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Abstract

This thesis describes a few efficient parasitic extraction algorithms based on integral equa-
tion methods. It has two parts. Part one describes the algorithms used in FastImp, a program
for accurate analysis of wide-band electromagnetic effects in very complicated geometries
of conductors. The program is based on a recently developed surface integral formula-
tion and a Pre-corrected FFT accelerated iterative method, but includes a new piecewise
quadrature panel integration scheme, a new scaling and preconditioning technique as well
as a generalized grid interpolation and projection strategy. Computational results are given
on a variety of integrated circuit interconnect structures to demonstrate that FastImp is
robust and can accurately analyze very complicated geometries of conductors. Part two
describes an efficient Stochastic Integral Equation (SIE) Method for computing the mean
value and variance of the capacitance of interconnects with random surface roughness in
O(Nlog 2 (N)) time. An ensemble average Green's function is used to account for the sur-
face roughness. A second-order correction scheme is used to improve the accuracy. A
sparsification technique based on the Hierarchical Matrix method is proposed to signifi-
cantly reduce the computational cost. The SIE method avoids the time-consuming Monte
Carlo simulations and the discretization of rough surfaces. Numerical experiments show
that the results of the new method agree very well with those of Monte Carlo simulations.

Thesis Supervisor: Jacob K. White
Title: Professor

3



4



Acknowledgments

First and primary thanks must go to Prof. Jacob White, who has given me many advices

and strong support. He showed me what good research is all about. I will try my very best

for the rest of my life to match up to that standard.

I would also like to thank Professor Luca Daniel and Duane Boning who are willing to

act as readers for the dissertation. Over my tenure at MIT, Luca has given me many useful

advices, technical and non-technical. Many of my presentation tricks are from Luca.

A number of people have contributed to this dissertation work.

Prof. Alper Demir (Koc University, Turkey) has collaborated very closely with me on

the development of Stochastic Integral Equation Method. His advice, encouragement and

guidance are extremely valuable to the development of the second part of this dissertation

work. I feel truly privileged to work with Alper, a two-time ICCAD best paper winner and

a Guillemin-Cauer Award winner.

Prof. Alan Edelman (MIT) has taught me two math classes, Numerical Linear Algebra

(18.335) and Random Matrix Theory (18.996). Coincidentally these are the first and the

last class I took at MIT. Without the skills and techniques I have learned from Alan, it is

almost impossible for me to carry out the research reported in this dissertation.

Dr. Michael Tsuk (Ansoft) was the first people who brought to me the rough surface

modeling problem. I had an enjoyable three-month summer intern at Compaq Alpha Server

Platform Group under Michael's supervision.

Dr. Bjarne Buchmann developed a sparse matrix view of the Pre-corrected FFT method

and wrote an early version of pfft code. These become the foundation for the code pfft++.

Dr. Ben Song wrote the interface for FFTW code in pfft++ and has helped me debug

the pfft++ code. Ben also made very helpful suggestions to the panel integration and the

scaling technique used in the impedance extraction code, FastImp.

I had many interesting discussions with Prof. Jingfang Huang when he was a postdoc

at MIT in 2001 and enjoyed very much a trip to his research group at University of North

Carolina at Chapel Hill in 2002.

I paid a visit to Intel's Technology CAD division (San Clara, CA) every time I went to

5



ICCAD conference at San Jose, CA. My interactions with Dr. Youngchul Park, Dr. Dan

Jiao and other group members there are very useful to check if I am working on important

problems and if my solutions are practical.

I should also thank Dr. Abe Elfadel (IBM T.J.Watson Research Center). We had in-

teresting discussions on interconnect modeling and rough surface problem when he invited

me over to T.J.Watson center to give a talk.

I want to thank Dr. Wolfgang Hackbusch and his students Dr. S. Borm and Dr.

L.Grasedyck for developing the the Hierarchical Matrix method and making the imple-

mentation code HLib freely available. Some of the numerical experiments in part two of

this dissertation were carried out based on the code HLib.

Thanks should also go to my group mates, Shihhsien Kuo and Jaydeep Bardhan (for

applying pfft++ in bio-molecular simulation and optimization), David Willis (for extend-

ing pfft++ for higher-order basis), Carlos Pinto Coelho, Dimitry Vasilyev and Junghoon

Lee (for discussions on Model-Order Reduction), Joe Kanapka (for discussions on sparsi-

fication techniques), Tom Klemas, Xin Hu and Anne Vithayathil. I really enjoyed my stay

at Computational Prototyping Group at MIT.

And last but certainly not the least, I want to thank my family. I am grateful to my wife

Jing Wang for her love, patience and constant support through thick and thin. I have taken

a unnecessarily long journey to where I am now. Without Jing, this journey would have

been unbearable. Having left China for 7 years by now, I recognize that it must have been

very hard for my parents. Still they have always encouraged and supported me. With my

own first born expecting in just a couple of months, I can appreciate my parents' love more

and more everyday. Thank you Mom and Dad!

The work needed to produce this dissertation was sponsored by the Semiconductor Re-

search Corporation, the NSF program in computer-aided design, the MARCO Interconnect

Focus Center, the DARPA NeoCAD program managed by the Sensors Directorate of the

Air Force Laboratory, USAF, Wright-Patterson AFB, and grants from Synopsys, Compaq

and Intel.

6



Contents

1 Introduction 19

1.1 Motivation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.2 Dissertation outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

I Wideband Impedance Extraction of Interconnects With Smooth

Surfaces

2 Overview

24

25

3 Derivation of the Surface Integral Formulation

3.1 Governing equations . . . . . . . . . . . . . . . . .

3.2 Boundary conditions . . . . . . . . . . . . . . . . .

3.3 Surface integral representation . . . . . . . . . . . .

3.4 Surface formulation . . . . . . . . . . . . . . . . . .

3.5 Discretization of the formulation . . . . . . . . . . .

29

. . . . . . . . 30

. . . . . . . . 31

. . . . . . . . 32

. . . . . . . . 35

. . . . . . . . 37

4 Improving the accuracy of panel integration

4.1 D efinition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.2 Decom position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.3 De-singularization and Reduction to 1-D integration . . . . . . . . . . . .

4.4 Piecewise Quadrature Scheme . . . . . . . . . . . . . . . . . . . . . . .

5 Scaling and preconditioning

5.1 Scaling ....... ...................................

7

41

41

42

42

43

47

47



5.2 Preconditioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4

6 Pre-corrected FFT algorithm

6.1 Mathematical Preliminaries . . . . . . . . . . .

6.2 Philosophical Preliminaries . . . . . . . . . . .

6.3 Algorithm details . . . . . . . . . . . . . . . .

6.3.1 Interpolation matrix . . . . . . . . . .

6.3.2 Projection matrix . . . . . . . . . . . .

6.3.3 Convolution matrix and fast convolution

6.3.4 Direct matrix and pre-correction . . . .

6.3.5 A summary of the four matrices . . . .

6.4 Implementation . . . . . . . . . . . . . . . . .

6.5 Comparison to the original pFFT algorithm . .

55

. . . . . . . . . . . . . . . 5 5

. . . . . . . . . . . . . . . 5 7

by FFT

7 Numerical Results

7.1 Performance of pfft++

7.2 Performance of fastImp.

7.2.1 Accuracy . . . .

7.2.2 Flexibility . . . .

7.2.3 speed . . . . . .

II Stochastic Integral Equation Method and Its Application in Ca-

pacitance Extraction

8 Overview

9 Mathematical Model for Random Rough Surfaces

10 Stochastic Integral Equation Method 97

10.1 Description of 2D capacitance problem . . . . . . . . . . . . . . . . . . . 98

10.2 Basic ideas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

10.3 Discretization of stochastic integral equation . . . . . . . . . . . . . . . . . 101

8

59

59

62

64

66

67

68

69

71

71

72

75

79

82

87

89

93

49



10.4 Conditioning of the system matrix . . . . . . . . . . . . . . . . . . . . . .

10.5 Translation invariance of the ensemble average Green's function . . . . . .

10.6 Second order correction to the uncorrelatedness assumption . . . . . . . . .

10.7 Variance of capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11 Matrix Sparsification

11.1 Sparsification of the matrix F . . . . . . . . . . . . . . . . . . . . . . . . .

11.2 Characteristics of matrix F and matrix B . . . . . . . . . . . . . . . . . . .

11.2.1 Characteristics of matrix F . . . . . . . . . . . . . . . . . . . . . .

11.2.2 Characteristics of fl' and fj. . . . . . . . . . . . . . . . . . . . . .

11.2.3 M() is hierarchically low-rank . . . . . . . . . . . . . . . . . . . .

11.2.4 B is low-rank . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11.2.5 Matrix B is symmetric . . . . . . . . . . . . . . . . . . . . . . . .

11.3 Construction of H-matrix for matrix B: A simple case . . . . . . . . . . .

11.3.1 Standard sampling process . . . . . . . . . . . . . . . . . . . . . .

11.3.2 Combined sampling process . . . . . . . . . . . . . . . . . . . . .

11.3.3 Combined matrix is hierarchically low-rank . . . . . . . . . . . . .

11.3.4 A graphical interpretation of the combined sampling process . . . .

11.4 Construction of H-matrix for matrix B: General cases . . . . . . . . . . . .

11.4.1 Panel ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11.4.2 Sampling matrices . . . . . . . . . . . . . . . . . . . . . . . . . .

11.4.3 Algorithm outline . . . . . . . . . . . . . . . . . . . . . . . . . . .

11.5 Construction of H-matrix for matrix B: A flaw and its fix . . . . . . . . . .

11.5.1 The foot print of the combined sampling process . . . . . . . . . .

11.5.2 The flaw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11.5.3 Union of full-length vectors is hierarchically low-rank . . . . . . .

11.5.4 The fix to the flaw: A modified combined sampling process . . . .

11.5.5 Foot print, CPU time and memory usage of the modified combined

sampling process . . . . . . . . . . . . . . . . . . . . . . . . . . .

11.6 Sparsification of the matrix A . . . . . . . . . . . . . . . . . . . . . . .

9

104

106

108

111

117

117

121

122

124

128

131

132

133

134

136

138

139

142

142

145

145

147

148

148

149

151

154

154



11.7 Computing trace(A-'B) . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

11.8 Ensemble average multiple integration . . . . . . . . . . . . . . . . . . . . 158

12 Algorithm Outline of the Stochastic Integral Equation Method 161

13 Numerical Results 165

13.1 A small two-dimensional example . . . . . . . . . . . . . . . . . . . . . . 165

13.2 A small three-dimensional example . . . . . . . . . . . . . . . . . . . . . 169

13.3 A large three-dimensional example . . . . . . . . . . . . . . . . . . . . . . 169

14 Conclusions and future work 175

14.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

14.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

A Detailed forms of the ensemble average Green's function 179

B Discretization of integral equation with rough surface 183

C Kronecker Product 185

10



List of Figures

3-1 A general description of the 3D interconnect structures embedded in ho-

mogeneous medium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3-2 The surface of a 3D interconnect conductor . . . . . . . . . . . . . . . . . 32

3-3 D ual panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4-1 Decomposition of an integration over a polygon into several integrations

over triangles. Point E is the evaluation point, point P is the projection of

E on the plane. Vi (i = 1, 2, ... , 4) are the vertexes of the panel. . . . . . . . 43

4-2 Triangle in polar coordinate system, d is the distance between point P and

edge A B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4-3 Distribution of the integrand . . . . . . . . . . . . . . . . . . . . . . . . . 45

4-4 convergence behavior of different schemes . . . . . . . . . . . . . . . . . . 45

5-1 Convergence behavior of the iterative solver GMRES for different struc-

ture feature sizes with or without scaling. All the dashed (solid) lines are

the cases with (without) scaling. The lines with circles (stars) are for the

millimeter (micrometer) sized structures, and the lines without any mark

are for the structures with feature size in the order of 0.1m. . . . . . . . . . 49

6-1 A piece-wise constant basis function, shaded area is its support . . . . . . . 57

6-2 A piece-wise linear basis function associated with the vertex V, where the

shaded area is its support . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6-3 2-D pictorial representation of the interpolation step . . . . . . . . . . . . . 62

6-4 2-D pictorial representation of the projection step . . . . . . . . . . . . . . 65

11



6-5 2-D pictorial representation of the nearby interaction. Direct stencil size is 2. 67

7-1 A sphere discretized with triangle panels. . . . . . . . . . . . . . . . . . . 72

7-2 CPU time of one matrix-vector product versus the problem size, kR = 11.1

for Helmholtz kernel and its normal derivative where R is the radius of the

sphere. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7-3 Resistance of a ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7-4 Inductance of a ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7-5 Number of GMRES iterations versus frequency . . . . . . . . . . . . . . . 77

7-6 Magnitude of the impedance of a shorted transmission line, length is 2cm,

separation is 50um . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

7-7 Phase of the impedance of a shorted transmission line, length is 2cm, sep-

aration is 50um . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7-8 Magnitude of the admittance of a shorted transmission line, length is 2cm,

separation is lcm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7-9 Phase of the admittance of a shorted transmission line, length is 2cm, sep-

aration is 1cm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7-10 Multiple conductor bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7-11 Stacked 9-turn circular spirals over ground . . . . . . . . . . . . . . . . . . 82

7-12 Stacked 8-turn rectangular spirals over ground . . . . . . . . . . . . . . . . 82

7-13 The CPU time vs. number of spirals in the spiral arrays . . . . . . . . . . . 85

7-14 A portion of an RF circuit consisting of 5 circular spirals and two pieces of

3D interconnects with straight wires and right-angle bends . . . . . . . . . 85

7-15 16x8 3-turn rectangular spiral array . . . . . . . . . . . . . . . . . . . . . 86

9-1 The profile of a random rough surface, standard deviation=0.05mm, corre-

lation length=0.05mm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

10-1 One conductor over a ground plane. The top and the bottom surfaces are

rough. ....... ..................................... 98

12



10-2 The condition number of the system matrix with different sizes, generated

by stochastic integral equation method and the regular integral equation

m ethod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

11-1 Typical sparsity pattern of the sparsified matrix F'J. Here the total number

of panels is 50, i = 34 and j = 14, and a rough surface segment of 3rj

long contains p = 2 panels. The nonzero entries are categorized into three

regiones marked by + (region I), o (region II) and * (region III), respectively. 122

11-2 Distribution of the singular values of the four sub-blocks of the matrix M(')

for i 1, circular wire over ground plane. . . . . . . . . . . . . . . . . . . 129

11-3 Distribution of the singular values of the four sub-blocks of the matrix M(')

for i= 10, circular wire over ground plane. . . . . . . . . . . . . . . . . . 129

11-4 Distribution of the singular values of the four sub-blocks of the matrix M(')

for i = 60, ID bars. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

11-5 Distribution of the singular values of the four sub-blocks of the matrix M 1

for i = 60, ID bars. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

11-6 Distribution of the singular values of the four sub-blocks of the matrix B,

circular wire over ground plane. . . . . . . . . . . . . . . . . . . . . . . . 131

11-7 Distribution of the singular values of the four sub-blocks of the matrix B11,

circular wire over ground plane. . . . . . . . . . . . . . . . . . . . . . . . 132

11-8 Singular value distribution of the four sub-blocks of the matrix B, ID bars. . 132

11-9 Singular value distribution of the four sub-blocks of the matrix B11, 1D bars. 133

11-1OTwo-level H-matrix representation of matrix B. Ri is the low-rank matrix

and Di is the full-rank matrix . . . . . . . . . . . . . . . . . . . . . . . . . 135

11-1 IDistribution of the singular values of the four sub-blocks of the matrix M1. . 139

11-12Distribution of the singular values of the four sub-blocks of the matrix k 2. . 140

11-1 3Distribution of the singular values of the four sub-blocks of the matrix M3. . 140

11- 14Distribution of the singular values of the four sub-blocks of the matrix M} 1. 140

11-15Distribution of the singular values of the four sub-blocks of the matrix M2 1. 141

11-16Distribution of the singular values of the four sub-blocks of the matrix 1 j. 141

13



11-17Location of sampled columns in matrix B and their compressed-row for-

mat. Due to symmetry of B, only columns need to be sampled. Notice that

each column in the compressed-row format has at most 4 unique values of i. 142

11-18Relation between column sampling for B (on m - i plane) and hierarchical

structure of R (on m - j plane). Each slice on m - j plane represents one

matrix R and is to be multiplied with < p(O) > to obtain the corresponding

sampled column on m - i plane . Number of slices is equal to number of

sampled columns in figure 11-17. . . . . . . . . . . . . . . . . . . . . . . 143

1 1-19Location of sampled columns and rows in matrix M (front m - j plane) and

their relation to entries in matrix F'j. Each "thread" along index n direction

represent one row in matrix Fj. The entry Mmj in the shaded region on the

m - j plane is the result of inner product between the "thread" and < p(O) >,

i.e., it is the m-th entry of the column fil defined in (11.22). . . . . . . . . 143

11 -20Rank map and H-matrix structure of the system matrix for a one-dimensional

bar discretized with 300 segments. The shaded blocks are full-rank sub-

matrices, other blocks are low-rank sub-matrices. . . . . . . . . . . . . . . 144

11-2 IRank map and H-matrix structure of the system matrix for a three-dimensional

plate discretized with 1800 triangle panels. The shaded blocks are full-rank

sub-matrices, other blocks are low-rank sub-matrices. . . . . . . . . . . . 144

1 1-22Location of the sampled columns used for constructing H-matrix of matrix B 146

11-23Compressed-row format of the sparse matrix in figure 11-22 . . . . . . . . 146

11-24Location of the sampled entries used for constructing H-matrix of matrix R 147

11-25Distribution of the singular values of the four sub-blocks of the matrix H'i

form -= iandj= i+ 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

11-26Distribution of the singular values of the four sub-blocks of the diagonal

block H ' in figure 11-25. . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

11-27Decomposition of sparse matrix SB in figure 11-17 (to the left of equal

sign) into two sparse matrices (to the right of equal sign), SBF contains all

the entries SB (m, i) such that i E near(m) and SBS contains all the remaining

entries in SB- Both SBF and SBS are in compressed-row format. . . . . . . . 153

14



11-28Decomposition of sparse matrix SM in figure 11-19 (to the left of equal

sign) into three sparse matrices (to the right of equal sign), SMF contains all

the entries SM(m, j) such that j C near(m), SMC contains all dense blocks

and all the sampling columns, excluding the entries in SMF, SMR contains

all the sampling rows, excluding the entries in SMF- Matrix SMC and SMF

are in compressed-row format and SMR is in compressed-column format. . 153

12-1 Using different mesh size to approximate the profile of a random rough

surface, standard deviation is a = 0.2, correlation length is i = 0.2 . . . . . 163

13-1 A circular wire over ground plane. The mean radius of the wire is 1mm.

The distance between the circular wire with nominal smooth surface and

the ground is 0.5mm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

13-2 Convergence of two-dimensional mean capacitance in Monte Carlo simu-

lations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

13-3 Convergence of two-dimensional capacitance variance in Monte Carlo sim-

ulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

13-4 The mean charge density computed with Monte Carlo simulations and the

stochastic integral equation method. The correlation length is 0.2mm and

standard deviation is 0.1mm. Maximum charge density is around the sur-

face point where the circular wire is closest to the ground . . . . . . . . . . 168

13-5 The mean charge density computed with Monte Carlo simulations and the

stochastic integral equation method. The Correlation length and standard

deviation are 0.1mm. Maximum charge density is around the surface point

where the circular wire is closest to the ground. . . . . . . . . . . . . . . . 168

13-6 Convergence of three-dimensional mean capacitance in Monte Carlo sim-

ulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

13-7 Convergence of three-dimensional capacitance variance in Monte Carlo

sim ulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

15



13-8 A zero-thickness plate with random profile. The correlation length is 0.2mm

and standard deviation is 0.1mm. The size of the nominal smooth plate is

1 x 1mm. The smooth ground plane is not included in this picture. The

distance between nominal smooth plate and the ground plane is 0.5mm. . . 170

13-9 CPU time of fast SIE solver without second-order correction. . . . . . . . . 173

13- I0Ratio of CPU time used by fast SIE solver and regular fast integral equation

solver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

16



List of Tables

5.1 Performance of preconditioners in the global and the local coordinate system 53

6.1 Relation between operator pair and the interpolation matrix and the projec-

tion m atrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7.1 Relative error in (7.1) for different projection and interpolation stencil sizes

and different kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7.2 CPU time for forming I, P, D and H matrices in (6.41) for different projec-

tion and interpolation stencil sizes and different kernels, unit is second . . . 73

7.3 CPU time for doing one matrix vector product for different projection and

interpolation stencil sizes and different kernels, unit is second . . . . . . . . 73

7.4 Memory usage for different projection and interpolation stencil sizes and

different kernels, unit is Mb . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7.5 Comparison of CPU time and memory usage for various practical structures 83

7.6 Discretization of the RF interconnect example and the 16x8 spiral array

exam ple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7.7 A detailed breakdown of the CPU time used by the RF interconnect exam-

ple and the 16x8 spiral array example. Unit is second . . . . . . . . . . . . 83

7.8 A detailed breakdown of the memory usage for the RF interconnect exam-

ple and the 16x8 spiral array example. Unit is GB . . . . . . . . . . . . . . 84

11.1 Estimation of operation count and memory usage by each step in algorithm 5155

12.1 Estimation of operation count and memory usage by each step of the algo-

rithm 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

17



12.2 CPU time and memory usage by Monte Carlo method . . . . . . . . . . .1

13.1 Mean value of 2D capacitance calculated with different methods. Unit:pF.

rj is the correlation length and T is the standard deviation. Both are in mm. . 167

13.2 Variance of 2D capacitance by different methods. Unit:pF. il is the corre-

lation length and c is the standard deviation. Both are in mm. . . . . . . . . 167

13.3 Mean value of 3D capacitance calculated with different methods. Unit:pF.

,q is the correlation length and (Y is the standard deviation. Both are in mm. . 170

13.4 Variance of 3D capacitance calculated with different methods. Unit:pF. T

is the correlation length and cy is the standard deviation. Both are in mm. . . 171

13.5 Mean capacitance of the 3D plate over ground plane in figure 13-8. Unit:pF.

Correlation length r = 0.1, and the standard deviation Y = 0.1. Both are in

m m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

13.6 CPU time for a few large 3D plates over ground plane. Unit: second.

rI= 0.mm and G= 0.mm. . . . . . . . . . . . . . . . . . . . . . . . . . 172

13.7 Mean capacitance of a few large 3D plates over ground plane. Unit:pF.

f = 0.1mm and Y = 0.mm. . . . . . . . . . . . . . . . . . . . . . . . . . 173

18

. 164



Chapter 1

Introduction

1.1 Motivation

The unwanted electromagnetic effects, or parasitic effects, are ubiquitous in electronic sys-

tems. They arise along with intentional electromagnetic effects and have caused concerns

from the early main frame super-computer era [87] to the more recent personal computer

age [21]. These unwanted effects are referred to as either electromagnetic interference

(EMI) [25] or the problem of electromagnetic compatibility (EMC) [76]. In today's mixed

signal designs, sensitive analog circuits and rapidly switching digital logic are typically

collocated on a single integrated circuit. The parasitic effects, such as coupling, can create

problems that are very difficult to find and eliminate. The difficulty is that these coupling

problems are often caused by simultaneous interactions between a large number of conduc-

tors.

The goal of parasitic extraction is to model these interactions, more specifically, to

determine the relation between the currents and voltages at the terminals of a set of con-

ductors. This relation is usually characterized with circuit parameters or parasitic param-

eters, such as an impedance matrix [50]. For a n terminal-pair problem in the sinusoidal

steady-state at frequency o, the impedance matrix Z(o) E C' satisfies
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where 1(o), V(o) E C" are vectors of terminal current and voltage, respectively [23]. From

(1.1), we see that if we let V(o) = ei, where ei is the unit vector with the i-th entry being

one and all other entries being zero, the calculated terminal current vector Li(o) is just the

i-th column of matrix [Z(o)] 1 Therefore, we have

Z() = i(O) 12(w) -.. In()]. (1.2)

Computing terminal current is accomplished by the electromagnetic analysis of the set

of conductors. This approach, however, only gives the frequency-dependent impedance

at specified frequencies. In order to simulate parasitic effects in circuits with nonlinear

devices, the so-called model-order reduction (MOR) techniques [31] are commonly used

to find the time-domain compact circuit model for the set of conductors. To ensure the

accuracy of the compact circuit model, the MOR techniques usually need the impedance

matrix across a wide frequency range, typically from zero frequency to at least tens of giga

Hertz (GHz). Hence there has been renewed emphasis on developing efficient parasitic

extraction tools capable of wide-band electromagnetic analysis of very complicated 3D

geometries of conductors.

In the area of electromagnetic analysis of complicated geometries of interconnect, most

of the recently developed programs have been based on combining discretized integral

formulations with accelerated iterative methods [71, 49, 80, 52, 2, 79]. Though these

programs and techniques have been very effective, there is still no accelerated integral

equation program capable of solving full Maxwell's equations in general 3D structures

with lossy conductors which is accurate from zero frequency to microwave frequencies.

In addition, the 3D structures are typically modeled only as having smooth surfaces

in the existing programs and techniques [71, 49, 52, 53, 2, 80, 115]. However, many of

the fabrication processes used to generate both on- and off-chip interconnect will produce

conductors with surface variations. Though these variations may not be truly random, they

can often be accurately modeled by assuming random surface roughness with an appropri-

ate spatial correlation. Experiments indicate that interconnect can easily have topological

variations with peak to valley distances larger than five microns [97, 14]. Measurements
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indicate that this surface roughness can increase high frequency resistance by as much as

a factor of three[97], and analytical treatments of the surface roughness problem [69, 43]

correlates well with these measurements. It has also been shown that capacitance is signif-

icantly increased by the surface roughness [112, 75].

To the best of our knowledge, very little work on numerical techniques specifically

designed for 3D interconnects and packages with rough surfaces has been reported in the

literature. Although it is possible to use existing programs to analyze conductors with

rough surfaces, such approaches are slow for two reasons. First, the details in the random

profile of rough surfaces requires a very fine discretization, and second, an ensemble of

analyses must be performed to estimate the mean and variance of the extracted parameters.

A straightforward approach to calculate the mean and variance is the Monte Carlo process.

An ensemble of surface realizations are generated using a height probability distribution

and the height spectral density. The governing equations are then solved for each realiza-

tion. Even though the fast methods in [71, 49, 52, 53, 2, 80, 115] are quite efficient, the

Monte Carlo approach is still rather inefficient because it typically involves many thousands

of solves to get statistically reasonable mean and variance values.

1.2 Dissertation outline

This dissertation has two self-contained parts. The first part presents a collection of nu-

merical techniques used in a wideband impedance extraction program called FastImp. The

second part concerns a generic stochastic integral equation (SIE) method for modeling

rough surface effects.

The main contributions in this dissertation are listed as the following:

1. A general and extensible fast integral equation solver, pfft++

This solver is based on a generalized grid interpolation and projection strategy. It can

handle rather general integral operators commonly seen in boundary element method

and has been applied in bio-molecular simulation [59] and optimization [3] and aero-

dynamics simulation [108], in addition to the computational electromagnetics re-

ported in this dissertation. The code pfft++ is available at www.rle.mit.edu/cpg/research-codes.htm.
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2. A wideband impedance extraction program, FastImp

The program is based on a recently developed surface integral formulation, but in-

cludes a new piecewise quadrature panel integration scheme, a new scaling technique

and a local preconditioning technique. The piecewise quadrature scheme fixes a low-

frequency problem in the existing surface integral formulation and makes it wide-

banded. The scaling technique makes the convergence behavior of the system matrix

from the discretized surface integral formulation almost independent of conductor

feature size. The code FastImp is available at www.rle.mit.edu/cpg/research-codes.htm.

3. A fast stochastic integral equation (SIE) method

The SIE method has a few intricate steps, including a second-order correction scheme

and a combined sampling process based on hierarchical matrix method [33, 34, 5].

Though only the capacitance extraction is used in this dissertation to demonstrate

that the SIE method can compute the mean value and variance of the capacitance of

3D interconnects in O(Nlog2 (N)) time, it is expected that the SIE method can also be

utilized in the impedance extraction of 3D interconnects to model the rough surface

effect.

This dissertation is organized in the following way.

In part one, after a literature review, we first derive the surface integral formulation

(chapter 3). We then show how the piecewise quadrature scheme improves the accuracy

of panel integration and that it solves the low frequency problem in [105] (chapter 4). A

simple scaling technique and a local preconditioner are used in chapter 5 to improve the

accuracy and memory efficiency of the surface integral formulation. In chapter 6, we ex-

plain the extensions needed to use the Pre-corrected FFT (pFFT) algorithm to accelerate

the complicated integral operators in our surface formulation. A stand-alone general and

extensible fast integral equation solver, pfft++, has been developed based on ideas in chap-

ter 6. Combining pfft++ with ideas presented in chapter 4 and 5, we have developed a fast

impedance extraction program, FastImp. Numerical experiments are used in chapter 7 to

demonstrate the accuracy, speed and capacity of pfft++ and FastImp.

In part two, we first review some of the existing techniques and approaches for ana-
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lyzing rough surface effects. We then describe a mathematical model for characterizing

random rough surfaces in chapter 9. We explain the basic ideas of the Stochastic Integral

Equation (SIE) Method in chapter 10. In chapter 11, we present a few ideas to efficiently

compute the most time-consuming matrices used in SIE method and demonstrate that the

computational complexity of SIE is O(Nlog2 (N)). The outline of the algorithm is given in

chapter 12 and finally numerical experiments are used in chapter 13 to verify the accuracy

and speed of fast SIE method.
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Part I

Wideband Impedance Extraction of

Interconnects With Smooth Surfaces
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Chapter 2

Overview

Many integral formulations have been developed and can be generally categorized into four

kinds according to the state variables used in these formulations.

1. Formulations using the field variables E and H have been used for decades to solve

the radiation and scattering problems [37, 104, 82, 38] as well as eddy current prob-

lems [58, 86]. The well-known formulations include the electric field integral equa-

tion (EFIE) and magnetic field integral equation (MFIE) [13, 104], which are also

known as Stratton-Chu's formulation [94], as well as the so-called PMCHW formu-

lation [57, 110, 66].

2. Formulations using the current and charge as state variables, such as the mixed po-

tential integral equation (MPIE) formulation [37, 70, 11, 10, 61].

3. Formulations using vector and scalar potentials as state variables are commonly used

for solving eddy current problems [72].

4. Formulations using virtual sources, such as virtual current or charge, are also com-

monly used for solving eddy current problems [63, 47].

It is well-known that the EFIE formulation is not guaranteed to produce a unique solu-

tion at interior resonant frequencies for closed structures [104, 16]. Many remedies have

been proposed [77]. But there still remain many unsolved problems.
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The MPIE formulation has been extensively used for the analysis of microstrip struc-

tures [70, 11, 10, 61] and for arbitrary shaped conductors with only surface current [83]. It

was recognized in [64] that MPIE has accuracy problem at low frequencies. The so-called

loop/star and loop/tree basis functions were used to overcome this low-frequency prob-

lem [64, 111, 15, 85]. The MPIE formulation has also been used for the analysis of inter-

connects in VLSI or analog circuits. In this case, it is also known as the Partial Equivalent

Element Circuit (PEEC) method [40]. Results of the Magneto-Quasi-Static (MQS) analysis

in [49] and the Electro-Magneto-Quasi-Static (EMQS) analysis in [48] have clearly demon-

strated that the PEEC method can produce accurate results across a wide frequency range,

from zero to hundreds of giga hertz. However, unlike the microstrip structures, which are

usually approximated by zero-thickness perfect or lossy conductors [70, 11, 10, 61], typi-

cal interconnect structures are lossy conductors with finite thickness. Because of the skin

effect, analyzing them involves a frequency-dependent discretization of the interior of con-

ductors and the substrate ground. At high frequencies, this kind of discretization usually

renders the number of piecewise constant basis functions (also called filaments) to be pro-

hibitively large [68, 100, 17, 18]. Recently, an entire-domain basis scheme has shown some

promise to remedy the situation [20], but we have yet to see that it will eventually lead to a

wideband fast Maxwell's equation solver for general 3D structures.

The motivation behind this dissertation is to find a numerically stable surface integral

formulation, as such formulations avoid a frequency-dependent discretization of the interior

of conductors and the substrate. The formulation should be capable of wideband analysis

and it should also be easily accelerated by the well-established techniques, such as the fast

multipole method [30, 29] and the pre-corrected FFT algorithm [80].

One recently developed surface integral formulation has shown promise [103, 105], but

was plagued with numerical difficulties of poorly understood origin. It is shown in chapter

4 that one of that formulation's difficulties was related to inaccuracy in the approach used

to evaluate integrals over discretization panels, and a more accurate approach based on an

adapted piecewise quadrature scheme was proposed. In chapter 5, it is also shown that

the condition number of the system matrix could be very large if the feature size of the

structure is small, and a scaling technique is proposed to reduce the condition number. In
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addition, a different preconditioner than the one used in [103] is proposed to improve the

memory efficiency. With these issues being resolved, the formulation is indeed valid across

wide frequency range and for all feature sizes. Now the formulation is acceleration-ready.

The Fast Multiple Method (FMM) [30, 29] has been used successfully in many appli-

cations, such as electrostatic analysis in FastCap [71] and others [2], magneto-quasi-static

analysis in FastHenry [49], and fullwave analysis in the Fast Illinois Solver Code [93].

Though the algorithm is rather general, its most efficient variants are kernel-dependent. On

the other hand, the pre-corrected FFT (pFFT) algorithm [78], which has been successfully

used in many applications [80, 106, 59], is nearly kernel-independent but can be quite in-

efficient for highly inhomogeneous problems. Since our surface integral formulation has a

number of different kernels and the problem geometry is near-planar and densely packed,

the pFFT algorithm seems better suited to our formulation. In addition, as a by-product of

our work, we also developed a flexible and stand-alone fast integral equation solver using

extensions of several of the sparse matrix based ideas in [9].

Combining the fast solver with the improved surface integral formulation, we have

developed a fast impedance extraction program, FastImp. Experiments using several large

examples show that FastImp can perform full 3D electromagnetic analysis of interconnect

structures with millions of unknowns from zero frequency to hundreds of giga hertz.
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Chapter 3

Derivation of the Surface Integral

Formulation

Figure 3-1 is a general description of the 3D interconnect structures embedded in an isotropic

and homogeneous medium. We assume that each conductor V, i = 1,2, ..., n, is piecewise

homogeneous and the homogeneous medium region is always denoted by Vo.

We will derive the surface integral formulation from a different viewpoint than the one

used in [105]. This way, it is very easy to see its connections to the MPIE formulation and

the EFIE formulation.

VO

Vn

V2

V3

Figure 3-1: A general description of the 3D
neous medium

interconnect structures embedded in homoge-
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3.1 Governing equations

For domains of constant permittivity and permeability, the independent Maxwell's equa-

tions in time-harmonic form are [96]

V x = -jopH

Vx -=f-+jmEa

v.J= -jCop

(3.1)

(3.2)

(3.3)

where E is the electric field, H is the magnetic field, J is the volume current density, p is

the net charge density, and p and E are the permeability and permittivity, respectively. The

constitutive equation for conductors is

(3.4)

where Y is the conductivity. Equations (3.1) and (3.2) imply

V x V x E- ep2 = -jcopf. (3.5)

Obviously equations (3.1)-(3.4) are equivalent to equations (3.1) and (3.3)-(3.5). In view

of (3.2) and (3.4), we have

V -V x H = (T+ joc)V -E = 0,

where we have assumed homogeneity of T and E inside each conductor. Thus

(3.6)

where 'r is a point in the interior of conductor V. This means the net charge inside a

homogeneous conductor is zero [81]. Hence equation (3.5) can be reduced to

(V2 + 2E) () = jwpf(), _ E Vi.
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It should be noted that the permitivitty and permeability inside a conductor are assumed to

be the same as those of the free space [36].

Equations (3.1), (3.4), (3.6) and (3.7) are the governing equations inside each conductor

Vi, and equations (3.1)-(3.4) are the governing equations in the homogeneous medium Vo.

3.2 Boundary conditions

The surface of each conductor could be divided into two parts: contact surfaces and non-

contact surfaces, as shown in figure 3-2. The contact is an artificially exposed surface. It

is created primarily because we want to use the divide-and-conquer strategy to separate

a block of 3D interconnect from other parts within a large chip. Here we use voltage

source connected to the contacts as excitation and compute current through the contacts,

from which the impedance can be easily calculated, as shown in (1.2). In this case, it is

reasonable to assume that the total current through voltage source and the corresponding

contacts is equal. Hence there should be no charge accumulation on the contacts. So

equation (3.6) also holds true on the contacts.

Because of the nature of the commonly used strategy to decompose a large chip into

many smaller blocks, the conductors connected to these contacts are usually long and thin

signal lines. Hence it is reasonable to assume that the current goes into these contacts does

not have the transversal components, i.e., f -J= 0, where t is the unit tangential vector on

the contacts. Using the constitutive equation in (3.4) implies

t(r) -E( ) = Et(? 0, (3.8)

if 'r is on a contact. Equations (3.6) and (3.8) imply that if 'r is on a contact,

v a (-r) aEn(?n(r) - a0 (3.9)

where n('r) is the normal unit vector on the contact. Since equation (3.8) and (3.9) also

imply (3.6), we will use (3.6) on the non-contacts only to avoid redundancy. On the other

hand, since charge on a non-contact surface is not necessarily zero, in view of (3.3) and
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Contact non-contact
/

ntact

Figure 3-2: The surface of a 3D interconnect conductor

(3.4), the boundary condition when 'r is on a non-contact surface becomes [96]

(

where p is the surface charge density since the net charge inside a conductor is zero [81].

It should be noted that the position vector 'r in E(') of (3.8) and (3.10) and in 2 of (3.9)

is only on the inner side of the conductor surfaces. It should also be noted that through out

this paper I is always the actual volume current density.

3.3 Surface integral representation

Green's second identity can be used to construct a surface integral representation of the

solution to equation (3.7) [13]

dS' Go(-, )
an(r)

where

Go(,r) = , ko = CO Ep
47clr - rl I

(3.12)
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-aGo(? (T) jp
an( ) ~pTE(-r) =f

si
dV'Go(-r,r'1)Y(r) (3.11)

non-contact
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I I if 7 E V

T 1/2 if - E Si (3.13)

0 otherwise

and Si is the surface of conductor V. When 7 C Si, the surface integral in (3.11) should

be the principal value integral [35]. From (3.11) and (3.13) one can see that the integral

representation in the right-hand side of (3.11) generates zero field when ' is outside of Vi.

If we write equation (3.11) for each conductor separately but let ' be fixed on the inner side

of the surface of a particular conductor Vk, and then sum these equations, we obtain

1 D a(r) aGo(, r)-. -
- E(? dS' Go(-r, rj) _# - -- _, W(r)2 s an(r) an(r)

- APjdV'Go(7,r')(r), 7E Sk (3.14)

where k = 1,2, ... , n, S is the union of all conductor surfaces and V is the union of all

conductor regions.

Substituting (3.4) into (3.7) yields,

V2 ') _ + 26, ) 0, ' E Vi (3.15)

where Ti is the conductivity of the conductor Vi. Again, Green's second identity yields the

surface integral representation of the solution to equation (3.15)

I .a(r) aGi(7,r)
-E(r) = dS' G ( ,?) - _, ( 7 E Si (3.16)2(7 =js' ynkr) aJn(r')

where

ejk | l r'|
Gi (, I)= ki = 1'~p-jpi.(3.17)

Since (3.14) and (3.16) are the formal solutions to the same equation in slightly different

forms, they are obviously equivalent. We use both to simplify the derivation.

So far, only the formal solutions to equation (3.7) inside each conductor have been

found. To find the formal solution to the governing equations in region Vo, the homoge-
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neous medium, we turn to the MPIE. Now each conductor is treated as a volume current

source. In the standard MPIE formulation [37], the electric field everywhere, including the

interior of every conductor, is

E(T) = -joZ - V$(') = -jop dV'Go(-r, r')J(r') - V$('r) (3.18)
V

where

j) dS' P Go(, r). (3.19)

Notice that the volume integral term in equation (3.18) is identical to the one in equation

(3.14), we could use this fact to eliminate this undesirable volume integral term. Let 'r C Sk

in equation (3.18) and subtract it from equation (3.14), we then obtain

I - (W) aGo(ir')
-- fE(i) dS' Go(-r,r') - E(-, ') +V$(), ESk (3.20)

2 s an(r') an(r')

where k = 1, 2, ... , n. The integral representation (3.20) is no longer the formal solution to

equation (3.7), hence it is no longer equivalent to (3.16). Now we have found the surface

integral representation of the formal solutions to the governing equations inside conductors

and homogeneous medium. It should be noted that the surface integrals in (3.14), (3.16)

and (3.20) are all principal value integrals.

Unlike the standard MPIE, the Lorentz gauge V -A + joEpo = 0 is not explicitly en-

forced in our formulation because it is implied by equations (3.18), (3.19) and (3.6), which

are explicitly enforced. Now it is clear that had equation (3.5), instead of equations (3.6)

and (3.7), been used as the governing equations, we would have to enforce Lorentz gauge.

This would introduce the vector potential A and ultimately a volume integral term into our

formulation. Since this volume term is different from the ones in (3.14) and (3.18), it may

not be possible to eliminate this undesirable term using the same trick used to derive (3.20).

It is worth mentioning that equations (3.11) and (3.16) are very similar to the standard

EFIE formulation [104]. There are a few equivalent forms of EFIE, the one closest to
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equation (3.16) is

1 aE(r) _Gi(ij,') -
-Z(r) = dS' G 1(-r, i) _, Z# (r')

2 si an(r') an()

±jdS' (n(?)G1(, )(v' - (r))) , E Si. (3.21)

And the EFIE equation closest to equation (3.11) is equation (3.21) with the addition of a

volume integral term like the one in equation (3.11), with G1 being replaced by Go.

The standard EFIE is derived from the vector Helmholtz equation (3.5) using the Green's

second identity in vector form, with equation (3.6) not explicitly enforced. However, as dis-

cussed before, equation (3.6) must be enforced in our formulation. This is why we have

chosen equation (3.16) rather than equation (3.21), the standard EFIE.

3.4 Surface formulation

We follow the convention in the PEEC model, using the difference between $ on two con-

tacts of the same conductor as the voltage excitation term [49, 48]. In light of this, we

introduce one last equation, equation (3.29), into our formulation.

The boundary conditions and the surface integral representation of the solution to the

Maxwell's equations are summarized as the following:

I aE(rl) aGi (i, r1)
-E(f) = dS' G -(, )) . - _2 E(r), -r E S (3.22)

2 an(r')

I -E a(r ) aGo (Y, r)
-2E? =" dS Gf(? a() a( _,1 $() + V$(?) E Snc (3.23)

2 s-On( ) nr

dS' Go(#,r ), 7c S (3.24)

V- (7)=O, E Snc (3.25)

En() = , CE Snc (3.26)

') -$() = 0, -- E SC (3.27)
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= 0, i ESC (3.28)
an(i)

() = constant, r E Sc (3.29)

where S,, and S, are the non-contact part and the contact part of conductor surface S,

respectively. There are eight scalar state variables, Ex, Ey, Ez, j 7, -, $ and pn'I an ~n

All components of E and aE are defined only on the inner side of the conductor surfaces.

The potential $ and the surface charge density p are continuous across the surface, so no

differentiation between the inner and the outer side of the surface is needed for 4 and p.

It should be noted that equation (3.25) is essentially same as (3.6) because it is enforced

on the inner side of the non-contact conductor surface, which is still in the interior of the

conductors.

Equations (3.22)-(3.29) form a system of nine equations which involve unknowns on

conductor surfaces: three scalar equations in (3.22), three scalar equations in (3.23) com-

plemented by two scalar equations in (3.27), one scalar equation in (3.24), one scalar equa-

tion in (3.25) complemented by (3.29), and one scalar equation in (3.26) complemented by

(3.28). Since there are only eight variables and nine equations, (3.22)-(3.29) may not have

a solution. In [44] it was shown that the domain truncation shown in figure 3-2 combined

with artificial boundary conditions (3.27)-(3.29) insures that there is no solution. The PEEC

formulation has a similar problem and so equation (3.19) was not enforced for the interior

of the conductor [50]. In our formulation, we discard one of the three scalar equations in

(3.23).

In the local coordinate system (i, t2, h), where ti and F2 are two orthogonal unit vectors

tangential to the surface of conductor and n is the unit vector normal to the surface of

conductor, the term V$ in (3.23) can be written as F1 + F2 + n. Using $ on the

surface, finite-differences can be used to compute - and -, but not -. In light of the

above observation, we have decided to enforce equation (3.23) only along two tangential

directions in the local coordinate system and not to enforce it along the normal direction.
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Equation (3.23) then becomes

1 -, aE( aGo (i,) -- E(-r E) = (r)- dS' Go(r) _.I ) # Z(r(r')
2 san( j) ~'

) $) - Sr . (3.30)

This results in a system of eight scalar equations.

In summary, the surface integral formulation consists of equations (3.22) and (3.24)-

(3.30). For the EMQS analysis, ko in equation (3.12) becomes zero and the term wkp in
equation (3.17) should be dropped [39]. But the number of state variables is unchanged.

For the MQS analysis, on top of above simplification, the surface charge density p in equa-

tion (3.26) is assumed to be zero [39]. Hence it becomes redundant and is not used as a state

variable, and equation (3.24) is eliminated. Hence the total number of scalar unknowns and

equations for MQS analysis becomes seven. It should be noted that the two slightly differ-

ent sets of equations, equations (3.22) and (3.24)-(3.30) for EMQS and fullwave analysis,

and equations (3.22) and (3.25)-(3.30) for MQS analysis, are all widebanded, as will be

shown in the numerical result section. In addition, our numerical experiments show that

they all produce virtually identical impedance at very low frequencies but they behave very

differently at high frequencies. These are consistent with electromagnetic theory. One does

not need to switch between these different sets of equations to achieve wideband behavior.

3.5 Discretization of the formulation

In order to discretize the integral equations (3.22), (3.30) and (3.24), a piecewise constant

centroid collocation scheme is used. The conductor surface is discretized into many flat

panels. Seven unknowns are associated with each panel: Ex, Ey, Ez, ,Ex ,Ey and

p. The scalar potential $ is associated with the panel vertexes, and V$ in (3.30) is com-

puted using finite-difference. With this setting, equations (3.26), (3.27), (3.28), and (3.29)

become simple algebraic equations. But equation (3.25) deserves more attention.

Applying the integral form of equation (3.25) to the surface of an infinitely thin small
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Figure 3-3: Dual panel

rectangular box beneath the conductor surface, we obtain

dEt(7) ( (7) x F(y)) -JdS(i)h(_) - =0
C a an(?)

(3.31)

where a is the top of the box, C is the periphery of a, n is the normal unit vector and 1 is the

unit vector along C. Equation (3.31) is enforced on the so-called dual panel around each

vertex, one dual panel QIQ2Q3Q4 is shown in figure 3-3. Panel QIQ2Q3Q4 is divided by

the edges of regular panels into four sub-panels. The state variables E and E on sub-panel

OM 12QIM 14 , the shaded one in figure 3-3, is the same as those defined on panel P1 . The

same holds true for other three sub-panels.
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Now we can write the system matrix as

PI

0

0

0

P

0

0

0

P

0

DI

0

DI

0

0

0

0

DI

0 0

0

0

0

0

0

0

0

Ti,xPo Ti,yPo Ti,zPo Ti,xDo Ti,yDo Ti,zDo gi1 g12 0

T2 ,xPo T2 ,yPo T2,zPo T2 ,xDo T2 ,yDo T2 ,zDo 921 921 0

0 0 0 0 0 0 -Ie 0 PO

0 0 0 0 0 0 0 -IF P2

-Ax -A, -AZ CX C, Cz 0 0 0

0 0 0 Nx Ny Nz 0 0 -jOI

0 0 0 Ti,x TiJ T,z 0 0 0

0 0 0 T2 x T2 ,y T2 ,z 0 0 0

Nx Ny Nz 0 0 0 0 0 0

0 0 0 0 0 0 0 I 0

where $0, and $c are the potential on the non-contacts and the contacts,

0

0

aEx 0

aEz 0

$nc 0

$x 0

__ 0

0

'pnc 0

pC 0

0

(3.32)

respectively. The

horizontal lines in the system matrix are used to mark the corresponding relation between

row blocks and the equations (3.22) to (3.29). For example, the three rows in the first row

block correspond to (3.22). Matrix I is the identity matrix, Po and PI are respectively the

dense matrices corresponding to the single-layer integral with Green's function Go in (3.12)

and G1 in (3.17). The elements of matrix Po are

d s ( k) ii

47c I ri -i'
(3.33)

where i is the centroid of the i-th panel. Matrices P1 and P2 are sub-matrix blocks of

Po. The number of rows in P1 and P2 is the size of $, and $, respectively. Do and DI

are respectively the dense matrices corresponding to the double-layer integral with Green's
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function Go and G1. The elements of matrix Do are

Sejkol"i-n .

Do(i,J) = - -Panelds( r) i (334)
1i=j.

Sparse matrices gi, g12, g21 and 922 represent the finite-difference approximation of Vp.

Sparse matrices Ti,a, T2,a and Na (x = x,y, z) are the transfer matrices relating the local

coordinate system (ti, t2 and n) to the global coordinate system (x,y and z). The nonzero

elements of the sparse matrices Ax, AY and Az and the nonzero elements of the sparse

matrices Cx, C, and Cz are related to the dual panel discretization. And <DI, the known

potential on the contact, is used as the excitation.

The structure of the system matrix in (3.32) can be used to show that the system is not

singular even when the frequency is identically zero. It is straightforward to verify that at

zero frequency the matrix block Pi and D, are dense. Since the nonzero block P in the first

three columns are never in the same row, the first three columns are linearly independent.

For the same reason, the fourth to sixth column are linearly independent from each other.

Noticing that the nonzero matrix blocks in row 9 to 12 of the column 4 to 6 are never in

the same row as the nonzero blocks in row 9 to 12 of the column 1 to 3, we conclude that

the first six columns are linearly independent. Similarly, due to the nonzero block -IE in

row 6 and 7, we can also conclude that the first eight columns are linearly independent.

At zero frequency, the matrix block -!L'LI is zero. But because of the matrix block I in

column 8, column 8 and 9 are linearly independent. Therefore, we can conclude that the

system matrix is not singular even when the frequency is identically zero. This means that

our surface integral formulation does not have the kind of low-frequency problem reported

in [64]. Hence we do not need to use the so-called loop/star and loop/tree basis functions

to discretize the formulation.

40



Chapter 4

Improving the accuracy of panel

integration

Early experiments with the above formulation suggested that there was a low-frequency

problem which was resolved using a linearization technique [105]. In this chapter we show

that the formulation does not have difficulties at low frequencies, and that the early experi-

mental results were due to inaccuracy in the approach to the panel integration, particularly

the nearby interactions at low frequencies. We then propose a simple piecewise quadrature

scheme to fix the problem.

4.1 Definition

After discretization, the integrals over conductor surface S or Si are replaced by the sum-

mation of integrals over panels. These integrals are

I() = f d ks'_ (4.1)

a ,G(-, r) -2 r E Pi

I2 (?) = dS ' (4.2)
IPi an(?) n (Pi) .fp, dS'V p G(, ) otherwise
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where Pi is the i-th panel, n(Pi) is the unit normal vector on the flat panel Pi, and G(r, )

is either Go(r, r) or G1 (', ?) defined in (3.12) and (3.17). From the symmetry property of

the Green's function, it follows that

J dS'VpG(ir,r) -VJ dS'G(ir) = -VIi (r) (4.3)

when 'r is not on panel Pi. Therefore, to compute the integrals in equation (4.1) and (4.2),

it is only necessary to compute Ii () and where D stands for x, y or z.

4.2 Decomposition

It is shown in [41] that any integration over a polygon is equal to the signed summation of

the integration over a chosen set of triangles. The vertexes of these triangles are those of the

polygon and the projection of the evaluation point onto the plane where the polygon lies,

as shown in figure 4-1. To be more precise, let f(') be a general integrand, its integration

over a polygon in figure 4-1 could be written as

N

/dif (it) = si fp dif (i) (4.4)
S i i J ViVi+l

where N is the number of vertexes, VN+ = Vi, and si -1 if ViVi+I is clockwise looking

from the evaluation point E and si 1 if otherwise. This idea was used in [105] to compute

the integrals Ii () and

4.3 De-singularization and Reduction to 1-D integration

In a polar coordinate system, a triangle after the decomposition is shown in figure 4-2.

Using the relation R = V'r 2 +h 2 and RdR = rdr, the integrals Il and over this triangle

could be rewritten in polar coordinates as

f/B A ri(0) eikR
Ii =Id6 rdr

J, o 41t R
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'I

V2 V1

V3 V4

Figure 4-1: Decomposition of an integration over a polygon into several
triangles. Point E is the evaluation point, point P is the projection of E
(i = 1, 2, ..., 4) are the vertexes of the panel.

integrations over
on the plane. Vi

f/B AR1(0) 
eikR

- d6 dR
OA h 4n

f f0B eikR I() ikh
f'udOR1 - kO

a=i _ A ( eikR1 (0) )Rt (0) e )kh A
aD OA 47 3D 47 D

(4.5)

(4.6)

Now the singularity of the original kernels in II and has been eliminated and the 2-D

integrations have been reduced to 1-D integrations. The quadrature rule is used to compute

the two 1-D integrations in equation (4.5) and (4.6). The shared rapid changing kernel in

these two integrals is f(0) = eikR1(0) , where R1(0) = /d 2sec2(O)+h 2 . When d << AB,

OA and OB ~ (, and f(0) changes rapidly over the interval. Many quadrature points

must be used to achieve reasonable accuracy.

4.4 Piecewise Quadrature Scheme

A simple variable transformation and a piecewise quadrature scheme can be used to solve

the above-mentioned problem. Let x = dtan(0), it easily follows that 0 - , where r2

d2 + x 2. The rapidly changing part of I, and M could be rewritten as

rOB . XB

A dOeikR = dxg(x)
04 xA

(4.7)
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h
R1

P

ri

A x B

Figure 4-2: Triangle in polar coordinate system, d is the distance between point P and edge
AB

where g(x) = d20$2 eik h2 +d 2 +x 2 . The magnitude of the integrand g(x) is shown in figure 4-

3, where k is the wave number corresponding to the low frequency f = 1Hz in free space.

Accurate evaluation requires many quadrature points because of the rapid variation about

x = 0. However dividing the integration domain into two sub-domains at x = 0 and using a

quadrature scheme for each subdomain dramatically reduces the needed number of quadra-

ture points. The convergence behavior of the integration over the whole domain and over

the two sub-domains is shown in figure 4-4. It is clear that the piecewise scheme uses many

fewer quadrature points, or has higher accuracy if only a small number of quadrature points

are used. As will be shown in the numerical result section, using the piecewise scheme has

indeed fixed the low-frequency problem reported in [105].

Unfortunately, this is not appreciated in [105] and a small number (24) of quadrature

points are used for the integration over the whole domain. Since the lower the frequency,

the smaller the damping factor in complex wave number ki in (3.17), hence the higher the

peak of the integrand g(x), the formulation in [105] has a low frequency problem.
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Chapter 5

Scaling and preconditioning

5.1 Scaling

The system in (3.32) will be solved iteratively, and therefore reducing the system's condi-

tion number will likely accelerate iteration convergence. As expressed in (3.32), the system

has a condition number that rises rapidly as the problem geometry decreases. The difficulty

is easily eliminated by scaling.

Suppose the average edge length of panels is O(u), we will first estimate the scale of

each matrix block in (3.32) in terms of u.

The elements of matrix Po are expressed in (3.33). Since i and -P are on the conductor

surface, it is clear that in (3.33) is O(1/u) and ds(i9 ) is O(u 2). Hence Po(ij) is

O(u). And the same holds true for the elements in matrix P1. Following a similar reasoning,

Do(i, j) in (3.34) is 0(1), as are the elements in matrix Di.

The dual panel discretization in (3.31) implies that the elements in matrices C, CY and

C, are O(u) and the elements in matrices A, AY and Az are O(u2 ). And it is easy to check

that the elements in the finite difference matrices g11, g12, 921 and 922 are 0(1/u).

Now it is clear that the scale in different matrix blocks in (3.32) could be different by

many orders of magnitude if u is small. The huge difference in the scale could lead to large

condition number. For example, the condition number could be as large as 1020 for micron

feature sizes.

A simple scaling manipulation as the following can be used to remedy the situation:
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scale the first three columns with 1/u and the seventh and eighth column with u, and then

scale the sixth, seventh, eight and the last row with 1/u, and scale the second to the last

row with u. This manipulation can be written as

IPi (u)

0

0

0

P (u)

0

0

0

Pi(u)

DI (1)

0

0

0

DI (1)

0

0

0

Di(1)

0

0

0

0

0

0

0

0

0

STi,xPo(u) 1TiYPo(u) (Ti,zPo(u) Ti,xDo(l) Ti,yDo(l) Ti,zDo(l) ugii(j) ug12(1) 0

}T 2,xPo(u) }T2,Po(u) }T 2,zPo(u) T2,xDo(l) T2,yDo(1) T2,zDo(l) ug21(j) ug22(1) 0

0 0 0 0 0 0 -EI 0 iPol(u)

0 0 0 0 0 0 0 -EI jP2(u)
A,(u2) AY(U 2 ) Az(u 2) 1

- _-_-_ _ CX(u) {CY(u) iCz(u) 0 0 0

0 0 0 Nx Ny N0 0 0 QI

0 0 0 T1'X TLy T1'z 0 0 0

0 0 0 T2,x T2,y T2,z 0 0 0

Nx Ny Nz 0 0 0 0 0 0

0 0 0 0 0 0 0 I 0

where the corresponding scale of each matrix block is also shown. It is easy to check that

all matrix blocks are 0(1). Hence the new system matrix is much better conditioned.

The scaling factor u could be either the average panel size or the maximum panel size.

From our experiments, either one could effectively reduce the condition number. It should

be pointed out that the above scaling procedure is effective only when the panels do not vary

significantly in size. Otherwise, a fixed scaling factor may not be sufficient. For example,

we might have to use a separate scaling factor for each column of Pi and Po.

Empirical study of a simple straight wire is used here to verify the effectiveness of

the scaling technique. The iterative solver GMRES [89] is used to solve the linear system

matrix generated for different structure sizes. Comparison of the convergence behavior

with or without the scaling is shown in figure 5-1. It is clear from this figure that the

scaling has made the number of iterations almost independent of the structure size. In

particular, the number of iterations has been reduced by a factor of five when the feature
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11 I- 0.1m not scaled
.. . . -. - 0.1m scaled

-&- mm not scaled
100 -0- mm scaled

.-.- um not scaled
..... ...........- um scaled

10

10-

10 20 40 60 80 100
number of iterations

Figure 5-1: Convergence behavior of the iterative solver GMRES for different structure fea-
ture sizes with or without scaling. All the dashed (solid) lines are the cases with (without)
scaling. The lines with circles (stars) are for the millimeter (micrometer) sized structures,
and the lines without any mark are for the structures with feature size in the order of 0.1im.

size is in the order of micron. This confirms~ the analysis carried out before and verifies our

scaling technique.

5.2 Preconditioning

A straightforward way of constructing a preconditioner for the system matrix like the one in

(3.32) is to simply replace the dense matrix blocks corresponding to the integral operators

with their diagonal elements and keep all other sparse matrix blocks. This method was used
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in [103] to construct a preconditioner from the system matrix in (3.32), as shown in

PD

0

0

0

P

0

0

0

PD

-!I

0

0

0

-I
2

0

0

0

T1,xPD TiyP0D T pD ITIx,z T11 912 0

T2 ,xP4D T2,yPD T2 , 2 T2 ,x T2,y T2,z 921 922 0

o 0 0 0 0 0 -IF 0 (pl)D

0 0 0 0 0 0 0 -t(p2)D

-Ax -A, -AZ CX C, CZ 0 0 0

0 0 0 Nx Ny Nz 0 0 -jI

0 0 0 TX T1,Y Tz 0 0 0

0 0 0 T2 ,x T2 y T2 ,z 0 0 0

Nx Ny Nz 0 0 0 0 0 0

0 0 0 0 0 0

where the superscript D means that the matrix block is just the diagonal part of the corre-

sponding block in (3.32). For example, PO = diag(Po). Extensive numerical experiments

have shown that this preconditioner significantly reduces the number of iterations. But for

some structures the number of nonzeros in the preconditioner after the sparse LU factor-

ization is still rather large. This is partially because some rows in the preconditioner before

the LU factorization are not sparse enough.

As explained in section 3.2, the boundary conditions, equations (3.25)-(3.28), are en-

forced in the local coordinate system. And it is explained in section 3.4 that equation (3.30)

has to be enforced in the local coordinate system. On the other hand, the vector unknowns

E and LE in (3.32) are defined in the global coordinate system. This inconsistency intro-aJn

duces a large number of nonzeros into (5.2). These nonzeros are mainly transformation

between the local and the global coordinates. In addition, the diagonal elements of matrix

blocks TiJ and T2,y could be zero. If only these two diagonal blocks are kept in row 4 and
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0

0

0

0

0

0

0

0

(5.2)
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5 of the matrix in (5.2),

[T0,xP4

0

0

T2,yP

00T1X

0 0

0

ST2,y

0 g11 912 0
,

0 g2 g22 0J
(5.3)

some of the elements in Ti, and T2,y will almost certainly be zero, and the inevitable piv-

oting in LU factorization will constrain the ordering algorithm used to minimize fill-in's,

resulting in very dense LU factors. In order to avoid the pivoting or at least minimize it,

the off-diagonal blocks in row 4 and 5 of the preconditioner in (5.2) have to be kept. This

accounts for a large number of nonzeros.

One way to reduce the number of nonzeros is to define all vector variables and enforce

all vector equations in the local coordinate system. The resulting system matrix is

TP 1

T2 1 P1

T31PI

0

0

0

0

0

0

0

0

0

T11P0 T12PO T13PO T11Do T12Do T13Do g11 g12 0

T2 1PO T22 PO T23PO T2 1Do T22Do T23Do 921 922 0

0 0 0 0 0 0 -IE 0 POI

0 0 0 0 0 0 0 -IE P2

0 0 -An C 1  C 2  0 0 0 0

0 0 0 0 0 1 0 0 0)

0 0 0 I 0 0 0 0 0

0 0 0 0 I 0 0 0 0

0 0 I 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0

(5.4)

where matrices Tmn(m, n = 1, 2, 3)) are defined as T1 I (i, j) =

T 3(i, ) =i) -j), and etc, and (i(), F(, h() is the local coordinate system on the i-th

panel. The new system matrix in (5.4) is different from the one in (3.32) by just a similarity

transformation. Hence they all have the same condition number and lead to the same con-

vergence behavior if an iterative solver is used. But the preconditioners constructed from
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these different system matrices are significantly different, particularly in matrix sparsity.

An important advantage of defining variables and enforcing equations in the local coor-

dinate system is that the diagonal elements of matrix blocks T1 , T22 and T33 are 1. Hence

unlike the preconditioner in (5.2), all the off-diagonal blocks could be thrown away. Ex-

tracting the diagonal part of the diagonal matrix blocks and keeping the remaining sparse

matrices in (5.4) yields a new preconditioner

PD

0

0

0

P

0

0

0

PD

-!I

0

0

0

-0'

0

0

0

0

0

0

0

0

0

0

0

0

pD 0 0 1I 0 0 gli gi2 0o 2

o PS 0 0 0 g21 922 0

0 0 0 0 0 0 -IF 0 (Pl )D

0 0 0 0 0 0 0 -IF (P2)D

0 0 -An Ct1 Ct2  0 0 0 0

0 0 0 0 0 I 0 0 -fluI

0 0 0 I 0 0 0 0 0

0 0 0 0 I 0 0 0 0

0 0 I 0 0 0 0 0 0

0 0 0 0 0 0 0 I 0

(5.5)

Comparing to the preconditioner in (5.2), this preconditioner is much sparser. The density

of most rows below the third row have been reduced by about one half.

To verify the effectiveness of the new and sparser preconditioner, we used it in the

analysis of a four-turn spiral over a lossy substrate ground plane. The total number of

unknowns is 72531. The performance of the preconditioners in the global and the local

coordinate system is compared in table 5.1. As it is expected, the preconditioner in the local

coordinate system before the LU factorization is indeed much sparser. But this advantage

is somewhat offset by the fill-in's generated by LU factorization. Table 5.1 shows that the

number of nonzeros in the local preconditioner after the LU factorization is about 20%
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Table 5.1: Performance of preconditioners in the global and the local coordinate system

local global
number of nonzeros before LU 320376 547636
number of nonzeros after LU 1097973 1318222

number of fill-in's 777597 770586
number of GMRES iterations 15 15

fewer than that in the global preconditioner. This directly translates into a 20% saving

in memory usage. It is worth noting that though more matrix blocks are thrown away in

constructing the local preconditioner than the global preconditioner, both preconditioners

lead to the same iteration count, as shown in table 5.1.
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Chapter 6

Pre-corrected FFT algorithm

After discretization, the algebraic equations (3.26), (3.27), (3.28), (3.29) and (3.31) become

sparse matrix equations. But integral equations (3.22), (3.24) and (3.30) become dense

matrix equations. So solving the whole system using iterative methods still takes O(N 2)

operations, where N is the number of unknowns. Many fast algorithms avoid forming

matrix A explicitly and compute the matrix vector product approximately, requiring only

O(N) or O(Nlog(N)) operations [29, 6, 78]. In this paper, we use the pre-corrected FFT

algorithm to accelerate the dense matrix vector product corresponding to the discretized

integral operators in (3.22), (3.24) and (3.30).

6.1 Mathematical Preliminaries

An abstract form of the kernels in (3.22), (3.24), and (3.30) is

K(r ,) = 1( 2(G( r, r))) (6.1)

where G(r', ) is the Green's function, and the possible options for operator Fi (-) and 2(-)

are

d(-) d(.) d(.) d(.) (6.2)
dx(-)' dy(r)' dz ' dn5()
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and

d(-) d(-) d(-) d() (6.3)
dx(r')' dy(r')' dz(') I dn(r')'

and U(.) is the identity operator.

For the sake of clarity, we use a simple single-kernel integral equation

/dS'K(r",-)p(') = f(r), i* E S (6.4)

to illustrate how the pFFT algorithm can be used to accelarate the operation of an integral

operator. Function f('r) is the known right hand side term. The procedure extends easily to

the integral equations with multiple kernels, such as (3.22), (3.24), and (3.30).

The standard procedure to solve equation (6.4) numerically is to discretize it by means

of projection [35] and solve the resultant linear system with an iterative method [88, 98],

such as GMRES [89]. Let X be the infinite-dimensional functional space in which the exact

solution of equation (6.4) lies, and assume that B, C X and T C X are its subspaces with

spans {bj('), j = 1, 2,..., n} and {ti), i = 1, 2,..., n}, where n is the dimension of both

subspaces. In general, the solution of the equation (6.4) is not in subspace B. Therefore,

the approximate solution
n

n( ) = xbj('r) C B, (6.5)
j=1

generates an error

en('r) = dS'K(r',r)pn(r') -f() =0$() -Mf(), ?E S (6.6)

and the unknown expansion coefficients cxi could be computed by enforcing the projection

of the error into T to vanish, i.e.,

< ti('r), en(r) >=< ti(r) , $(r) > - < ti(), f(r) >= 0, i = 1, 2, ... , n (6.7)

or

aXj dSti () I dS'K(r',7)bj(r') = dSti(-)f(i), i = 1, 2, ...,n, (6.8)
J=J
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Figure 6-1: A piece-wise constant basis function, shaded area is its support

where A and A are the support of the basis fucntion ti) and bj ('r), respectively. In matrix,

equation (6.8) becomes

[A]i =f (6.9)

where

Aij = j dSt,(i) f dS'K(r',1 )bj (r') (6.10)
1 J

The commonly used basis functions in B, or T are low-order polynomials with local sup-

port [35]. Figure 6-1 shows a piece-wise constant basis function whose support is a panel.

Figure 6-2 shows a vertex-based piece-wise linear basis function whose support is the union

of a cluster of panels sharing the vertex with which the basis function is associated. When

the i-th testing function is ti(r) = 5('r - r',,), where 'r,i is the collocation point, the dis-

cretization method is called the collocation method. And when Bn = T, the discretization

method is called the Galerkin's method.

6.2 Philosophical Preliminaries

Since forming matrix A and computing the matrix vector product in (6.9) all require O(N 2)

arithmetic operations, it is obvious that using an iterative method to solve equation (6.9)

needs at least O(N 2 ) time, where N is the size of the matrix A. This could be very expensive

for large N. Many fast algorithms avoid forming matrix A explicitly and compute the
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A

Figure 6-2: A piece-wise linear basis function associated with the vertex V, where the
shaded area is its support

matrix vector product approximately, which only needs O(N) or O(Nlog(N)) operations

[29, 6, 78].

FFT-based methods are well-known [42, 90], but older algorithms required a regular

discretization mesh, which is not always possible or optimal for 3D geometries. The Pre-

corrected FFT (pFFT) algorithm was originally proposed in [80, 78], where the. detailed

steps to accelarate a single-layer integral operator were shown. It has also been extended

to the case where higher order basis functions are used [24]. The basic idea of pFFT is

to separate the potential computation into far-field part and near-field part. The far-field

potential is computed by using the grid charges on a uniform 3D grid to represent charges

on the panels. The near-field potential is compued directly. The algorithm has four steps:

Projection, Convolution, Interpolation and Nearby interaction. The effect of this algorithm

is to replace the matrix vector product Ad in equation (6.9) with (D+IHP)), where D

is the direct matrix that prpesents the nearby interaction, I is the interpolation matrix, H

is the convolution matrix, and P is the projection matrix. Matrices D, I and P are sparse,

hence their memory usage is O(N), where N is the number of panels, and their product

with a vector needs only O(N) work. The matrix H is a multilevel Toeplitz matrix. Hence

its memory usage is O(Ng) and its product with a vector could be computed by using FFT

in O(Nglog(Ng)) operations [26], where Ng is the number of grid points. Therefore, the

overall computational complexity of (D+ IHP)d is O(N) + O(Nglog(Ng)).
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Unlike [80, 78], we use polynomials in both interpolation and projection steps. Hence

the interpolation matrix I and projection matrix P are completely independent of the Green's

function G('r, r') in equation (6.1). This makes it much easier to handle the complicated ker-

nels K(r' IT) in (6.1). It also makes it straight forward to treat piecewise constant basis and

high-order basis in either collocation or Galerkin's method in a unified framework. This is

particularly important from implementation point of view.

6.3 Algorithm details

In this section, we will use a simple 2D example to show how to generate the four matrices,

[I], [P], [H] and [D]. Generalization of the procedure to the 3D cases is straight forward.

The algorithm presented here is general enough such that the general integral operator in

equation (6.4) discretized either by the collocation method or by the Galerkin's method

using either piece-wise const element or high-order element could be handled in a unified

framework.

6.3.1 Interpolation matrix

We start with the interpolation, the third and easiest step in the four-step pFFT algorithm.

Suppose the potential on the uniform grids has been computed through the first two

steps, namely projection and convolution, we could use a simple polynomial interpolation

scheme to compute the potential at any point within the region covered by the grids. Fig-

ure 6-3 shows a 2D 3 x 3 uniform grid, more points could be used to get more accurate

results. The triangle inside the grid represents the local support A in equation (6.8). The

simplest set of polynomial functions for the interpolation is fk (x, y) = xiyi, i, j= 0, 1, 2, k =

2i + j. The potential at any point can be written as a linear combination of these polynomi-

als,

$(x, y) = JCkfk(x, y) = F (x, y)c (6.11)
k

where - is a column vector and t stands for transpose. Matching $(x,y) in (6.11) with the
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given potential at each grid point results in a set of linear equations. In matrix form, it is

[F]e = g (6.12)

where the j-th row of the matrix [F] is the set of polynomials f(x, y) evaluated at the jth grid

point (xj, yj), and $g,j is the given potential at point (xj, yj). Solving for 1 and substituting

it back into (6.11) yields

$ (r) = $ (x, y) ='(x, y) [F] -g = D o (T) Og (6.13)

It should be noted that matrix [F] in (6.12) is only related to the distance between points in

the uniform grid and the specific set of interpolation polynomials chosen in the algorithm.

So the inverse of matrix [F] is done only once. And since the size of the matrix is rather

small (9 x 9 in this simple 2D case), computing its inverse is inexpensive. It is possible that

the number of polynomials is not equal to the number of points in the interpolation grid. In

this case the inverse becomes psuedo inverse, which is computed using the singular value

decomposition (SVD) [98].

It easily follows that the derivative of the potential at a point r with respect to oc is

d$(T) _ d - -- '(r-)[F]-I'g = D'rN (6.14)
dac da 9 C )9

where a stands for x or y. Hence the gradient of the potential at I is

0$( ) = (xiP) +D' (T-)) Og (6.15)

and the normal derivative of the potential at point r is

d$(i) df t (I) df'(T)
n - r$() = (nx +ny )[F]$g - D'(T) g (6.16)

dn dx dy

where nx and ny are the projection of the unit normal vector of the function support A' along

x and y direction. Using the notation in (6.2), equations (6.13), (6.14) and (6.16) could be
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written as

Fi ($()) = D' ( )g (6.17)

where D' (T) stands for A (T), D,(T), R(T) or D,' (T)

As described in section 6.1, we want to compute

Ti = dSFi(()t() i = 1, 2, .,N. (6.18)

where N is the number of testing basis functions. Substituting (6.17) into (6.18) yields

Ti = dSti(-r)D'(t) Vg (W'))tg, i = 1, 2, .. ,Nt, (6.19)

where W(') stands for VV , W and y .() If the collocation method is used, then w (i) inPX0Wy. f

equation (6.19) could be simplified as

'0 = p(xc,y,), i 1,2,..,N, (6.20)

where (x,,ye) is the collocation point. When the piece-wise constant testing function is

used, the support Aj is the panel associated with it, as shown in figure 6-1. When the linear

testing function is used, A is a cluster of panels, as shown in figure 6-2. Apparently, com-

puting elements of W for higher order basis functions could be more expensive because

integrating over a cluster of panels needs more quadrature points than integrating over a

single panel.

In matrix format, equation (6.19) becomes

T'= [I]g (6.21)

where [I] is an N x Ng matrix, and Ng is the number of grid points. To cover the local

support of a basis function, only a small number of the interpolation grid points are needed,

as shown in figure 6-3. Hence computing each Ti through interpolation only involves

potential at a few grid points. So each row of the interoplation matrix [I] is rather sparse.

The non-zero elements in the i-th row of the matrix [I] are just the elements of the row
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Figure 6-3: 2-D pictorial representation of the interpolation step

vector (W,())' in (6.19) or (6.20).

6.3.2 Projection matrix

Figure 6-4 shows a 2D pictorial representation of the projection step. Similar to the previ-

ous section, a triangle is used to represent the support of a basis function. A 3 x 3 projection

grid is assumed here and obviously more points could be used if the accuracy requirement

is higher.

We start with a point charge pp at point S on the triangle, shown in figure 6-4. The

potential at point E due to this point charge is

(6.22)

The purpose of the projection is to find a set of grid charges pg on the projection grid points

such that they generate the same potentail at point E, i.e.,

(6.23)

where $g,i = G('ri, rE). We could use the same set of polynomials in (6.11) to expand the

Green's function

(6.24),E k) Ck f Vr) C.
k
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Matching both sides at each grid point i yields a linear system

[FJ} = g, (6.25)

where F is same as that in (6.12). Substituting the solution J = F-1 g into (6.24) and

evaluating it at point S yields

G(Ts,E s -E) (6.26)

In light of (6.22) and (6.23) we have

(0g)' = ppf'(is)F- 1 , (6.27)

the projection charges for a point charge. A charge distribution bj(V) on the jth basis

function support could be regarded as a linear combination of an infinite number of point

charges. Equation (6.27) implies that the projection charges are linearly proportional to the

point charge, hence it easily follows that the projection charges for the charge distribution

bj(?) is

(P (),= dSbj(-r)f'(i)][F]-1. (6.28)

If the piece-wise constant basis function is used, equation (6.28) becomes

(P (A), = [ dSF(')][F] (6.29)

We usually have to use more than one basis function, as implied by equation (6.5).

In this case, the total charge on each grid point is the accumulation of grid charge due to

each basis function. Assuming there are Nb basis functions and Ng grid points, the relation

between the total grid charges Qg and the magnitude of basis functions x in (6.5) is

Nb

Qg = UjP = [P]Cx (6.30)
j=1

where [P] is an Ng x Nb matrix. Due to the locality of the basis support, the projection
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grid for each basis function has only a small number of points. Hence each column of the

projection matrix [P] is rather sparse. The non-zero elements in the j-th column of matrix

[P] are the elements of the column vector Pg in equation (6.28) or (6.29).

If the kernel has a differential operator inside the integral, the potential at point E due

to a point charge is

S [ppG( E )F- ]. (6.31)

where P stands for x, y or n. We again want to find a set of grid charges ap on the projection

grid points such that they generate the same potentail at point E, i.e.,

$2) = Jp,iG(-i ,E) (621))

Equations (6.31) and (6.32) imply that the projection charges are

(dp)'=PVs [ppf'(rs)F- ].(6.33)

Similar to the single-layer operator case, the projection charges for a charge distribution

bj ('r) on the jth basis function support is

() = [j dSbj('r) '(r)][F] (6.34)
J

The projection matrix for the kernel with a differential operator is structurely identical to

the matrix [P] in equation (6.30). The non-zero elements in the j-th column of the matrix

are the elements of the column vector d in equation (6.34).

6.3.3 Convolution matrix and fast convolution by FFT

By definition, the relation between the grid potential 4 g in (6.21) and grid charge Qg in

(6.30) is

gj = G(r'i,7j)Qgi (6.35)
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Figure 6-4: 2

__ E

T
-D pictorial representation of the projection step

In matrix form, it is

Og = [H]Qg (6.36)

where the matrix H is the so-call convolution matrix. Since the Green's function is position

invariant and g and Qg are defined on the same set of uniform grid, we have

G(r'ij) G(-', G('ri - I'j, 0). (6.37)

Matrix H is a multilevel Toeplitz matrix [26]. The number of levels is 2 and 3 for 2D

cases and 3D cases, respectively. It is well-known that the storage of a Toeplitz matrix only

needs O(N) memory and a Toeplitz matrix vector product can be computed in O(Nlog(N))

operations using FFT [26], where N is the total number of grid points. It should be pointed

out that convolution matrix H being a Toeplitz matrix is hinged upon the position invariance

of the Green's function.
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6.3.4 Direct matrix and pre-correction

Substituting equation (6.36) and (6.30) into (6.21) yields

'T'= [I] [H] [P] Cx (6.38)

In view of (6.18), (6.7) and (6.9), this implies

A = [I][H][P]. (6.39)

As pointed out in previous three sections, the sparse representation of matrix A in (6.39)

reduces the memory usage and computing time for matrix vector product dramatically.

Unfortunately, the calculations of the potential on th grid using (6.39) do not accurately ap-

proximate the nearby interaction. It is proposed in [78] that the nearby interaction should be

computed directly and the inaccurate contributions from the use of grid should be removed.

Figure 6-5 shows how the nearby neighboring basis supports are defined. The empty circle

in middle of the solid dots are the center of the so-called direct stencil and the stencil size

in figure 6-5 is 2. The shaded triangle represents the source, and the other empty triangles

represent the targets where T in equation (6.18) is to be evaluated. Only those triangles

within the region covered by the direct stencil are considered to be nearby neighbors to

the source. And the direct interaction between this list of nearby neighbors and the source

is just Aij defined in (6.10), where i is the index of the shaded triangle representing the

source and j E N, the nearby neighbor set for the ith source. The pre-corrected direct

matrix element is

Di, - (W)[HL j, j E N (6.40)

where (W i))t is defined in equation (6.19), pj is defined in equation (6.28) and (6.34),

and [HL] is a small convolution matrix (not to be confused with [H] in (6.39)) that relates

the potential on the grid points around basis support At and the charge on the grid points

around basis support A . It is intuitive from figure 6-5 that N is a very small set. Hence the

direct matrix D is very sparse and the sparsity of D is dependent upon the size of the direct

stencil. Larger stencil size means more neighboring triangles in figure 6-5 and hence more
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Figure 6-5: 2-D pictorial representation of the nearby interaction. Direct stencil size is 2.

computation in (6.40). It will be shown later in section 7.1 that the setup time of the pFFT

algorithm is directly related to the direct stencil size.

Since matrix [HL] in (6.40) is rather small, the FFT does not speed up the computation

much. However, there are other ways to reduce the operation count. Because the grid is

uniform and the Green's function is position invariant, only a few matrices [HL] are unique.

So we could pre-compute them once and use them to pre-correct all the nearby interactions

in the direct matrix [D].

6.3.5 A summary of the four matrices

In view of (6.38), (6.39) and (6.40), the matrix vector product is computed efficiently using

[A] = ([D] + [I][H][P]) i. (6.41)

Sections 6.3.1 and 6.3.2 are summarized in table 6.1. It is clear by now that the inter-

polation matrix [I] and the projection matrix [P] are independent of the Green's function.

Matrix [I] is only related to the operator F1 and the testing functions. And matrix [P] is

only related to the operator F2 and the basis functions.

The direct matrix, however, is dependent upon all the above information. So we have
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Table 6.1: Relation between operator pair and the interpolation matrix and the projection
matrix

d(-) d(-) d(-)
1iU LI-) , dx', y' dn'

interpolation W in (6.19) W (, WY in (6.19) W ' in (6.19)
d(-) d(-) d(-)

F2  U(') dx' d

projection pg in (6.28) U, in (6.34) ; in (6.34)

to set up one direct matrix for each F1 and F2 operator pair. The convolution matrix, on

the other hand, is only related to the Green's function and the location of grid points. It is

not related to F, or F2. So we only need to set up one convolution matrix for each unique

Green's function.

In addition, if the Galerkin's method is used, the basis function bj('r) in equation (6.28)

or (6.34) is identical to the testing function ti(Ir) in equation (6.19). It is easy to check that

(=j, W (j)=d ,(4 ) =(j) and a G /). This implies a duality relation

[I] = [P]t . (6.42)

6.4 Implementation

Base upon the algorithm described above, we have developed a C++ program called pfft++,

using the generic programming technique [95, 56, 46]. The whole algorithm includes two

major parts: forming the four matrices I, P, D and H, and computing the matrix vector

product using (6.41). Since the matrices I and P are not related to the kernel, they are

formed separately so that they could be used for different kernels. This is particularly

useful when for example a Helmholtz equation is to be solved at various wave numbers

or frequencies. A high level description of the implementation of the pfft++ is shown in

algorithms 1, 2 and 3.

Using pfft++ to solve a single kernel integral equation such as (6.4) is straight forward.

We could simply treat pfft++ as a black box that could perform the matrix vector product

efficiently. After forming the four matrices by calling algorithms 1 and 2, algorithm 3 is
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Algorithm 1: construct kernel Independent sparse matrices.
Input: source elements, target elements, differential operator pairs (Jj, 2),
projection stencil size, interpolation stencil size, direct stencil size
Output: interpolation matrix [I] and projection matrix [P]
(1) find the optimal grid size
(2) setup grid and element association
(3) setup interpolation stencil
(4) setup projection stencil
(5) setup direct stencil
(6) form the interpolation matrix [I] for each T1
(7) form the projection matrix [P] for each 12

Algorithm 2: construct kernel dependent sparse matrices.
Input: source elements, target elements, kernel, integration scheme, differ-
ential operator pairs (FI, 12)
Output: direct matrix [D] and convolution matrix H
(1) form the sparse representation of [H]
(2) compute the FFT of [H]
(3) form the direct matrix [D] for each pair of (Fi, F2)

to be called repeatedly in the inner loop of an iterative solver. To solve the integral equa-

tions with multiple kernels, we could simply repeat the above procedure for each integral

operator individually.

6.5 Comparison to the original pFFT algorithm

The basic sparsification ideas used here are very similar to those in the original pre-corrected

FFT algorithm [80]. The difference lies primarily in the ways the interpolation matrix and

the projection matrix are generated. And this difference turns out to be important.

In the original pFFT algorithm [80, 78], the projection matrix and the interpolation

matrix are all related to the Green's function or kernel. If one wants to solve a Helmholtz

equation with different wave numbers or at different frequencies, these two matrices have

to be re-generated for each frequency. As explained in section 6.4, the interpolation matrix

and the projection matrix are only generated once in pfft++.

In the original pFFT algorithm, the convolution matrix is directly related to the kernel,
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Algorithm 3: compute matrix vector product.
Input: vector x, differential operator pair (Fi, .2)
Output: vector y
(1) find the index m of [I] from T1

(2) find the index n of [P] from 12
(3) find the index k of [D] from operator pair (Fi, f2)
(4) y' - [Pm]x

(5) yj = fft(yi)
(6) Y2 = [H]y1
(7) Y2 = ifft(y 2 )

(8) Y3=-[InIY2

(9) y=y3+[Dk]X

which includes the effect of the operator 12. The convolution matrix in this work is directly

related to the Green's function, not the operator 12. To see why this difference is important,

suppose we want to compute the double-layer integral

jdr' ' p(r). (6.43)
s an(r')

Using the original pFFT algorithm, it has to be done as the following

/dr'[nx. _ +n _ +nz ]p(r). (6.44)
s ax(r') ?y(r') az(r)

This suggests that three convolution matrices [Hx], [Hy] and [Hz] corresponding to ,

and a have to be generated and foreward FFT has to be performed for each of them.

For each operation of the double-layer integral operator, [Hx]p, [Hy]p and [Hz]p have to be

carried out separately. As shown in section 6.3.3, pfft++ only needs one convolution matrix

and hence only one convolution will be carried out in the matrix vector product step. This

is a significant reduction in memory usage and CPU time.
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Chapter 7

Numerical Results

7.1 Performance of pfft++

Base upon the algorithm described in chapter 6, we have developed pfft++, a flexible and

extensible fast integral equation solver. The program pfft++ has been tested using random

distributions on the surface of a sphere shown in figure 7-1. After discretizing the surface,

the integral operator in equation (6.4) is turned into either the dense matrix [A] in (6.9) or

the sparse matrix representation in (6.41). We assume a random vector X and compute the

matrix vector product in (6.9) directly as yi = [A]C. We then compute the matrix vector

product using pfft++ as Y2 = pfft(C). The relative error in the pFFT approximation is

error- ( N 2y2, 2 (7.1)
i= I 1,i

We first use a medium size example to demonstrate the trade-off between accuracy and

CPU time and memory usage. We carried out the numerical experiment described above

on a sphere discretized with 4800 panels. When the kernels are Laplace kernel and its

normal derivative, the radius of the sphere is R = lm. When the kernels are Helmholtz

kernel and its normal derivative, the radius of the sphere is R = 5.3cm so that the size of

the panels is smaller than one tenth of a wave length at 10GHz. Using increasingly larger

stencil size in projection and interpolation, the accuracy is expected to increase. Table 7.1

clearly shows that this expectation has been met, where p stands for the stencil size of
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Figure 7-1: A sphere discretized with triangle panels.

both projection and interpolation. For instance, p = 3 means that a 3 x 3 x 3 3D grid is

used as the projection and the interpolation stencil. With the increase of the stencil size,

the computational resource is expected to increase as well. This is shown in table 7.2,

7.3 and 7.4. The CPU time and memory usage increase significantly with the increase of

the stencil size. In particular, the setup time of pfft++ increases by 4 to 10 times when

stencil size increases from 3 to 5 or from 5 to 7. Though we only show data for a medium

size problem here, from our numerical experiments, the observation is also true for large

examples. Foutunately, almost all engineering problems only require modest accuracy, 3 to

4 digits. At this level of accuracy, the computational cost of pfft++ is very reasonable.

Figure 7-2 shows the CPU time versus problem size for different kernels. The projec-

tion and the interpolation stencil size is 3 for all these cases. It is clear that the CPU time

grows almost linearly with the problem size for all types of kernels. Though not shown

here in plot, the memory usage of pfft++ also grows linearly with the problem size.

7.2 Performance of fastImp

Base upon the algorithms described in previous chapters we have developed FastImp, a

fast impedance extraction program. In this section, we first use small examples to demon-
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Table 7.1: Relative error in (7.1) for different projection and interpolation stencil sizes and
different kernels

p=3 p=5 p=7
8.4 x 10- 5  1.3 x 10- 6 4.3 x 10- 9

8.5 x 10-3 1.1 x 10-4 8.4 x 10-7

r kR = 1.11 x 10-' 8.3 x 10-5 1.3 x 10-6 1.7 x 10-9

i, kR - 1.11 x 10~9 6.0 x 10-3 7.5 x 10-5 5.9 x 10-7

ekR= 11.1 4.9x 0-4 1.1 x 10-5 4.x 10-7

, kR = 11.1 1.4 x 10-2 2.8 x 10-4 6.5 x 10-6n r _____ _ _ _ _

Table 7.2: CPU time for forming I, P, D and H matrices in (6.41) for different projection
and interpolation stencil sizes and different kernels, unit is second

p=3 p= 5  p = 7
3.76 39.48 305.61

C 1 4.28 45.93 326.47
nr

r , kR = 1.11 x 10-9 55.66 249.01 1022.05
D eikr , kR = 1.11 X 10-9 47.80 229.02 971.32
ekr r

,kR =11.1 53.06 242.65 1082.36

-e, kR = 11.1 47.99 226.89 967.58

Table 7.3: CPU time for doing one matrix vector product for different projection and inter-
polation stencil sizes and different kernels, unit is second

p=3 p=5 p=7
1 0.07 0.11 0.17

C) 1 0.07 0.11 0.17

D, kR 1.11 x 10-9 0.20 0.33 0.64

r kR= 1.11 x 109 0.20 0.33 0.61
F r

r IkR = 11.1 0.19 0.32 0.63

, -!kR11.1 0.19 0.33 0.65
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Table 7.4: Memory usage for different projection and interpolation stencil
ent kernels, unit is Mb

p=3 p=5 p=7
1 10.75 35.18 87.94
_ _ _ _ 10.75 35.18 87.94
an r

r , kR = 1.11 x 10- 9  16.04 47.3 114.5
a eikr ,kR=1. -9 16.04 47.3 114.5
anr r
e , kR = 11.1 16.04 47.3 114.5r

an r , kR =11.1 16.04 47.3 114.5
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Figure 7-2: CPU time of one matrix-vector product versus the problem size, kR = 11.1 for
Helmholtz kernel and its normal derivative where R is the radius of the sphere.
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strate FastImp's accuracy. We then use a few practical examples to demonstrate FastImp's

flexibility. And finally we use large examples to show FastImp's speed. If not specified

explicitly, the calculations were carried out on a desk top computer with a Pentium IV

micro-processor (1.2 GHz clock rate) and 1GB memory.

7.2.1 Accuracy

A ring example This ring example is used to verify the piecewise quadrature scheme

proposed in chapter 4. We also intend to use this relatively small example to conduct the

convergence test of FastImp. The third goal is to numerically show that with the help of a

preconditioner the formulation behaves reasonably well across a wide frequency range.

The ring is 10mm in radius, with a square cross section of the size 0.5mm x 0.5mm. The

conductivity is that of the copper, which is 5.8 x 10 7 sm- 1. In order to compare with results

from the well-established FastHenry program [49], we have carried out the Magneto-Quasi-

Static (MQS) analysis. The number of nonuniform filaments used by FastHenry is 960,

3840 and 15360, respectively. The incremental ratio of the nonuniform filaments is 1.3.

The number of nonuniform panels used by FastImp is 992 and 2048, respectively. The

resistance and inductance calculated by both codes are compared in figures 7-3 and 7-4,

where the low frequency inductance calculated using the analytical formula in [32] is 48.89

nH. These two figures show that FastImp's results converges very well with the refinement

of panel discretization. It should be noted that the inductance calculated with FastImp is

very close to 48.89nH in the low frequency range, as shown in figure 7-4. This suggests

that the piecewise quadrature scheme proposed in chapter 4 has indeed eliminated the low

frequency problem reported in [105]. Also, at high frequencies, the resistance in figure 7-3

scales to the square root of frequency and the inductance in figure 7-4 drops a little. This

suggests that the skin effect has been well captured.

It is worth mentioning that a large number of filaments has to be used by FastHenry in

order to capture the skin effect at high frequencies. On the other hand, with a small and

fixed number of panels, the skin effect has been well captured by FastImp. This clearly

demonstrates the advantage of the surface integral formulation over the volume integral
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Figure 7-3: Resistance of a ring

formulation.

Figure 7-5 shows the number of GMRES iterations versus frequency for discretization

with 992 and 2048 panels. Here the tolerance for GMRES is set to be 1 x i0-4 . Though

low-frequency calculation takes more GMRES iterations, the number of iterations is still

very reasonable, considering the number of unknowns is 6946 and 14338, respectively.

This indicates that Fastlmp is indeed a wideband solver.

A shorted transmission line The length of the transmission line is 2cm. The cross-

section of each conductor is 50 x 50um, and the space between two conductors is 50um.

The conductivity of both conductors is again 5.8 x 10 7sm-1 . One end of this transmission

line is shorted, and the other end becomes a port.

In theory, this finite-length transmission line is a 3D structure. We have used Fastlmp

to carry out 3D Magneto-Quasi-Static (MQS) analysis, 3D Electro-Magneto-Quasi-Static

(EMQS) analysis and 3D fullwave analysis and calculated the input impedance at the open

port. This finite-length transmission line could also be treated as a quasi 2D structure since

its length is 400 times its width and thickness. In this case, the per-unit-length resistance

R0 and inductance L0 are obtained by dividing the total resistance and inductance (from the
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3D MQS analysis) by the length. And the per-unit-length capacitance Co is just

I
CO = , (7.2)

C2L-

where c is the speed of light. The behavior of a shorted 2D transmission line is well

understood. We could calculate its input impedance from RO, Co and LO [81]. This 2D

analytic model is used as standard for EMQS results.

We have also used FastHenry to calculated the input impedance of this shorted trans-

mission line. We used 20 x 20 filaments on the cross-section of each conductor. Since

this rather fine discretization guarantees that the size of the filaments close to the conduc-

tor surface is smaller than the smallest skin depth in the frequency range we care about,

FastHenry's results should be accurate.

In order to verify FastImp's MQS, EMQS and fullwave analysis, we have plotted fig-

ures 7-6 and 7-7, the magnitude and phase of the input impedance calculated using differ-

ent methods. FastImp's MQS results are almost identical to FastHenry's results. FatsImp's

EMQS results are almost indistinguishable from those of the 2D analytic model. As ex-

pected, the EMQS results are essentially the same as MQS results at lower frequencies (less

than 1GHz), and resonances appear at higher frequencies. Since the separation distance be-

tween two conductors of the transmission line is only 50um, a small fraction of the shortest

wave length at 10GHz, the fullwave results are essentially same as the EMQS results.

To see the difference in EMQS and fullwave results, we deliberately used a larger sep-

aration between the two conductors of the shorted transmission line. Figures 7-8 and 7-9

show the the magnitude and phase of the input admittance calculated using EMQS and

fullwave modes. Here the separation is 1cm. Due to fullwave radiation loss at resonant fre-

quencies, the magnitude of fullwave admittance is smaller than that of EMQS admittance

at resonant frequencies, as shown in figure 7-8. For the same reason, the imaginary part of

the fullwave admittance is less dominant than that of EMQS admittance. Hence the phase

change at resonant frequencies for fullwave admittance is not as sharp as that of EMQS

admittance, as shown in figure 7-9. Figures 7-8 and 7-9 are in good agreement with the

experiments carried out in [50].
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The comparison in figures 7-6, 7-7, 7-8 and 7-9 clearly demonstrates the accuracy of

Fastlmp's MQS, EMQS and fuliwave analysis.

7.2.2 Flexibility

A few practical structures are analyzed in this section to demonstrate Fastlmp's flexibility.

The CPU time and memory usage for different examples are compared in table 7.5.

Multiple conductor crossover bus Figure 7-10 shows a multiple conductor bus with

three-layer of identical conductors. Each layer has 10 conductors and the conductors on

different layer are orthogonal to each other. The size of every conductor is 1 x 1 x 25um.

We only extracted one column of the impedance matrix (since this is a multiple port struc-

ture) at one frequency point f 1 GHz using the EMQS analysis. The CPU time and

memory usage are shown in table 7.5.

Stacked spirals over ground The impedance matrix of two stacked 9-turn circular spi-

rals over a lossy ground plane (shown in figure 7-11) and two stacked 8-turn rectangular

spirals over a lossy ground plane (shown in figure 7-12) are extracted at one frequency
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Figure 7-11: Stacked 9-turn circular spirals over ground

Figure 7-12: Stacked 8-turn rectangular spirals over ground

point f = 1GHz using the EMQS analysis. The CPU time and memory usage are shown in

table 7.5.

7.2.3 speed

Large 3D structures Fastlmp has been used to perform the EMQS analysis of two large

structures shown in figure 7-14 and 7-15. Figure 7-14 shows a portion of an RF circuit,

which includes five circular spiral inductors of various sizes and number of turns, and two

3D interconnect structures with straight wires and right-angle bends. Figure 7-15 shows a

16 x 8 array of 3-turn rectangular spirals. The discretization, detailed breakdown of CPU

time and memory usage for the analysis of these two examples are shown in table 7.6, 7.7

and 7.8, respectively. The analysis of the 16 x 8 spiral array in figure 7-15 was carried out
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Table 7.5: Comparison of CPU time and memory usage for various practical structures

obtained by estimatio or extrapolation.

Table 7.6: Discretization of the RF interconnect example and the 16x8 spiral array example

RF interconnect 16x8 spiral array
number of panels 15,566 180,224
number of unknowns 124,574 1,442,048
number of grids 32 x 64 x 16 256 x 128 x 8
grid step 3.53um 1.91um

on a server with 32GB memory and one 64-bit Itanium micro-processor. This server is

about 3 times slower than the desktop computer used for other examples.

Computational complexity of FastImp We have used Fastlmp to analyze a series of

similar structures with increasingly larger size. These structures are lx1, 2x2, 4x4 and 8x8

spiral arrays. All elements in these arrays are 3-turn rectangular spirals. The CPU time

versus number of spiral elements in the spiral arrays is shown in figure 7-13. The plot

Table 7.7: A detailed breakdown of the CPU time used by the RF interconnect example
and the 16x8 spiral array example. Unit is second

RF interconnect 16x8 array
P and I matrices 23.5 746
D and H matrices 1444 14353
form the preconditioner Pr 3.61 53
LU factorization of Pr 3.28 1927
GMRES (tol = 1 x 10-3) 369 (48 iter) 25168 (80 iter)
total 1820 42247
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bus circular spirals rectangle spirals
#panels 18,540 15,194 18,520
#unknowns 148,380 121,558 148,166
FastImp 9min,340Mb 68min,642Mb 54min,749Mb
*iterative 160min,19GB 750min,72GB 590min,83GB
*standard 136days,19GB 100days,19GB 168days,22GB



Table 7.8: A detailed breakdown of the memory usage for
and the 16x8 spiral array example. Unit is GB

the RF interconnect example

RF interconnect 16x8 spiral array
direct matrices 0.593 5.54
projection matrices 0.025 0.39
interpolation matrices 0.015 0.23
convolution matrices 0.013 0.13
maps between grids and panels 0.026 0.70
preconditioner 0.114 2.76
GMRES 0.100 2.21
total 0.886 11.96

clearly indicates that the CPU time grows nearly linearly with the problem size.
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Figure 7-15: 16x8 3-turn rectangular spiral array
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Part II

Stochastic Integral Equation Method

and Its Application in Capacitance

Extraction

87



88



Chapter 8

Overview

The effect of surface roughness in the context of electromagnetic radiation and scattering

has been studied for at least three decades [45]. A recent extensive review has been made

in [107] which cites 275 papers and books. Work on the analysis of rough surface effect

falls roughly into two broad categories: approximate analytical techniques [112, 4] and

numerical simulation techniques [69, 99]. Since the solutions of the approximate analytical

approach are in the explicit analytical forms, it is possible to calculate the mean value

and even the variance directly [4]. However, many assumptions have to be made in the

approximate analytical techniques, hence their applications are limited. In the numerical

simulation approach, the statistical nature of the rough surface model is commonly dealt

with using computationally intensive Monte Carlo methods [99]. A few non-Monte-Carlo

approaches have been proposed to handle surface roughness differently.

A surface impedance boundary condition was proposed in [43] to take into account

the roughness effect. This strategy avoids the discretization of rough surfaces. But only

2D grooves with periodic roughness are analyzed in [43]. More importantly, since the

impedance boundary condition depends on the profile of the 2D groove, this approach does

not avoid the time-consuming Monte Carlo simulations.

A Stochastic Fourier Transform Approach (SFTA) was proposed in [7, 8] to address

the classical problem of how to express the average of the product of an unknown and a

known function. It exploits the form of the kernel in the Magnetic Field Integral Equa-

tion (MFIE) formulation and hence is not necessarily applicable to the formulations with
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different kernels. More importantly, this approach only provides formal solutions of the

average scattering field. It is not easy to use the standard numerical techniques to solve the

governing equations. Hence it is unclear if the SFTA is computationally more efficient than

the Monte Carlo approach.

An ensemble average Green's function idea was proposed in [101], where the mean

scattering field in a 2D rough surface acoustic scattering problem was calculated directly

without using the Monte Carlo process. In this case, the analytical solution is not readily

available. The ensemble average was taken on both sides of the governing integral equation

instead of on the analytical solution as in [4]. This leads to an integral equation of the mean

scattering field defined only on the smooth surface with the surface roughness removed.

Since only a 2D rough surface is considered in [101], it is possible to use analytical tech-

niques such as the Laplace transformation to obtain the solution to the mean field integral

equation. A crucial assumption, the uncorrelatedness between source and Green's function,

is used in [101] to avoid the above-mentioned classical problem. The justification for this

assumption in [101] is based on physical intuition.

In this dissertation, we extend the ensemble average Green's function idea in [101] to

the numerical solution of stochastic integral equations for both 2D and 3D structures. We

first demonstrate a mathematical interpretation of the uncorrelatedness assumption in [101]

and show that it leads to inaccurate results when the surface roughness magnitude is large.

We then propose a correction scheme to substantially improve the accuracy. We believe that

this scheme strikes a good balance between the method in [101] and in [7, 8] to address the

problem of how to express the average of the product of an unknown and a known function,

i.e., it is sufficiently accurate and it is compatible with standard numerical techniques for

solving integral equations. In addition, we have extended the ensemble average Green's

function idea to the calculation of the variance. We use the relatively simple capacitance

problems to show that it is possible to directly calculate the mean surface charge density,

the mean and variance of the capacitance by just one solve, as oppose to many thousands

of solves in Monte Carlo approach. Due to the close connection between the numerical

techniques for capacitance extraction and impedance extraction, as demonstrated in [71,

49, 52, 53, 2, 80, 115], we believe that the new method, the Stochastic Integral Equation
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(SIE) method, will also be a very useful tool in attacking the more complicated impedance

extraction problems in the presence of conductor surface roughness.
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Chapter 9

Mathematical Model for Random Rough

Surfaces

The rough surface of a realistic interconnect conductor is neither periodic nor explicitly

given. In practice they can only be described by their statistical properties. A random

rough surface can be described mathematically as h = F(i), where h is the surface height

fluctuation with respect to a nominal smooth surface defined by a mean surface height, and

' is the position vector on the nominal smooth surface. The function F(i) is a single-value

function of position vector ', which means there is no overhangs on the surface. The height

fluctuation is a stochastic process with respect to the position.

A key characterization of random rough surfaces is the height distribution function,

P1 (h). The term P1 (h)dh is the probability of a surface height fluctuation between h and

h + dh at any point on the surface. Among many possible distributions, the most commonly

used one is the Gaussian distribution [107, 99]

1 h
P,(h) = exp(- 2 (9.1)

where Y is the standard deviation. It describes the fluctuations of surface heights around an

average surface height.

The height distribution function only describes the statistical properties of a random

rough surface at individual points, it does not reflect the connection between random
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heights at different points. So we also need a joint distribution probability density function.

The commonly used one is the Gaussian joint distribution defined as [74]

h 2-2C(iI, 2)h1h2+h 2

22' e,2) = 2(2(1-C (1 , 2)2 ) , (9.2)P2(h~h2;I,' 27Co.21 -_ C(11,72)2

where C('ri, r2) is the auto-correlation function. We assume the random rough surface is

translation invariant, i.e.,

,)= C( 1 - ,21) = C(4). (9.3)

The most commonly used auto-correlation function is the Gaussian correlation function

[107, 99]

C(4) =exp(- 420 (9.4)

and the exponential correlation function

C(4) =exp(- ) (9.5)

where r is correlation length, defined as the value of 4 at which

1
C(f) =- (9.6)

e

where e is Euler constant. Gaussian correlation function in (9.4) satisfies e(O) = 0, which

means that the surface points very close to each other are almost fully correlated and hence

the surface profile, when zoomed in, is smooth. On the other hand, e(0) # 0 holds for the

exponential correlation function in (9.5). This implies that the surface profile behaves like

a fractal, i.e., it stays rough no matter how close the surface is zoomed in. This is obviously

not physical. Therefore, we believe that Gaussian correlation function is better suited in

modeling real rough surfaces. Hence it will be used throughout this dissertation.

The height fluctuation defined by (9.1), (9.2) and (9.3) is a stationary Gaussian stochas-

tic process [74]. From above description it is clear that this stochastic process is uniquely

94



determined by two parameters: the standard deviation a and the correlation length fl. Fig-

ure 9-1 shows a random surface profile generated from a stationary Gaussian stochastic

process with the Gaussian correlation function in (9.4), where a = f= 0.05mm.

Here we want to emphasize that the stochastic integral equation (SIE) method devel-

oped in this dissertation is not tied to the specific mathematical model for rough surface. A

different model for rough surface simply means that different probability density functions

like the ones in (9.1) and (9.2) will be used in calculating the ensemble average Green's

function. But the basic elements of the SIE method remain the same. Likewise, different

rough surface models can be used for different sides of the same conductor.

In order to facilitate the development of the Stochastic Integral Equation (SIE) method

and to reduce the CPU time, we have made two assumptions about the rough surface mod-

els:

1. Rough surfaces have no over-hang

Considering the origin of the surface roughness, it is without loss of generality to

assume that the surface height fluctuation is always perpendicular to the nominal

smooth surface, as shown in figure 9-1. In other words, the surface height fluctuation

as a function of the location on the nominal smooth surface is always a single-valued

function.

2. Small correlation length

We assume that the correlation between height fluctuation at two points on the same

rough surface decreases quickly with the increase of the distance between these two

points. In the case where the rough surfaces are modeled by stationary stochastic

processes, this assumption means that the correlation length 11 in (9.6) is relatively

small compare to the feature size of the conductors. We believe that this assump-

tion is reasonable for realistic rough surfaces. Hence the algorithm based on this

assumption should be useful for practical applications.
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Chapter 10

Stochastic Integral Equation Method

For the sake of clarity, we use a simple 2D capacitance problem, a single conductor over a

ground plane, to explain the basic ideas of the stochastic integral equation method. As will

be made clear, this method can be readily extended to the multiple conductor case as well

as to the 3D capacitance problems with little modification.

Figure 10-1 shows one conductor over an infinite ground plane, where the conductor

is denoted as D1 and the ground plane is denoted as Do. Without loss of generality, we

assume that the side walls of conductor DI (denoted as Si and S3) are smooth, only the top

and the bottom surfaces (denoted as S2 and S4) are rough. The position of the points on the

top and the bottom surfaces are defined by

{ yI(x)=b+hi(x) (x,y(x))ES2 (10.1)
y2(x) = a + h2(x) (x, y2(x)) G S4

where hi (x) and hi (x) are two independent surface height fluctuation functions with statis-

tical characteristics defined by (9.1), (9.2) and (9.3), and with profiles like the one shown

in figure 9-1, and a and b are the nominal position of the top and the bottom surface, re-

spectively, as shown in figure 10-1. To facilitate the explanation in the following sections,

we also define the smooth nominal surfaces S2 and S4 for rough surfaces S2 and S4 as

{(x,y) E 9210 < x < c,y = b} and {(x,y) E S4 10 < x < c,y = a}, respectively.
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Figure 10-1: One conductor over a ground plane. The top and the bottom surfaces are
rough.

10.1 Description of 2D capacitance problem

The 2D capacitance can be calculated by solving a 2D exterior Laplace problem defined as

(X + ' )$(x, y) = 0 (x, y) E D

$(xy)=V (x,y)EaDi i=0,1 (10.2)

$ (x, Y) = 0 (x, y) -+ <x>

where D denotes the region outside of conductors, 3Di refers to the surface of Di and V

is the given voltage on aDi. To compute capacitance, we set VI = 1 and Vo = 0. Equation

(10.2) can be converted to the equivalent integral equation [71]

/ dl(x', y') ' G(x',y';x,y) Vi = 1, (x,y) E D, (10.3)
aDi E 0

where
X1) xx|+ (y-y")2

G(x',y';x,y) = n (10.4)
27c X -xe)2 + (y -y')2

and (x",y") is the image of (x',y') with respect to the ground plane. Here we have used

the image theory ([81], pp. 48) to take into account the effect of ground plane. So in

our calculation, we only need to discretize conductor surface aDi. It should be noted that

with the Green's function in (10.4) the boundary conditions at infinity and on the ground

plane are satisfied automatically. Using the fact that the rough surface height is a function

of position, and combining that with the standard change of variable identity for integrals
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yields

P(XI = 'ly!) G(x' = O,y';x,y)dy'

c 1+ ( x')2P(',y1(x') ) G(xyI(.x'); x, y) dx'
JaX £-0

ba
P = Cy') G(x =c,y;x, y) dy'

F-0

c 1 +( dy2 (x') )2 PG(X ',) G y(xY2 (x'); x, y)dx'

(x,y) E aD1,

+

+

+

=-1

(10.5)

where the first and the third terms are associated with the two smooth sides and the second

and the fourth terms are associated with the rough top and bottom (see figure 10-1). Now

define

(X',y'
p(x',y'), (x',y') E S,3

1+ (dY())2p(X, y 1(x'))

1 (dY'j))2p (X, y 2 (X)),

{dy',
dl(x',y') =

{

(10.6)(x',y') C S2

(X, y/) E 94,

(x',y') C 92,94

(x',y') E S,31

G(x', y';x, y),

G(x', y (x');x,;

G(x',Y2 (X);x,'

(10.7)

(10.8)

(x',y') E SiS 3

V), (x', y') C 92

y), (4,Y') E 94,

then equation (10.5) can be written as

(x, y) E aD1,f D O1 (x y;xy)dI(x',y) = 1 (10.9)

where abi is the nominal smooth surface. It should be pointed out that with the change of

variable defined in (10.6) and (10.7), the unknown charge P is define on the nominal smooth

surface abi and the integral domain of equation (10.9) becomes abi. This makes it much
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easier to use the standard definition of stochastic integral [74] in the following sections. 1

In view of (10.6) and (10.7), the self capacitance is

C= p(x',y')dl(x',y') = j P(x',y')dt(x', y'). (10.10)
JaD I x l l x l a DI

It should be noted that the charge density distribution is a nonlinear function of the surface

point location, as shown in (10.3). This implies that the capacitance is also a nonlinear

function of the surface point location. Hence the mean capacitance is not equal to the

capacitance for the conductor with a nominal smooth surface. This should not be surprising

because the rough surface conductor's surface area is larger. As shown in [75] as well as in

our numerical result section, this difference is not negligible.

10.2 Basic ideas

Instead of solving equation (10.9) for many statistically independent realizations of the

rough surface and taking the ensemble average of charge density, we derive the integral

equation for the mean charge density directly. By solving this stochastic integral equation,

we can easily calculate the mean capacitance.

Taking the ensemble average on both sides of equation (10.9) yields

f dl(x',y') < /(x', y';x, y) >= 1, (x,y) E ab (10.11)
J3D 1 E

where

O(x',y';x, y), (x, y) E SI,S3

(x', y';x, y) = d(x',y';x, y(x)), (xy) E S2  (10.12)

b(x',y';x,y2(x)), (x,y) C 94,

and the angle brackets <> stand for ensemble average. Assuming that the charge den-

sity distribution is uncorrelated to Green's function, as is done in [101], equation (10.11)

1The stochastic processes y1 (x') and y2(x') in (10.6) are differentiable because the autocorrelation of hi (x)
and h2 (x) in (10.1), which is defined in (9.4), has derivative of order up to at least two [74].
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becomes

/f - px,'d(x', y)' 1 1) >< G(x',y';x,y) >= 1, (x, y) E b.(10.13)

In section 10.6 we will explain the significance of this uncorrelatedness assumption and

show that there is a way to compensate for the error introduced by this approximation. In

view of (10.10) the mean self capacitance is

< C >= f d[(x', y') < P(x', y') > . (10.14)

It is clear that < P(x',y') > is exactly what we want to compute, and it is treated as the

unknown variable.

It should be noted that the surface roughness is not explicit in the ensemble average

Green's function any more, hence only the smooth reference surface abI needs to be dis-

cretized and only one solve is needed to obtain the mean charge density. Equation (10.13)

can be solved numerically using the standard methods [35].

10.3 Discretization of stochastic integral equation

We use piecewise constant basis function and the Galerkin method to discretize equation

(10.13). The centroid collocation method can be regarded as a special case of Galerkin

method with one quadrature point for the testing integral [35]. The discretized system for

(10.13) is

[A] < p >= L, (10.15)

where

Akj dI(x, y) j dI(x', y') < (x', y';x, y) >, (10.16)
Ak Aj

Ik=J dl(x, y), (10.17)

< W(x',y';x,y) > is in one of the forms shown in appendix A, and ak and a are the k-th

and the j-th panel on the nominal smooth surface. Here a few representative forms, namely,
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KI(x', y';x,y), K2 (x', b;x, y), K6 (x', b;x, b) and K8 (x', a;x, b) are used to show how the panel

integration with the ensemble average Green's function is computed.

Substituting (A.1) into (10.16) and considering (10.7), we obtain

kjdy dyK(x',y';x, y)
Ak k fj

(10.18)_k dy dy'G(x'y ';xly),

where x' = 0 or x' = c, and x = 0 or x = c. Substituting (A.2) into (10.16) and considering

(10.7), we obtain

Ak,j = dy dx'K2 (x',b;x, y)
kIAj

= dy fdx' dhIPI(hl)G(x',b
Ak a J

= dhIP1 (hI)/ dy dx'G(x',b

where x = 0 or x = c. Substitution of (A.7) into (10.16) leads to

Ak,j= J dx j dx'K6(x',a;x,b)

+-hl;x,y)

+-hi;x,y) (10.19)

S+00

= _Ik' dx' I dh1 P1 (hI)
Ak &j -o

/ dhlP1(h1)f -

dh2P (h2 )G(x', a + hl;x, b + h2 )

dh2 P1(h2 )J dxJ dx'G(x',a+h 1 ;x,b+h 2 ).
IAk Aj

(10.20)

Substitution of (A.9) into (10.16) leads to

= dx I dx' dhi dh2P(h1,h2;xx)G(x',b+ h 1;x,b-+ h2 )

J~ ' dhi dh2P2 (hih 2;j,xk)J dx J dx'G(x', b + h1;x, b + h2 ),

where (xj, b) and (xk, b) are respectively the centroid of the j-th and the k-th panel on S2.

Since the correlation coefficient (9.3) is a function of the distance between evaluation point
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and source point, P2 (hi, h2 ; x',x) should be a function x' and x. Hence strictly speaking,

one can not interchange the integration order of the ensemble average integral and panel

integrals. Hence the last approximate equality in (10.21) deserves some explanation.

It is clear from (9.3) and (9.4) that C(lx' - xj) < 0.001 when Jx' - xj > 31j. Therefore,

in view of (9.2), when the distance between the j-th panel and the k-th panel is bigger than

31j, we have

P2(hi, h2;x',x) ~ P1(hi)P(h2). (10.22)

Hence the right-hand side of the second equal sign in (10.21) is almost same as the right-

hand side of the second equal sign in (10.20), and approximation in the last equality of

(10.21) introduces very little error. Fortunately, the distance between most panels is bigger

than 3rj. When Jx' - xj < 3, the approximation introduced in the last equal sign of (10.21)

becomes questionable. However, using P2 (h1, h2;x',x) ~i P2(hi, h2;xj,xk) in (10.21) is tan-

tamount to using a staircase piecewise constant function C( xj - xk ) with a step size equal

to the j-th panel size along x' and a step size equal to the k-th panel size along x to approx-

imate the continuous correlation function C( x' - xJ) for x' C panelj and x C panelk. This

is certainly acceptable when the j-th and the k-th panel are small. As a rule-of-thumb, the

panel size should be smaller than half of the correlation length T1.

We use the standard Gauss Hermite quadrature to calculate the outer ensemble average

integral in (10.19), (10.20) and (10.21) and the standard Gauss Legendre quadrature to

compute the integral over the k-th panel in (10.18), (10.19), (10.20) and (10.21) and use

the analytical formula in [109] to calculate the inner integral over the j-th panel. It should

be pointed out that the advantage of exchanging integration order in (10.19), (10.20) and

(10.21) is that the inner integral over the j-th panel with regular Green's function can be

computed efficiently using methods developed for panel integration in boundary element

method [109,41, 114].
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10.4 Conditioning of the system matrix

At first glance, the ensemble average Green's function seems to be less singular than the

original Green's function due to the ensemble average integral in G, as shown in appendix

A. Since the singularity of the Green's function is the key factor to keep the condition

number of the system matrix from growing too fast with the refinement of the mesh [12],

one might think the conditioning of the system matrix of the stochastic integral equation

is worse than that of the corresponding smooth surface system matrix. In this section

we show that the diagonal elements of the system matrix for both the stochastic integral

equation and the regular integral equation are approximately equal. This implies that the

order of the singularity of the ensemble average Green's function is the same as that of the

original Green's function.

The diagonal elements in the system matrix is expressed as (10.18) or (10.21), where

k = j. Since the panel integration in (10.18) is the same for both the ensemble average

Green's function and the regular Green's function, the diagonal elements are obviously the

same when both the source panel and the evaluation panel are on the smooth side walls S1

or S3. However, the panel integration in (10.21) is different from that of the smooth surface

problem. Since the source panel and the evaluation panel coincide, the two-dimensional

ensemble average integral in (10.21) degenerates to one-dimensional integral. Hence we

have

Ak,k = 'Ad dx'Kg(x',b;x,b)

J= dx 'f dhP1(h)G(x',b +h;x,b+h)

j dh P(h)J dxJ dx'G(x',b+h;xb+h)

J dh P(h) dxj dx'G(x',b;x,b)
a~ k AkJ

j dhP1(h) } ak dx J dx'G(x',b;x,b)

f dxI dx'G(x',b;x,b), (10.23)
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Figure 10-2: The condition number of the system matrix with different sizes, generated by
stochastic integral equation method and the regular integral equation method

where the fourth equality is due to the translation invariance property of the Green's func-

tion and the last equality follows from the definition of probability distribution. Now we

have shown that the diagonal elements in the system matrix generated from either the

ensemble average Green's function or the regular Green's function on the smooth refer-

ence surface are approximately equal. Hence the singularity order of the ensemble average

Green's function is approximately the same as that of the Green's function for the corre-

sponding smooth surface problem. This implies that the condition number of the system

matrix generated by the stochastic integral equation method is no worse than that of the

system matrix for the corresponding smooth surface problem.

We use a simple numerical experiment to verify our reasoning. We use both the regular

integral equation method and the stochastic one to set up the system matrix for the 2D

capacitance problem of a single conductor over an infinite ground plane, as shown in figure

10-1. The condition number of the two system matrices is compared in figure 10-2. It is

clear that the two matrices have roughly the same condition number for different matrix

sizes.
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10.5 Translation invariance of the ensemble average Green's

function

An important property of the regular Green's functions for the capacitance extraction prob-

lems or the impedance extraction problems is that they are translation invariant. This makes

it possible to use FFT-based methods like the Precorrected-FFT method [80, 115] to accel-

erate the time-consuming matrix vector products in an iterative linear system solver. In this

section we show that the ensemble average does not change this property. Though we only

use the Green's function for 2D capacitance problems to illustrate this, the extension to the

Green's functions for 3D capacitance problems or impedance problems is straightforward.

We first want to establish that the various forms in appendix A can be written in more

compact forms. As mentioned in chapter 9, we asume that the rough surfaces have no over-

hang, i.e., the surface height fluctuation is either along x direction or along y direction, but

not along both directions. Denote the mean position of the source point and the evaluation

point on the nominal smooth surface as (x', y') and (xo, yo), we have four possible forms

for the ensemble average Green's function:

dh dh2P2 (h1,h 2 ;y,yo)G(x'O+h1,y';xo+h 2 ,yO)

k2 (x', y'O; xO, Yo)

] dh] dh2P2 (h1,h 2 ;y'IxO)G(x' +h1,y';x,yo+h 2)

K3 (x0, y'xO, YO)

k4 (X22, Y2G; xo, YO)

J00 dhlj+00dh2P2(h1, h2 ; X', xo) G(x', y' +h1; xo, yo +h2)

(10.24)

(10.25)

(10.26)
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(10.27)

If the source point and the evaluation point are on different rough surfaces, then the corre-

lation coefficient in (9.3) is zero. Since the source point and the evaluation point in (10.25)

and (10.26) are randomly perturbed along different directions, they can not be on the same

rough surface, due to our initial assumption. Hence these two equations can be simplified

as

k 2 (xO, YO; xo, Yo)

dhiP(hi) dh2P1(h2)G(x'o+hi,y'o;xo,yo+h 2)

(10.28)

k 3(xOyO; xoYo)

= dhiP(h) P dhP1(h)G(x'O,y'+h;xo+h2 ,yo).

(10.29)

It should be noted that if a rough surface degenerates to a smooth surface then the corre-

sponding roughness distribution becomes Pi (h) = 6(h), where h is either hi or h2 and the

corresponding ensemble average integral becomes the evaluation of the integrand at h = 0.

It can be checked that kernel in (A.1) is a special case of (10.24), kernels in (A.2) and (A.3)

are special cases of (10.29), kernels in (A.4) and (A.5) are special cases of (10.28), and

kernels in (A.7)-(A.10) are special cases of (10.27).

Now we have shown that all nine cases in appendix A can be written in one of the four

compact forms in (10.24), (10.28), (10.29) and (10.27). Since the original Green's function

is translation invariant, and the joint distribution P2 (h1 , h2 ;',xo) and P2 (h1 , h2 ;y',yo) in

(10.24) and (10.27) are also translation invariant in terms of (xOxo) and (y',yo), respec-

tively, the translation invariance of ki(i = 1, 2,3,4) in (10.24), (10.28), (10.29) and (10.27)

easily follows. Hence the ensemble average Green's function is translation invariant.

It should be noted that the compact forms in (10.24), (10.28), (10.29) and (10.27) also

cover the cases where all four sides of a conductor are rough. Hence the conclusion made

in this section is rather general. In addition, to get these general forms for 3D cases, we just
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need to replace x and y in (10.24), (10.28), (10.29) and (10.27) with normal and tangent

direction variable in the local coordinate system on 3D surface. The key is to make sure

that the height fluctuation is along the direction normal to the 3D surface. Hence it is

rather straightforward to extend the ensemble average Green's function and the Stochastic

Integral Equation method to 3D cases.

10.6 Second order correction to the uncorrelatedness as-

sumption

In this section we show that the solution of (10.15) is only a zero-th order approximation

to the correct mean charge density. Hence we will call it < P(O) > in the remaining part of

the paper and we have

< P(O) >=A- L. (10.30)

As shown in appendix B, the discretization of (10.9) on each realization of the rough surface

results in

[A]p =-2 (10.31)

or equivalently,

AP = ( +A - A)P = A[I +- (A - A)]P = L. (10.32)

Therefore,

P = [I+A-'(A -A)]-i'A-'L. (10.33)

Using the Taylor expansion in (10.33) and in view of (10.30), we obtain

[ I - A- 1 (A - A) + A- 1 (A - A)A - (A - A)] < P(O)>

= p- ) + (l) + (2) (10.34)

where

P(O) =< P(O) >, (10.35)
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PMi -- -A-' (A - A) < p (D) >, (10.36)

and

p(2) -A-1(A-A )A-1(A-A) < P(0) >. (10.37)

The approximation in (10.34) is due to the truncated Taylor expansion and the leading term

in the truncation error is a third order term

p(3) _ A-1((A -A)A-1) 2(A-A) < (O) >. (10.38)

Take the ensemble average on both side of (10.34), we obtain

< p > < p(O) > + < p(2) >, (10.39)

where the elimination of the term < p) > is due to

< PM >- -A-' < (A -A) >< P(0) >= 0. (10.40)

Now it is clear that the uncorrelatedness assumption in section 10.2 only gives us the zero-

th order term < P(0) > in (10.39). Hence its accuracy depends largely on the size of the

deviation of each matrix A from A. In other words, it depends on the magnitude of the

surface roughness. 2 In the numerical result section we show that this is indeed the case

and that the second order correction term improves the accuracy significantly.

The difficulty in (10.39) is that in order to obtain the correction term < p(2) > we need

2One slightly different perspective is as the following. Similar as in (10.32), we have

A =A +A- A= A[I +A-'(A- A)]. (10.41)

Taking matrix inverse on both sides, using the same Taylor expansion in (10.34) and then taking the ensemble
average on both sides, we obtain

<A-' >~ A- 1 + - < (A - A)A- (A - A) > (10.42)

Therefore, the uncorrelatedness assumption in section 10.2 is equivalent to assuming < A- 1 >~ A-, =<
A > -1, which is certainly questionable when the deviation of each matrix A from A is large.
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to compute < (A - A)i- 1(A - A) >. In the following, we will use the Kronecker product

0 and its properties defined in appendix C to show that it can be computed efficiently.

As explained in section 10.1 and 10.2 both < P > and < P(O) > are defined on the

smooth reference surface. In view of (10.39), the average capacitance is

<C> L <p>~IT(<p(0)>+<p(2

= <C) >+<C(2) >. (10.43)

where

< C(2) > T < p(2) >

= LTA < (A -A)A- (A -A) >A'L

~< p(O) >T< EA- E >< P(O) > (10.44)

and

E = A -A. (10.45)

The last approximate equality in (10.44) would be exact if AT - A, i.e., if the Galerkin

method is used to generate A. If the collocation method is used, then some error is intro-

duced. But numerical experience shows that this is usually not very significant. In view of

the identities in appendix C, (10.44) can be writen as

< C(2) > < (pO) >TrE)A--1(E < P(O) >) >

=< (< p(O) >T E T) & (< p(O) > T E) > vec(A-1)

=(< P(O) > T (g < p(O) >T) < E T(9E > vec(A- 1)

(vec(B)) vec(A) trace (A B). (10.46)

where

vec(B)= [(< p(O) >T (& () > T) < E T OE >] T
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= <E&E T> (< p(O)> 0< p(O) >

= [F](< P10) > 0 < P 10) >) (10.47)

E11ET E12E T ... ElNE T

E 2 1ET E 22 ET ... E 2NET
F = [F"]NXN < (10.48)

ENlET EN2 ET ... ENNET

F' = <EijEmn>

= <(Aij- Aij)(Amn- mn)>

< AijAmn > -AijAmn. (10.49)

For the definition of vec operator, see (C.2) in appendix C. In equation (10.46), the second

equality is due to (C.6), the third equality is due to (C.3) and the last equality is due to

(C.8).

10.7 Variance of capacitance

The algorithm in previous sections only gives us the mean capacitance. In this section we

show that the variance of the capacitance can be calculated by using the same basic ideas

and the same ensemble average Green's function. More importantly, we show that no extra

computation work is necessary to obtain the approximate value of the capacitance variance

if the second-order correction in section 10.6 has already been used to calculate the mean

capacitance.

In view of (10.10), we have

c2 = dI(x,y)P(x,y)f, d[(x',y')P(x',y')

I dI(x, y) dl(.x',y') P(x, y) P(x', y')
J 3D1  J 3D 1
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(10.50)

and hence

< C2 >= dT (x, y) f d(x', y')
Ja DiD

The variance of the capacitance is

Var{C} =< C2 > - < C > 2 .

If the discretization scheme in section 10.3 is used, (10.51) becomes

2<C >

< PIP > < PIP2 >

~ T < P2P > < P22 >

<PNP> < PNP2 >

= T < ppI > L,

< P1PN >

< P2PN >

< PNPN >

(10.51)

(10.52)

L

(10.53)

where N is the number of panels on the conductor surface aZDI. Substitution of (10.34) into

(10.53) results in

< C2 >

N 1 N 2

ETr < (i) (p(j))rT > z,

i=0 j=0

(10.54)

where N1 < 2 and N2 < 2. In view of (10.43), we have

<C >2
N1 N 2

~< C(i) >< CO)
i=Oj=O

< CM > 0. (10.55)

It is well-known that the accuracy of the double Taylor expansion in (10.54) and (10.55)

depends not just on NI + N2 , but also on if all the terms with order below NJ + N2 are

included. 3 In the following, we discuss various options and their effect on the accuracy of

3Suppose we have two polynomials p1(x) = I+x+x2 +x 3 and P2(Y) =1 +y +±y 2 +y 3, then p(x,y) =
p1 (x)p2 (y) = 1I + (x + y) + (xy +x 2 + y2 ) + (x2y +xy 2 +x 3 + y3) + (xy3 +x 3y +x 2 2) + (x2y 3 +x 3y2). i we
truncate p(x,y) up to the third order terms, then we have pi(x,y) = 1 + (x + y) + (xy + x 2 + y 2) + (x2y + xy 2 +
X +y 3) and the truncation error is in the fourth order. However, if we truncate p1(x) and P2(Y) to the second
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Var{C}. To maitain the same order in truncation error, we use the same NI + N2 in (10.54)

and (10.55).

1. Ni +N 2 = 0 in (10.54) and (10.55)

< C2 L (O)(p) T> =<C(O) 2

Var{C} =< C2 > - < C(O) >2~< C(O) >2 - < C(0 ) >2= 0.

(10.56)

(10.57)

This obviously unreasonable result suggests that keeping just the zero-th order term

in (10.54) is inadequate for capacitance variance calculation. This is consistent with

the observation made after (10.39).

2. NI +N 2 = 1 in (10.54) and (10.55)

< C2 > Ly T(< p(O) >< (O) >T) >

+ < PQI) >< p(O) >T )L

= L T < p(O) >< p(O) >TL -=< C(O) >2, (10.58)

where the second equal sign is due to (10.40). So we have

Var{C} =< C2 > - < C(0 ) >2~< C(O) >2 - < C(0 ) >2= 0. (10.59)

Same as before, this result is not acceptable.

3. NI +N 2 = 2 in (10.54) and (10.55)

< C2 > L T7 <P(O) > (< p(O)) > T + < p U) >T + < p(2) >T )L

+ T(< pU() >< p(O) >T + < p()(p(I()T >)L

+T < 0(2 ) >< p(O) >T L

order, then we have P(x, y) =-1 + (x + y) + (xy + X2 + y 2 ) + (x2y + xy2 ). Notice that the two terms X3 and y 3

are missing in P(x,y), comparing to j3(x,y). This suggests that truncation error in P(x,y) is in the third order,
one order lower than that of f(x,y).
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=< C(0) ><C >+L T < phl)( pU ))T > L.

+ < C(2) >< C(0) >, (10.60)

where the second equal sign is due to (10.40) and we have also used (10.43). So we

have

Var{C} < C2 > - < C >2

LT < p (1))T > (10.61)

4. N, +N 2 = 3 in (10.54) and (10.55) It is clear that the term < p(O) (3))r > and

< p(3)(O))T > are missing in (10.54) and the term < C(0) >< C(3) > is missing in

(10.55). Hence the accuracy is not necessarily better than (10.61).

5. N1 + N2 = 4 in (10.54) and (10.55) It is clear that the term < p(>) (3))>

P (0)(4))T > < p(>),(3)) < (3)())T > and < p(4)(p))T > are missing

in (10.54) and the terms < C(0 ) >< C(3) >, < C(O) >< C(4) > and < C() >< C(3) >

are missing in (10.55). Hence the accuracy is not necessarily better than (10.61).

Based upon the above discussion, we will use the scheme in (10.61) to calculate the ca-

pacitance variance. Hence we just need to focus on the calculation of the term LT <

(p(1))T > L.

In view of (10.30), (10.36) and (10.45), we have

Lr p(l) (1))T > L

< (< p(O) >T E < P(O) >)(< P(O) >T ET < p(O) >) >

= <(< p(O)>T E< P(O) ) 9(<P(O) > TE T< P(O) >

=(< p(O) >T (g < p(O) >T) <EE ET > (< P(O) > (3 < P(O) >)

~(vec(B) )T(< p(O)> 0< P(O) >

= (< p(O) > & < p(O) >)T vec(B)

= (< p(O) >T ® < p(O) >T)vec(B)

= < P(O) >rT B < P(O) > (10.62)
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where the second equality is due to (C.6), the third equality is due to (C.3), the fourth

equality is due to (10.47), the sixth equality is due to (C.4), and the last equality is due to

(C.6). It should be pointed out again that the two approximate equality in (10.62) would be

exact if AT A and E T E, i.e., if the Galerkin method is used. Similar to the calculation

of < C( > in (10.46), everything boils down to the calculation of vec(B). Hence no extra

computation work is necessary to obtain the approximate value of the capacitance variance

once we have used the second-order correction scheme in section 10.6 to calculate the mean

capacitance.
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Chapter 11

Matrix Sparsification

It is obvious that matrix F in (10.48) has O(N 4 ) entries, where N is the number of panels

used to discretize the nominal smooth surface. Hence direct calculation of matrix B in

(10.46) and subsequent < C(2) > in (10.46) and Var{C} in (10.61) needs O(N 4 ) work. This

makes it very time-consuming to use the stochastic IE method in chapter 10 to analyze even

a simple 2D structure.

In order to reduce the CPU time, we exploit the small correlation length assumption

made in chapter 9. In this chapter, we first show that matrix F can be approximated by

a sparse matrix with O(N 3) entries. We then show that the sparsification techniques in

[54, 52, 33, 34] can be used to obtain a data-sparse representation of the matrices B and

A-' in (10.46) in O(Nlog 2N) time. These sparse representations are then used to compute

trace(A-T B) in (10.46) and < P(O) >T B < P(O) > in (10.62) in O(NlogN) time. Therefore

the overall cost of computing < C(2) > in (10.46) and Var{C} in (10.61) are substantially

reduced from O(N 4 ) to O(Nlog 2N).

11.1 Sparsification of the matrix F

As mentioned in section 10.5, without loss of generality we can assume that the surface

height fluctuation is either along x direction or along y direction, but not along both direc-

tions. Hence the surface roughness can show up in the Green's function in four different

forms, as shown in equation (10.24)-(10.27). There are four panels involved in the expres-
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sion for F,,, in (10.49). Here we focus on the case where these panels are all on the same

rough side S2 in figure 10-1, i.e., the height fluctuation of all four panels is along y direction

and their nominal position is the same. Other cases can be treated similarly.

In view of (B.5), the system matrix entry Aij and Amn are

Aij dl(x,y) J dl(x',y')G(x',y';x,y)

= J dxif dxjG(xj,b+hj;xi,b+hi)
&~i jf

and

Amn = f dl(x,y) Jdl(x',y')G(x',y';x,y)
= _ dxmf dxnG(xn,b+hn;xm,b-hm)

amn an n (11.2)

(11.1)

where hi,hj,hm and hn are the height fluctuation of panel i,j,m and n. I The second equality

in (11.1) and (11.2) is due to (10.7), (10.8) and (10.12). Hence we have

< AijAmn > = Jdxi f
A j

f/+

dxj f dxm f dxn
in a n

dhi dhj dhm

P4 (hi, hj, hm, hn;xi,xj,xm,xn)

G(xj, b + hj;xi, b + hi)G(xn, b + hn;xm, b + hm)

dhij dhj dhm dhn

(11.3)

where (i, b),(j, b), (m, b), (n, b) are the centroids of panel i,j,m and n. The approximate

equality is due to the change of order in panel integration and ensemble average integration,

1Here we use piecewise constant shape function to approximate the rough surface profile. The piecewise
linear or rooftop shape function can also be used. But since each linear shape function involves two random
variables (height fluctuation of the two ends of the panel), the ensemble average in (11.3) will involve an eight-
fold integral in the worst-case scenario, i.e., when all four panels are different. This would be computationally
too expensive.
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same as in (10.21). The multiple dimension joint Gaussian distribution function P4 is

1
P4 (hi, hj, hm, hn;Xi,Xj, mXn) - exp(

where a is the standard deviation,

[D] C(|2; -zi 1)
C(|Im -i 1)

C(|Fn - zi)

hm

hn

1 C(|2j - m|)

C |ii -In|1

C(|i 1 - In|)

1 C(|Im -n|)

1

and d4 = det(D). The entries in [D] are the correlation coefficient defined in (9.4).

To facilitate the following discussion, we define respectively set near(i) and far(i) as

near(i) ={panelkI Xi -X-kI < 31} (11.7)

far(i) = {panelk XIi - XI I > 3j} (11.8)

where i and xk are respectively the centroids of panel i and k, and ri is the correlation

length. It is straightforward to show that

j E near(i) - i E near(j) (11.9)

and

i C far(i) -> i C far(j) (11.10)
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C(P i- jl) C(P i--W)
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In addition, it is also easy to show that

n E near(j), i E far(j) # i E far(n) (11.11)

is almost always true.

Equation (9.4) suggests that the correlation coefficient drops exponentially fast with the

distance between panels, i.e.

j c far{i} 4 1xi - xjl I> 31

(11.12)

Therefore, if

m E far{i}

n E far{i}

m C far{j}

m C far{j}

(11.13)

then

C(|Xi - )i ~0

C(|Xi - n ~ 0

C(|2; - Xm| ~) 0

C( Ijj- -iCn|1)~ 0

(11.14)

and matrix D becomes

C(|zi - }I

0-xI) 1

0 0

0 0 C(|2n -- m1)

0

0

0

0

- D
(11.15)
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In this case it is straightforward to show that

P4(hi, hj,hm, hn;, i,-j, min) ~ P2(hi, hj;.jiI )P2(hm, hn;imin) 1.6

where the joint distribution function P2 is defined in (9.2). In view of (11.3), we have

< AijAmn >-- AijAmn and hence F"'n _ 0 immediately follows from (10.49). It should be

pointed out that (11.14) would be exact if panel pair i and j and panel pair m and n are

on different side of the same conductor surface or on different conductor surfaces. For

structures with multiple conductors, this is expected to be the majority case. Hence the

error introduced by this scheme is quite insignificant.

We assume that a rough surface segment of 311 long contains at most p panels. Since

fl is independent of the total number of panels, so is p. The approximation in (11.13)-

(11.15) implies that there are at most 4p +2 non-zero rows and columns in each sparsified

Fi. A typical sparsity pattern of the sparsified matrix Fi is shown in figure 11-1, where it

is assumed that the indexes of the spatially close panels are also close to each other. The

natural panel ordering for 2D structures always satisfies this. However, a panel ordering for

3D surfaces may not. But this does not change the fact that matrix F"i can be approximated

by a sparse matrix. Now it is clear that the sparsified matrix Fi" has O(N) non-zero entries

and the total number of non-zero entries in the sparsified matrix F is O(N 3 ).

11.2 Characteristics of matrix F and matrix B

Since the sparsified matrix F has O(N 3 ) entries, direct computing vec(B) or matrix B in

(10.46) still needs O(N 3 ) operations. In this section we conduct a detailed analysis of the

characteristics of matrix F and B, and show that matrix B is hierarchically low rank. This

makes it possible to use an idea similar to the hierarchical SVD in [54, 52] and the so-call

hierarchical matrix (H-matrix) in [33, 34, 5] to construct a sparse representation of matrix

B.
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00000 +++ ++
00000 ...

0 000 5 +234

00000 +

00000 ...

2000000 ...

00000 ...

25- 00000...

3000000 + +

00000000000000000000 0000000

00000 + +

4500000...

50- 00000...
0 5 001 0 15 20 2 .3.5. 0 45 5

00z0 ++900

Figure 11-1: Typical sparsity pattern of the sparsified matrix F". Here the total number of
panels is 50, i= 34 and j = 14, and a rough surface segment of 3'ri long contains p= 2
panels. The nonzero entries are categorized into three regiones marked by + (region I), o
(region II) and * (region III), respectively.

11.2.1 Characteristics of matrix F

The nonzero entries in figure 11-1 are categorized into three regions marked by + (region

I), o (region II) and * (region III), respectively. In view of (11.13), the row and column

index pair (in, n) in region I, II and III of matrix F" satisfies

1. Region I: { in E near(i) and n E far(j) } or { in E far(j) and n E near(i) }

2. Region II: { in E near(j) and n E far(i) } or { in E far(i) and n E near(j) }

3. Region III: { in E near(j) and n E near(i) } or { in E near(i) and n E near(j) }

For a fixed panel i, it is obvious that most other panels belong to the set far(i). Using

property (11.10) and (11.11), one can show that the regions I and II in the majority of the

matrices F" satisfy

1. Region I: j E far(i), j E far(in) and j E far(n)

2. Region II: i E far(j), i E far(in) and i E far(n)
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Following the same reasoning from (11.13)-(11.16), we immediately obtain

(11.17)

in region I, and

(11.18)

in region II, where the definition of the joint distribution function P3 is similar to that of

the function P4 in (11.4). Substituting (11.17) and (11.18) into (11.3) and (10.49) results in

Fmln ~jdhjP1(hj)

dhij /+ dhm dhn

P3 (hi,hm, hn; i, m,tn)AijAmn -AijAmn

for the entries in region I and

Fli ~j

/100, J

(11.19)

dhi (hi)

dhj dhm dhn

P3(hj,hm,hn; j, m,5n)AijAmn - AiAmn

for the entries in region II, respectively.

In view of (10.47) and (10.48), each column in matrix B is

N

bi = F (0< ) >< P (0)
j=1

I fit

(11.20)

i 2
... fiN () >

(11.21)

where

j = 1, 2,- --,N.
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(11.22)

P4 (hi, hj, hm, hn; -i 7i 7 -m,4n) ~- P3 (hi, hm, hnii, Jm 74) Pi (hj)

P4 (hi, hj, hm, hn;, i,ij, m,4n) ~- P3 (hj, hm, hn; i, -m,n) Pi (hi)

=[M ]) < p(O) >

fi. F P () >,



Let

Fi = H, +Hj +H (11.23)

where the entries in the sparse matrices H", H" and H" belong to region I, II and III in the

figure 11-1, respectively, we have

fi= -(H"+H' +H <(0)> = ff+f. (11.24)

Since matrix H3' is very sparse and its entries are usually one to two order of magnitude

smaller than those of H and H2, we neglect its contribution in the following analysis of

characteristics of matrix F. So we have

f J (H +H ) <1 (0) >=fi +f'. (11.25)

11.2.2 Characteristics of fj and ff1

Both region I and region II in figure 11-1 have two sub-regions, one is vertical and the

other is horizontal. These two sub-regions have different characteristics. Again, here we

only focus on matrix blocks F" with i E far(j), which account for the majority case.

1. Vertical sub-region of region I: m E far(i) and m E far(n)

Similar to (11.17), we immediately obtain

P3(hi, hm, hn; iim, in) ~ P2 (hihn;iin)Pi(hm). (11.26)

Substituting (11.26) into (11.19) and in view of (11.23), we obtain

H 1(mn) ~ dhjP(hj) dhmP(hm)

J dhi dhn

P2(hi, hn; Xi, Xn )Ai jAmn - Aij mn. (11.27 )
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In view of (11.24), we have

ff (m) ~

where

Vi =
nEnear{i}

+
dhjP (hj) dhmP (hm)

dhiAijV -AijVm,

dhnP2 (hi,hn;ii,in)Amn < P >

and

m =

n~near{i}

Zmn < P( > . (11.30)

The asymptotic behavior of Amn and Amn in terms of rmn, the distance between panel

m and panel n, is 1. Since n E near{i} in (11.29), the distance between panel n and

panel i is quite small, as shown in (11.7). For the purpose of asymptotic analysis,

these two panels can be considered as being overlapped. Therefore, the asymptotic

behavior of Vm' and Vm in terms of rmi is g. 2 This implies that asymptotic behavior

of f (m) in terms of rni is L. It is straightforward to show that the asymptotic

behavior of f'J (m) in terms of rij is the same as that of Aij and Aij, which is . The

degeneration in (11.17) and (11.26) also makes f (m) independent of rmj, as can be

easily checked from (11.28).

2. Horizontal sub-region of region I: n c far(i) and n E far(m) Similar to (11.17), we

immediately obtain

(11.31)

2The rapid variation in P2 (hi,h,;Xi,Z,1 ) has been absorbed into the summation in (11.29) and becomes
irrelevant.
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(11.29)

P3 (hi,1 hm,1 hn; i i im , n) ~ P2 (hi,1 hm; i XM) Pi (hn).



Substituting (11.31) into (11.19) and in view of (11.23), we obtain

H" (m,n) ~
dh3Pi (hj) j dhnP1(hn)

JdhJ dhm

P2(hi, hm; i,km)AijAmn - AijAmn.

In view of (11.24), we have

ff(m) ~ dhjP1 (hj) Jdhi dhm

P2(hi, hm; i, m)AijVm - AijVm,

N +00(0

Vm = dhnPi(hn)Amn < p >
n=1 -

and Vm is defined in (11.30). Similar to (11.28), the asymptotic behavior of fA (m)

in terms of rij is also 1. By definition, m C near{i} is always true in this sub-rij

region. So we can also treat panel m and panel i as being overlapped in the asymptotic

analysis. Therefore, the asymptotic behavior of f (m) in terms of rmj is Due to

P2 (hi, hm; i,im) in (11.33) and m E near{i} , f' (m) changes exponentially fast with

3. Vertical sub-region of region II: m E far(j) and m E far(n) Similar to (11.17), we

immediately obtain

(11.35)

Substituting (11.35) into (11.20) and in view of (11.23), we obtain

H7 (mn) ~ dhiP1 (hi)j
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(11.32)

where

(11.33)

(11.34)

dhmP1 (hm)

P3 (hj, hm,1 hn; i m~n) ~P2 (hj, hn; - ,I n)P(m.



P2(Jdh;f n

P2 (hj 1hn; -j,1 n)AijAmn - Aij mn.

In view of (11.24), we have

f2'(m) ~ j
11+0

h 1 ) (hi) dhmPi (hm)

dhjAijV/n -AijVm,

Vnn = I
nEnearfj}

dhnP2 (hj hn;xj, n)Amn < P( > . (11.38)

Equations (11.37) and (11.38) are dual to (11.28) and (11.29) in the sense that we

just need to switch from i to j. Hence following the same analysis for (11.28) and

(11.29) we conclude that the asymptotic behavior of f2' (m) in terms of rij and rmj is

1 and , respectively, and ff'(m) is not related to rmi.r rmj

4. Horizontal sub-region of region II: n E far(j)

Similar to (11.17), we immediately obtain

and n c far(m)

P3 (h, hm, hn;ij, (h, hm;I )P(h

Substituting (11.39) into (11.20) and in view of (11.23), we obtain

H' (m,n) ~ dhiP1(hi) f dhnP(hn

f +00 dhj 110 m

P2(hj,hm; jI)AijAmn - AijAmn.
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(11.37)

(11.39)

(11.40)



In view of (11.24), we have

f2"(m) J dhiP(hi)j dhj dhm

P2 (hj,hm; j, m)AijVm -AijVm. (11.41)

Equations (11.41) is dual to (11.33) in the sense that we just need to switch from i

to j. Hence following the same analysis for (11.33) we conclude that the asymptotic

behavior of ffj (m) in terms of rij and rmi is respectively 1 and 1, and f1 (m)
rj _ f2(M

changes exponentially fast with rmj.

11.2.3 M(') is hierarchically low-rank

In view of (11.21) and (11.25), it is clear that asymptotic behavior of Mmj in terms of rmj

is the same as that of f' (m) + fj (m). From the analysis for (11.28),(11.33),(11.37) and

(11.41), Mmj should behave asymptotically as 1, except for the case where m E near{j}.

Hence matrix M(i) is hierarchically low-rank, similar to a discretized integral operator with

kernel. To verify our analysis, we have done some numerical experiments on a 2D and a

3D structure.

2D examples: Circular Wire Over Ground The singular values of the 4 sub-blocks of

the matrix M(i) for the case of i = 1 and i 10 are shown in figures 11-2 and 11-3. It is

clear that both matrices are hierarchically low-rank.

3D examples: 1D bars We use two 1D bar in parallel as a simple example. Each bar

is divided along the length into 30 panels. The singular values of the 4 sub-blocks of the

matrix M(') and one of its sub-blocks, M , are shown in figures 11-4 and 11-5. Here we

randomly pick the case of i = 60. It is clear that matrix M(i) is hierarchically low-rank.
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Figure 11-2: Distribution of the singular values of the four sub-blocks of the matrix M(')
for i= 1, circular wire over ground plane.
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Figure 11-3: Distribution of the singular values of the four sub-blocks of the matrix M(')
for i = 10, circular wire over ground plane.
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Figure 11-4: Distribution of the singular values of the four sub-blocks of the matrix M(')
for i = 60, ID bars.
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Figure 11-5: Distribution of the singular values of the four sub-blocks of the matrix MW
for i= 60, ID bars.
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Figure 11-6: Distribution of the singular values of the four sub-blocks of the matrix B,
circular wire over ground plane.

11.2.4 B is low-rank

In view of (11.21) and (11.25), it is clear that the asymptotic behavior of bi(m) in terms of

rmi is the same as that of f2(m)+f 1 (m). 3 From the analysis for (11.28),(11.33),(11.37)

and (11.41), bi(m) should behave asymptotically as 1, except for the case where m E

near{ i}. Hence matrix B is hierarchically low-rank, similar to a discretized integral opera-

tor with j kernel.r

To verify our analysis, we have done some numerical experiments on the same set of

examples as in section 11.2.3. Even with the sparsified matrix F, filling matrix B still needs

O(N 3) work. Hence we can not analyze large and complicated structures. But we believe

the results shown here are compelling enough to motivate a sparsification algorithm based

on the H-matrix method.

2D examples: Circular Wire Over Ground The singular values of the 4 sub-blocks of

the matrix B is shown in figure 11-6. Furthermore, the singular values of the 4 sub-blocks

of the matrix B11, a sub-block of matrix B, is shown in figure 11-7. It is clear that matrix B

is hierarchically low-rank.

3Index j has been absorbed because of matrix-vector product in (11.21) and hence the asymptotic behavior

of Mm1 in terms of rmj becomes irrelevant here.
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Figure 11-7: Distribution of the singular values of the four sub-blocks of the matrix B11,
circular wire over ground plane.
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Figure 11-8: Singular value distribution of the four sub-blocks of the matrix B, ID bars.

3D examples: 1D bars We use two ID bar in parallel as a simple example. Each bar

is divided along the length into 30 panels. The singular values of the 4 sub-blocks of the

matrix B and one of its sub-block, B11, are shown in figures 11-8 and 11-9. It is clear that

matrix B is hierarchically low-rank.

11.2.5 Matrix B is symmetric

It turns out that an important fact, B = BT, can be used to reduce the cost of constructing

the H-matrix for B substantially. So it is worthwhile to show it here. From (10.49) it is easy
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Figure 11-9: Singular value distribution of the four sub-blocks of the matrix B11, ID bars.

to check that

FJn F.. (11.42)

In view of (11.21), we have

bi(m) = bm(i), (11.43)

i.e.,

B=BT. (11.44)

The identically distributed singular values of the off-diagonal blocks in figures 11-6, 11-7,

11-8 and 11-9 correlate very well with this observation.

11.3 Construction of H-matrix for matrix B: A simple case

The fact that matrix B is hierarchically low-rank implied that it is possible to construct

a data-sparse representation of matrix B using either the hierarchical matrix (H-matrix)

method in [33, 34, 5] or the hierarchical SVD method in [52]. Since we do not have

analytical form of each individual entry of B, we can not use the degenerated polynomial

interpolation scheme in the H-matrix method [5, 35]. Instead we resort to a sampling

process similar to the one in [52, 65]. Hence we need the access to each individual entry

of B. As implied in (11.21), calculation of column vector bi involves constructing the H-

matrix for M(') and carrying out one matrix-vector product M(') < p(O >. Each step needs
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O(Nlog(N)) work. But in constructing the H-matrix for B, usually only a small fraction of

bi is needed. Unfortunately, calculation of even a small fraction of bi still involves setup

of the H-matrix for the whole matrix M(i), which takes O(Nlog(N)) time. 4 Hence the

total time would be O(N 2log(N)) if the H-matrix for whole matrix M(') is constructed for

i= 1,2, ...,N.

In this paper, we propose a so-called combined sampling process to substantially reduce

this cost. The key idea is to combine small segments of vector bi for different i into a long

vector and compute this long vector in one go. This means that one has to assemble a part

of matrix M(') for different i into a single matrix R, construct its H-matrix representation

and perform matrix vector product R < p(O) >. In order to focus our attention to the main

ideas, we deliberately use a trivially simple example in this section to explain this combined

sampling process. Algorithm for the more general cases is shown in the following section.

Assume that matrix B has a two-level H-matrix representation shown in figure 11-10,

where Ri(i= 1,2,...,6) are low-rank matrices and Di(i 1,2,3,4) are full-rank matrices.

Further more, assume that the size of matrix B is N x N = 32 x 32 and the rank of all Ri is

the same r = 2. Consequently, the size of matrix Di is 8 x 8. It should be pointed out that

the actual values of N and r are unimportant, we use them here just for the convenience of

notation.

11.3.1 Standard sampling process

A low-rank matrix Q can be written as [33, 34, 5, 52]

Q = WTV, Q E RMXM, W, V E RrxM, (11.45)

4Suppose we want to compute y = Ax, where A corresponds to a discretized integral operator with 1r
kernel. It is interesting that all well-known fast solver algorithms can not do better than O(N) when only one
entry of y is needed, despite the fact that all these algorithms can compute the whole vector y with N entries
in O(N) or O(Nlog(N)) time. The multipole expansion in Fast Multipole Method (FMM), sampling in
hierarchical SVD, panel clustering in H-matrix method, and direct matrix setup in Pre-corrected FFT method
involve all N source panels, regardless how many entries in y are to be computed. This initialization cost is
amortized over all N entries of y. But if only a small number of entries in y are needed, then the overhead of
initial setup is as expensive as direct calculation of those few entries in y.
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Figure 11-10: Two-level H-matrix representation of
and Di is the full-rank matrix.

matrix B. Ri is the low-rank matrix

where r is the rank of Q. This decomposition is not unique, one can scale W with an

arbitrary factor a and scale V with 1 . For simplicity, we assume here that both W andcc

V have been normalized such that the decomposition is unique. A number of heuristics

to construct this WV decomposition have been proposed, such as the rank-revealing QR

decomposition in [52] and the adaptive low-rank approximation in [65]. We do not intend

to repeat these two algorithms here. But it suffices to point out that both methods need

access to r columns and r rows of matrix Q in (11.45) and both methods have been claimed

to access only O(Nlog(N)) entries in a hierarchically low-rank matrix in order to construct

its sparse representation.

It is easy to check that

{Qi= Q2

Q i = WTV1

Q2

(11.46)
W1 =WV2

V1 W2.

As shown in (11.44), matrix B is symmetric. Therefore, the low-rank blocks in figure 11-10

satisfy R1 = RT, R3 = R and R 5 = RT. Let the WV decomposition of Ri(i = 1, 2,..., 6) be

Ri= WTVi, Ri E Rx, W,Vi E R 2 x8, i = 1, 2, 3,4. (11.47)
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Ri = W TVi, Ri E R16x16, WiVi E R2x 16, i = 5,6.

In view of (11.46), we have

VI = W2,V2 = W1

(11.48)

(11.49)

(11.50)

(11.51)V5 W6 ,V6 = W5.

Hence we only need column vectors WI'T (i = 1,2,..., 6) to construct the WV decomposition

of Ri(i = 1, 2, ... , 6). Row vectors V(i = 1, 2, ...,6) are redundant.

11.3.2 Combined sampling process

In order to obtain each Di, we need to compute 8 column vectors in B. Hence to get all

Di(i = 1,2,3,4), we effectively have to compute the whole matrix B. Consider putting Di

into a big matrix as the following

... b16

--- b24

.-. b32

b1
b9

b17

b25

b2

blo

b18

b26

(11.52)

where bi is one quarter of bi with suitably selected entries. For example, b1 = b1 (1 : 8),

b9 = b9 (9 : 16), b17 = b17 (17 : 24) and b25 = b25(25 : 32). 5 Clearly, the size of matrix T

is 32 x 8. Therefore, instead of sampling the whole matrix B, we only need to compute 8

column vectors in T1.

As explained before, to obtain the low-rank representation of Ri, we need to sample two
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column vectors in B. Consider putting Ri(i = 1, 2,3,4) into a big matrix as

WiT

WT

WT

WT

IV 1 V2 V3 V4 ]=WTV. (11.53)

To obtain W, we just need to compute

(11.54)

where bi is again one quarter of bi with suitably selected entries. Therefore, instead of

sampling a total of 8 column vectors in matrix B, we only need to compute 2 column

vectors in S1.

Finally, to obtain the low-rank representation of Ri(i = 5,6), we need to sample two

column vectors in B. Consider putting Ri(i= 5,6) into a big matrix as

R5
T[=

L R6 I WT

WT6I SV5V6 ] =WTV. (11.55)

To obtain W, we just need to compute

bi7
S2 =

Lb1

b 12

b2J
(11.56)

where bi is one half of bi with suitably selected entries. Therefore, instead of sampling a

total of 4 column vectors in matrix B, we only need to compute 2 column vectors in S2.
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Now the problem boils down to computing a combined vector in the form of

b_ p<PO =R<PO (11.57)

L b'Y _j L (Y) _

where x, P and y represent the column index in (11.52), (11.54) and (11.56), and M(a),

R ) and M(Y) are respectively a part of M(x), M(A3 and M(Y) defined in (11.21) with suit-

ably selected rows. If R is hierarchically low-rank, then H-matrix method can be used to

calculate b in O(Nlog(N)) time. This immediately implies that the low-rank representation

for Ri in (11.47) and (11.48) and the small full-rank matrices Di in (11.52) can be computed

efficiently.

11.3.3 Combined matrix is hierarchically low-rank

As shown in section 11.2.2, the asymptotic behavior of Mmj in terms of rmj is uniformly

for i = 1, 2, ... N. This asymptotic behavior should still hold for Mmj. Therefore, matrix

M is hierarchically low-rank.

To verify our analysis, we have done simple numerical experiments on the 3D example

used in section 11.2.3. The two bars are divided into 32 panels each. So the size of matrix

B and R is 64 x 64. We have filled three combined matrices like M in (11.57). They are

(1)

R(1 7 )

Mi = (11.58)
R(33)

R(49)

R(1 8)

M2 = 4 (11.59)

R( 50)
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Figure 11-11: Distribution of the singular values of the four sub-blocks of the matrix M1 .

and
R(l)

R(2)

R(3)

R(64)

(11.60)

where R 3 is an extreme case in the sense that each of its rows is taken from a different

MG), i = 1,2, ..., 64. The singular values of the 4 sub-blocks of these three matrices are

shown in figures 11-11, 11-12 and 11-13. The singular values of the 4 sub-blocks of one

of the diagonal blocks of these three matrices are shown in figures 11-14, 11-15 and 11-16.

Clearly, matrices R 1 , R 2 and R 3 are hierarchically low-rank.

11.3.4 A graphical interpretation of the combined sampling process

In summary, in order to construct the H-matrix representation of B, we need to compute TI

in (11.52), SI in (11.54) and S2 in (11.56), a total of 12 column vectors. Each one of these

12 column vectors involves the H-matrix construction of a matrix M. Since the entries in R

have the same asymptotic behavior as the entries in B, it is reasonable to assume these two

matrices have the same hierarchical structure or rank map. It should be noted that matrix

R is asymmetric. Hence unlike treatment of matrix B in section 11.3.1, we have to access
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Figure 11-12: Distribution of the singular values of the four sub-blocks of the matrix R 2 .
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Figure 11-15: Distribution of the singular values of the four sub-blocks of the matrix I .

100

105

10-10

in-
1 5

0 5 10 15 20 25 30 35

Figure 11-16: Distribution of the singular values of the four sub-blocks of the matrix I .

141

- M2- M2

M2
M2
M2M22

--- M3&

M3
M3

M3
M3

~AM3 2



1 i l

i2
m m

i3

i4

Figure 11-17: Location of sampled columns in matrix B and their compressed-row format.
Due to symmetry of B, only columns need to be sampled. Notice that each column in the
compressed-row format has at most 4 unique values of i.

12 columns and 12 rows in A to construct its sparse representation. 6

The column sampling of matrix B is shown in figure 11-17. Figure 11-18 shows the

relation between column sampling for B and hierarchical structure of M. And figure 11-19

shows the sampled entries in matrix M and their relation to the entries of matrix F'j. These

are three main components in the combined sampling process.

11.4 Construction of H-matrix for matrix B: General cases

In practice, the number of levels in the H-matrix representation of matrix B could be more

than 10 and the rank of different matrix Ri could be different. For example, the rank

map and H-matrix structure of the system matrix for a one-dimensional bar and a three-

dimensional plate are shown in figures 11-20 and 11-21, respectively. Fortunately the ideas

presented in section 11.3 still apply to these more general cases. In this section we show a

systematic way of constructing the H-matrix for general matrix B based upon these ideas.

11.4.1 Panel ordering

It is worth mentioning that the hierarchically low-rank structures in figures 11-20 and 11-

21 depend critically on panel ordering. A panel clustering algorithm described in [5] can

6Unlike constructing an H-matrix for a j kernel, we have no access to individual entries of B and I.
Hence we can not come up with a rank map before hand. In this paper we will use the rank map of A to guide
the construction of H-matrix for both B and M. This is primarily because these three matrices share the same
I asymptotic behavior and the same set of panels, the ones used to discretize the nominal smooth surface.
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Figure 11-18: Relation between column sampling for B (on m - i plane) and hierarchical
structure of M (on m - j plane). Each slice on m - j plane represents one matrix R and is
to be multiplied with < p(O) > to obtain the corresponding sampled colunm on m - i plane

Number of slices is equal to number of sampled columns in figure 11-17.
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Figure 11-19: Location of sampled columns and rows in matrix M (front m - j plane) and
their relation to entries in matrix F". Each "thread" along index n direction represent one
row in matrix Fi. The entry Mmj in the shaded region on the m - j plane is the result of
inner product between the "thread" and < p(O) >, i.e., it is the m-th entry of the column fi
defined in (11.22).
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order the panels in such a way that the indexes of the spatially close panels are also close.

Though it is in general difficult to obtain the optimal ordering for an arbitrary panel distri-

bution, the ordering generated with panel clustering algorithm is good enough for practical

purpose. Both figure 11-20 and figure 11-21 are generated using this panel clustering algo-

rithm. Though there are some small low-rank or even full-rank matrices in the off-diagonal

region in figure 11-21, these matrices in general do not change the order of computational

complexity and memory usage. A heuristic algorithm similar to panel clustering is also

presented in [52] and has been shown to produce satisfactory ordering for realistic 3D

structures.

11.4.2 Sampling matrices

As explained in section 11.3, we have two sparse sampling matrices to fill, one for matrix B

as shown in figure 11-17, and the other for matrix MI as shown in figure 11-19. The location

of the nonzero entries of both matrices are derived from the same rank map of the matrix

A. To facilitate the following discussion, we denote the sparse matrices that contains the

location of the sampling entries in figure 11-17 and 11-19 as SB and SM, respectively.

Though the graphical interpretation of the combined sampling process shown in figure

11-17, 11-18 and 11-19 are derived from a two-level H-matrix structure shown in figure

11-10, it turns out that realistic cases are not very far from these pictures. For example,

matrices SB and SM derived from the H-matrix structure shown in figure 11-21 are shown

in figure 11-22 and 11-24, respectively. The compressed-row format of matrix SB is shown

in figure 11-23. These pictures are very similar to figure 11-17, 11-18 and 11-19. Hence

the idea of combined sampling is readily applicable to general cases.

11.4.3 Algorithm outline

Now we are ready to put together an algorithm to construct H-matrix of B. The outline of

this algorithm is shown in algorithm 4.
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Figure 11-22: Location of the sampled columns used for constructing H-matrix of matrix
B

Figure 11-23: Compressed-row format of the sparse matrix in figure 11-22
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Figure 11-24: Location of the sampled entries used for constructing H-matrix of matrix M

Algorithm 4: Construct H-matrix for B.
Input: rank map of A
Output: HB

(1) construct sparse matrix SB and SM from rank map of A
(2) foreach column k in SB
(3) construct H-matrix Hq ~ M from sampled entry Mmj=

F'j(m,:) < p () >, i = SB(m, k) and location of A7Imj is given by
SM.

(4) compute y = HR < P(0) >
(5) B(m, SB(m, k)) = ym
(6) construct H-matrix HB ~ B from sampled entries B(m, SB(m, k))

11.5 Construction of H-matrix for matrix B: A flaw and

its fix

The simplified combined sampling process in figures 11-17, 11-18 and 11-19 as well as

more general case in figures 11-22, 11-23 and 11-24 all suggest an easy estimation of the

computational complexity of the algorithm. By definition, the number of non-zeros in

sparse matrix SB is equal to the number of sampling entries in the Hierarchical SVD or H-

matrix. It has been shown that this number is O(Nlog(N)) [52, 5]. Since there is no empty

row in SB and each row should have roughly the same number of non-zeros, as shown in
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figure 11-23, the average number of nonzeros per row or the number of columns in the

compressed-row format in figure 11-17 and 11-23 is O(log(N)). This is the total number

of matrices M in figure 11-19. Construction of the H-matrix representation of each R as

well as carrying out matrix-vector product in (11.57) needs O(Nlog(N)) work. Hence the

total work is O(Nlog2N).

However, this seemingly reasonable estimation is incorrect and algorithm 4 actually

needs O(N 2 ) work. In order to appreciate this subtlety and, more importantly, to measure

the effectiveness of the modified combined sampling process proposed in this section, we

want to introduce a very useful concept, the foot print of the combined sampling process.

11.5.1 The foot print of the combined sampling process

As shown in previous sections, we have chosen to directly compute FJ in the process

of constructing the H-matrix for B. As shown in (10.49), calculation of F, involves the

calculation of Aij, Amn, Aij and Amn. The union of these entries is the so-called foot print in

matrix A and A. This foot print concept can be used as the metrics of the sparsity achieved

by the proposed fast SIE method in this paper. If all entries in matrix A and A are used, we

end up with a full foot print. If O(N), O(Nlog(N)) or 0(Nlog 2 (N)) entries in matrix A

and A are used, we end up with a sparse foot print. Obviously the sparser the foot print,

the more efficient the fast SIE method. The final computational complexity is dictated by

the sparsity of the foot print achieved.

11.5.2 The flaw

Unfortunately, direct application of the combined sampling process in algorithm 4 leads

to a full foot print. As shown in figure 11-1 and explained in section 11.1, most rows

in matrix F1' are actually very sparse. But for a given i and j, the m-th row of F1' will

be full if m E near(i) or m c near(j). From figure 11-17, It is easy to check that all the

diagonal entries of B are to be sampled 7 and they all satisfy m E near(i) because m = i. The

7This is inevitable for all sparsification techniques, including Fast Multipole, Pre-corrected FFT, Hierar-
chical SVD and Hierarchical Matrix. This is because these methods all compute nearby interactions directly,
which means they all have to sample the diagonal blocks.

148



same holds true for each R in figure 11-19. Hence we at least have N distinct full-length

"threads" in figure 11-19, where N is the number of panels. Since each full-length "thread"

leaves N nonzeros on the foot print of both A and A, the foot print is full.

The remedy lies in the H-matrix construction of another combined matrix. The key

idea is to pick out entries Bmi and Mmj such that m E near(i) and m E near(j) and assemble

them into two separate matrices, just like B and M and re-run the combined sample process.

11.5.3 Union of full-length vectors is hierarchically low-rank

To explain the fix to the above-mentioned flaw, we need to first take another look at the

characteristics of the matrix entry FJn. Since those full-length "threads" are rows in the

horizontal sub-regions of either region I or region II and we intend to treat them in a uni-

fied way, we will analyze the characteristics of these two sub-regions together. Recall the

indexes of the horizontal sub-regions of region I satisfy

m E near(i), n E far(i), n E far(m), n E far(j) (11.61)

and the indexes of the horizontal sub-regions of region II satisfy

m E near(j), n C far(j), n E far(m), n C far(i). (11.62)

Here we have relaxed the condition i E far(j) we have used for these two sub-regions in

section 11.2.1 because we want to treat them as if they are one region here. Hence we

will not use the simplification in (11.17) and (11.18). We have also excluded the region III

from our analysis even though entries in it are part of the full-length rows. This is because

this region only accounts for a very small number of entries and the values of those entries

tend to be smaller than entries in other regions. Hence their contribution is negligibly

small. Inaccuracy in the treatment of this region is expected to have no impact on all-over

accuracy.
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Similar to (10.22), n E far(m) in (11.61) and (11.62) implies that

P2(hm, hn;xm,xn) ~_ PI(hm)Pi(hn). (11.63)

Similar to (11.17) and (11.18), (11.61) and (11.62) imply that

(11.64)

We follow the notation in (11.32) and (11.40) and call their union as Hi". Substituting

(11.63) and (11.64) into (11.3) and (10.49) results in

H'(m, n) dhn dhij dhj dhm

- 1C dhmP (hm) dhi dhjAij

P3 (hihj, hm; i, j,Xm)
P1 (hm) -2khJxixj)

1-100 dhnP1 (hn)Amn.

= dhmPi (hm) c' (hm)

dhnPI (hn)Amn, (11.65)

where

c' (hm) = f10dhij dhjAij

P3 (hi, hi, hm; i, j,km)
Pi(hm)

Here we have also used the definition of the entries of A in (10.21).

(11.66)

Since D('J(hm) is

unrelated to n, it does not interfere with the asymptotic behavior of Amn. Hence matrix Hij

is hierarchically low-rank, just like A or A.

150

P4 (hiI hj , hm, hn; i,Jij I m , n) ~_ P3 (hi, hj , hm;Ji 5j , m) PI (hn).

~

(P3 (hi, hj, hm; Xi, _jI M) PI(hn)

-P2 (hi, hj;.Ti,,tj)P1 (hm)P1 (hn))AijAmn

-P2(hi, hj;, i,2 X) I



10 20 30 40 50 60 70

Figure 11-25: Distribution of the singular values
for m = i and j= i+ 1.
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Figure 11-26: Distribution of the singular values of the four
block H in figure 11-25.

sub-blocks of the diagonal

We have used two 1D bar in parallel as a simple example to verify our analysis. Each

bar is divided along the length into 32 panels. The singular values of the 4 sub-blocks of the

matrix H"i and one of its diagonal sub-blocks, H , are shown in figures 11-25 and 11-26.

It is clear that matrix H"i is hierarchically low-rank.

11.5.4 The fix to the flaw: A modified combined sampling process

The hierarchically low-rank property of Hi suggests that we can again use the H-matrix

technique to avoid filling the full matrix Hi. In order to maximize the efficiency, we just
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need to carefully collect the appropriate full-length vectors, assemble them into matrix W

and carry out the matrix vector product to get the corresponding entries in M.

In order to facilitate the following discussion, we decompose sparse matrix SB in figure

11-17 into two sparse matrices SBF and SBS, where SBF contains all the entries SB (m, i) such

that m E near(i) and SBS contains all the remaining entries in SB. Figure 11-27 shows this

decomposition. Further more, we decompose sparse matrix SM in figure 11-19 into three

sparse matrices SMF, SMC and SMR, where SMF contains all the entries SM(m, j) such that

m E near(j), SMc contains all dense blocks and all the sampling columns, excluding the

entries in SMF, SMR contains all the sampling rows, excluding the entries in SMF. Figure

11-28 shows this decomposition.

In view of the combined sampling process in figures 11-17, 11-18 and 11-19, this de-

composition effectively turns the single combination of SB and SM into six combinations:

1. Combination A: SBS and SMC

2. Combination B: SBS and SMR

3. Combination C: SBS and SMF

4. Combination D: SBF and SMC

5. Combination E: SBF and SMR

6. Combination F: SBF and SMF

By definition, there will be no full-length "threads" in combination A and B. We can just

use the same combined sampling process in figures 11-17, 11-18 and 11-19 to compute the

corresponding entries of B and fill them to the locations specified by SBS- Also by defi-

nition, for all the remaining four combinations, we will obtain nothing but the full-length

"threads". It is easy to see from figure 11-27 and 11-28 that these full-length "threads"

fit nicely into multiple matrices very similar to the matrix H" defined in (11.65). Hence

we can readily use the H-matrix representation to avoid calculating every entry in these

matrices. Since the asymptotic behavior of H/nin is 1, same as that of the entries in A, wer

use rank map of A as template for the construction of the H-matrix representation for HW.
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Figure 11-27: Decomposition of sparse matrix SB in figure 11-17 (to the left of equal sign)
into two sparse matrices (to the right of equal sign), SBF contains all the entries SB(m, i)
such that i E near(m) and SBS contains all the remaining entries in SB- Both SBF and SBS

are in compressed-row format.
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Figure 11-28: Decomposition of sparse matrix SM in figure 11-19 (to the left of equal sign)
into three sparse matrices (to the right of equal sign), SMF contains all the entries SM (m, j)
such that j C near(m), SMC contains all dense blocks and all the sampling columns, exclud-
ing the entries in SMF, SMR contains all the sampling rows, excluding the entries in SMF.
Matrix SMC and SMF are in compressed-row format and SMR is in compressed-column for-
mat.

In other words, the locations of the sampled entries are specified by sparse matrix SM and

the values of these sampled entries are given in (11.65).

Now we are ready to put together the algorithm for the modified combined sampling

process to construct the H-matrix representation of B. The outline of this algorithm is

shown in algorithm 5 (page 160).
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11.5.5 Foot print, CPU time and memory usage of the modified com-

bined sampling process

Since the H-matrix structure of each Hi is identical, combination C, D, E and F all generate

the same foot print on matrix A and A with O(Nlog(N)) nonzeros. Since there are at most

O(Nlog(N)) distinct nonzeros in SBS and SMC + SMR, the foot print of combination A and

B is O(Nlog2 (N)). Therefore, the foot print of all combinations is O(Nlog 2 (N)), clearly a

sparse one.

By definition, the number of nonzeros per row in SBF and SMF is equal to p, the num-

ber of panels within a segment of rough surface of 3 correlation length long. Hence the

number of columns in the compressed-row format of both SBF and SMF is p. The number

of nonzeros in SBS, SMC and SMR should still be O(Nlog(N)), same as that of SB and SM.

Hence the number of columns in the compressed-row format of SBS and SMc, as well as the

number of rows in the compressed-column format of SMR, is 0(log(N)). The breakdown

of CPU time and memory usage by algorithm 5 is shown in table 11.1.

The O(Nlog2 (N)) foot print and table 11.1 indicate that the total work involved in the

modififed sampling process is O(Nlog2 (N)).

11.6 Sparsification of the matrix A

Matrix A is the discretized version of the integral operator in (10.13). Many O(N) or

O(Nlog(N)) algorithms are available to sparsify it, such as Fast Multipole Method [29,

71], Pre-corrected FFT method [80], Hierarchical SVD method [52], and panel clustering

method [35]. But these methods do not land themselves directly into a method to spar-

sify the inverse of A. Thy are usually used in the inner loop of an iterative linear system

solver, such as Gmres [89]. On the other hand, the hierarchical matrix (H-matrix) method

developed by Hackbusch [33, 34, 5] is directly applicable to sparsify A- 1. It is shown in

[33, 34, 5] that one can construct the H-matrix of the discretized integral operator in almost

linear complexity 8. Using the matrix add, multiplication and rank-k truncation defined in

8Almost linear complexity means O(Nlogk(N)), i.e., linear up to logarithmic factors
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Table 11.1: Estimation of operation count and memory usage by each step in algorithm 5

step operations memory
3 O(Nlog(N))* p 2  O(Nlog(N))
4 O(Nlog(N))* p 2  O(N)
5 O(N)* p 2  O(N)
7 O(Nlog(N))* p* O(log(N)) O(Nlog(N))
8 O(Nlog(N))* p * O(log(N)) O(N)
9 O(N)* p*O(log(N)) O(N)
11 O(Nlog(N))* p* O(log(N)) O(Nlog(N))
12 O(Nlog(N))* p* 0(log(N)) O(N)
13 O(N) * p * O(log(N)) O(N)
14 O(Nlog(N)) * p O(Nlog(N))
15 O(Nlog(N))* p O(N)
16 O(N)*p 0(N)
20 O(Nlog(N))* p * O(log(N)) O(Nlog(N))
21 O(Nlog(N))* p* O(log(N)) O(N)
22 O(N)* O(log(N)) O(N)
24 O(Nlog(N)) * 0(log(N)) O(Nlog(N))
26 O(Nlog(N)) * O(log(N)) O(Nlog(N))
27 O(Nlog(N)) * 0(log(N)) O(Nlog(N))
28 O(Nlog(N)) * O(log(N)) O(Nlog(N))
29 O(Nlog(N)) O(Nlog(N))
31 O(Nlog(N)) O(Nlog(N))
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[33, 34, 5], one can then construct the H-matrix for the approximate matrix inverse from the

H-matrix of the discretized integral operator in almost linear complexity. In this paper we

directly use the H-matrix method to sparsify both A and A- 1. We shall not give the details

of this method here. Please refer to [5] and the references cited therein for theoretical as

well as implementational details.

11.7 Computing trace(A- 1B)

Having found the H-matrix representation for matrix A- and B, we are ready to present an

efficient algorithm to compute trace(A 'B). As explained in [5], the clustering tree for A- 1

is derived from that for A. Because both A and B are derived from the same set of panels

on the same surfaces and they share the same asymptotic behavior, it is safe to assume that

the panel clustering trees for them are the same. Due to block matrix manipulation such as

add, multiplication and rank-k truncation, the clustering tree for A-1 can be different from

that of A at leave level, though most of the two trees should be the same. Hence matrix A-

and B may or may not have same leave blocks. We will cover both cases in this section.

Block partition We will first present a generic approach. Suppose we want to compute

trace(PQ), where P E RNxN and Q E RNxN and their entries are arbitrary. Using a natural

block partition, we have

P1P12 1[Qi1 Q12 1
trace(PQ) = trace( 1P2 1 2

L P21 P22  Q21 Q22 _

- trace( PiQ,2+P2Q21
L ~P21Q 12 -+ P22 Q22

= trace(PiiQt1)+trace(P2Q2 1)

+trace(P21Q12) + trace(P22Q22 ). (11.67)

If we keep on recursively partitioning in this fashion, we can compute the result in O(N 2)

time. This, of course, is the same as when we compute the trace directly. But we can do
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much better this way if both P and Q have low-rank representation. Let Ps and Qs be one

of the sub-blocks at certain level down to the partition tree, just like PI I and Q 1I in (11.67).

Low-rank matrix block times low-rank matrix block Assume we have the low-rank

representation for both P, and Q,

Ps UpV/, Ps E RMxM, Up,Vp R xk

UQVg, Qs ER IxM, UQ,VQ C RMxk (11.68)

where M is the size of blocks Ps and Qs and k is the approximate rank of Ps and Q, then

we have

trace(PsQs) = trace( [Up(VPUQ)]V). (11.69)

If we compute the trace in the order enforced by the parenthesis in (11.69), then it only

takes 2Mk 2 + Mk work. This is comparable to the cost of matrix-vector product, 2Mk.

Low-rank matrix block times full-rank matrix block In some cases, one of the two

blocks Ps and Qs does not have low-rank representation. Without loss of generality, we

assume Ps is in low-rank representation as in (11.68) and Qs has full rank . It is easy to

check that computing trace(PsQs) takes M 2k + Mk work. This is comparable to the cost of

full-rank matrix-vector product, M2. It should be noted that for the rare cases when both

Ps and Qs do not have low-rank representation, the calculation of trace takes M2 work, a

lower cost than that of low-rank matrix times full-rank matrix. Hence this rare case should

not complicate our analysis.

Total cost It is shown in [33, 34, 5] that the matrix vector product takes O(NlogN) work

using the Hierarchical Matrix representation. As shown above, the cost of computing trace

is different from that of matrix vector product by a factor k. Since in general k << M and

it is a constant independent of M, computing the trace also takes O(NlogN) work.
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11.8 Ensemble average multiple integration

In order to further reduce the CPU time of constructing the H-matrix for matrix B, we have

used the following simple manipulation

< AijAmn > ~ j dhi j dhj J dhm J dhn

P4 (hi, hj , hm, hn; Xi, xi, Xm, Xn)AijAmn,

j dhiP1 (hi) j dhjP1 (hj)

dhmP (hm) dhnPi (hn)

f(hi, hj, hm, hn), (11.70)

where

P4 (hi,hj,hm,hn;xi,xj,xm,xn)
f (i j m n 4(hi, hj, hm, hn) =i iiX n A ijAmn (11.71)

Pi (hi)Pj (hj)P1 (hm)P1 (hn)

is the new integrand. Obviously, the approximations in (11.17),(11.18),(11.26), (11.31),(11.35)

and (11.39) should be used in (11.71) whenever appropriate. Since the form of probability

density function PI is the same as that of the weighting function for the standard Gauss-

Hermite quadrature [91], we can directly use Gauss-Hermite quadrature for each fold of

integration in (11.70). Due to the smoothness of the integrand in (11.71), each fold of inte-

gral in (11.70) should only need about q = 5 Gauss-Hermite quadrature points. Hence the

total number of function evaluation in (11.71) is q4 = 625.

Monte Carlo method is usually the only alternative to compute the high dimensional

integral [22]. However, the square root convergence rate of Monte Carlo method may

require no fewer than a few thousands function evaluations in (11.71). So Gauss-Hermite

quadrature is about five to ten times faster than Monte Carlo method.

In addition, since we know the quadrature points a priori, we can pre-compute matrix

entry Aij for different hi and hj and use it to compute the integrals in (11.70). As explained

in section 11.5, the foot print in A is O(Nlog2 (N)). Hence only O(Nlog 2 (N)) unique

entries in A need to be pre-computed, where N is number of panels. Essentially, the time-
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consuming panel integration is moved out of the inner loop in computing the four-fold

integral in (11.70). On the other hand, if we use Monte Carlo method in (11.70), hi, hj,

h,, and h, would be completely random and uncorrelated. Hence it is impossible to do any

pre-computation of Aij and Amn. Clearly, Gauss-Hermite quadrature has an even bigger

advantage in this aspect.
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Algorithm 5: Construct H-matrix for B.
Input: sparse matrices SBF, SBS, SMF, SMC and SMR
Output: HB

(1) foreach column k in SBF
(2) foreach column 1 in SMF
(3) construct H-matrix HHij ~ Hj, i = SBF (m, k), j SMF
(4) compute y = HHij < P(O) >
(5) AI(m, j = ym
(6) foreach column 1 in SMC
(7) construct H-matrix HHij ~ H'1 , i SBF (m, k), j SMC
(8) compute y = HHij <P(O)>

(9) M(m, j) = Ym
(10) foreach row 1 in SMR

(11) construct H-matrix HHij ~- Hj, j - 1 : N, m SMR(
SBF (m, k).

(12) compute y = HHij < P(0) >
(13) R(m, j) = yj
(14) construct H-matrix H ~- M from sampled entry M(m, j)
(15) compute y = Hq < p >
(16) B(m, SBF (m, k)) = ym

foreach column k in SBS

foreach column I in SMF
construct H-matrix HHij ~ H'iJ, i -
compute y = HHij <P(O)>

A(m, j) = Ym
foreach column I in SMC

compute Mmj = f' 1 - F'j(m,:) <
SMC(m, 1)

foreach row I in SMR

SBS(m, k), = SMF (m,l )-

P(0) >, i = SBs(mk), j =

compute Mmj = fmj - F'j(m,:) < p(O) >, j = 1 : N, m =

SMR(lj ), i = SBs(m,k)
construct H-matrix Hq ~-- M from sampled entry A(m, j)
compute y = HR < P(0) >
B(m, SBS(m, k)) = ym

construct H-matrix HB ~- B from sampled entries B(m,SBF(mk))
and B(m, SBS(m, k))
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Chapter 12

Algorithm Outline of the Stochastic

Integral Equation Method

We are ready to put together the ideas discussed in previous chapters to design an algorithm

for efficiently computing the mean and the variance of capacitance. The outline of this

algorithm is summarized in algorithm 6. Here we assume that the piece-wise constant basis

functions and the Galerkin method are used to discretize (10.13). Hence all the approximate

equality in (10.46) and (10.62) are exact and trace(A-TB) - trace(A-1B). To facilitate our

discussion, we define the following notations:

Cpj: number of floating point operations used in calculating matrix entries Aij or Amn in

(11.71) and (10.16). For 3D cases, the integration is over a flat triangle panel. Typical

operation count is in the order of a few hundreds.

NI: number of panels or basis functions used by Monte Carlo simulations in (10.31).

N2 : number of panels or basis functions used by SIE method in (10.15).

NI: number of iterations used by an iterative solver for solving (10.15) or (10.31). For

capacitance problem, it is relatively easy to come up with a good pre-conditioner,

hence the number of iterations is typically in the order of 10.

Ns: number of Monte Carlo simulations. This number is typically in the order of a few

thousands.
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q: number of Gauss-Hermite quadrature points used for each fold of the ensemble average

integral in (11.70) and (10.16). This number is typically anywhere between 5 and 10.

The estimated operation count and memory usage by each step of the algorithm 6 is shown

in table 12.1. It is clear from table 12.1 that algorithm 6 is almost linear in both CPU time

and memory usage.

A very important advantage of the SIE method is that bigger panel can be used in

discretizing the nominal smooth surface. Empirical studies have shown that a size equal to

one-half to one-quarter of correlation length il is appropriate. This is consistent with the

findings in the stochastic finite element method [55]. On the other hand, a much finer panel

size has to be used in Monte Carlo method in order to have a good resolution of rough

surface profile. To see this effect, we have plotted the discretization of a rough surface

profile in figure 12-1, where the standard deviation is a = 0.2 and correlation length is

Ti = 0.2. The plot shows that at least 8 panels per correlation length have to be used to

ensure a good resolution. On the other hand, only 2 panels per correlation length are

sufficient in SIE method. Hence Ni /N 2 > 4 for 2D rough surfaces, and Ni /N 2 > 42 - 16

for 3D rough surfaces. In addition, triangle panels have to be used to mesh rough 3D

surfaces while as quadrilateral panels are sufficient for nominal smooth surfaces. This

gives SIE method another factor of 2 in panel number reduction and hence NI /N 2 > 32 for

3D rough surfaces.

The breakdown of CPU time and memory usage by Monte Carlo method is listed in

table 12.2. Our partial empirical studies have shown that the constant in front of O(Nlog(N)

for the H-matrix method is around 40 1. But since this number is application-dependent,

we can not make a conclusive comparison of CPU time used by SIE method and Monte

Carlo method at current stage.

'This is after we have used an adaptive re-compression technique in [28]. A similar idea was also proposed
in [54].
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original rough surface profile
1 -- 2 panels per correlation length

--- 8 panels per correlation length

0.5-

0 -

0 0.5 1 1.5 2

Figure 12-1: Using different mesh size to approximate the profile of a random rough sur-
face, standard deviation is a = 0.2, correlation length is fl 0.2

Algorithm 6: Compute < C > and var{C}.
Input: nominal smooth surface discretization, rough surface statistics a and

11

Output: < C >, var{C}

(1) construct panel clustering tree for the smooth conductor surfaces

(2) construct sparse matrices SBF, SBS, SMF, SMC and SMR from rank

map of A

(3) pre-compute entry Aij(hi, hj) on the foot print of A

(4) construct H-matrix representation HA ~ A

(5) construct H-matrix representation HAI ~ A-1

(6) iteratively solve HA < P(0) >= I using HAI as preconditioner

(7) compute < CC0 ) >= LT < P(0) >

(8) use algorithm 5 to construct H-matrix representation HB ~_ B

(9) compute < C(2 >- trace(A-B) - trace(HAIHB)

(10) compute < C >=< C(o) > + < C(2) >

(11) compute z = B < P(0) > HB < P(0)

(12) compute var{ C} ~< P (0) > T z
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Table 12.1: Estimation of operation count and memory usage by each step of the algorithm
6

step operations memory
1 O(N2log(N2 )) O(N 2)
2 O(N2log(N2 )) O(N 2log(N 2))
3 0(N2log2 (N2)) *Cp *q 2  O(N 2log2 (N2))
4 O(N2log(N2 )) O(N 2log(N 2))
5 O(N 2log 2(N2)) O(N 2log(N 2))
6 O(N2log(N2))*N 1  O(N 2)
7 O(N 2 ) 0(1)
8 O(N2log 2(N2))* q' (N 2logN2)
9 O(N2log(N2 )) O(N2logN2)
10 0(1) 0(1)
11 O(N2log(N2 )) O(N2logN2)
12 O(N 2 ) 0(1)

Table 12.2: CPU time and memory usage by Monte Carlo method

step operations memory
construct panel clustering tree for rough surfaces O(NI log(Ni)) * N, 0(N1 0log(Ni))
sparsify A in (10.31) 0(NIlog(Ni)) * CpI* Ns O(Nilog(Ni))
solve (10.31) O(Nilog(Ni)) *N*N s O(Nilog(Ni))
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Chapter 13

Numerical Results

In this chapter, we first use a small 2D example to verify the second-order correction

scheme in section 10.6 and the method for calculating capacitance variance in section 10.7.

We then use a small 3D example to demonstrate that the stochastic integral equation method

can be easily extended to 3D cases. Finally we use a few large 3D examples to verify the

accuracy and speed of fast stochastic integral equation solver.

13.1 A small two-dimensional example

The small two-dimensional example is a single circular conductor over ground plane,

shown in figure 13-1 The mean radius of the wire is 1mm and the radius fluctuation is

a stochastic process with respect to the angle in the polar coordinate system. The surface of

the ground is assumed to be smooth. The distance between the circular wire with nominal

smooth surface and the ground is 0.5mm.

The mean and variance of the capacitances calculated using different methods are com-

pared in table 13.1 and 13.2, respectively. Column Smooth is the capacitance for the con-

ductor with nominal smooth surface. This serves as a reference. Column Monte Carlo is

the capacitance computed using Monte Carlo simulations. The number of Monte Carlo

simulations is shown in the parenthesis. Columns SIE I and SIE II are the capacitances

computed using the stochastic integral equation method without and with the second-order

correction term, respectively. The parameters ri (the correlation length) and Y (the standard
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Figure 13-1: A circular wire over ground plane. The mean radius of the wire is 1mm. The
distance between the circular wire with nominal smooth surface and the ground is 0.5mm.
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Figure 13-2: Convergence of two-dimensional mean capacitance in Monte Carlo simula-
tions.

deviation) are two numbers we use to control the roughness of the surface. Smaller i or

larger (Y means a rougher surface. Figure 13-4 compares the detailed mean charge density

calculated using different methods.

In order to ensure that the Monte Carlo simulation results are reasonably reliable, we

have done the convergence test for both the mean and the variance of capacitance. As can

be seen from figure 13-2 and 13-3, Monte Carlo simulation has converged to within 1%

using 4000 runs. Hence its results can be used as benchmark to verify the accuracy of the

SIE method.

As can be seen from table 13.1, table 13.2 and figure 13-4, the second-order correction
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Figure 13-3: Convergence of two-dimensional capacitance variance in Monte Carlo simu-
lations.

Table 13.1: Mean value of 2D capacitance calculated with different methods. Unit:pF. TI is
the correlation length and T is the standard deviation. Both are in mm.

Ti (Y Smooth Monte Carlo SIE I SIE II
0.2 0.1 57.68 61.42(5000run) 58.69 61.19
0.1 0.1 57.68 63.53(5000run) 59.80 64.72

term significantly improves the accuracy and also gives a reasonable capacitance variance

estimate. The good agreement between Monte Carlo and SIE II for various roughnesses

suggests that the stochastic integral equation method with the second order correction term

is a promising approach. It is worth noting that the difference between smooth surface

capacitance and the mean capacitance is approximately 10%. Hence the capacitance will

be under-estimated if the surface roughness is neglected.

Table 13.2: Variance of 2D capacitance by different methods. Unit:pF. I is the correlation
length and a is the standard deviation. Both are in mm.

T Monte Carlo SIE II
0.2 0.1 3.72(5000run) 3.00
0.1 0.1 3.02(5000run) 2.24
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Figure 13-4: The mean charge density computed with Monte Carlo simulations and the
stochastic integral equation method. The correlation length is 0.2mm and standard devia-
tion is 0.1mm. Maximum charge density is around the surface point where the circular wire
is closest to the ground.
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Figure 13-5: The mean charge density computed with Monte Carlo simulations and the
stochastic integral equation method. The Correlation length and standard deviation are
0.1mm. Maximum charge density is around the surface point where the circular wire is
closest to the ground.
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Figure 13-6: Convergence of three-dimensional mean capacitance in Monte Carlo simula-
tions.

13.2 A small three-dimensional example

The small 3D example is a plate of zero thickness over ground plane. The ground plane is

assumed to be smooth and the plate has random rough profile, as shown in figure 13-8. The

mean and variance of the capacitance calculated using different methods are compared in

table 13.3 and 13.4, respectively.

Again, in order to ensure that the Monte Carlo simulation results are reasonably reliable,

we have done the convergence test for both the mean and the variance of capacitance. As

can be seen from figure 13-6 and 13-7, Monte Carlo simulation has converged to within

1% using 4000 runs. Hence its results can be used as benchmark to verify the accuracy of

the SIE method.

It is clear from table 13.3 and 13.4 that the second-order correction improves the ac-

curacy of mean capacitance and gives accurate capacitance variance. It is worth noting

that the algorithm and the implementation for 3D structures are the same as those for 2D

structures.

13.3 A large three-dimensional example

The results in previous sections are generated using Matlab implementation of the ideas

in chapter 10. Specifically, the dense system matrix in (10.15) is explicitly formed and
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Figure 13-8: A zero-thickness plate with random profile. The correlation length is 0.2mm
and standard deviation is 0.1mm. The size of the nominal smooth plate is 1 x 1mm. The
smooth ground plane is not included in this picture. The distance between nominal smooth
plate and the ground plane is 0.5mm.

Table 13.3: Mean value of 3D capacitance calculated with different methods. Unit:pF. T is
the correlation length and T is the standard deviation. Both are in mm.
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4000

Tl a Smooth Monte Carlo SIE I SIE II
0.2 0.1 56.599 62.656(4000run) 61.676 62.706
0.1 0.1 56.599 66.237(4000run) 63.850 65.471



Table 13.4: Variance of 3D capacitance calculated with different methods. Unit:pF. fl is the
correlation length and T is the standard deviation. Both are in mm.

1 Y Monte Carlo SIE II
0.2 0.1 2.224(4000run) 2.011
0.1 0.1 1.194(4000run) 1.370

solved by LU factorization. The matrix B and F in (10.47) and (10.48) are also explicitly

formed. Likewise, the matrix A in (10.31) is explicitly formed and solved in each Monte

Carlo simulation. For notation convenience, we will call solvers based on three methods in

table 13.3 direct SIE I, direct SIE II and direct MC, respectively.

In this section, we use the H-matrix method to sparsify matrix A in (10.15) and A in

(10.31). We have not been able to finish implementing the ideas presented in chapter 11.

We will use the namefast SIE I for the fast stochastic integral equation (SIE) solver without

the second order correction, and the namefast MC for the Monte Carlo solver based on H-

matrix method.

In order to check the accuracy and speed of fast SIE I, we again use 3D plate over

ground plane example in figure 13-8. We first use thefast SIE I andfast MC to analyze the

same small 1 x 1mm plate and compare results to those of direct solvers in table 13.5. The

good agreement in table 13.5 verifies the accuracy offast SIE I andfast MC.

We then use the fast solver to analyze a few larger plates of size 5 x 5mm, 10 x 10mm,

15 x 15mm and 20 x 20mm. The CPU time of fast SIE I is compared to Nlog(N) curve in

figure 13-9, and the detailed numbers are shown in table 13.6. It is clear from figure 13-9

that the CPU time of fast SIE I and fast MC (for just one solve of smooth problem) grows

as O(Nlog(N)). This verifies the speed of fast SIE I and fast MC.

It should be noted thatfast SIE I is about 8 to 20 times slower than one smooth problem

solve, as shown in figure 13-10. Here we have used 5 Gauss-Hermite quadrature points

in each fold of the two-fold ensemble average integral in (10.21). This means that calcu-

lating one entry in A takes 25 times as much CPU time as does calculating one entry in

A. However, for larger structures, direct calculating entries of A or A in forming low-rank

H-matrix approximation of matrix A and A takes progressively smaller portion of the over-
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Table 13.5: Mean capacitance of the 3D plate over ground plane in figure 13-8. Unit:pF.
Correlation length = 0.1, and the standard deviation a = 0.1. Both are in mm.

Smooth fast SIE I direct SIE I fast MC direct MC
56.599 63.899 63.850 67.12(4000) 66.237(4000)

Table 13.6: CPU time for a few large 3D plates over ground plane. Unit: second. 1 =

0.1mm and a = 0.1mm.

size(mm) #panel Smooth fast SIE I
5 x5 3200 43 837
lox 10 12800 365 5271
15 x 15 28800 1268 15082
20x20 51200 3763 29638

all CPU time. Other steps, such as low-rank decomposition in section 11.3.1, forming a

pre-conditioner, and solving the system with an iterative solver, are the same infast SIE I

andfast MC and take roughly same amount of CPU time for both solvers. Hence we do not

see thatfast SIE I is 25 times slower than one smooth solve by fast MC. On the other hand,

since much more refined mesh has to be used in Monte Carlo simulations, each simulation

would take longer than one solve of the smooth problem. Assuming four thousands of

Monte Carlo simulations are necessary to obtain statistically accurate results, none of the

five large examples in table 13.6 can be completed using fast MC in less than one week.

It is clear that the approach based on fast SIE I is much more efficient than Monte Carlo

method based onfast MC.

Though we are unable to complete thousands of Monte Carlo simulations of the large

plates in table 13.6, in order to further test the accuracy of fast SIE I, one hundred Monte

Carlo simulations of the smallest plate are carried out and the mean capacitance results

are shown in table 13.7. The difference between fast SIE I and fast MC as well as the

the difference between Smooth andfast SIE I are consistent with those in table 13.3. This

further verifies the accuracy offast SIE I.
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Figure 13-9: CPU time of fast SIE solver without second-order correction.
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Figure 13-10: Ratio of CPU time used by fast SIE solver and regular fast integral equation
solver.

Table 13.7: Mean capacitance of a few large 3D plates over ground plane. Unit:pF. ri
0.1mm and T = 0.1mm.

size(mm) #panel Smooth fast SIE I increase fast MC
5 x 5 3200 683 741 8.47% 811(100 runs)
lox 10 12800 2305 2484 7.81% N/A
15 x 15 28800 4837 5199 7.48% N/A
20 x 20 51200 8273 8876 7.29% N/A
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Chapter 14

Conclusions and future work

14.1 Conclusions

This dissertation has two main parts.

In part I, we have derived a recently developed surface integral formulation from a dif-

ferent perspective. Using a piecewise quadrature scheme to improve the accuracy of panel

integration, we have fixed the low-frequency problem in the original formulation. Using a

scaling technique and a local preconditioner, we have improved the accuracy and memory

efficiency of the formulation. We have also generalized the pre-corrected FFT algorithm to

allow the acceleration of complicated integral operators. Based on this generalization we

have developed a flexible and extensible fast integral equation solver, pfft++. With 4 to 5

digit accuracy at modest computational cost and nearly O(N) computational complexity,

pfft++ can be easily applied to a wide range of engineering problems. Using pfft++ as

the engine, we have developed a fast impedance extraction program, FastImp. Numerical

examples show that FastImp can efficiently and robustly perform wideband electromag-

netic analysis of general 3D structures. Both pfft++ and FastImp are now available at

www.rle.mit.edu/cpg/research-codes.htm.

In part II, we have demonstrated an efficient stochastic integral equation (SIE) method

for calculating the mean and the variance of capacitance of both 2D and 3D structures. This

method has two advantages: 1) It avoids the time-consuming Monte Carlo simulations; 2)

It avoids the discretization of rough surface, which needs much more refined mesh than
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smooth surface. Based upon the hierarchical matrix method, we have proposed a combined

sampling process to reduce the overall computational cost to O(Nlog2 (N)).

14.2 Future work

There are a number of directions we can go after FastImp and the stochastic integral equa-

tion (SIE) method.

1. 3D interconnects embedded in layered media

The formulation used in FastImp was derived from scalar Helmholtz equations and

uses E and k as its unknowns. This makes it very difficult to use the well-establishedJn

multi-layered media Green's functions [67, 1] for the analysis of 3D structures em-

bedded into multi-layered dielectric media. To remedy the situation, a new surface

integral formulation derived from vector Helmholtz wave equations was proposed

in [92]. The unknowns in this formulation are E and H on the conductor surface.

This formulation is closely linked with the well-known Stratton-Chu formulation or

EFIE and MFIE formulation. Hence the well-established techniques like RWG linear

basis function [84], loop-star basis transformation [64, 102] and frequency normal-

ization [113] can be used to reduce the number of unknowns and to improve the

accuracy at low frequencies. Though layered Green's function, RWG basis and loop-

star basis transformation are well-understood, combining them with an appropriate

fast integral equation solver is not trivial at all. In addition, the layered Green's func-

tion techniques can only handle stratified media with each layer being homogeneous

and interfaces between different layers being parallel to each other. These two con-

ditions are not necessarily met by the realistic fabrication process. So either some

approximation has to be made and new techniques have to be developed.

2. Model order reduction

FastImp calculates the impedance at a given frequency point. A natural next step

would be to combine it with model-order reduction techniques [73, 51, 60, 31] so that

we can extract the equivalent circuit models valid across wide frequency range. The
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difficulty lies in the fact that the system matrix generated from the surface integral

formulation is frequency dependent. And this frequency dependency can not be writ-

ten as a simple multiplicative form, which is the case in the Partial Element Equiv-

alent Circuit (PEEC) model [40] used by FastHenry [50, 49]. Frequency-dependent

model-order reduction is still an open problem [19]. It would be interesting to use

the formulation in Fastlmp to drive the new development in this area.

3. Modeling and simulation of 3D interconnects with rough surfaces

Though only the capacitance extraction is used in part II of this dissertation to demon-

strate the basic ideas of fast SIE, it is very conceivable to use the fast SIE method in

FastImp. This is similar to the extension of the Pre-corrected FFT method from the

capacitance extraction in [80] to the impedance extraction in FastImp. A further step

is to develop a model order reduction technique compatible with the SIE method so

we can simulate the impact of the interconnect surface roughness on the behavior of

VLSI circuits.
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Appendix A

Detailed forms of the ensemble average

Green's function

The form of the ensemble average Green's function in (10.13) is dependent upon the posi-

tion of source and evaluation points. We enumerate different combinations of source point

position (x', y') and evaluation point position (x, y).

1. (x, y) c Si or S3; (x', y') E S1 or S3

(A.1)

2. (x,y) c Si or S3; (x, y') E S2

-< (x , y' x , y ) > = K 2(x ',b ;x , y )

=dh iPI (hl)G(x', b + hi;x, y)

3. (x, y) c Si or S3 ; (V, y') C 94

< J(x'I y'; x, y) >= K3(x', a;x, y)

= dI PI (h1) G (x', a + h1; x, y)

(A.2)
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(A.3)

<: OI(x', y'x y) > = KI (x', y';x, y) = G (x', Y'; x, Y)



4. (x, y) c S2; (x',y') E Si or S3

<06(x', y'; x, y) >=K4 (x',y'; x, b)

= dh1P1 (h1)G(x', y';x,b + hi)
J-+C

(A.4)

5. (x,y) E 94 ; (x', y') E Si or S3

(A.5)

6. (x, y) C 92; (x', y') E 94

< O (x', y'; x, y) >=- K6 (x', a; x, b) (A.6)

dhP 1(hi) j dh2P (h2)G(x', a + h 1;x, b + h2)

7. (x, y) C S4 ; (x', y') E S2

< O(x', y';x, y) > = K7 (x', b;x, a)

dhiPi(hi) J dh2P (h2 )G(x', b + h1;x, a + h2 )

8. (x, y) C 92; (x', y') E 92

< ;(x, y';x, y) >=z K 8 (x', b;x, b)

=1 dhi f

(A.8)

dh2P2 (h1 , h2;x,x' )G(x' ,b+ h1; x, b + h2)

9. (x,y) C S4 ; (x', y') C S4

< (x', Iy'; x, y) >=- K9 (x', a; x, a) (A.9)

dhi J dh2 P2 (h1 , h2;x,x')G(x', a + h1 ;x, a + h 2 )

180

S

(A.7)

< (x', y'; x, y) >=- K5 (X', Y'f;x, a)

f+0dh iPi (hl)G(x', y';x, a + hi)

+CO

/+"0



Here a and b are defined in (10.1), and functions Pi and P2 are defined in (9.1) and (9.2),

respectively.
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Appendix B

Discretization of integral equation with

rough surface

Due to the change of variable in (10.6), (10.7) and (10.8), equation (10.9) is a little un-

conventional. The source points are on smooth nominal surfaces and the evaluation points

are on rough surfaces. Hence the expansion and the testing basis functions are on different

surfaces. The expansion can be written as

N

p(x, y) =piIbi(xly,), (B. 1)
ji=1

where

bi(x,y,) { 1 (x, y)cEA (B.2)
0 otherwise

where Ai is the i-th panel on nominal smooth surface. Using the same change of variable

defined in (10.6), the testing basis can be written as

1 (x~y) C Ai

bi(x,y,)= dldf (B.3)
0 otherwise

where Ai is the i-th panel on rough surface, and dl is the differential length on rough surface,

dI is its projection on the nominal smooth surface. Discretize (10.9) using expansion and
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testing functions defined in (B.2) and (B.3), we obtain

[A]p = d,

where

Aim

= dl(x,y) 'Am

and

di j dl (x,y)bi(x, y)

or

d L,

where L is defined in (10.17).
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(B.4)

(B.5)

I dt(x, y) (B.6)

(B.7)

fdl(x,y)bi(x,y) f dI(x',y')I'm(x',y')G(.x, y'; x, y)
Ai AM

d (.x', Y') 6(x', y';X, y)



Appendix C

Kronecker Product

Here we summarize the definition of the Kronecker product and a few identities. For de-

tails, please refer to [27, 62].

1. Kronecker product

If B c R'x" and C c RPXq, then their Kronecker product is given by

A=BOC=

b11C

b2 1C

bmiC bm2 C

2. "vec" operation

XER'"n < vec(X)=

3. Identities

(A®B)(C®D) = AC0BD

(A®9B)T = AT T BT

b 12C

b 22 C

... b 1nC

... b2nC

... bmnC

(C.1)

[X(:, 1)

X(:,n)

(C.2)
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(C.3)

(C.4)

C R'""



vec(Y) = (B ® C)vec(X)

vec(xxT ) =x x

trace(AT B) = (vec(B)) T vec(A)
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(AOB)-' =A-' &B-1

Y = CXBT

(C.5)

(C.6)

(C.7)

(C.8)
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