

produces a value of 2, the nasal detection module can classify that portion of the signal as

not belonging to a nasal murmur. If the produced value is less than 0.5, we require

additional acoustic cues to determine whether the landmark is indeed a nasal. The

expectation that the value of ACi does not exceed 0.5 or 1 for a nasal landmark is an

example of an acoustic criterion. Interpretation of box plots, such as the one in Figure

3.2, can be found in Section 3.4.1.

Acoustic cue AC 1 measured in the portion o1 the signal following a nasal and non-

6 nasal [-sl landmark

5-

4-

-1
non nasal nasal

Figure 3.2 - An example of a significant cue ACI measured in the portion of the signal following nasal and
non-nasal [-s] landmarks. The consistently differing values of ACI when measured around nasal and non-
nasal sonorant landmark suggest that its quantified behavior can be used as an acoustic criterion in deciding
whether sonorant landmarks show the nasal murmur characteristics.
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3.4 Our approach to the acoustic criteria analysis

Acoustic cues characteristic of the nasal boundary, nasal murmur, and vowel

nasalization have been studied to a varying degree in the past. On the one hand, Chen

fully formulates an acoustic criterion for the nasal murmur that included all estimated

nasal sonorant landmarks and rejected 54.5% of non-nasal landmarks for nasal murmur in

the original database of utterances [1]. The acoustic cues for the nasal boundary, on the

other hand, do not appear to have a sufficiently quantified form that can function as the

basis for an acoustic criterion in an automated module. In addition, all criteria and cues

from past studies quote values obtained through hand-measurements that often include

human interpretation and correction. In order to incorporate these results in the automated

nasal detection module, in the next three chapters we:

1. Formulate all available criteria and cues in terms of automated algorithms in

MATLAB,

2. Analyze them on the 250 hand-labeled nasal and non-nasal sonorant

landmarks by:

" Examining differences in the distribution of each cue when measured

around nasal and non-nasal sonorant landmarks,

* Analyzing performance of the existing acoustic criteria and suggesting

possible improvements.

The values of extracted cues are thus analyzed in terms of the past studies and through

statistical analysis of the difference in the extracted values for the nasal and non-nasal

group of sonorant landmarks. The next section briefly explains the methods used for the

statistical data analysis.
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3.4.1 Analysis of variance

This thesis study uses the MATLAB analysis of variance (ANOVA) function to

evaluate the differences between groups of data. The null hypothesis (HO) tested by

ANOVA is always the statement that the groups in question have the same mean. The p-

value indicated by the ANOVA analysis indicates the strength of the null hypothesis and

is compared against the stated confidence level termed alpha. Alpha determines how

confident we are when rejecting the null hypothesis in the statistical analysis. Table 3.1

offers an interpretation of p-values with alpha set to 0.05 based on convention [7]. The

table shows that the calculated p-value must be equal to or less than alpha in order to

reject the null hypothesis with a 95%, ((1- a)x 100%), confidence level.

P-value Interpretation

p<0.0I Very strong evidence against HO

0.01 p < 0.05 Moderate evidence against HO

0.05 p < 0.10 Suggestive evidence against HO

0.10 p Little or no real evidence against HO

Table 3.1 - Interpretation of the p-value used when analyzing the significance of acoustic
cues in Chapters 4, 5, and 6.

As a part of the statistical analysis we also show the box plots of values extracted

for the nasal and non-nasal groups of sonorant landmarks. Here we give a brief

interpretation of the box plots from the MATLAB reference index. The lower and upper

lines of the "box" are the 25th and 75th percentiles of the sample, while the horizontal

line within the box (at the center or close to the center) is the sample median. Distance

between the median line and the center of the box, is an indication of skewness of the
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distribution, while the distance between the top and bottom of the box is called the

interquartile range. Plus sign(s) that may appear outside the interquartile range are

outliers in the data; by default, an outlier is a value that is more than 1.5 times the

interquartile range away from the top or bottom of the box. For further interpretation of

the box plots the reader should refer to the MATLAB help index or reference books.

We conclude this chapter by explaining the initial processing of the signal that is

common to all algorithms explained and used in the next three chapters.

3.5 General processing of the signal

The analyses for all algorithms are conducted with short-time processing

techniques commonly used in the processing of speech signals. The underlying

assumption in the use of these techniques is that speech is quasi-stationary and its

characteristics change slowly with time due to the physiological properties of the vocal

tract. These properties allow short portions of the speech signal to be isolated and

processed as if they belonged to a sustained sound. In order to produce such short

segments, the speech signal x[n] is multiplied by a finite-duration window w[n] to

produce snippets

s = w[n] x x[n]. (3.1)

For further characteristics and discussion on windowing, the reader can refer to any

speech-processing textbook. As in many digital speech-processing applications, the

window used in this thesis is a 25.6 ms hamming window applied every 10 ms. In the

remaining chapters we will refer to the portion of the signal under a window as a frame.
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In particular, we refer to "frame at time t" as the portion of the signal captured by placing

the center of a 25.6 hamming window at time t. With a 16 kHz sampling frequency, each

25.6 ms window has 413 points allowing the algorithms to use a 512- or 1024-point DFT

in calculating the short-time spectra. For algorithms that require calculation and analysis

of the short-time spectra, we use the 1024-point DFT to enhance the frequency resolution

to 15.75 Hz. All data analyses of short-time spectra are based on acoustic values that

have been converted to decibels, using the equation

Vdb = 20 -log 0 V. (3.2)

3.6 Summary

In this chapter, we explain the meaning and significance of acoustic criteria for

nasality as tests that determine whether the signal around the landmark shows evidence of

nasal characteristics. Depending on the region of the signal around the landmark to which

they apply, we separate the criteria for nasality into a criterion for the nasal boundary,

nasal murmur, and nasalized vowel. In the next three chapters we evaluate the existing

acoustic criteria and cues on the set of 250 nasal and non-nasal sonorant landmarks. The

results are analyzed in terms of the past observations and using the ANOVA statistical

analysis function in MATLAB.
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Chapter 4

4.1 Nasal boundary

In Chapter 3 we concluded that true nasal sonorant landmarks in a VCV database

separate the signal into a region belonging to a vowel segment and a portion with the

nasal murmur characteristics. In this chapter we attempt to formulate an acoustic criterion

that describes the transition between these two regions by measuring two acoustic cues

across 2501 nasal and non-nasal sonorant landmarks estimated in Chapter 2. Our

expectation is that the analysis of the quantified cues will show their applicability and

effectiveness in separating nasal from non-nasal tokens as a part of the automated nasal

detection module. Selected cues and quantitative expectation regarding their behavior

will be included in the final nasal detection module, and tested on 1483 pivots estimated

in the VCV database. The significance of developing an acoustic criterion for the nasal

boundary extends to spontaneous speech - in American English at least one segment

adjacent to the nasal is a vowel and will have the boundary properties described in the

next sections. In this chapter we:

1. Propose two acoustic cues that have been found characteristic of the VN/NV

boundary in past studies, which mostly used hand-measured observations,

2. Quantify and analyze them on the set of 250 estimated nasal and non-nasal

sonorant landmarks,

3. Select effective cues and quantified expectation regarding their behavior for

inclusion in the automated nasal detection module.

For the remainder of this chapter we do not use the single member of the 'in semivowel' group of
estimated sonorant landmarks. It is our opinion that analyses on a single-member group would carry limited
significance.



4.2 Overview of the selected acoustic cues

Transition between a vowel and nasal segment is an acoustically rich area that is

only partially examined during the landmark estimation. Our main objection is that the

four examined frequency bands, Bands 2-5 specified in Chapter 2, are treated as equally

important during the sonorant landmark analysis though it is expected that most robust

acoustic changes will for the most part occur in the first and second formant region, and

sometimes extend to the third formant frequencies. In this section, we describe the

theoretical basis for the two acoustic cues that further examine the acoustic changes

across [s] landmarks, and our approach to measuring them with automated algorithms in

MATLAB. The cues compare acoustic properties of the signal, such as the energy in a

band or formant region, before and after the landmark point for some time interval when

attempting to determine whether they show properties of the nasal boundary.

Energy difference

Theoretical basis

in the 0-350 and 350-1000 Hz frequency bands

The low first formant typical of the nasal murmur around 250Hz
suggests that a possible characterization of the nasal boundary is the
difference between the energy in the 0-350Hz and 350-1000Hz
frequency bands. Transition from the vowel to the nasal segment
involves lowering the first formant to the 200-350Hz range and an
introduction of a nasal zero in the second formant region. Our
expectation is that the energy of these two bands will be directly
affected by the movement and widening of the first formant in the
nasal segment and the introduction of the nasal antiformant at
higher frequencies.

In terms of the energy of the two bands, the lower band energy (LE)
is expected to increase as we move into the nasal murmur region
and as the location of FI shifts to the 200-350Hz range. At the same
time, the upper band energy (UE) decreases due to the lower energy
of F2 and higher formants. Difference in the energy ED, defined as

ED=LE-UE, (4.1)
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is thus expected to become more positive when measured across the
nasal closure. The opposite is true for the nasal release into the
adjacent vowel.

The significance of this acoustic cue is not in the absolute value of
either LE or UE, but in the way their difference, ED, changes across
the landmark point.

Glass calculates the energy in a particular band by taking the dot
product of the short-time spectra X(d) with a frequency window,
Z(&w) [8]. Using Parsevals relation for conservation of energy, he
shows that this calculation is equivalent to producing the short-time
energy via equation:

Quantitative form E, = M= (xP,[m - ])2 , (4.2)

where xbp[m] is the result of passing the signal through the
corresponding bandpass filter.

Glass claims that this acoustic cue has been shown to successfully
separate nasals from semivowels [8].

The first step in measuring the energy difference between the two
frequency bands is to design two filters with the Matlab Filter
Design Toolbox. One filter is a low-pass windowing filter with a
cutoff frequency of 350 Hz. The filter is designed with 300 taps to
allow for attenuation of -18 dB at 400 Hz. The second is a bandpass
windowing filter that passes the 350-1000 Hz frequency range. The
cutoff rate of -18 dB at 1050 Hz for this filter also requires 300
taps. Both filters use the hamming window, and have a linear phase
and constant phase delay of 150 samples. Frequency response of
each filter is shown in Appendix C.

Algorithm After the filtering stage, the energy of each short-time frame is
calculated using the equation:

E = j (xb, [m]w[n - m])2 , (4.3)

where xbp[m] is the filtered signal of the desired band. The center of
the first hamming window is at 20ms before the landmark point and
last at 20ms after the landmark point. The time increment between
consecutive frames is 1 Oms, producing a total of five observations.

The output of the extraction algorithm for each frame consists of
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three parameters:
1. LE - energy in the low, 0-350Hz frequency band,
2. UE - energy in the 350-1000Hz band,
3. ED = LE - UE - difference in the energy between the lower

and upper frequency band.

Difference between the ED values measured in the first and last
frame is considered to be the net energy change across the boundary
for this time interval, denoted as AED.

HI across the landmark boundary

Another measure that is characteristic of the vowel-sonorant
boundary is the change in the first harmonic across the landmark

Theoretical point [5]. Stevens notes that we expect little change in the amplitude
and spectrum of the glottal source during the interval from the

basis preceding vowel through the murmur into the following vowel,
resulting in essentially no change in the amplitude of the first
harmonic throughout this time interval [23].

Chen measures HI by observing the energy of the first peak in the

Quantitative short-time spectra across the landmark boundary. She also cites a
significant disparity in the first harmonic energy change for the
transition between a vowel and obstruent versus vowel and nasal

form segment, making it a potentially useful measure to distinguish these
two classes of estimated sonorant landmarks.

The complexity of measuring the first harmonic energy lies in
approximating the location of the fundamental frequency with
automated measurements. The approach we take in measuring this
value is to obtain the f track of the utterance using the COLEA2

function with the 'autocorrelation' option. We choose
.t 'autocorrelation' because initial analysis of the FO tracks indicated

that in some instances FO values measured with the 'cepstrum'
approach reflect what appears to be phonetic glottalization of the
segment. The values measured with the 'autocorrelation' method for
the same utterances did not show similar characteristics. The FO track
is read in as a two-column matrix, where the first column of each row
is the time of the center of the window in ms and the second,
estimated F0 for that window in Hz. By default, COLEA sets time to

2 COLEA: A Matlab Software Tool for Speech Analysis is a subset of a COchLEA Implants Toolbox
developed at University of Texas in Dallas.
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increment in 20ms intervals (first 20ms window is centered at 1 Oms,
then 30ms, 50ms, etc.).

Once the FO track is converted into a matrix, the algorithm centers the
first window at 20ms before the landmark point and finds all local
maxima of the 1024-point DFT spectra. For example, if a sonorant
landmark point is estimated at 258ms, the center of the first hamming
window will be at 238ms. After determining seven largest peaks in
the short-time spectra, we read off the FO value at the time closest to
238ms from the FO track. Experimental analysis indicated that
choosing five or more largest peaks of signal's DFT magnitude
always included the first harmonic. HI value is then approximated as
the energy of the peak closest to the estimated FO. The algorithm next
centers the window at the landmark point at 258ms and 20ms past the
landmark point, at 278ms, each time repeating the described steps.
This produces three observations of the H1 value: at the landmark,
and 20 ms before and after the landmark point.

In an attempt to minimize the effect of changing speech intensity, we
propose to measure the absolute value of the first difference between
consecutive HI values,

AH1= H1_at _landmark -H 1_a ns + a H,_, at landmark -H 1 a,+2ms . (4.4)

Large IAH II values indicate greater fluctuation in the energy of the
first harmonic across the stated time interval.

4.3 Analysis of the AED acoustic cue

When describing the acoustic characteristics captured by the ED cue, we noted

that change in the energy of the two bands will depend on whether the cue is measured

across a nasal closure or release. Theoretical expectation is that the shift of the first

formant to lower frequencies and weakening of the second formant at the nasal closure

will cause the LE to increase and UE to decrease. By the same token, release of the nasal
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segment to the adjacent vowel will see an immediate upward shift in the location of the

first formant, resulting in lower LE and increasing UE values. Defined as

ED = LE - UE, (4.1)

ED is expected to show a positive net change across the nasal closure and negative

change across the nasal release for some time interval around the landmark. The absolute

value of that change will depend on the type of vowel adjacent to the nasal segment and

degree of coarticulation between the vowel and consonant segment. In the next two

sections we separate the analyses of the ED values based on the sign of the sonorant

landmark around which they were measured.

4.3.1 ED cue measured at nasal [-s] landmarks

Our initial analysis focused on measuring the ED cue across 31 nasal [-s]

landmarks, with the goal of determining whether the net energy change calculated with

automated algorithms conformed to the defined theoretical expectations. Figure 4.1

illustrates the means of ED values measured at 1 Oms increments starting 20ms before and

ending 20ms past the landmark point. The middle point in the graph corresponds to the

ED values measured by overlaying the 25.6ms window symmetrically over the landmark

point. Vertical bars in the graph represent ±1 standard deviation from the mean.

Visual inspection of the graph indicates that the mean of the ED value changes by

about 10dB when measured 20ms before and 20ms after the landmark point, aligning

with the expectation that nasal closure will cause a positive net change in the ED cue.

The large spread of the observed values confirms our hypothesis that absolute values of
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LE, UE, or ED will vary significantly based on the vowel type, place of articulation for

the nasal segment, and amount of coarticulation between the two.

Vowel segment Nasal murmur

Figure 4.1 - ED values measured at different distances before and after 31 nasal [-s] landmarks. The
positive net change agrees with the theoretical expectation that LE will increase and UE decrease across a
nasal closure, for a positive net change in the ED value.

The net change for each nasal [-s] landmark estimated in the VCV database is a

positive value between 2 and 25 dB that is somewhat dependent on the place of

articulation for the nasal segment at the boundary. Figure 4.2 illustrates the net ED

change for 31 nasal [-s] landmarks separated as measurements made across [m], [n], and

[1j] boundaries.
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Figure 4.2 - Illustration of the individual net ED change for 31 nasal [-s] landmarks. The three groups
correspond to landmarks at [m], [n], and [r] boundaries for the three speakers.

4.3.2 ED cue around nasal [+s] landmarks

Repeating the same analysis on 39 nasal [+s] landmarks aligns with the stated

theoretical expectation. Figure 4.3 illustrates the distribution of values for the ED cue

measured at 10ms increments from 20ms before to 20ms past the nasal [+s] landmarks.

The mean of the distribution changes by about -15 dB between the two most separated

frames, for a total net negative change. The most abrupt change appears to coincide with

the frame centered around the landmark point. The curve also seems to taper for the

furthest points. Possible extension to the analysis of this cue would examine its behavior

across a wider time interval and a possible expansion of the 350-1000 Hz range to 350-

2000Hz to include the introduction of the nasal antiformant between 800 and 2000Hz.
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Nasal Murmur Vowel segment

Figure 4.3 - ED value measured at different distances before and after a nasal [-s] landmark for 39 nasal [-
s] landmarks. The utterances represent all three speakers. The positive net change for this time interval
agrees with the theoretical expectation that LE will decrease and UE increase across the nasal closure.

Specific values measured for the nasal tokens show that each nasal release had a

negative net change in the ED (AED) value that ranged from -5 to -25 dB for this time

interval. The net change in the energy appears to be somewhat dependent on nasal's place

of articulation as illustrated in Figure 4.4. The three groups of ED values are observations

across the [m], [n], and [i] boundary. The net energy change across a nasal release is on

average larger than the change across a nasal closure, possibly reflecting the asymmetry

of the coarticulation for the two types of nasal boundary. Characteristics of the vowel

preceding the nasal segment reflect lowered soft palate for a longer time interval next to

the boundary than the vowel following a nasal release.

62

Measured ED for 39 nasal I+sl landmarks

landmark point

25

15

10 -- ED=LE-UE for

5 nasal release

0 K

-5

101



Change in the ED based on the place of articulation for the nasal
segment
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Figure 4.4 - Illustration of the individual net change in the ED value across 39 nasal [+s] landmarks,
separated to [m], [n], and [U] boundaries.

4.3.3 Applicability of the cue in detecting nasal boundaries

After verifying that measured values align with the theoretical expectation for the

nasal landmarks, we examine the potential applicability of this cue in separating nasal

from non-nasal sonorant landmarks estimated in Chapter 2. Comparison between the

distributions of nasal and four non-nasal groups based on the landmark sign is greatly

hindered by the small representation of some groups of estimated sonorant landmarks.

The vowel-lateral/lateral-vowel boundary group, for example, has a total of 14 tokens, 3

of which are [-s] and 11 [+s] landmarks. Comparison between the nasal and such a small

group of non-nasal sonorant landmarks would carry limited significance. Our approach to

examining the applicability of this cue to the nasal boundary detection is to analyze the

distribution of values for:

1. Nasal [-s] landmarks compared to the aggregate non-nasal [-s] landmarks,

2. Nasal [+s] landmarks compared to the aggregate non-nasal [+s]

landmarks.
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Final performance indication for this acoustic criterion is postponed for Chapter 7, when

a greater number of pivots will determine its effectiveness in separating nasal from each

group of non-nasal pivots.

4.3.4 Nasal versus non-nasal [-sJ landmarks

Figure 4.5 illustrates the distribution of values for the net change in the ED value

across this time interval for 31 nasal and 124 non-nasal [-s] landmarks. The median value

for the nasal group is around 8dB, while the median for the non-nasal sonorant landmarks

falls around 3 dB. The means of the two distributions differ by about 4dB. The ANOVA

statistical analysis shows that the distributions of two groups are significantly different in

terms of the observed mean and spread. With alpha set to 0.05, indicating the required

95% confidence level, a p-value of 0.011 indicates that the AED cue will have

significantly different characteristics when measured at nasal and non-nasal [-s]

landmarks for this time interval.
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Net change in the ED value for non-nasal and nasal [-s] landmarks

30-

25-

20-

15-

10 --
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0- -

-5 -

non nasal nasal

Non-nasal Nasal

Mean 6.16 10.27
St. Dev. 8.31 6.83

Figure 4.5 - Net change in the ED value for 154 nasal and non-nasal [-s] landmarks. The separation of
distributions and means indicates that this acoustic cue is useful in detecting nasal boundaries for sonorant
landmarks.

Table 4.1 illustrates the number of tokens analyzed for each group and an

interpretation of the p-value. Because of the small number of tokens in the sub-

classification of non-nasal landmarks, we do not attempt to test the effectiveness of this

cue in separating nasal from each group of non-nasal sonorant landmarks.

# of tokens # oftokens HO: Means from Group
Group 1 Group 2 in Group in Group 2 p-value l and Group 2 are the

same

Nasal Non-nasal 31 123 0.011 Reject HO

Table 4.1 - Analysis of the two distributions with the ANOVA statistical analysis tool indicates that
measuring AED at nasal versus non-nasal [-s] landmarks will yield significantly different values.
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4.3.4 Nasal versus non-nasal [+s] landmarks

Repeating the same analysis steps for the [+s] landmarks shows that the AED cue

will also produce significantly different values for nasal and non-nasal [+s] landmarks. In

Figure 4.6 we illustrate the observed net change for 39 nasal and 57 non-nasal [+s]

landmarks. Visual inspection of the graph shows that nasal [+s] landmarks produce

negative values for the ED cue, with a median value of about -13dB. The range of values

for the non-nasal group is mostly negative, with a median value of about -5dB. The

means of two distributions differ by about 8dB.

Net change in the ED value for non-nasal and nasal [+s] landmarks

5

0

-

0-10

-15

-20

-25

non nasal nasal

Non-nasal Nasal

Mean -6.07 -13.94

St. Dev. 7.16 6.29

Figure 4.6 - Distribution of AED values for 57 non-nasal and 39 nasal [+s] landmarks. The net change in
the energy across nasal release for these tokens always falls below zero.

Next we analyze the distribution of values for the nasal and non-nasal group of

[+s] landmarks using the ANOVA statistical analysis function and setting alpha to 0.05.
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A p-value of 3.374x10-7 confirms that the distributions are significantly different in terms

of the mean and spread. Qualitatively, a p-value below 0.05 means that measuring the

AED acoustic cue across nasal and non-nasal [+s] landmarks will produce significantly

different results. Table 4.2 illustrates the details of the ANOVA analysis and

interpretation of the observed p-value.

# of tokens # of tokens HO: Means from Group
Group 1 Group 2 in Group 1 in Group 2 p-value I and Group 2 are the

same
Nasal Non-nasal 39 57 3.374x10-7  Reject HO

Table 4.2 - Analysis of the two distributions with the ANOVA statistical analysis tool indicates that
measuring AED at nasal and non-nasal [+s] landmarks will yield significantly different values.

4.3.5 Formulation of an acoustic criterion based on the AED cue

Analysis in the previous section indicated that AED assumed strictly positive

values across a nasal closure and strictly negative values across the nasal release when

measured 20ms before and after the landmark point in the VCV database. Based on this

observation we require that the AED acoustic cue shows a positive net change across [-s]

and negative net change across [+s] landmarks for the same time interval when claiming

that a given sonorant landmarks shows characteristics of the vowel-nasal boundary. A

tighter criterion is contingent on further analysis of other databases and contexts.

4.4 Analysis of Hi across the nasal boundary

Unlike the energy change cue described in the previous section, HI is expected to

remain relatively unchanged across both types of nasal boundary - nasal closure and

release - in a VCV database. As a reminder to the reader, we propose to measure the

absolute value of the first difference in HI between consecutive time frames starting
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20ms before and ending 20ms past the sonorant landmark point. Center of each

consecutive frame is incremented by 20ms. In the remainder of this section we will refer

to this value as IAH 11, where

AH1 = Hat landmark -H1a,20ns +H at _ landmark -H1at+2Oms1. (4.4)

With 250 of nasal and non-nasal sonorant landmarks classified across five groups in

Chapter 2, we analyze the values in two ways:

1. We first compare the measured values against the theoretical expectation to verify

that the automated algorithms are functioning correctly,

2. Using the ANOVA statistical analysis tool we determine how JAHII values

measured across nasal sonorant landmarks differ from those measured for each

non-nasal group.

4.4.1 Fluctuation of the IAH1I value across nasal sonorant landmarks

With a mean value of 1.60dB and standard deviation of 1.03dB for 70 nasal

sonorant landmarks, the energy of the first harmonic does not appear to change

significantly across the nasal sonorant landmark. This observation is qualitatively in

agreement with Chen [5]. Figure 4.7 illustrates the JAH1 values measured for 70 nasal

sonorant landmarks.
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Figure 4.7 - Observation of the IAHI I cue for 70 nasal sonorant landmarks in the time interval starting
20ms before and ending 20ms after the landmark point.

Fluctuation in the IAHi values can potentially be attributed to the automated

estimation of the pitch performed by the COLEA software tool - information regarding

its accuracy does not appear to be available from the developers' website3 . In addition,

COLEA determines the pitch at set times that may differ up to 10ms from the time of the

peak detection - it is unclear whether this time misalignment is significant enough to

contribute to the fluctuation in the energy of the first harmonic.

4.4.2 IAH11 cue measured across nasal and non-nasal sonorant landmarks

In this section we compare IAHiI values observed across the nasal and each non-

nasal group of sonorant landmarks. Similarities between nasal, lateral, and semivowel

groups of sonorant landmarks in Figure 4.8 align with the theoretical expectation; with

negligible increase in the pressure above the glottis and no change in the spectrum of the

glottal source during the interval from the preceding vowel through the sonorant segment

3 http://www.utdallas.edu/-loizou/speech/colea.htm
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and into the following vowel, sonorant boundaries show essentially no change in the

amplitude of the first harmonic [25].

Fluctuation in the energy of the first harmonic across the sonorant landmark point

45 - I -454

40 - -

35 -

30 - -

~25

20 -

15 -

10 -

5 - -.

nasal abrupt Is obstruent semivowel vowel

Figure 4.8 - Energy of the first harmonic measured across 250 nasal and non-nasal sonorant landmarks.
The graph illustrates similarities between the nasal, lateral, and semivowel boundaries, for which negligible
increase in the pressure above the glottis results in the continuity of the low-frequency spectrum amplitude.

Sonorant landmarks inserted within vowel segments surprisingly show the largest

fluctuation in HI; analysis of the specific instances that cause outlier values in Figure 4.8

indicates that these points represent sonorant landmarks at the beginning or end of the

utterance. These contexts appear to cause a large fluctuation in the energy of the first

harmonic. The small change in H1 for the obstruent group of sonorant landmarks is

possibly caused by the significant low-frequency energy that was observed for this

database. Many of the vowel-obstruent boundaries for voiceless segments appear to be

voiced for some time interval in the consonant segment due to this noisy component.

Elimination of the observed noise would likely boost the effectiveness of this cue in
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separating nasal landmarks from those inserted at obstruent boundaries. We next use the

ANOVA statistical analysis tool with alpha set to 0.05 to determine this cue's

applicability in the nasal boundary detection.

oftokens #oftokens HO: Means from Group
Group 1 Group 2 in Group in Group 2 p-value l and Group 2 are the

same
Nasal Abrupt [1] 70 14 0.853 Cannot reject HO

Nasal Obstruent 70 50 1.903x0-6 Reject HO

Nasal Semivowel 70 18 0.007 Reject HO

Nasal Vowel 70 98 0.001 Reject HO

Table 4.3 - Details of the statistical analysis of the JAHII cue confirm the similarity between distributions
of sonorant landmarks at nasal and lateral boundaries. Although not anticipated, the JAH1I cue appears to
show different characteristics when measured at nasal and semivowel boundaries. Nasal boundaries also
differ from sonorant landmarks inserted at obstruent boundaries and within vowel segments.

Statistical analysis results in Table 4.3 confirm the similarity between sonorant

landmarks at nasal and lateral boundaries, and variation in the values for the remaining

groups. ANOVA statistical analysis surprisingly produces a relatively high (above alpha)

p-value for the nasal and semivowel groups of estimated sonorant landmarks, indicating

that their distributions are significantly different. It is unclear as to why semivowels do

not show the same properties as the remaining sonorant groups. The lowest p-value,

indicating greatest dissimilarity, is calculated in a pair-wise statistical analysis between

nasals and obstruents, which is in agreement with Chen's observation [5].

4.4.3 Formulating an acoustic criterion based on the IAH11 cue

An approach to formulating an acoustic criterion based on the JAH Ij cue relies on

the following two observations:
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1. Acoustic criterion should be formulated in terms of the largest permissible value

for JAHII in the stated time interval starting 20ms before and ending 20ms after

the landmark point - this requirement aligns with the stated theoretical basis that

requires relatively constoant energy of the first harmonic across vowel-sonorant

boundaries,

2. The criterion should include values for the nasal, lateral, and semivowel groups

of estimated sonorant landmarks, because they are expected to show the same

acoustic characteristics at low frequencies.

Figure 4.9 illustrates the distribution of IAHl values for landmarks at true sonorant

boundaries (nasals, laterals, and semivowels), and vowels and obstruents. With the mean

value of 1.72 and standard deviation of 1.17 for the aggregate distribution, we propose to

allow IAHlI values to fall within three standard deviations from the mean, or up to

5.23dB. Chapter 7 further examines this acoustic cue by analyzing the performance of the

stipulated acoustic criterion on 1483 pivots - we are mainly concerned with the

performance of COLEA's pitch detection algorithm in different contexts and possible

variability in its performance.
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Fluctuation in the energy for landmarks at sonorant and non-sonorant boundaries
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Figure 4.9 - Sonorant group aggregates values measured for the nasal, lateral, and semivowel groups of
estimated sonorant landmarks because they are expected to show the same characteristics at low
frequencies.

4.5 Summary

In this chapter we set out to examine properties of the nasal boundary that are not

captured during the sonorant landmark estimation. The two cues that we propose focus on

the acoustic characteristics in the first and second formant frequency range. The goal is to

select cues that can be implemented in terms of automated algorithms in MATLAB and

that show distinctive characteristic when measured across nasal versus all other

boundaries. The selected cues are included in the nasal detection module that is tested on

the 1483 estimated pivots in Chapter 7.

The first cue that we described and tested on 250 nasal and non-nasal sonorant

landmarks monitored the difference in the energy of the lower, 0-350Hz, and upper, 350-
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1000Hz frequency bands. Values measured with automated algorithms conformed to the

theoretical expectation and were found to produce significantly different values when

measured at nasal and non-nasal sonorant landmarks. Observed AED mean for nasal and

non-nasal landmarks differed by 4dB when measured across [-s] and 8 dB across [+s]

landmarks.

The next described cue was based on the expectation that sonorant boundaries

will see negligible change in the energy of the first harmonic due to the small change in

the pressure at the glottis. The observed IAHl values were in relative agreement with the

theoretical hypothesis and showed to separate true sonorant landmarks from landmarks

inserted at obstruent boundaries and at the beginning or end of the utterance.

At the end of this chapter we select the two cues, IAHII and AED to include in the

final design of the nasal detection module in Chapter 7.
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Chapter 5

5.1 Nasal Murmur

In this chapter we discuss and formulate an acoustic criterion for the nasal

murmur by examining and modifying Chen's algorithm for nasal murmur detection. In

the original study, this algorithm used six hand-measured acoustic cues to correctly reject

54.5% of non-nasal landmarks and confirm all examined nasal sonorant landmarks for

the nasal murmur characteristics. Despite the low overall non-nasal rejection rate in the

original study, the algorithm discriminated very well against the sonorant landmarks

within vowel segments and at vowel-semivowel boundaries, with rejection rates of 87.5%

and 64% respectively. The reason why we choose to examine and possibly improve this

algorithm for the nasal murmur is that its structure lends itself to implementation in terms

of automated measurements. It is also expected that the low rejection rate will be partially

offset by the acoustic criteria for the nasal boundary and nasalized vowel. In this chapter

we:

" Flesh out Chen's algorithm in terms of automated measurements in MATLAB,

" Examine its performance on the 250 hand-classified nasal and non-nasal sonorant

landmarks from Chapter 2,

" Suggest possible improvements to the algorithm,

* Test the algorithm with the proposed modifications on the same set of sonorant

landmarks and discuss its performance.



5.2 Overview of the acoustic cues in Chen's algorithm

As discussed in Chapter 3, each sonorant landmark separates the signal into a

region with a higher and lower energy level. Chen's algorithm for the nasal murmur

analyzes the portion of the signal with a lower energy level by extracting six acoustic

cues that describe the energy and spectral tilt characteristics. The algorithm then

compares the observed values against the formulated expectation, and rejects some

sonorant landmarks as not showing properties of the nasal murmur. In this section we

introduce the six acoustic cues used in Chen's algorithm. Information regarding each cue

is presented as a three-entry table:

The first entry gives a brief overview of the theoretical basis
Theoretical basis for why the acoustic cue is characteristic of the nasal murmur.

In the second entry we include the quantified form as presented
Quantitative form by Chen, and the cue's effectiveness in separating nasal from

non-nasal landmarks where available.
.t This entry describes the implementation in terms of automated

Algorithm algorithms in MATLAB used for the present study.

Energy characteristics of the signal

Holding the vocal apparatus fixed during nasal consonant
production raises the question of how much do the energy

Theoretical basis parameters change during the nasal murmur. With little change
in the vocal tract configuration, the energy in this signal portion
should be relatively constant.

The energy stability criterion proposed by Chen is measured by
calculating the first difference between the RMS value of

t fconsecutive window frames. Chen requires that the change in
Quantitative form the RMS value between two consecutive frames does not

exceed 1 dB for a nasal murmur. The information regarding this
parameter's effectiveness is unknown.

76



I The short-time RMS value is defined as,

RMS frame = (x[m]xw[m]) 2 ,(5.1)

where w[m] is a 25.6 ms Hamming window applied every 10
ins. The algorithm calculates the first difference in the RMS
value of consecutive time frames as

ARMS = RMSframe+I -RMSframe (5.2)

and compares this value against a firm threshold.

Low-frequency energy centroid fn
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Numerous studies of nasal consonants note a characteristic
spectral shape of the nasal spectrum, dominated by a low
frequency prominence between 200 and 350 Hz. To a first

Theoretical basis approximation, this pole is a Helmholtz resonance between the
acoustic compliance of the vocal tract volume and the acoustic
mass of the nasal passages.

Chen suggests locating the low-frequency energy centroid by
identifying the highest energy peak in the 0-788 Hz frequency
range. For a nasal segment, Chen expects this value to fall

t fbetween 126 and 347 Hz. For fricative obstruent segments, for
Quantitative form example, this value will most likely fall at the upper limit of

the proposed range. Glass claims that the presence of this low
frequency prominence is a necessary, but not sufficient,
condition for the identification of the nasal murmur.

The frequency of the low-frequency energy centroid fl is
evaluated by first calculating the short-time frequency spectra
of the windowed signal using a 1024-point DFT. Within the
short-time spectrum, the peak picking function identifies each

Algorithm of the local maxima in the 0-788 Hz frequency band, and
selects the largest peak. The frequency of the largest peak is
considered to correspond to the expected prominence, termed
fl. The peak-picking function has no requirements in terms of
the absolute or relative peak height.



Spectral Tilt

Theoretical basis

Quantitative form

Algorithm

Three factors contribute to the characteristic spectral tilt of the
nasal murmur. The first contributing factor is the low
frequency of the first pole, which tends to reduce the
amplitudes of the remaining poles in the transfer function.
With a weak second pole of the transfer function in the range
of 750 to 1000 Hz and an antiformant due to the nasal cavity in
the 800-2000 Hz range, the spectral shape is tilted toward low
frequencies. The overall shape typically involves high energy
at low frequencies and a rapid drop at frequencies above 1000
Hz.

In trying to capture the spectral tilt, Chen suggests measuring
the relative differences between the largest spectral
prominences in five frequency bands. The frequency bands are
0-788, 788-2000, 2000-3000, 3000-4000, and 4000-5000 Hz.
If we denote the largest resonance in each frequency band as
AI through A5 , the suggested parameters are A1-A2, Ai-A 3, A2-
A3 and the Sum of Amplitude Differences (SAD), where SAD
= (A1 -A2)+(A 1-A3)+(A 2-A3)+(A 1-A4)+(Ai -A5 ). Measuring the
difference between the resonances is especially suitable
because the energy of each resonance does not need to be
calibrated for speech intensity. For nasal murmur, Chen
expects the following ranges for each parameter:

]1.8<A1 -A2<43.3 dB
22.8<A1 -A3<50.3 dB
-9.7<A 2-A3<33.6 dB
119.5<SAD<200.7 dB

The algorithm used to measure this set of acoustic parameters
is very similar to the one used to determine the location of the
energy centroid. The short-spectra are divided into five
frequency bands, as recommended by Chen. Within each band,
a peak picking function identifies all local maxima and selects
the one with the highest energy. The selected peaks are
denoted A, through A5 , where the subscript indicates each
peak's frequency band. In the final step, the suggested
parameters, A1-A2, A1-A3, A2-A3, and SAD, within each frame
are constructed using these values.

In the next section we describe the way the six cues are used in the reconstruction of

Chen's algorithm.
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5.3 Reconstruction of Chen's algorithm for the nasal murmur detection

When measuring nasal murmur cues, the algorithm places the center of the first

25.6ms window at 30ms past the [-s] and before a [+s] landmark time. The goal of

excluding a time interval immediately surrounding the estimated landmark time is

twofold:

1. Not including the acoustic characteristics of the signal surrounding the landmark

time ensures that the nasal murmur cues are not influenced by the abrupt

landmark boundary,

2. Slight temporal misalignment of the true and estimated landmark time will not

influence the observed acoustic cues

a. This approach allows for the possibility that true landmarks fall 15ms past

the estimated landmark point, without affecting the measurements,

b. For true landmarks that fall before an estimated landmark this approach

will shorten the region corresponding to the nasal murmur by starting

measurements even further away from the true landmark.

Figure 5.1 illustrates the algorithm estimation. The first window or Frame 1, centered at

30ms past the landmark point produces an observation of only one acoustic cue - the

signal's RMS value. This RMS value is denoted as RMS1 and saved for comparison with

the RMS value of the next frame. The window then moves 1 Oms further into the region

with a lower energy level (to the right for a [-s] and left for a [+s] landmark), and

measures all six acoustic cues, RMS 2 , fL, A1-A2, A1-A3, A2-A3, and SAD. The center of
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the window is now at 40ms past the landmark pointi or Frame 2 as referred to in the rest

of this section.

Window N=1: center at 30
ms past the landmark point.
Observed value: RMS
Successful windows K = 0;

YES

NO K= K+1

Window N = N+1: center moved
lOims past the center of the
previous window.
Observed values: RMSN1 , fl, A,-
A2, A-A3, A,-A3, SAD.
Successful windows K = K;

126<41<347 &
NO YES 11.8<A1-A2<43.3 &

N>5 R MS < I dB 22.8<A1-A3<50.3 &
-9.7<A2-A3<33.6 &
119.5<SAD<200.7

z

NO
Ln dmark rejected for the

K>1 t nasal murmur
characteristics

Landmark shows
characteristics 

of the nasalmurmur I

Figure 5.1 -Illustration of the reconstructed algorithm for the nasal murmur detection proposed by Chen.
The algorithm examines at most five frames around the landmark time for the nasal murmur characteristics,
and expects at least two to pass all acoustic criteria to consider the landmark as showing characteristics of

the nasal murmur.

By time frame at time x, we refer to that portion of the signal captured by placing the center of the 25.6ms
Hamming window at time x. In Chen's algorithm we term the portion of the signal captured by placing the
center of the first window at 30ms past the landmark point Frame 1 and increment the count each time we
slide the window by another 1 Oms.
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The algorithm calculates ARMS as the absolute difference between RMS2 and

RMS 1, and proceeds to compare this value against the RMS criterion. If ARMS is less

than 1dB, the algorithm compares the five remaining cues against the expectation

formulated in terms of the acoustic criteria. A single cue that falls outside its permissible

range causes the sonorant landmark to be rejected for the nasal murmur characteristics. If

all five cues fall within the permissible range, however, the algorithm slides the window

by IOims in the same direction, and repeats the process for Frame 3 centered at 50ms past

the landmark point.

If the difference between the two RMS values is greater than 1dB, the frame is

discarded and the algorithm slides the window by another 1Oms to examine the next set

of acoustic cues. The RMS value of the discarded frame still becomes the new reference

for comparison with the next frame. Chen continues to verify the acoustic criteria for as

long as the RMS value of consecutive frames does not change by more than 1 dB. The

goal of using the change in the RMS value to determine whether a frame should be

examined for the remaining acoustic cues is to ensure that measurements are made in the

portion of the signal that shows the steady-state energy characteristic of the nasal

murmur.

Chen gives no precise definition of the maximum number of frames examined by

the algorithm. In this implementation and evaluation of the algorithm, we make an

assumption that no more than five frames need to be examined for the nasal murmur.

Five frames are chosen as reasonable because the center of Frame 5 is 70ms past the

landmark point, and the characteristics of the signal are no longer expected to adhere to

the expectation for the original landmark type. Because Frame 1 gives only the RMS

reference point, five frames give a total of four observations of the six acoustic cues in

81



Frames 2-5. Another assumption that we make is that a landmark showing properties of

the nasal murmur will have at least two of four examined frames pass all acoustic criteria.

The duration requirement implicit in this assumption is that nasal murmur extends at least

63ms past the landmark point (for the case when Frames 2 and 3, centered around 40 and

50ms respectively, pass all acoustic criteria and the remaining frames do not meet the

ARMS requirement). Analysis of the VCV database shows that the signal around all nasal

sonorant landmarks from Chapter 2 shows characteristics of the nasal murmur for at least

80ms past each estimated landmark point, well beyond the requirement. Discussion on

the application of this algorithm to spontaneous speech, where nasal murmur can be

shorter than 50 ms as suggested in Chen is reserved for Chapter 7.

5.4 Performance of Chen's algorithm for the nasal murmur detection

The original algorithm proposed by Chen appears to impose a rigid set of acoustic

criteria that each sonorant landmarks needs to meet for the nasal murmur characteristics.

A consequence of this structure is a high rejection rate across all classes of estimated

sonorant landmarks as defined in Table 2.3. If we define the rejection rate for each of the

five classes as:

number of rejected tokens
rejectionRate = number of tokens *100%, (5.3)

nubrf _tokens _in _class

the observed rejection rates for the automated nasal murmur algorithm are significantly

higher than those reported in Chen.
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The rejection rates for non-nasal sonorant landmarks vary from 89.1% for landmarks

inserted within vowel segments to 71.4% for landmarks at abrupt [1] boundaries. The

average rejection rate across the non-nasal groups of sonorant landmarks is 85.6%. Table

5.1 shows the number of tokens tested within each class, number of tokens rejected for

the nasal murmur, and the rejection rates for each of the five classes of estimated

sonorant landmarks.

Class of Total [s] Landmarks
Sonorant Comment landmarks rejected for Rejection Rate

Landmark nasality
Nasal 70 24 34.3%

True positive
Abrupt 1 14 10 71.4%
boundary

Within vowel 98 90 91.8%

SV/VS False positive 18 14 77.8%
boundary
OV/VO 50 41 82%

boundary

Total Nasal 70 24 34.3%

Non-nasal 180 155 86.1%

Table 5.1 - Implementation of Chen's algorithm in MATLAB with the original set of acoustic criteria.
Although efficient in terms of rejecting non-nasal sonorant landmarks, the algorithm performance is offset
by a relatively high error rate of 34.3% for nasal sonorant landmarks.

The efficiency of the high rejection rate for non-nasal sonorant landmarks is partially

offset by a significant error rate; with the proposed acoustic criteria Chen's algorithm

also discards 34.3% of all nasal sonorant landmarks, mainly due to failures to meet the

criteria for A-A 3 and SAD 2.

Difference in the rejection rate for non-nasal sonorant landmarks in Chen and here

can be attributed to the difference in the structure of the two databases. As previously

2 Examination of the VCV database indicated that rejected nasal landmarks did exhibit characteristics of the
nasal murmur for at least 80ms past the landmark point.
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mentioned, it is expected that stressed syllables in a VCV database are articulated with

greater care, possibly resulting in a cleaner, more robust acoustic signal and better

performance of the original algorithm3. Chen's study, however, cites no instances where

the proposed algorithm erroneously rejected nasal sonorant landmarks for nasal murmur

as observed here. This performance aspect is possibly caused by:

1. A discrepancy between the values obtained through hand-measurements in Chen

and automated algorithms in this study,

2. Chen's decision to formulate an acoustic criterion for nasal murmur that is finely

tuned to accept all nasals in the original database, rather than being general

enough for other speakers and contexts.

We thus turn our attention to the analysis of the specific values measured for the six

acoustic cues as a means of identifying the cause of nasal rejection. Our goal is to

examine the distribution of measured values and suggest modifications that will minimize

the number of nasal sonorant landmarks rejected for the nasal murmur without

significantly affecting the non-nasal rejection rate.

5.5 Evaluation of Chen's acoustic cues and their effectiveness

As a reminder to the reader, Chen's algorithm for the nasal murmur detection

measures the first acoustic cue, RMSFrame 1, by centering the 25.6ms hamming window at

30ms past the landmark point. In the algorithm description and diagram, this frame is

denoted as Frame 1 (n=1). Sliding the window by lOms produces Frame 2, and the first

3 Chen analyzed the performance of the algorithm on the LAFF database of grammatically correct
sentences.
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observation of the six acoustic cues 4. In this section, we analyze the observed values for

each acoustic cue in Frame 2 on 250 nasal and non-nasal sonorant landmarks from

Chapter 2.

Analysis of each cue is divided in three sections.

1. In the first section, we analyze the distribution of values for a specific cue based

on the landmark type around which it was extracted. Using the ANOVA statistical

analysis function we examine whether distributions of nasal and each non-nasal

group of sonorant landmarks are statistically different. This information allows us

to estimate the effectiveness of the cue in separating nasal from non-nasal

sonorant landmarks.

2. Next, we focus on the nasal group of estimated sonorant landmarks and compare

the distribution of values to Chen's suggested criteria - results of this analysis

determine the source of errors observed in the performance of the algorithm.

3. Lastly, we use our previous observation that each estimated nasal sonorant

landmark from Chapter 2 shows acoustic characteristics of the nasal murmur for

at least 80ms past the landmark point to determine how each acoustic cue changes

when measured at different distances from the landmark point. The question we

attempt to answer is - can we use the information obtained by analyzing the

acoustic cues on a single frame to formulate an acoustic criterion for any nasal

sonorant landmark and any frame?

The reason why we choose to focus the analysis on a single frame is the applicability

of the algorithm to spontaneous speech. With no information regarding the duration of

4 The RMS acoustic cue measures the relative change in the RMS value between consecutive frames - for
this reason the first RMS value serves only as a reference and not an absolute acoustic cue.
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the nasal segment in an automated speech recognition module, it may be important to

formulate the decision process such that it relies on only one or two available frames. In

addition, nasal murmur can be significantly shorter in spontaneous speech, often not

exceeding 50ms in duration from the time of the nasal closure. With the current

formulation of the algorithm, which places the center of the first window at 30ms past the

landmark point, only one frame would be completely contained within the 50ms murmur

region. Choosing to analyze the values of cues in the frame closest to the estimated

landmark point follows the reasoning that the signal in the immediate vicinity of the

landmark exhibits the strongest characteristics of the landmark type.

When examining how values of the six cues change as we move further away from

the landmark point, we recall our previous observation that each estimated nasal sonorant

landmark from Chapter 2 has nasal murmur that extends at least 80ms past the landmark

point. With the windows centered at 40, 50, and 60ms past the nasal sonorant landmark

point, we can examine the distribution of values in three frames (Frame 2, 3, and 4

respectively) and still remain in the nasal murmur region. The 25.6ms Hamming window

centered at 60ms past the estimated landmark point is within the hand-measured duration

of all sonorant segments in the VCV database.

5.5.1 RMS

5.5.1.1 Distribution of RMS values across landmark types

Figure 5.2 displays the range of values observed for ARMS between Frames 1 and

2 based on the type of sonorant landmark around which they were extracted. Small mean

value and a tight distribution of the proposed RMS cue for the nasal group validate the

expectation that the fixed vocal tract configuration characteristic of the nasal murmur
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results in a virtually constant signal in terms of energy. The energy stability is to a large

extent mirrored by the sonorant landmarks at lateral boundaries - this group of landmarks

also shows small mean and fluctuation in the energy between Frames 1 and 2. Unlike

these two groups, sonorant landmarks inserted within vowel segments appear to have the

widest distribution of values and most outliers for the ARMS cue. The reason for the wide

spread is the position of the estimated landmark in the vowel. Depending on where the

estimated landmark is in the vowel, centering a 25.6ms hamming window at 30 and 40ms

past the landmark point can include portions of the signal at the beginning or end of

utterance, or even at the boundary of the vowel and consonant segment. These three

events are often associated with rapidly changing energy of the signal.

A pair-wise comparison of the ARMS cue for the nasal and each group of non-

nasal sonorant landmarks with the ANOVA statistical analysis function confirms the

difference in the means and spreads for the five landmark groups. Setting alpha to 0.05,

thus requiring a 95% confidence level, indicates that measuring the ARMS cue at nasal

and all but sonorant landmarks at lateral boundaries will produce a statistically different

distribution of values. For landmarks at lateral boundaries, distribution of ARMS values

for Frame 1 and 2 is not considered significantly different from the nasal distribution.
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nasal abrupt Is obstruent semivowel vowel

Figure 5.2 - Distribution of the ARMS values for the nasal and non-nasal groups of sonorant landmarks.
The nasal group is characterized by the lowest mean and tightest distribution, followed by the laterals,
semivowels, obstruents, and lastly landmarks inserted within vowel segments.

Table 5.3 shows the number of tokens in each group and the meaning of the

calculated values. Based on the analysis so far, we conclude that ARMS is a significant

acoustic cue that can be used to separate nasal from all but the lateral group of non-nasal

sonorant landmarks.

# of tokens # of tokens HO: Means from Group
Group 1 Group 2 in Group I in Group 2 p-value l and Group 2 are the

same
Nasal Abrupt [1] 70 14 0.139 Cannot reject HO

Nasal Obstruent 70 50 1.533xO~ Reject Ho

Nasal Semivowel 70 18 2.707xI0~lv Reject Ho

Nasal Vowel 70 98 3.194x104 Reject HO

Table 5.2 - ANOVA analysis of the extracted RMS parameter between two consecutive frames centered at
30 and 40ms suggests that this cue has statistically different means when measured around nasal and non-
nasal sonorant landmarks. Formulating the quantitative expectation for this cue's behavior appears to be a
promising acoustic criterion for the nasal murmur detection.
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5.5.1.2 Distribution of ARMS for the nasal group of estimated sonorant landmarks

Focusing on the distribution of ARMS values for the nasal group of sonorant

landmarks indicates that the observed values are well within the range specified by Chen,

as illustrated in Table 5.3. The difference between the two ranges appears to stem from

the limitation of the Klatt speech software tool used in Chen's study. When calculating

the RMS difference between two consecutive time frames, Klatt tool approximates the

calculated value to the closest integer. This limits the available resolution in Chen's RMS

measurements to 1 dB, which is significantly lower than the hundredth of decibel

accuracy used in this study. The ARMS cue, thus, is not responsible for the erroneous

rejection of nasal sonorant landmarks observed in the automated implementation of

Chen's algorithm.

Nasal
Automated Chen

Min. 0.00 0.00
Max. 0.53 1.00

Mean 0.14 n/a

St.Dev. 0.12 n/a

Table 5.3 - Overview of the RMS values extracted with automated algorithms and those suggested in
Chen. The difference in the range of values stems from the limitation of the Klatt software tool used in
Chen's study - by approximating each RMS value up to the next integer, the Klatt tool limits the available
precision to 1 dB compared to hundredths of a decibel used in this study.

5.5.1.3 ARMS cue as a function of distance from the landmark point

Lastly, we turn our attention to the behavior of ARMS when measured in nasal

murmur, but at different distances from the landmark point. Our earlier observation that

each nasal sonorant landmark in the VCV database has nasal murmur that extends at least

80ms past the landmark point allows us to obtain three measurements of the RMS cue:

89



1. First value is the change in the difference of the RMS value between the time

frames centered at 30 and 40ms, denoted as Frame 1-2 in Figure 5.3,

2. Second between 40 and 50ms, marked as Frame 2-3,

3. And third between 50 and 60ms, Frame 3-4.

As illustrated in Figure 5.3, distribution of the RMS cue does not appear to change as we

make measurements in the nasal murmur at different distances from the landmark point.

Distributions of the values in three frames have equal standard deviation, with a 0.01dB

change in the mean over three frames. In other words, for the nasal murmur at any

distance from the landmark point the RMS value between consecutive 1Oms time

intervals in our implementation of the algorithm is expected to remain below 1 dB5.

IARMS for frames at 30, 40, 50, and 60ms past the landmark point

0.6

0.5

0.4

0.3

0.2-

0.1 -

0

Frame 1-2 Fra e 2-3 Frame 3-4

Frame 1-2 Frame 2-3 Frame 3-4

Mean 0.14 0.14 0.13

St. Dev. 0.12 0.12 0.12

Figure 5.3 - Distribution of the ARMS cue when measured at different distances from the nasal sonorant

landmark point while in the nasal murmur region.

5 When examining the change in the RMS value, we remove the unnecessary accuracy used to evaluate the
distribution and adhere to Chen's recommendation.
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5.5.1.4 Modification of the acoustic criterion for the ARMS

In summary, change in the RMS value between two consecutive time frames

centered around 30 and 40ms past the estimated landmark point produces statistically

different values for nasal and all but the lateral group of non-nasal sonorant landmarks.

The means and spread of distributions of three non-nasal groups of sonorant landmarks

are well separated from the nasal group. Nasal and lateral groups of sonorant landmarks

show a significant overlap in their distribution. For nasal landmarks, the range of values

falls fully within the acoustic criterion suggested in Chen [1]. In addition, the cue appears

unchanged when measured in nasal murmur, but at different distances from the landmark

point. The acoustic criterion that we maintain based on this analysis of the ARMS value

is:

Portion of the signal for which we hypothesize to exhibit characteristics of the
nasal murmur cannot have the RMS value change by more than 1 dB from one 10
ms time interval to the next.

Based on the ANOVA analysis and distribution of values shown in Figure 5.2, the ARMS

criterion will effectively separate nasal from all but the lateral group of estimated

sonorant landmarks in Chen's decision-based algorithm.

Next we analyze the distribution of the fl values in Frame 2 and the longitudinal

characteristics of the cue when measured in nasal murmur at different distances from the

estimated nasal sonorant landmark point.
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5.5.2 fl

5.5.2.1 Distribution of fl values across landmark types

Figure 5.4 illustrates the distribution of fl values for the nasal and each group of

non-nasal sonorant landmarks. As a reminder to the reader fl denotes the largest

prominence in the 0-788 Hz frequency range as defined by Chen. fl values measured

with automated algorithms around nasal landmarks confirm the requirement observed in

past studies that the energy of the nasal murmur is centered around 250Hz. Visual

inspection of Figure 5.4 indicates that the landmarks inserted at semivowel boundaries

show the same characteristics as nasals - the distribution of fl values for this group of

sonorant landmarks falls almost completely within the nasal distribution. As with the

ARMS cue, sonorant landmarks inserted within vowel segments have the widest

distribution of fl values. This characteristic of the vowel distribution for fl can be

attributed to the difference in the vowel type and position of the estimated landmark

within the vowel segment. As the value of the true first formant changes, the value of the

largest harmonic in the 0-788Hz range, used as fl in our study, also varies significantly.

In addition, when measured at the beginning or end of an utterance, fl appears to produce

significantly lower values, often below 100 Hz.

Using alpha of 0.05 in the ANOVA statistical analysis function indicates that the

distribution of fl values is statistically different for nasal sonorant landmarks and

landmarks at lateral and obstruent boundaries. As confirmed during the visual inspection,

the mean and spread of the fl distribution for landmarks at semivowel boundaries are not

well separated from the nasal group. Pair-wise statistical analysis between nasal and

vowel groups indicates that the means of the two distributions are not well separated

despite the large difference in the spread.
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Location of fl for nasal and non-nasal sonorant landmarks
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nasal abrupt Is obstorent semivowel vowel

Figure 5.4 - Range
sonorant landmarks.

of values observed for the fl cue when measured at 70 nasal and 181 non-nasal

Table 5.6 gives an overview of the statistical analysis results for fl for nasal and each

group of non-nasal sonorant landmarks as classified in Chapter 2 and Appendix A.

# oftokes 4oftoensH 0: Means from
Group 1 Group 2 in o pns ofnokens p-value Group Mland Group 2

are the same
Nasal Abrupt [1] 70 14 0.001 Reject Ho

Nasal Obstruent 70 50 1.056xl0-o Reject Ho

Nasal Semivowel 70 18 0.409 Cannot reject HO

Nasal Vowel 70 98 0.489 Cannot reject HO

Table 5.4 - Results of the statistical analysis for fl for nasal and non-nasal sonorant landmarks, sub-
classified across the four groups defined in Table 2.3. The results indicate that measuring fl at nasal and
obstruent landmarks will produce statistically different values. Distribution of values for the lateral
landmarks appears also to be significantly different than nasal, though this observation is contingent on
further examination of a larger number of tokens.
5.5.2.2 Distribution of fl values for nasal sonorant landmarks

The range of fl values for the nasal group of estimated sonorant landmarks falls

within the 126 fl 347 range specified by Chen. Disparity between the two ranges could
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be attributed to the difference in the database structure - acoustic characteristics within a

VCV database are considered better behaved, possibly leading to a smaller standard

deviation in the observed values for this study than in Chen. Another possibility is that

Chen's criteria are not tailored for different speakers and contexts. A minor point that

could also contribute to the smaller standard deviation observed in this study is our

decision to enhance the frequency resolution to 15.75HZ from the original resolution of

31.5Hz used in Chen. Based on this analysis, the fl criterion is not responsible for the

errors observed in the algorithm's performance.

Nasal
Automated Chen

Min. 189.01 126
Max. 252.02 347
Mean 217.36 --

St.Dev. 17.51 --

Table 5.5 - The range of values and statistical information for the observed parameter fl. The mean value
of 217.4Hz confirms the requirement that the energy within the nasal murmur is centered around 200-
300Hz.

5.5.2.3 Longitudinal characteristics of the fl cue

We next examine the longitudinal behavior of this cue using the previous

observation that each nasal sonorant landmark is adjacent to the nasal murmur that

extends at least 80ms past the landmark point. The three observations of fl in Figure 5.5

are measured in time frames centered around 40, 50, and 60ms past the nasal sonorant

landmark point. From the box plot and tabulated data, it appears that the mean and

standard deviation of the fl value vary as we repeat the measurement at different

distances from the nasal sonorant landmark. Noting that the algorithm used to extract the

fl value has a frequency resolution of 15.75Hz (obtained by calculating the 1024-point

DFT of the signal sampled at 16129Hz), allows us to conclude that variation in the mean
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(<1.5Hz over 30ms) and standard deviation (-2Hz over the same interval) are relatively

insignificant with respect to the frequency resolution.

fA value for frames at 40, 50, and 60ms past the landmark point

250 -

240 -

230 -

220 -

210 -

200 -

190 -

Frame 2 Frame 3 Frame 4

Frame 2 Frame 3 Frame 4

Mean 217.36 216.46 216.01

St. Dev. 17.51 16.68 15.44

Figure 5.5 - Distribution of the observed fl values for three time frames, centered around 40, 50, and 60ms
respectively. The means and standard deviation appear to be stable as a function of the distance from the
estimated landmark point.

5.5.2.4 Modification of the acoustic criterion for fl

Formulating the fl acoustic cue in terms of an acoustic criterion within the nasal

detection module opens the discussion whether the observed fl should fall within the

range specified by Chen or the one observed in this study. A possible approach in

formulating this acoustic criterion is to require that the observed fl value fall within three

standard deviations away from the mean of the aggregated distribution of values from

three frames. By including three standard deviations in our criterion we guarantee to
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include 99% of all samples in a normally distributed population. A signal portion that has

an fl peak falling within 167 fl: 267Hz in this study is considered to show properties of

the nasal murmur. Qualitatively, the difference in the range observed in this study and in

Chen implies that this acoustic cue is possibly speaker and context dependent, and that a

greater variety of databases will further modify its structure.

The fl acoustic criterion requires that the calculated fl value falls in the
165 fl 267 Hz range.

From the ANOVA analysis and distributions illustrated in Figure 5.4, it appears that the

formulation of an acoustic criterion based on the fl cue will discriminate to a varying

degree between nasal and all but the semivowel group of sonorant landmarks in Chen's

decision-tree algorithm. The cue will be somewhat effective at rejecting outliers in the

semivowel and vowel groups of estimated sonorant landmarks.

In the next four sections we analyze the spectral tilt characteristics by examining

the distribution of A1-A2, A1-A3, A2-A3, and SAD in Frame 2 for nasal and each group of

non-nasal sonorant landmarks. In addition, we examine the longitudinal behavior of the

cues when measured at different distances from the landmark point.
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5.5.3 A1-A2

5.5.3.1 Distribution of A1-A2 values across landmark groups

Figure 5.6 illustrates the results of measuring the A1 -A2 acoustic cue in Frame 2,

centered around 40ms past the landmark point, for nasal and non-nasal sonorant

landmarks. Positive A1 -A2 values for the nasal group of sonorant landmarks with a

median of about 32dB, confirm that the spectral contour of the nasal murmur is tilted

toward low frequencies. Visual inspection of the distributions reveals large spread for the

landmarks inserted within vowel segments and significant overlap of the A1 -A2

distributions for the remaining groups of estimated sonorant landmarks. Analyzing the

significance of this cue with the ANOVA statistical tool and setting alpha to 0.05 allows

us to conclude that the distribution of A1 -A2 values for nasal sonorant landmarks

statistically differs from the distribution of landmarks inserted at obstruent boundaries

and within vowel segments.

Al-A2 difference for nasal and non-nasal sonorant landmarks

40-

30 -

20-

10 -

0 -

nasal abrupt is obstment semivowel vowel

Figure 5.6 - Distribution of the A1-A2 values for nasal and non-nasal sonorant landmarks. Pair-wise
analysis of the difference between the distribution of A1 -A2 values indicates that the mean of the nasal
sonorant landmark group is significantly separated only from landmarks inserted at obstruent boundaries
and within vowel segments.
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In the pair-wise analysis between nasal and obstruent groups of sonorant

landmarks, the low p-value shows that the means of the two distributions are well

separated, despite the large overlap in the observed values. The low p-value for the nasal

and vowel analysis is a combination of somewhat similar means and a considerable

difference in the distribution spread. High p-values for landmarks at lateral and

semivowel boundaries indicate that the two groups have means that are almost identical

to the mean of the nasal sonorant landmarks. The range of A1-A2 values for the lateral

group, moreover, falls completely within the nasal spread. The analysis details are

encapsulated in Table 5.6.

# ofoken oftkensH 0: Means from
Group 1 Group 2 i otokens of tokens p-value Group 1 and Group

2 are the same
Nasal Abrupt [1] 70 14 0.244 Cannot reject HO

Nasal Obstruent 70 50 3.326x10-7 Reject Ho

Nasal Semivowel 70 18 0.26 Cannot reject HO

Nasal Vowel 70 98 0.034 Reject HO

Table 5.6 - Results of the ANOVA statistical analyses between nasal and each group of non-nasal sonorant
landmarks. Setting alpha to 0.05 shows that the A1-A2 cue successfully separates nasal sonorant landmarks
from those inserted at obstruent boundaries and within vowel segments.

5.5.3.2 Distribution of A1-A2 values for the nasal group of sonorant landmarks

The range of values obtained with automated algorithms violates the criterion

proposed by Chen: the minimum observed value meets the lower bound of the suggested

criterion, while the maximum exceeds it as illustrated in Table 5.7. A range of positive

values for this acoustic cue is a consequence of the described spectral tilt - nasal murmur

is characterized by a sudden drop in the energy at frequencies above 1000 Hz, which
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causes the energy of the lower frequency peak A1 to be consistently greater than A2. With

a disparity between the observed A1-A2 values and the suggested criterion, this cue

appears to be responsible for some of the errors seen in the performance of the automated

implementation of Chen's algorithm for this VCV database.

Nasal
Automated Chen

Min. 14.71 11.8
Max. 45.04 43.3
Mean 31.06 --

St.Dev. 7.10 --

Table 5.7 - Distribution of values for A1-A2 for the nasal sonorant landmarks measured in the frame
centered around 40ms past the landmark point. The lower range of values for this acoustic cue is within the
limit suggested by Chen, while the maximum exceeds it.

5.5.3.3 Characteristics of A1-A2 at different distances from the nasal landmark

We next examine the behavior of this acoustic cue when measured in the nasal

murmur, but at different distances from the landmark point. Using the portion of the

signal following each nasal sonorant landmark we examine the distribution of the A 1-A2

cue when measured in the time frames centered around 40, 50, and 60ms respectively,

while still in the nasal murmur region. As illustrated in Figure 5.7, distribution of the A,-

A2 values does not appear to change significantly when measured at different distances

from the estimated landmark point while in the nasal murmur region. The mean of the

measured A1-A2 for a nasal sonorant landmark changes by <0.5dB when measured across

three frames. Stability of the cue indicates that once formulated in terms of an acoustic

criterion, A1-A2 can be used to verify the presence of the nasal murmur at any distance

from the estimated landmark point.
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AIA2 difference for frames centered at 40, 50, and 60ms past the landmark

45-

40-

35-

30-

25 -

20-

15-

Frame 2 Frame 3 Frame 4

Frame 2 Frame 3 Frame 4

Mean 31.06 31.35 31.52

St. Dev. 7.10 6.59 6.57

Figure 5.7 - Distribution of the A1 -A2 values measured in three frames from the nasal sonorant landmark in
the nasal murmur region. The cue appears to have a relatively stable distribution when measured in the
nasal murmur. Change in the standard deviation of the spread is approximately 0.5dB, while the mean
varies by <0.5dB over three measured frames.

Agreement with Chen's lower threshold raises the question of how relevant is it

that we define a maximum for the A1-A2 acoustic cue, as its primary role is to verify that

the energy of the peaks in the 788-2000 Hz band is lower than the energy in the 0-788 Hz

band. Adhering to the decision-based structure, the approach we take in this study is to

establish the minimum by which Al has to be greater than A2 for a sonorant landmark to

pass this criterion for the nasal murmur. Taking a lower limit set by subtracting three

standard deviations from the mean puts the two ranges in agreement and formulates the

following acoustic criterion:
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Portion of the signal for which we hypothesize to exhibit characteristics of the
nasal murmur must have a peak in the 0-788 frequency band that is at least 11.1
dB greater than the largest peak in the 788-2000 frequency band.

Because of the large overlap of distributions for nasal and all groups of non-nasal

sonorant landmarks, using this acoustic cue in the decision tree algorithm proposed by

Chen will separate nasal sonorant landmarks only from those inserted within vowel

segments. Arriving at an acoustic criterion that puts this study and Chen in agreement

effectively expands the number of examined utterances and makes for a more general

criterion. The ANOVA analysis indicates that a statistical approach to formulating an

acoustic criterion based on the A1-A2 cue may have yielded better results than the

decision-tree structure suggested in Chen.

5.5.4 A1-A3

5.5.4.1 Distribution of A1-A3 values across landmark types

A1-A3 imposes further requirements on the spectral contour of the signal around

the landmark point. As illustrated in Figure 5.8 the distribution of A1-A3 shows extensive

similarities across the five groups, which all span a range of positive values. Visual

inspection of the graph indicates that distributions of A1-A3 values for three of four non-

nasal groups of sonorant landmarks fall fully within the nasal range. The means of

distributions, however, appear to be well separated.
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Figure 5.8 - Distribution of the A1 -A3 values for a set of 251 nasal and non-nasal sonorant landmarks. The
box plot visually indicates that the A1 -A3 means for the groups are well separated, but that distributions for
all groups show significant overlap.

The ANOVA statistical analysis, with alpha set to 0.05, confirms the separation of

means for the nasal and each group of non-nasal sonorant landmarks in this single frame.

Calculated p-values range from 0 for the pair-wise analysis of nasal sonorant landmarks

and those inserted within vowel segments, to 0.044 for nasals and landmarks inserted at

obstruent boundaries. These low p-values do not reflect the substantial overlap of

distributions across the five groups, but mainly indicate that the group means are well

separated. Table 5.8 summarizes the details of the statistical analysis for each class of

estimated sonorant landmarks.
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# of # of HO: Means from

Group Group 2 tokens in tokens in p-value Group arand

Group 1 Group 2 Group 2 are the
same

Nasal Abrupt [1] 70 14 0.010 Reject Ho

Nasal Obstruent 70 50 0.044 Reject Ho

Nasal Semivowel 70 18 0.016 Reject Ho

Nasal Vowel 70 98 0.000 Reject Ho

Table 5.8 - ANOVA statistical analysis details and results for the A1-A 3 acoustic cue. A p-value that is

smaller than 0.05 across all groups indicates that this acoustic cue is a significant measure when separating

nasal from the non-nasal group of sonorant landmarks.

5.5.4.2 Distribution of A1-A3 values for the nasal group of sonorant landmarks

Compared to the range of values proposed in Chen, Ai-A 3 values extracted

around nasal sonorant landmarks in this study exceed both thresholds, as illustrated in

Table 5.9. The mean A1 -A3 value for the nasal group in Frame 2 is 42.5dB. While the

minimum observed value is slightly below the lower permissible bound, discrepancies at

the upper threshold are significant. The A1 -A3 criterion appears to be an important part of

the algorithm's erroneous performance.

Nasal
Automated Chen

Min. 22.24 22.8

Max. 56.90 50.3

Mean 42.46 --

St.Dev. 8.65 --

Table 5.9 - Overview of the A1-A3
for AI-A3 proposed in Chen.

values extracted with automated algorithms against the acoustic criteria
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5.5.4.3 Characteristics of A1-A3 at different distances from the nasal landmark

Next we employ the same method of examining the longitudinal behavior of the

A1 -A3 acoustic cue when measured at different distances from the estimated nasal

sonorant landmark, but within the nasal murmur. Figure 5.9 illustrates the stability of the

acoustic cue where the mean and standard deviation remain practically unchanged across

the three measured frames. Together with the ARMS cue, A1-A3 shows greatest stability

when measured at different distances from the estimated landmark point. The implication

of the longitudinal characteristic is that the A1-A3 acoustic cue analysis performed on a

single frame is applicable to any nasal sonorant landmark and any frame for this data set.

A1 -A3 difference for frames centered at 40, 50, and 60ms past the landmark

55 -

50 -

45 - ~ -

-o
40 --$-0

35 -

30-

25-

Frame 2 Frame 3 Frame 4

Frame 2 Frame 3 Frame 4

Mean 42.46 42.47 42.62

St. Dev. 8.65 8.48 8.61

Figure 5.9 - Distribution of the A1-A3 acoustic cue for the three frames centered at 40, 50, and 60ms past
the nasal sonorant landmark point. Similarity in the distribution of values for the three frames is indicative
that results of the analysis of a single frame can be extended to any nasal sonorant landmark and any frame
that shows characteristics of the nasal murmur.
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5.5.4.4 Modification of the acoustic criterion for A1-A3

Definition of the A1-A3 acoustic criterion is similar to characterizing the

expectation for A1-A2. Because both acoustic cues are projecting the expectation that the

selected A2, A 3 peaks be weaker than A1, we define A1-A3 by setting a minimum the

signal needs to exceed to adhere to the nasal murmur characteristics. This approach is

also in agreement with the observation that both A1-A2 and A1-A3 fall within the lower

range suggested in Chen, but not the upper. Taking the minimum value to be three

standard deviations from the mean defines this acoustic criterion as requiring that A1-A3

for nasal sonorant landmarks be at least 16.9 dB. This constitutes the modified acoustic

criterion.

The requirement for nasal sonorant landmarks is that A1 be at least 16.9 dB
greater than A3.

Despite the well-separated means, use of this acoustic cue within a decision-tree

algorithm is limited due to the large overlap of the distribution of values for nasal and

non-nasal sonorant landmarks. Formulating the acoustic criterion for a decision-tree

structure as suggested in Chen, makes this cue effective only when separating nasal

sonorant landmarks from those inserted within vowel segments. A statistical approach

appears to have been a more effective choice for the A1-A3 acoustic cue.

5.5.5 A2-A3

5.5.5.1 Distribution of A2-A3 values across landmark types

Measuring the A2-A3 acoustic cue in the frame centered at 40ms past the landmark

point produces almost identical distribution of values across five sonorant landmark
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groups as illustrated in Figure 5.10. The range of values for the nasal group is mostly

positive, with the median around 13 dB. The means of some non-nasal groups of sonorant

landmarks are well separated from the nasal, though their distributions fall almost

completely within the nasal range.

A2-A3 difference for nasal and non-nasal landmarks measured in Frame 2
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Figure 5.10 - Distribution of A2-A3 values when extracted at nasal and non-nasal sonorant landmarks.

Despite the large overlap, with alpha set to 0.05 the ANOVA function indicates

that the distribution of values for A2-A3 is statistically different when measured at nasal

sonorant landmarks, and at lateral and obstruent boundaries. For the remaining two

groups, the means and distributions are not well separated as indicated by the relatively

high p-values in Table 5.10.

106



# of HO: Means from

Group 1 Group 2 oken tokens in p-value Group 2arnthe
in Group Group 2 srupaeth

I same

Nasal Abrupt [1] 70 14 0.003 Reject HO

Nasal Obstruent 70 50 0.020 Reject HO

Nasal Semivowel 70 18 0.292 Cannot reject Ho

Nasal Vowel 70 98 0.122 Cannot reject HO

Table 5.10 - Summary of the ANOVA statistical analysis details for the acoustic cue A2-A3. The observed

mean and distribution of values for the nasal and non-nasal groups of sonorant landmarks are not well

separated as indicated by the high p-value.

5.5.5.2 Distribution of A2-A3 values for the nasal group of sonorant landmarks

As illustrated in Table 5.11, the measured values for A2-A3 for the nasal group of

sonorant landmarks fall within the permissible range suggested in Chen. The agreement

between the two ranges may suggest that this acoustic cue is somewhat speaker and

context independent - examination of the A2-A3 values on 70 nasal sonorant landmarks

in this study affirms the previously defined range. Chen, however, formulates this

acoustic cue based on empirical evidence alone; for this reason, it is possible that the

formulation of this acoustic criterion will change with additional databases and contexts.

Nasal
Automated Chen

Min. -8.76 -9.7
Max. 32.53 33.6
Mean 11.39 --

St.Dev. 9.63 --

Table 5.11 - Distribution of A2-A 3 values extracted at nasal and non-nasal sonorant landmarks. The range
observed in this study is in agreement with Chen.

5.5.5.3 Characteristics of A2-A3 at different distances from the nasal landmark

In this section, we examine the stability of the A2-A3 cue when measured at

different distances from the landmark point. From Figure 5.11 it appears that the mean
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for the distribution of A2-A 3 values shows no significant variability when measured at

different distances from the estimated landmark point. The mean of the three frames

varies by 0.25dB over three frames. The spread of the distribution varies to a greater

extent than the mean. In this observation the largest spread still meets the suggested

criterion, indicating that errors in the performance of the algorithm are not related to the

A2-A3 criterion. Variability in the standard deviation of A2-A 3 for different frames within

the nasal murmur indicates that more databases and contexts will likely further augment

this acoustic criterion.

A 2-A3 difference for frames centered at 40, 50, and 60ms past the landmark point
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Frame 2 Frame 3 Frame 4

Frame 2 Frame 3 Frame 4

Mean 11.40 11.13 11.15

St. Dev. 9.63 8.85 9.20

Figure 5.11 - Distribution of A 2-A 3 values for the three frames measured by placing the center of the
Hamming window at 40, 50, and 60ms respectively. Distribution of values shows some variability in the
standard deviation as a function of distance from the estimated landmark point.
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5.5.5.4 Modification of the acoustic criterion for A2-A3

Chen particularly isolates the A2-A3 acoustic cue as being successful at rejecting

sonorant landmarks inserted within [i] segments, without specifying its overall

contribution to the non-nasal rejection rate. Further examination of A2-A3 values for the

sonorant landmarks inserted within vowel segments indicates that landmarks within the

vowel [i] tend to produce lower (more negative) A2-A3 values than the remaining vowels

and other non-nasal groups of sonorant landmarks. Without a theoretical basis, we

propose to maintain the original criterion for A2-A3 defined by Chen as long as it does not

contribute to the erroneous performance of the algorithm. As a cue that is based on

empirical evidence alone A2-A3 will most likely have to be further refined when

examined in a greater variety of databases and contexts.

The requirement for nasal sonorant landmarks is that A2-A3 falls in the [-9.7db
33.6dB] range.

Comparing the formulated criterion against Figure 5.10 shows that this acoustic cue will

reject a small number of landmarks inserted within vowel segments and at lateral

boundaries. Based on the results of the ANOVA analysis, it is possible that taking a

statistical approach to formulating this criterion would have been more effective.

5.5.6 SAD

5.5.6.1 Distribution of SAD values across landmark types

The last spectral tilt parameter we analyze is the Sum of Amplitude Differences

(SAD). As a reminder, Chen defines SAD as

SAD = (A - A 2)+(A, -A 3 )+(Al -A 4)±(A1 -A 5 ). (5.4)
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Figure 5.12 shows the range of SAD values measured for the five groups of estimated

sonorant landmarks. Visual inspection of the graph indicates a large overlap of the

distributions across all landmark groups. Distributions of values for the lateral, obstruent,

and semivowel group of sonorant landmarks, furthermore, are fully contained within the

nasal distribution, with almost identical medians. The group of sonorant landmarks

inserted within vowel segments shows the largest spread, with the range spanning

approximately 120dB, compared to 90dB for the nasal and about 40-60dB for the

remaining groups.

SAD values measured in Frame 2 for nasal and non-nasal landmarks

220

200 -

180-

160 -

'- 140

120 -

100

80 -

60 -

40-

20

nasal abrupt Is obstruent semivowel vowel

Figure 5.12 - Distribution of SAD values for nasal and all groups of non-nasal sonorant landmarks.

As with previous cues, we next analyze the difference between the five

distributions with the ANOVA statistical analysis function. With alpha set to 0.05, the

calculated p-values confirm the similarity between the distributions for the nasal and all

but the vowel group of non-nasal sonorant landmarks. A very low p-value for the pair-

wise analysis of the nasals and vowels indicates a significant difference in the mean and
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spread of SAD values for these two groups. Details of the statistical analysis are

illustrated in Table 5.12.

# of # of HO: Means from
Group 1 Group 2 tokens in tokens in p-value Group 1 and Group

Group 1 Group 2 2 are the same

Nasal Abrupt [1] 70 14 0.837 Cannot reject HO

Nasal Obstruent 70 50 0.362 Cannot reject HO

Nasal Semivowel 70 18 0.294 Cannot reject HO

Nasal Vowel 70 98 9.781x0~9 Reject HO

Table 5.12 - ANOVA statistical analysis of the SAD values indicates that the distribution of the nasal
group of sonorant landmarks statistically differs only from the distribution of the vowel group. Visual
inspection of the remaining groups confirms a large overlap between the non-nasal and nasal distributions.

5.5.6.2 Distribution of SAD values for the nasal group of sonorant landmarks

While agreeing at the lower threshold, the range of SAD values for the nasal

group of sonorant landmarks exceeds the upper bound of the permissible range

formulated in Chen. This finding is consistent with the observation that both A1-A2 and

A1 -A3, which are included in the calculation of the SAD, exceed their respective

criterion. Distribution of SAD values for this frame, as shown in Table 5.13, indicates

that the maximum value surpasses the suggested criterion by some 21.5dB or close to one

standard deviation of the total spread. Current formulation of the SAD criterion,

therefore, is a significant factor in the erroneous rejection of nasal sonorant landmarks for

the nasal murmur characteristics.

Nasal
Automated Chen

Min. 130.25 119.5
Max. 222.30 200.7
Mean 179.83 --

St.Dev. 21.90 --

Table 5.13 - Distribution of values calculated for SAD for the nasal and non-nasal group of sonorant
landmarks. While the lower range of values extracted in this study falls within the range suggested by
Chen, the upper range exceeds the allowed maximum.
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5.5.6.3 Characteristics of SAD at different distances from the nasal landmark

Lastly we characterize the change in the SAD values when measured at different

distances from the nasal sonorant landmark, while still in the nasal murmur region. In

Figure 5.13 we show the distribution of SAD values for three frames centered at 40, 50,

and 60ms past the nasal sonorant landmark point for 70 tokens. Slight variability of the

distribution mean across the three frames can be attributed to the individual variability of

the five cues that constitute the SAD value. Compared to the 20-21 dB standard deviation,

a 2dB change in the distribution means over three frames is proportional to the variability

of the remaining spectral tilt cues, such as A1-A2 and A2-A3.

5.5.6.4 Modification of the acoustic criterion for SAD

At this point we have already formulated the acoustic criteria for three of five

acoustic cues that make up the SAD value. Two of these criteria have been defined in

terms of the minimum value that a sonorant landmark needs to meet in order to be

considered as showing nasal murmur characteristics. The same reasoning that we

followed in formulating the A1-A2 and A1-A3 criteria applies to the remaining cues, A,-

A4 and A1-A5, and consequently to the SAD criterion.

Definition of these four cues in terms of a minimum a sonorant landmark needs to

meet to adhere to the nasal murmur characteristics verifies that the spectral contour of the

signal is skewed towards low frequencies in the same manner as the spectra of the nasal

murmur.
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SAD value for frames centered at 40, 50, and 60ms past the landmark point
230-
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130 -

Frame 2 Frame 3 Frame 4

Frame 2 Frame 3 Frame 4

Mean 179.53 180.48 181.34

St. Dev. 21.90 20.92 21.10

Figure 5.13 - Distribution of SAD values for the three frames measured by placing the center of the

Hamming window at 40, 50, and 60ms past the landmark point respectively. The spread of values shows
some variability in the distribution mean as a function of distance from the estimated landmark point.

Selecting the minimum to be three standard deviations below the calculated mean, the

acoustic criterion for SAD requires that sonorant landmarks have the SAD of at least

116.7 dB.

SAD criterion requires that a sonorant landmark have the SAD value of at least
116.7 dB for nasality considerations.

Addition of the SAD cue to the nasal detection module completes the set of requirements

imposed on the spectral tilt of the signal around the landmark. Based on the ANOVA

statistical analysis and Figure 5.12, the SAD criterion will separate nasal from landmarks

inserted within vowel segments only.
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5.6 Effectiveness of the modified criteria

In section 5.4 we analyzed the values and effectiveness of six acoustic cues from

Chen's algorithm, and suggested modifications that would improve its performance. The

proposed modifications attempted to reconcile the observations from the current study

and Chen, in an attempt to define a set of acoustic criteria that would be applicable to

both examined databases and a greater variety of speakers and contexts. Table 5.14

combines the results of the ANOVA analysis and measured values to illustrate the

effectiveness of the modified acoustic criteria in rejecting specific non-nasal groups of

estimated sonorant landmarks.

Vowel Semivowel Lateral Obstruent

ARMS x x x

fi x x x

Al-A2 x

Al-A3 x

A2-A3 x x

SAD x

Table 5.14 - Summary of the effectiveness of each cue when rejecting the four non-nasal groups of
estimated sonorant landmarks. An 'x' in the fl entry for 'Vowel' means that the current definition of the fl
criterion will reject some sonorant landmarks inserted within vowel segments. We do not quantify the
effectiveness of the criteria.

For some acoustic cues we noted that the statistical approach might have been a

better solution when formulating acoustic criteria based on the promising results of the

ANOVA statistical analysis. A statistical classification of sonorant landmarks in the nasal

or each non-nasal group based on the six selected cues would not depend on firm

thresholds; based on the selected method, rather, the classification would give a

confidence rating with which a landmark can be classified in any one group of estimated

sonorant landmarks from Table 2.3.
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5.7 Performance of Chen's algorithm with the modified acoustic criteria

Using the original Chen algorithm structure, but this time with the modified

acoustic criteria as explained in Section 5.4 eliminates the instances where nasal sonorant

landmarks are rejected as non-nasal. This improvement in the performance, however, is

accomplished at the expense of the non-nasal rejection rate - with the modified acoustic

criteria now, 70.6% compared to the original 86.1% of non-nasal sonorant landmarks are

rejected for the nasal murmur characteristic with the same algorithm. The largest

decrease in the performance is seen in the rate at which sonorant landmarks at semivowel

and lateral boundaries are rejected by the algorithm. This decrease appears to be mainly a

consequence of eliminating the upper limit on the A1-A3 value range in the modified

acoustic criteria. Table 5.15 summarizes the number of tokens in each class that was

tested with the modified acoustic criteria and the rejection rate for each class of estimated

sonorant landmarks.

Class of Total [si Landmark Rejection
Sonorant Comment landmarks s rejected Rate

Landmark for nasality
Nasal 70 0 0.00%

True positive
Abrupt 1 14 5 35.71%

Vowel 98 83 84.69%
False

Semivowel 18 5 27.78%
positive

Obstruent 50 34 68.00%

Total Nasal 70 0 0.00%

Non-nasal 180 127 70.56%

Table 5.15 - Performance analysis of Chen's original algorithm implemented with the modified acoustic
criteria suggested in Section 5.4. The modified criteria show in instances where nasal sonorant landmarks
are rejected for the nasal murmur characteristics. This improvement in the performance, however, is
accomplished at the expense of the non-nasal rejection rate - with the modified acoustic criteria, 70.6%
compared to the original 85.6% of non-nasal sonorant landmarks are rejected for the nasal murmur
characteristic with the same algorithm.
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5.8 Summary

In this chapter we discuss and formulate an acoustic criterion for the nasal

murmur by examining and modifying Chen's algorithm for the nasal murmur detection.

The algorithm examines six acoustic cues in the region of the signal adjacent to the

sonorant landmark with a lower energy level and determines whether they adhere to the

nasal murmur expectation formulated in terms of the acoustic criteria.

Performance of the reconstructed algorithm is characterized by a high rejection

rate across all five groups of estimated sonorant landmarks. For the non-nasal groups, the

algorithm rejects 85.6% landmarks as not showing characteristics of the nasal murmur.

The efficiency of the algorithm is offset by a high error rate; with the original criteria

Chen's algorithm also rejects 34.3% of nasal sonorant landmarks as not showing

characteristics of the nasal murmur.

Analysis of the cue values in a frame centered at 40ms past the estimated sonorant

landmark point allows us to identify the acoustic criteria that cause errors in the algorithm

performance and the ways in which they can be corrected. Analyzing the same set of

sonorant landmarks with the original algorithm structure and the modified criteria results

in no nasals being rejected for the nasal murmur characteristics. For non-nasal groups of

sonorant landmarks the algorithm rejects 70.6% landmarks as not showing characteristics

of the nasal murmur.
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Chapter 6

6.1 Nasalized Vowel

As previous studies indicate, nasalization of the vowel preceding a nasal segment

provides valuable cues to the presence and detection of the [nasal] feature. In a 1988

study, Stevens, Andrade, and Viana cite the requirement for a various degree of vowel

nasalization in judging the naturalness of the adjacent nasal segment across French,

Portuguese, and English languages [21]. The most natural sounding synthesized

utterances for native speakers of American English included both elements of nasal

murmur and vowel nasalization, thus giving direct evidence that the two acoustic

manifestations often appear concurrently in the nasal segment production and

recognition. This chapter describes the acoustic cues found characteristic of the vowel

nasalization in the past studies and formulates them in such a way that they can be

extracted with automated algorithms. The cues are mainly based on Chen and examine

the portion of the signal with a higher energy level around the sonorant landmark for

signs of spectral prominences, termed P1 and Po, due to the nasal cavity. In this chapter

we:

1. Describe the suggested acoustic cues,

2. Implement them in terms of automated algorithms in MATLAB and

evaluate on 250 nasal and non-nasal sonorant landmarks from Chapter 2,

3. Attempt to evaluate their effectiveness in separating nasal from non-nasal

landmarks and propose an acoustic criterion that can be used within the

nasal detection module.



6.2 Acoustic cues for nasalized vowels

American English makes no phonemic difference between nasalized and oral

vowels, thus allowing speakers to nasalize vowels in any phonetic context and to a

varying extent. In this study we use the term 'nasalized vowel' to refer to those vowels

that are adjacent to a nasal segment, either preceding a nasal closure or following a nasal

release. In choosing this notation we assume that vowels adjacent to nasal segments will

be nasalized to a greater extent and with a greater consistency among speakers. Non-

nasalized vowels, by the same token, are all other vowels in the VCV database. In

formulating an acoustic criterion for nasalized vowels, we use Chen's proposed algorithm

because it appears to encapsulate a number of previous studies and observations when

suggesting two characteristic acoustic cues that can be adjusted for the vowel type [1],

[2], [3]. In this section we describe the details of the proposed cues and algorithm.

Amplitude of the first formant, A1, and prominences due to the nasal cavity, Po and

P1

Theoretical
basis

Chen claims that three parameters capture the presence of extra
peaks in nasalized vowels:

1. An extra peak between the first two formants with
amplitude Pi,

2. One at lower frequencies, often below the first formant,
with amplitude Po,

3. Amplitude of the first formant A, (estimated by the energy
of the peak closest to the calculated first formant).

Theoretically, during the production of a nasalized vowel, the
amplitude of the first formant is expected to weaken compared to
the equivalent oral vowel, with A, lowering by around 5 dB. In
contrast, the extra peaks due to the coupling to the nasal tract, P1,
and the sinuses, Po, can increase for nasalized vowels by around 13
dB and 3 dB respectively. Theoretically then, adjusted parameters
Ai-Pl* can differ by as much as 18 dB and Ai-Po* by 8dB between
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Quantitative
form

Algorithm

nasal and oral vowels.

Chen proposes the following algorithm for the measurement of Po
and P1:
- Estimate the amplitude of Po by measuring the energy of the

larger of the first two harmonics,
- Observe P1 by measuring the energy of the largest of three

peaks around 1 kHz.
For A, Chen hand-estimates the frequency of the first formant and
approximates A, by measuring the energy of the peak closest to the
calculated formant. Chen measures the mean difference of D1=A1-
P1* for oral and nasal vowels is 10-15 dB, while the DO=A 1 - Po*
difference has a range of 6-8 dB.

Designing an algorithm for the successful characterization and
extraction of the vowel nasalization parameters involves a difficult
task of designing a fully functional, automated formant tracker,
which would be a thesis project in its own right. Instead of using a
fully automated formant tracker then, a semi-automated model is
used which allows the calculated values for F1 through F3 to be
hand-corrected. The semi-automated model uses the COLEA
formant tracker to calculate the formant values based on the LPC
analysis of the underlying speech segment. Because the LPC
analysis of speech signal is limited and often inaccurate, addition of
the correction scheme developed in the Speech Communication
group at MIT allows formants to be hand-augmented after viewing
the corresponding broadband spectrogram of the signal. The
adjustment formula proposed in Chen also involves the estimation
of the formant bandwidth, which cannot be measured with the semi-
automated model [3]. Here we use the bandwidth as calculated by
the COLEA software tool, but bear in mind that the adjustment
formula could be inaccurate due to this measure.

Po is calculated by selecting the larger of the first two peaks located
with the peak-picking function described in previous sections. P1 is
estimated through the steps suggested by Chen; we first determine
the energy of the three peaks around 1000 Hz and select the peak
with the largest energy to be P1. A1 and Fl are calculated by taking
the energy of the largest peak next to the estimated first formant
frequency, while F2 is estimated by evaluating the energy of the
largest peak next to the second formant frequency estimated with
the semi-automated formant tracker.
The final parameters Di and Do are calculated using the following
formulae:

Di = A, - P, - T,,prox, - T 2 approx., (6.1)
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6.3 Analysis of the measured data
The range of values extracted for the Do and DI acoustic cues did not show the

same values as observed in Chen [3]. Values appeared to be inconsistent with the

theoretical basis and between multiple trials on the same utterance. The factors that most

likely caused inconsistent observations are bandwidth estimations from COLEA that

relied on the LPC coefficients, irregular peaks found in the region of the first and second

formants, and lack of accuracy of the semi-automated formant tracker. Though we
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Do = A1 - PO - Tl(F) -T2(Fp ), (6.2)
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F 2
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Adjustment formulae are valid under the assumption that the
bandwidths of the formants are much less than the formant
frequencies.

The three parameters are extracted in four time frames, with the
first window centered at 60ms before a sonorant closure and 60ms
past a sonorant release, and with each subsequent window 1Gms
closer to the landmark point. Because DI and Do measure a
difference between spectral prominences, they are independent of
the speech intensity for a specific utterance.



include bandwidth error as a possible cause in the observed Do and Di values, it is fairly

difficult to evaluate its contribution to the overall calculation of the two parameters. More

easily observed inconsistency was found in the location and energy of the three estimated

peaks around 1000Hz. For some utterances the calculated DFT magnitude showed

irregular peaks that often appeared exactly between harmonics and that greatly skewed

our estimation of the location of the spectral prominences. This estimation inaccuracy

was worsened with irregular peaks common in unsmoothed short-time DFT spectra in the

second formant region. Estimation of F1 and F2, however, proved to be the hardest task in

the Do and Di calculation. In the next section we describe the functionality of the semi-

automated formant tracker and the reasoning behind our recommendation that vowel

nasalization cues be excluded from the nasal detection module.

6.4 Semi-automated formant tracker functionality

The Semi-automated Formant Tracker developed in the Speech Communications

group at MIT is a tool that allows users to modify the results of the LPC analysis to better

align with signal's true formant values. Selection of this formant tracker was based on the

observation that available software tools, such as COLEA or Praat, yielded inaccurate

results when faced with nasal segments and nasalized vowels, due to the additional nasal

poles. The idea of the semi-automated formant tracker is rather attractive. At the input,

the tracker takes a file containing the LPC coefficients for the signal calculated either by

the Praat or COLEA Formant Tracker to produce the following display:
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Figure 6.1 - Graphic interface for the semi-automated formant tracker developed at MIT's Speech
Communications Laboratory. The two graphs are signal waveform, at the top panel, and broad spectrogram
with the LPC coefficients calculated by the COLEA Formant Tracker.

The two graphs in Figure 6.1 are illustrations of the signal waveform and

broadband spectrogram for the utterance [ini]. Overlaid on the spectrogram are the 16th

order LPC coefficients produced by tracking the formants in COLEA. The displayed LPC

coefficients indicate frequencies of the first three formants; 'o' represents the first

estimated formant in the LPC analysis, '+' the second, and 'x' the third. Moving the

slider to any LPC coefficient or any time frame allows the user to shift its value to what

he or she believes represents the true formant. The tracker allows for multiple correction

of the same coefficient and does not force the corrected value to fall on a calculated DFT

magnitude peak or harmonic. In some instances, correcting the LPC coefficients based on
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the broadband spectrogram alone allows experienced users to estimate the corrected

values relatively accurately. For other utterances, for example the utterance [ini] shown in

Figure 6.1, the user is faced with two options:

1. The first is to estimate the value to the best of one's ability,

2. The second option is to display the short-time spectra with some other software

tool in order to correctly determine the exact location of the estimated formant

value.

Using the first approach for a single user showed significant variation in the labeling

of the same utterance in multiple trials. Variation in the F2 values was between 50 to 200

Hz, in many instances estimating the second formant frequency to be one or two

harmonics different than in a previous trial. Estimation was further complicated by the

presence of the subglottal resonance around 1500 Hz. Estimating the value of the first

formant based on the spectrogram alone also proved to be challenging, as it was difficult

to separate the formant from the subglottal resonance at lower frequencies. It is predicted

that the inconsistency in the F1 and F2 measurements would only increase when faced

with multiple users with a varying degree of experience and accuracy in formant

estimation.

Requiring a user to revert to the short-time spectra to correctly determine the correct

position of each formant equates this approach to hand-measuring the formant values. A

number of past studies that served as the basis for proposing this acoustic cue have

already hand-measured and examined the spectral prominences due to the nasal cavity.

Addition of this analysis to the automated nasal detection module would significantly
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increase its complexity without adding new information to the speech processing

community. It is also questionable as to how the variability would change between users

who estimated the formants based on the spectrogram alone, versus those who referred to

the short-time spectra.

Most importantly, however, the goal of the automated nasal detection module is to

provide algorithms that will function with little or no input from the user, in an attempt to

guarantee consistency in the way measurements are conducted across trials, contexts, and

users. Adding an algorithm that will vary for a single user based on the accuracy level of

each trial, and for multiple users based on their experience and consistency level, will

defeat the original goal set out at the beginning of this study. We therefore suggest

postponing the addition of the vowel nasalization analysis to the nasal detection module

until a fully automated formant tracker is available that will provide the required

consistency and accuracy in the estimation of F1, B1, F2, and B2. The currently available

software tools cannot be used to track changes in the energy of a specific harmonic or

formant for short time intervals.

Addition of this module will also be significantly simplified when the LAFF

system starts accessing the lexicon to stipulate possible cohorts of words. With possible

word cohorts, the vowel nasalization module will be able to compare the "expected"

formant tracks against observations made in the signal to estimate the accuracy to the

closest matched formant track.
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6.5 Summary

The focus of this chapter was to examine ways in which nasalized vowels can be

detected in support of the nasal detection. In the survey of available software tools for

tracking formant changes across short time intervals, we found no method that

guaranteed the desire accuracy and consistency. Our recommendation thus was to

postpone the addition of the vowel nasalization criteria to the nasal module until a fully

automated formant tracker is available that will guarantee the required consistency and

accuracy across contexts and users.
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Chapter 7

7.1 Formulating the Nasal Detection Module

This chapter attempts to encapsulate the results of the analyses from previous

chapters by proposing a final design for the nasal detection module and evaluating its

performance. The nasal module currently supports effective acoustic criteria for the nasal

murmur and nasal boundary that use fully automated algorithms in MATLAB to extract

the selected acoustic cues. The criteria within the module can be used separately or in

combination depending on the user requirements. The proposed nasal module maintains a

file for each criterion that keeps a record of all measurements obtained for the specific

acoustic cues.

7.2 Pivots as indicators of the change in signal energy

In Chapter 3 we discussed ways in which sonorant landmarks convey the

expectation regarding what portion of the signal should adhere to the specific acoustic

criterion. As a reminder to the reader, the sign associated with the sonorant landmark in

the CLD indicated the trend in the change of the spectral energy - a [-] sonorant landmark

indicated decreasing energy due to a more constricted vocal tract, while a [+] landmark

implied increasing energy most often associated with a constriction release. In other

words, each sonorant landmark point separated the surrounding signal into a region with

a higher and lower energy level. In Chapters 4-6 we used the relative energy level of the

signal around the sonorant landmark point to design acoustic criteria for nasality. We

required that the portion of the signal with a lower energy level conformed to the acoustic

criteria for the nasal murmur, while the higher energy level portion was expected to show



characteristics of the nasalized vowel. The landmark point itself was required to agree

with the criteria for the vowel-nasal boundary. Chapter 2, however, suggested that

limiting nasal detection to estimated sonorant landmarks would only include 56% of all

sonorant closures and releases due to a high miss rate of the sonorant estimation in the

Consonant Landmark Detector (CLD). The chapter concluded with the recommendation

that the nasal detection include all estimated pivots when deciding on the nasality feature.

As a first step in combining results from Chapters 2-6 and applying the formulated

acoustic criteria on 1483 pivots estimated for this VCV database, we explain how pivots

convey the information regarding what portions of the surrounding signal have the higher

and lower energy levels discussed in Chapter 3. In other words we explain what

information we can use to determine whether each pivot should be tested as a possible

nasal closure or release.

Much like the sign for a sonorant landmark, each pivot in Liu's CLD is associated

with another measure of the signal energy termed High-Pass Rate-of-Rise (HPROR)

value that can be positive, negative, or a zero. The sign of the HPROR value for a pivot

indicates the trend in the change of energy in the 1000-8000Hz frequency range, while

the quantitative value approximates the relative magnitude of that change. A negative

change in this energy would likely be associated with a closure, while the positive change

likely denotes the opening of the vocal tract. It is our interpretation that the zero HPROR

value indicates a relatively, not absolutely, constant signal around the pivot time. Based

on the information conveyed by the HPROR value, it is possible to establish equivalence

between a pivot with a negative HPROR and a [-s] landmark, and a pivot with a positive
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HPROR and a [+s] landmark. Sonorant landmark equivalence, however, does not apply

to the third pivot type with an HPROR value of zero. In this section we attempt to answer

two questions:

1. Should pivots with a zero HPROR value be included in the nasal detection and if

so, how do we anticipate characteristics of the signal surrounding this pivot type,

as there is no clear indication whether the pivot is located at the time of a sonorant

closure or release?

2. Are there cases when the HPROR sign of the pivot does not agree with the

assumed configuration of the vocal tract?

Analysis of 142 sonorant closures and releases in the VCV database confirms that

most sonorant segments have pivots with HPROR signs that correctly specify whether

they are placed at the time of a sonorant closure or release. Figure 7.1 illustrates the

distribution of HPROR values for the 137 estimated pivots, hand-classified in two groups

based on whether the pivot aligns with a sonorant closure or release.
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HPROR values for the 137 estimated sonorant pivots hand-classified as aligning with a
sonorant closure or release
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Figure 7.1 - Distribution of HPROR values for 137 estimated pivots hand-classified as aligning with a
sonorant closure or release. The values illustrate the general equivalence between the HPROR sign and
change in the energy of the signal at the pivot point.

A small number of pivots in both groups appears to violate the equivalence between the

HPROR and expected sonorant landmark sign. Further analysis of these exceptions

reveals that:

Th

release

" No pivot aligned with a sonorant closure or release has a zero HPROR value,

* Pivots that violate the rule are located at sonorant closures and releases

adjacent to the vowel [u],

* One pivot has a negative HPROR value while aligned with the sonorant

release in utterance [uju] - this value is shown as an outlier in Figure 7.1,

* Two pivots with positive HPROR values at sonorant closures have values that

are close to zero.

first observation that all exceptions to the rule occur at sonorant closures and

s adjacent to the vowel [u] agrees with our previous hypothesis that the transition
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between nonlow, back vowels and sonorant segments is practically non-abrupt due to the

vowel's low energy at frequencies above 1000Hz. Consequently, HPROR value of such

pivots will be very low and will vary significantly depending on the speaker and context,

not always accurately aligning the change in the signal energy with the change in the

configuration of the vocal tract. The violation of the HPROR value rule observed in the

utterance [urju] carries limited significance because the utterance requires difficult

positioning of the vocal apparatus that does not exist in American English. Consequently,

we do not anticipate occurrence of this type of exception in spontaneous speech or less

restricted environments. Our final observation indicates that we can place little

confidence in the information relayed by pivots with HPROR values close to zero.

Taking the approach of minimizing the number of missed nasal boundaries leads

us to the following method of examining pivots for the nasal characteristics:

1. Pivots with HPROR > 1 are examined for nasal characteristics

in the same manner as [+s] landmarks, that is as potential

sonorant releases,

2. Pivots with HPROR < -1 are examined as [-s] landmarks in the

nasal detection module,

3. Pivots with -1 < HPROR < 1 can be aligned with either a

sonorant closure or release - as such they have to be examined

both as a potential nasal closure and release in nasal detection.

Figure 7.2 illustrates the proposed strategy of analyzing pivots for possible nasal

characteristics. From the diagram it is evident that depending on the HPROR value,
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pivots can be analyzed as possible nasal closures, releases, or both. An alternative

approach is to exclude all pivots with IHPRORI -l from further analysis in the nasal

detection module. While minimizing the overall number of pivots examined by the nasal

detection module, this approach also excludes two pivots at true nasal boundaries from

further acoustic analysis in this database.

Pivot HPROR-1 1 [-SI landmark

Pivot Ipaa [+s] landmark

Figure 7.1 - The three pivot types can be equated to the sonorant landmark types based on the HPROR valut
pivot with HPROR<1 can be processed as a [-s] landmark as it marks the time of a decreasing energy in the signE
A pivot with HPROR>1 can be processed as a [+s] landmark because the energy change associated with this pivo
type is consistent with a sonorant release. The minimal energy change associated with pivots with an HPROR
value close to zero requires that these pivots be tested as both, potential sonorant closures and releases.

7.3 Pivot contexts

Pivots appear in a greater variety of contexts than sonorant landmarks. As a

reminder to the reader, in Chapter 2 we claimed that based on their location within the

utterance, all sonorant landmarks can be exhaustively classified into:

1. Landmarks at vowel-nasal/nasal-vowel (VN/NV) boundaries,

2. Landmarks at vowel-lateral/lateral-vowel (VL/LV) boundaries,

3. Landmarks inserted at vowel-obstruent/obstruent-vowel (VO/OV) boundaries,
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4. Landmarks inserted at vowel-semivowel/semivowel-vowel (VS/SV) boundaries,

5. Landmarks inserted within vowel segments, and

6. Landmarks inserted in semivowel segments.

Apart from these, pivots can also exist:

7. At vowel-h/h-vowel boundaries,

8. In nasal segments,

9. In obstruent segments,

10. In lateral segments,

11. In h segments.

Pivots can be thus exhaustively classified in 11 groups based on their location within the

utterance. Table 7.1 gives the number of tokens in each of the 11 groups for the VCV

database.

Table 7.1 - Hand-classification of estimated pivots in the VCV database based
utterance.

on their location within the
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Group based on location within the utterance Number of pivots

Pivots at vowel-nasal/nasal-vowel (VN/NV) boundaries 103

Pivots at vowel-lateral/lateral-vowel (VL/LV) boundaries 34

Pivots at vowel-obstruent/obstruent-vowel (VO/OV) boundaries 229

Pivots at vowel-semivowel/semivowel-vowel (VS/SV) boundaries 104

Pivots inserted within vowel segments 926

Pivots inserted within semivowel segments 20

Pivots at vowel-h/h-vowel boundaries 25

Pivots in nasal segments 11

Pivots in obstruent segments 22

Pivots in lateral segments 8

Pivots in h segmentsI

Total 1483



Based on the approach suggested in Section 7.1, each pivot will be examined as a

sonorant closure, release, or both, depending on its HPROR value. With the proposed

approach, pivots that are passed through the nasal detection as possible nasal closures

and releases will effectively increase the number of pivots in the VCV database: each

pivot with IHPROR<Is at time t is practically replaced with two pivots, one with HPROR

>1 and one with HPROR <-1 at time t. Table 7.2 illustrates the division of pivots based

on their HPROR value. The alternative approach of excluding all estimated pivots with

IHPROR 1 from the nasal detection analysis would eliminate 2 pivots at nasal

boundaries and 110 pivots at non-nasal boundaries or within non-nasal segments. The

approach selected in future applications will depend on the user requirements and

context.

We are now ready to apply the acoustic criteria for the nasal murmur and nasal

boundary on the estimated pivots, and evaluate their performance in terms of:

1. How accurately they detect pivots at nasal boundaries and in nasal segments,

2. How well they reject non-nasal pivots.

We also separate our analysis to the performance of the nasal boundary and nasal murmur

criteria.
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Effective

Group based on Number number of
location within the of Pivots with Pivots with Pivots with pivots for

estimated HPROR<-1 HPROR>1 IHPRORI<1 nutterance Pivots - nasal
detection

Pivots at VN/NV 103 51 50 2 105
boundaries
Pivots at VL/LV 34 16 17 1 35
boundaries
Pivots at VO/OV 229 152 72 5 234
boundaries
Pivots at VS/SV 104 51 51 2 106
boundaries
Pivots within vowel 926 585 251 90 1016
segments
Pivots within semivowel 20 10 8 2 22
segments
Pivots at vowel-h/h- 25 11 13 1 26
vowel boundaries

Pivots in nasal segments 11 2 8 1 12

Pivots in obstruent 22 4 12 6 28
segments

Pivots in lateral segments 8 3 3 2 10

Pivots in h segments 1 1 0 0 1

Total 1483 886 485 112 1595

Table 7.2 - Analysis of the pivots based on their application within the nasal detection module. Based on
the HPROR value pivots are examined either as potential sonorant closures, releases, or both. Pivots that
are examined once as a potential sonorant closure and once as a potential sonorant release effectively
increase the number of pivots in the VCV database.

7.4 Performance of the acoustic criteria for the nasal boundary

In this section we present the results of applying the two formulated acoustic

criteria for the nasal boundary on the estimated pivots. In the first two sections we

evaluate the performance of the AED and JAH11 acoustic criteria when applied separately

and discuss their performance characteristics. In the last section we evaluate their

combined effectiveness when detecting pivots at nasal boundaries. In each performance

analysis we quote the number of pivots detected as adhering to the requirements of the

specific acoustic criterion.
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7.4.1 AED acoustic criterion

As a reminder to the reader, the AED acoustic criterion requires that the energy of

the signal across a nasal closure show an increase across a nasal closure and a decline

across a nasal release. Because this criterion has a different expectation for a possible

closure and release, pivots are passed to this criterion together with their HPROR value

that determines how it is applied. Table 7.3 shows the results of applying this criterion to

the pivots described in Table 7.2.

Group based on location Number Number of pivots Detection
within the utterance of pivots detected as nasal rate (%)

Pivots at VN/NV boundaries 103 103 100.0

Pivots at VL/LV boundaries 35 31 88.6

Pivots at VO/OV boundaries 229 207 90.4

Pivots at VS/SV boundaries 104 98 94.2

Pivots within vowel 926 716 77.3
segments

Pivots within semivowel 20 12 60.0
segments

Pivots at vowel-h/h-vowel 25 24 96.0
boundaries

Pivots in nasal segments 11 8 72.7

Pivots in obstruent segments 22 13 59.1

Pivots in lateral segments 8 5 62.5

Pivots in h segments 1 0 0.0

Total non-nasal pivots 1380 1114 80.7

Total nasal pivots 103 103 100

Table 7.3 - Performance results of applying the AED criterion on the 1483 estimated pivots using the

approach where pivots with IHPRORI 51 are examined twice by the criterion, once as a possible nasal
closure and once as a possible nasal release.
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The following can be said about the performance characteristics of this acoustic

criterion:

* The currently formulated acoustic criterion is designed to minimize the number of

missed nasal boundaries. As a consequence, the criterion detects all pivots at true

nasal boundaries while allowing a relatively large number of false positives.

* Analysis of the 11 groups of pivots indicates that the criterion has a significantly

better rejection rate for pivots inserted within non-nasal segments than at non-

nasal boundaries - a possible extension of this criterion could be designed to

focus on detecting missing pivots in the signal.

* Because each pivot shows either a net positive or net negative change in the

energy of the two bands, AED, pivots tested as a potential nasal closure and

release will always have exactly one context pass this acoustic criterion. For

example, a pivot at time t, with HPROR = 0 will always be detected as a possible

nasal closure or release, but not both.

* While detecting all pivots at true nasal boundaries, this acoustic criterion rejects

only about 20% of non-nasal pivots.

Next we evaluate the performance of the IAHI I acoustic criterion in the nasal boundary

detection.

7.4.2 IAH11 acoustic criterion

The IAHIJ acoustic criterion projects the requirement that energy of the first

harmonic be relatively constant across the possible nasal boundary, whether it is a
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possible nasal closure or release. Because each pivot is examined in the same manner,

independently of its HPROR value, there is no need to pass the pivots' HPROR value to

this criterion. The expectation is that this criterion will be only effective at separating true

sonorant from the remaining pivots.

Group based on location Number Number of pivots Detection
within the utterance of pivots detected as nasal rate (%)

Pivots at VN/NV boundaries 103 102 99.0

Pivots at VL/LV boundaries 35 33 94.3

Pivots at VO/OV boundaries 229 155 67.7

Pivots at VS/SV boundaries 104 99 95.2

Pivots within vowel 926 766 82.7
segments

Pivots within semivowel 20 18 90.0
segments

Pivots at vowel-h/h-vowel 25 16 64.0
boundaries

Pivots in nasal segments 11 11 100

Pivots in obstruent segments 22 21 95.5

Pivots in lateral segments 8 8 100

Pivots in h segments 1 1 100

Total non-nasal pivots 1380 1128 81.7

Total nasal pivots 103 102 99.0

Table 7.4 - Performance results of applying the JAHII acoustic criterion on the 1483 estimated pivots. The
criterion is applied uniformly across all estimated pivots, independently of their HPROR value.

The following is a summary of the performance characteristics for the JAHiJ acoustic

criterion:

* The criterion shows a high detection rate for pivots at all sonorant boundaries,

such as laterals, semivowels, and nasals - this aligns with the theoretical
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expectation that small change in the pressure at the glottis for sonorant segments

will result in a relatively constant signal at low frequencies.

" The single rejected pivot at a true nasal boundary is located at the time of the

nasal release in the utterance [Frj6 ].The COLEA fOtrack appears consistent and

accurate across pivots and utterances.

" Pivots located within vowel segments that are rejected with this criterion are

located either at the beginning or end of voicing in an utterance.

* This acoustic criterion is formulated with the goal of minimizing the number of

missed nasal boundaries, while allowing for a high rate of false positives -

consequently only about 20% of non-nasal pivots are rejected by this criterion.

Lastly we combine the formulated acoustic criteria in a test for the nasal boundary.

7.4.3 Combined performance of the nasal boundary criteria

The difference in the nature of the formulated acoustic criteria suggests that their

combined use will show significant improvement with regard to either of the isolated

performance results. On the one hand, the AED acoustic criterion has been found to

discriminate well between pivots at boundaries and within segments: the majority of

pivots that met this requirement indicated some abrupt acoustic change, being either

located at vowel-consonant boundaries or at the beginning or end of voicing within

vowel segments. The IAHI I acoustic criterion, on the other hand, imposed a requirement

that pivot sees almost no change in the energy at low frequencies, thus effectively
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eliminating only non-sonorant boundaries. In this section we show the results of

applying the combined criteria to the estimated pivots.

Group based on location Number Number of pivots Detection
within the utterance of pivots detected as nasal rate %

Pivots at VN/NV boundaries 103 102 99.0

Pivots at VL/LV boundaries 35 31 88.6

Pivots at VO/OV boundaries 229 137 59.8

Pivots at VS/SV boundaries 104 88 84.6

Pivots within vowel 926 598 64.6
segments

Pivots within semivowel 20 10 50.0
segments

Pivots at vowel-h/h-vowel 25 15 60.0
boundaries

Pivots in nasal segments 11 8 72.7

Pivots in obstruent segments 22 12 54.5

Pivots in lateral segments 8 5 62.5

Pivots in h segments 1 0 0.0

Total non-nasal pivots 1380 904 65.5

Total nasal pivots 103 102 99.0

Table 7.5 - Performance results of applying the combined acoustic criteria for the nasal boundary on the
1483 estimated pivots. The JAH1I acoustic criterion is applied uniformly to all pivots independently of their
HPROR value, while the AED criterion required the HPROR value to apply the correct expectation to each
pivot.

As in the previous two sections, the following observations can be made regarding the

performance of the combined acoustic criteria:

* The performance is characterized by the high detection rate of both true nasal and

non-nasal pivots. More than 60% of all estimated non-nasal pivots are detected as
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showing properties of the nasal boundary. Detection rates for pivots at lateral and

semivowel boundaries are highest among the non-nasal pivots.

" The criteria appear to be especially ill-suited for databases with a large number of

semivowel and lateral boundaries - these contexts will see a significant

degradation in the performance of the criteria due to the high rate of false

positives.

" The large number of false positives shows that a larger set of more effective

acoustic criteria is needed in order to efficiently separate nasal from non-nasal

boundaries if the goal of the algorithm is still to minimize the miss rate with the

same decision process.

* One pivot in the vowel-nasal group that is not detected by the combined criteria is

located at the time of the nasal release in the utterance [nje ] and discussed in

Section 7.4.2.

* Because they analyze the region in the immediate vicinity of the estimated pivot,

these criteria will not depend on the duration of the vowel and will show limited

dependence on the duration of the nasal murmur (all calculations are limited to

the time interval of about 30ms on either side of the estimated pivot).

We next turn our attention to the formulated acoustic criteria for the nasal murmur.

7.5 Performance of the acoustic criteria for the nasal murmur

In Chapter 5 we reconstructed Chen's algorithm for the nasal murmur detection

and adjusted its criteria by suggesting a new structure and limits for the specific acoustic
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cues. As a reminder to the reader, the algorithm used six acoustic cues to examine the

properties of signal energy and spectral tilt, and compare them against the quantified

expectation for the nasal segments. From the computational point of view, the six cues

are calculated almost simultaneously, making it computationally rather expensive to

apply each criterion in isolation. The majority of the six cues, in addition, impose a

requirement on the spectral characteristics of some frequency band with respect to the

lowest 0-788 Hz band - this further complicates the applicability of formulated acoustic

criteria in isolation from each other. For these reasons Table 7.6 shows the performance

characteristics of the aggregate nasal murmur criteria when applied to the 1483 estimated

pivots in this VCV database. Pivots are examined with the approach illustrated in Figure

7.2 that relies on the HPROR value to determine whether the pivot is a likely nasal

closure or release.

The results in Table 7.6 indicate that:

* The nasal murmur criteria discriminate poorly between nasals and the

remaining sonorant consonants - about 63% of lateral and semivowel

pivots are detected as showing characteristics of the nasal murmur.

* Approximately 20% of pivots within vowel segments that were detected

as showing characteristics of the nasal murmur were adjacent to the nasal

segment. The proximity of the pivot to the nasal boundary causes most

measurements in the nasal murmur algorithm to be taken in the region of

the signal that actually belongs to the nasal segment. As such, these pivots

are actually measured correctly and their detection in the nasal murmur

algorithm is advantageous in possible further acoustic analysis.
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Group based on location Number Number of pivots Detection
within the utterance of pivots detected as nasal rate (%)

Pivots at VN/NV boundaries 103 102* 99.0

Pivots at VL/LV boundaries 35 22 62.9

Pivots at VO/OV boundaries 229 42 18.3

Pivots at VS/SV boundaries 104 69 66.3

Pivots within vowel 926 155 16.7
segments
Pivots within semivowel 20 9 45.0
segments
Pivots at vowel-h/h-vowel 25 0 0.0
boundaries

Pivots in nasal segments 11 9 81.8

Pivots in obstruent segments 22 9 40.9

Pivots in lateral segments 8 5 62.5

Pivots in h segments 1 0 0

Total non-nasal pivots 1380 320 23.3

Total nasal pivots 103 102 99.0

Table 7.6 - Performance results of the aggregate criteria for the nasal murmur applied to the 1483
estimated pivots. The criteria use the HPROR value associated with each pivot to determine whether it
should be examined as a possible nasal closure, release, or both.

* One pivot at a true nasal boundary with IHPRORI51 was detected as two nasal pivots when
examined as a possible sonorant closure and release. We considered this pivot as contributing a
single token to the Number of pivots detected as nasal column.

* The single pivot at a true nasal boundary that was detected as not showing

properties of the nasal murmur was located at the nasal closure in

utterance [ arja ]. The pivot was rejected on the basis of not meeting the

A1-A2 requirement in the first measured frame, closest to the boundary.

The remaining frames adhered to all formulated criteria. This result
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indicates that further testing of the criteria will either modify the proposed

thresholds or the structure of the decision process.

* Analysis of the two pivots inserted within nasal segment that were

detected as not showing characteristics of the nasal murmur indicates that:

- One pivot failed because its proximity to the vowel-nasal boundary

resulted in the large fluctuations of the RMS value, which in term

caused all but one frame to be discarded in the nasal murmur

algorithm. The requirement that at least two frames comply with

the required acoustic criteria caused this pivot to be rejected for the

nasal murmur characteristics.

- Rejection of the second pivot was also caused by its proximity to

the vowel boundary. This time, however, the initial calculations

across the boundary caused the initial frames not to pass the RMS

criterion and thus not be examined for the remaining acoustic

characteristics. Once in the vowel segment, however, the RMS

value became stable while the largest peak in the lowest frequency

band aligned with the true first formant. Failure of this cue was

specifically caused by the fl value in these frames.

The significance of these two cases is in recognizing contexts that may

limit the algorithm's functionality in spontaneous speech, where nasal

segments can measure less than 50ms in duration from the estimated

landmark point. With such nasal segments, most measurements will be
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made in the vicinity of the nasal boundary and may require reformulation

of the decision process.

7.6 Combined performance of the nasal boundary and murmur criteria

In American English at least one segment adjacent to the nasal is a vowel. It is

therefore significant to evaluate the performance of the nasal boundary and nasal murmur

criteria when applied in combination on the estimated pivots. Table 7.7 gives the

performance results.

Table 7.7 - Results of applying the combined
estimated pivots in the VCV database.

criteria for the nasal boundary and nasal murmur on the 1483
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Group based on location Number Number of pivots Detection
within the utterance of pivots detected as nasal rate (%)

Pivots at VN/NV boundaries 103 101 98.1

Pivots at VL/LV boundaries 35 19 54.3

Pivots at VO/OV boundaries 229 23 10.0

Pivots at VS/SV boundaries 104 58 55.8

Pivots within vowel 926 115 12.4
segments

Pivots within semivowel 20 4 25.0
segments

Pivots at vowel-h/h-vowel 25 0 0.0
boundaries

Pivots in nasal segments 11 7 63.6

Pivots in obstruent segments 22 0 0.0

Pivots in lateral segments 8 1 12.5

Pivots in h segments 1 0 0.0

Total non-nasal pivots 1380 227 16.4

Total nasal pivots 103 101 98.1



If each nasal pivot is also expected to be a vowel-nasal boundary, as in a VCV database,

application of the combined acoustic criteria for the nasal boundary and nasal murmur

will show the following characteristics:

* A large majority of pivots at true nasal boundaries will be detected by the

combined acoustic criteria - for the VCV database this detection rate is 98.1%.

" A majority of the false positives will belong to pivots at lateral and semivowel

boundaries, and within nasal segments. Additional acoustic cues need to be

examined in the future that will specifically target laterals and semivowels.

" Most pivots within vowel segments that adhere to both criteria are located close to

the nasal, lateral, or semivowel boundary. With further processing this

information can be used to possibly compensate for the missing pivots.

" For databases that may be more heavily weighted towards laterals and

semivowels we will see a significant degradation in the performance of the

criteria.

* Depending on the requirements, it is possible to formulate the criteria using the

maximum likelihood ratio test or Neyman-Pearson detection principles that will

further optimize its performance. Our reasoning behind choosing to maximize the

detection rate without a specified limit on the rate of false positives is that

information from the lexicon and other modules within the LAFF system will help

eliminate some of the false positives. No mechanism currently exists that would

compensate for the missing nasal pivots, making them rather costly for the

system.
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7.7 Minimizing the computational power by the algorithm

In Chapter 2 we recommended that acoustic criteria for nasality be ordered in

such a way as to minimize the required computational power when examining estimated

pivots for nasal characteristics. During the algorithm design, however, the most optimal

solution suggested that all nasal murmur criteria be calculated almost simultaneously,

thus not allowing any ordering or separation. Our only suggestion in minimizing the

overall computational requirement is in using the nasal boundary and nasal murmur

criteria in combination. If used in combination, using the AED acoustic criterion first will

determine whether pivots with IHPRORI 1 should be passed as possible nasal closures or

releases to the next algorithm. Taking this approach would eliminate 112 of 1483

estimated pivots from further consideration.

7.8 Contributions and future work

This thesis study is the first step in the creation of an automated nasal detection

module in a feature-based system. At the beginning of the project we examined the

consonant landmark estimation results and their influence on the design of the nasal

module. We then used the estimated landmarks to design and test algorithms for various

acoustic cues until their results conformed to the theoretical expectations. In the cases

where theoretical expectations were not met, we attempted to identify possible reasons

and make a recommendation regarding how they can be solved in the future work.

Consistencies among a number of acoustic cues for nasal sonorant landmarks were

translated into acoustic criteria that were used to separate nasals from non-nasal

landmarks. The criteria defined in this study are not optimized to yield most efficient
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classification; the automated algorithms developed to extract eight promising cues,

however, allow for a relatively quick and consistent analysis of further contexts and

speakers, and further analysis of decision structures that would yield more robust and

accurate performance results. With a simple formulation of the criteria based on the

preliminary analysis of estimated sonorant landmarks and observations made in past

studies, we detected 98.2% of true nasal pivots from the CLD output.

Based on the work completed in this thesis, there are three possible directions for

future work. The three directions are:

1. Expanding the existing set of acoustic criteria to better address the task of

rejecting non-nasal pivots at semivowel and lateral segments,

a. In Chapter 4 we suggested measuring the energy difference

between the 0-350Hz and 350-2000Hz band. Including higher

frequencies than tested in this study guarantees to capture the

introduction of the nasal antiformant in the 800-2000Hz region.

b. Preliminary analysis of the ED cue measured in the portion of the

signal following a nasal closure or preceding a nasal release

showed promising results when tested with the ANOVA statistical

analysis tool, though this cue was not included in the current

formulation of the criteria.

2. Collecting more observations by running the same algorithms on a variety

of databases, and analyzing the formulation of acoustic criteria that yields

highest accuracy and robustness using statistical classifiers,
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a. The advantage of using statistical classifiers rather than firm

thresholds is that classification of each pivot is accompanied by a

confidence rating that is advantageous in further acoustic

processing. For example, if a set of acoustic cues classify a pivot

as nasal with a 58% and lateral with 34% confidence rating, this

information would be advantageous when accessing the lexicon to

stipulate a possible cohort of words. For each member of cohort, a

module could be made to do an "internal synthesis" of the

expected parameters and compare with the observations made in

the nasal module. With an access to the lexicon, each cohort would

also identify the vowel adjacent to the nasal - this information in

turn, would allow us to better estimate whether the pivot is nasal

or not.

3. Porting the algorithms to spontaneous speech and observing the change in

the number of available cues and their behavior in obscured environments.

Measurements made for these databases will most likely reformulate the

way in which measured cues are used during the decision process.

The main contribution of this study is in formulating a set of eight acoustic cues

in terms of automated algorithms that can be used within the nasal module or included in

other analysis. Measurements made these algorithms will guarantee a consistent method

of examining large volumes of databases and contexts. Information collected in such a
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way will allow us to define more general and robust acoustic criteria for the nasal

detection, and shed more light on possible extensions to the nasal detection module.
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Appendix A: Results of the Sonorant Landmark Estimation

Results of the sonorant landmark estimation on the VCV database of 453 utterances with
Liu's CLD. The 251 estimated sonorant landmarks are hand-classified into one of six
groups:

1. Landmarks at vowel-nasal/nasal-vowel boundary,
2. Landmarks at vowel-lateral/lateral-vowel boundary,
3. Landmarks within vowel segments,
4. Landmarks at vowel-semivowel/semivowel-vowel boundary,
5. Landmarks at vowel-obstruent/obstruent-vowel boundary,
6. Landmarks in semivowel segments.

Utterance Landmark Time Comment Hand-classification
aaaacb ------- -------- -------

aaaadw ------- -------- -------

aaaaks --------- --- -- -------

aabaacb ------- ------- -----

aabaadw ---- -- ----- - -------

aabaaks ---- -- ------- -------

aachaacb -------- ------- -------

aachaadw ---- -- --- -- -------

aachaaks -------- -------- ------

aadaa cb -s 188 closure for d vowel-obstruent

aadaadw -s 231 closure for d vowel-obstruent

aadaa ks -s 242 closure for d vowel-obstruent

aadhaa cb ----- - ------- ------

aadhaa dw +s 530 release for dh obstruent-vowel

aadhaa ks ---------- ------- ------

aadjaa-cb ------------ ------- ------

aadjaa dw -s 345 closure for dj vowel-obstruent

aadjaa ks ----------- ------- -----

aafaacb ------- --- --- -------

aafaadw ---------- -------- --------

aafaaks -------- ----- ------

aagaa-cb ---- -- ----- - -------

aagaa-dw -s 249 closure for g vowel-obstruent

aagaa ks -s 252 closure for g vowel-obstruent
aahaacb --------- --- -- -------

aahaa dw ------- ------ -------

aakaa ks ------- ---- -- --------

aalaa cb -s 215 closure for 1 vowel-lateral
+s 375 release for I lateral-vowel

aalaa dw ----- - -------- --------

aalaa ks +s 338 release for 1 lateral-vowel

aamaa cb ---------- --------- ------

aamaa dw -s 274 closure for m vowel-nasal



+s 427 release for m nasal-vowel

aamaa ks +s 63 beg of VI within vowel

-s 206 closure for m vowel-nasal

+s 328 release for m nasal-vowel

aanaacb -s 197 closure for n vowel-nasal

+s 331 release for n nasal-vowel

aanaadw -s 304 closure for n vowel-nasal

+s 471 release for n nasal-vowel

aanaaks -s 210 closure for n vowel-nasal

+s 325 release for n nasal-vowel

aangaacb ---------- -------- -------

aangaa dw -s 255 closure for ng vowel-nasal

+s 452 release for ng nasal-vowel

aangaa-ks -s 217 closure for ng vowel-nasal

+s 349 release for ng nasal-vowel

aapaa-cb ------- ------- -------

aapaa-dw ------- ------- -------

aapaa ks -------- ------- --------

aaraa cb -------- ------- --------

aaraa dw --------- --------- -------

aaraa ks --------- -------- --------

aasaacb ------- ---------- --------

aasaadw ------- -------- -------

aasaa ks -------- --------- ----------

aashaacb --------- ------- ---------

aashaa dw ------- --------- ---------

aashaa ks +s 74 beg of vowel within vowel

aataacb ---------- ------- --------

aataadw ---------- ---------- ---------

aataa ks --------- ------- --------

aathaa cb ----------- -------- -------

aathaa dw +s 100 beg of VI within vowel

aathaaks --------- -------- ----------

aavaacb -------- ------- ---------

aavaadw -s 720 end of V2 within vowel

aavaaks ------------ --------- --------

aawaa cb --------- ---------- --------

aawaa dw ---------- ---------- --------

aawaaks +s 371 release for w semivowel-vowel

aayaa cb +s 379 release for y semivowel-vowel

aayaa-dw -------- --------- ----------

aayaa-ks ---------- ---------- -------

aazaa cb -s 193 closure for z vowel-obstruent

aazaa dw +s 87 beg of utt. within vowel

aazaaks ---------- ---------- --------

aazhaa cb ---------- ---------- --------
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aazhaa dw -------- -------- -------

aazhaa ks -------- -------- -------

ahah cb -------- ------- -------

ahah dw ---------- ------- -------

ahah ks ------- -------- --------

ahbah cb ---------- ------- -------

ahbah dw ------- -------- --------

ahbah ks +s 76 beg of VI within vowel

ahchahcb --------- -------- ------

ahchah dw -------- ------- -------

ahchahks ---------- -------- -------

ahdah cb ---------- -------- -------

ahdah dw -s 277 closure for d vowel-obstruent

ahdah ks -s 196 closure for d vowel-obstruent

ahdhah cb +s 55 beg of utt. within vowel
+s 301 release for dh obstruent-vowel

ahdhah dw ----------- ------- ------

ahdhah ks --------- -------- -------

ahdjahcb ---------- -------- --------

ahdjah dw -s 208 closure for dj vowel-obstruent

ahdjah ks -s 174 closure for dj vowel-obstruent

ahfahcb -------- -------- --------

ahfahdw ----------- ------- --------

ahfahks --------- -------- -------

ahgah cb ---------- -------- --------

ahgahdw -s 258 closure for g vowel-obstruent

ahgahks -s 194 closure for g vowel-obstruent

ahhah cb -------- -------- -------

ahhahdw ---------- --------- -------

ahhahks -s 542 end of utt. within vowel

ahkah cb --------- ------- -------

ahkah dw --------- -------- --------

ahkahks ------- -------- -------

ahlahcb +s 427 release for I lateral-vowel

ahlah dw -s 134 mid vowel within vowel

ahlah ks +s 344 release for 1 lateral-vowel

ahmah cb -s 196 closure for m vowel-nasal
+s 330 release for m nasal-vowel

ahmah dw +s 447 release for m nasal-vowel

ahmah ks -s 184 closure for m vowel-nasal
+s 323 release for m nasal-vowel

ahnahcb -s 169 closure for n vowel-nasal
+s 329 release for n nasal-vowel

ahnah dw -s 216 closure for n vowel-nasal
+s 487 release for n nasal-vowel

ahnah ks -s 184 closure for n vowel-nasal
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+s 334 release for n nasal-vowel

ahngahcb -s 169 closure for n vowel-nasal
+s 359 release for n nasal-vowel

ahngahdw +s 459 release for n nasal-vowel

ahngahks +s 57 beg of utt. within vowel

ahpahcb ------- ------- -------

ahpah dw ------- ------- --------

ahpahks ------- ------ -----

ahrah cb +s 430 release for r semivowel-vowel

ahrah dw ------- ------- -------

ahrahks ------- ----- ------

ahsah cb -------- ------- ------

ahsah dw ------ ------- ------

ahsah ks ------ --------- -----

ahshah cb --------- ------ ------

ahshah dw ------- ------ ------

ahshahks ----- - --- -- -------

ahtah cb ------- ----- ------

ahtah dw ------ ------- -------

ahtah ks ------- ------- -----

ahthah cb ------- ------- ------

ahthah dw --------- ------- ------

ahthahks -------- ------- ------

ahvahcb -s 233 closure for v vowel-obstruent

+s 371 release for v obstruent-vowel

ahvah dw --------- ------ ------

ahvah ks ------- ------- ------

ahwah cb ------- ------ ------

ahwah dw -------- -------- ------

ahwah ks --------- ----- ------

ahyahcb ------- ------- ------

ahyahdw ---------- ----- ------

ahyah ks -s 192 closure for y vowel-semivowel

ahzahcb --------- ------ ------

ahzah dw ------- ------- -----

ahzah ks ------- ------- -----

ahzhahcb ---------- ------- -------

ahzhah dw --- --- ------ ------

ahzhah ks -s 553 end of utt. within vowel

ehbeh cb ------ ------ ----

ehbeh dw -s 197 closure for b vowel-obstruent

-s 482 end of V2 within vowel

ehbeh ks -s 235 closure for b vowel-obstruent
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ehchehcb -s 565 end of utt. within vowel

ehcheh dw ------ ------ ------

ehcheh ks ------ ---- ------

ehdeh cb -s 140 closure for d vowel-obstruent

ehdeh dw -s 576 end of V2 within vowel

ehdehks -s 223 closure for d vowel-obstruent

ehdheh cb ---- --- --- ------

ehdheh dw ------ ----- -----

ehdheh ks +s 126 mid VI within vowel

ehdjeh cb -s 147 closure for dj vowel-obstruent

ehdjehdw -s 97 mid VI within vowel

-s 205 closure for dj vowel-obstruent

ehdjehks -s 216 closure for dj vowel-obstruent

eheh cb ----- -- -----

ehehdw ----- -- -----

ehehks --- - ----- -----

ehfehcb --- - -- ----

ehfeh dw ------- ---- -----

ehfehks -------- ----- ------

ehgehcb -s 148 closure for g vowel-obstruent

-s 511 end of V2 within vowel

ehgeh dw ----- --- -----

ehgeh ks -s 194 closure for g vowel-obstruent

ehheh cb ----- --- ------

ehheh dw ------- ---- -----

ehheh ks -s 565 end of utt. within vowel

ehkehcb ------- ----- -----

ehkehdw ------ -- ----

ehkeh ks ----- --- ------

ehlehcb +s 368 release for 1 lateral-vowel

ehleh dw --- - ----- -----

ehleh ks +s 89 beg of utt. within vowel
+s 325 release for 1 lateral-vowel

ehmeh cb -s 192 closure for m vowel-nasal
+s 359 release for m nasal-vowel

ehmeh dw -s 209 closure for m vowel-nasal
+s 394 release for m nasal-vowel

ehmeh ks -s 174 closure for m vowel-nasal
+s 306 release for m nasal-vowel

-s 485 end of utt. within vowel

ehneh cb -s 147 closure for n vowel-nasal
+s 345 release for n nasal-vowel

-s 611 end of utt. within vowel

ehneh dw -s 206 closure for n vowel-nasal
+s 413 release for n nasal-vowel

-s 582 mid V2 within vowel
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+s 628 end of V2 within vowel

ehnehks -s 206 closure for n vowel-nasal
+s 334 release for n nasal-vowel

ehngehcb -s 200 closure for ng vowel-nasal

ehngehdw -s 235 closure for ng vowel-nasal
+s 424 release for ng nasal-vowel

ehngehks -s 197 closure for ng vowel-nasal

ehpehcb -s 497 end of utt. within vowel

ehpehdw +s 365 release for p obstruent-vowel

ehpehks -s 525 end of utt. within vowel

ehreh cb ------- ------- ------

ehrehdw --------- ------- -------

ehreh ks -s 553 end of utt. within vowel

ehseh cb --------- ---- -------

ehseh dw ------- ------- -------

ehseh ks +s 79 beg of Vl within vowel

ehsheh cb -------- ---- -------

ehshehdw -------- ------- ------

ehsheh ks -s 191 closure for sh vowel-obstruent

ehteh cb --------- --- ------

ehteh dw --------- ---- ------

ehteh ks ------- ------ -------

ehtheh cb -s 547 end of utt. within vowel

ehthehdw ------- ----- ------

ehtheh ks ----------- --- ------

ehvehcb -------- ------ -------

ehveh dw -------- ----- -------

ehveh ks +s 297 release for v obstruent-vowel

ehweh cb -s 238 closure for w vowel-semivowel

ehweh dw +s 392 release for w semivowel-vowel

ehweh ks ------- ------- -------

ehyeh cb -------- -------- -------

ehyeh dw --------- -------- ------

ehyehks --------- ------ ------

ehzeh cb -------- ---- ------

ehzeh dw --------- ------ ------

ehzeh ks -s 206 closure for z vowel-obstruent

-s 534 end of utt. within vowel

ehzheh cb ------- ---- -------

ehzhehdw -s 337 closure for zh vowel-obstruent

-s 653 mid V2 within vowel

ehzhehks ------- --------- -------

iybiy cb -s 553 end of utt. within vowel
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iybiydw -s 533 end of V2 within vowel

iybiy ks +s 67 beg of utt. within vowel

iychiy cb ------- -------- -------

iychiy dw -s 99 beg of VI within vowel

-s 624 mid V2 within vowel

iychiyks ------- ------ ------

iydhiycb -------- ------ ------

iydhiydw -------- ------ -----

iydhiyks ------- ------ --------

iydiycb ------- ------- -------

iydiydw -s 215 closure for d vowel-obstruent

iydiyks -s 197 closure for d vowel-obstruent

iydjiycb -s 165 closure for dj vowel-obstruent

iydjiydw -s 333 closure for dj vowel-obstruent

iydjiyks -s 599 end of utt. within vowel

iyfiycb -s 581 end of utt. within vowel

iyfiydw +s 102 beg of utt. within vowel

iyfiyks -s 579 end of utt. within vowel

iygiycb ------- ------ ------

iygiy dw -s 252 closure for g vowel-obstruent

iygiyks +s 81 beg of VI within vowel

iyhiycb ------- ----- ------

iyhiydw ------ ------ ------

iyhiyks ------ -------- -----

iyiycb -------- ----- ------

iyiydw ------- ----- ------

iyiyks -s 580 end of utt. within vowel

iykiycb -s 500 end of utt. within vowel

iykiydw -s 527 end of V2 within vowel

iykiy ks +s 53 beg of utt. within vowel

iyliycb -s 190 closure for 1 vowel-lateral
+s 327 release for 1 lateral-vowel

iyliydw -------- ------- ------

iyliyks -s 205 closure for 1 vowel-lateral

iymiycb -s 187 closure for m vowel-nasal
+s 294 release for m nasal-vowel

iymiydw -s 566 mid V2 within vowel

iymiyks -s 216 closure for m vowel-nasal
+s 339 release for m nasal-vowel

-s 555 end of utt. within vowel

iyngiycb -s 129 closure for ng vowel-nasal

iyngiydw -s 177 closure for ng vowel-nasal

iyngiyks missing in the database
iyniycb -s 190 closure for n vowel-nasal

+s 326 release for n nasal-vowel

iyniydw -s 269 closure for n vowel-nasal

158

Utterance Landmark Time Comment Hand-classification



+s 472 release for n nasal-vowel

iyniy ks -s 201 closure for n vowel-nasal
+s 334 release for n nasal-vowel

-s 569 end of utt. within vowel

iypiy-cb -s 503 end of utt. within vowel

iypiydw -s 552 end of V2 within vowel

iypiyks -s 540 end of utt. within vowel

iyriycb ------ -------- -------

iyriy-dw -s 595 mid V2 within vowel

iyriyks -s 578 end of utt. within vowel

iyshiycb ------ ------ ------

iyshiydw ------ -------- -----

iyshiy ks -s 148 closure for sh vowel-obstruent

iysiycb -s 582 end of utt. within vowel

iysiydw ----- ----- -----

iysiy ks ------ ------- ------

iythiy cb -s 591 end of utt. within vowel

iythiydw ------- -------- ------

iythiyks -s 615 end of utt. within vowel

iytiycb -s 510 end of utt. within vowel

iytiydw ------- ------- ------

iytiyks ------- -------- ------

iyviycb -s 377 mid V2 within vowel

-s 515 end of V2 within vowel

iyviy-dw ------ ------ ----

iyviyks -s 516 end of utt. within vowel

iywiy-cb -s 776 end of utt. within vowel

iywiydw +s 404 release for w semivowel-vowel

-s 550 end of V2 within vowel

iywiyks -s 189 closure for w vowel-semivowel

iyyiycb ------ - ----- ------

iyyiydw -s 649 end of V2 within vowel

iyyiyks +s 351 release for y semivowel-vowel

iyzhiycb ----- ---- -----

iyzhiy dw -s 101 beg of VI within vowel

-s 206 mid VI within vowel

iyzhiy ks -------- ------ --------

iyziy cb -------- ------ -----

iyziy dw ----- ------ ----

iyziy ks ----- ----- -----

owbow cb -------- ------------ -------

owbow dw -------- ----- - --------

owbow ks --------- ------- -----
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owchowcb --------- -------- --------

owchowdw ------- ------- -------

owchow-ks -------- ------- ------

owdhow cb -s 230 closure for dh vowel-obstruent
+s 337 release for dh obstruent-vowel

owdhow dw -s 301 closure for dh vowel-obstruent

owdhow ks ------ - ----- ------

owdjow cb ------- ----- ------

owdjow dw -------- -------- -------
owdjow ks +s 322 release for dj obstruent-vowel
owdowcb ------ - ---------- ------

owdow dw +s 107 beg of utt. within vowel

owdowks -s 214 closure for d within vowel

owfow cb ---- - ------- ------

owfow dw -s 171 closure for f vowel-obstruent

-s 590 end of V2 within vowel

owfow ks ----- - ----- ------

owgow-cb -s 605 end of utt. within vowel

owgow-dw --------- -------- ------

owgow-ks -------- -------- -------

owhowcb -------- ---- - -------

owhowdw -s 626 end of V2 within vowel

owhowks ---- - -------- ------

owkowcb -s 542 end of utt. within vowel

owkow dw ----- - ------- ------

owkowks ----- -- ------- -----

owlow cb +s 364 release for 1 lateral-vowel
-s 692 end of utt. within vowel

owlowdw +s 439 release for 1 lateral-vowel

owlow ks +s 354 release for 1 lateral-vowel

owmowcb +s 354 release for m nasal-vowel

-s 677 end of utt. within vowel

owmow-dw +s 475 release for m nasal-vowel

owmowks +s 301 release of m| nasal-vowel

owngow cb --------- ------ ------

owngow-dw +s 439 release for ng nasal-vowel

owngow ks +s 320 release for ng nasal-vowel
ownowcb +s 367 release for n nasal-vowel

ownow-dw +s 91 beg of utt. within vowel

-s 311 closure for n vowel-nasal

ownow ks -s 214 closure for n vowel-nasal
+s 328 release for n nasal-vowel

owowcb --- -- --------- -------

owow dw ------ - -------- ------

owowks -------- --------- ------

owpow cb -s 553 end of utt. within vowel
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owpow-dw --------- -------- --------

owpow-ks ------- -------- -------

owrowcb --------- ------- -------

owrow dw +s 435 in r in semivowel

owrowks ---------- ------- ------

owshowcb ------- -------- ------

owshow dw +s 91 beg of utt. within vowel

owshowks ------- ------- ------

owsowcb ------- ------- ------

owsowdw -------- ------ ------

owsowks ---- --- -------- ------

owthow cb -------- ------- -------

owthowdw -s 571 end of V2 within vowel

owthow ks ---- --- ------- -----

owtow cb -s 539 end of utt. within vowel

owtow dw ----- - --- --- -------

owtowks ------- ------ ------

owvowcb -------- -------- ------

owvow-dw -------- ------- -------

owvowks ------- ------- -------

owwowcb +s 369 release for w semivowel-vowel

owwowdw +s 73 beg of utt. within vowel

owwowks -------- ------- ------

owyow cb +s 348 release for y semivowel-vowel

owyow dw -s 665 end of V2 within vowel

owyow-ks +s 323 release for y semivowel-vowel

owzhowcb ---------- ------- ------

owzhow dw -s 168 mid VI within vowel

-s 745 mid V2 within vowel

owzhowks -------- ------- -------

owzowcb -s 708 end of utt. within vowel

owzowdw ---- -- ------ -----

owzowks -------- --- --- -------

uwbuwcb ---- ------ -----

uwbuwdw -------- ------- ----

uwbuw ks -------- --------- ----

uwchuw cb -s 100 mid VI within vowel

uwchuwdw ----- ------ --------

uwchuwks ------- ------ ------

uwdhuw cb -------- -------- ------

uwdhuwdw -s 741 mid V2 within vowel

uwdhuw ks -s 593 end of utt. within vowel

uwdjuw-cb --------- ------- -----
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uwdjuw dw -s 338 closure for dj vowel-obstruent

uwdjuwdks -s 203 closure for dj vowel-obstruent

uwduwcb -- 20----- couefrd--- ---- vw obre

uwduwdw -s 243 closure for d vowel-obstruent

uwduwks ---- ----- -----

uwfuw cb ---- ----- -----

uwfuw dw -s 90 beg of VI within vowel

-s 582 end of V2 within vowel

uwfuw ks ----- ----- -----

uwguwcb --- - ---- ----

uwguw dw ---- ---- ----

uwguw ks +s 53 beg of utt. within vowel

-s 603 end of utt. within vowel

uwhuw cb --------- ----

uwhuwdw ---- ---- -----

uwhuwks --- - ---- ----

uwkuw cb -s 572 end of utt. within vowel

uwkuwdw ---- ---- ----

uwkuwks --- - ----- ---

uwluw cb +s 377 release for 1 lateral-vowel

uwluw-dw ---- ---- ---

uwluwks +s 61 beg of VI within vowel

uwmuw cb +s 369 release for m nasal-vowel

uwmuw_dw +s 463 release for m nasal-vowel

uwmuwks +s 305 release for m nasal-vowel

uwnguw cb --- - --- - ----

uwnguw dw --- - ----- ----

uwnguw ks ---- ----- ----

uwnuw cb ----- ----- ----

uwnuwdw +s 482 release for n nasal-vowel

uwnuwks +s 346 release for n nasal-vowel

uwpuwcb ---- --- - -----

uwpuw dw ---- --- - ----

uwpuw ks --- - ---- ----

uwruwcb +s 336 release for r semivowel-vowel

uwruw dw -s 174 closure for r vowel-semivowel

uwruw ks -s 226 closure for r vowel-semivowel

uwshuw cb --- - ---- ----

uwshuwdw -s 685 end of V2 within vowel

uwshuwks --- - --- - ----

uwsuwcb --- - ---- ----

uwsuwdw ---- ---- ----

uwsuw ks ---- ---- ----

uwthuwcb -s 640 end of utt. within vowel

uwthuw dw --------- ----
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uwthuwks ------- ----- -----

uwtuw cb -s 598 end of V2 within vowel

uwtuwdw -s 542 end of V2 within vowel

uwtuwks ----- ----- -----

uwuwcb ----- ----- ----

uwuw_dw -s 87 mid VI within vowel

uwuwks ----- ---- ----

uwvuwcb +s 353 release for v obstruent-vowel

uwvuwdw ------ ----- ----

uwvuwks ------ ---- ----

uwwuwcb -------- ----- -----

uwwuwdw +s 436 release for w semivowel-vowel

-s 608 end of V2 within vowel

uwwuwks +s 354 release for w semivowel-vowel

uwyuw cb -s 174 end of VI within vowel

uwyuw dw +s 295 closure for y vowel-semivowel

uwyuw-ks -------- -------- ----

uwzhuwcb ------- ------ -----

uwzhuwdw +s 427 closure for zh vowel-obstruent

-s 693 release for zh obstruent-vowel

uwzhuw ks +s 214 closure for zh vowel-obstruent

uwzuw cb +s 214 closure for z vowel-obstruent

uwzuw dw ------- ------ -----

uwzuwks ------- ----- ----

163

Time CommentUtterance Hand-classificationLandmark



Appendix B: Results of the Pivot Analysis

Results of the pivot analysis for the 142 sonorant closures and releases in the VCV
database. From this table we determine that pivots capture >96% of all sonorant closures
and releases, a significant advantage over sonorant landmarks that examine only >59%.

Utterance Clos. Or Rel. Land. Pivot Pivot time +-g +/- v Comment

aalaa cb closure YES YES 215

release YES YES 375

aalaa dw closure NO YES 283 Not a landmark

release NO YES 477 +V

aalaa ks closure NO YES 214 Not a landmark

release YES YES 338

aamaa cb closure NO YES 218 -v

release NO YES 323 +v

aamaa dw closure YES YES 274

release YES YES 427

aamaa ks closure YES YES 206

release YES YES 328

aanaa cb closure YES YES 197

release YES YES 331

aanaa dw closure YES YES 304

release YES YES 471

aanaa ks closure YES YES 210

release YES YES 325

aangaa cb closure NO YES 105 Not a landmark

release NO YES 319 Not a landmark

aangaa dw closure YES YES 255

release YES YES 452

aangaa ks closure YES YES 217

release YES YES 349

ahlah cb closure NO YES 288 Not a landmark

release YES YES 427

ahlah dw closure NO YES 248 Not a landmark

release NO YES 473 Not a landmark
ahlah ks closure NO YES 206 Not a landmark

release YES YES 344

ahmah cb closure YES YES 196

release YES YES 330

ahmah dw closure NO YES 232 -v
release YES YES 447

ahmah ks closure YES YES 184

release YES YES 323
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ahnah cb closure YES YES 169

release YES YES 329
ahnah dw closure YES YES 216

release YES YES 487
ahnah ks closure YES YES 184

release YES YES 334
ahngah cb closure YES YES 169

release YES YES 359
ahngah dw closure NO YES 215 Not a landmark

release YES YES 459

ahngah ks closure NO YES 182 Not a landmark
release NO YES 335 +V

ehleh cb closure NO YES 220 Not a landmark

release YES YES 368
ehleh dw closure NO YES 264 Not a landmark

release NO YES 460 Not a landmark

ehleh ks closure NO YES 214 Not a landmark

release YES YES 325
ehmeh cb closure YES YES 192

release YES YES 359
ehmeh dw closure YES YES 209

release YES YES 394

ehmeh ks closure YES YES 174

release YES YES 306
ehneh cb closure YES YES 147

release YES YES 345

ehneh dw closure YES YES 206
release YES YES 413

ehneh ks closure YES YES 206
release YES YES 334

ehngeh cb closure YES YES 200
release NO YES 328 i Not a landmark

ehngeh dw closure YES YES 235 _

release YES YES 424

ehngeh ks closure YES YES 197
release NO YES 301 Not a landmark

iyliycb closure YES YES 190
release YES YES 327

iyliy dw closure NO YES 300 Not a landmark
release NO NO +g (488)

iyliy ks closure YES YES 205
release NO YES 334 +V

iymiy cb closure YES YES 1871

N.Clos. or Rel. Landmark Pivot Pivot time +/- g +/- V



Utterance N.Clos. or Rel. Landmark Pivot Pivot time +/-g +- v Comment

release YES YES 294

iymiy dw closure NO YES 248 Not a landmark

release NO YES 411 Not a landmark

iymiy ks closure YES YES 216

release YES YES 339

iyniy cb closure YES YES 190

release YES YES 326

iyniy dw closure YES YES 269

release YES YES 472

iyniy ks closure YES YES 201

release YES YES 334

iyngiy cb closure YES YES 129

release NO NO +g (388)

iyngiy dw closure YES YES 177

release NO YES 386 Not a landmark

iyngiy ks

owlow cb closure NO YES 279 Not a landmark

release YES YES 364

owlow dw closure NO YES 312 Not a landmark

release YES YES 439

owlow ks closure NO NO ----- ----- Missing pivot

release YES YES 354

owmow cb closure NO YES 227 Not a landmark

release YES YES 354

owinow dw closure NO YES 316 -v

release YES YES 475

owmow ks closure NO YES 199 Not a landmark

release YES YES 301

ownow cb closure NO YES 249 Not a landmark

release YES YES 367

ownow dw closure YES YES 311

release NO YES 477 +V

ownow ks closure YES YES 214

release YES YES 328

ownaow cb closure NO YES 92 Not a landmark

release NO NO -g (326)

owngow dw closure NO YES 274 -v

release YES YES 439

owngow ks closure NO YES 198 Not a landmark

release YES YES 320

uwluw cb closure NO YES 287 Not a landmark

release YES YES 377

uwluw dw closure NO YES 364 _ _Not a landmark
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Utterance N.Clos. or Rel. Landmark Pivot Pivot time _/g__+/- v Comment

release NO YES 494 Not a landmark

uwluw ks closure NO YES 221 Not a landmark

release NO YES 365 Not a landmark

uwmuw cb closure NO YES 264 Not a landmark

release YES YES 369

uwmuw dw closure NO YES 343 Not a landmark

release YES YES 463

uwmuw ks closure NO NO ------- ------- Missing pivot

release YES YES 305

uIwnuI\W cb closure NO YES 150 Not a landmark

release NO YES 354 Not a landmark

uwnuw dw closure NO YES 299 Not a landmark

release YES YES 482

uwnuw ks closure NO YES 193 Not a landmark

release YES YES 346

uwnguw cb closure NO YES 113 Not a landmark

release NO YES 265 Not a landmark

uwnguw dw closure NO YES 205 Not a landmark

release NO YES 487 Not a landmark

uwnguw ks closure NO YES 211 Not a landmark

release NO YES 333 Not a landmark
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Appendix C: Design of the FIR filters

In Chapter 4 and 5 we make a reference to two FIR filters designed to measure the
energy difference between two frequency bands, the lower being 0-350Hz and higher
350-1000Hz. Filters are designed as FIR because we required a linear phase and constant
phase delay across the frequency range. The delay for an N-tap filter as specified in
MATLAB is N/2.

In Figure C. 1, we illustrate the magnitude and phase response of the 300-tap low-pass
filter, designed to pass frequencies up to 350 Hz, designed with the window method and
'hamming' type. Equation used in calculating coefficients for this filter is:

w= fir(300,380 /(sRate /2)) (C.1)

where the sampling rate is 16129 Hz.
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Figure C. 1 - Frequency response of the low-pass FIR filter used in the calculation of the cues across the
landmark boundary and in nasal murmur.
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In Figure C.2 we zoom in to the 0-2000Hz range to show the attenuation at the cutoff rate
around 350 Hz.
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Detailed view of the 0-2000Hz frequency range and the attenuation at the cutoff frequency.
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Figure C.2 -
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In Figure C.3 we illustrate the frequency response of the 300-tap 350-1000 Hz bandpass
filter, used in Chapters 4 and 5, and designed with the following equation:

Bbandpass = firl(300,[380 /(sR ate /2),1030 /(sRate /2)]) (C.2)

with the sampling rate again at 16129 Hz.
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Figure C.4 - Frequency response of the designed 350-1000Hz bandpass FIR filter used in Chapters 4 and 5.

In Figure C.4 we again zoom in on the 2000 Hz range to show the attenuation at the
cutoff frequencies.
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Figure C.4 - Detailed view of the 0-2000Hz frequency range and the attenuation at the cutoff frequency.
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