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ABSTRACT

We study forward link performance of a multi-user cellular wireless network. In our proposed cellu-
lar broadcast model, the receiver population is partitioned into smaller mutually exclusive subsets called
cells. In each cell an autonomous transmitter with average transmit power constraint communicates to
all receivers in its cell by broadcasting. The broadcast signal is a multiplex of independent information
from many remotely located sources. Each receiver extracts its desired information from the composite
signal, which consists of a distorted version of the desired signal, interference from neighboring cells
and additive white Gaussian noise. Waveform distortion is caused by time and frequency selective linear
time-variant channel that exists between every transmitter-receiver pair.

Under such system and design constraints, and a fixed bandwidth for the entire network, we show
that the most efficient resource allocation policy for each transmitter based on information theoretic
measures such as channel capacity, simultaneously achievable rate regions and sum-rate is superposition
coding with successive interference cancellation. The optimal policy dominates over its sub-optimal al-
ternatives at the boundaries of the capacity region. By taking into account practical constraints such as
finite constellation sets, frequency translation via carrier modulation, pulse shaping and real-time sig-
nal processing and decoding of finite-length waveforms and fairness in rate distribution, we argue that
sub-optimal orthogonal policies are preferred. For intra-cell multiplexing, all orthogonal schemes based
on frequency, time and code division are equivalent. For inter-cell multiplexing, non-orthogonal code-
division has a larger capacity than its orthogonal counterpart. Among intra-cell orthogonal schemes,
we show that the most efficient broadcast signal is a linear superposition of many binary orthogonal
waveforms. The information set is also binary. Each orthogonal waveform is generated by modulat-
ing a periodic stream of finite-length chip pulses with a receiver-specific signature code that is derived
from a special class of binary antipodal, superimposed recursive orthogonal code sequences. With the
imposition of practical pulse shapes for carrier modulation, we show that multi-carrier format using co-
sine functions has higher bandwidth efficiency than the single-carrier format, even in an ideal Gaussian
channel model. Each pulse is shaped via a prototype baseband filter such that when the demodulated
signal is detected through a baseband matched filter, the resulting output samples satisfy the General-
ized Nyquist criterion. Specifically, we propose finite-length, time overlapping orthogonal pulse shapes
that are g-Nyquist. They are derived from extended and modulated lapped transforms by proving the
equivalence between Perfect Reconstruction and Generalized Nyquist criteria. Using binary data mod-
ulation format, we measure and analyze the accuracy of various Gaussian approximation methods for
spread-spectrum modulated (SSM) signalling. We show that both high rate techniques -parallel chan-
nel, single gain and single channel, reduced gain- are equivalent under the Gaussian model with or
without multipath fading. For seamless multiplexing of SSM channels of various rates, we propose a
flexible scheduling policy that removes code blocking and affords statistical multiplexing by dynamically
reassigning signature codes. The algorithm is able to support both bursty and constant-bit rate connec-
tions without code tree partitioning.

Thesis Supervisor: Kai-Yeung Siu
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1

INTRODUCTION

In wireless communication, the radio frequency (RF) bandwidth is a premium. The only ef-

fective means of maximizing bandwidth utilization is by reusing it over and over again at distant
locations. Any conceivable wireless communication system -for example, broadcast radio and
television channels, walkie-talkie, Citizen Band radio, Personal Mobile Radio, air traffic control,
wireless local area networks etc.- adopts this strategy. In the literature, the precise technical
jargon is known as frequency re-use; it is measured in terms of a single parameter called the

re-use number Nr. Reuse of bandwidth is also the main culprit of interference in a cellular
wireless network. Interference due to frequency re-use is synonymous to bacteria: Without
it, the entire cellular network is very inefficient in bandwidth utilization; With it, a carefully

designed control mechanism is required to maintain the network in equilibrium. Two mutually
exclusive techniques that mitigate signal degradation due to interference are propagation loss
and coding. The former is mostly a by-product of geometry while the latter is an application of
algebra. Since interference originates from distant transmitters, it can be reduced by increas-

ing the distance of separation -but at a cost of lower bandwidth efficiency per transmitter.
(This remark is explained in detail in Chapter 3.) Determination of an optimal re-use distance
is a difficult task for cellular radio system designers. It is a complex problem involving many
interdependent factors such as resource allocation policy, information-dependent coding, data
modulation format, characteristics of the propagation medium and the design and complexity

of mobile transceiver. The final choices of these factors made by European GSMI and American
IS-952 system designers are compared in Table 1.1.

'GSM -Global System for Mobile Communications- is a pan-European cellular mobile radio standard that has
been adopted in all regions around the world with a global market share of over 80% as of year 2003.

2U.S. IS (Interim Standard) 95 is a cellular mobile radio standard pioneered by Qualcomm Inc. that uses direct-
sequence spread-spectrum technology and is incompatible -and in direct competition with- TDMA based GSM.



Table 1.1: System Parameters of GSM and IS-95 Cellular Networks

Parameter GSM IS-95

Channel Multiplexing FDM/TDM (downlink) superimposed O-CDM (downlink)

Multi-User Accessing FDMA/TDMA (uplink) PN spread N-CDMA (uplink)

with time advance

Duplex mode frequency division frequency division

Re-use number Nr 4 or 7 1

Carrier Modulation s(t) single-carrier single-carrier

Data Modulation g(t) MSK (downlink) QPSK (downlink)

MSK (uplink) O-QPSK (uplink)

Pulse-shaping f(t) Gaussian (BT = 0.3) Root raised cosine (r =0.22)

Coding None Pseudo-Noise Coding

(Information-independent) SF = 2 (dl), SF = 42.67 (ul)

Convolutional Coding Tc = 1/2, K = 5 (both links) rc = 1/2, K = 9 (downlink)

(Information-dependent) T, = 1/3, K = 9 (uplink)

Modulation spectral efficiency 0.8 1.6

(bits/symbol)

Bandwidth efficiency Neff 4 1.5

(Effective reuse number)

Please refer to page 381 for acronyms.

1.1 Historical Perspective and Motivation

An alternative to propagation loss for interference suppression is information-independent

coding -commonly known as spreading. Its sole purpose is to reduce interference from distant

transmitters, not background thermal noise. In contrast, information-dependent coding -which

is more commonly known as single-user error control or channel coding- is optimized for de-

tection of a signal perturbed with samples of an additive white Gaussian noise process -and to

a lesser extent, the suppression of interference. Both error control coding and spreading tech-

niques achieve their objectives by expanding the signal transmission bandwidth -relative to

the uncoded case- by 1 /Tc and kc respectively. (The parameter rc is the code rate of an error-

control code and ke is the excess spreading factor of a signature code sequence.) Claude Shan-

non formulated the Channel Coding Theorem by proving that in a single-user AWGN channel,

reliable communication -with arbitrarily low error probability- is achievable only through

coding. This result is also applicable to a multi-user communication system if the code is op-

timized for both AWGN and interference. The construction of such codes and their associated

decoding methods remain as the Holy Grail in communication system design. In practice system
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designers rely on a cascade of two independent operations: single-user error-control coding to

combat Gaussian noise followed by channelization coding for interference suppression. Time-,

frequency- and code-division multiplexing schemes are examples of channelization coding in

time, frequency and code domains, respectively. When the reuse number N, the coding rate rc

and the excess spreading factor kc are taken into account, the transmission bandwidth relative

to the uncoded case is increased by

Neff = Nrkc
TC

where Neff is defined as the effective reuse number. If Wto0t is the total allocated RF bandwidth

for a cellular network, the usable bandwidth per cell (transmitter) is

We = Wtot/Neff (1.2)

The optimal set of numbers that should be assigned to these three variables in eqn. (1.1) for

cellular mobile radio is often a contentious matter debated fiercely in the academic world as

well as in the industry. Numerous published articles and texts have compared capacities of

GSM and IS-95 networks. Other researchers have analyzed the capacities of generic TDMA-

and CDMA-based networks. These comparative results may be biased, unfair or incomplete for

the following reasons:

0 GSM vs. IS-95: The comparison of GSM versus IS-95 is not always equivalent to TDMA

versus CDMA because key network design parameters such as data modulation format,
channel coding rate and constraint length, voice compression algorithm and receiver ar-

chitecture skew the overall network performance. The critical role played by the un-

derlying channel multiplexing or multi-accessing method (TDMA or CDMA) is no longer

apparent. For example, IS-95 affords a much more powerful convolutional code with a

longer constraint length than GSM due to its continuous transmission capability. In con-

trast, GSM bursts in TDM/TDMA mode do not allow excessive delay for voice packets. For

non-voice applications, it is conceivable that a TDMA system can also use a convolutional

code of longer constraint length. In terms of data modulation, GSM designers selected

minimum-phase shift keying due to its constant envelope property and equivalence to

FM/FSK modulation. The former condition allows the use of non-linear RF amplifiers.

The latter condition allows the use of an FM demodulator, either in non-coherent, differ-

ential or coherent detection mode. In IS-95, both links adopt spectrally more efficient I/Q

modulation formats. Since the power efficiency of RF amplifiers is less critical at the base

site, IS-95 designers opted for QPSK in the downlink. For the uplink, its variant offset

QPSK -which has a smaller peak-to-average amplitude ratio than QPSK- was chosen.

In terms of pulse shapes, GSM adopts a non-Nyquist Gaussian pulse for its smooth spec-

tral roll-off. Its goal is to improve bandwidth efficiency with controlled ISI. In IS-95, root

raised-cosine Nyquist pulses are used.
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" TDMA vs. CDMA: Analytical results obtained from comparative study of generic TDMA

and CDMA systems may not be directly applicable to practical networks since most the-

oretical models assume unconstrained signal design, very long codewords and complex

decoding algorithms that may not be realizable in practice. For example, in the one-

to-many 3 broadcast channel, both TDM (as adopted in GSM downlink4 ) and orthogonal

CDM (as adopted in IS-95 downlink) have the same achievable rate regions. It is true,

however, that the optimal channel multiplexing protocol -with a larger capacity region

than TDM- is a non-orthogonal CDM with successive interference cancellation. However,

this is not the chosen protocol for IS-95. In the many-to-one multiple access channel, opti-

mal CDMA with maximum-likelihood joint detection has a larger rate region than TDMA.

On the other hand, naive CDMA (as adopted in IS-95 uplink) has a smaller rate region

than TDMA.

" Downlink vs. Uplink: Cellular networks -like most other communication systems- op-

erate in duplex mode; i.e., information is exchanged from a stationary base transceiver to

mobile terminals and vice versa. The preferred duplexing mode for cellular networks is

frequency-division 5 where two disjoint RF bands are assigned for base-to-mobile (down-

link) and mobile-to-base (uplink) transmissions, respectively Thus, any comparative

analysis of TDMA versus CDMA is incomplete unless the study is conducted for both

downlink and uplink. The GSM standard has the same TDMA architecture, modulation

and coding formats in both links. In contrast, the IS-95 standard applies different channel

multiplexing, modulation and coding formats in each link.

" Single (fixed) vs. Multiple (variable) Rates: Most comparative studies focus on TDMA

and CDMA network architectures that support a single class of constant-bit-rate channels

only This model is well suited for voice and low-rate data applications. It obviously fails

to address the feasibility and complexity issues involved in the support of variable data

rates in a single channel over the duration of a connection or among different channels.

Most often the added complexity in multi-rate communication is at the receiver. For a

base site, transmission at a higher information rate is simply a matter of rate-splitting

among several parallel low-rate channels. In TDM/TDMA, multi-rate reception involves

signal detection over a longer time window. In contrast, the complexity of a CDM receiver

may not scale easily for higher information rates.

Our work herein is another attempt -one among many from various researchers and

practitoners- that measures and quantifies the contribution of key parameters of a cellular

3The one-to-many "broadcast" channel is not the same as "downlink." See Chapter 3 for details.
4downlink = forward link
5The other option is time-division duplexing where a single RF band is used. The time frame is divided into two

sub-frames, with each sub-frame dedicated to base-to-mobile or mobile-to-base transmission.
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1.2 Definitions and Network Models 27

network architecture design. We limit our scope to communication in the downlink only. We do

not in any capacity profess that our models and analytical results are unbiased, fair and com-

plete. Nevertheless, we have taken a broad approach in which important design parameters

-resource allocation policy and its associated channel multiplexing scheme, carrier and data

modulation/demodulation techniques, pulse shaping for spectral containment, peak-to-average

transmission ratio and resulting latency bound, receiver complexity and scalability- and their

intertwined relationships are all taken into account. Before we begin our quest for the Holy

Grail, we review some preliminaries:

1.2 Definitions and Network Models

A communication network consists of at least two entities: a source and a sink. Information

is exchanged from a source to a sink. The term "user" is synonymous to "sink." An M-user

communication network consists of M source-sink pairs. A source feeds information to its des-

ignated transmitter. Communication is established between a transmitter and a receiver through

a medium called the channel. The receiver then delivers the message to its associated sink6 .

The transmitters and receivers play the role of middlemen who help facilitate the transaction

-in this case, reliable and efficient communication from a source to its sink.

o I T S1
012 T2 E S2

013 T3 R S3

T4 MR

channel

Tm~ Rn23

mr-2 M n2

" IM-1 T -1 sM-1

" IM Tm R SM

0 source 0 transmitter

* sink E receiver

Figure 1.1: A generic communication system with M source-sink pairs

In general, a communication channel is a two-way street. An example of a two-way chan-

nel is the twisted-pair duplex telephone line in which information is sent and received by both

entities simultaneously. In the work presented herein, information exchange is simplex -i.e.,

6 1t is assumed that information exchange between a source and its transmitter -and similarly between a receiver

and its sink- is instantaneous (zero delay) and error-free.



in one direction only. Therefore every entity is either a source or a sink, but not both.

With stated stipulations, several communication channel models can be envisaged. At a

minimum when there are only two entities -a source and a sink- we observe the well-studied

single-user channel model. When the source-sink population is much larger, three different

types of multi-user channel models -broadcast, multiple-access and interference- can be de-

fined. Their distinction is quantified by a single determinant known as cooperation. 'Autonomy"

is antonymous to "cooperation." Cooperation is equivalent to pooling of resources; a resource

is either a transmitter or a receiver. To facilitate our classification of multi-user channel models,

we depict a block form of a generic network with M source-sink pairs in Fig. 1.1. The chan-

nel is effectively an input-output (I/O) device with T = m transmitters as inputs and R = n

receivers as outputs. Cooperation may exist at the input side among sources or at the output

side among sinks. In one extreme all sources and sinks are in full cooperation; this is the de-

generate single-user model. In the other extreme with no cooperation at both ends, we obtain

the interference channel in which T = R = M. The two remaining channel models are con-

structed when there is full cooperation at one (input or output) side only. When there is full

output cooperation (R = 1) and autonomous transmitters (T = M), a multiple-access channel is

observed. Here, the emphasis is on the receiver since it must -on behalf of all sinks- gather

or access information from multiple sources. With full input cooperation (T = 1) and a separate

receiver for each sink (R = M), the broadcast channel results. All sources pool a single common

transmitter. In return the transmitter broadcasts a compound signal to all users (sinks). All

three multi-user channel models are illustrated in Fig. 1.2. A dashed-line block is enclosed

among a group of sources or sinks that are cooperating. The compound signal -say, s(t)- is

a linear superposition of M time-synchronized, independent signals,

M

s(t) = Y si(t)
i=1

where each elemental signal si(t) is representative of message Mi from source Ii. Channel

multiplexing is a transmitter's task of converting independent messages to a broadcast signal:

{mT1, M2, ... -, MM} -- + s(t), s2(t), ..., )sMt)

such that the same broadcast signal is most suitable for transmission to various remotely lo-

cated receivers through their respective channels. If an intermediate step where messages are

modulated by signature code sequences is included,

{I~n , M2, ...- , TM j} -> bj[j], b2[j],. , bm[j] - s(t)

the broadcast signal is said to be code-division multiplexed.

Introduction28



1.2 Definitions and Network Models

R
S,0

0

0

0

0

IM-1
I M MR

(a) broadcast model with full input cooperation

Ri
U

* Si

SS?_
S~3

* SM_

* SM

(b) multiple-access model with full output cooperation

29

channel

P1  S
-.------. Si

0 M-10 SM-1

RM - SM

(c) interference model with no cooperation

Figure 1.2: Multi-user communication channel models

I 1

12

13

channel

I, Ti

-I TM-1

IM
TM

channel

TI

12 0-

TM

0 SM-1

* SM

T,



30 Introduction

1.3 Problem Statement

When cooperation is partial, two variations of the interference channel can be deduced.

They are labelled collectively as composite channels. We are only interested in the broadcast-

interference composite model7 with partial input cooperation (T < M) and autonomous re-

ceivers. It mimics the base-to-mobile (downlink) cellular radio propagation channel. Each

mobile user or radio receives broadcast signal from its target antenna site as well as interference

signals from nearby transmitters. We coin such model the cellular broadcast channel.
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Figure 1.3: An aerial view of a densely populated geographical area

Fig.1.3(a) depicts an aerial view of several fixed transmitters (LI) and many scattered sinks

(o) in some densely populated geographical area. If we further assume that an omni-directional

antenna is mounted at each transmitter site and neglect physical objects in the propagation

medium, the signal strength is the same along the perimeter of a circle of arbitrary radius -

similar to circular (barometric) contours. This "imaginary" coverage area is commonly known

as a "cell." As an alternative, it is possible to design a communication network consisting of a

single transmitter only with a huge circular footprint (see Fig. 1.3(b)) to accommodate every

scattered receiver. This in fact is the paradigm for terrestrial and satellite broadcast services

such as radio and television. In both applications, the number of sources (radio or television

channels) is much smaller than the number of receivers. This violates our stipulation that a

source exists for each sink. If each sink (a listener or a viewer) demands a different TV or radio

7 The other composite channel is multiple-access with interference. A good example of such channel is the

cellular uplink. Each base receiver must jointly decode information from its scattered target mobiles in the presence

of interfering signals from out-of-cell mobiles.

0



broadcast channel8 , the channel "pipeline" would be very big; i.e., a prohibitively large amount

of bandwidth is required. To circumvent the hunger for bandwidth, the region is partitioned

into smaller coverage areas. The allocated bandwidth is shared and reused among transmitters.

In a nutshell, this is the cellular re-use concept.

Problem Statement:

Consider a large mobile radio communication network depicted in Fig 1.4. Assume

the total coverage area is unbounded, and it is partitioned along imaginary lines by

concatenation of hexagonal cells of equal size. If the available (radio frequency) band-

width is Wtot Hz and the omni-directionally radiated power from each transmitter is

limited to P watts, what is the optimal resource allocation policy for each transmitter?

Figure 1.4: An aerial view of a cellular communication network

1.3.1 Optimality Criteria

This begs the question: "How is optimality defined, and what other parameters should be

taken into account in selecting the 'best' resource allocation policy for each transmitter?" If

optimality is measured in terms of the sum-rate (i.e., the sum of information rates to all users

within a cell), then the best strategy is to communicate only with the receiver that maintains

8The term "channel" is used in different contexts throughout the monograph. Here it refers to a TV or radio

station that is tuned in. It also applies to the radio propagation medium through which a signal is transmitted, or

a connection -a logical channel such as a frequency band, a time-slot or a code sequence- established between

each transmitter-receiver pair.
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the best channel response. This policy is evidently unfair to other receivers with poorer respec-

tive signal strengths. At the other extreme a "socialist" policy supports the same rate to every

receiver regardless of their respective demands. Current cellular systems adopt such a strategy

where each circuit-switched channel carries a fixed information rate. This policy is too strin-

gent to support various multimedia applications that require variable information rates. Rate

adaptation applies not only to the partitioning of the total sum-rate among receivers, but also to

dynamic variation of information rate to each receiver throughout the lifespan of a connection.

Achievable Rate Distribution

We may investigate this problem from a different angle. Suppose there is a set of requested

rates by receivers:
R* = (R*, R*, . . . , R*)

We can select an "optimal" resource allocation policy

R = (R),R,.. .,R)

that best matches the requested rates with

* the minimum mean squared error:

m ine (R* -RP2

" the minimum error in rate-sum:

mine (R - RP)
i=1

" the largest percentage of user population whose requested rates are met:

max i1

where the indicator function 1j = 1 when (Rt > RP) is true, and zero otherwise.

" the largest achievable rate per connection:

maxR, R m ,. , Ro

" the maximization of the minimum rate in all connections:

max{min{R', R,..., Rm
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R 2

C2

ODM

optimal

N-CDM N-TDM

C R

Achievable rate pair (R1 , R2 ) for a two-user Gaussian broadcast channel. Any rate pair
Figure 1.5: enclosed by the outermost bound (including point A) is achieved by the optimal scheme.

Any rate pair, including point B, is achievable by any of the orthogonal schemes.

Depending on the requested rate vector R*, there may be an outright winner or several
winners with ties. Consider the capacity-region plot shown in Fig. 1.5. This is the broad-
cast capacity of a two-receiver system in an ideal bandlimited channel perturbed by additive
white Gaussian noise processes with power spectral densities oaf and o, respectively. The op-
timal policy is superposition coding with successive multi-stage decoding. (Details are given
in Chapter 3.) The x- and i- intercepts are single-user capacities Cs and Cs of users 1 and 2,
respectively. Any rate pair (xi, y ) within the region bounded by the "optimal" curve and the
two perpendicular axes can be supported by the transmitter. The figure also gives achievable
rate regions (ARR) for several sub-optimal multiplexing schemes. If the target rate pair is point
A, then the optimal scheme must be used to meet the demand of all receivers. If the target rate
pair is point B, then we have a choice between the optimal and various sub-optimal orthogonal-
division multiplexing (ODM) schemes. A similar design option is available for point C where
all but naive code-division multiplexing (N-CDM) are good candidates. Moreover, the gap in
ARR of the optimal policy over ODM -or likewise the larger rate region of ODM over naive
time-division multiplexing (N-TDM)- is proportional to the difference in noise levels af - 2_

In fact when U2 = o2 the optimal and orthogonal-division multiplexing schemes collapse onto

the straight-line rate region of N-TDM. It becomes apparent that measuring the optimality of
a resource policy based only a set of simultaneously achievable set of rates is insufficient. We
must consider other factors such as:
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Rate Adaptation

During the life of a connection, from the initial handshake to subsequent channel release,

the information rate of a user may vary from zero to some upper limit. Referring to Fig. 1.5,

at any time instant the supported rate pair may slide from point C to D (or E or F). At another

instant it may slide again from D to F. The adaptation of rates between the transmitter and its

users must be coordinated dynamically and seamlessly. The break-before-make process -first

releasing an existing connection and subsequent acquisition of a new connection- for variable

rate support is not efficient utilization of network resources. If carried out, the total network

capacity is reduced due to increased control signal overhead, and above all, the exchange of

information is not seamless. With dynamic rate adaptation, a user's information rate is adjusted

block-by-block. In time-division multiplexing, a block is a time slot -which is a fraction of time

frame allocated to a user. Likewise, in frequency-division multiplexing (FDM) a block is a

fraction of the total frequency band. A control flag is appended in each block sent from the

transmitter to each user informing the size of the block. Hence we must consider the ease and

flexibility of arranging such a procedure in every channel multiplexing scheme.

2

3
2 2 2

3 3 3 fi f 2  f3 f4  5  fl f7  f, f,
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Figure 1.6: Assignment of frequency blocks in FDM

Receiver Complexity

For successful coordination of dynamic rate adaptation, a user's receiver must have the

capability of accepting -i.e., demodulating, detecting and decoding- a block of variable size.

The pertinent issue here is scalability of receiver design for increased information rate. In TDM

this is a trivial matter since a larger block implies a longer time window of reception. In a FDM-

based cellular network as shown in Fig. 1.6, assigned frequency bands are interleaved such

that spectral overlap (i.e., adjacent channel interference) is reduced among frequency bands

Introduction
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allocated to a cell. This strategy precludes the use of a wideband contiguous frequency band

for higher transmission rates. Therefore, an FDM receiver may require a tunable filter with
adjustable (rubber) bandwidth or a set of fixed-bandwidth filters. It is obvious that the latter
option does not scale efficiently.

In the optimal multiplexing policy, the receiver complexity issue is somewhat unique: it is
unrelated to the information rate. Rather it is directly proportional to the number of users and
their relative signal-to-noise ratio (SNR). The user with the lowest noise level has the highest
complexity since it must first decode signals of other users with higher noise levels. The real-
time implementation of such a procedure may not be feasible in a fading environment. We
elaborate on these remarks in Chapter 3. As presented therein, the receiver complexity issue
takes a different flavor when combined with the frequency re-use concept of cellular networks.

Dynamic Resource Allocation

In rate adaptation the aim is to provide rate guarantees on a per-user basis. It is mainly
concerned with the physical layer (e.g., receiver hardware complexity) and the medium-access
layer (e.g., control channel flag) issues. It is a local optimization policy; its interest lies in the
support of rate Rmax/n for an arbitrary n > 1. It does not address -or is even concerned
with- the issue of maximizing the overall network information capacity, which is of course
a network layer global optimization problem. This subject of dynamic resource allocation is
broken down into network operations such as call admission control, data channel scheduling
and queuing and prioritization of data packets. The goal is to support a certain pre-defined
level of quality-of-service (QoS) -loosely measured in terms of maximum information rate, the
ratio of maximum to average information rate, call admission and dropping rates- to every
user while maximizing the time-averaged capacity of the entire network. It is well known that
TDM with its bursty transmission property generally has a high ratio of maximum-to-average
information rates. The opposite is true for FDM. In orthogonal code-division multiplexing (0-
CDM), as demonstrated in Chapter 7, the total network capacity also depends on the type of
signature code sequences.

C(f) N(f)

N
3

N2  N N4
I N5

frequency frequency

(a) (b)

Additive Gaussian channel models
Figure 1.7:

(a) frequency selective channel (b) non-uniform Gaussian PSD
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Carrier Modulation and Pulse Shaping

The channel capacity of a power-limited, discrete-time AWGN channel is a fixed value. The
type of carrier modulation format (single or multiple) for information transport is irrelevant in
the discrete model. When the channel model is modified for continuous time, it is well known
that both single- and multi-carrier modulated signals achieve the same capacity as long as opti-
mal brick-wall pulse shapes are used. The higher spectral efficiency of multi-carrier modulation
format have been touted in the Gaussian channel model when the channel transfer function
is frequency selective (time dispersive), or the noise density is non-uniform across the trans-
mission bandwidth. In that case the total spectrum is sliced into many parallel channels such
that ideal flat frequency response is maintained in each sub-channel. This is illustrated in Fig.
1.7. This is the water-filling policy in the frequency-domain. The transmit power density is
optimally allocated according to some criterion such that the spectral efficiency is maximized
over the entire frequency band. Our argument goes one step further: Even in a frequency-
flat AWGN channel, multi-carrier modulation achieves a larger capacity than its single-carrier
counterpart when modulated signals are generated using practical pulse shapes. The capacity
gain is mainly due to smaller excess bandwidth (beyond the minimum Nyquist bandwidth) and
controlled overlap of sub-carriers in the multi-carrier format. The excess bandwidth is usually
measured in terms of the fraction of mainlobe bandwidth that overshoots the Nyquist band-
width. We show that the excess bandwidth is larger for a wideband single-carrier modulated
signal than its multi-carrier counterpart. We portray this condition graphically in Fig. 1.8. Our
argument is made precise in Chapter 5.

overlapping carriers

non-overlapping carriers

Wr

single-carrier

excess
bandwidth

Figure 1.8: Excess bandwidth of transmit signal with pulse shaping
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1.4 System Model

Due to symmetry, the design and analysis of the entire cellular network reduces to the design
and analysis of communication techniques in any arbitrary hexagonal cell. By convention we
denote the target cell as cell number 0 and the desired target receiver in cell 0 as user 0. The
system consists of the transmitter at the center, many receivers scattered within the target cell
plus interfering transmitters surrounding the target cell. The model is depicted in Fig. 1.9.

Figure 1.9: System model of a symmetric cellular broadcast network

A block diagram outlining key components of the cellular broadcast communication system is
illustrated in Fig. 1.10. The messages from M independent information sources are pooled and
converted into code symbols:

{M1, M2, .. ,MM} ---a {X1 [j], X2[j], ... , X I]

Throughout we assume code symbols are binary-valued. The M parallel code sequences are
then code-division multiplexed into a composite broadcast code sequence b[n]:

{XI1[j, X2 [j], .. , XM[j]} -+ {bi[n], b2[j], ... , bM[j]}

M

b[n] = b[n]

where it is understood that each channel symbol Xk[j] is channelization coded or modulated
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Figure 1.10: Block diagram outlining major components of a cellular communication system

with its respective modulating sequence c[T)I:

Level-Shift:

Channelization:

Xk[j] - xjj]

bk[n] = Xk[j] - ck[n]

Finally, the code sequence is converted to a continuous-time RF waveform through a two-step

process of discrete-to-analog (D/A) conversion and carrier modulation:

D/A Conversion:

Carrier Modulation:

b[n] -- g(t)

g(t) -+ s(t)

The transmit broadcast signal s(t) is perturbed by linear channel distortions consisting of time

variation and multipath propagation. The received signal r(t) of target user 0 consists of

channel-distorted desired signal, interfering signals from neighboring transmitters plus receiver

front-end thermal noise that is modelled as white Gaussian noise process. As can be seen from

the figure, we are mostly interested in synthesis and analysis of shaded functional blocks such

as transmit and receive filter banks, carrier modulator and demodulator, and above all, the

channel multiplexing operation and design of channelization codes. As performance measure,
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we wish to evaluate the capacity and achievable rate, as well as uncoded bit-error rate and

channel blocking probability of target user 0. As we shall see, all three benchmarks are highly

dependent on aforementioned functional blocks and the time-variant impulse response c(t; t)

of the channel, and to a lesser extent, on the type and complexity of the target receiver.

1.5 Thesis Summary

By taking into account all the factors listed in previous sections, we show that a resource

policy based on orthogonal code-division multiplexing is the preferred option. This conclusion

is reached in several stages through the method of elimination. We show that:

* The optimal policy based on multi-resolution coding may not be feasible in practice. This

is due to limited knowledge in the design of such codes and the enormous complexity

imposed on all receivers. We next consider three orthogonal multiplexing schemes that

divide bandwidth into time-slots, frequency bands or orthogonal codes. On a single-cell

basis, they are all equivalent. In a multiple-cell environment, a policy based on code-

division multiplexing is preferred over time- and frequency-division multiplexing. The

preference is not necessarily due to a larger sum-rate for CDM but due to reduced com-

plexity and flexibility at both transmitting and receiving ends.

" The support of variable rates to a target receiver in CDM is achieved by assigning a single

binary code, parallel binary codes or a single multi-level code. We show that their perfor-

mances, measured in terms of bit-error rate in zero-mean AWGN channel with or without

multipath fading, are comparable. A receiver designed for a single binary code channel

has the least complexity. Thus, CDM with single binary code channels is the preferred

mode of multi-rate transmission.

" In the previous step, we show that higher-bit rate schemes based on single and parallel

binary code channels are comparable in terms of bit-error rate. This compares their per-

formance on a single-user basis. At a system-wide level, CDM with single binary code

channels may have a lower throughput due to "code blocking" constraint that the system

imposes when assigning recursive binary orthogonal codes. This condition does not arise

in CDM with parallel binary orthogonal code channels. We then propose several methods

and algorithms that remove code blocking. As an added bonus we show that CDM with

single binary code channels is the preferred mode not only in terms of multi-rate support

but also for statistical multiplexing of code channels.

* As seen from the system model depicted in Fig. 1.10, channel multiplexing is a discrete-

time operation involving input data sequences and signature codes. We have yet to de-



clare the type of pulse shaping and carrier modulation that maximum the overall spectral

efficiency of the cellular system. The transmit signal s (t) can be one of the following two:

a single-carrier-modulated wideband format or a series of contiguous multiple-carrier-

modulated narrowband formats. We show that a multiple-carrier-modulated pulse has a

narrower (i.e., more bandwidth efficient) power spectral density when practical Nyquist

waveforms only are allowed for pulse shaping. In fact, we describe a special class of

finite-length time-overlapped pulses that meets the generalized Nyquist criterion for zero

intersymbol interference.

1.6 Organization

When analyzing a complex communication system with a large number of entities -with

each entity belonging to one of several different classes, it is always a challenge to make the

material accessible and easy to follow. Most often it is not because the content and its underly-

ing theories are difficult to comprehend, but simply because the symbols and notations used in

the analysis become unnecessarily cumbersome and confusing. We also run the risk of exhaust-

ing all possible Greek and Roman characters. We have therefore taken the liberty -and much

headache- in preparing a list of symbols and notations used throughout this document. For

consistency and homogeneity with references listed herein, we retain, whenever possible, the

most commonly used symbols and notations as they appear in the literature. They are listed in

page 381 under various sub-categories.

Every chapter begins with a Summary section. It quickly reviews related material from pre-

vious chapters, and then summarizes the main results of the chapter. The purpose is brevity,

not absolute clarity or completeness. It is a synopsis of the overall content to a reader who is

well-versed in the subject matter.

Chapters 2-7 end with a section titled Notes and References. In it we cite background ma-

terial and references pertinent to material presented in each chapter. It also highlights certain

methodologies, procedures and relevant topics that are not covered or those that we were not

able to resolve. Appendices are annexed at the end of several chapters. They contain back-

ground material that serve as the vehicle in facilitating the description and understanding of

results presented in the main body of the chapter.

Since the topics covered in various chapters are related and recycled, it is highly recom-

mended that the entire document be read in the logical order presented. The main topics of

discussion in the remaining chapters are as follows:

Ch. 2: The physical attributes of various fading phenomena and their associated statistical mod-

els are reviewed. An exhaustive list of statistical distribution functions that model the

fading amplitude of the fading signal envelope and their first- and second-order moments
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are derived and compared. The contents serve as background material for topics that

follow in the remaining chapters.

Ch. 3: Key information-theoretical results pertaining to the channel capacity and simultaneously

achievable rate regions of various multi-user channel models are reviewed and derived.

In particular, the analytical results are extended to a composite channel that mimics

the downlink of a cellular propagation model. It is then concluded that information-

independent coding is preferred over propagation loss due to distance for inter-cell inter-

ference suppression. Thus CDM/TDM with spreading is a better candidate than FDM/TDM

without spreading.

Ch. 4: The design and analysis of signature waveforms and their associated code sequences are

detailed. Emphasis is placed on a class of recursive orthogonal binary antipodal code

sequences. Its auto- and cross-correlation properties are examined. Alternative interpre-

tation of these orthogonal codes in terms of a balanced tree structure is described. The

recursive property enables flexibility in rate adaption and reduced hardware complexity

at the receiver.

Ch. 5: The design of practical analog pulse shapes is treated. Related topics such as transmission

bandwidth, power spectral density, bandwidth efficiency, Nyquist criterion for zero inter-

symbol interference are discussed. The connection between the Nyquist criterion in the

analog domain and the Perfect Reconstruction criterion in the discrete domain are high-

lighted. The significance of practical Nyquist time-limited pulse design methods are ex-

plored. It is concluded that multi-carrier modulation with time-overlapped pulses is more

bandwidth efficient than single-carrier modulation with raised-cosine Nyquist pulses.

Ch. 6: The performance of various data modulation-demodulation schemes are listed. In partic-

ular, we focus on two competing techniques of single-code with variable spreading and

multiple codes with single spreading. The performance measure is in terms of the average

bit-error probability. The validity of the Gaussianity of the interference plus noise term is

studied.

Ch. 7: The code blocking issue that arises in recursive orthogonal CDM scheme is explained. As

a follow-up, two network scheduling schemes that reassign signature codes horizontally

and vertically inside a code tree are presented. Another code reassignment scheme that

exploits statistical multiplexing of bursty connections is also considered.

1.6 Organization 41
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1.7 A Note on Nomenclature

In order to avoid any confusion in terms of interpreting concepts and terminology, we -in

this section- list and define several important keywords that appear over and over in other

chapters. We have tried to conform our definitions and interpretations as close as possible to

those that already exist or well accepted in the literature. Unfortunately, universal acceptance

or unambiguity of key parameters and concepts is not possible due to historical and legacy

precedence as well as different interpretation by scholars and practitioners in many branches

of information sciences and engineering. For the sake of clarity and consistency, we define the

following:

Multiplexing vs. Multiple-Access

According to our own interpretation on page 28, channel multiplexing is a task performed by

a broadcaster (transmitter) on behalf of many disparate and independent information sources

for the collective benefit of all target receivers. It is assumed that the transmitter also has

some knowledge of the channel and receiver states as well as the authority to construct a

single compound broadcast signal that is efficient and reliable for transmission. In contrast,

multiple-accessing assumes joint detection and decoding of signals from several autonomous

transmitters. It is a task reserved for a receiver that is linked to more than one sink. In the

cellular broadcast model that we study, each receiver is connected to a single sink. Reception

from multiple transmitters -for example, for the purpose of transmit signal diversity- is not

allowed. When discussing commercial cellular and other wireless networks, it has become

the norm to use terms such as TDMA, FDMA and CDMA even though all three are signalling

protocols for the uplink. Whenever we discuss a particular network such as GSM or Qualcomm

IS-95, we will explicitly state whether we are referring to uplink or downlink or both.

Channel Multiplexing vs. Channel Modulation

As depicted in Fig. 1.10, channel multiplexing is a discrete-time operation that is carried out

before discrete-to-analog conversion and pulse shaping. Since we are studying digital com-

munication only, all code symbols belong to a finite (PAM-type) set. Analog waveforms are

required only for actual passband transmission via a radio propagation channel. Therefore,

channel/carrier modulation refers to frequency translation from baseband to RE There are two

options in channel modulation: single versus multi-carrier. As far as we are concerned, the

type of carrier modulation -single or multiple- is independent from the choice for channel

multiplexing.
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Multi-Carrier Modulation vs. OFDM

Multi-carrier modulation is an analog IF or RF modulation technique in which the transmit sig-

nal is a linear sum of multiple (sub-)carrier modulated signals. Valid sub-carriers are cosine and

sine continuous-time functions. No strict requirement is imposed on the relationship between

any two sub-carriers in terms of spacing between center frequencies, time synchronization

and carrier phase coherence. On the other hand, Orthogonal frequency-division multiplexing

(OFDM) is a special kind of multi-carrier modulation technique implemented in the discrete-

time domain. For historical reasons the name is closely related to frequency-division multi-

plexing of analog telephone channels. By applying (inverse) discrete-time Fourier transforma-

tion (DFT) of a block of discrete data sequence, a multi-carrier modulated signal -actually a

discrete-time sequence- can be generated. (The sequence is D/A converted to analog wave-

form by interpolation and lowpass filtering.) The Fourier exponential sub-carriers are mutually

orthogonal, resulting in "orthogonal" channel multiplexing. There are strict requirements for

such orthogonality in terms of carrier spacing and time alignment since frequency responses

of sub-carrier modulated signals overlap -unlike channel orthogonality in conventional FDM

where it is assumed that contiguous channels have non-overlapping frequency responses. Note

that orthogonality no longer holds if the signals in sub-carriers are not time synchronized.

Furthermore, orthogonality is maintained at the receiver only if all subcarrier-modulated sig-

nals are detected altogether. If a particular sub-carrier modulated signal is selectively band-

pass filtered, the filter output is distorted by overlapping signals from neighboring sub-carriers.

In short, OFDM is treated as a carrier modulation format, and not as a channel multiplexing

scheme. To avoid confusion, we refrain from using the term "OFDM" when describing multi-

carrier modulation.

FDM vs. OFDM

As stated above, OFDM is a multi-carrier modulation format that employs a fast Fourier trans-

former (FFT) in the discrete-time domain as a replacement for a bank of analog frequency

oscillators. We know that there is no connection between OFDM and FDMA; however, there is

a potential for confusion between OFDM and FDM. In frequency-division multiplexing (FDM),

no time alignment is assumed among various carriers. Moreover, it is implicitly assumed that

each receiver selectively bandpass filters only one out of many carrier-modulated waveforms

for information retrieval. Thus, little frequency overlap is assumed among neighboring carrier-

modulated signals. In FDM, channels are disjoint. In OFDM, channels overlap. Furthermore,
FDM is a channel multiplexing scheme whereas OFDM -which is equivalent to multi-carrier

modulation in discrete-time domain- is not.
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Figure 1.11: Direct and indirect sequencing of a discrete-time information sequence

Various Code-Division Multiplexing Schemes

As stated earlier, any channel multiplexing scheme including code-division is viewed as an en-
coding technique in the discrete-time domain. If a binary information sequence of clock rate Rb
is directly encoded (i.e., binary modulo-2 added) with a signature sequence of clock rate Rc, the
resulting scheme is called direct-sequence code-division multiplexing (DS-CDM). If, however, the
information sequence is indirectly encoded by first serial-to-parallel converting the signature se-
quence, it can be either frequency-hopped code-division multiplexing (FH-CDM) or time-hopped
code-division multiplexing (TH-CDM), depending on post-processing in continuous-time analog
domain. Direct and indirect sequencing are illustrated in Fig. 1.11.

If the serial-to-parallel converter is followed by a single-carrier modulator, the resulting
signal resembles a traffic channel in TH-CDM. Likewise, multi-carrier modulation after S/P
conversion is equivalent to a FH-CDM channel. Hence, we may view time hopping as indirect
sequence CDM in the time domain, and frequency-hopping as indirect sequence CDM in the
frequency domain. It is apparent that if the signature sequence is a periodic train of impulses,
time hopped CDM is equivalent to time-division multiplexing (TDM), and FH-CDM becomes
FDM. Unless stated otherwise, CDM always refers to DS-CDM. Note that in strict information
theoretic sense, spread-spectrum coding is not a necessary step in channelization coding of a
CDM signal. A good example is superposition coding proposed by Bergmans [7], [8]. Other-
wise, in almost all communication system models, it is assumed that spread-spectrum coding is
an integral part of code-division multiplexing. Therefore, spread-spectrum multiplexing (SSM)
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-a term commonly used in communications literature- is synonymous to CDM. When CDM

is combined with single- or multiple-carrier analog modulation, it is referred to respectively as

single-carrier CDM (SC-CDM) or multi-carrier CDM (MC-CDM).

Code-Division Multiplexing and Spectrum Spreading

Spectrum spreading is commonly understood as a modulation process where the data modu-

lated signal is multiplied (modulated) with a random-like signature analog waveform such that

the resulting signal has a power spectral density much larger than the Nyquist bandwidth. The

despreading operation -i.e., the opposite of spread spectrum modulation- is carried out by

demodulating the received signal with the same signature waveform with proper time align-

ment. Thus spread spectrum modulation is a post-processing operation that takes place after

data modulation, and despreading occurs before data demodulation. In CDM, the operation of

channel multiplexing is carried out in discrete-time domain before digital-to-analog conversion.

Furthermore, the compound signal before spreading may have a power spectral density extent

equal to the Nyquist bandwidth. This is the case when the signature codes are orthogonal. In

all of our analyses we reserve the term "spreading" for an operation that transforms a data

modulated signal into into a wideband transmit signal with PSD width much larger than the

Nyquist bandwidth.

Coding vs. Modulation

Historically, spread spectrum modulation is viewed as signal processing in analog domain. It

reflects the use of analog multipliers for SS modulation before the digital age. An analog

spread-spectrum modulator is depicted in Fig. 1.12.

D/C dt ___ s~t
d [] converter

D/C c(t)
c[n] converter )cos (2Tf 0 t+0)

Figure 1.12: Conventional description of spread-spectrum modulation

It is still common -including the most recent research articles- to express a spread-spectrum

modulated signal as:

s(t) = c(t)d(t) cos(2wf et + b)

where d(t) the data modulated baseband signal and c(t) is the spread-spectrum modulating
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signal. Next, the analog waveforms are expressed in terms of embedded discrete-sequences:

00

d(t) = d[n] To (t - -nTb)
n=-00

c(t) = 1 c[n] HTc (t - nTC)
n=-o

where [-r(t) is a rectangular pulse of duration T and unit amplitude. Tb and Tc are bit and

chip durations, respectively. We, however, assume both orthogonal (Walsh) channelization and

pseudo-noise spreading as information-independent coding schemes since both functions are

carried out in discrete-time. We express a SSM signal as

s(t) = g(t) cos(27if t + b)

by emphasizing that spread spectrum modulation is a baseband process with

g t [n] Y *(t - -nvc
-00

where *(t) is a unit amplitude, possibly rectangular common chip pulse of duration Tc; it is also

the impulse response of the baseband transmit filter. The data and spread-spectrum discrete

sequence is

b[n] = d[1 . c[nl

Different indices t and n are used to emphasize different clock rates -Rb for data d[] and R, for

spread-spectrum code c[n]. With discrete sequences there is no longer concern for maintaining

time epoch synchronization and phase coherence between data d(t) and SS modulating signal

c(t). If spread-spectrum modulation is a two-step process involving Walsh coding, then

b[rn] = d[l1 pIn] . W[m]

where wklm] is the kth-row vector of a Walsh matrix. Its clock rate need not be the same the

pseudo-random code p[n]. Based on our interpretation, the generation of a spread-spectrum

modulated signal can be compartmentalized into discrete and analog sections as illustrated

in Fig. 1.13. Nevertheless, we sometimes refer to Walsh and PN coding as Walsh and SS

modulation, respectively. In general the term "modulation" is valid for

1. Data Modulation: bit-to-symbol mapping, even though it is a baseband operation typically

carried out in discrete-time.

2. Sequence Modulation: Channelization coding (Walsh modulation) and PN coding (spread-

spectrum modulation). Both are carried out in discrete-time domain.

3. Carrier Modulation: Analog multiplication for frequency translation.
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Figure 1.13: Preferred description of spread-spectrum modulation

Processing Gain vs. Spreading Factor

Following the suggestion by Dr. M. K. Simon, the processing gain PG is defined as the ratio

of the transmission bandwidth (the extent of the power spectral density) of the signal and its

raw uncoded information rate Rb. Its unit is Hertz per bit per second. It is independent of the

various signal processing techniques such as information dependent channel coding, orthogonal

channelization and PN spreading. The spreading factor SF -or equivalently, the spreading gain

SG- is a ratio of chip rate Re and (possibly channel encoded) bit rate R. Its unit is chips per

bit. Unlike the processing gain, the spreading factor is always integer-valued.

Historically, the processing gain is the ratio of the signal-to-noise ratios after and before

matched filtering:

P output signal-to-noise ratio _ SNRO _ W,

input signal-to-noise ratio SNRi W

Matched filtering causes the desired signal to "collapse" from its transmit wideband SS signal

(of bandwidth Wjs) to the original narrowband signal of Nyquist bandwidth W while expand-

ing the bandwidth of narrowband interference to W,,. Hence, after "processing" the receiver

output has a power gain of WsS/W. The historical PG is equivalent to our accepted definition

only when W = Rb.

Signal-to-Noise Ratio vs. Bit Energy-to-Noise Density Ratio

The bit energy Eb is a fictitious quantity related to symbol energy S:

es

log 2 M

where 4 is the number of bits of information contained in a symbol. The signal-to-noise power

ratio SNR is defined as

SNR - signal power _ P _ P
noise power N NOW
EbRb E4 1
NOW No PG

where No is the (flat) noise power spectrum and W is signal bandwidth.
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2

FADING PHENOMENA AND MODELS

Summary

There is a large collection of excellent texts and journal articles that cover many aspects of

signal fading for radio wave propagation. Our results presented herein are not new; in fact,

the entire content is merely careful note-taking and re-interpretation of material from various

references listed in the bibliography. However, most communication texts treat fading as an

abstract mathematical construct with statistical modelling, and fail to account for its accuracy

as well as deviation from actual observed fading phenomenon and its associated empirical data

obtained from field trials. Closed-form analytical results such as channel capacity and bit-error

rates are only as good as the underlying mathematical fading models they are based on. When

studying fading channel models, two important benchmarks in system performance are:

" The validity of a particular statistical model and its associated distribution function in

predicting the strength and time variation of received signal. This mainly involves curve-

fitting of statistical samples to empirical data samples.

* The severity of a fade measured in terms of various parameters that define a statisti-

cal model and its associated distribution function. This step is critical in comparative

analysis of a mobile communication system perturbed by different types of fading. For ex-

ample, it is incomplete to state the loss in capacity when a channel suffers from flat fading

(compared to a non-fading AWGN case) without identifying the type of fading (i.e., its

associated pdf) and its fading parameter (i.e., severity of fade).

It is our view that the inclusion of a chapter on channel fading is not redundant; Rather, it gives

a unique synopsis linking experimental data and analytical fading channel models. The contents
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presented herein also serve as background material for related topics covered in Chapters 3 and

6:

" In Chapter 3 the capacity and achievable rate regions of broadcast and compound chan-

nels in a multipath fading environment are computed using various probability density

functions (pdf) that model the statistical behavior of a fading received signal envelope.

These statistical distribution functions are presented in Appendix 2A.

* In Chapter 6, the baseband fading channel model (described in Sec. 2.2) is used to

compute the bit-error probability of several multi-rate transmission schemes.

2.1 Fading Channel Characteristics

Fading in radio propagation refers to random fluctuation and gradual degradation in the

amplitude (or power) of received signal. It is well known from the law of propagation that in

free space the received power level of a signal is inversely proportional to the square of distance

between the transmitter and receiver. The signal attenuates as it propagates through space.

This type of signal deterioration is not considered fading since the power loss is a function of

a deterministic variable: distance. Amplitude fluctuation (without attenuation) is caused by

constructive and destructive combining of the RF carrier phases from multiple replicas of the

same transmit waveform. The statistical nature of a faded signal is the result of two causes:

" Random scattering and diffraction of a transmitted signal from large and small objects in

the propagation medium -the radio channel.

" Time variation due to mobility in one or more of the following entities: the transmitter,
the receiver or the physical medium itself.

Any change in the angle of signal propagation due to reflection and refraction from large objects

is called scattering1 . When the objects are small - in the vicinity of several wavelengths,
diffraction occurs as a travelling wave bounces off the edge or corner of objects. The transmitted

signal can still be measured in the shadow region behind the obstacle (see Fig. 2.1)2. The

reception of multiple copies of a transmitted waveform due to scattering and diffraction results

in multipath interference. Signal fading is not observed without multipath reception. However,
the reception of multiple copies of the transmit signal alone does not generate a faded signal

unless time variation of the amplitude due to random signal fluctuation is also realized 3. There

is a cautionary note on the definition of a radio channel; it is time-variant if:

'A single primary wave incident on a rough surface is said to create many scattered secondary waves.
2 Huygen's Diffraction Principle explains this phenomenon [991.
3 Otherwise, we are merely modelling a time-invariant channel with echoes such as the intersymbol-interference

(IS1) channel.

Chapter 2: Fading Phenomena And Models
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Figure 2.1: Penetration of diffracted signals behind obstructed objects.

m the receiver is in motion and the propagation medium is static (time-invariant); i.e., all

physical objects and structures between the transmitter-receiver pair are immobile. Of

course, the transmitter can also be in motion, but we assume base sites are stationary.

n the medium itself is time-varying, due to the movement of physical objects such as cars,

pedestrians etc.

As an example, consider a mobile receiver moving at a walking pace of 2 mi/hr. A radio signal at

900 MHz transitions from its peak level to a minimum over a short distance of 3 inches. Hence,

the received signal fluctuates about its median level 5-6 times every second. We define this type

of fading as localized or short-term fading. The received sample mean signal strength (averaged

over several tens of wavelengths) remains constant as the instantaneous level fluctuates around

this mean value. In the literature this type of fading is known as "fast" fading. The name

stems from the fact that a moving receiver observes rapid fluctuation in the instantaneous level

of received signal. We however reserve the term fast fading for a different kind of channel

disturbance. As a receiver moves further away from the transmitter, the mean value of the

received signal decreases. The main culprit is propagation (path) loss due to increased distance

in separation. Once the physical medium consisting of hilly terrain, buildings, trees and other

large objects are taken into account, the mean value itself is a random parameter. This type of

fading where the mean signal slowly fluctuates as it attenuates over large distances is called

wide area or long-term fading. More common terms are "slow" fading and "shadowing" of large

objects.

It is generally accepted that for terrestrial communication in the VHF, UHF and SHF regions,

2.1 Fading Channel Characteistics 51
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0

mean value

distance d (m)

Plot of path loss (in dB scale) vs. distance (in meters) of a received

Figure 2.2: signal direct line-of-sight path and a delayed path from a single

reflecting surface.

the radio propagation channel has a fairly linear frequency response. By modelling it as a time-

variant linear filter, its impulse response can be expressed as

L(t)

cp(t; T) = VL j ocn(t) 6 - Tn(t) (2.1)

The variables in the RHS can be broken down into the following:

m The propagation or path loss is the ratio of received power Pr and transmit power Pt levels

(in watts):

LP = r = A LfLtaLra (2.2)
SPA Ld

A is the proportionality constant, Lf, Lta, Tr, and Ld are path losses due to carrier fre-

quency fc, transmit antenna height ht, receive antenna hr and distance d, respectively. A

simplified formula based on geometrical models is

L = Pr (dA) 2 Gta Gra sin 2  A (2.3)

where A is the signal wavelength, Gta and GM are transmit and receive antenna gains,

respectively4 . A plot of path loss Lp as a function of distance d is shown in Fig. 2.2.

Note the variation of signal strength around its mean value and the high fluctuation rate

at short distances. For large distances where d > ht, hr, sinx ~ x and the equation

4An isotropic antenna has unity gain.
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simplifies to:

(het hr)2
LP = Gt Gra (

d-Y
(2.4)

The dependence of path loss on carrier frequency is removed. The propagation exponent

-y ranges between 2 to 8. In free space, -y = 2. When there is reflection from a single

flat plane, it can be shown that y = 4. Over the years, numerous field measurements

have shown that the path loss formula of eqn. (2.4) is unsatisfactory in predicting signal

strength over various types of terrain and frequency bands. Hata's linear regression for-

mula is much more accurate. It is based on graphs of empirical path loss data measured

by Okumura. For quasi-smooth terrain in an urban area, the various path loss terms of

eqn. (2.2) in logarithmic (dB) scale are:

A = 69.55

Lf = 26.16log fc (in MHz)

L= -13.82 log hi (in m)

L,- = (1.56 log f c - 0.8) - (1.1 log fc - 0.7)hr (in m)

Ld = (6.55 log ht - 44.9) log d (in km)

Minor variations of above formula are used for suburban ar

areas. No accurate statistical model exists for path loss.

/

Figure 2.3: Single scattering model with multiple
and direct no line of sight (LOS) path.

unre

150 < fc 2000

30 < hit 200

1 < hr < 10

1 < hr 20

d rural open space coverage

solvable paths

m L(t) is the number of resolvable signal paths'. Two paths are resolvable if the difference

in their arrival times of a carrier-modulated pulse is as large as the inverse of pulse rate

1 /Rp. (It does not make much sense to define "resolvable paths" when the transmit signal

5 See Sec. 2.3.4 for a concise definition of resolvable multipaths.
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is a pure carrier wave.) Consider Fig. 2.3. The transmitter and receiver are located at the

foci of confocal ellipses. All signal paths that scatter and diffract at the perimeter of the

inner ellipse el travel the same distance. They are not resolvable. An example where the

two paths may be resolvable is shown in Fig. 2.4 in which the scattering and diffraction

occur at the perimeters of confocal ellipses el and e2. In general, the number of resolvable

paths varies over time; however, it is commonly treated as a constant over several pulse

transitions if the fading is slow. (Slow fading is defined in Sec. 2.3.3.)

\4

Figure 2.4: Multiple scattering model of two resolvable paths (scattered from

two concentric ellipses) with no line of sight (LOS) path.

m For each realization, the channel gain oc(t) in the nth path is a sample function of a

random process. The relative path delays are ti = 0 < T2 < ... < TL with an added

constraint Tn+1 - T, > T-p = 1/Rp. From Fig. 2.3, we know that the nth path may

actually be a superposition of a large number of unresolvable paths L, such that:

L,

=n(t) = { cnl(t) (2.5)
t=1

If each signal replica traverses through a different physical path in reaching the receiver,

it is plausible to assume that the unresolvable gain processes ac1 (t) are independent. On

the other hand, using the multiple scattering model of Fig. 2.5, the channel gain oct(t)

in the nth path can be expressed as a product of signal gains from multiple scattering

objects:

cxn(t) = Jxn O(t)

k

Since scattering occurs from different objects, it is assumed that the gain factors cqj(t)

are statistically independent. In logarithmic [dB] scale,

cx1(t) [dB] = 0(t) (2.6)
k
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T .R

Figure 2.5. Multiple scattering model of a single path with no line of
sight. Each scatterer reduces the signal strength.

In eqn. (2.1) it is assumed that the number of delayed paths L is finite at all time. This

assumption is shown to be quite accurate for terrestrial radio communications in VHF/UHF

frequency bands and where no over-the-horizon propagation takes place. The key results of

this section are summarized below:

" The prediction of a received signal strength at a distance d from a transmitter is based

on three sets of measures: path loss, local mean and instantaneous fluctuation about the

mean. Path loss is a deterministic measure based on a simple mathematical formula of

eqn. (2.2). The variation of local mean over long distance and fluctuation of instanta-

neous level over short distances is modelled statistically.

* Fading is due to time variation of the channel and reception of multiple replicas of trans-

mit signal. Multipath interference is a result of scattering and diffraction of a transmit

signal from various physical objects encountered in the transmission path. Two multipath

replicas are resolvable if their arrival times are at least T. sec. apart.

* Each received signal replica from a resolvable path is most likely a superposition of signals

with the same delay - originating from a large number of scatterers. Furthermore, each

replica from an elemental path may have bounced off many objects before arriving at the

receiver.

2.2 Equivalent Baseband Representation

The passband impulse response of a fading channel expressed in eqn. (2.1) is interpreted

as the response of a linear filter at time t due to an input impulse at time t - T. It is a function

of both time delay T and position t. For a linear time-invariant (LTI) channel, the impulse
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response c(t) is a function of time delay only. An equivalent representation of an LTI channel

- to within a scale factor- is its frequency response C(f), where C(f) = fF{c(T)}. By defining

the Fourier transform and its inverse as

.F[f (t)= f(T) ej27f- dT

.F-[f(t)] = f( )e-j27ft dT

we can define three types of frequency responses for a linear time-variant (LTV) filter c(t; T):

C(t; f) = F,{c(t; T)

C (V; r)= Ft{c(t; T)}

C(v; f) =F F{c(t; T)}

The middle term, the Fourier transform in the t variable -also called the Delay-Doppler Spread

function- is the most useful since it is a measure of the channel response due to multipath

delay T and Doppler frequency shift -v. In practice, two kinds of sounding experiments are

conducted in measuring the response of an LTV channel. The first involves transmission and

reception of a single-tone, radio frequency carrier wave. Due to its high frequency resolution

and constant amplitude over time, it is used to measure the Doppler shift, the channel gain and

relative phase delay. The second experiment uses a stream of short pulses with very low duty

cycle. Its high time resolution and wide power spectrum are suitable for measuring resolvable

multipath replicas. Ultimately, the goal is to understand the effect of fading once the received

passband signal is down-converted and filtered at the baseband level. We next describe the

baseband channel response when the input is a single-tone unmodulated carrier or a stream of

impulses.

2.2.1 Frequency Resolution

Consider a single-tone, continuous-wave (CW) signal

A, cos 27Tfet

propagating through a single-path, linear time-invariant channel. The received signal is:

rp(t) = Ae cos 27rfc(t - T)

= ocAc cos(2hf et + cj) $ = -27f cT

= Ac [X cos 27rfet + Y sin 27Tfct] (2.7)

where the in-phase and quadrature components are:

X = cxcos I

Y = -csin c 0 < L < 1 and 0 < < 27.
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If the channel is time-invariant with multiple paths, two different scenarios are possible.

m In the first model, it is assumed that there exists only a single scattering object between

the transmitter and the receiver 6 . If both the transmitter and receiver are located at the

focal points of an ellipse, then all signal replicas that are scattered from objects located at

the perimeter of the ellipse el will arrive at the receiver with the same delay T1 (see Fig.

2.3). For T1 = -r, and following eqn. (2.7), the received signal is:

rP(t) = (L c)Ac cos 2wfc(t - T)

t (2.8)
=A [( Ac X) cos 27fet + Yt) sin 27rf ct

where t is the number of scattering multiple propagation paths.

X =y X= (ot) cos 4 = 0cCost

(2.9)
Y = Y = -Y_ ct) sin c = -c sin )

Note, a 2 = < due to energy conservation. (2.10)

'Ole

Figure 2.6. Single scattering model with multiple unresolvable paths
including line of sight

m In the second model, there exists a direct line-of-sight (LOS) path from the transmitter to

the receiver. If the transmitter is secondary, this path is called specular. Typically, the LOS

path without any scattering or diffraction has the largest energy content and the shortest
60f course, the transmitter itself may be secondary, i.e. it is a reconstruction of scattered and diffracted signals

from a distant transmitter.
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path, and it is considered deterministic. Modifying eqn. (2.8), where P is the attenuation

in LOS path,

rT(t) (= x) Ac cos 2Tfc(t - T) + PA cos 2tf t (2.11)

= Ac[( + Y Xt) cos27fct + ( Y,) sin27rfct]

X= P+ >XI= (3+ (Y3ct) cosc (2.12)
1

= P + acCos

Y = Yi = - XI) sin 4 (2.13)

= -o sin1

If the channel is time-varying:

X (t) = a(t) Cos $)(t)

Y(t) = -- c(t) sin $(t)

The real in-phase and quadrature random processes of a passband channel can be represented

in the baseband by a single complex function Z(t) = o(t)e*R):

IZ(t)I = X2(t) + Y2 (t) = C(t) (2.14)

(t) = tan- ( ) (2.15)

The effect of carrier frequency on fading is observed only in the phase offset c(t) = -27f cr(t)

2.2.2 Time Resolution

Consider a linearly modulated passband signal

sp(t) = 9{s(t)e (2 7ft+d))

where s(t) is the corresponding baseband information signal:

s(t) =3 Ateji f(t - iTP)

where RP = 1 /T, is the information (pulse) rate and {Aje0i } is the finite signal constellation

set. The finite-energy common pulse shape is denoted by p (t). Ideally, p (t) is an impulse.

Considering only a one-shot transmission with Ai = Ac, the transmit passband signal is:

sp(t) = Ac f(t) [cos 0 cos 27fet - sin 0 sin 27f ct]



The received signal is:

rv(t) = Acaf(t - T) cos 0 cos27fc(t - T) - sin 0 sin27fc(t - T)

=Ac f(t - T) cos 0 cos (27rft + ) + sin 0 sin (27rfct +$)

= 9 [Aceisf(t - T) oej4ej27fctI

The equivalent complex baseband expression is:

r(t) = o ei ) s(t - T)

If there are more than one resolvable path (T,+1 - T, > Tp) and that the total number of

resolvable paths is L,
L

T(T) = L (n e1 (PT s(T1--T')
n-=1

Note that the indeterminate variable for the argument of r(.) is switched from t to r. By

including time variation of channel parameters, the final form of a baseband received signal is:

L(t)

r(t; T) = T an(t) e-i (t) s (tT- t) (2.16)
n=1

The equivalent baseband multipath channel impulse response is:

L(t)

c(t; t) = T cn(t) e -j (t() 5(T - (t)) (2.17)
n=1

The relative carrier phase offset 4n(t) = $o + 27rfcT,(t) is the sum of a (fixed) modulator

carrier phase c0 plus the offset due to delay Tr(t). Since the receiver has no knowledge of 40,
its value must be estimated through a phase-locked-loop mechanism. At the receiving end it

is treated as a uniformly distributed random variable c [0, 27r). Since cf. and Tr,(t) are inde-

pendent, cf,(t) and T,(t) are also independent. We then safely assume for each path n, the

random variables $n, oc and -r, are mutually independent.

So far the channel response c(t; t) is treated as a deterministic time function. In fact, it is

a function of several random parameters L, c'n, c, and -r, and must be treated as a stochastic

process in the t variable. It is already established that for each resolvable path n, the cor-

responding variables oc, 5, and r, are mutually independent. Not much is said about the

relationship between these parameters for different n, or for a particular variable along differ-

ent paths. In general, their joint probability functions are required to completely characterize

the statistical properties of c(t;T), leading to a very complex description of a fading channel.

Certain assumptions can simplify this model. They are considered next.
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2.2.3 Wide-Sense Stationarity

It is safely assumed that in a localized area, the fading statistics of a channel do not vary

appreciably. When the dynamics of the propagation medium or the mobile receiver is slow

compared to the duration of several data symbols, it may be possible to accurately estimate

the gain and delay response of a channel. The estimation process must be carried out on a

periodic basis. Such a channel where the channel remains time-invariant for a block of data

symbols is said to be quasi-wide-sense stationary. In the duration of each data block, it is wide-

sense stationary (WSS). Thus its mean is time-independent, and its autocorrelation function is

time-invariant:

Rc(tit 2 ;T1,T2)= IE (t1;T1)C*(t2;T2)2 L

= E c (0; T1) c*(t 2 - t1; T2 )] (2.18)
2L

= Rc(t2 - t1; T1, T2)

Rc (At; Ti, t 2 ) where At= t 2 - t1

In general, the autocorrelation Rc(ti, t 2 ; T1, T2) is a function of two time variables ti and t 2 . Its

characterization in frequency domain, the power spectral density 4(f1 , f 2; T1, T2), is obtained

by taking double Fourier transforms. It can be shown that for a wide-sense stationary process,

6(f2 -- f 1)*(f2; ri, t 2 ) Y Y [Rc (At; Ti, T 2 )I

where the Delay-Doppler cross power spectral density function is defined as:

(f2; T1, T2) J Rc (ti, t2; 1,rT2) exp ( - j27tf 2At) d(At) (2.19)

fI and f 2 are the corresponding frequency variables of ti and t2 respectively. Note that the

power spectral density function is not frequency-invariant; i.e., it is not wide-sense stationary in

the frequency domain. However, it is interpreted as follows: If two scattering components of the

transmit signal of different or same delays t- and T2 experience different amounts of Doppler

shifts (f1 I f 2), then the two paths are uncorrelated. The implication is that two paths with

different angles of arrival (regardless of their arrival times) are uncorrelated since their Doppler

shifts are different7 Similarly, two paths with the same angle of arrival, but with different

Doppler shifts, are also uncorrelated. For single path or a channel with a single resolvable path,

71t is known that a vehicle travelling at a speed of v in an x - -j plane at an angle C from the x-axis experiences a

frequency (Doppler) shift of a transmitted signal by an amount equal to (v/\) cos( oc) cos F3 where a is the angle

from the x-axis and ( is the projection angle onto the x - -y plane of the incoming wave.
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'( f )

0 f
Bd

.r 2 Doppler Spread function. The end-to-end extent of its sup-
Figure 2.7.

port is called the Doppler Spread Bd.

T1 = T2 and setting it equal to zero, we obtain the Doppler Spread function:

i(f) =(f; 0, 0)

J R, (At; 0, 0) exp (- j2wfAt) d(At) (2.20)

F- [R (At)]

An example of a doppler spread function is illustrated in Fig. 2.7. The maximum frequency

where the value of the Doppler spread function 4(f) is essentially zero is called the Doppler

Spread Bd. Its reciprocal
1

(At)c = (t2 - t1)C= (2.21)

is called the coherence time. Thus a channel with a small Doppler spread has a large coherence

time, implying that the channel dynamics vary very slowly. The channel induces slow fading.

If (At)c is a fraction of Tp (the inverse of pulse rate), the received signal suffers from fast or

time-selective fading. In system design and analysis, the autocorrelation and its Doppler spread

functions are rarely computed; instead, the performance measure is based on the worst-case

scenario where the maximum Doppler shift is used as a benchmark. The maximum Doppler

shift experienced by a mobile receiver travelling with a speed of v is given by

Bd(max) = LL (2.22)
c

where c is the speed of electromagnetic waves in free space.

2.2.4 Uncorrelated Scattering

Recall that c(t;T) is a random process in the t variable. By taking a pair of time delays Ti

and T2, its correlation function, analogous to eqn. (2.18), can be computed. If we assume the



channel gains cxa or phase shifts $n or both are uncorrelated for paths with different delays,
the autocorrelation function simplifies to:

Rc(tl, t2; T1,T 2 ) = Rc(t1,t2; T2) 5(T2 - t1)

This is called the Uncorrelated Scattering (US) channel model. By setting t1 = t2 = 0, the Delay

Spread function is expressed as:

Rc (T1 iT2) = Rc (T2) ('r 2 - tr)

The delay spread function is also commonly known as the multipath delay profile function. Since

there is a discrete set of resolvable multipaths, the plot of Rc('T) tends to have several "spikes."
This is illustrated in Fig. 2.8. (Here, it is assumed that the delays are relative to the specular or

shortest path with rl = 0.) Several probabilistic models for multipath delay profile are given

in Appendix 2B. Analogous to its frequency domain counterpart of eqn. (2.21), we can define

R, (T)

( i)d t

Delay Spread function. Unlike the Doppler spread func-
Figure 2.8: tion, it only has a finite positive support. Its extent is called

the Delay Spread (AT) d.

the Delay Spread of a uncorrelated scattering multipath channel as the maximum value of time

delay where the correlation function is essentially zero:

(Ar) d = (T2 'r1 ) d = 1- (2.23)

Its reciprocal Bc is the coherence bandwidth. Two unmodulated tones whose frequency sep-

aration is larger than Bc are perturbed by different channel gains and phase shifts. Thus, a
bandwidth of a baseband data modulated signal is wider than Bc, it is said to suffer from
frequency selective fading.
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2.2.5 WSSUS Channel

The simplest non-degenerate fading channel model combines both wide-sense stationarity
(WSS) and uncorrelated scattering (US) properties. It is known as the wide-sense stationary,
uncorrelated scattering (WSSUS) channel. It has been shown through many experimental mea-

surements that a mobile radio propagation medium can accurately be modelled as a WSSUS
channel in a local setting. The autocorrelation function simplifies to:

Rc(At; AT) = Re(t 2 -t1; t2 -'ri)

Its Fourier transform in the At variable gives the Scattering function:

S(Af,At) = FAt [Rc(At; At)]

It is a two-dimensional deterministic function that succinctly and completely defines the time
and frequency characteristics -the delay and Doppler spreads- of a WSSUS channel.

2.3 Classification of Fading

In the remaining sections, we ignore signal attenuation due to path loss. Fading is regarded
as the large-scale variation of the mean and small-scale fluctuation of the instantaneous level
about the mean. Next we distinguish fading as either short- or long-term, fast or slow, frequency
flat or selective. However, we point out that such classifications are only for purposes of system
design and analysis; there is no clear line that separates one type of fading from its opposite.
There is however a clear distinction between fast and short-term fading, as well as between
slow and flat fading.

-10

local mean
-o -20

-30

-40

tz 50

-60
distance (A)

Figure 2.9: Localized short-term fading



2.3.1 Short-Term vs. Long-Term Fading

In a multipath environment, the signal strength of a mobile receiver fluctuates due to con-

structive and destructive combining of the phases of replicas. The random nature of amplitude

or power variation is usually plotted in a decibel scale over a distance measured in wavelengths.

Here we are interested in signal strength as a function of distance, not time. Fading of this kind

over several hundred wavelengths is considered "short-term" or "localized" fading, since the av-

erage signal level over such a distance does not vary considerably. This is illustrated in Fig. 2.9

where the distance is measured in wavelengths. Over large distances, the mean signal strength

decreases due to path loss. However, the drop in strength is not monotonic. It also fluctuates.

This is categorized as "long-term" or "large-area" fading. See Fig. 2.2 for an illustration. The

only difference between short- and long-term fading is the distance traversed. Each plays a

different role in system analysis. For data detection and decoding, it is the instantaneous fluc-

tuation of short-term fades that are most detrimental. In contrast, the mean signal strength is

critical in analyzing the coverage area of a cell. For example, in an urban high-density area, we

wish to know the diameter of a cell (with an omni-directional antenna) such as the local mean

signal strength is guaranteed to 95% of the receiver population at the cell edge. We can then

determine the number and location of base sites to support a cellular wireless service with a

defined level of quality-of service (QoS). This is the basis for network planning.

For purposes of system design and analysis, the channel gain cc,(t) along path n is consid-

ered as a product of both short- and long-term fading effects; i.e., it has a short-term fading

component superimposed on a long-term random local mean value:

ocn(t) = Rn(t) -m(t)

where R(t) and m(t) are short- and long-term channel gains, respectively. For short-term anal-

ysis, the median level is normalized and treated as a constant; m(t) = m = 1. If fading is slow,

the path gain is treated as a random variable oc = R, with a certain probabilistic distribution.

Commonly used probabilistic density functions (pdf) for short-term fading gain are Rayleigh,

Rice, Log-normal, Nakagami, M and One-sided Gaussian. All are described in detail in Ap-

pendix 2A. Their parameterized shapes are shown in Fig. 2.10. All fading pdfs have a positive

infinite range [0, oo]. Table 2.1 also summarizes their main characteristics. A brief overview is

given below.

m Among the six pdfs, Rayleigh and One-sided Gaussian have a single free parameter. There

are two free parameters for the remaining pdfs. Thus the former two are the least flexible

in curve-fitting to empirical data. For Rayleigh distribution, the shape of its pdf cannot

be varied. The only free parameter u- shrinks or stretches the shape horizontally. In one-

sided Gaussian pdf, its shape is one-half of bell curve. The free parameter a- controls the

spread. In both cases, the free parameter is a scaling metric.
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Table 2.1: Characterization of Fading PDFs

Name Alternative name free parameters Comments

Rayleigh Chi U2 two-dimensional chi density

Rice Nakagami-n K and a2  K = n2
Nakagami Nakagami-q q and (2 also known as Hoyt pdf
M Nakagami-m m and Q central chi-density with

2m degrees of freedom

most flexible pdf in severity range

Log-normal t and a2  the logarithm of a Log-normal RV

is Gaussian

One-sided Gaussian Chi 92 one-dimensional chi density

Worst type of fading

* In Rice pdf, the mean t is a translation metric while K controls the spread and the skew-

ness of the function. Small K gives rise to a more skewed shape. Thus, K is effectively

a scaling and shaping metric. Rice is the only pdf with a free parameter for translation,

making it the best candidate when a strong specular path is present. In the limit K = 0,
the Rice pdf degenerates to the Rayleigh pdf.

* In Nakagami pdf, the free parameters q and fl serve as shaping and scaling metrics, re-

spectively. In contrast, both free parameters m and fl of the m-distribution act simulta-

neously as scaling and shaping metrics.

" For the same local mean, the one-sided Gaussian pdf represents the most severe fading

statistic. From the pdf plot, it is obvious that all amplitude values less than the mean have

higher probability. For the same reason, any skewed fading distribution, where the skew

is towards the origin such that the mean is greater than the mode8 its detrimental fading

effect is more severe that a another RV with symmetric pdf under equal mean condition.

For one-sided Gaussian, the mode is 0. At the opposite extreme, a delta function at the

local mean represents a non-fading case.

* In terms of the severity of a fade, the m-distribution has the widest range. As depicted in
8 The mode of a RV is its most probable value; i.e., the location along the support where the pdf plot has its highest

peak. The median point divides the area under the pdf plot in half. For a symmetric pdf, the mode, the mean and
the median all coincide. For a skewed pdf that is heavy towards the origin, then Rmod < Rmean. The opposite holds
when the the pdf skews away from the origin. If a pdf has a heavy tail, then it is likely that Rmed < Rmean since the
mean is (approximately) the sum of weighted products , x p (x + Ax); thus long tails with large values of x result
in heavier weights. Depending on the shape of the pdf, the mode can lie anywhere along its support. Therefore,
based on the shape of the pdf, each average quantity has its strength as well as weakness.
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2.3 Classification of Fading

Fig. 2.12, for iT = oo it is equivalent to a delta function (no fade); for in = 1/2, it

becomes the one-sided Gaussian pdf (worst-case fading). If our interest is curve-fitting

for empirical data, we see from Fig. 2.10 that the Log-normal has the most flexible shape,
ranging from a decaying type to a skewed shape.

For unresolvable multipath case with no line-of-sight (see Fig. 2.3), the Rayleigh density func-

tion suffices. This approximation is an application of the central limit theorem which states

that the sum of independent, identically distributed (i.i.d.) random variables approaches a

Gaussian distribution. Note however that the path gain is finite and bounded (see eqn. 2.10).

Figure 2.11 depicts curve-fitting of a Rayleigh pdf over a histogram based on empirical data.

If a strong dominant (specular) path is present, the Rayleigh model becomes inadequate. This

~K.~f ;..Rayleigh pdf

local mean am ltd

Curve fitting of Rayleigh pdf over empirical data. Note

Figure 2.11: that due to finite transmit power, the measured signal am-

plitude has finite support.

is mostly because the Rayleigh pdf is a single-parameter function, and varying its mean also

affects the variance. Several two-parameter pdfs such as Rice, Nakagami, M and log-normal

are more suitable for fading with a specular path. Among them, the Rice pdf is the best fit since

the envelope of non-zero mean Gaussian RVs with the same variance is Ricean distributed. It

is confirmed through field trials that for long distances the log-normal pdf gives the best fit. A

plausible explanation is based on the multiple-scatterer, single path model depicted in Fig. 2.5.

Since the resultant channel gain is the product of independent gains from different scattering

objects, its logarithmic form is the sum of many independent and identically distributed gains.

2.3.2 Severity of Fading

As we have seen, all fading pdfs are one-sided with infinite support, that is, they are defined

only for non-negative values of the argument [0, oo). The severity of a fading distribution is
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measured in terms of its roll-off or spread from its peak (mode) value. As an example, the delta
(non-fading) pdf has zero spread. In Fig. 2.24, we show several values of the fading figure
m for the Nakagami-m pdf. For m = 1/2, the fading is the most severe since the one-sided
Gaussian density has the heaviest tail. Quantitatively, the spread is measured in terms of the
variance. However, in certain fading distributions, the peak value of the pdf is not at the origin,
and as a result, the amount of spread is "biased." This bias term can be removed by normalizing
both the mean (or mode) and the variance. One method that has been used extensively in the
literature and in practice was first proposed by U. Charash [18].

least severe most severe

AF 0 1 2

delta Rayleigh one-sided
Gaussian"

K

0 Rice 0
(Nakagami-n) q

1 Nakagami-q 0

m

Nakagami-m 1/2

Figure 2.12: The range of amount of fading (AF) for various distributions

Amount of Fading

U. Charash proposed a unified measure of the severity of fading, called the "amount of
fading" (AF) by normalizing the variance of signal power by the square of its mean:

A Var(P)
E2(P) 

(2.24)

E2(p)

where the RV P denotes power, P = o2 and cc is the amplitude RV In the literature, it is common
to define the instantaneous signal-to-noise power level per symbol:

-y = c2 Es/No

where Es is the transmitted symbol energy and No is the energy spectral density of Gaussian
noise. Rewriting 2.24:

AF Var(-y) (2.25)
F2(y)
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The AF values of all fading models introduced in this chapter are listed below. Each function

represents the pdf of fading amplitude L.

One-sided Gaussian: AF = 2 (2.26)

Rayleigh: AF = 1 (2.27)

Delta : AF = 0 (2.28)

1 + 2K
Rice : AF(K) = K > 0 (2.29)

(1+K)2  - (

Nakagami-q: AF(q) = (1 + 2) 0 < q < 1 (2.30)
(I + q2)2

1 1
Nakagami-mr: AF(m) = - M > - (2.31)

m 2

Log-normal: AF(o-) = exp - 1 0.2[dB] = Var(oc) (2.32)

The amount of fading (AF) spans mostly from 0 to 2. (It is possible for AF(o) > 2, particularly

for log-normal pdf; however, as we shall see in Sec. 2.3.1, the log-normal fading qualifies more

accurately as a long-term shadowing or attenuation due to large distance propagation. Other

distributions under consideration have localized or short-term fading phenomena.) AF=0 is

no fading and AF=2 is the worst-case one-sided Gaussian fading. At the mid-point, AF=1

corresponds to Rayleigh fading (no line-of-sight component). For Rice fading, depending on

the strength K of the LOS path, AF varies from 1 (Rayleigh) to 0 (no fading). For a more severe

fading spanning 1 < AF < 2, the representative fading model is Nakagami-q. The only model

that spans the entire range of AF is the Nakagami-m pdf. Thus, by varying the value of M, the

Nakagami-m distribution encompasses all types of fading phenomena, from the worst-case to

the non-fading AWGN model. The range of AF values for various distributions is shown in Fig.

2.12.

2.3.3 Slow vs. Fast Fading

In the previous subsection, we describe several probability distributions whose statistics

mimic the random nature of the instantaneous amplitude level in a local area setting. We

should emphasize that the radio system designer has little control over the severity of short-

term fading statistics. It is simply a physical characteristic of the radio propagation medium

that must be dealt with. We can only construct probabilistic models to accurately predict and

analyze system degradation under such fading conditions. In contrast, the designer has tools

-e.g., upper limit on receiver speed and information rate- to regulate the fading rate (slow

or fast) and the contour (flat or frequency-selective) of the frequency response of the channel.

2.3 Classification of Fading
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Measure of Fading Rate and Depth

In Sec. 2.3.1 on short-term fading, it is implicitly assumed that the local mean value does

not change substantially. If the motion of the mobile receiver is radial, it is highly likely that
the mean value will change considerably unless its speed is low; i.e., the signal is perturbed by
slow fading. On the other hand, if the receiver moves tangentially, then its (angular) velocity is

irrelevant. Hence in short-term localized fading case, we must also determine the fading rate.
As depicted in Fig. 2.9 -over the same distance, a high velocity receiver experiences faster

signal fluctuation. Quantitatively, the rapidity of fades is measured in terms of the level-crossing
rate (LCR), which is defined as the expected number of times-in a positive or negative slope-

the signal strength (amplitude) crosses a predefined threshold level over some time window.
The unit for the length of the time window is usually in seconds. Obviously, the higher the
speed of the receiver, the larger the level-crossing rate; i.e., LCR is a function of receiver speed
v. Besides the propagation medium, the other parameter that affects LCR is the radio carrier
frequency fc. The expected duration where the signal remains below this threshold over the
same time window is defined as the average fade duration (AFD). Both are depicted in Fig.
2.13. Note the significance of the threshold. By varying its level, the fade depth (and its
duration below a threshold) can be measured in terms of LCR and AFD. This information is
very useful for a system designer in selecting information pulse rate, error-control code and
its rate, word length, interleaver depth etc. Furthermore, LCR and AFD provide a minimum
rate at which the received signal must be sampled in order to measure the severity (depth) of
fade. This information is typically relayed back through a feedback channel to the transmitter
to adaptively adjust its transmit power level. If the level crossing rate is low such that on

time window

threshold

average fade
duration

Figure 2.13: Level Crossing Rate (LCR) and Average Fade Duration (AFD)

average the signal amplitude along a particular path n remains above the threshold over a few
symbol intervals, then the carrier phase offset <p, can be tracked accurately The duration over



which the channel state is time-invariant is defined as the coherence time At,. If At, > T,, the

channel induces slow fading. An equivalent interpretation of slow fading is based on spectral

broadening due to Doppler spread. This topic has already been addressed in Sec. 2.2.3 under

wide-sense stationarity. If the bandwidth of a modulated waveform of rate R. pulses per second

is W Hz (e.g., R. ~V), an equivalent definition of slow fading is:

W > Bd or Bd Tp < 1 (2.33)

In essence when the fading is slow, the receiver is able to track the carrier phase offset, implying

that system design using phase modulation and coherent demodulation are feasible -at least

theoretically.

2.3.4 Frequency Flat vs. Selective Fading

In short-term fading, if the relative delays Tj - Tj, i > j of paths from local scattering and

diffraction are small compared to T., then at the receiver the transmit signal has only minor

distortion in its shape. Following eqn. (2.16), the received signal can be expressed as:

L,

n=1

Substituting the expression for a stream of linearly modulated signal in place of s(t), the equa-

tion becomes:

r(t) = oc, e~ 44 T Aje&0 tp (t - iTp - Tn)
n=1 i

By setting TI = 0, if T, < T, for n > 1, then p (t - iTp - Tn) ~~ p (t - iTp), and r(t) simplifies

to:
Lr

r(t) ~ oc e-i ( Atejeip (t - iTp) (2.34)

= O e-is(t)

The corresponding channel impulse response is:

c(t; t) = ca(t) e-i(t) 5(T) (2.35)

This is the standard form of a classical flat-fading channel response. The amplitude response

of the channel is flat over the entire transmit bandwidth. The multipath components are un-

resolvable, and the effective channel gain T and phase-shift <p are the sum of i.i.d. fading RVs,

respectively. For a WSSUS channel, its scattering function (see eqn. eqn:scattering function)

for a flat-fading model is:

S(Af, AT) = FAt R c(At; AT)

= 5(AT)*(f)
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where *(f) is the Doppler spread function.
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IC(t;f)

/
/

/

I.'

W Hz

Figure 2.14: Frequency selective amplitude response for L = 4 resolvable paths

Resolvable Multipaths

If the difference in arrival times of any
T n+1 - Tn > Tp, the received signal is:

L
r(t) =5[ Aeoit ot-

n=1

two multipath signals is larger than T. such that

ei- 4n p [t - (i+ An)Tp - en] (2.36)

where
An [J and E. = Tm - A

TV

In this case, p(t) is highly distorted by its attenuated and phase-shifted echoes. This is similar

to reception through an ISI channel, except that in the fading case, the gains and phase-shifts

are random and time-varying. The relation between delay spread and L is:

L = P +I1

For simplicity, let ez = 0 for Vn. Then A, = n - 1. Rewriting eqn. (2.36):

L

r(t) = ZnAei [ (m e-i 4) p [t - (i+n - 1)T']
i n=1

L-1

= T [in+1 e4n+1] s(t - nTp)
n=O

(2.37)

frequency (Hz)



The L paths are resolvable because each replica of the transmit signal s(t) is affected by an
independent fading statistic a, e54)-. The term arises from statistic detection theory where it is
known that the signal combining gain is maximum when all statistical components of the signal
are mutually independent. The equivalent baseband impulse response for this channel is:

L(t)

c(t; T) = Y an (t) ei*(t) IT - (n - 1)Tp (2.38)
n=1

=l e-) - (T) + M2 e3 42 6(T -Tp) . . . + ) e L 6(t - (L - 1)Tv)

Its frequency response for Ifi I; W is:

C(t; f) =Y {c(t; T)}

= M~I e-j * (T) + LX2 e- 41)2 6 (T - Tp) ... + aL e- 4L 5 (T - (L - 1)Tp))

= c e-i f1 + X2 ej (2
7fTp -4 -2) + OC3 e* (47rfTp +$.3) + OxL e-j(2 (L-1)7fTp+L+) (2.39)

L(t)

= a Mn4t) exp -j 27t(n - 1)fTp + cpn(t)}

It is apparent that the frequency response C(t;f) is a finite series of sinusoids with random
amplitudes and phases. A plot of CI(t; f)I is shown in Fig. 2.14 for L = 4 with Tp = 1/W. Hence

this fading of fading is frequency-selective.
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Notes and References

For short-term rapid fading, two widely used distributions are Rayleigh and Ricean. Both

were first proposed by Steve Rice [115, 116]. The Rayleigh distribution is in honor of Lord

Rayleigh who studied scattering radio wave propagation. We show that both distributions can

be derived from the Gamma probability density function (pdf). For long-term fading, the mean

signal strength is modelled as a Gaussian random variable in logarithmic scale. This model, first

proposed by D. 0. Reudink [62], is based on curve-fitting empirical data measured around New

Jersey and New York City. There are several pdfs that model the combined effect of both short-

and long-term fading. The most notable is the "m"-distribution proposed by M. Nakagami [92].

He also proposed other variants, the "n" and "q" distributions. By a change of variables, the "n"

and Ricean distributions are the same. The "q" distribution is also known as Hoyt's distribution

since it was first proposed by R. S. Hoyt [56]. For combined fading, H. Suzuki [137] a two-

tier distribution function where the conditional density of the instantaneous signal amplitude

is Rayleigh, conditioned on the mean signal strength that is log-normal distributed. Later, F.

Hansen and F. I. Meno [49] coined this compound distribution as "Suzuki." A more generalized

compound distribution where the Rayleigh pdf is replaced by the Gamma pdf is analyzed by

Ho and Stuber [52]. It is shown that for a fixed mean-squared value, the one-sided Gaussian

distribution is the worst type of fading.
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Appendix 2A

Statistical Distributions for Fading Envelope

Gamma Function

The gamma function F(cx) is defined as:

F(cx) = JO i-le-udy (2.40)

The above integral is known to exist for cx > 0 and F(cx) > 0. It is straightforward to see that

For c =1 F(1) = e d-y = 1 (2.41)

For ox= 1/2 F(1/2) = Je- d-= /7 (2.42)

For c > 1, using integration by parts:

F(,) = (O - 1) F(O - 1) (2.43)

For example, F(3/2) = j [(1/2) = V/7i/2. For the special case of X E Z2,

F(ox) = (x - 1)(x -2)... (3)(2)(1)F(1) = (cx - 1)! (2.44)

To generalize F(ox) = (c - 1)! for all c c Z+, including Lx = 1, set F[(1) = 0! = 1.

Gamma Probability Distribution

If we setu = and 3> 0 in (2.40):

['(L) =J (X)exp(- x)() dx (2.45)

oo XC-1
or 1 = exp )-dx (2.46)

Since cx > 0, 3 > 0 and F(x) > 0, it is easily verified that for 0 < x < oo, the integrand in (2.46)

qualifies as a pdf:

f(x) = exp U(x) (2.47)
( Y) @P\ 0)

The random variable X is said to have a "Gamma" pdf f(x) with two free parameters cx and s.
We denote a Gamma RV X by X - F(cx, 3). Several plots of the Gamma pdf for various values of

Lx and 3 are shown in Fig. 2.15. It can be seen that Lx is a shaping parameter since it controls
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the amount of skewness of the pdf. For large cx, the pdf appears more symmetric, i.e. "bell-

shaped." In contrast, P is the scaling or spreading parameter since it adjusts the "spread" of the

pdf. In Fig. 2.16, the Gamma pdf is plotted again with the ordinate normalized by its peak

value. Careful observation reveals that the shaping parameter x both shapes and translates the

density function. It is easily shown that the mean and variance of RV X are:

f (x)

a=1, P=2

a=1, P=4

a='1, fi=8

a2, fi='1

a=4, #=1

a=8, #=1

X

(b)

Figure 2.15: Gamma probability density function with various values for oc and P.

f(x)
peak

peak

a=1

03=2

6'
8

x

(a)

1 2 4 a=8

#=1

x

(b)

Figure 2.16: Peak-normalized Gamma pdf with various values for o and P.

E(X) = ocP Var(X) = xs2 (2.48)

It is important to note that since the gamma pdf has two free parameters Oc and P, there is

quite a flexibility in fitting the gamma pdf into one of many empirical multipath fading channel
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models. From eqn. (2.48), we also note that due to two free parameters, E(X) and Var(X) are

independent; i.e., we cannot deduce one value from the other. Another two-free-parameter pdf

that possesses the same property is the Gaussian pdf. However, for the Gaussian RV X, E(X) is

the translation parameter, and Var(X) is the scaling parameter.

Special Cases of Gamma PDF

Erlang PDF

For ca E Z+, f = 1/A:
w"-le~AAx

f(w) = (O- 1)! U(w) (2.49)

E(W) = 3 = /A Var(W) = CpB2 =/\2 (2.50)

The Erlang pdf, commonly applied in tele-traffic modelling, is usually expressed as:

f(w) = Ae-AW U(w) (2.51)
(OC -1)

Exponential PDF

For the special case of Erlang pdf with Lx = 1, we obtain the exponential pdf:

f(w) = Ae-Aw U(x) (2.52)

E(W) = P = 1/A Var(W) - p2 - I/A 2  (2.53)

Note that unlike the Erlang or Gamma pdfs, the exponential pdf has a single free parameter A.

Standard Chi-Square PDF

For Lx = r/2, = 2 where r E Z+, the resulting distribution is known as "standard" chi-

square pdf:
T
-- I

f(x) - ( 2 exp - U(x) (2.54)
F(I) 2r/2 2

E(X) = LX$ = (r/2) .2 = r Var(X) = O132 = (r/2)22 = 2r (2.55)

The standard chi-square distribution is characterized by a single parameter r known as the

degree offreedom. The reason for this terminology becomes clear in the next section.
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Relation between Gamma and Other PDFs

Gaussian PDF

Let X1 be a standard Gaussian RV, i.e. X ~ AT(O, 1). If {Xd}1 is a set of i.i.d. Gaussian RVs,

then
T

Y =X?

i=1

has a "standard" chi-square pdf with r degrees of freedom. E(Y) = r and Var(Y) = 2r. The

number of independent (Gaussian) RVs is a measure of the degrees of freedom for Y.

f(x)f(x)

a =1

r=2

r= 4

r=8

Y r-16

(a)

S=1.5

a =2

a =3

x

(b)

Figure 2.17: Central chi-square pdf with various values of r and a.

f (x)
peak

. .16

f(x)
peak

r=32

(a)

Figure 2.18:

r=2

2 a =3\2

1 \1.5~".

x

(b)

Peak-normalized central chi-square pdf with various values of R

and o. A larger r translates, and a shapes the density function.



Central Chi-Square PDF

If Xi ~ A(O, u.2 ) and {Xj}_ is a set of i.i.d. Gaussian RVs, then

T

Y a X"

has a "central" chi-square pdf with rdegrees of freedom, and a centrality parameter u.2

E(Y) = rou2 Var(Y) = 2r- 4 (2.56)

Its pdf can be written as:

f j 2  (x
F(b) = !~) (2W-2) T/2ep (2.57)

Note that it is a two-parameter distribution function, and E(Y) and Var(Y) are independent

unless r = 1.

Non-Central Chi-Square PDF

If Xi ~ K(ti, o.2 ) and {X} 1} is a set of independent Gaussian RVs, then

r

i=1

has a "non-central" chi-square pdf with r degrees of freedom, a centrality parameter 0.
2 plus a

non-centrality parameter i2
T

i=1

Its pdf can be expressed as:

f() = 2 r 2) exp ( 2.2+ i -

2ur2 ) K1VY . ) U( )

where I,(x) is an <xth-order modified Bessel function of the first kind:

00 (x)>X+2k
ICx = -- 2 U(x)

k= k! P(Dc, + k + 1 )

(2.58)

(2.59)

It is easily shown that

E(Y)= r.2 + 2 Var(Y) = 2ru-4 + 4u.2 2 (2
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f(x)

u2
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f(x)
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x
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f(x) r=2

r =4 o=4
y =10

r 8

r = 16

/

(c)

Figure 2.19: Non-central chi-square pdf with various values of r, p. and a-.

The non-central chi-square pdf is a function of three parameters r, a2 and p.2. In terms of
notation, all three types of chi-square pdfs can be distinguished by the number of parameters
in the argument:

Standard : Y- X2 (r) (2.61)

Central: Y X2 (r, 02 ) (2.62)

Non-Central : Y X2 (r, -, 2 2 ) (2.63)

Chi PDF

If Y is a standard, central or non-central chi-square distributed RV, then R = v'Y is said to

have a standard, central or non-central chi pdf, respectively. The pdf of a central chi distributed
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f(X)
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f(x)
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ji=15
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x
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a=4
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Peak-normalized non-central chi-square pdf with various values of r, . and

a. A larger . translates, and a shapes the density function.

RV R - X(, .2) with n degrees of freedom is:

f(r) = 1  exp
2(n-2)/2 an F(n/2) e 2U (2.64)

Similarly, the pdf of a non-central chi distributed RV R - x(n, u.2, R2 ) with n degrees of freedom

f (T) = exp (
ir (n- 2 )/ 2 U2

2 'L 2

2a.2 ) (2.65)

Similar to the chi-square distributions, all three types of chi pdfs can be distinguished by the

number of parameters in the argument:

Standard : R - X(n)

Central : R - X(m, o-)

Non-Central : R - X(n, o-, g 2)

(2.66)

(2.67)

(2.68)

is:

I2 a )- U(T)
2 a-
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Special Cases of Chi Density

If X -( i, U.2 ) are independent Gaussian RVs, then

R= VX2+ X2+..- + X2

is a chi-distributed RV with n degrees of freedom.
is either standard, central or non-central type. We
cases:

f(x)
N.-

a1=

a=20

x

(a)

Depending on the values of i and cr2 , it

are particularly interested in the following

f,(x)

a=2

7=4

x

(b)

Figure 2.21: (a) One-sided Gaussian and (b) Rayleigh distributions. Both are

chi X densities with one and two dimensions, respectively.

One-sided Gaussian PDF

If Y - X2 (1, U2 ), or equivalently if X ~ A(O, U2 ), then R = vxX/2 has a one-sided Gaussian pdf

denoted by R - X(1, .2 ):

f(r) = (_exp - ) U(T) (2.69)

Unlike standard Gaussian pdf, the shape of the pdf of one-sided Gaussian RV is not symmetric
and the mean is non-zero. It can be shown that

E(R)= 2- -
n

E(R 2 ) =C 2 Var(R) = ( - -)2
7/

Several pdf plots of a one-sided Gaussian RV, parameterized by a, are shown in Fig. 2.21(a).

Since its mode value is always zero, this pdf represents the worst type of fading for fixed mean

and variance.
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Rayleigh PDF

If Y - X'(2, u.2), or equivalently if Xi ~ (0, .2) for i = 1,2 then R = Xf+ X2 has a

Rayleigh pdf denoted by R ~ x( 2 , .2 ):

f(T) = () exp - U()r (2.70)

This is the conventional form of Rayleigh pdf when derived from Gaussian RVs. Several differ-

ent pdf plots of a Rayleigh RV, parameterized by a, are shown in Fig. 2.21(b). A more com-

monly used pdf form in mobile radio engineering is expressed in terms of the mean-squared

value fl E(R2

f(r) = r exp U( ) (2.71)

f(x)

Rmod

E(R)

?x

Rrm

Rmed

Rayleigh probability density function.
Figure 2.22:V/Rmd ihTRm 1CRmod = , E(R) = T' Rmed = v2In2 (-, Rrms a

We can deduce the following:

Moment: E(RT ) = 2n/2 r(1 + T") (2.72)

Mean: E(R) = a- (2.73)

Mean-Square: E(R 2) -2 o.2 (2.74)

Variance: Var(R) = () 2 (2.75)

Median: Rmed = V2U 2 - (2.76)

Mode: Rmod = U (2.77)
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The median Rmed corresponds to the point where the area of the pdf to its left and right are

equal:
Rmed 1

dr-

The mode Rmod is the most probable value:

Rmod = arg max [f(r)]

Rice PDF

If Y - X2 (2, U2 , L2 ), or equivalently if X, ~( , a2) and X2 P(0, c.2), then R = X + Xi

has a Rice pdf denoted by R - X( 2 , u2I t2):

f(r) = (T ) exp ( I+ i1 U(r) (2.78)

The more common form in mobile radio engineering is:

f(r) = () exp + Io 1 U(r) (2.79)

where S = 2o-2 . The moments and the peak value of a Ricean RV R are:

Moment: E(Rn) = Sn/ 2  I) + F(n) (2.80)

Mean: E(R) = - cF(1) (2.81)

Mean-Square: E(R 2 ) = S + 42 (2.82)

Variance: Var(R) = Vt2 + S (I - F2(1)) (2.83)

where IF 1 (x, U; z) = cD(x,j; z) is the confluent hypergeometric function [47], pp. 1012, and

F(rT-) -I= 1 (

Although the Rice pdf has two independent parameters, the severity of Ricean fade is measured

in terms of a single fading parameter K:

2 2

K - = (2.84)

K is the energy (or power) ratio of the line-of-sight (specular) path and non-line-of-sight paths.

When the specular path is strong, K is large. As a special case, when K = 0, the Rice density

reduces to the Rayleigh pdf. For K >> 1, it approaches the Gaussian density with mean Vt. As

K -* oo, u2 -+ 0, and the distribution approaches a delta function, i.e., the non-fading case.
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Figure 2.23: Rice probability density function with parameter K (L = 10)

Other Important Fading Distributions

Nakagami-n PDF

For a Nakagami-n pdf, n is the fading parameter, 0 ; n < oo.

2T(l + n2) e-n2 (1 + n2)T2) I. V + :2
f(r) = - exp(- ( 2  )Io(2nr U(r)

It can be shown that by using the following substitutions:

I=
v - - 2a=fg_ 2

and after some manipulations, the Nakagami-n and Rice pdfs are equivalent with K =
a special case, when K = n 2 = 0, it equals the Rayleigh pdf. As n -* oo, it approaches

function, i.e., no fading. The moments and the peak value of a Nakagami-n RV R are:

Moment:

Mean:

Mean-Square:

Variance:

Mode:

Peak Value :

r (Rn+ 2) (_Q)f n/2
E(R') = -

r(mr) m/t

E(R) = r(m)r(m)
(1

-l

E(R 2) = fl

Var(R) = fl 2)-

v/mi- r(m)
2m2

Rmodt = v/j,

f(Rmod) =
r (M) v/d

n 2 . As

a delta

(2.86)

(2.87)

(2.88)

(2.89)

(2.90)

(2.91)

(2.85)
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Nakagami-m PDF

The m-distribution, first proposed by Nakagami has the following pdf:

2mm r2 in ,mr 2 \
f(r) = exp ( ' ) U(r) (2.92)

flm [(in) f

We denote a Nakagami-m distributed RV as R ~ m(m, 0). It is a two-parameter distribution

with

Q = E (R2 ) M = 2 > (2.93)
(R2 _fj) 2

The parameter m can be considered as the inverse of the normalized variance of R2 . As we will

see in Sec. 2.3.2, the normalized variance of a random variable is used as the single unified

benchmark to compare the severity of various fading distributions. The moments and the peak

value of a Nakagami-m RV R are:

Moment: E(R") = ( (2.94)

F(n+) M

Mean: E(R)= (2.95)
F(M) M

Mean-Square: E(R 2 ) = f (2.96)

Variance: Var(R) = [1() (2.97)

Mode: Rmod =v/d (2.98)

Peak Value: f (Rmod) = (2.99)
F(M) v/f5

It can be shown by using the following transformations:

n = 2m 2mcy2 = n

that the Nakagami-m (eqn. (2.92)) and the central chi density with n degrees of freedom (eqn.

(2.64)) are equivalent. However, note the differences: the central chi pdf x(n, .2) is defined

only for n e Z+, whereas the Nakagami fading parameter is valid for I < m < 00. As special2

casesin = M gives the one-sided Gaussian pdf, and m = 1 results in Rayleigh pdf. As m -4 00,

it approaches the non-fading delta function.

Nakagami-q PDF

The Nakagami-q pdf, also known as the Hoyt distribution has the following pdf:

(1 + q2),r (1 + 2) 2 T 1 ( 1 -q r2 ) (2.100)fqr = ep 4 q2 fj ) 4 q2 fj~ )(210
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Figure 2.24: Nakagami-m pdf with parameters m and fl

f (X)
q=0.2
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Figure 2.25: Nakagami-q pdf with parameters q and n

The fading parameter is 0 < q 1. The original "symmetric" form proposed by Nakagami

(ironically without the parameter q) is:

2T T 2 1 1 T 2 1 1
f(r) = r exp[ (-+-) I [)U(r) (2.101)

OC ~0 2 (o 0 )1 2 G ocUT

It can be shown that by applying the following transformations:

2  2f2
OC q + e2

eqns. (2.100) and (2.101) are equivalent. It is a function of two free parameters. A q-

distributed RV is denoted by R - q(q, 0). Because of the r 2 term in the argument of the

Bessel function, the q density cannot be expressed as non-central chi-square or chi density. As

f (X)

87

q = 0.5

X
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special cases, for q = 0 it becomes the one-sided Gaussian pdf, and for q = 1 it is equal to the

Rayleigh pdf.

Log-Normal PDF

If X ~.I(,, U.2 ) and Y = eX, then Y has a log-normal distribution with pdf:

1fCY) = I-Li'v27~2

E(Y) = exp

exp -

( 81

(2.102)

E(Y2) = exp ( 2 +12cr2 )

f(x)

tL4, =

Av=5, u=2

ji=5, u=1

v=6, u=

X

Figure 2.26: Log-normal distribution

Suzuki PDF

If a RV S has a conditional Rayleigh density, conditioned on its mode (or mean) that has a

log-normal distribution, then S has a Suzuki density. Its unconditional density is:

f(s) = f(slo) M exp[
a 2xr 2

(Ina - )2

~ c2 I (2.103)

where

f(slo) =J ( )exp

The conditional Rayleigh pdf f(sjo-) can be generalized to a Gamma or chi pdf.

S2
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Appendix 2B

Derived Distributions

Powers of a Random Variable

Note a peculiar property of a log-normal RV: If X is a normal (Gaussian) RV, i.e., X - H( , U 2)

then

Y = ex (2.104)

is a log-normal RV Similarly, any power of Y:

Yn = enX (2.105)

also has a log-normal pdf since scaling a normal RV is still a normal RV In practice, we are

interested in n c Z+. In particular, if the amplitude of a signal V = ex is log-normal distributed,

its value V in decibel scale,

V [dB = 20 log(V) = 46 X (2.106)

is Gaussian distributed. Similarly, its power P = V 2 (in watts) and P [dB] are log-normal

and Gaussian RVs, respectively. Since signal power is the proportional to the square of its

envelope, we are mostly interested in the pdfs of envelopes used in short-term fading. Similar

to Table 2.1, we list the density functions of the power for six commonly used short-term fading

distributions.

Table 2.2: Relation between Power and Envelope Fading PDFs

X Y =X2 Comments

Rayleigh central chi-square two-dimensional

equivalent to exponential function

Rice non-central chi-square two-dimensional

Nakagami-q no standard form

Nakagami-m central chi-square 2m degrees of freedom

Log-normal Log-normal Here, both RVs are in log scale unit

One-sided Gaussian central chi-square one-dimensional

Appendix 2B - Derived Distributions
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Product of Random Variables

If c(, n E ZN, are mutually independent RVs, their product

N

OC= 1 cn (2.107)
n=1

when expressed in decibel scale:
N

Lx [dB] = Ocn (2.108)
n=1

approaches the Gaussian distribution for large N, by invoking the Central Limit Theorem (CLT)

[34]. This implies that a is (approximately) log-normal distributed.

Sum of Random Variables

We already know that if {Xj}{_, is a set of independent Gaussian RVs, then

Y =X?

is a chi-square RV with r degrees of freedom. If {Yj}_ 1 is a set of independent chi-square RVs,

where each RV Y1 has nij degrees of freedom, then

T

N = Yi2 (2.109)

is chi-square distributed with n = (ni + n2 + ... + nr) degrees of freedom. In an unresolvable

multipath fading model, the received signal

r
r(t) = ci s(t) (2.110)

i=1

is the sum of attenuated replicas of the transmitted signal s(t). The attenuation factors Gaj are

complex RVs. The instantaneous received signal energy at time t is:

Er = E (r(t)r*(t))

= E (2.111)

i=1 j=1

If the RVs ac are zero-mean,

ET-= E s E (I2) (2.112)
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If the RVs mi are zero-mean and Gaussian, each qla is a one-sided Gaussian RV Equivalently,

their sum

A =L(Ij2)

is chi-square distributed with r degrees of freedom. Thus, the received signal energy E, is the

product of the mean of a chi-square RV A and the transmit signal energy E. If there are L

resolvable multiple fading paths, the received signal energy becomes

L

Er = Es E(A) (2.113)
1=1

where

Al ~ (I OCI2)

is a chi-square distributed RV with r1 unresolvable multipaths. {lcul} is the set of independent

one-sided Gaussian RVs. Thus,

A=Al+A 2 +...+AL

is a chi-square RV with LI rI degrees of freedom.

Linear Function of a Random Variable

When dealing with binary-valued sequences, the two possible states are {O, 1} = F2 or

{+] -11} = D2 . Let X E F2 be a Bernoulli RV, i.e. X ~ B(p), with P(X = 0)=p, P(X = 1)=1 - p.

Then,

Y = 2X - 1

is said to have a bipolar Bernoulli distribution, denoted Y - bB(p). Note that (Y) C D2 with

P(Y = -1) = p and P(Y = 1) = 1 - p

Y is a level-shifted version of X (see Fig. 4.11). Similarly, if U is a binomial RV, U ~ Bin(n, p)

with probability mass function (pmf):

P(U = k) = pI _ -)f-k

its corresponding bipolar Binomial RV V - bBin(n, p), where V = 2U - n, has the following

pmf:

P(V = (p' ( - mn-k' k' Trtn (2.114)
P( n r~k/ 2

Both conventional and bipolar Bernoulli and Binomial functions are plotted in Fig. 2.27. We

denote n as its length and k as its outcome.

Appendix 2B - Derived Distributions



92 Chapter 2: Fading Phenomena And Models

conventinal bipolar conventional bipolar

0 1 -1

(a)

0 1 2 3 4 -4 -2 0 2 4

(b)

Figure 2.27: Conventional and bipolar functions: (a) Bernoulli (b) Binomial

A Bernoulli RV is said to be symmetric if its elements are equally likely, i.e.,

P(X = 0) = P(X = 1) = 1/2

Binomial RV is symmetric if p = 1/2. The pmf of a symmetric bipolar Binomial RV simplifies

n, m both odd or even
{ n

P(V = Tm) =2

0

(2.115)

otherwise

Symmetric bipolar Bernoulli and Binomial functions are plotted in Fig. 2.28

-1(

(a)

1 ---
4 -2 0 2 4

(b)

Figure 2.28: Symmetric bipolar density functions: (a) Bernoulli (b) Binomial

Note that for a conventional symmetric Binomial R, if it is a sum of n independent Bernoulli

RVs, its length is also n. If n is even, it has a single mode. On the contrary, when n is odd there

are two modes. In both cases the integer support is k E [0, n]. For a bipolar symmetric Binomial

RV, if it is a sum of Ti independent bipolar Bernoulli RVs, the absolute value of its length is n.

When n is even, it has a single mode equal to zero. Its support consists of even integers only;

i.e., m c ±2N / 2 . When n. is odd, it has two modes: -1 and +1. Its support consists of odd

integers only; i.e., m e Dn+. All four cases are illustrated in Fig. 2.29 for n = 4 and 5.

We already know that a Binomial RV is a sum of iid Bernoulli RVs. Therefore, the sum

of a Binomial RV of length n and a mutually independent (equally distributed) Bernoulli RV is

another Binomial RV of length (n+ 1). We are now interested in the distribution of the resulting

A

to

92
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7 even

0 1 2 3 4

eve

-4 2 0 2

0 1 2 3 4 5

(a) conventional

n

54 3 1 1

(b) bipolar

Figure 2.29: Symmetric Binomial PDFs of odd and even lengths

RV if the Bernoulli RV is not independent. Let V be a symmetric, bipolar Binomial RV

V =XO+X1 + .. . +XN-2

where {Xi} is a set of iid symmetric, bipolar Bernoulli RVs. Next, let W = V + X0 . Also let

V* a XI + of+ XN-2

be a Binomial RV of length (N - 2). Then

P(W = m) = P [(V* = -2 and Xo =1) or (V* = m +2 and Xo = -1)]

=-pP(V* =m - 2) + (1 -p)P(V* = m +2)

Since the RVs are symmetric

P(W = M) = *= n - 2) + P(V* = m+ 2)]

Thus, it is the sum of two Binomial RVs, both of length (N -2) weighed by 1/2. They, however,

are not independent.

odd

d1

odd

53

(2.116)
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3

CELLULAR BROADCAST CHANNEL

Summary

We present some fundamental limits in terms of simultaneously achievable information

rates from a single transmitter to many receivers. When there is no interference, the chan-

nel model under study is the broadcast channel. Its capacity and achievable rate regions are

reviewed. When interference from other transmitters is taken into account, the transmission

medium is a composite channel consisting of both broadcast and interference components.

When the locations of transmitters is defined according to a certain regular geometrical struc-

ture, the resulting composite channel is called a cellular broadcast channel. Achievable rate

regions of intra-cell superposition coding and three orthogonal multiplexing schemes based on

time-, frequency- and code-division in a cellular broadcast channel are analyzed. Channel mod-

els without any fading, with flat and frequency-selective fading are analyzed. (The necessary

background material for fading phenomenon and its representative channel models are detailed

in Chapter 2.) A tutorial on hexagonal cellular geometry and some of its unique properties are

presented in Appendix 3A. The information therein aids in the modelling of a cellular broadcast

channel.

The main highlights of this chapter are:

m The optimal data multiplexing scheme in a broadcast model requires the use of super-

position coding at the transmitter and a demultiplexing scheme based on successive in-

terference cancellation at all receivers. This type of receiver requires "double feedback"

side information on a dynamic basis. In practice, such realization may not be possible or

prohibitively complex.



* Various sub-optimal orthogonal multiplexing schemes are equivalent in terms of their

achievable rate regions. In a multiplexing scheme based on orthogonal codes, it may be

necessary to generate a much larger number of codes than the number of receivers to

support arbitrary rates.

* The most efficient protocol is based on superimposed orthogonal code-division multiplex-

ing with possible time-sharing. This conclusion is reached by comparing not only the

achievable rate regions but also other design and system constraints such as multi-rate

support (measured in terms of peak-to-average rate ratio), latency, receiver complexity

and network planning issues.

3.1 Classification of Multi-User Channels

A general communication network is an enormous web consisting of a large population of

terminals and their associated communication links. For our analysis we impose the following

restrictions:

1. Each terminal is exclusively a transmitter or a receiver, but not both. Bi-directional two-

way links are not allowed. This restriction applies only to information not related to

channel states. Control channel signalling from a receiver to its transmitter through a

feedback channel is allowed.

2. There is an associated information source for each transmitter. Similarly, each receiver

relays its decoded message to an information sink. There are equal number of information

sources and sinks in the network. It is implicitly assumed that the channel linking a source

and its transmitter -likewise, a receiver and its sink- is error- and delay-free.

3. A direct channel (without any intermediate hops) exists between every transmitter-receiver

pair. No relay channel is allowed.

4. Each transmitter is autonomous and independent from other transmitters in the network.

They are autonomous in the sense that no cooperation among transmitters is permitted

in designing their code books. The messages from their respective sources are statistically

independent. Simulcasting of the same information from more than one transmitter is

not allowed. Equivalently, our model does not support multiple transmit antenna based

diversity combining systems.

5. Every receiver accepts information from its intended transmitter as "useful." All other

received signals are treated as interference. Multi-accessing is forbidden. Diversity recep-

tion is allowed at a receiver in multipath fading channel models.
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3.1.1 Input-Output Device

Let T, R, I and S denote the number of transmitters, receivers, information sources and

sinks, respectively. A subscripted letter will be used to identify a unit in each category. For

example, Tj is the in transmitter in the network. For an M-terminal network, I = S = M and

T, R < M. Based on the above set of restrictions, a communication channel is an input-output

device with T inputs and R outputs. A block form is depicted in Fig. 3.1 for T = m and R = n.

T2  
R2

T3  
R3

T4 EJ _0R4
. transmitter

channel N receiver

Tm-3 Rn- 3

Tm-2o Rn-2

Tm-1 Rn-2

Tm Rn

Figure 3.1: Channel as an I/O device with T = m inputs and R = n outputs

Depending on the relationship between T and R, three types of multi-terminal channel models

can be envisaged.

1 Definition When T > R = 1 it is called the multi-access channel. At the other extreme, when

R > T = 1 it is known as the broadcast channel. When T = R > 1 an interference channel

results.

These models and their respective definitions are accepted universally in the literature.

2 Definition When T > R > 1, it is a composite channel consisting of both multi-access and

interference components. Similarly, when R > T > 1, it becomes a broadcast-interference

composite channel.

Based on above definitions we have exhausted all possible cases relating T and R. Of course,

when T = R = 1 we have the degenerate case of a single-user communication channel.

3.1.2 Multi-Terminal Cooperation

Let us now consider the relationship between the transmitter-receiver pair (, R) and its

associated information source-sink pair (I, S). Note that I > T since a number of source out-

puts can be multiplexed, and the resulting multiplexed signal is transmitted through a single
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transmitter. Similarly, at the receiving end, R < S since a separate receiver is assigned to han-

dle the task of decoding and demultiplexing a mutually exclusive subset of the total received

composite signal. At all times an active communication link is established between a source It
and its intended sink S1 . If all sources "cooperate" by conveying their independent information

through a single transmitter T = 1, the resulting I/O device is the broadcast channel. It is

depicted in Fig. 3.2. If cooperation among all sources is not available and T > 1, we obtain

the broadcast-interference composite channel. Whether a channel is purely broadcast or com-

posite depends only on the relation between I and T, i.e., the input side of the channel. Their

difference I - T > 0 is a measure of the amount of cooperation; when I - T = 0, there is no

cooperation among information sources. For T = I the I/O device is either an interference or

multiple-access, or a composite of both channels.

e S 3 E central transmitter

1 receiver

T information source

ln-3&
n 3 * information sink

ln-2 
-- * -

ln - Sn

Broadcast channel model with n receivers.
Figure 3.2: Each information source Ik communicates with its intended re-

ceiver Rk through the central transmitter T.

At the output side, if there is a single receiver (R = 1) for all information sinks, it is a multi-

access channel depicted in Fig. 3.3. When R > 1 it is a composite channel with some co-

operation. The amount of cooperation is measured in terms of S - R > 0. An interference

channel results when there is no cooperation at both input and output (see Fig. 3.4). In gen-

eral, cooperation at either end (the input or outside side) may not be possible due to physical

constraints such as spatial and/or temporal separation or design constraints such as autonomy

(non-cooperativeness) and computational complexity. When there is full cooperation at both

ends, the model simplifies to a single-user channel. Cooperation in broadcasting takes on such

forms as synchronization of component channels in their time epochs, carrier phase coherence,
non-colliding assignment of time-slots and/or frequency bands, etc. See page 171 for a classi-

fication of various time synchronism options.
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3.1 Classification of Multi-User Channels

Ti S1

T 3T2 S2

T3 S3

T4 S4

R -

Tm-3 Sm-3

Tm-2 S-
Tm-1 Sm-1i

Tm Sm

D autonomous transmitter

* information sink

* common receiver

Multiple-access channel model with m transmitters.

Figure 3.3: Each transmitter Tk communicates with its intended destination

sink Sk through the common receiver R.

S

IS 2

S3

M--M-

1
M-3 M-2

M SM

o information source

* information sink

Interference channel model with M transmitter-receiver pairs.

Figure 3.4: Since each transmitter communicates with its intended receiver

only, no cooperation exists at both transmit and receive ends.
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3.1.3 Transition Probability Function

Consider a single-user communication channel with T = R = I = S = 1. Information

exchange from a source to a sink takes place methodically through the following steps:

" Message Selection: The source has a message book M that contains M messages:

M = {1,2, ... , M}

For each transmission, it selects an index, say m = j E M. The underlying message can

be something else -for example, if the message is a letter from the English alphabetic

set; we set "a" as m = 1, "b" as m = 2 and so on.

* Channel Encoding: The transmitter devises an encoding scheme whose code sequence is

most suitable for transmission via the channel. It constructs a code book containing M

codewords such that there is a bijective mapping between a message j and its correspond-

ing codeword X(j) 1 :

X : {1, 2, ..., IM}- X"

where each codeword X[j] has length n,

X[j] = [X1 [j] X2[j] . . Xljr]]

and each symbol Xk[j] of the codeword is a letter from the alphabet set X. Its cardinality

is denoted by JXI. Equivalently, X G XT; i.e., the code book consists of a small set of

M carefully chosen vectors of length n from a complete set of IXI". Note that unlike

the message set M, the code symbols from X are not necessarily positive integers. Each

symbol can be any real number that is most suitable for a particular channel and receiver.

" Information Rate: The rate R of this (M, n) code is:

R = - log 2 M bits per transmission. (3.1)

Some equivalent notations:

(M, n) = (2nR, )

X =X,

Xk (XI X2 .. Y- -k)

'The time index of discrete-time sequences, the elements and entries of vectors, matrices and sets are expressed

by enclosing any variable (except t and -) in squared brackets; for example, X[n], sj [k], I H[ij]. Any other function

defined on a real linear scale is expressed with the index in parentheses; for example, s(t), F(c), c(t, t).
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" Transition Probability Function: For each channel input symbol xk, there exists a channel

output symbol lYk E Y whose relation is defined by a transitional probability function

p(ii klxk). The output alphabet y need not the same as X in terms of symbols or cardi-

nality. For a codeword X, the transition function is:

p (Y X = p (YIXT")

The channel is memoryless if the output symbol LJk depends only on the current input

symbol xk, and not on past input and output symbols xk-1, Yk-1

P (y I Xk, x k1, k-1 ) = p (Jk xkk)

Furthermore, if no feedback is allowed such that the current input symbol xk is indepen-

dent from past output symbols j k-1, i.e.,

p (xk x , k- ) = p(xklxk-)

the transition probability function becomes:

P(OWIxTI) = flp(lx)
k=1

" Channel Decoding: Finally, the receiver constructs a decoding scheme where it estimates

the sent message from its received vector Y based on some optimality criterion:

-O : Y -- 1l, 2, .. ., M}

An error occurs if (Y) = j when X(j) is sent. The conditional probability of error when

the message j is sent is:

A, = P (, (Yn) jT IM = j, X'(j))

The average probability of error is defined as:

M

Pe T \p

j=1

where Pj is the a priori probability of choosing message j and , P = 1. If they are all

equally likely,
IM

Pe = ArTAj
j=1

Furthermore, if the channel is symmetrical such that Aj is identical for all j c M,

Pe = P (I (Y") =A j, X"I(j))
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3 Definition A single-user discrete communication channel is defined compactly as

(X, P, Y, R)

where P is the channel transition probability matrix whose entries are

p(yjlxi), j E jyl, i E IXI

Information rate R is said to be achievable if there exists a (2 ,R, n) code such that Pe -> 0 for

an arbitrarily large n. The supremum of all achievable rates is the channel capacity.

3.1.4 Broadcast Channel

The above definitions and notations of a single-user channel can readily be adapted to multi-

terminal channel models. For T = 1, R = N > 1 and I = S = N, we obtain a broadcast channel.

The joint transition probability of a broadcast channel is:

P(mil'y2,..- ,YJNLV)

where v E V is a composite symbol transmitted by the broadcaster representing independent

messages for N sources, and lji E yj is the received symbol of receiver Ri. It is assumed

that in a purely broadcast setting, there is no cooperation among receivers. Conditioned on

the transmitted symbol v, the received symbols Lji and -y5 (i 4 j) are independent. The joint

transition probability function is then broken into marginal transition probabilities:

P (Y IIV), P(W 2IV), ... -, P(W NIV)

In block form the broadcast channel, as illustrated in Fig. 3.5, is a single-input, multiple out-

put device with several embedded blocks of "sub-channels," each with its associated transition

probability function. To avoid cumbersome notations, we study the simplest case by setting

N = 2.

At the input side, two information sources select their independent messages from their

respective message books M 1 and M 2 :

MA= {1,2,..., M1 }
Mi = {1,2,... IM 2}
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T
V

p(y~jv)

P(Y2 IV)

__ p(yNlv)

y1 _ R

O R 2

N R
-0R N

Figure 3.5: Broadcast channel as a single-input, multiple-output device with N receivers

In general, M, 5 M 2 . The transmitter devises the following encoding scheme:

X1: f{1, 2,..., )MI} -+ xn

X2: {1, 2,...,1 M21) X2'

V: {1,2,. .. , Mi} x {l,2,.. ., M 2} -+ V

V=X1 +X 2

V(i, j) = X1 (i) + X2(j)

= [Vi (i, j) v2 (i, j) ... vn(i, j)]

Vk(i, j) = Xlk(i) + X2k(j)

The rate for this (2 ,Ri 2TR2 , n) code is:

R = - log2 (M 1M 2)

with the understanding that for each receiver,

1
R1= - log2 Mi

1
R2= - log2 M 2Tl

R = (R1 , R2)

The transition probability function is:

p(YiY 2 V) = p (Y"YgnV")

= P (YinI V1) P (Yg| IV")
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If the channel is memoryless with no feedback:

P(YIY 2 V) = 1 P(WIklVk)P(Y 2kVk)
k=1

The decoding functions are:

-ft : Y --- {1, 2, .. ., IM }
L2 : Y2 --- {1, 2, . .. , M 21

An error occurs when a message pair (ij) is sent and i't 1 7 i or fI' 2 74 j. The probability of

error is defined as:

Pe =P ( 7 4 i or -&L2 74 j,V(i, j)

where it is assumed that any message pair (i, j) is uniformly distributed over M, x M 2 and the

channel is symmetric. A two-user channel is compactly denoted by (V, P) Y1, Y 1 , R).

4 Definition For a discrete broadcast channel, a rate pair (RI, R2 ) is said to be achievable if there

exists a code of rate R = (R1 +R 2), denoted by ( 2 nR, 2 nR2 , n) such that Pe --+ 0 for an arbitrarily

large n. The capacity region is the closure of the set of all achievable rates.

V p(y IV)p( ) - .

R R 2

Ta

R1  2

Figure 3.6: Physically degraded broadcast channel model with two receivers

3.1.5 Degraded Broadcast Channel

In certain broadcast channels such as terrestrial mobile radio, a receiver R 1 that is closer to

the transmitter has a better reception than another receiver R2 that is located further "down-

stream." It is said that R2 receives a "physically degraded" (p-degraded) version of a signal

received by R1 . In terms of transition probability functions:

p(Lg1, Y21v) = p( Iv)p (21I1)

p(22v) = >_ p(m]v)p(J21j1)
Th EYi
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Since P(TY1, 2Iv) = p(WIIv) p (j21v), with p-degradation p(-I2 1v) = p(2LJ1). In a general broad-

cast model with N receivers, if the p-degraded condition holds for all receivers

p(yj5Iv) = p(Yj vYj_1) (3.2)

where j E ZN, then it is called a "cascaded" physically degraded broadcast channel. This

channel model is illustrated in Fig. 3.7. If eqn. (3.2) does not hold for all receivers, other kinds

of degraded broadcast channel models can be constructed. An example is shown in Fig. 3.8

where each channel block as a cascaded p-degraded broadcast channel. This type of channel

model is encountered when a cellular coverage is broken into partitioned zones. See the section

on re-use partitioning in Appendix 3A for additional details. As a weaker condition, a broadcast

p(yI v) R

p(y, y) 2 R2

T*

p~yNN-1N R- , pGly_) RN

Figure 3.7: Cascaded, physically degraded broadcast channel with downstream degradation

channel p(1J2, 1Iv) is said to be degraded if there exists another distribution (y21J1) (possibly

different from p( 2 1)) such that

p(i2v) = p(y1Iv)(U2I1)
Ji Yi

This is the less restricted version of broadcast degradation. Unless noted otherwise, a degraded

broadcast channel has a transition probability function of this kind.

3.1.6 Interference Channel

For the unique case of T = R = I = S where each transmitter wishes to convey information

to a single receiver, the interference channel results (see Fig. 3.4). Each receiver decodes only
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T

-__ ----- O R
OR

p(y--v) . 2

SR k-
o R.

p(y Iv) - R R

0 R N

Figure 3.8: Sub-channel blocks where each is a cascaded p-degraded broadcast channel

the code symbol representing its intended message and treat other transmit symbols as inter-
ference. In Fig. 3.4, to differentiate reception of information from interference, the solid-line
channel that connects a transmitter Tj and its target receiver Ri is called the principal link. All
other dotted links that result in interference to other receivers are called interference links. For
a broadcast channel, every link is a principal link. In an interference channel model, all trans-
mitters are autonomous; that is, their codewords are independent. However, it is implicitly
assumed that they are time-synchronized such that the jth code symbols from all N transmit-
ters I Ik[1j], 2k] .... , JNk[j] are observed at the same time in each receiver k.

For the two-user N = 2 case,

Encoding of information:

A4 1 = {1, 2, ...

MA41= {1, 2, ...

X1 : {1, 2, ...

X2: f{1,2,...,

,M 1}

, M 2}

M 1} -- >

M 2} -4

xi"

X2

The rate for this (2 -nRi 2TR2, n) code is:

R = - log 2 (M 1 M 2 )Tn

R = (R1 , R2 )
I

R =--10 2 MI
iT

R2= - 10 2 M 2n
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Transition Probabilities:

P (YIY 2 XI, X2) = p (YYjXI X211)

= P(ynlXnXn)p(y2iXnX)

If the channel is memoryless with no feedback:

p(Y1Y 2 Xi, X2 ) = P(Ykjxik, X2k) P(2klxk, X2k)
k=1

Decoding of information:

fh 1 : Yi - {,2, ... ,Mi}

1 2 : Y2 -1 1, 2, . .. , M21

Pe =P (1i i or -6L2 # j; X(i), X2())

where it is assumed that both messages i and j are uniformly distributed over M, and M 2 , re-

spectively and the channel is symmetric. A two-user interference channel is compactly denoted

by

((XI, X2), P, (Y1, Y2), R)

5 Definition For a discrete interference channel, a rate pair (RI, R2 ) is said to be achievable if

there exists two independent codes denoted by ( 2 1nRi 2 nR2 , n) of rates R I and R2 respectively

such that Pe -- 0 for an arbitrarily large n. The capacity region is the closure of the set of all

achievable rates.

3.1.7 Composite Channel

When T = M > 1, R = N > 1 and M < N, the model is a combination of both broadcast

and interference channels, since there is at least one information source that communicates

with two or more receivers. Analogously, when T = M > 1, R = N > 1 and M > N, the model

is a combination of both multiple-access and interference channels, since there is at least one

receiver that decodes information from two or more sources. Both types of compound channel

are illustrated in Fig. 3.9.

6 Definition In our study, a composite channel is defined as a compound channel that consists

of broadcast and interference sub-channels only.
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information source

S 2

SN

NI'
/ S4

'6 SN-

1
M ~ N SN2

(a)

* information sink

11

M-1

SN-
1 

M iO 'N

I M

principal link

interference link

(b)

Two types of composite channel models.

Figure 3.9: When M > N, it has multiple-access and interference components.

When M < N, it is a combination of both broadcast and interfer-

ence channels.

3.1.8 Cellular Broadcast Channel

In a complex communication network such as mobile cellular radio with a large terminal

population, cooperative broadcasting or multiple-accessing is not always possible or practically

sound. Cooperation is synonymous to centralization. Consider the aerial view (Fig. 3.10(a)) of

a geographical area with a large set of scattered terminals (radios) -each terminal depicted by

a o symbol. First, it would be wasteful in transmit power to cover the entire area from a single

transmitter (denoted by a 0 symbol in the figure). Terminals farthest from the transmitter re-

ceive a severely degraded version of the transmit broadcast signal. In practice a upper limit on

the (time average) power limit per transmitter is imposed. Second, the total bandwidth allo-

cated to the entire network must be shared among all active radios. Therefore, the information

rate per radio is inversely proportional to the number of active users. This is the bandwidth

constraint. If there is also a limitation on the amount of power the channel can carry, it is said

to be power-limited. Mobile radio channels are both power- and bandwidth limited. Cellular ar-

chitecture resolves both power and bandwidth constraints by setting up a distributed network.

The entire coverage area is partitioned along imaginary boundary lines into many autonomous

smaller coverage areas. This is illustrated in Fig. 3.10 (b). Each small coverage area is called

a cell. By convention, an autonomous "immobile" transmitter -also known as a base station

with omni-directional signal radiation- is situated at the center of a cell. Each transmitter sets
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up principle links with radios or mobiles within its cell. Since power leaks beyond a cell edge, it

causes interference to radios in neighboring cells. If there are Mt transmitters and Nt(> Mt)

receivers, the entire network is equivalent to a communication system with Mt inputs, Nt out-

puts, connected via a broadcast-interference composite channel. As depicted in Fig. 3.10(c)

it is understood that information from sources to their corresponding transmitters takes place

along high-speed links that are error- and delay-free. The power-constraint condition is now

limited to each transmitter over a local coverage area.

E transmitter

a receiver

* -g .w e 0 - 0.

0 00
0 00%0 0 0 00 0 El o 0. 00.

0 00 0 00 0
0 00 0 00 0 0 00 0 00 

000 go 00 00 0 0

(a) (b)

(c)

El

El L1

F-1

El El

(d)

(a) Centralized communication network with a single transmitter

(b) Distributed network with many localized transmitters

(c) Information transfer from sources to transmitters via high-speed backbone links

(d) Distributed cellular network with regular grid pattern and infinite number of

cells. All cell sizes are equal.

Figure 3.10:
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Aerial view of a planar cellular network with hexagonal cells.

Figure 3.11: The reuse number is N, = 3. A region of Nr cells (shaded gray) is

called a cluster.

Due to propagation loss (see Ch. 2, Sec.2.1), the interference power level is drastically reduced

in cells farther away from a transmitter. In such cells, the same bandwidth can be reused. This

is the cellular-reuse concept and it is intricately tied to distributed network architecture. An

example of cellular re-use is shown in Fig. 3.11. In all cells labelled 1, the same frequency

band is reused simultaneously. The same reuse concept applies to other cells labelled 2 and 3.

In this example the reuse number N, is 3. All cells that are assigned the same frequency band

(bandwidth) are called co-channel cells. Under the cellular-reuse setting, we define this type of

multi-terminal composite communication channel as the cellular broadcast channel. In general,

the entire cellular network is blanketed with autonomous cells, each with transmit power P and

bandwidth W/Nr. The bandwidth Wm per radio is:

Wn-W .Mt (3.3)WmM
Nt Nr

where Nt and Mt are the total number of radios and cells (transmitters) in the network. Com-

pare Bm with the bandwidth per radio of a centralized single-transmitter network: W/Nt. As

long as the entire coverage area is partitioned such that there are more cells than the reuse

number, i.e., Mt > Nr, the cellular distributed approach is more bandwidth efficient than its

alternative based on centralized architecture. More details about hexagons, notations, defini-

tions and its geometrical properties are presented in Appendix 3A.

Eqn. (3.3) is correct only if the mobile receivers are uniformly distributed -i.e., the same

number of mobiles per cell. An alternative measure of bandwidth efficiency is in terms of band-

width per cell W, = W/Nr. As long as the number of mobiles per cell K, is less than Nt/N,

We W I WNr W
Kc N1 Kc N, NL N L
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the cell-based approach is more efficient in mobile bandwidth. Note that this fact is independent

of the number of transmitters Mt. However, in general we have no control over the distribution

or the concentration of mobile population within the network. Nt is in fact a random process.

The only design parameters are Mt and Nr By assigning a smaller re-use number the cell

bandwidth W, as well as mobile bandwidth W, is increased. However, this remark is mislead-

ing. By reducing the reuse Nr, the co-channel cells become closer and interference power is

increased; as a result, the information rate per mobile Rm is reduced. The spectral efficiency 2 (in

this case, of a mobile) is measured in terms of its achievable information rate with an arbitrarily

small probability error Pe.

A

Di

di

Q: Dbase
. mobile

r

R

Interference from co-channel cell A at distance Dj.
When D, > R, we accept the approximation D, = d5.

Equivalent Composite Channel Model

When the number of mobiles Nt is fixed, the bandwidth efficiency of a cell is a function of

several variables: its size, the number of cells in the network and the re-use number. The entire

network is a broadcast-interference composite channel with Mt inputs and Nt outputs. By

modifying this model such that the coverage area is infinite, and by tiling same-size (hexagon)

cells contiguously (as shown in Fig. 3.10), the cell bandwidth efficiency becomes a function of a

single parameter: re-use number Nr. In fact, there is no need to analyze the entire network; any

cell is representative of the entire network -assuming the number (and location) of mobiles

in every cell N are independent and identically distributed random variables. Every receiver

2In communication texts, bandwidth and spectral efficiency terms are used interchangeably We, however, differ-

entiate the two. The former is derived from cellular radio engineering design practices, while the latter is a strictly

information-theoretic quantity. In Chapter we also use the term "bandwidth" efficiency as a measure of the power

spectrum extent of a transmit signal compared to its Nyquist bandwidth.
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in a cell "sees" a broadcast-interference channel since the received signal consists of broadcast

signal from its base as well as interfering signals from other neighboring base stations.

It is shown in Appendix 3A that for every target cell, its neighboring cells can be partitioned

into mutually exclusive sets g[j, j E ZM-1 such that all cells in a particular set gjj] are equally

distant from the target cell. Consider the layout in Fig. 3.12 where a neighboring cell A (i.e., its

base station) from set gc4j] is located at distance Dj from the target cell 0. R is the cell radius.

A mobile at a distance r from the target is dj away from its neighboring base. Note that besides

cell A the mobile receives interference from other cells in g[j]. Each elemental interfering cell

in a set Gc j] is significant only in a collective sense since the most important determinant is the

aggregate interference power from cells located the same distance from the target cell. Hence,

they are all lumped into a "single" interferer at distance dj. In terms of transition probabilities,

the following derivation relates the channel gains of the principle link (from the target cell)

and interfering links.

By applying the simplified path loss formula of eqn. (2.4), the mobile received power is:

I kj k2 kM-j
Pr G- i dy dy d-Y_

where

ki = 1g[j and G =G Gr (ht hr) 2

Using the re-use number relation of eqn. (3.33) and the approximation:

d- Di D--j ~ - Dj > R
T T

The path loss L, is:

P,(r) + ki + k2 + +..- m-1 G

Pt (di/r)Y (d2/r)Y (dm-/r)Y) rY

+ ki k2 kM_, G

[3N,[]; ]] + [3Nr[2;r]]y/2  +[3N[M-;r]] T T

where Nr[j;]r is the smallest re-use number such that

d---i < /3Nr[j;rl
T

For mobiles located at different distances within a cell, we can partition a total of K, of them

into mutually exclusive sets 9,[n], n E ZN of mobiles where each set consists of mobiles that

are located the same distance r, from the target base and 0 < r, < r 2 < . < rN < R. By
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defining the normalized received power Pr[n] for a set of mobiles located at distance rn:

Pr[rT] = Pt sGy 0)[n]
T j--

where the power gains are:

-k-

[3N T[j; Tn] ]-y1

where The power gain P3 W is the square of the channel (amplitude) gain:

By default, the channel gain of the principal link 5c0)[1] = 1 for mobiles in g,[1]. To complete

the picture, we remark that this model is equivalent to a composite channel with M inputs (a

single broadcaster and M - 1 interfering neighbors) and N outputs, where N is the (random)

number of mobiles in a cell. This channel model and its properties have already been introduced

in Sec. 3.1.7. A modified version of the composite channel in Fig. 3.9(a) is depicted in Fig.

3.13(a) for M = 2 and N = 4. Note the significance of principal and interference links:

In Fig. 3.13(b) a portion of the composite channel with two inputs and outputs is shown.

This, however, is not an interference channel since both receivers treat the signal from T, as

interference.

principal link

- - interference link

R1

T- R2

T2 2

(b)

Figure 3.13: Composite channel model with link gains

T( [2] RP

a [r-

(())
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3.1.9 Continuous-time Bandlimited Channel

When information is conveyed from a base transmitter to mobile receivers through a radio

propagation medium, the transmit signals take on the form of continuous-time, analog electro-

magnetic waves; i.e., both inputs and outputs of the I/O device are continuous-time functions.

All multi-user channels described so far in the previous sections are discrete-time models where

each code symbol is sent at a rate of one per transmission or channel use -not once per T,

seconds. The discrete-time, finite-alphabet channel model can be generalized by including the

functions of a modulator and demodulator set. An equivalent block form of a discrete-time

channel model with embedded continuous-time modulator-demodulator (modem) is depicted

in Fig. 3.14.

discrete-time channel

x-lI] X[0] x[11 _ MOD c~;) DEMOD __..Y[-11 Y[0] y[111

P(ylx)

Figure 3.14: Discrete-time channel with embedded modem

The two-parameter time function c(t; T) is the linear time-variant (LTV) impulse response (IR)

of a radio propagation channel. Its properties are covered in Ch. 2, Sec. 2.2. The conversion of

code symbols to waveforms is facilitated by the inclusion of a symbol or data modulator after

the encoder. As shown in Fig. 3.15, the modulator consists of a periodic impulse modulating

sequence followed by a pulse-shaping filter with impulse response f(t). If code symbols

... x[-1], x[01, x[11 ... x[j] E X

are complex-valued, each symbol

x[j] = (xi[j], XQ[I])

can be split into in-phase and quadrature components; then each component is modulated

by an intermediate frequency (IF) cosine or sine carrier. The modulation process is a bijective

mapping of encoded symbols from the alphabet X to a finite set of real waveforms

S(t) = {sI(t), s 2(t), .. S(t)

where JXI = S(t)l= M, and

x E X -- s(t) E S(t) (3.4)

The mapping can be expressed concisely as follows:

s(t) = gl(t) cos(27Tf ot) - g Q (t) sin(2mf )t)
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where g I(t) and g Q(t) are filter outputs:

gs(t) J f(t)xs(t - t) dt s = I, Q t E [jTs, (j + 1)Ts) (3.5)

The filter input x,(t) is the continuous-time equivalent of the code symbol sequence:

xS(t) = 6
5 (t) - xs[]

= [Xs[j] 6(t - jTS) (3.6)

After backward substitution:

sT, (t) = s(t - jTs)

=j f(t - jTs) (x[j] cos(27wf t) - xQ[j] sin(27rf t))

Since symbols are transmitted at a rate of one every Ts, we denote Rs as the symbol rate and

IF
in-phase

baseband carrier modulator

f r)

cos(2-rft) +

x[-1] x[0] x[1] S/P 6T(t) s(t-jTj

IF
quadrature phase

baseband carrier modulator

fiter
f(t)

sin(2 Tfft)

Figure 3.15: I/Q data modulator of complex-valued code symbols x[j]

(xi [j], xQ [j]) with pulse shaping filter impulse response f(t)

T, as the symbol duration. Note that the length of each pulse f(t) -which we call the pulse

duration Tp- is not constrained to [0, T,). We postpone any further discussion on this topic

until Chapter 5. At this point, we simply assume that the power signal sT, (t) has power spectral

density contained in W Hz, and that the passband channel bandwidth is also limited to W Hz.

It is known from the Dimensionality Theorem that reliable transmission at a rate of D waveforms
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per second is achievable through a strictly W Hz bandlimited channel if the symbol duration T,

satisfies the following equality :

D = [2WTsJ

Hence, transmission of a code symbol per transmission in the discrete case is equivalent to

transmission of 2W waveforms every T, seconds. If the received signal is perturbed by additive

zero-mean Gaussian noise process n(t) at the front end:

r(t) = cp(t; t) * ST (t) + n(t)

After down-converting in the in-phase channel:

= [cp(t; t) * ST, (t)] cos(27ifOt) + n(t) cos(27tfOt)

After baseband filtering with impulse response h(t):

= cp(t; r) * ST, (t)] cos(27rfOt) + n(t) cos(27fot) * h(t)

Assuming f. > W, the double-frequency terms are removed by baseband filtering, and after

some massaging, the baseband received signal is:

y 1(t) = 3x 1[j f(t - jT") * c(t;'T) * h(t) + n 1(t)

where the baseband noise in the in-phase channel is:

ni(t) = {n(t) cos(27f Ot) * h(t)

Analogously, the quadrature noise can be written as:

nQ(t) = {n(t) sin(27f Ot) *h(t)

Since the I and Q carriers are orthogonal, n 1(t) and nQ(t) are uncorrelated. Since they are

Gaussian distributed, they are also independent. After sampling y (t) at the symbol rate:

1J 1 (jTs) = 1[j] = x [j] c[j] + n1[j]

where the discrete-time channel gain is:

c[j] = f(t - jTs) * c(t; T) * h(t)
t=jT5

Similar derivation for the quadrature component leads to an expression:

Y Q[j] = xQ[j] c[j] + nQ[j]

In practice, the value of i[j] = (yI[j],-y [j]) may be quantized such that its alphabet Y is a

discrete-valued finite set. To complete the picture, we illustrate a block diagram of an I/Q data

demodulator in Fig. 3.16.
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c4t;T) +

n(t)

IF
in-phase

carrier modulator baseband

________filter

h(t)

cos(27rf~t)

S t S/H ---- 1y-1] y[] y[1] -

IF quantizer
quadrature phase
carrier modulator baseband

filter

h(t)

sin(2 ifet)

Figue 316:I/Q data demodulator of complex-valued code symbols
WU[j] = (V I[j], yc [i]) with baseband filter impulse response h(t)

3.2 Single-Cell Channel Capacity

For a two-user Gaussian broadcast model,

1iJ =Clv+fl

V2= C2V + n2~

where ci and c2 are channel (amplitude) gains. Assume ci > c2; i.e., user 1 has higher SNR.

To simplify notations we drop the brackets. The noise variables n' and n2 are zero-mean i.i.d.

Gaussian RVs with equal variance .2. This assumption is accurate since it can be shown -
based on equations from the previous section- that at sample time instant jT,, the in-phase

and quadrature noise components n 1(jT.) and n1 (jT,) are zero-mean, equal variance Gaussian

RVs. After scaling,

lii= =V +-
Cl C1

V2 = - = V +
C2  C2

Since the channel gains are compensated at the receiver, the standard-form of a Gaussian broad-

cast model can be written as:

Yh =V+ TLi (3.7)
1J2 = V + n2
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The variances of the noise variables ni and rt2 are (T = cr2/c2 and (12 o.2 /c2, respectively In

general c2 < c2adc0- ~ sue 2general, cI :A C2and o- U-2. Assume <o. Rewriting the above equations:

IJi V+n

Y2= v + n + (n 2 - n1)

We see that _Y2 is a degraded version of 1, consistent with the fact that user 2 is further

"downstream" since ci > c2. Thus, the additive Gaussian broadcast channel qualifies as a

degraded broadcast channel.

For a two-user Gaussian interference model,

1 =cl VI +c21V2+n1

11 = c12vI + c22v 2 + n 2

After scaling,

* i - c21 T1
'Y li Vi + c V2 + i1 ci cn

_*2 = czV1+v2+
c 22  c 22  C22

The standard form3 is:
Thj I-vi + al V2 + Th- 38(3.8)
yJ2 = a 2 Vi + V2 + z2

al = -C2, a2 = (C-2
c1l C22

The channels compose an interference channel if and only if a I, a2 > 0. The interference channel

is lossy when ai, a 2 < 1; for the opposite, the channel is amplified when ai, a2 > 1. It is lossless

when aI = a 2 = 1. If the channel is symmetric such that ci1 = c22 and c12 = c2i, then

1v1 v + aV 2 +Tn

y12 = avi + V2 + n

where a = c2i/cii = c12 /c 2 2. For a Gaussian interference channel with cii = c22 (i.e., ni =

n 2 = n), a degraded version of a received signal does not exist. Likewise, no degradation exists

for a Gaussian multiple-access channel:

Y = c1 x1 + c 2 x 2 +n

As we shall see, the fact that the Gaussian broadcast model has unequal noise terms results in a

capacity region that is different in shape from the capacity regions of interference and multiple-

access Gaussian models. The block forms of Gaussian broadcast and interference channel mod-

els are depicted in Fig. 3.17.
3 Unlike the standard form defined in [12], we assume the noise PSDs are unequal and N I < N2 .

Chapter 3: Cellular Broadcast Channel118



3.2 Single-Cell Channel Capacity 119

n2

(a)

n

T 1  II 1i +R

va

n

(b)

Figure 3.17: (a) Gaussian broadcast channel (b) Gaussian interference channel

For a two-user Gaussian composite model,

I I
iii = C11 V1 + C2 1 V1 + nf

1 =
12 = Cl2 Vi + C22 Vi + TL2

After scaling,

* 1:1;C21
= =v1+ V2

Cli Cli

2= =V1 + V2
C12 C12

CI

+
C 12

The standard form is:
y1 = vi + a v2 + ni

1J2 = V1 + a2V2 + n 3

(3.9)

where n 3 = nT/C12 and

S 11 12

The noise terms n # n 3 since one broadcast link is a degraded version of another: C11 > C12.
This model is depicted in Fig. 3.18. The channel is symmetric (a, = a2) when C21 C12 = C22 C11.

3.2.1 AWGN Only Channel

According to Shannon's capacity formula, the information rate R (in bps) through an ideal

band-limited AWGN channel can be expressed as4 :

R' ; C' = Wlog (1 + SNR) (3.10)
4When expressing all Shannon capacity formulae and its variations, it is assumed that the logarithmic function

is of base 2; i.e., the channel capacity is measured in bits per second or bit per channel use.
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Figure 3.18: Gaussian composite channel

where the signal-to-noise power ratio SNR is:

P _ 2Cp
SNR - - 2 (3.11)

N W NOTW N0

The superscript in RS and Cs denotes "single-user." W is the channel bandwidth (in Hz), No is

the one-sided power spectral density of the Gaussian noise process, £ is the waveform energy,

and the symbol rate is 1 /T. The signal dimension is D = 2WT and ED = EID is the signal

energy per dimension. Equality holds in eqn.(3.10) when the waveform is an infinite-length

Nyquist sinc (sin x/x) pulse, and its amplitude is Gaussian distributed. If pulses are non-Nyquist

sinc or if the amplitudes are from a finite set, or both, the achievable rate RI is much less than

the single-user capacity Cs. From eqn.(3.11), it can be seen that the information (bit) rate can

be increased by using a higher signal energy E or a larger bandwidth W or both. However the

bandwidth W is a fixed quantity for the entire network, and the signal energy C, or equivalently,
the transmit average power P is constrained such that

E[ v.] < P
i=1

Each transmitted (modulated) signal can be expressed as:

D

s(t) = T Ak (pk(t)

k=1

where {pk(t)}D is a set of orthonormal basis functions. For D = 1, <p 1 (t) is a sinc pulse and

sj(t) = xHw(t) is an element of an M-ary Pulse Amplitude Modulated (M-PAM) signal set

with symmetric amplitudes:

X = I - (M - 1), -(M - 3),..., (M - 3), (M -1) (3.12)

Chapter 3: Cellular Broadcast Channel120



3.2 Single-Cell Channel Capacity 121

Broadcast Channel

By relabelling the noise power densities a - N 1, T2 = N2 and assuming N1 <N 2 , we know

that the two end-points (x and tj intercepts) of the capacity region are single-user capacities:

R, < C' = Wlog(1 + N 1 ) (
P1 (3.13)

R2 < C2=wog 1 +±N W)

By simple time-sharing (naive TDM or N-TDM), the ARR is

,RNT = T> NT=(RIT, R2T) : (Xc C1, (1 - cc) Q)

The rate region is a right triangle. This policy is naive in the sense that the transmit power to

each receiver is proportional to its allocated fractional time:

P1 = OCP P2 = (1 - ) P

For notational convenience, let akP denote the power partition of user k in a K-user channel

such that
K

TXk
k=1

By using Shannon's capacity formula, it is straightforward to show that the rate region of

frequency-division multiplex (FDM) is

= (R , R2)

where
)F PF

R= i Wlog (I + 1  (
N1 OCI W (3.14)

R2= 2 Wlog i 1+- N )
N 2 CY2 W/

Similarly for time-division multiplex (TDM)

RT=(RI) R2)

R T= LX1 Wlog I +NW1  Wo ( W) (3.15)

RI = C2 Wlog ( + N 2 W)

It is easily seen that for the following power distributions

PF PF
PT X (3.16)
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TDM and FDM are equal in rate regions. Furthermore, if

PI =P P=i=x 2 P (3.17)

then the rate regions of N-TDM, TDM and FDM are identical. If the transmitter has additional

side information -i.e., feedback from receivers informing their noise levels- it can adjust the

partitioning of its total transmit power P to maximize the rate region. By using calculus of

variations, it can be shown that the optimal power levels in FDM for a given partition x are

P*1 = Oc1 P - C 3.8(3.18)
*= x2 P + £

e= i oc2W(N 2 -N1) (3.19)

Since NI < N 2, the compensation power e is positive. Intuitively, the above results state that

the power level of a channel with better SNR should be reduced slightly by e compared to naive

power distribution. The rate regions for N-TDM, FDM and TDM are plotted in Fig. 3.19(a).

Since FDM and TDM have the same rate region when the optimal power distribution is chosen,

we call them collectively as orthogonal-division multiplex (ODM) schemes. A simple proof of

the dominance of ODM over N-TDM is given in Appendix 3B. It is worth noting that when ODM

deviates from its optimal power distribution -e.g., due to error in feedback information- its

achievable rate-pair is smaller than that of N-TDM in rate regions where power partition is

sub-optimal. This is illustrated in 3.19(b). Note that with sub-optimal power partition, its end

points are much less than single-user capacities.

R
2

C' "

R

SNR = 20 dB
N SNRz= 1.5 dB

ODM

N-CDM

ptimal

C" R,

(a)

P=0.3 P

=0.5 P

P=0.7 P

C" R,

(b)

Figure 3.19:
(a) Two-user Gaussian broadcast channel rate region

(b) rate regions for orthogonal channel multiplexing without trans-

mit power adaptation

Chapter 3: Cellular Broadcast Channel122



3.2 Single-Cell Channel Capacity

In the optimal policy there is no partitioning of time frame or frequency band. The trans-

mitter broadcasts a superimposed signal. Note, however, that the total power is partitioned

-in our two-user example, into a 1P and OC2 P. The receiver with the worst SNR (user 2 in our

example) treats other users' information signal as noise. Its capacity is

C2 =Wlog I+ N W )
N2W+ Ocp)

The receiver (user 1 in our example) with the best SNR decodes all other users' information.

For example, it is able to decode user 2's signal (by treating its own signal as noise) with better

SNR since N 1 < N 2 :

D 2 Wlog I + N 2 P
NI W+ OCP)

It then re-encodes, remodulates and subtracts other users' signals from the original superim-

posed signal. What remains is the receiver's own information signal plus additive Gaussian

noise. Its capacity is

C1 = Wlog I + Nc

The capacity-pair of the optimal policy can be written as

C' = (C1 , C2 ) (3.20)

For a general K-user channel, assuming N k < Nk+1 for all k, the capacity of the kth user is

Ck=Wlog 1+ L<k ) (3.21)
Nk W + TIkatP)

It can be proven that this optimal policy dominates over ODM schemes5 .

If each receiver treats other users' signals as noise, we obtain the naive code-division multi-

plexing (N-CDM) scheme. Its rate pair is

RNC(c P'
R~~ ~ NC = +lgI c P

) (3.22)

RNC =Wlog I + N 2  )
2 ~N2 W + (XIP)

The above ARR still applies to superposition coding without successive interference cancella-

tion. Therefore, superposition coding alone at the transmitting end is not sufficient for optimal-

ity. We now state several important requirements for optimal encoding and decoding in AWGN

broadcast channel:

sPlease refer to Reference [7] for a proof.

123



" The optimal scheme -commonly known in the literature as code-division multiplex- is

actually a combination of non-orthogonal superposition code-division multiplexing and

successive interference cancellation (SIC) of degraded signals. If the channel is not de-

graded, then SIC is not possible, and the resulting encoding-decoding scheme is no longer

optimal.

" For error-free SIC, every receiver must have complete knowledge of superior (those with

lower noise) and degraded (those with higher noise) signals relative to its own. Since

peer-to-peer control signalling is not allowed, the noise level Nk (or equivalently, the

propagation power loss in channel k) must first be relayed to the base transmitter from

each receiver 6, and then relayed again to all receivers. We coin this mechanism "double-

feedback" information. The accuracy and periodic updating of double-feedback informa-

tion becomes questionable when the channel suffers from fading or when the receivers

are non-stationary or both. It can be shown that the ARR shrinks considerably away from

capacity when decoding errors are made in SIC due to incorrect sorting of noise levels.

" In N-TDM power partitioning is straightforward: If requested rates are (al C', C2 CD), the

power distribution is (OC1 P, CV2 P). In TDM and FDM, this power distribution is corrected

with a compensation power e such that the optimal power distribution is

P=oi P - e P* =c 2 P + E

In the optimal scheme power partitioning is not straightforward. From eqn. 3.21 we can

immediately deduce power allocation for user k requesting rate Ck as

kP - (2Ck/W -1) (NkW + T c P)
t<k

We first compute power allocation for the channel with the best SNR, then the channel

with the second best SNR and so on in a successive sequential order.

In short we stress that error-free implementation of the optimal multiplexing scheme is rather

difficult. Moreover, to the best of our knowledge, a practical superposition coding scheme has

yet to be discovered7 .

6 1t is generally assumed that only the mobile can accurately measure the channel gain (propagation path loss)

in the forward link. Channel state information measured at the base site based on uplink signal is not reliable for

base-to-mobile link quality since most cellular networks use separate frequency bands for uplink and downlink (i.e.,

frequency-division duplexing).
7Recently, multi-resolution coding has been proposed for high-definition broadcast signalling and imaging. This

is a technique where satellite channels carry extra information for increased definition such that channel with higher

SNR receive higher-resolution video images. This is similar, but not equivalent, to superimposition coding where all

channels carry independent information for different sinks.
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3.2 Single-Cell Channel Capacity

S. Verdu showed in [151] that in a time-synchronous M-user discrete-time Gaussian multiple-

access channel, the CDMA sum-capacity is

I log det (I + -2 HM)1 (3.23)

where I Mis a (M x M) identity matrix, cr2 is the two-sided power spectral density of the additive

white Gaussian noise, and det[-] denotes the determinant of a matrix. HM is the (M x M) cross-

correlation matrix, with its entries defined as

Hij = si(t)sj(t) dt

where si(t) and sj(t) are the signature waveforms assigned to users i and j, respectively. (See

Chapter 4 for further details.) It is known that L mutually orthogonal waveforms can be gener-

ated at the expense of expanding the transmission bandwidth by L8 . Assume we use M out of

L orthogonal waveforms, all with equal energy 8, then

0 i 7 j

Note that since thee waveforms are orthogonal, the signal energy 9 in each channel is equal

to the energy per dimension ED. Substituting above result in eqn. (3.23), the sum-rate of

orthogonal CDM in a Gaussian broadcast channel is

M lo I ED
2log(1 +2

If the channel is continuous-time with bandwidth W Hz, using the relation in eqn. (3.11):

MWlog(1 +

where P is the power in each orthogonal channel. If the transmitter broadcasts L parallel or-

thogonal channels, and user 1 decodes M out of L orthogonal channels jointly, then its achiev-

able rate is
MW (P

R1 = log I + (3.24)
L N W)

Note the normalization by L since orthogonal signalling expands the bandwidth by L. Similarly,
if user 2 decodes (L - M) out of L orthogonal channels jointly, then its achievable rate is

L --M (1
RW log I + (3.25)

L k N 2W)

8We are assuming transmit pulses are sinc waveforms with an ideal brick-wall frequency response. It is then

obvious that L orthogonal waveforms can be generated by frequency translation of L - 1 sinc pulses.
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By setting

M L-M
aL = L CY2 = L

PC = PT = I]: = F
L 1 L 2

Compared to eqn. (3.14) wee see that orthogonal CDM has the same achievable rate region as

TDM and FDM 9 . In words the above equation states that to support rate RF to user i in O-CDM,

the transmitter must send L parallel orthogonal, equal energy channels such that cLa of them

carry information desired by user i. The value of L depends on the set { oc}. To support any

rate pair (R1 , R2 ) the length L of orthogonal codes (i.e., the dimension of an orthogonal matrix)

must be large enough that ciL is an integer for every i. Therefore, every for the two-user case,

the number of parallel orthogonal channels L may be very large. A fraction of these L channels

are assigned to user 1, with the remaining assigned to user 2. As we shall introduce in Chapter

6, this is called parallel channel, single gain (i.e., a single spreading gain for all channels) CDM,

or PC-SG CDM. It is also possible to interpret RF as an achievable rate in O-CDM by sending

a single code (orthogonal to codes assigned to other receivers) of power P% and bandwidth

expansion factor 1 /ci. In this case, every receiver has a different spreading gain. This is called

single-channel, reduced-gain CDM, or SC-RG CDM. Both variable-rate O-CDM schemes are

depicted in Figure 3.20 for M = 2 and L = 4.

Interference Channel

The capacity of interference channel in AWGN is not known. We next summarize achievable

rate regions that have been reported in the literature. For a two-user system, the x- and y-

intercepts of the capacity region are equal to single-user capacities:

R 1 Cs R2 < Cs

We also know that the ARR includes any rate pair bounded by the time-sharing1 0 line that

connects C' and Cs:

(R1 R2 5 a C", (I - OC) CS) = NT

By optimizing power partitions, it can be shown that the ARR of orthogonal multiplexing (such

as FDM or TDM) dominates over the ARR of naive-TDM -analogous to the broadcast channel

90ther researchers reach the same conclusion by arguing that time, frequency and code dimensions are transfer-

able; i.e., given the same amount of bandwidth, equal number of orthogonal codes can be generated as time-slots

or frequency bands.

'0Since the transmitters are physically separated in an interference channel, it may not be possible to establish

two-way time-division multiplexed channels without overlap. We can, however, maintain non-colliding outdoing

and incoming time frames by adding guard intervals. In FDM, orthogonality between outgoing and incoming

frequency bands is easily preserved as long as the Doppler shift is negligible.
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3.2 Single-Cell Channel Capacity 127

model. Therefore, the capacity region also includes RF. We next derive several achievable
rate-pairs based on the standard form of eqn.(3.8). Let N, and N2 denote respective PSDs of
Gaussian noise samples nI and n 2 , and assume N1 < N2.

T1 = vi+ al V2 + ni

J2 = a 2 Vi +V2 + n2

xli

x12

a1 1 777

(a) a3

x3 -- x
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x4[ a4FLJ 7
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Figure 3.20:

(a) Parallel-Channel, Single-Gain Transmission in O-CDM for 2 of 4 code
channels. The input data is split between the top two code channels.
(b) Single-Channel, Reduced-Gain Transmission in O-CDM where a reduced

gain channel replaces the top 2 of 4 code channels.



We first define the following rates:

R NCAlog I +( P )
N 1W aP2)

R2 N Wlog I + N 22 N2W+ ajp1,

DI A Wlog I +N2
N2W + P2)

a2
D 2 A Wlog I + I P )

NjW + P,

We can now state -without constructive proofs based on information-theoretic coding and

decoding- that the following rate pairs are contained in the capacity region:

" Interference as Noise: By treating interference as undesirable noise, the rate region is equal

to that of naive code-division multiplexing RNC:

JzNC = NC NC)

* Channel Swapping: If each receiver reverses the roles of principal and interference chan-

nels, each can decode other user's signal while treating its own signal as interference.

This rate region is equal to D:

D = (DI, D 2 )

Of course, each receiver can do better. If each can decode other user's data bits, these

bits can be re-encoded, remodulated and then subtracted out from received signal. The

resulting signal consists only of desirable signal plus Gaussian noise. We are already

familiar with this detection strategy; it is successive interference cancellation (SIC).

* Successive Interference Cancellation: If user 2's information rate is D2, then receiver 1 can

apply SIC to remove user 2's signal from the compound signal and decode user l's signal

perturbed only by Gaussian noise Ti. Its maximum AR is then equal to C1. At the same

time, receiver 2 can decode information at rate RNC by treating user l's signal as noise. If

R2C > D2, transmitter 2 must still convey information at rate D2 to its receiver (although

it can decode reliably at the higher rate of R C) such that the resulting interference can

be removed by receiver 1. If RNC < D2, then receiver 2 can only decode at maximum rate

R2NC without applying SIC. Similarly, If user l's information rate is DI, the maximum AR

of user 2 is C1 and user l's AR is the lesser of RNC and D 1. Hence, the ARR -by applying
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superposition coding at transmitters 1 and SIC at each receiver site- is:

1z= (C) T2) T2 =min{R2C, D2}

i = (TI, C) T, =min{RNC, Di }

Note the subtlety in this proof. In general if given power P2, transmitter 2 can send

information to its receiver at maximum rate, say R2. On the other hand, user 1 can only

decode a fraction of that information (of rate D 2) due to propagation loss a2 and its noise

level N 1 . By applying SIC, it can only remove that portion of user 2's interference from its

signal, resulting in maximum achievable rate equal to (Cs - D2 ). Here, we are proposing

a different strategy. Transmitter 2 sends its information of rate D 2 at power P2 (much

more than the required minimum for arbitrarily small Pe) such that all its information

can be decoded by receiver 1, resulting in its achievable rate equal to Cs. We follow this

second approach since we are interested in boundary ARR involving Cs and C'.

0 Noisy Interference: Thus far we have assumed that interference channels exist (i.e., a, >

0, a2 > 0) without taking into account their respective magnitudes. We also have not

considered the effects of unequal noise levels (N 1 < N 2). We know by channel swapping

the achievable rate pair (R1 , R2 ) is

a2 P,
R, = D2  Wlog 1 + 2

N2W + P2)

a 2P2R2 = Di Wlog (1+ NIW±P)

If the interference channels are very noisy such that

N2W+P2 and 2 NW+P1
- N1W I N2W

we immediately see that (by rearranging)

a2P, Pi aP 2  P22 > and >
N 2W+P 2 - N 1W NIW+P 1 - N 2 W

Therefore, both receivers can decode their information at the maximum achievable rates

CS = (C', C'). This odd situation where interference does not reduce single-user capaci-

ties does not occur in broadcast or multiple-access channel models. If only one of above

two conditions holds, the ARR is no longer equal to C1. For example, if only the first

condition holds
a 2 P ,  P1

N2W+P 2 - N 1W

"In reality, superposition coding may not be feasible in the interference model since transmitters are geographi-

cally separated and joint encoding of independent messages is necessary for the generation of superposition codes.



it is obvious that
2 P1 P1

N 2W+P 2 N1W+P 2

thus resulting in an achievable rate pair of only (RNc, Cs). We also notice another pecu-

liarity: If the channel gain a 2 is amplified such that

2 N2W+P 2
-- N 1W

then we see immediately that DI > Cs. Similarly, D 2 > Cs when

2 >NiW+Pi
I- N 2W

In this case it is not even necessary that the channel gain a, be amplified. However, we

know that interference cannot increase single-user capacities since information contents

are mutually independent; thus the ARR is

(SI, S2 ) Sx = min{Cs, D.}

M Amplified Interference: As defined earlier, an interference channel is lossless if a, = a 2 = 1.

It has amplified amplitude gains if a, = a 2 > 1. When comparing naive CDM versus

channel swapping, the following holds depending on the values of a, and a 2 :

RNC > D R2 NC D2

For lossy channels (0 < ai, a 2 < 1), RNC > D1 since NI < N 2 . This inequality still

holds when the channel is lossless or amplified over a certain range. Similar but different

conclusions can be drawn for RN C and D 2 : When the channel is not lossy (a,, a 2 > 1),

R2NC < D 2 .

All five possible shapes of the ARR of a two-user Gaussian interference channel are plotted in

Fig. 3.21. Regardless of the channel gains, x- and ij- intercepts are single user capacities C'
and C'. From these intercepting points, there emerges two straight-line AR boundary regions

connecting coordinates (C', 0) with R1 -and similarly, (0, C) with IZ. Based on this frame,

we next elaborate the resulting shapes:

1. The simplest shape is the rectangle as depicted in Fig. 3.21(a), a very noisy interference

model where each component channel maintains single-user capacities with the aid of

superposition coding and SIC. For comparison the ARR of FDM with optimal power parti-

tioning is also included in the plot. Any orthogonal scheme such as FDM has an ARR that

is independent of channel gains. Thus, its shape and size remains the same in all plots.
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S
C

FDM

(a)

S
C

D 2

(b)

NC

C 1

S
C2

NC

R

DI Cs
(d) 1

Figure 3.21:

Three different shapes for the Gaussian interference channel ARR.

(a) very noisy interference channel where D I = CS, D2

(b) very lossy interference channel where D I < RN C, D 2 < RNC
(c) moderately lossy interference channel where DI < RNC, D 2 > RNC

(d) lossless interference channel where ai = a2 1
(e) amplified interference channel where a, > 1, a2 > 1
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2. For very low lossy channels (al, a 2 < 1), D, < RNC, x = 1,2. Therefore, the straight-line

boundary is very small. The low loss channel model is depicted in Fig. 3.21(b). In this

case it is readily shown that the rate pair 7ZNC of naive CDM lies outside the ARR of FDM.

By optimal power partitioning, the region enclosed by the curve connecting R1 and RNC

-and similarly, the curve connecting R1 and RNC- can be constructed. We note that

this rate region dominates over the ARR of ODM for all possible rate pairs. Compared to

the broadcast channel model, this result is quite interesting since it shows that N-CDM

has a larger ARR than ODM in a Gaussian interference channel.

3. For moderately lossy channel (al, a 2 < 1), D 1 < RNC and D 2 5 R2C. Since D is further

away from the origin, the straight-line boundaries are more pronounced. This situation

is shown in Fig. 3.21(c). It can be shown that rate pair ThNC lies inside the ARR of FDM.

Hence, its ARR is smaller than that achieved by time-sharing between end points R1 and

RO. Based on these observations, an irregular ARR results when channel loss is moderate.

It is seen from the plot that FDM dominates over N-TDM and N-CDM in regions where

R, - R2 . At boundary regions where R1 >> R2 or R, < R2 , N-TDM combined with SIC

dominates.

4. For a lossless channel (al = a2 = 1), both receivers detect the same information signal

despite different noise levels. (In the standard form as detailed in [12], Gaussian noise

levels are normalized by adjusting transmit power constraint such that NJ = N 2 = 1.)

Therefore, we conclude that receiver 2 is redundant. By applying N-CDM with SIC and

time sharing, this model is equivalent to optimal detection in multiple-access channel. It is

no surprise that the resulting shape of the ARR -as depicted in 3.21(d)- is a pentagon,

the shape of multi-access channel capacity.

5. In a lossless channel, the pentagon ARR of N-CDM with SIC and time sharing dominates

over ODM for all rate pairs except at the bisecting point of the time sharing line where

the ARR of ODM touches the pentagon. Once the channels are amplified (a1 , a 2 > 1), the

rate pair D becomes significant and the time-sharing curve moves away from the ODM

curve. This is illustrated in 3.21(e).

To summarize, the capacity region of a Gaussian interference channel is not known. For a lossy

interference channel, neither N-CDM or ODM dominates over the other for all values of channel

gains. The straight-line boundary region achieved by superposition coding and SIC offers little

gain when the channel is very lossy. Without SIC, naive CDM dominates over ODM only when

the channel is very lossy; otherwise, its ARR is much smaller than that of ODM. When studying

cellular radio models where channel gains are lossy due to path loss, it is reasonable to assume

that we will not encounter lossless and amplified channels.
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Composite Channel

From eqn. (3.9) the standard form of a broadcast-plus-interference composite channel

model can be expressed as

Th =vi + al V2+ Tn

AJ2 =vi + a2V2 + 2

The outputs y I and 1Y2 represent received signals at two different locations detecting the same
broadcast signal v, = V1I + v 12, whereas the remaining broadcast signal v2 is interference.
For each output both interference channel gains and noise variances are normalized such that
the principal channel gains are unity. Applying multiplexing techniques used in broadcast and
interference models, we can deduce achievable rate pairs. For example, single-user capacities

C1 and C1 can be achieved if the interfering cell transmits at channel swapping rates

a2 PD2  W log 1 +N I

a2 P
D1 Wlog 1+ N 2

N2W + P1

then via SIC, the target receiver can remove interference terms. Hence, the following rate pairs
are achievable:

(Ci, 0) (0, CS))

when the rates for interference channel are D I and D2. By time sharing with optimal partition-

ing, we can achievable rate sets equivalent to the ARR of ODM. However, such rate distribution
violates the "symmetry" assumption of the cellular broadcast model where each cell with equal
bandwidth and power transmits at the same sum-rate. It also violates our assumption of single-

user detection since the target receiver applies SIC. In the above example we are considering
an extreme case where a neighboring cell reduces its rate pair to D to support maximum AR
pair at the target cell. In the following we derive rate pairs that are achievable autonomously;
i.e., without affecting the AR pair of neighboring interference site.

* By simple time sharing, the following rate pair is achievable:

R NT = OC, Wlog I + W

RNT = 2 Wlog I + P
N2W + L2
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" By applying optimal power partitioning, the following rate pair is achievable:

Ri = xi Wlog I + N1

2  io( N 2 2W + oc2 aiP

" By treating other user's signal as noise, the following rate pair is achievable:

RNC =Wlog(1 + P
2P

RNC = Wlog I + P+2 ~N2W + PI2+ ajP

* Similar to superposition coding and SIC, by removing other user's signal after detection

and re-modulation, the following rate pair is achievable:

P1
RO=Wlog I +2 N1W + aP

22R* =Wlog (i+ NW 1 +2

The ARR of a AWGN composite channel is plotted in Fig. 3.22.

R 2

ODM

N CDM/SIC
N-CDM

N-TDM

R1

Achievable rate region of Gaussian composite channel
Figure 3.22: = 0.3, a2 = 0.7

We notice that various ARR of the composite channel are very similar to those of Gaussian

broadcast channel. Therefore, we conclude that for intra-cell channel multiplexing, orthogonal

multiplexing is the preferred option.
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In the previous sections we showed that superposition coding with successive interference

cancellation is the optimal policy in a broadcast setting. Due to its inherent encoding/decoding

complexity -plus the necessity for double feedback information- sub-optimal policies that

maintain mutual orthogonality among parallel user channels are preferred. All three orthogonal

schemes based on time-, frequency- and code-division were shown to have equal simultaneously

achievable rate regions. Naive CDM is the least preferred scheme due to its convex ARR. In

the interference model, the optimal policy is not known. Our results give no preference in the

selection of a channel multiplexing scheme in the AWGN interference model. However, we notice

that the ARR of an orthogonal multiplexing scheme is close to other ARR based on superposition

coding with SIC, N-CDM and N-TDM except for the first case of very noisy interference channel.

In cellular radio environment where interference from neighboring co-channel" cells are lossy

due to propagation loss and fading, it is plausible to assume that such noisy condition is not

very likely. At this point is is unclear what the most efficient resource allocation policy is for the

cellular broadcast channel. As we recall, this is a special type of composite channel consisting

of both broadcast and interference components. In a multi-cell environment, our choice of

resource allocation policy must be efficient not only within a cell but also among cells for the

entire network. When selecting a resource allocation policy for a cellular network, we must

explicitly state respective channel multiplexing schemes for both inside a cell (among users)

and inside the network (among cells). A multiplexing scheme inside a cell is known as the intra-

cell assignment while multiplexing among cells in a cluster is called inter-cell assignment. Some

examples are FDM/TDM (FDM among cells and TDM within a cell), FDM/FDM and FDM/CDM.

The European GSM standard -which is commonly known as a TDMA-based cellular network-

overlays TDM frames over frequency-division multiplexed bands. The very first U.S. analog

cellular standard AMPS uses FDM/FDM and Qualcomm's IS-95 is a hybrid FDM/CDM based

network, which during its infancy replaced several inter-cell FDM channels for a single CDM
band supporting many parallel orthogonal code channels. All three hybrid channel multiplexing

schemes are illustrated in Fig. 3.23. Other possible hybrid schemes not shown in the figure are

* TDM schemes (TDM/FDM, TDM/TDM and TDM/CDM)

* hybrid CDM 13 schemes (CDM/CDM, CDM/TDM and CDM/FDM)

1 2For definitions and in-depth discussions on co-channel cells, reuse number, cluster and other cellular network

related terms, please refer to Appendix 3A.
1 3As explained in the introductory chapter, CDM refers to direct-sequence or phase-coded CDM where time epoch

synchronization at the transmitter and coherent detection at the receiver are mandatory in maintaining mutual

channel orthogonality. Other non-coherent spread-spectrum modulation schemes such as frequency hopping are

not considered as CDM.
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Figure 3.23: schemes in commercial cellular networks;

(a) FDM/FDM (b) FDM/TDM (c) FDM/CDM

In a single-cell scenario, time synchronization among parallel transmit channels affords

mutual orthogonality in the forward link. However, maintaining orthogonality among any

two channels originating from different base sites (i.e., inter-cell orthogonality) is much more

difficult, if not impossible. Among the three orthogonal division multiplexing schemes, FDM

is the easiest since its orthogonality constraint is based on the assignment of non-overlapping

frequency bands as channels. In fact, in an inter-/intra-cell channel multiplexing scheme based

on FDM/FDM, the total network bandwidth Wrt is partitioned equally into Nr subsets, where

each subset (of bandwidth W, = Wot,/N,) consists of a group of frequency bands that is

assigned to a co-channel cell in a cluster. In FDM/FDM inter-cell orthogonality is disrupted only
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if the channel induces spectral broadening due to Doppler shift. From eqn. (2.22) we know

that for an RF signal at 2 GHz and mobile speed of 100 km/hr, the maximum Doppler shift

is 185 Hz. By inserting a guard band around each FDM channel to compensate for maximum

frequency drift, inter-cell orthogonality can still be maintained. In AMPS standard where each

channel bandwidth is 30 kHz, a guard band of 370 Hz accounts for 1.2 % overhead.

intra-cell distance

inter 
-cell

Maximum relative propagation delay between target and interfer-
Figure 3.24:

ence signals recorded at the target mobile in a cellular network

In inter-cell TDM or O-CDM, the guard times must be wide enough to compensate for max-

imum relative propagation delay. From Fig. 3.24 we see that the relative delay t is maximum

when it equals D; i.e., when the mobile is located anywhere along the line linking the cell cen-

ter to the furthest vertex from an interfering cell. (D is the distance of propagation between the

target and interference cell sites; d is the distance between target mobile and cell site.) In CDM

where reuse distance is small due to spectrum spreading, T max is relatively small compared to

FDM/TDM where larger reuse numbers are required for high SIR. For example, in CDM with

N, = 1 (i.e., co-channels are located in immediately neighboring first-tier cells) Tmax = R

Likewise, in FDM/TDM with Nr = 4, Tmax = 2VR. Numerically, for a cell radius of 1 km,

Tmax = 5.77 Vt sec for Nr = 1 and Tm1x = 1.5 sec for N, = 4. In GSM (with N, = 4) where

each time slot equals 577 Vt sec, a guard time of 23 Vt sec accounts for 4 % overhead. When

Nr = 4 and the cell radius is 5 km, the GSM guard time increases to 152 Vt sec, a whopping

overhead of 26% to maintain inter-cell orthogonality. In IS-95 and 3G UMTS O-CDM systems,

the chip durations are 0.814 and 0.244 Vt sec, respectively Inter-cell code synchronism1 4 is

impossible to maintain unless the cell radius is 35 m or less. Based on these observations, we

conclude that O-CDM and TDM are not viable candidates for inter-cell channel multiplexing.

It is, however, possible to use N-CDM as an inter-cell channel multiplexing policy since the

cross-correlation between any two co-channel signals is measured in terms of cross-correlation

properties of embedded signature sequences, and not on time epoch alignment of signature

waveforms. Therefore, if the network design paradigm is to maintain mutual orthogonality

among inter-cell co-channels, then FDM is the only viable option, whereas for non-orthogonal

inter-cell multiplexing, N-CDM can be considered.

"See page 171 for definition and classification of various time alignment options.
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3.4 Cellular Radio Capacity

In an orthogonal inter-cell multiplexing policy such as FDM/ODM, co-channel interference

(CCI) is suppressed via propagation loss, whereas in non-orthogonal inter-cell multiplexing

policy based on N-CDM, CCI is suppressed by low normalized cross-correlation of signature

waveforms for non-zero delay offsets. The capacities of FDM/ODM and N-CDM/O-CDM based

cellular systems can be measured and compared in two different ways. In the first based on

cellular radio engineering methods, we derive cellular radio capacity using cellular hexagonal

geometry, average SIR and propagation path loss Lp as relevant and sufficient parameters. In

the second based on information-theoretic rules, we compute the simultaneously achievable

rate regions -which we coin as cellular channel capacity- of FDM/CDM and N-CDM/O-CDM

cellular broadcast networks by assuming ideal pulse shapes and ideal AWGN channel response.

We study cellular capacity first.

3.4.1 Average Carrier-to-Interference Ratio

In cellular radio engineering we wish to measure the strength of average received power

of the desired RF signal against interference power from neighboring cell sites and receiver

front-end thermal noise. This benchmark is measured in terms of carrier-to-interference plus

noise power ratio:

C/(M + N) = CINR = carrier power of desired RF signal (3.26)
interference power plus noise power

In this simplified model the type of carrier or data modulation is insignificant; it is generally

assumed that the desired signal as well as interference signals are unmodulated carrier tones.

This assumption simplifies the thorny issue of (non-ideal) frequency response of power spec-

tral density of wideband RF signal when it is data and carrier modulated, and the channel is

frequency selective. For practical reasons, CINR is approximated as carrier-to-interference ratio

C/I (CIR) by ignoring Gaussian noise power in an interference-limited topological environment.

We will also use this approximation. Based on multi-cell hexagonal network model derived in

Appendix 3A, the carrier-to-interference ratio is expressed as

Pt

CIR(r) - - T -(3.27)
6 Pt Pt 6 T 00 d__

+ +

where r is the intra-cell distance between the base site and its target receiver, and di is the

distance between target site and ith tier co-channel interfering site. Here we assume all sites

transmit at the same power level of Pt watts. All channels from sites to the target receiver
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3.4 Cellular Radio Capacity

undergo the same propagation path loss with exponent y. Alternatively, CIR(r) can be written

as
Ss R _ b Rb Lb I

CIR(r) - 10 G
IW I0 W Io PG

where PG is the processing gain. (Difference between PG and spreading gain N, is discussed on

page 47.) I. is the interference PSD. For non-spread spectrum modulated signalling, PG I -

For spread-spectrum modulated signalling, PG N, 1 if data modulation is binary. Link

quality (e.g., bit-error rate) is commonly measured as a function of Eb/Io for an interference-

dominated traffic channel. Otherwise, if the channel is perturbed only by thermal noise, the

benchmark is in terms of Eb/No. If we aim for completeness, the link quality of a cellular

forward link is measured in terms of Eb/(No -+ I). Rewriting eqn. (3.27):

Lb/lo(r) Lb = _ PG [yNr(Y2'i)
10 6 RI

(3.28)

The reuse number N,(i) of ith tier co-channel site has this relation derived in eqn. (3.33):

It is known that for every tier (say, kth), there exists exactly six co-channel interfering sites,

whose distance to the target site are all equal. For example, when N, = 1, all neighboring sites

are co-channel interference sites. When NT = 3, all non-immediate but closest cell sites are

co-channel interference sites. As depicted in Fig. 3.25, all six sites belonging to the kth tier

group are denoted by k.

6

5 4

4 3 5
6 2 2 6

3 1 3

5 1 1 4

2 target 2

4 1 1 - 5
3 1 3

6 2 2 6

5 3 4

4 5-

6

Nr = I

3 2 3

2 11 2

3 1 Larget 1 3

2 -1 12

3 2 3

N = 3

Figure 3.25: Six co-channel interfering sites belong to kt tier group
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3.4.2 Radio Capacity: FDM/ODM vs. N-CDM/O-CDM

As seen from Fig. 3.25, inter-cell channel multiplexing with naive CDM affords reuse of the

same bandwidth W in every cell. The price paid for this convenience is increased interference

due to a large number of co-channel interfering sites per unit area. To suppress co-channel

interference, forward link data channels are spread-spectrum modulated with signature wave-

forms. If W is the transmit bandwidth of a SSM signal, the actual data bandwidth is much

smaller, say B, where W = N, B. Given a data bandwidth of B the total sum rate Rsum sup-

ported in each cell is a Shannon information theoretic quantity that depends on ESb/(Io +N ) as

well as on the value of the spreading gain N, and the cross-correlation properties of assigned

signature waveforms. In this model based on power ratio we see that the interference power is

suppressed by a factor of PG. This is the power gain after despreading. At the same time, the

transmit bandwidth is also expanded by N. As we recall, for binary data modulation, PG = N'.

As we shall see in Chapter 6, under standard Gaussian approximation method and asyn-

chronous reception, spread-spectrum modulation/demodulation offers a power gain of Nc and

a reduction in effective interference power by a factor of 3.

In FDM/ODM inter-cell interference suppression is offered only through propagation loss;

transmit signals are not spread-spectrum modulated for multi-user interference mitigation. For

this reason the reuse distance is larger in orthogonal inter-cell multiplexing policy than non-

orthogonal N-CDM based multiplexing policy. If the reuse number is N, and the total allocated

bandwidth is W, the cellular bandwidth is W, = W/Nr. Given total bandwidth W, the max-

imum achievable rate Rsum supported in each cell is an information-theoretic quantity that

depends on Fb/(Io + NO), Nr and intra-cell distance r between target mobile and base site.

Unlike N-CDM/O-CDM, in orthogonal inter-cell multiplexing, it is possible to assign channels

with different reuse numbers based on their intra-cell distances. This method of variable reuse

exploits the concept of reuse partitioning. It is discussed in detail in Appendix 3A on page 152.

Effective Reuse Number

From eqn.(3.28) we can compute the Shannon rate Rc(r) (in bits per second) of a target

user per cell for given SIR:

RC(r) = WC log [1 + SIR(r)

where W, = W/N, is allocated bandwidth per cell. This achievable rate R(r) is a function of

mobile distance r from the target base site. We can determine the average rate by averaging

over mobile distances by assuming that mobile users are uniformly populated over the entire

area of a hexagonal cell. For convenience, we set the cell radius R = 1. The bit energy Eb is
adjusted such that at the cell edge (R = 1), the Shannon rate is normalized; i.e., SIR(R) = 1

and Rc(R) = Wc.
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3.4 Cellular Radio Capacity

If the total bandwidth is W Hz and average Shannon rate is R, the effective reuse number

is

Neff V W/R c (3.29)

For example, if W Hz is allocated to each cell in a CDM-based network of reuse 1, and R =

W, then Neff. In Table 3.1 we compare the effective reuse numbers of N-CDM/O-CDM and

FDM/ODM policies for several different reuse numbers and channel models. We also list Neff

with power control (for N-CDM/O-CDM), and with reuse partitioning (for FDM/ODM). From

Effective Reuse Number Neff for Hybrid Channel Multiplexing Techniques
Table 3.1:

(w/ PC = with power control, w/ RP = with reuse partitioning)

Nr -y N-CDM/O-CDM N-CDM/O-CDM FDM/ODM FDM/ODM

w/ PC w/ RP

1 4 2.58 1.78 6.38 6.38

3 4 4.55 3.85 4.23 3.48

4 4 5.63 4.82 3.76 2.77

7 4 6.45 6.32 5.55 4.13

1 2 2.78 1.91 6.44 6.44

3 2 5.03 4.11 4.78 3.66

4 2 6.10 5.05 3.98 3.01

7 2 6.93 6.77 5.78 4.52

the list we deduce that N-CDM/O-CDM with Nr = 1, along with power control, is the preferred

choice. Since the total transmit power is constrained, for non-orthogonal channel multiplexing

with N-CDM, a larger reuse number does not necessarily improve network capacity. This situ-

ation is also observed in orthogonal inter-cell channel multiplexing. However in FDM/ODM, a

smaller reuse causes large interference that the cell capacity is reduced from its optimum. Reuse

partitioning does offer some increase in capacity, but not enough to dominate N-CDM/O-CDM.

Besides, implementation of reuse partitioning in FDM/ODM (channel swapping and mobile

location tracking) is more complex than feedback power control of N-CDM/O-CDM.
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Notes and References

In this chapter, we first give concise definitions of various multi-user channel models. Each

channel is characterized by the transition probability distributions between information source-

sink pairs. We next show that the cellular channel is equivalent to our defined compound

channel. In particular, we focus on the forward link of a cellular network-the broadcast plus

interference compound channel. The last part of the chapter deals with several topics specif-

ically pertinent to the cellular channel, namely the hexagonal geometry (since a hexagon is

widely accepted as a theoretical shape of a cell) and the concept of cellular re-use. Most of the

background material is borrowed from various texts in information theory and mobile radio

communications. As references, we list the following texts by Cover [22], Csiszar and Korner

[27], W C. Y Lee [71] and Rappaport [114]. Some of the information related to the broadcast

channel was derived from P Bergmans' Ph.D. thesis [8]. Several key concepts in hexagonal

geometry overlap with those published by MacDonald [79]. The broadcast channel and its

achievable rate region was first proposed by T. M. Cover [21]. Its capacity region was proved

by P P Bergmans [7]. The role of cooperation was introduced by Bergmans. He also derived

capacity regions for time-, frequency-, and code-division multiplexing schemes for a Gaussian

noise channel. The interference channel was introduced by Shannon [127] through a two-way

channel model. It was generalized by Carliel [12]. The capacity of a vector Gaussian multiple-

access channel was derived by S. Verdu [149]. It is applies to the code-division multiplexing

case, and is more general than the well-known Gaussian multiple-access capacity of Cover

and Wyner [165]. The average broadcast capacity with multipath flat fading is studied by A.

Goldsmith [44]. We extend P P Bergmans' results by including spread-spectrum multiplexing

schemes. We also derive achievable rate regions of a broadcast plus interference (compound)

channel under various statistical fading models. The cellular broadcast channel can be mod-

elled as this kind of compound channel. We show that spread-spectrum multiplexing where

signature codes belong to a special class of superimposed binary sequences has the largest rate

region.
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Appendix 3A

Hexagonal Cellular Geometry

At the heart of cellular radio engineering design is the concept of frequency reuse. A radio

frequency bandwidth assigned to a base station is reused at a distant location by another base

station. The recycling of bandwidth is made possible by the attenuation of high-frequency

radio signal as it propagates away from a transmitter. In order to evaluate various performance

parameters of a cellular radio communication system, the infinitely broad coverage area is

partitioned into smaller regions that are called cells. The radiation pattern of an isotropic or

omni-directional transmit antenna is accepted as a circle. That is, if a transmitter radiates

from the center of a circle, mobiles located on the perimeter receive the same signal strength.

The art of covering such a large region using equal-size regular polygons such that no gap or

overlap exists among them is called "tessellation" [23]. Equivalently, the coverage layout is an

imaginary grid of contiguous tiling of polygons of equal shape and size. The smallest unit in a

very large grid is a cell. It can be shown that the only equal-size and equally sided polygons that

tessellate a planar region are an equilateral triangle, a square and a hexagon. Among them the

hexagon is the most suitable in approximating a circular coverage area since the difference in

area between a hexagon and a circle is the smallest (see. Fig. 3.26). This fact alone does not

Figure 3.26: Valid polygons -square, triangle, hexagon- as a basic unit "cell"
in a contiguous non-overlapping grid

justify the use of a hexagon as the shape of a cell. It is true that the overlap among adjacent

circles is greater when a square grid -instead of a hexagon grid- is used. This is illustrated

in Fig. 3.27. Thus, more circles (base stations) are required to blanket a coverage area when a
square grid is used. This second fact does not necessarily illuminate the advantage of a hexagon

over a square. We will have to wait until the end of this tutorial to give a succinct reason for the

preference of hexagonally-shaped cells. First we introduce some simple conventions, notations

and unique properties of hexagonal cellular geometry.

The radius R of a hexagon (see Fig. 3.28) is defined as the distance from the center to a vertex.

The length of each side is also equal to R. The area A and the shortest distance from the center
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Figure 3.27: Coverage of an area using hexagonal and square grid. There is

greater overlap of circles for a square grid.

to each side d are

2 2

3.28: A hexagon and its dimension. R is the radius and its area A
Figure (3vf/2) R2 . A hex unit is equal to 2d, where d = (v'3/2)R.

Coordinate System

Similar to the cartesian coordinates (x, j), the hexagonal coordinate system uses two bases,

except the angle between them is 7t/3 radians. As shown in Fig. 3.29, two types of hexagon

grids, flat-top and flat-side grids, respectively can be constructed. The terminology is self-

explanatory. For the flat-top grid, the coordinates are labelled (u, v), while the primed notation

(u',v') is used for the flat-side grid. A hex unit along each basis is equal to 2d = vf3 R. By

convention, the one-dimensional or linear cellular grid model uses the flat-side hexagons since

neighboring cells are contiguous. The one-dimensional model, which is used mainly as a "high-

way" footprint is shown in Fig. 3.30. For all other types of coverage such as built-up city area,

suburban and rural locations, the most widely used model is the two-dimensional or planar

cellular grid with either flat-side or flat-top hexagons. All hexagonal cells surrounding (and
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AA

B

0

Figure 3.29: Flat-top and flat-side hexagonal grids.

-3 -2 -1 0 1 2

Figure 3.30: One-dimensional or linear hexagonal grid.

not necessarily touching) a target cell are called its neighbors. The distance between a cell and

its immediate neighbor is 2d = v13R, or 1 hex unit. Each hexagon in a grid is identified by

indexing the hexagonal coordinates of its center. The target cell is always located at the origin

with coordinates (0,0). All its neighbors are referenced with coordinates (u, v) in hex units. For

example, the coordinates for cells A and B in Fig. 3.31 are (1, 2) and (3, -1), respectively. Note

that all cells in the first "quadrant" (see Fig. 3.32) have positive coordinate values. Likewise,

both coordinates of the cells in the third quadrant are negative. In cellular system design we

A

(1,1) (3,0)

(0,1) (2,0) B
- (1,0) ( , 1

(M 1) (,1

Figure 3.31: Identification of hex cells in a grid

are only interested in neighboring cells that are equidistant from the target cell; their exact

coordinates are of secondary importance. In a rotated hexagonal coordinate system (see Fig.
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3.33), each cell location is denoted by (U, V, 0), where 0 is the relative rotation angle between u

and U axes. Thus, a valid value of 0 is k, k E N5 . [A similar notation (U', V', 0) can be used for

the flat-side grid.] The rotated coordinate system (U, V, 0) is preferred over the conventional

(u, v) system because the coordinates are always positive. In order to avoid any duplication in

labelling, a coordinate such as (0, V, 0), V c Z+ is not allowed. Unless noted, we always assume

U > V with the target cell at (0,0). All immediate neighboring cells of distance one hex unit

2
nd

quad

3 rd quad

IV

ist quad

0

4
th

qua

3.32: Four quadrants in a hexagonal coordinate system. Only cells in the

first quadrant have coordinates (u, v) with positive integers.

- 6 0 "
V

120'

U

V *

Rotated hexagonal coordinate system. Each cell is labelled using

Figure 3.33: three parameters: (U, V, 0). The figure shows only the first three

rotated angles, although there are a total of six.

are called first-tier cells. The next closest cells touching the first-tier cells are called second-tier

cells. The next set of cells touching the second-tier cells are called third-tier cells and so on.

Note that in general, not all kt"tier cells are k hex units away from the target cell (see. Fig.

3.34).

V

U



target

Figure 3.34: First and second tier cells. Every kth-tier cell is not k hex units

away from the target cell. Some have larger distances.

Co-Channel Cells

For a set of positive integers U and V, all six neighboring cells with coordinates (U, V, 0)

are equally distant. They are called co-channel cells. The terminology is derived from the fact

that the target cell and its co-channel cells co-share the same frequency band. In other words,

a frequency band or "channel" assigned to the target cell simultaneously reused in equidistant

co-channel cells. Fig. 3.35 illustrates three sets of co-channel cells sharing channels 1, 2 and 3.

2
1

3
2 12 12

3 3 3
2 2

1 1
3 3 3

2 12 2

3 3

3

(1, 1)

Cellular network with hexagonal cells. The reuse number is 3. The

Figure 3.35: gray regions illustrate valid cluster shapes. The top cluster is 1200
rotational invariant, while the bottom cluster has 180' rotational

invariance.

Proposition 3.1 A target cell has only six neighbors of equal distance if the coordinates of each of
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its neighbors is of the form (U, 0, 0) or (U, U, 0). For coordinates (U, V, 0) where U 7 V, the target

cell has twelve equidistant neighbors.

The proof is straightforward. For (U, V, 0) with U = V, two neighbors with respective coor-

dinates (U, V, 0) and (V, U, 0) are equidistant from the target cell. Note that in the last case,

although their are twelve equidistant cells, only six are co-channel cells.

U

Figure 3.36: Reuse distance between two cells.

Reuse Number

We have shown that six co-channel cells are equally distant. We now wish to compute this

distance. Applying the Law of Cosine (see Fig. 3.36), it is easy to show that the reuse distance

between the target and its co-channel cell (in hex units) is:

DH = U2 + V2 + UV (3.30)

Since a hex unit equals 2d = O'R, the distance in metric unit is:

D = V R U2 + V2 + UV (3.31)

Equivalently,

D = U2 + V2 + UV (3.32)
R

The reuse number Nr is defined as:

Nr D2 ()2 U2 + V2+ UV (3.33)
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co-channel cells

3 3 26 2

4 5 3

(1,1) (2,0) (2,1)

Various cluster patterns. The figure shows co-channel cells for
Figure 3.37:

reuse number N = 3, 4 and 7.

D

R

Figure 3.38: Enlarged hexagon with area B and radius D.

Cell Cluster

In Fig. 3.37, a target cell along with its six co-channel cells are shown for three different

cases: (1, 1, 0), (2, 0, 0) and (2, 1, 0). By translation, we form another set (coset) of target and

co-channel cells, and eventually exhaust all the cells in the (infinite) grid. A group of cells

consisting of a target cell and its translated clones is called a cluster. It is defined as a group of

cells that covers the entire grid without any gap or overlap when translated. Due to symmetry,

it is seen immediately that by translating a target cell to its co-channel cell location, the entire

grid can be constructed. The number of cells in a cluster is defined as the cluster size N.

Proposition 3.2 The cluster size N is equal to the reuse number Nr.

When the centers of co-channel cells are connected as shown in Fig. 3.38, a larger hexagon is

formed. Denote its area by B. By translation, the lines can also connect the center of masses of
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the cluster. Since the angle between a pair of intersecting lines is 27t/3, the area of the larger

hexagon is:

B = NA + 6 ( NA) =3NA

On the RHS, the first term is the area of the cluster of the target cell, since this cluster is fully

enclosed in the larger hexagon. The second term is the total area of partial clusters from its six

co-channel cells, where each co-channel cell cluster contributes 1/3 of its area N A. Rearranging

the above equation and using the fact that the ratio of the areas of the outer and inner hexagons

is:
B D2

A R2

we obtain our desired result:
B I D 2

N - -= Nr
3A 3 R2

Since U, V c N and the cluster size (reuse number) is:

N = N = U2 + V2 + UV (3.34)

only certain integers are valid cluster sizes. Then, how can we determine these integer values

without exhaustively substituting a pair of integers in (3.34), especially when N is large? Of

course, it is most likely that we may never encounter large values of the reuse number N in

cellular radio engineering design. However, in another communication setting such as vector

quantization, it is often desirable to partition a plane into contiguous clusters of hexagons. In

such a scenario, N can be very large. We state the following without proof.

Proposition 3.3 N is a valid cluster size if its factors are:

(a) 1, 3, 4 or 7

(b) a prime number and its additive value is 1, 3, 4 or 7

(c) the square of an integer

The additive value of an integer abcd (in decimal form) is (a + b + c + d).

Rotational Invariance

It should be noted that knowledge of a valid cluster size is not sufficient in the construction

of a valid cluster. As shown in Fig. 3.39, for a given cluster size, several shapes are possible and

as illustrated, some are not valid clusters, i.e. gaps or overlaps exist when they are juxtaposed.

A cell cluster is said to be p0 rotationally invariant if its shape is invariant to a p0 revolution

about its center of mass. Due to symmetry, three possible locations of the center of mass are

the center, the vertex and the midpoint that bisects each side. The corresponding clusters are

60', 120' and 1800 rotationally invariant. All three cases are illustrated in Fig. 3.37. Note that
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3
3 2

2 16
16 5
5 47

4 72
3 16

2 5
6 4 7

5 3
7 3 2

2
1 6

4

(b) (c)

Hexagonal cluster patterns for reuse 7. The shape in (a) in 600
rotational invariant, and its the preferred choice.

a 60' rotationally invariant cluster is both 1200 and 1800 rotationally invariant. However, 1200

and 1800 rotational invariance are mutually exclusive.

Proposition 3.4 A cluster in which co-channel cells are located at (U, U - 1, 6), (U, U, 6) and

(U, 0,60) are 600, 1200 and 1800 rotationally invariant, respectively.

The proof is based on simple geometrical arguments. We now have a systematic approach of

constructing a valid cluster shape for cluster patterns (U, U-I), (U, 0) and (U, U). Then how do

we construct valid cluster shapes for arbitrary cluster patterns (U, V)? We state the following

without proof:

Proposition 3.5 A cluster pattern (U, V) has a shape that is either 600, 1200 or 1800 rotationally

invariant.

Since 600 rotational invariance is the most symmetric, we first check whether a cluster can be

constructed with this symmetry. If not, it can be constructed with either 1200 or 180' rotational

invariance, but not both. Earlier in the section, we stated that cells in the kth tier are not

equally distant. We now give a more precise statement:

Proposition 3.6 The number of cells Nt(k) in the kth tier is 6k.

For a 600 rotationally invariant cluster, its cluster pattern is (U, U - 1). The corresponding

cluster size N is:

Nu= IU2+(U-1)2+U(U -) =3 U2 -3 U+l

Similarly, for (U + 1, U):

Nu+j = 3 U2 + 3 U + 1

(3.35)

(3.36)

7
6 2 7

1 6 2
5 3 1

7 4 5 3
6 2 4

1 7
5 3 6 2

4 1
7 5 3

6 2 7 4
1 6 2

5 3 1
4 5 3

4

(a)

Figure 3.39:
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It is easily deduced that the difference in the cluster size of (U + 1, U) and (U, U - 1) is Nt(U).
Subtracting (3.35) from (3.36),

Nt(U) = 6 U

Based on the above result, the next statement follows naturally:

Proposition 3.7 Among the kt..-tier cells, there are k groups of cells, each group consisting of six
equally distant cells.

For a given (U, V) a target cell has six equidistant co-channel cells. These co-channel cells form
a group. Since there are 6k cells in the kth tier, the number of such groups is k. Depending on
the relationship between U and V, members from two different groups may be equally distant
from the target.

Open Problem

This raises the question of whether we can state anything more about the distance properties
of such groups. It is clear that the two groups with patterns (U, V) and (V, U) are equally distant
from the target cell. Besides this, we are not able to give any general result. It is tempting to
conjecture that a cluster size N can be generated only by a unique pattern (U, V) or (V, U).
This, however, is not true. For example, by an exhaustive search, we note that the patterns
(7,0) and (5,3) have the same reuse number N = 49.

D

d

R

D

R

(a)

D d d2
R r I r2

(b)

Figure 3.40: Reuse partitioning of hexagonal cells.

Reuse Partitioning

For a frequency reuse of Nr, the bandwidth per cell is W/Nr Hz. Therefore larger cell
bandwidth is obtained by tighter frequency reuse. For a mobile at distances r from its base
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(r < R) is signal-to-interference power ratio (SIR) is:

1

SIR(r) ~Y (3.37)

d-Y dYl

where dk is the (approximate) distance (see Fig. 3.41) between the mobile and a co-channel

base station in group k. (A group is defined as a set of six equidistant co-channel cells. For first

tier, there is only one group. Let's call it group 1. There are two groups in second-tier. Let's call

them group 2 and 3, respectively, and so on.) The approximation becomes exact only when the

mobile is located at the center of the target cell.

Figure 3.41: Approximate distances between target mobile and co-channel bases

Rewriting in a more compact form

1

SIR(r) 1

d'/eff

(3.38)
I (deff>-Y 

(3.39)
6 r

where the effective re-use distance deff is expressed as

1 _ 1 1

eff 1 + 2

Within a cell, we define a zone as an annular region zi between two concentric circles of radii

rT and ri 1 , i E Z+ with rO = 0. In Fig. 3.40, there are three zones zj, z 2 and z 3 . Using the
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following definitions:

ni: reuse number in zone i

rT: radius of zone i

dj: reuse distance of zone i

cj: number of channels (frequency bands, time slots etc.) allocated in zone i

Z : total number of zones

It is easy to see that nz = N, rz = R and dZ = D. Zone 1 is a circle and zone N is the difference

in area between the hexagon of radius R and a circle of radius rz-1. As illustrated in Fig. 3.40,

a channel assigned to a mobile in zone i of the target cell can be re-used by another mobile,

also in zone i of its cell as long as
D di

R Ti

Equivalently,

SIR(R) < SIR(rT)

Since the frequency reuse number is chosen such that all mobiles receive SIR above a specified

threshold SIR*, we have

SIR* < SIR(R) < SIR(ri) (3.40)

Therefore, a frequency band assigned to a user inside a ring of radius rj can be reused inside

a similar ring (of radius r) located at a cell of distance di. In Fig. 3.40, the reuse number

Nr = 4. Tighter reuse of 1 and 3 are possible inside rings of radii r1 and r 2 , respectively. If the

total bandwidth W is partitioned into M frequency bands, the following equality must hold:

z
ci ni = M (3.41)

Setting SIR(R) = SIR(r), we can deduce the following:

Q = =R- (3.42)
Tli N

If the channels per cell are uniformly distributed among the zones, i.e., the number of channels

per unit area is constant, the following must be satisfied:

c_ c2 cz (3.43)
r2 (r-r (r - r2-)

Substituting (3.42) in (3.43):

C _ C2 CZ

QnT1 -Q( 2 -Tn 1 ) Q(nz-nz 1) (3.44)
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Figure 3.42: Channel assignment in reuse-partitioned cells for N, 3

By substituting the reuse numbers (1, 3, 4, 7, 9, 11, . . .):

1 2 1 3

With re-use partitioning, the total number of channels per cells (the cellular capacity) is

z
cc = ci

i=l

For N,=7,
M M 4 3M

ci= -, c2 = -, c3 = , C4=32 16' 32 3
In the above example of re-use 7, Cc = 7M/32. Without reuse partitioning, the capacity is M/7.

The increase in capacity due to reuse partitioning is 53%. If the cellular capacity is expressed

in terms of bandwidth, then for re-use 7,

Be = Wc,, = 0.2188 Wtot (3.45)
( 32

In another example shown in Fig. 3.42, channel 1 is assigned to ring 1 while channels 2, 3 and

4 are assigned to three rings of re-use 3. Since c 2 = 2cl, we see immediately that

M 2M
ci =-, C2 =77

The cellular capacity Cc = 3M/7 and the effective re-use number is 7/3 ~ 2.3.

Area Adjustment

In eqn. (3.43) it is assume that all zones are annular. This however is not correct for the

last zone since its area is the difference between a hexagon and a circle. We can rewrite eqns.
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(3.43) and (3.44) with this area adjustment:
Cl C2____

01 = 2 1rf (ri -ri)
ci C2

Qn 1 Q(n2 - n1 )
where

With this correction, it is easily shown that
M 2M

C= , =2 ,3-and 5  C2 d t eh

and the bandwidth per hexagonal cell is

_ CZ
-(k;r2 - r_ 1)

C Z

... cz
Q (kinz - TIz-1

, 3V
kh 27r

M
C3 ,.

1.789M
C4= 23.5

= 0.2461 Wt t (3.46)

31

16
3 1 2 1 3

4 5 4

R

21 31D d

- ~~6__ _ __ _

Figure 3.43: Cellular grid composed of equal-size squares

Capacities of Hexagon- vs. Square-Shaped Cellular Networks

In a cellular grid (as shown in Fig. 3.43) composed of contiguous equal-size square cells of

radius R, the following relations can be derived:

1
A = 2R2, d- R
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N s= I D2= X2 + y2

where X and Y are square units along x and ij cartesian coordinates. Therefore, valid re-use

numbers are

1, 2,4,5,8, 9, 10, 13...

and so on. With reuse partitioning we can calculate the cellular capacity of a square grid:

c = c2 _ cz
T 2 (T 2- T 2) (k*T2i - T 2_1)

where the area correction factor is
2k* = -

and
ci -C2 -C3 -C4 -C5 -C6 -C 7

1 1 2 1 3 1 1
In Fig. 3.43, channel 1 is reused in zone 1 of every cell. Channels 2 and 3 make up the group

of channels with reuse number 2. For reuse 4, the group consists of 4 channels; 4, 5 and 6 are

shown in the figure. For D/R = v/21 (corresponding to hexagonal reuse N -= 7), it is easy to

see that for a square grid, N' = 10.5. Valid square cluster sizes in this range are 10 and 13.

Setting nz = 10, we can show that

M 2M 2M 0.89M
c=c2=c4 =c6= 22.66' 22.66 c5  2266 22.66

and the bandwidth per square cell is

Bs= Wo,= 0.4365Wro, (3.47)C 22.66
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Appendix 3B

Achievable Rate Regions: FDM >N-TDM

By setting P = W = 1, the achievable rate region of FDM with optimal power distribution

is:

R1 = o log I + 1 -(1 - )(N 2 - NI)

R2 = 0 00 109 1I + Lx(N2 - N 1)

N2

It is clear that the maximum achievable rates of both users are the single channel capacities:

R1 (x = 1) = C' and R2 (O = 0) = C'. The achievable rate region plot for the 2-user case is

shown in Fig. 3.19(a). For N-TDM, the boundary is a straight line (ij = Tmx + b):

where the ig and x intercept points are C' and Cs, the single-user channel capacities. Here, it

is understood that RN implies R{ (x), a function of the time partition parameter 0 < LX < 1. It

appears all we need to show is the concavity of the FDM curve to prove the dominance of FDM

over N-TDM. That is, we need to show:

d2 R1  d dR1 dot d <

dR2 chx dc~ dR2 dR2

Unfortunately, the mathematics is messy and not as elegant as the alternative proof given by P

P Bergmans. We will follow his work with a few minor changes. Rewriting (*):

RDN 'N
-+ -1 =0

For any rate pair (R1 , R2 ), define:
R1  R2
CS CS

For any point with coordinates (R1 , R2 ) to the right (i.e. outside of the triangle), e > 0. For

points inside the triangle, e < 0.

The achievable rates for FDM with a prefixed bandwidth (constant P) partition are, with P =

W = 1:

R= B log I + 1

R2= (0 - P) 109 1 + L
N 2 P
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In general, it is understood that Ri is a function of both power and bandwidth partition param-

eters 0 < cm, P < 1. For an FDM curve with a fixed bandwidth partition, its -j and x intercept

points are the reduced bandwidth, single-user capacities, C' (P) and C'(1), with W, = 1 and

W2 = (1 - P) where:

C(B ) = Wilog ( + N X/V

This is shown in Fig. 3.19(b). In order to prove the dominance of FDM over N-TDM, we need

only to show that for any bandwidth partition (arbitrary P), there exists a portion of the FDM

curve outside the triangular region of N-TDM. For a fixed P, both intercept points of FDM are

smaller than the intercept points, C' and C', of N-TDM. Next, it is straightforward to show that

this FDM curve is concave:
d2 R2 _d (dR 2'\ dc<
dR - do dR1 dR7

It appears that in order to show that FDM dominates over N-TDM, we only need to show that

this FDM curve intersects the N-TDM straight line at two distinct points. In fact, we already

know one such intersect point where the power and bandwidth partitions are equivalent (a =

1), P1 = ccP and W1 = cW. However, it is rather difficult to locate the other intersecting point

since the FDM curve equation includes logarithmic terms. An alternative is to show that the

rate-difference curve e( o, P) has a stationary point cx* that is not equal to 1. (Remember that

the two curves intersect at Lx = .) It is then straightforward to show that for cx = s:
d 1 1

d Lx Cs(1+N 1 ) CS(1+ N2 )

The slope of e at c = 1 is equal to zero only if N I = N2, which is expected since all multiplexing

schemes are equivalent under equal-noise condition. For all other cases where N1 = N2, the

slope of e is non-zero; i.e., at the intersecting point, a is not a stationary point. Based on this

result, and using the concavity of FDM curve, the dominance of FDM over N-TDM is proven.

The slope of e for ot = 1 is negative for N i < N2 .Therefore we know that the lower

intersection point corresponds to the equal power-bandwidth partition case c = s3.
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4

SIGNATURE WAVEFORMS AND

SEQUENCES

Summary

In Chapter 3, we propose code-division as the preferred channel multiplexing scheme for a

transmitter in a cellular radio communication system, but little information is given about the

design and construction of such codes. In an abstract sense a code is a set of instructions agreed

upon between a transmitter and its receiver. In practice, information transfer in a CDM system

is a two-step process: First, during the initial handshake phase of channel setup, a unique code

sequence is assigned by the transmitter to a receiver. Second, messages from a source are en-

coded using this code sequence. Furthermore, this coded message is transmitted through free

space in the form of electromagnetic waves. Hence, there is a bijective mapping between a

coded message and its corresponding noise-like analog signal called signature waveform. The

codes must be carefully chosen such that each receiver can readily decode its message from a

composite broadcast plus interference signal. The cross-correlation function is a ruler that is

used to measure the similarity between a pair of different code sequences or signature wave-

forms. Likewise the autocorrelation function measures the similarity between a code (or a

waveform) and its phase-shifted version. Both cross- and auto-correlation functions can be fur-

ther classified into three types: periodic, aperiodic and partial. A periodic correlation function

is useful only in a special case where the time periods of signature waveforms are equal and

the correlation window spans over this period. When the correlation window is less than the

period, the correlation is measured in terms of two aperiodic correlation functions. In both pe-

riodic and aperiodic cases, the beginning (ending) epoch of the correlation window must be the



beginning (ending) epoch of the waveform. (We elaborate this remark graphically in the body.)

If the above conditions (i.e., the same period between the waveforms, and correct alignment

of time epochs) are not met, the only effective and meaningful tool is the partial correlation

function. It is a function of both the time offset between the waveforms as well as the size of

the correlation window. As we shall see, the partial correlation function is the most important,

and also the most difficult to analyze and quantify deterministically. Most often, we must resort

to its statistical or time-averaged properties. The main results presented in this chapter are:

* A special class of signature waveforms, known as binary orthogonal time functions, have

zero periodic cross-correlation when the time offset is zero. Two types of orthogonal

functions exist: recursive and non-recursive. The former is preferred since the periods of

any two waveforms need not be equal; thus it offers seamless multi-rate transmission and

reception capability. (See Chapter 6 for details.)

* In general, orthogonal waveforms and their corresponding code sequences have very poor

aperiodic and partial correlation properties. This shortfall is easily compensated by super-

imposing an orthogonal code with a noise-like pseudo-random sequence. We coin such

codes superimposed orthogonal sequences.

" We show that the choice of a particular pseudo-random sequence is not critical in the con-

struction of superimposed orthogonal codes when the statistical properties of the partial

auto-correlation function are used as the benchmark for system performance.

* There is little difference in correlation measure between recursive and non-recursive or-

thogonal codes when both are superimposed with the same pseudo-random sequence.

Most of our results presented in this chapter serve as background material for multi-rate

CDM system design and analysis presented in Chapter 6.

4.1 Correlation Properties of Continuous-Time Signals

When characterizing the output waveform of a baseband filter (see Fig. 3.15) we must

take into account its length or period (T sec.) as well as its occupied bandwidth (W Hz).

Physically realizable (causal) finite-length waveforms are both time- and energy-limited. Using

the Nyquist-Shannon Sampling Theorem, the dimension of a signal set

F(t)= f f a 2(t) I ... f M

where all waveforms in F(t) are of equal energy and equal period can be defined as

D 2T [I (4.
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where the product TW is commonly known as the passband time-bandwidth product. Using the
Gram-Schimdt orthogonalization procedure it can be shown that D < M. Equality holds when

the waveforms are mutually orthogonal, i.e.

pij = J fj(t)f5(t)dt = 0 fj(t),fj(t) E F(t) i , j (4.2)

From eqn. (3.1) we know that a larger value of M implies a higher information content per

waveform. However, for a fixed D, the waveforms become correlated (pij 7 0) when M > D.

For high-fidelity reception of a desired message from a code-division multiplexed signal, the

waveforms must be carefully chosen such that they can be easily distinguished at the receiving

end. The design of good signature waveforms is measured in terms of their auto- and cross-

correlation functions. Each correlation function serves a different purpose:

" The cross-correlation function is a measure of the dissimilarity between a pair of signature

waveforms. The mean-squared error of two deterministic signature waveforms is:

ej)= J [fi(t) - fj(t - ')ldt = 9i+ ±Ej - 2 pjj(T)

where

9k= f2(t) dt pjj(t) =Jf(t)f(t - t) dt

The parameter T is the relative offset between the time epochs of signature waveforms.

The waveforms are the most dissimilar when the mean-squared error ejj is maximized by
minimizing their cross-correlation pij -more precisely its absolute value I pjj I since cor-

relation of fi(t) with both fj (t) and its inverse -fj (t) is of interest. Since the elemental

waveforms that compose the broadcast composite signal can be time synchronized, we

are particularly interested in the special case of pi (0) = 0 for all i # j where all sig-

nature waveforms are mutually orthogonal. The Dimensionality Theorem states that for

time-limited real pulses of period T and bandwidth W, the maximum number K of mu-

tually orthogonal waveforms is a TW. A larger set (> K) of signature waveforms can be

generated at the expense of Ipij > 0.

* The auto-correlation property of a signature waveform

pj (T) = jfj(t)fj (t -T) dt

is critical for synchronization (tracking and locking) of carrier phase and time epoch

of a signature waveform, especially when coherent detection is used at the receiver. A
large spike at T = 0 such that pj(O) > pj(T # 0) is desired. If the channel is time-

dispersive, the received signal consists of delayed replicas of the transmitted signature

4.1 Correlation Properties of Continuous-Time Signals 163
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waveform. In order to reduce self-interference resulting from multiple delay components

of the signature waveform, a low auto-correlation value is desired for any non-zero time
offset within the channel delay spread (At) d.

Ideally, we desire waveform pairs whose cross-correlation value pj ('r) is very small for any
arbitrary time offset T, and whose auto-correlation values {pj(t), pj(t)} are also very small
for - # 0. They are often two conflicting requirements: The cross-correlation pij(t) can be
reduced by increasing the period T. However, if T is large, the initial acquisition and phase
locking process can take too long, rendering the waveform impractical. Besides, it is well
known from algebraic coding theory that it is impossible to design code sequences that possess
ideal characteristics in both cross- and auto-correlation. See Sec. 4.7 for a brief discussion and
a list of useful references on this topic.

T T

integration integration
interval interval

(a) (b)

Figure 4.1: Aperiodic cross-correlation for symbol-time limited waveforms

4.1.1 Aperiodic Cross-Correlation

Physically realizable waveforms are strictly limited in time. Furthermore, if the waveforms
are symbol-time-limited1 -i.e., there is no overlapping of successive waveforms, f,(t) = 0 for

'In communications literature the data rate is commonly measured in terms of symbols per second (sps). Other

rates we will encounter are bits per second (bps) and chips per second (cps). Each symbol may carry several bits

depending on the constellation set. Actual transmission, however, requires the generation of waveforms instead of

symbols, and the number of waveforms transmitted per second is called the symbol rate, denoted by R. Its reciprocal

T is the symbol time. If the period Tp of the waveform is strictly limited to T, it is symbol-time-limited. In Chapter 5

we encounter time-overlapped waveforms where Tp > T; i.e., the beginning epoch of a waveform starts before the

ending epoch of the previous waveform.



t < 0 and t > T- then demodulation and matched filtering are simplified. For such aperiodic

waveforms, two kinds of cross-correlation functions exist:

pij (t) = Jfi(t)fj(t - T)dt 0 < t < T

= fJ(t)fj(t - T)dt

oi (T) = Jfi(t)f(t + T - -T)dt 0 < T < T

= J f (t)fj(t + T - -r)dt

fj(t), fj(t) G F(t). They are called continuous-time aperiodic cross-correlation functions for

an obvious reason: they both are aperiodic. They are illustrated in Fig. 4.1. In general,

pij ( ) : pji(r), but pjj (T) = Oji(T - T).

4.1.2 Periodic Cross-Correlation

Since information is not conveyed on a one-shot basis but in a continuous stream of data

modulated waveforms, it is more meaningful to deal with the periodic cross-correlation func-

tion. First we generate an infinite-time periodic waveform pi(t) by repeatedly concatenating

symbol-time limited pulses fj(t), i.e. pi(t) = _ fi(t - nT). Then, the continuous-time

periodic cross-correlation function is:

T

Ci = pi(t)pj(t -rT)dt - 00 < T < o (4.5)
10

Similar to (4.3) and (4.4), we define the continuous-time aperiodic cross-correlation functions.

For 0 < T < T:

R =j () pi(t)p j(t - T)dt = oij (T) (4.6)

T

R =j ( T) pi(t)pi (t - T)dt = pij (t) (4.7)

Note that both Rij (T) and i (T) are periodic and well-defined for -oo < T < co; but we still

call them "aperiodic" cross-correlation functions2 since they are respectively identical to Pij (T)

and ij5(T) for 0 < T < T. These cases are illustrated in Fig. 4.2.

Of course,

Cij(T) = Rij(T) + jj (T) (4.8)

2 Note that our definition of Rij (-r) and j (,r) is not universal; they are called partial cross-correlation functions

in Ref. [109] and in subsequent articles based on [109]. We reserve partial correlation for a different type of

function (see Sec. 4.1.3).
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Figure 4.2: Periodic cross-correlation for symbol-time limited waveforms

Using the identities:
Rij(-) = j('r) (4.9)

kjj(T) = Rjj(T) (4.10)

We immediately deduce that C1j (-r) = Ci(t). Hence Cj (t) is known as the "even" continuous-

time periodic cross-correlation function. We can also define the "odd" continuous-time periodic

cross-correlation function:
Cij (T) = ij (,r) - RL (,) (4.11)

Note that Cjj(t) = -tj1().

4.1.3 Partial Cross-Correlation

Both periodic and aperiodic correlation are functions of a single variable: the delay param-

eter T. The correlation window for periodic correlation function spans over a period T. For ape-

riodic correlation functions, the correlation window is either [0, t) or [r, T), where 0 < T < T.

As depicted in Fig. 4.3, it is always from the beginning (ending) epoch of one waveform to the
ending (beginning) of another waveform. Hence, knowledge of any two functions from the set

{Cj5, Rij, ki5} is sufficient in determining the third function.

It is then apparent that a different type of correlation function must be defined when:

n Two waveforms have different periods. This is illustrated in Fig. 4.4. As seen from the
figure, it is no longer meaningful to measure their cross-correlation in terms of periodic

or aperiodic functions.

pi(t)
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p (t)

-s T

beginning epochs

p(t)

ending epochs

T

Figure 4.3: Beginning and ending epochs of aperiodic CC functions

I

III
integration

window

Figure 4.4: Correlation of two waveforms with different periods

m The beginning (ending) epoch of the correlation window is not the beginning (ending)

epoch of a waveform, but rather shifted by an arbitrary non-zero offset. This condition

exists even when both waveforms has the same period -as illustrated in Fig. 4.5.

I1 1 1

integration
window

P (t)

p (t)

Figure 4.5: Correlation with a non-zero offset in time epoch

For an arbitrary offset 'T and different periods between two waveforms, a cross-correlation

function can still be defined. This is called the partial cross-correlation function. It is a three-

parameter function: Besides the delay parameter 'r, it also depends on the start and stop points

-or the length- of the integration window (Ti, Tf). Please refer to Fig. 4.6 for a graphical

p.(t)
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description. For the continuous case, the partial cross-correlation function is defined as:

E5 ('t; Ti, Tf) =J pj(t)pj (t - t) dt (4.12)
T

Of course,
O (,r; T, T) = Ri (,r)

01('r;0,,T) = Ri ('r)

061(,r;, T) = Cj (r)

__ __ __ __ _ T _ _ _ _ _ _ _

I -we (t ow

*7~ -u

I (

H-j T;ii I

Figure 4.6: Partial cross-correlation function of two signature waveforms

4.1.4 Periodic, Aperiodic and Partial Auto-Correlation

For i = j, we obtain the periodic and aperiodic auto-correlation functions:

TC(r) = J pi(t)p(t - 'r)dt (4.13)

'r= p(t)ptt -- r)dt (4.14)

R(T) = J pi(t)pj(t -,r)dt (4.15)

Some care is required when dealing with the aperiodic auto-correlation functions. It is incorrect

to denote R1('r) = Rj('t); this implies Ri('t) = Rjj(t) = Ri(T) = Ri(t), which is a false statement.

The partial auto-correlation function is:

ei(t; Ti, Tf) = J pj(t)pj(t - r) dt (4.16)
T

For 'T = 0, the signal energy is:
T rT

-i = J pf(t)dt = jf?(t)dt (4.17)
J0 J0
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4.2 Correlation Properties of Discrete-Time Sequences

4.2 Correlation Properties of Discrete-Time Sequences

Consider a set of sequences F[n] = {f 1 [n], f 2 [n],... , f M[n]}, where every sequence fj En] has

length (period) P. Using the same analogy as continuous-time waveforms, we can define the

cross-correlation functions between two different sequences. Let pj[rn] be the periodic repetition

of fin]. The aperiodic, periodic and partial cross-correlation functions are for 1 NP-1 are:

1-1

kij= pi[k]pj k - t] = R5j[t] (4.18)
k=O
P-1

Rij[1] = T pi[k]pj [k - t] = kjj[1] (4.19)
k=l

Cj I[] = Rij [1]-+ ij [1] = C5 11 (4.20)

i]= tj[] - Rij[t] = -02j[1] (4.21)

f

Oij0t; i, d] = T p[k]pj[k - t] (4.22)
k=i

where d = f - i. By setting i j, the auto-correlation functions are Ri[t], ki[t], CjRI, ti[] and

6[l; i, d].

4.3 Signature Waveforms

In pulse-amplitude data modulation (PAM), D = 1 and F(t) = {f(t)}. The shape and length

of f(t) is carefully designed to have special time-bandwidth characteristics. (See Chapter 5 for

details on various pulse shapes and their time-frequency properties.) The two most common

examples of f(t) used in the literature are the brick-wall (rectangular) time-limited pulse T(t)

and its frequency dual, the infinite-time sinc pulse TTw(t). T is used to denote the duration

of the rectangular pulse, and W is the bandwidth of the sinc pulse. A continuous stream of

linearly data modulated PAM pulses is written as:

00

g(t) = x[if(t - iT) (4.23)
i=-00

where x[i] E X is the information-bearing symbol from a PAM constellation set. In a multi-user

setting, the pulse amplitude modulated signal for user k is:

00

gk(t) = xk[i]fk(t - iT) (4.24)
i--Oc
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Note that f k(t) is now a special waveform chosen for user k. This is the signature waveform and

it can also be expressed as a spread-spectrum modulated waveform:

fk(t) = T ak[nt]4(t - nTc) 0 < t < T (4.25)
n=O

where { ak } is the kth user's embedded, antipodal binary spread-spectrum (SS) sequence,

i.e. ak[n] E D 2 for V k, n. The common chip pulse * (t) has chip duration Tc, and P is the period

of the embedded binary SS sequence. The ratio of symbol-to-chip time intervals N, = T/TC

is the Spreading Gain (SG). Modulation by a chip sequence of rate 1 /T, effectively spreads

or expands the bandwidth by Nc. In eqn. (4.25) we assume that the length (period) of the

embedded sequence {ak[n]} is Nc. In general, a code sequence with a larger period P (> N)

is commonly used to reduce self-induced interference. (See Sec. 4.6 for details.) Taking this

into account, a spread-spectrum modulated, PAM signal can be rewritten as

9k(t) = kK ak xxT1] * an (t -- nTc) (4.26)
n=iNc

An alternative expression is:

00 N-1

gk(t) = Txk[i] akln]*(t - iT - nTc)
i=-00 n-=O

00

= Y bk[i1(t-iTc) (4.27)
i=-00

where bk[i can be interpreted as the data modulated signature sequence. For notational con-

venience, we drop the subscript and use N (instead of N c) to denote the spreading gain. (In

later sections where we describe orthogonal codes, N is used to denote the length of an orthog-

onal code and it may not equal N,.) In effect signature waveforms are analog versions of the

embedded discrete-time signature sequences. There exists four kinds of periods:

T = Period of the signature waveform (in seconds)

T= Period of the common chip waveform (in seconds)

P = Period of the embedded signature sequence (in samples)

N c= the number of chips contained in a period of a signature waveform

The various cross-correlation functions of any two signature waveforms can be expressed in

terms of the cross-correlation function of the embedded sequence, plus the autocorrelation

function of the common chip waveform. Depending on the relation between Nc and P and

the time epochs of the correlation window, the cross-correlation of two signature waveforms is

either periodic, aperiodic or partial. We next study all three cases.
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4.3.1 Periodic Correlation

Two different signature waveforms are orthogonal if:

TN-1 N-1 T

Jfk(t) fi(t) dt = N - ai[n]ag M] *(t - nTc)*(t - Tc) dt = 0 (4.28)
Za- k n=T

If *(t) = TTTc (t), then orthogonality is satisfied when:

N-1

T ak[n] a [T] = 0 (4.29)
n=0

In general, it is impossible to design code sequences that remain orthogonal for any arbitrary

time (chip) offset. For a special kind of code sequences called superimposed orthogonal, any two

of them are mutually orthogonal if the sequences are code synchronized; that is, their beginning

time epochs are aligned. In a code-division multiplexing, time synchronization can be classified

as one of the following four:

1. code synchronous: The beginning time epochs of two spread-spectrum modulated (SSM)

waveforms are aligned. It is implicitly assume that both waveforms have identical se-

quence period P and chip duration T.

2. bit synchronous: The beginning time epochs of two signature waveforms are aligned. It is

implicitly assume that both waveforms have period T. In terms of SSM waveforms, there

may exist a time offset equal to an integer multiple of T between two bit-synchronous

signals.

3. chip synchronous: The beginning time epochs of two common chip waveforms are aligned.

This is the weakest time alignment among them. Two SSM waveforms may be offsetted

by a duration equal to an integer multiple of Tc.

4. phase synchronous: Phase synchronism arises only when CDM signals are RF/IF carrier

modulated. Each carrier-modulated signal from a base site i has its own absolute carrier

phase Oi (measured according to some universal reference site) plus an additional phase

shift induced by relative propagation delay Tj such that the total phase offset is

k = -27if .ti + Oj

For convenience, we assume the desired signal (from site 0) is demodulated phase co-

herently -i.e., 50 = 0. A received signal is phase synchronous with the desired signal if

$1 = 2k7t for any integer k.
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It is obvious that code synchronism implies bit and chip synchronism, but not vice versa. Like-

wise two bit-synchronous waveforms are also chip-synchronous. Chip synchronism does not

guarantees code or bit synchronism. There's no relation between phase and other time (code,bit

or chip) synchronism; the former is a function of the carrier phase <p of analog waveforms while

the latter three depend on the value of the relative propagation delay t in relation to chip du-

ration T, -i.e., whether t is a multiple of NpTc, NT, or only T,

4.3.2 Aperiodic Correlation

When two spread-spectrum modulated signals si(t) and s,(t) (both with period T) are also data

modulated, then the expression of their periodic cross-correlation Cj ('r) must take into account

the numerical values of different data bits that are contained in the correlation window. This

is illustrated in Fig. 4.7 where two data bits {x [-1], xj [0]} of user j overlap the correlation

window of data bit x[0] for user i.

T ' l1

Si(t I I
- x [-1] x []

Figure 4.7: Overlapping of two different data bits of user j in the correlation window

When N c = P, the continuous-time periodic cross-correlation Cj, (,r) is expressed in terms of the

discrete-time aperiodic cross-correlation functions {Rij [11, 2j [1) } and the continuous-time auto-

correlation functions {R*(Tr), R*( )} of the common chip pulse. We consider two different

cases where the time offset t is and is not a multiple of chip duration Tc. In the following

derivations, we consider cross-correlation between signature waveforms of two different users;

however, the results are equally applicable to auto-correlation of a single signature waveform

by replacing discrete cross-correlation with discrete auto-correlation.

Case 1: r = ITc, I E NN-1

When the delay r = lTc is a multiple of chip duration, the two signature waveforms are chip-

synchronous, and the continuous-time aperiodic cross-correlation functions do not depend on
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the shape of *(t). This is illustrated in Fig. 4.8.

ii (ITC) =1 gi(t)g j(t - ITc) dt (4.30)

= bi[k] bj [k - 1] J*2 (t) dt
k=O C

Similarly, it can be shown that

Rij (ITC) = Rij[] S (4.31)

T Do O TC 1

bi [0] b [1] bi [2] bi [N-31 bi [N-2] bi[N-11 bi[0] bill] bi [2] b [N-3] b [N-2] b [N-1]

b [N-3] b [N-2] bj[N-11 b { 01 b [1]l b 1[21 b [N-31 bj[N-21 b i[N-1] b [ 0] bj[1] b [2]

R..

Figure 4.8: Aperiodic cross-correlation for chip-synchronous signature waveforms

Case 2: T = ITc + A, I E NN--1, 0 ; A < Tc

If the two signature waveforms are chip-asynchronous, the continuous-time aperiodic cross-
correlation functions depend on the shape of 4(t) through its aperiodic autocorrelation func-
tions, p*(,r) and ,('r). (See eqns. (4.3) and (4.4)). As shown in Fig. 4.9, each chip of user j
overlaps with two consecutive chips of user i. The correlation function is then broken up into
two parts: discrete correlations with the first chip and then with the second chip of i, respec-
tively. Each discrete correlation is weighed by the continuous auto-correlation of the chip pulse.
This is illustrated by shaded regions in Fig. 4.10.

jj(ITC + A) =o gi(t)g (t - rTc) dt

= bi[k] bj [k - 1] (t)ip(t - A) dt
k=O (4.32)

+ bi[k] b,[k1] J i.(t)*(t + Tc - A) dt

= -0[1] p*(A) + ki5[I- I (A)
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N-1 T

= bi[k] bj[k -] (t)*(t - A) dt

N-1

+ bi[k} b[k - J] J (t)*(t + Tc -A) dt
k[=1+1

S. T

b [0] bi [ll bi [2]

b [N-3] b [N-2] b [N-1] b

R 
o

s Tc I

b [N-31 b [N-2] bg[N-1] b
1
[0] bil1] bi[2]

R..

Figure 4.9: Aperiodic cross-correlation for chip-asynchronous signature waveforms

b1 [0] bi[1] bi{2]

b [N-3] Ib [N--21 bjN-1.

R j

b1 [01 b[ 1i] b1 [2]

b [N-3] b.[N-2] b [N-11

A

Figure 4.10: Two portions of periodic cross-correlation for chip-asynchronous waveforms

4.3.3 Partial Correlation

As demonstrated so far, when the period of the discrete signature sequence P equals the number

of chips N, = T/TC of the correlation window, the continuous-time aperiodic cross-correlation

functions can be expressed in terms of their discrete-time counterparts and the autocorrelation

of *(t); i.e., there is an isomorphism

Ci (t), Rij(t), Rij(t) - [n], Rij[n], RijI], p4 M, P4 M

174

(4.33)

b [N-3] b [N-2] b [N-1] b [01 b 1i] b [2]

Rjj (ITc + A) = J T gi(t) 9j (t - ITc) dt

b [N-31 b [N-2] b [N-1]

[0] ')[] [2]



This is a desired property for system analysis since there exists closed-form results on the pe-

riodic and aperiodic correlation properties of discrete sequences. However, in spread-spectrum

modulated signals, the period of a code sequence is much longer than the spreading gain,

P > N. Under such conditions the discrete-time aperiodic cross-correlation functions are re-

placed with their partial counterparts. If Tj = iT, and Tf = fTc, i, f E Z, and the difference

d = f - i, f > i,
Oij(T; Ti, Tf) = eij(T; [i, d])

At the receiving end, the symbol matched filter typically integrates over the duration T = Tf-Tj,

and we are interested in

(4.34)
(i+N)TcOjj (-1; [i, N) = ~

We next consider two different cases of time offset:

Case 1: T = IT, I E NP-1

The two signature waveforms are chip-synchronous, and the partial cross-correlation function

does not depend on the shape of 4(t).

(i+N)Tc
Oj (tTc; [i, N]) =

JiTc
i+N-1

= Y bi[k]bj[k-l]
k=i

= O [1; i, N] E,

iO*2 (t) dt
0

Case 2: - = IT, + A, I E NN-1, 0 < A < Tc

The two signature waveforms are chip-asynchronous, and the continuous-time partial cross-

correlation function depend on the shape of *(t) through its aperiodic autocorrelation func-

tions, p1,( ) and ,

ij (lTc + A; [i, N])
(i+N)Tc

=i gi(t) g (t - lTc - A) dt
JiTc

i+N-1 TC

= Y bi[k] bj[k -] ij,(t)*(t -A) dt
k=i

i+N-1 fO

+ T bi[k] bj[k --] 1 (t)*(t + Tc - A) dt
k=i+1

=j Bi[t;i, N] p,(A) + Oj [I - 1; i, NI P,(A)

(4.35)

(4.36)
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4.4 Pseudo-Random Binary Codes

In the previous sections, we show that a signature waveforms is a spread-spectrum modulated

signal with its associated signature code sequence and a common chip pulse. The continuous

time partial cross-correlation function of two signature waveforms can be expressed in terms of

the discrete-time partial cross-correlation functions of their respective code sequences and the

continuous-time partial auto-correlation functions of the chip pulse. In this section, we concen-

trate on the correlation properties of the embedded discrete code sequences -in particular, the

binary-valued pseudo-random sequences. First, we present some definitions and preliminaries.

4.4.1 Orthogonality

In terms of notation two options exist when expressing binary sequences: one where the

elements are from the Galois binary field F2 = {0, 1}, and another where they are from the

integer ring D2 = {1, -1}. For example, two binary sequences or codes of length N can be

expressed as:

bi = (b[0], bj[11, bj[21,. . . , b[N - 2], bd[N - 1])

b5 = (bj[101, bj [11, bj [2], ... , bj[N - 21, bj[N - 1]1

where every element (bm[n]) E IF2, rTT = i, j, rT E NN-1. Their inner-product over a binary field

is:
N-1

bi o b = - bjn] G bj[n] (4.37)

=bj[0] (D bj[0] G bj[1] 0 bj[1] (D -. - D bj[N - 1] (D bj[N - 11

It is understood that for elements from F2, the summation and multiplication operations are

binary modulo-2 addition 'E' and multiplication 'G'. The truth tables for addition and multipli-

cation in F 2 are given in Table 4.1.

Table 4.1: Addition and Multiplication in F2 and D2

A B AOB AOB

0 0 0 0

0 1 1 0

1 1 0 1

A B A+B A-B

+1 +1 +2 +1

+1 -1 0 -1

-1 -1 -2 +1

Similarly, if we define two antipodal binary sequences of length N as:

ci =_ (cj[0], cj[1], cj[2, . . ., cj[N - 2], ci[N - 1]1
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Cj = (c5[0], cj[11, c5[21,.. . , cj [N - 2, cj [N - 1])

where every element (cml[i]) E D2, nT = i, j, n E NN-1, then their inner-product over an integer

ring is:
N-1

ci - C, = Y ci[n] - c [n] (4.38)
n=O

= c[o] - cj[0] + c4[1] - cj[1] + + c[N - 1] - cj[N - 1]

Here, the arithmetic operations are real addition '+' and multiplication '-'. (For convenience we

often drop the "dot" in real multiplication.) In fact, the inner product also applies to any pair

of sequences whose elements are from a Hilbert space.

A Word on Notations

In terms of notations for arithmetic operators, any Galois field operation (addition '+', scalar

(inner-product) multiplication '-' or vector (outer-product) multiplication 'x' ) is closed in F 2;
thus, each corresponding symbol E, D or 0 is enclosed in a circle. For regular arithmetic

operators, we use conventional notations: '+' and ''. The multiplication signs '.' and 'x' are

equivalent. For convenience, we often neglect to put neither; i.e.,

U -V =U x V =UV

The vector (outer-product) multiplication is defined as component-wise multiplication of two

vectors of equal length. For Galois binary vectors,

bi (& b= [ba[] D bj[0], bI[1] G bj[1], .. . , bN - 1] o bj[N - 1]

For antipodal vectors,

Ci 0 ,j = [ci[O] - cj[0], c[1 ] c [1], . . , cN - 11 - cj[N - 1]

Depending on the type of vectors being studied, we can easily determine if the scalar multiplier

is '-' or 'V'. Some authors also define bi 9 bj as the Hadamard product.

4.4.2 Level-Shifting

There is a bijective mapping between bi[rT] and ci[T]:

D2 <-(> F2

1 ) 0 (4.39)
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From the truth table, it is immediate that modulo-2 addition e is equivalent to real multiplica-

tion, i.e.,

OO=O W-+ ) (+1) +1

Oe l =1 -+ ) (-1) -1

1 D] = 0 -+ (-I) -(-1) =+1

Another convention that will be used often is the "sign" description with the following map-

IV Level +1

Shifter -1

F2 > D

Conversion from finite binary to antipodal signals. This operation
is known as level-shifting in circuit terminology. It can be imple-
mented using a gain-2 amplifier with capacitor coupling at the out-
put.

ping: 1 -+ + and -1 - -. It is the author's belief that the sign description of an antipodal

sequence is more pleasing to the eye:

+++ -+ - - instead of 1, 1, 1, -1, 1, -1, -1

The mapping between finite binary and antipodal sequences is called level-shifting. As shown in

Fig. 4.11, a level-shifter is simply an amplifier with gain 2 and a dc bias of -1 volts. 3 In terms
of notation, an upper-case letter is used to label a Galois binary sequence and its level-shifted
binary sequence is denoted by a lower-case letter.

It is important to note that there is no equivalent mathematical representation of finite

field multiplication 0 in terms of real arithmetic operators. Similarly, the real product of two

integers has no equivalent description in the finite binary field. The inner product of two binary

antipodal sequences ci-cj E Z has an integer value, whereas the Galois inner-product is a closed
operation: bi -bj E F 2. These observations lead to algebraic results that cannot be transported

from the finite field to the integer ring (or real field), or vice versa. For example, it is possible

for a sequence (1, 1, 1, 1) E (F2) 4 to be self-orthogonal (i.e, orthogonal to itself) while no such

vector exists over the real space. To avoid any confusion, our definition of orthogonality applies
to the inner product of two antipodal signals over real space R.

3 A reader familiar with circuit theory knows that it can be implemented using a common-collector (or common-

drain) amplifier with a gain of 2 and capacitor coupling at the output.
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4.4.3 Properties of Signature Binary Sequences

For multi-user communications, we prefer (binary) signature sequences with the following

statistical properties:

R-1: The sequence ... , b[-2], b[-1], bj[0], bi[1], b[2,... appears random, such that the se-

quence is memoryless and the outcome of each component bj[k] E D 2 of the sequence

is a fair coin flip: P(bi[k] = +1) = P(bi[k] = -1) = 1/2. Equivalently, the components

are i.i.d. RVs with bipolar symmetric Bernoulli distribution (see Appendix 2B). The sta-

tistical mean and variance of the partial auto-correlation function of a bipolar Binomial

distributed sequence bj are

s+N-1

E [eIR; s, N]] = E b [kbi[k - 1]
k=s

N 1-=0
(4.40)

0 Il =A 0

Var [OJI; s, NI] = (4.41)

The derivation is straightforward. We know Var(-) = E(-)2 - E2 (.). By explicitly writing

out the mean-squared value of the partial auto-correlation function for t ' 0:

E [Ei[t; s, N]] 2 = E sHN-l s-1 bj[k]bj[k - 1] b[mt]bj[m - 1

.k=s mT=s

Splitting into two summations of diagonal terms (m = k) and off-diagonal terms (m A k),

[N s+N-2 s+N-1

=E[ bf[k]b[k - l] + 2 Lb[kbj[mbj[k - 1bim - ]
k=s k=s mrr=k+l

Since E [b[k]b[m] = 0 for k 3 m, the second summation is zero,

E [OI; s, NI] = N

Combining with eqn. (4.40), the variance is as given in eqn. (4.41). The mean of the

autocorrelation for zero offset is

s+N-1

Y E[bf[k] = N
k=s



This is the "energy" Ei of a signature binary sequence of length N. Some authors prefer

to normalize the chip value to bj[k] = ± such that the resulting energy is unity. InVN
this case the mean and variance of the normalized partial auto-correlation function can

be expressed as

s+N-1

E [eI; s, N]] = E[bi[k]bi[k-1]
k=s

I I = 0
(4.42)

0 Iti 4 0

0 = 0

Var [ej[t; s, NI = (4.43)

where we have used the upper-case E to denote normalized partial correlation.

R-2: The binary sequence can be easily generated and synchronized at the designated receiver

but nevertheless it appears random to other interfering receivers. The randomness condi-

tion is equivalent to

E [Oij[; s, N] =0 (4.44)

Var 61j[t; s, N] = N (4.45)

for all il # 0. In terms of normalized partial correlation:

E [Ej[t; s, NI] =0 (4.46)

Var 1Ej[t; s, N] = 1/N (4.47)

R-3: The number of such sequences must be large enough to assign a unique sequence to every

transmitter-receiver pair in the network.

4.4.4 PN Sequence Postulates

The second requirement R-2 of a signature binary sequence stipulates that the sequence must be

deterministic while possessing the "randomness" property. Such a sequence is pseudo-random.

A binary sequence bi = (bil1], b[2],..., bNp) of period Np where each element bi[k] E D2 is

called pseudo-random if it satisfies the following postulates:

P-1: At most IN+ - N_1 = 1 where N+ and N_ are the number of elements with '+1's and

'-l's, respectively in bi. Equivalently, n~ bil] ; 1.
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P-2: A run of length r is defined as a string of consecutive r '+I's or '-l's. In a pseudo-random

sequence bi, if there are R runs,

" There are equal (E) number of +1 and -1 runs.

* There are runs of length n/2. For example, there are -S runs of length 1, 4 runs of

length 2, -j runs of length 4 and so on as long as - > 1.

P-3: The periodic auto-correlation function Cd[i] is two-valued:

Ci[]= TNP (4.48)
K lII E ZNp1, N > K

4.4.5 Comments on Pseudo-Randomness

1. P-1 guarantees the randomness of the elements that make up the binary sequence over

a period NP. It, however, does not imply that the sequence itself is random. A non-

random periodic sequence can also satisfy this property. For example, the alternating

... + - + - + -... and half-flip ... + + + - - -... sequences (and the orthogonal

sequences introduced in Sec. 4.5) satisfy P-1 with IN+ - N_1 = 0 (even Np) despite the

fact that they all highly "symmetric." Furthermore, as we shall see in the next section,

Walsh orthogonal sequences have very large auto-correlation values for non-zero time-

shifts. Thus, P-1 implies neither P-2 or P-3.

2. P-2 guarantees the randomness of bi over period NP. As an example, consider the follow-

ing pseudo-random sequence of length 7:

There are 4 runs. They are (+ + ), (-), (+) and (--). (Since the number of +1

runs must equal the number of -1 runs, the total number of runs is necessarily an even

integer.) There are two '+' runs and two '-' runs, satisfy the first condition of P-2. There

are two runs of length 1 and a single run of length 2; hence, the second condition of P-2 is

met. Note that the length of (+++) run is irrelevant. P-2 is still satisfied if an additional

'+' is added as a leading element to the sequence. However, the modified sequence:

violates P-1. It is easily checked that it no longer satisfies P-3. Thus, P-2 implies neither

P-1 or P-3.
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3. As we saw in the above example, the length-7 sequence concatenated with a prefix of

all "1"s, ... + ++ ... still satisfies P-2. Such a modified sequence, however, will have

a large auto-correlation value for non-zero time-shift. P-3 guarantees that the periodic
auto-correlation be very small for arbitrary non-zero phase-shifts for elements that are
generated pseudo-randomly. It is highly unlikely that a string of heads will be observed if a
fair coin is flipped repeatedly. However, it is fairly easy for non-random periodic sequences
to satisfy P-3. The most obvious case is the impulse sequence 6[n] = [... 00010000 .. ].

(It violates both P-1 and P-2.) As another less obvious example, consider the following
sequence:

It can be checked that this sequence passes the test for both P-1 and P-2, but fails P-3.
Thus, P-3 guarantees neither P-1 or P-2.

4. Based on above observations, we conclude that the three postulates are independent, and
a sequence is "pseudo-random" only if all three conditions are satisfied.

4.4.6 Maximal-length Binary Sequences

There is a wealth of texts and research articles that analyze and characterize the unique
properties of maximal-length (ML) binary sequences. The sources we have relied on are listed
at the end of the chapter. We simply state that ML sequences satisfy all three pseudo-random
postulates; i.e., they qualify as pseudo-random sequences. Its period is odd: Np = 2n-1, T1 E Z+.
In one realization, the sequence is the output of a linear feedback shift-register (LFSR) with n
states (flip-flops). This is illustrated in Fig. 4.12.

1 2 3 4 5]- ML sequence

Linear feedback shift-register for ML sequence generation. The tap
Figure 4.12:

connections are [2,5].

The positions of tap connections identify a particular ML sequence. In the figure shown, the
taps are [2,5]. The sequence is maximal-length since the register states are all possible binary
sequences of length n except the all-zero sequence. Writing out the [2,5] ML sequence explicitly:

... 1111100110100100001010111011010 ...

Note that (N+ - N-) = 1; this is the balance property. The above sequence is generated with
an initial state [11111]. If we start with a different initial state, we obtain the cyclically shifted
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version of the above sequence. For example, with an initial state [011001 the resulting sequence
is a right cyclic shift of 5 of the original sequence:

...0011010010000101011101101011111 ...

For an ML sequence, the binary sum of an original sequence and its cyclically-shifted version is
the sequence itself with another cyclic shift. For the above sequences, their sum is:

.. .0011010010000101011101101011111 ...

By observation this is a right shift of 3 of the original sequence. This is the shift-and-add prop-
erty. Using this property it can be shown that the periodic auto-correlation of an ML sequence
is two-valued:

C[] = { (4.49)
-1 [I E ZNp-1

The postulates do not reveal much about the partial auto-correlation properties of a PN se-
quence. For ML sequences the following hold:

" The average partial auto-correlation is equal to the periodic auto-correlation:

Es [ejR; s, N]] = C5R] (4.50)

" The variance of the partial auto-correlation function is:

Var, [[t; s, N]] = (1 -+ I)(I _ N) (4.51)

The averaging is over all possible starting positions:

Es [Oj[t;s, N]] = N pj [s +k]p [L +
=k- . s==

Swapping the summations:

IN-1 [Ny-1 -k

= NT T pj [s + klpj [R + k]
s=O k=0

= N T C L] = C,[W]
s=O

In terms of the normalized partial auto-correlation function:

Es [Oj[l; s, N1] = (4.52)
{-1/Np ct ~-

4.4 Pseudo-Random Binary Codes 183



We know Var(.) = E(.) 2 - E2 (.). By explicitly writing out the mean-squared value of the partial

auto-correlation function:

Es [0?[l; s, N]] -

NV -1

k=0

-2

k]

kN-1±

Y P[S + kIpR j~+ s +
s=0
N-1 N-1

pj[s + kpj R +
s=0 q=0

s + k]pj[q +

Using the shift-and-add property of an ML sequence, we know that

pi[s + k] -pj[l + s + k] = pj~R+ s'+ k]

is another cyclically shifted sequence. Similarly,

pj [q + k] - pj [I + q + k] = pj [t+ q'+ k]

Substituting:

Y R+ s' +k]pj[I
-s'=0 q'=0

Es [0[I; s, N] =
Pk=0

Splitting the double summation term in the bracket into diagonal and off-diagonal terms:

NP-IN-I 1 Np-1

L p+ s' + k] + + Y
Sk=0 s'=0 k=0

- N-2 N-i

T p [i + s' +
s'=0 q'=s

k]pj[l + q' + k]

Using the shift-and-add property,

pj[l+ s'+ k]p [t+ q'+ k] = p1 [+ r' + k]

for some integer r' = s' and -' # q'. Using this result and simplifying

IN-2 N-1

Es [6[; s, N]] = N + N N-T

S'=0 q'=s

Np -1

Sj[l+ r' + k]
k=0

Invoking the balance property,

N(N - 1)

(N- N+1)

I Np-1

k=0

[
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which leads to

Vars [Oj[R; s, N]] = (N-N+)- for 1 4 0
NPN (4.53)

=(N -1) (1N

It is readily shown that for the normalized partial auto-correlation:

Vars[E8j[;s,N]] 1 N-i ( N 2 forl#0

N 1P N P (4.54)

N NP NP
For Ny >> N, Vars [E5[R; s, N]] ~ I /N. When we compare the values of the mean and variance

[eqns. (4.52) and (4.54)] of the partial auto-correlation of an ML sequence with those of a

Bernoulli random signature sequence [eqns. (4.42) and (4.43)], we notice that the approxima-

tions are quite good as long as N > N.

4.5 Binary Orthogonal Codes

Two antipodal binary sequences of length N are orthogonal if their inner-product is zero:
N-1

ci- = Cj ciln] cj[n] = 0
n=O

The orthogonality condition stipulates that N is even. In contrast, the period P of an ML

pseudo-random binary sequence is odd. Strictly speaking, an orthogonal matrix Q of order n is

composed of orthonormal column vectors; i.e.,

Q = [qq2... qn

where the column vectors are orthonormal:

gq 0 i =' j

I i = j

In what follows, we will relax this definition and allow consider a matrix as orthogonal if all its

column vectors have equal norms, qTqj = n. Hence, an orthogonal matrix Q of order n can be

defined as:

QQT nI

Since Q- 1 = QT implies QTQ = nI, the distinct row vectors are also mutually orthogonal.

A particular orthogonal matrix of interest to us is the Hadamard matrix H, where the entries

(hij) E F 2 . By generating a Hadamard matrix of order n, we can designate its row vectors as or-

thogonal binary codes of length n. We next describe such a technique where binary orthogonal

codes of length 2n are derived from those of length n.
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4.5.1 Sylvester-type Orthogonal Codes

It is well-known that for N - 2 k, k E Z+, a family of antipodal binary orthogonal sequences

exist. They are called Walsh-Hadamard sequences since each binary orthogonal sequence of

length N is a row vector of a (N x N) Hadamard matrix HN, where its entries (hij) E F2.
Starting with H I = [1] and

H2 = 0 (4.55)
0 1

Longer Hadamard sequences can be generated using the following recursive procedure:

H2N 4 -j7] N = 1 ( ) N (4.56)
HN HNI

For (hij) E IF2, we denote the orthogonal matrix by H. An equivalent Walsh orthogonal matrix

VV can be generated as follows:

W 2N= WN WN N = (-)WN (4.57)
WN WN

where its entries (wij) E D2 with

W 2 = (4.58)

Orthogonal sequences generated from Hadamard-Walsh matrices of (4.56) and (4.57) are

called Sylvester type. Other types of orthogonal sequences such as Paley, Muller and Rademacher

are described in the appendix at the end of this chapter. We will focus only on the Sylvester type

since it has an equivalent binary tree representation, which is further discussed in Sec. 4.5.3.

If we denote a vector of length 21 (n E N) by x, we can generate a pair of mutually orthogo-

nal (sibling) vectors -[xx] and [xx] - of length 2 (T+1) by concatenation and inversion. Such

vectors are called recursive. Equivalently, any group of orthogonal codes that has a code tree

description are called recursive. The Sylvester-type Hadamard-Walsh codes are conveniently

recursive. Among the different types of Walsh codes listed in Appendix 4A, the Paley-type is

the only example of non-recursiveness. It is in fact cyclic; i.e., a single cyclic shift of any Walsh

code generates another valid orthogonal code. Next, we highlight several important properties

of Walsh sequences.

A Word on Notation of Walsh codes

For a Sylvester-type (N x N) Walsh matrix WN, its orthogonal rows (code vectors) are

denoted by WN [k] for the kth-row vector of length N. If we wish to specify a particular position
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4.5 Binary Orthogonal Codes

in time of this vector, an additional index m is used

WN in; k] Wkm Wkm E WN

where Wkm is the (km)th entry; i.e., it is the entry in the kth row, mTn column of the matrix

WN. If the length N is known and its omission causes no ambiguity, we express the kth Walsh

code in vector form:

Wk[m] = wNTh;k]

= (Wki, wk2, --- ,WkN)

The above vector notation is consistently used whenever we are dealing with multi-channel or

multi-user communication models. For such purposes, Wk denotes the Walsh code assigned to

user k. It is implicitly assume that the orthogonal vectors are periodic; i.e,

wk[m] = Wk[m + jN] for any integer j

When a Walsh code is modelled as a (continuous-time) waveform where each component wkm

is a rectangular pulse of duration T,, it is denoted by wN(t; k).

4.5.2 Properties of Walsh sequences

(1) A Sylvester-type (N x N) Walsh matrix WN is an orthogonal matrix:

VNW_ = N IN

Since WN = )/VT, it is also a reflection matrix (except for a scaling factor):

WN = NN WN

It is then easy to show that, starting from W 2 and by iteration, WWTW nVV)VV;) - n,

proving that W, is an orthogonal matrix. Note that there exists other types of (N x N)
orthogonal matrices Q, such as rotation and permutation matrices, that are not reflec-

tive, i.e. Q = N Q- 1 [135]. Due to its symmetry, both the columns and rows of the

Walsh matrix can be used as orthogonal sequences. By definition an orthogonal matrix

is composed of orthogonal column vectors. Thus changing their order -i.e., any column

permutation- still preserves the mutual orthogonality property. For a Walsh matrix, this

implies that a different set of orthogonal Walsh sequences can be generated by column

permutation. These sequences are still "Walsh," but no longer recursive. Another impor-

tant property of a reflection matrix is that any scaling of a column (or row) by a constant,
or the addition of another column (or row) preserves the orthogonality condition. The
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first condition implies that a Walsh code modulated by a data symbol (including nega-

tive integers) remains orthogonal to other Walsh codes of the same length. The second

condition guarantees that the modulated sum of several Walsh codes (as in the case of

multi-code transmission detailed in Chapter 6) is orthogonal to other Walsh codes of the

same length.

(2) Using the Walsh matrix W 8 as an example, we see that the first row of a Walsh matrix

denoted by wN[l] is a vector of all l's. All other Walsh sequences, wNEk], k E Z', are

balanced, i.e., they all have equal number of 1's and -I's.

1 -1 1 -1 1 -1 1 -1

1 1 -1 -1 1 1 -1 -1

1 -1 -1 1 1 -1 -1 1(5
WVV= (4.59)

1 1 1 1 -1 -1 -1 -1

1 -1 1 -1 -1 1 -1 1

1 1 -1 -1 -1 -1 1 1

(3) A pair of higher-dimensional (longer length) Walsh codes can be expressed as a concate-

nation of two lower-dimensional Walsh codes:

W2N[ 2 1 - 11= (WN 1,-iWN It]) (4.60)
W2N21 N , -(W-wNW)

(4) An inverted Walsh sequence is orthogonal to other Walsh sequences (inverted or not)

of the same length.i.e, -wN Ik] 1 WNRI for V I # k. In contrast two Hadamard se-

quences (say, HN[k] and HN]) of the same length are orthogonal, but an inverted version

HN[k] is not orthogonal to other Hadamard sequences of the same length. For example,

(0, 0)1(0, 1), but (1, 1) is not orthogonal to either (0, 1) or (1, 0).

(5) Since a Walsh sequences is a level-shifted version of a Hadamard sequence, it is commonly

treated as a (continuous-time) waveform than as a discrete-time sequence. A plot of

Walsh sequences as antipodal waveforms is shown in Fig. 4.13 where each sequence is

considered as a train of rectangular chip pulses, with each "chip" pulse of duration Tp.

The duration of a Walsh waveform of code length N is N Tp. It is immediate that the

periodic cross-correlation is zero over this window:

NTp

WN[k] I WN II J ) wN(t;k)wN(t;1) dt = 0
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W8 P

W8 [2]

W8 [3]

W8 [4]

W8 [5]

W8 [6]

W8 [7]

W8 [8]

Figure 4.13: Walsh sequences as a train of rectangular chip pulses of length 8

Note that due to its recursive property, length N = 8 Walsh waveforms with odd indices

are identical to Walsh waveforms of length N/2 = 4. Therefore it is only meaningful to

include both the code length N and the chip pulse duration Tc (or equivalently, the chip

rate Rc) when declaring a set of orthogonal Walsh codes.

(6) For the same chip rate, two set of Walsh waveforms of lengths 4 and 8 are depicted in Fig.

4.14. Note that length-8 Walsh codes with odd indices are identical to length-4 Walsh

codes. In particular, over the time window [0, NT]:

WN I] =W2N] =W2NIlI+ N] (4.61)

A similar result can be generated over the time window [NT/2, NTp]. In general, two

Walsh codes of different lengths, wN[k] and wM[1] where N # M, and the same chip rate

are orthogonal if they are not relatives. We give a precise definition of the term relative in
the next section by first discussing the relationship among Walsh codes of various lengths

and a binary code tree structure.

4.5.3 Orthogonal Binary Code Tree

An equivalent description and generation of Sylvester-type Walsh sequences is based on the
structure of a complete binary code tree.

7 Definition A tree is complete if it has no broken branches. A tree is binary if there is a max-

imum of two branches from each node. A branch is broken if a node does not contain two

branches. In a code tree, a branch is also a sub-tree, and each node is a code.
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Figure 4.14: Walsh sequences as a train of rectangular chip pulses of lengths 4 and 8

An n example of a complete tree is shown in Fig. 4.15(a), whereas the tree in Fig. 4.15(b) is

incomplete since it contains broken branches. Some authors also define a complete tree as a

balanced tree since it is in equilibrium about its pivot-the central point of a root code. In order

to identify the codes in the tree without ambiguity, each code is assigned a unique layer number

and a branch number. Each code in a tree is identified using the following notation:

cc or (i, j) i = layer number, j = branch number

The code layers are numbered sequentially from bottom to top, starting from 1. Thus, a higher-

layer code has a shorter length (lower dimension) than a lower-layer code of higher dimension.

Similarly, the branches in each code layer are numbered sequentially from left to right, starting

from 1. The topmost code of a branch or tree is called its root code. For example, in Fig.

4.16, (5,1) is the root code of the tree while (3,1) is the root code of a branch (or a sub-tree)

containing codes (2,1), (2,2), (1,1), (1,2), (1,3) and (1,4). All lower layer codes spanned from

a higher layer code are defined as descendant codes. All high layer codes linking a particular

code to the root code are called its ancestor codes. The immediate ancestor code is called the

mother code. Two sibling codes are those generated from their mother code. They are also

known as the children codes of the mother code. The lowest-layer codes are called leaf codes,

or simply leaves. As shown in Fig. 4.16, the descendant codes of (2,4) are the siblings (1,7)

and (1,8). The ancestor codes of (1,5) are (2,3), (3,2) and (4,1).
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Figure 4.15: Complete and incomplete binary code trees. In the incomplete
tree, the branches from codes c2 1 and c32 are broken.
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Figure 4.16:
Complete binary code tree with 16 leaves. It is a graphical repre-

sentation of the generation of length-16 Walsh codes.

Prefix-free Condition

Each node in the complete binary tree is a Walsh code. All codes in the same layer have the

same length. As a consequence of the property of a Walsh matrix, codes from the same layer

are mutually orthogonal. The length of a mother code is half the length of its children. Hence,

higher-dimensional children Walsh codes are generated from their mother code by concatena-

tion. As illustrated in the top left half of the code tree in Fig. 4.16, two codes of layer 3 are

generated recursively from their mother code of layer 4. Furthermore, any two codes of differ-
ent layers are also orthogonal except when one is not an ancestor (or equivalently, a descendant

code) of the other. This assertion can be verified in several ways. The first alternative is based

on a Hadamard binary tree structure shown in Fig. 4.17 where each node is a Hadamard code,
i.e., its elements E F2. As before, longer-length children codes are recursively generated by
concatenation of a lower-length mother code. Two binary Hadamard codes of different lengths
are orthogonal if they are prefix-free binary codes. Prefix-free codes are treated in most infor-

mation theory texts. (See Cover [22], pp. 81 for further explanation.) Two Hadamard (or

4.5 Binary Orthogonal Codes



10 2 1 H2

1 00 2 01 3 4 H4

1 0000 2 0011 3 4 5 6 7 8 H8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 H16

00000000 00001111

Figure 4.17: Complete binary tree with Hadamard codes. Two Hadamard codes

are orthogonal if they are prefix-free binary codes.

Walsh) codes-of different lengths-are considered relatives if they have identical prefix. As far

as we are concerned, two Hadamard codes of different lengths are relatives (non-orthogonal)

if the prefix of the longer code is the shorter code itself. Thus, all codes linking a leaf and the

root code inclusively are relatives. In Fig. 4.17, the codes (00) and (0011) are relatives (since

prefix '00' is the same as the shorter code) while (01) is a non-relative of (0011).

1 0 2 1

1 00 2 01 3 4

1 000 2 001 3 4 5 6 7 8

1 2 34 5 6 7 8 9A10 11 12 13 14 15 16

0000 0001

Description of binary prefix free codes in tree structure. Unlike binary

Hadamard codes, a '1' or '0' is appended for lower layer codes.

The binary tree described in Fig. 4.17 is slightly different the tree structure of binary prefix

free codes. For clarity we also illustrate in Fig. 4.18 the same tree structure, but with "con-

ventional" labelling of binary prefix free codes, in which a '1' or '0' is appended to a lower

layer descendant code -rather than concatenation as in Hadamard-Walsh codes. Regardless

of slightly different methods of code generation, the mutual orthogonality property of binary

prefix free codes still holds. At this point it seems the connection between Walsh-Hadamard

and binary prefix free codes is trivial and redundant. In Chapter 7 we use this equivalence to

prove an important theorem regarding the capacity of OVSF-CDM system.
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Walsh Codes as Continuous-time Waveforms

According to eqn. (4.61) and Fig. 4.14, the mother code is identical to its children in its
defined time window. As evident from the figure, two relative waveforms-e.g. w4(t; 1) and

W 8 (t; 1), or w 4 (t; 1) and w8 (t; 5)-are identical. Two prefix-free waveforms-e.g. w 4 (t; 1) and

W 8(t; 2)-orthogonal:
4Ty

w 4 (t; 1) ws(t; 2) dt = 0

t=0r8Tp
w 4 (t;1) w8 (t; 2) dt =O (4.62)

t=0r8Tp
wt8p (t; 1) w'(t; 2) dt = 0

where w' (t; k) is an infinite periodic train of Walsh waveforms:

w (t;k) = (...wN(t; k), ±wN(t; k),....

The first two cross-correlation functions are aperiodic over duration of 4Tp and 8Tp, respectively.
The last is the periodic cross-correlation. As we shall see in Chapters 6 and 7, binary orthogonal
codes of various lengths with the same chip duration are called Orthogonal Variable-Spreading

Factor (OVSF) codes. The spreading factor is equal to the code length N.

4.6 Superimposed Orthogonal Binary Codes

It is obvious from Fig 4.14 that the periodic cross-correlation of any two Walsh codes is large
and it is highly dependent on the time offset as well as the particular choice of Walsh codes.
This is due to their highly regular structure from concatenation. For a special type of cyclic
Paley-type Walsh codes (see Appendix 4A) derived from quadrature residuals, any cyclic offset
of a particular Walsh code becomes another sibling Walsh code. Therefore, the application of
orthogonal Walsh codes as user signature sequences is limited to broadcast transmission mode
where code synchronism is possible. If, however, the channel generates multiple replicas of the
transmit signal, then the received signal will suffer from a significant amount of self-noise that
is induced by high cross-correlation values of Walsh codes.

As an alternative to orthogonal binary codes, we can assign pseudo-random (ML-type) codes
as signature sequences. In Chapter 2, it is shown that a CDM system with non-orthogonal codes
and naive decoding results in a rate region that is equivalent to naive CDM (N-CDM) -which
is much smaller than various orthogonal multiplexing schemes such as O-CDM, FDM, TDM and
N-TDM. Therefore, CDM with PN codes and single-user decoding would not even come close
to being the most efficient resource allocation policy. Several researchers, including those at
Qualcomm, have proposed a novel method where binary periodic orthogonal codes of period N
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are superimposed with a PN sequence of length P, where P > N. In the literature, these codes

are commonly described as "short" and "long" codes, respectively. The superimposed code can

be expressed analytically as follows:

Ak[n] = tk[m] @ P[n] (4.63)

where 7-k[m] is the kth row of a Hadamard orthogonal matrix and P[n] is a pseudo-random

sequence. It is understood that all three sequences are periodic. The different indices n and

m emphasize the fact that the clock rates of Hadamard and PN codes may be different. Let's

denote the Walsh-Hadamard code rate by R, = mR. The chip rate of the PN sequence is

R, = nR. We already know that the excess spreading factor k, is defined as k, = RC/RW. Eqn.

(4.63) can also be expressed in terms of their level-shifted binary sequences,

ak[n]=Wk[m].p[In] where m= [L

where Wk[M] is the kt1 row of a Walsh matrix and p[n] is the antipodal equivalent of P[n]. To

simplify the above expression, we can relabel the Walsh codes such that their new clock rate

, equals the chip rate R,. For k, = 2 m (m G N) we can interpret the new set of Walsh codes

as a subset of Walsh codes of higher dimension. As an example, consider the set of Walsh codes

of length 4: {w4 [j]} and k, = 2. By clocking each Walsh chip at twice the original rate, the

resulting Walsh codes {-_4[j]} belong to the set of length 8. In particular,

R 4 [M; j] = w 8 [2m - 1; j] 1 < j < 4

For convenience, we express the superimposed orthogonal sequence of user k as

ak[n] = k[n] - p[n]

implying that both the PN sequence p[n] and the embedded orthogonal code *k[n] are clocked

at the same chip rate R,.

4.6.1 Correlation Properties

We already know that for zero time offset, two superimposed codes are orthogonal over a

Walsh code length:
(j+1)N-1

T a3[Q] at[r] = N 6[k - 1]
r=jN

When studying superimposed orthogonal waveforms, we are mostly interested in a case where

the time offset is non-zero. This situation occurs when the channel generates multiple replicas

of the transmit waveform at the receiver, or when another superimposed orthogonal waveform
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from a neighboring cell interferes with the desired signal. In the former, we are dealing with

the auto-correlation of the superimposed waveform for arbitrary non-zero time offsets. In the

latter, it is the cross-correlation between two superimposed waveforms with different long PN

codes. If the long code is a purely random Bernoulli sequence, then we are only interested in

the statistical properties (i.e., the mean and variance) of auto- and cross-correlation functions.

Fortunately, due to the i.i.d. property of a bipolar Bernoulli sequence, the mean and variance

of the partial correlation of the resulting superimposed sequence is identical to those of a ran-

dom sequence as listed in eqns. (4.40) and (4.41). In the previous sections it was shown that

the ML binary sequence has correlation properties that approximates closely those of a random

Bernoulli sequence when N. > N. We must now determine if the superimposed orthogonal se-

quences possess correlation properties that approximate those of a random Bernoulli sequence.

The mean and variance of the partial auto-correlation of a superimposed sequence can be de-

termined as follows:

s+N-1

E [&I; s, N] = E at[kl - a[k - l11]
k=s

s+N-1

= E[*i[k]p[k] -i*[k-1]p[k.-1]
k=s

We ignore the trivial case of E 1O[0; s, NI] = N. In the following we assume t 7- 0. Since the

periods N and NP are relatively prime, the expectation is computed over all possible relative

time-offsets between the starting epochs of the PN code and the Walsh code. Hence,

s+N-1 1Np-1
E 1[0l; s, N] N *k]p [k - n] - [k - l]p[k - L - n]

k=s Pn=0

Using the shift-and-add property of ML sequences,

p[k - np[k - I - n] = p[q -T]

for some integer q # k and q # (k - 1), the expectation simplifies to

s+N-1 Np -

E [i[l; s, N]] p[q- n *;k]jk -{
k=s NP n=0

Due to the balanced property of ML sequences,

N -1
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for any integer m. Substituting this result and simplifying

s+N-1

E [j; s, N] = - Nij[k] *j[k - 11
Pk=s

= N P Ci[1]

Since the Walsh codes are periodic with period N, the starting time epoch s is irrelevant. We

know that the periodic auto-correlation C4[I] is very sensitive to the values of time-offset t and

code index i. However, we also know that its maximum absolute value is N, which leads to the

following bound

N
(4.64)

We conclude that for N > N, the superimposed orthogonal sequence approximates the

Bernoulli sequence in terms of the mean value of its partial auto-correlation. We next com-

pute the variance by explicitly writing the mean-squared value:

E [j; s, N]] 2 = E [sN- s+N-1a [k] ai[m] aj[k - 1] aQ[m - 11]
.k=s ImIs

1 s+N-1 s+N-1

NP L TI (Wi[k] i[m] j [k - 1] *i[m - 1])
. k=s m-s

Np-1 1

Ti (p[k -n]pi[m -n]pt[k -t-n]pi[m -ln])

Splitting the double summation into diagonal and off-diagonal terms,

s+N1 NP -1

n=O

1P

s+N-2 s+N-1

k=s m=k+i

*j[k] *ji[m] *i[k - 1] * [m - 1]

By ap[k -f d p pi[m - n] pi[ks-ee - nthe] p nd t twie] ,
nt=0

By applying the shift-and-add properties of ML sequences on the second term twice,

s+N-1 s+N-

NN + N
. k=s mrs

s+N-ls+N-1

-N+ N T Y
Pk=s m=S

-1 Ny -1

4k Vjml ][k - i '4rrm - ii) - (pi[q - n] pJ[r - n]I
n=O

*L[kl it[rr] *ilk - ] *[m - 1] T pI[s -rT]

n=O

I
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Using the balanced property, it simplifies to

s+N-1 s+N-1
=N - N ilk]*i[M]*ilk - 11]*lm - t]

k=s m=s

Splitting the double summation into diagonal and off-diagonal terms,

[s+N-1 s+N-2 s+N-1

N - N T *?[k] * [k - t] + 2 Y_ '[k] *i[m]Wj[k - t] i[m - 1j
kT-S k=s m=k+1

The second summation can be bounded by its absolute maximum (the number of off-diagonal

terms divided by 2):

s+N-2 s+N-1 N(N -1)
T T *j [k] *j[m] *j[k - t] *j[mn - 1] < 2

k=s rm=k+1

which leads to

E [OI;s, N] < N - [N ± N(N - 1)]
NP

Var 6JI;s, N] ,< N - N ± N(N - 1)(
. P . (4.65)

r<N I±(N -1)
I NV I

For Np > N, Var 1[OI; s, N] ,< N. Note that above results hold for both recursive and non-

recursive Walsh codes. Since the auto-correlation of Walsh codes is periodic, permutation of a

pair of Walsh codes has no effect on its value.

4.7 Comments on Cross-Correlation of Signature Sequences

Compared to the wealth of information that is available on periodic discrete sequences, our

treatment here is rather brief. We covered only the tip of the ice, limiting our scope to topics

that are directly relevant to code-division multiplexing of spread-spectrum modulated signals.

In all our analyses, we consider only binary sequences. There exists, however, non-binary se-

quences -also known as polyphase sequences- from larger Galois fields that possess unique

properties that are not attainable in the binary space. Regarding PN sequences, we have dealt

only with maximum-length sequences, mostly due to their unique balance and shift-and-add

properties. Without the application of these two properties, most of our derivations cannot be

simplified or approximated into closed-form expressions. For both ML sequences and ML-based

superimposed sequences, we did not compute their cross-correlation values. It has been shown

by Golomb [46] that the periodic cross-correlation of an ML binary sequence takes on at least
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three different values. He further shows that for a given length NP, such ML sequences with

three-valued cross-correlation property is rather small (< Np) . This may not be that critical of

an issue for the downlink where the number of neighboring sites with significant interference

level is not large. However, this is a serious matter in the uplink where the number of simul-

taneously active mobiles is quite large. For this reason the third-generation CDMA standard

has adopted non-ML binary sequences such as Gold and Kasami codes as signature sequences.

They still possess cross-correlation values in the same order as ML sequences; however, their

auto-correlation is not two-valued. There exists considerable sidelobes. Regardless of the type

of binary sequence, less is known about the properties of aperiodic and partial cross-correlation

values. In terms of periodic auto-correlation, we already know that it is two valued; in fact,

in the literature this type of periodic auto-correlation pattern is known as "impulsive" since its

value is maximum when phase offsets are multiples of period No. For all other offsets, its value

is -1.

For the non-binary case, there exists perfect codes whose periodic auto-correlation is zero

for all non-multiple phase offsets of N.. However, for both binary and non-binary cases, it is

not possible to construct sequences that possess both ideal periodic auto- and cross-correlation

values. The best we can achieve is non-binary sequences with impulsive auto-correlation and

cross-correlation values no less than N~ - the Welch bound. As we discover in our analysis,

it is rather the partial correlation properties of signature sequences that are of most value. Very

little has been reported in this area mainly because it is difficult to construct combinatorial

and algebraic frameworks for partial correlation. It is more common to measure and evaluate

statistical or time-averaged properties partial correlation.

4.7.1 Correlation Zones

Recently, due to the popularity of synchronous spread-spectrum communication, several

researchers have proposed binary and non-binary sequences with unique auto- and cross-

correlation properties known as the correlation zone. Such codes, as elaborated in References

[32], [33], [138], [139] have ideal zero auto- or cross-correlation values (i.e., periodic, ape-

riodic or partial) for a certain range of phase offsets called zones (See Fig. 4.19). For other

phase offsets the correlation values may be large. These researchers are well aware of the fact

that in a multipath channel, correlation values are significant only in a time window within the

delay spread. If such codes become practical, it is likely that they will have a major impact on

diversity Rake combining of multipath spread-spectrum signals. As we shall see in Chapter 6,

Sec. 6.5, the non-ideal correlation values of signature sequences result in self-noise at the out-

put of a Rake receiver. This self-noise either reduces the diversity gain or dramatically increases

receiver complexity.
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Zero correlation zones for periodic (a)auto-correlation and (b)
Figure 4.19: cross-correlation. Correlation values outside the desired time win-

dow called "the zone" are non-essential.

4.8 Correlation Properties of Other Important Signals

Thus far our focus has been signature waveforms whose continuous-time cross-correlation

is measured in terms of the discrete-time cross-correlation of embedded discrete binary se-

quences. For all purposes considered, they are spread-spectrum modulated. We are also in-

terested in conditions where two signature waveforms, without spread-spectrum modulation

and embedded discrete-time sequences, can still be orthogonal. As stated in (4.3), the cross-

correlation function between two synchronous (-t = 0), symbol-time limited signature wave-

forms is defined as

pij = si(t)sj(t)dt
0

If the waveforms also carry information via PAM-type data modulation, then the data modu-

lated signals are orthogonal as long as pjj = 0 since

T xT



where xk is PAM symbol for waveform sk(t). In particular, we are interested in waveform

orthogonality when one signal is frequency-shifted, time-shifted or both time- and frequency-

shifted version of the other.

4.8.1 Frequency-Shifted Signals

We are mainly interested in radio-frequency (RF) carrier (single-tone) waveforms where the

RF carrier frequency is much higher than the symbol rate, f > 1 /T. We study three unique

cases:

Case 1: CW Signals with Zero Phase Offset

Denoting a CW signal with only an in-phase (cosine) component:

2f )
sCI(t) = -- cos(27-rf t) c =ij 0 < t < T

E is the signal energy. We can similarly define the quadrature-phase (sine) component:

sc(t) = sin(27tfet) c =ij 0 < t < T

Assuming the RF carrier frequency is much higher than the symbol rate, fc >> 1/T, it is easily
shown that:

Pi. =

P9 =

P!9

T

s)s(dt

sin 27t(fi - fj)T

27-r(f j - f j)T

s9(t)s9(t) dt =
o 27r(fi - f j)T

T cos27(fi - fj)T -1
sI (t)s(t)dt =- f)T

(4.68)

(4.69)

(4.70)

It can be deduced from the above equations that the minimum frequency separation Af =

(fj - f5) required to maintain orthogonality is:

{ 1/2T

1 /T

s!I s!

sI s9

or s9 I sQ

In general, for two CW signals sc(t) = V5/T ( cos 2rft+sin 27rf t)
and quadrature components, they are orthogonal if Af = 1/2.

(4.71)

c = i, j with both in-phase

(4.66)

(4.67)
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Case 2: CW Signals with Phase Offset 0

Assuming a non-zero phase-offset 0 between two CW signals:

si(t) = -- cos(27tfit)
0<5t<5T (4.72)

sjt = FLT-6cos(27tfjt + 0)

Since sj (t) with a phase-offset 0 can be considered as consisting of both in-phase and quadrature

components, it can be readily shown that:

Af(0) = 1/T siL sj (4.73)

In this case, it is immaterial whether si(t) and sj (t) are cosine or sine functions. An important

implication of eqns. (4.71) and (4.73) is studied further in Chapter 5.

4.8.2 Time-Shifted Signals

If a signal s(t) is symbol-time limited, then it is trivial that s(t) and its T-shifted versions are

orthogonal:

Js(t)s(t - kT) dt = 0 k E ±Z+

A more interesting case is when the pulse duration is larger than the symbol interval (T > T).

For a family of W-Hz bandlimited sinc pulses s(t - kT) = sinc 2W(t - kT),

J s(t)s(t - kT) dt

J sinc 2W(t) sinc 2W(t - kT) dt

2 W T = W(4-74)

- (V)2jjv e-inkf/ df 2W
2W/ -

= 2W sinc(k) = 0 for k c ±Z+

4.8.3 Time- and Frequency-Shifted Signals

In a more general setting, we are interested in the requirements to maintain orthogonality

between two carrier-modulated signals where the time shift is a non-zero multiple of T, the

symbol duration:

Pij = gi(t) gj (t - kT) dt k E ±Z+ (4.75)
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where
gi(t) = s(t) cos(27Tfit)

gj(t - kT) =s(t - kT) cos (2fj(t - kT) + 6)

=s (t - kT) cos (2fjt + Ok) Ok =O - 2rkfjT

Unless we give an explicit form of s(t), we cannot say more about the cross-correlation property

of gi(t) and gj (t). As we shall see in Chapter 5, time-frequency shifted signals are the most

spectrally efficient pulses, especially when used in multi-carrier modulated systems.



Notes and References

The correlation properties of linear shift-register sequences were studied by Golomb [46],

Zierler [169], Gold [43] and others. Since both binary and non-binary sequences and their

combinatorial and algebraic properties are of interest to coding theorists, they are also covered

in error-control coding texts by Peterson and Weldon [101], MacWilliams and Sloane [80], Lin

and Costello [77]. Texts on spread-spectrum communications by Dixon [30], Holmes [54] and

Simon et al. [129] also include chapters dedicated to binary pseudo-random sequences with an

emphasis on their application in spread-spectrum signalling. A series of journal articles by M.

Pursely and his former students [109, 110, 119, 120] cover topics specific to spread-spectrum

multiple-access communication systems. A more abstract treatment of algebraic codes can be

found in the book by Lang [67].

The description of orthogonal binary codes using a tree structure follows the work by Adachi

et al. [2]. Hadamard-Walsh matrices and their orthogonality properties can be found in any

linear algebra textbook. We have used the texts by Strang [133], [134], [135] as references.

Notes and References 203



Appendix 4A

Generation of Binary Orthogonal Codes

Muller-type Hadamard-Walsh Codes

A first-order Reed-Muller binary (2 k, k) code has the following generator matrix:

0

1

G = 2

_ 2k --

where the value of each row is represented in decimal form. In order to generate all 2 k code

vectors, the generator matrix must be expressed in binary form with elements from F 2 . As an

example, for k = 3:

G =

0

0

0

0

1

1

1

1

0

0
1

1

0
0

1

1

0

1

0

1

0

1

0

1

Each code vector v of a linear block code is:

v = u 0 GT

where u is a k- bit input (row) vector, and v is the resulting n(= 2 k)- bit output (row) vector.

It is well known that Reed-Muller codes belong to a family of Euclidean Geometry (EG) codes.

An kih- order Reed-Muller code is equivalent to an (k, 1)th- order EG code [77]. It is also

known that Reed-Muller codes are orthogonalizable. In fact, if we use a non-cyclic generator

matrix G as shown above, the resulting code vectors are mutually orthogonal. Non-cyclic Reed-

Muller codes were first discovered by Muller [91]. For that reason, we define all orthogonal

code vectors obtained using G as Muller-type. If we denote U as the matrix of all possible input
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vectors:
0 0 0

0 0 1

U2 0 1 1
U

1 0 0

_U2k 1 0 1

1 1 0

L J

The matrix of all possible output code vectors is:

V=UGT = UOUT =GOGT

0 0 0 0 0 0 0 0~

0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1

0 1 1 0 0 1 1 0

0 0 0 0 1 1 1 1

0 1 0 1 1 0 1 0

0 0 1 1 1 1 0 0

0 1 1 0 1 0 0 1

It is easily seen that the output code vector matrix V is the Hadamard matrix H-'H8 in the

above case. Thus., the output matrix of a (2k, k) Reed-Muller code is the Hadamard matrix H2k-

Rademacher-type Hadamard-Walsh Codes

The following set of functions {ri(t)} on the interval [0, 1) are known as Rademacher func-

tions:

Ti~t (-I)mI if -T t < M2 + M E N

As examples, we list the first three of such functions:

S1 0 <t<l
ri~t)= -2

1 0 <t <

T2(t) =
1 < t<j3

000000000101010

00110011
0110011
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1 0<t<I

-1ist< 1-1 8- 4
1 t<3

r3 (t) = -18<

-1 i t<~

1 i. t<j

1Zst<1

-1 8-

A reader familiar with wavelets will recognize the above Rademacher functions are very similar

to the scale-and-shift basis scaling functions. (Refer to the text by Strang and Nguyen [133] for

a treatment on wavelets.) It is sometimes more convenient to express Rademacher functions

graphically (see Fig. 4.20 (a)) or by "sign" notation:

r2

r3:

We can easily deduce the following (also see Fig. 4.20 (b)):

0 1/4 1/2 3/4 1

rl(t) rl(t)

0 1/4 1/2 3/4 1 rl(t) r 2 (t)

rl(t) r 3(t)

r 2 (t) r 3 (t)

rl(t) r2 (t) r3 (t)

(a) (b)

Figure 4.20: Rademacher functions and their products

Ti Ti :ri r2:

r1 T3 :

Ti T2 T3 :

++++++++ ViEZ+

r 1(t)

r
2 (

r 3 (t
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It can be seen that the above three Rademacher functions and their distinct products make up

the set of all Walsh waveforms of length 8 (see. Fig. 4.13). In general, it can be shown that a

set of all Walsh waveforms of length 2k can be generated from the set of Rademacher functions

{rijt)}{L=.

Wavelet-type Hadamard-Walsh Codes

Wavelet functions of higher resolution are generated by taking the sums and differences

of the original functions. Here, we give an example using four original functions {xi(t)}_..

Generalizations for longer lengths are straightforward. Consider a set of eight functions as a

column vector:
x1 (t)
x2 (t)

x =
x3(t)
x4(t)J

The sums and differences of the original functions are:

Th(t)

V12(t)-3(t I

L 4(t M

In matrix notation:
1
1

0

0

For the next higher resolution stage, the alternate sums and differences are:

Z

zi

In matrix notation:

I x 1(t)

xi(t)

x 3 (t)

x 3 (t)

+ x 2 (t)

- x 2 (t)

+ x4(t)

- x4t) I
1

-1

0

0

0

0
1

1

0

0
1

-1 Ix1 (t)
x 2 (t)

x3(t)

x4 (t)[ I
+ _3(t)

+ _J4(t)

-LJ3(t)

-IJ4(t)

z1 (t)

z 2 (t)

Z4 (t)

y2(t)

Th(t)

!J2(t)_I
1

0

-1

0

I
I1

0

1

0

0

1

0

1

0

1

0

-1

iyi(t)

1J3(t)

14(t)MIF
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After combining:

01 0 10 1 1 0 00 1 0 1 1 -1 0 0
Z =ox

1 0 -1 0 0 0 1 1

0 1 0 -1 0 0 1 -1

1 9 i x
x

We recognize the final matrix as the Walsh matrix W 4 . The generation of wavelet-type Walsh

codes unique in the sense that the matrix entries are from a ternary set {- 1,0, 11, whereas in

the previous cases, the set is either bipolar {-I, 1 } or binary {0, 1}. In all types discussed so far,
the lengths of Walsh codes are limited to powers of 2. We next describe the Paley-type where

the length is 4k, k E Z+.

Paley-type Hadamard-Walsh Codes

If p is a positive odd prime number, then all non-zero squares modulo p are defined as quadratic

residues(QR) of p. Since p is prime, we need to consider only the squared numbers 02, 12, 22,

(p - 1) 2 . For 1 a < p - I,

(p - a) 2mod p = a2mod p

Thus, we need to evaluate only half as many; i.e., 12, 22, 2_ 1()2 . The remaining integers

between 1 and (p - 1) that are not quadratic residues of p are called non-residues. A Walsh-

Hadamard matrix of order n = (p + 1) = 4k, where p is odd prime and k is an integer, can be

constructed as follows:

WiTn = - I (4.76)

where 1 is a row vector of all l's of length (n -I), and Q = (qij) is the (p x p) Jacobsthal matrix

with the following property:

qij = -qji = X(i - i)

Note that Q is skewed-symmetric, and X is called the Legendre symbol with the following possible

values:

0 i=multiple of p

x(i) 1 i=QR of p

-1 i=non-QR of p
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We see immediately that Q is

zero, qjj = 0. In fact, it can

off-diagonal terms:

a diagonal matrix with the main diagonal terms of Q all equal to

be shown that Q is circulant; i.e., there is a wrap-around of the

q, qp
q 2  q1

qp qp_1

As an example, let p = 7.

The QR of p are 1,2 and 4.

vector of Q become:

p 2

- q3

*q2 q1

12, 22 P - 1 )2 2 22 32 = 1,4,2

The non-residues are 3, 5 and 6. The components of the first column

(q, q2 - - qp-1 qp) = (0 - - + - +

i.e., the components whose indices are QR of p take on value -1

ponents have value 1, leading to:

0

+

+

+

+
0

+

+

+
0

+

+

+

0

+

+

+

0

+

+

-F

0

0

while non-QR indexed com-

Substituting in eqn. (4.76),

Wn + -+ +-+ -

The above Walsh-Hadamard matrix is not a reflection matrix since it is not symmetric. It is

proved in [80] that if a Walsh-Hadamard matrix of order n exists, then n is either 1, 2 or

multiples of 4. It is, however, a conjecture that Walsh-Hadamard matrices exist whose orders

are multiples of 4.
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5

TIME-BANDLIMITED PULSE DESIGN

Summary

Pulse shaping is an old technique in communication theory that is commonly applied to

maximize the information rate for a given channel frequency response. It is true that reliable

information exchange is guaranteed only for rates less than the channel capacity. This theoret-

ical limit deduced from the Shannon capacity formula itself is achieved under the assumption

that transmit pulses are shaped as infinite-length sinc pulses. If the notion of symbol time

and bandwidth are relaxed, then a special class of "time-bandlimited" waveforms known as

spheroidal prolate functions can be substituted in place of sinc pulses. In practice, physically

realizable Nyquist pulse shapes that cause no intersymbol interference are used. Our main con-

cern regarding the subject of pulse shaping is: "In a practical setting, does a particular type

of carrier modulation scheme achieve a higher information rate than its alternatives?" In par-

ticular, we wish to compare the bandwidth efficiencies of single- and multi-carrier modulation

formats. Finding a solution to this problem is the focal point of this chapter. We summarize our

main results:

* Under ideal conditions of brick-wall channel response and infinite-length sinc transmit

pulse shape, both single- and multi-carrier modulation formats are equivalent in band-

width efficiency.

* Once the non-realizable sinc pulses are replaced with infinite-length Nyquist pulses, the

multi-carrier format is more bandwidth efficient.

* Truncation of an infinite-length Nyquist pulse destroys the unique orthogonality prop-

erty at the receiving end and invariably results in intersymbol interference. On the



other hand, symbol-time limited finite-length pulses cause inter-channel (or inter-carrier)

interference-also commonly known as spectral leakage.

* For multi-carrier modulation, there exists a special class of finite-length pulse shapes that

satisfies the Nyquist criterion for zero intersymbol interference with an added bonus of

low spectral leakage.

The chapter is divided into two parts: the first deals with the measure of bandwidth, and

the second is the design of finite-length Nyquist pulse shapes. When the term "bandwidth" is

not clearly defined, it can lead to ambiguity in quantifying and interpreting the performance

of a communication system. In the context of carrier modulation, the extent of the RF power

spectrum of a train of transmit pulses, or the RF frequency response of the channel or the

Fourier transform of the RF received signal all qualify as bandwidth. In this chapter, we limit

our definition of bandwidth to the extent of the power spectral density of a train of transmit

pulses. In general, the PSD of transmit pulses depends on both the property of a shaping filter

as well as on the correlation properties of the modulating data sequence. We show that for

linear modulation, the PSD is independent of the statistical property of the data sequence as

long as the data symbols belong to an antipodal symmetrical (balanced) set. Hence the PSD

becomes a function of the selected pulse shape only. We next describe various infinite and finite

length pulse shapes that meet the Nyquist criterion for zero ISI. In particular, we highlight a

class of finite-length time-overlapped pulses that satisfies the generalized Nyquist criterion and

is thus suitable for multi-carrier modulation.

5.1 Time-Frequency Duality

When we compute channel capacity in Ch. 3, we implicitly assume that the transmit signal

s(t) is a stream of sinc pulses at a rate of 1 /T, sec. We know that sinc pulses have a brick-wall

amplitude response and are the most spectrally efficient for transmission via an ideal channel

of passband bandwidth W Hz. For sinc pulses T, = 1 /W. On the other hand, when we study

signature waveforms, we assume for simplicity that the spread-spectrum modulating chip pulses

are non-overlapping rectangular pulses. By convention, a rectangular pulses is denoted by

TT(t) = It < T/2 (5.1)
0 Itl > T/2

Its Fourier transform is

Jr T-(t) = T sin(mf)= T sinc(fT) (5.2)
7,fT

where W 1/T. If W is passband bandwidth, W = 2/T. The amplitude ITTw(f)I in decibel scale

is plotted in Fig. 5.1. Notice the spectral leakage of a rectangular pulse outside the mainlobe
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bandwidth of W Hz. The first sidelobe is only about 15 dB below the mainlobe peak value. If

the sinc function is used as the chip pulse, its amplitude response is TTW(f) - a brick wall-

and there is no spectral leakage. However, sinc pulses are not practical:

" A finite-impulse response (FIR) baseband filter cannot be used for their generation due to

their infinite time span

* At the receiving end, the integration window of a baseband filter must be infinite; i.e.,

an infinite-impulse response (IIR) baseband filter is required. Since information symbols

must be decoded at a rate of 1 /T, long delays in baseband filtering are not acceptable.

* The succession of sinc pulses at a rate of 1 /T satisfy the Nyquist criterion for zero inter-

symbol interference. However, any slight error in carrier frequency, symbol sampling rate

and sampling instant leads to a large amount of ISI.

" Any channel distortion that is not compensated at the receiver results in a stream of

distorted sinc pulses that are no longer Nyquist. 1 The accumulated ISI drives the AGC

(automatic gain control) amplifier of the receiver into saturation, rendering the received

signal useless.

IS(f) (dB)
0F

-20L

-30-,

-40,

w - f (Hz)

Multiple-access channel model with m transmitters. Each transmit-

Figure 5.1: ter Tk communicates with its intended destination sink Sk through

the common receiver R.

Hence, we face a dilemma; a sinc Nyquist pulse train has an ideal flat frequency response, but

it is impractical. A rectangular symbol-time-limited pulse train has infinite bandwidth, and if

it is transmitted via a bandlimited channel, the output is severely distorted by ISI. The issue of

'A pulse shape is Nyquist if it satisfies the zero intersymbol interference criterion.



spectral leakage is of great concern for any RF communication service since strict regulatory

guidelines on out-of-band spectral levels must be met.2 There are several practical remedies. A

sinc-like Nyquist pulse that is less sensitive to receiver and channel imperfections - and with

good spectral characteristic- can be used. The most popular Nyquist pulse is the raised-cosine

function. We should point out that raised cosine pulses are also infinite-length. Any truncation

of sinc or raised cosine pulses results in spectral regrowth -due to Gibbs phenomenon- and

non-zero ISI. If the Nyquist zero ISI condition is not imposed, then there are many more choices

in pulse selection. The Gaussian pulse as applied in several European wireless systems is a

good example. In this case, the main goal is spectral containment -Gaussian pulse has a bell-

shaped smooth frequency response. Other non-Nyquist pulses can be constructed by shaping a

rectangular pulse. In signal processing literature, various pulse shaping methods are collectively

known as windowing. Some common window functions are Hamming, Bartlett and Kaiser.

All are strictly symbol-time limited. Another option is to construct pulses that are still finite-

length but with improved spectral containment by increasing the time span beyond the symbol

duration. If such a pulse train is generated at rate 1 /T, the portion outside the range [0, T]

overlaps with an adjacent pulse. We define such pulses as time-overlapped functions.

5.2 Power Spectral Density

The channel of most communication systems -including the radio propagation channel-

is band-limited. For a telephone line channel, bandwidth limitation may be due to the trans-

mission medium (copper twisted pair) or a lowpass filter at the customer premise. In wireless

communication, it is the regulatory body that defines a radio frequency range [f L, f H] as the

channel bandwidth. It may not be a strict end-to-end measure but a succession of frequency

bands with acceptable power levels. An example of a spectral mask is shown in Fig. 5.2. It is

the wireless system designer's duty to construct a carrier- and data-modulated pulse train with

a power spectral density that is within the spectral mask. In our analysis, we treat the spectral

mask as the "channel." The width and shape of the spectral content of a transmit signal is

measured in terms of its power spectral density (PSD). If the power spectral density of the trans-

mitted signal is non-zero outside the channel bandwidth, the received signal is distorted. This

distortion results in intersymbol interference (ISI). Hence, a transmitted pulse train with a cer-

tain PSD that best matches the frequency response of the channel is selected such that distortion

due to ISI is contained or completely eliminated. In general, the PSD of a train of modulated

waveforms depends on the shape of the common pulse as well as on the auto-correlation of the

embedded data sequence.

2Government and international bodies such as FCC and ITU set these mandatory guidelines such that two wireless

systems with adjacently allocated RF bands do not interfere with each another.
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Figure 5.2: Multiple-access channel model with m transmitters

5.2.1 Deterministic Signals

Let g(t) be a deterministic baseband signal. If it is energy-limited, its spectral content is
expressed by its Fourier transform G(f). If it is a power signal with infinite span, we can always
truncate by taking a finite-time window of g(t)

gw(t) = g(t)w(t) (5.3)

where the window function

w(t) =2 -- (5.4)
0 otherwise

T, is called the window length. The power Pg is defined as the time-average or mean squared
value of g(t):

1 Tw/2
Pg = lim - I g2 (t) dt (5.5)

Tw_*oo Tw -T /2

Substituting the time-limited energy signal of (5.3):

Pg = lim g2(t) dt
Tw-+oo Tw _ )d

Applying Parseval's Theorem:

Pg = lim - [ Gw(f)12 df]
Tw -- oo TW _.c J

= lim Gw(f)2 df
= f -00 Tw ->oo To,
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The power spectral density Sg(f) is:

Sg(f) = lim Gw(f)2 (5.6)
Tw-_ oo T

For some window length Tw we see that the shape and width of the PSD of g(t) is approxi-

mately equal to the squared amplitude of its truncated version. If g (t) is periodic -by infinite

concatenation of g,(t)- a window length T = T is sufficient. The PSD expressed in decibel

[dB] scale is
Sg(f) [dB] =20 log(fGw(f)l) +K K = -10log(T) )

=JGw(f)I [dB] + K

Thus, the PSD of g(t) depends only on the magnitude of its Fourier transform Gw(f).

5.2.2 Random Processes

If g (t) is carrier-modulated, its PSD is translated and scaled but its shape and width remain

unchanged. If g(t) is used as a common pulse for data modulation, the PSD of the resulting

modulated signal also depends on the auto-correlation of data sequence. Since data from an

information source is random, the modulated signal is modelled as a sample function of a

random process. From eqn. (4.23), a linear data modulated signal can be expressed as:

00

g (t) = x[] f (t - iT) (5.8)
i=-0O

where x[i] c X, a finite signal constellation set. Note that the common pulse f(t) is not neces-

sarily restricted to the symbol interval [-T/2, T/2]. In fact, it is possible for g(t) to consists of

a train of time-overlapping pulses. If each x[i] is i.i.d., the modulation is memoryless. {x[i] } is

stationary if its joint distributions (equivalently, all its moments) are time-invariant. If x[i] is

wide-sense stationary, then its first and second moments are time-invariant:

E[x[i]] = E(x[ix[l) = Rx[i - j] (5.9)

The mean value of g (t) is

E[g(t)] = E [x[il]f(t - iT)
i=-00

00

Tf(t -- iT)
i=-00

It is periodic with period T. The auto-correlation function of g (t) is:

Rg(t+1-;t) =E [(g Mg(t+T)1

00 00 (5.10)

Y E [(x[i]x[j])] f(t - iT) f (t + -i - jT)

216
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5.2 Power Spectral Density

Note that the second term on the RHS -the deterministic auto-correlation of f(t)- is a func-

tion of t and T. The frequency-domain expression of g(t) requires a two-dimensional Fourier

transform of both t and T. Alternatively, we can remove the dependence on T by averaging

Rg(t + t; t) over T. The time-averaged auto-correlation of g (t) is:

Rg(t + T; t) 00

-T/2 i-00 j-00

E([x[i]x[j])]f(t - iT) f(t + t - jT) dt (5.11)

The above integral is further simplified by considering the following four cases:

Case 1: Non-Zero Mean, Wide-Sense-Stationary Sequence

E [x[il] =

E [x[ix[j]] = Rx[i - j]
(5.12)

Using the time-invariance property and a change in variables I = i - j, eqn.(5.11) simplifies to:

Rg(t) =Rg(t+t;t)

f TP/2 00 0Rx[i-j]f(t-iT)f(t+T-jT) dt
-/2 j-00

00 
o 1 f T/2-jT

T Rx [1] fT~ft T l)d
t=-00 j=- -T/2-jT

T~ II Rx~t]CfT-lT)

where the time-average auto-correlation function of f(t) is defined as:

Cf(T) = J f(t) f(t + T)dt

(5.13)

(5.14)

The random process g (t) is cyclo-stationary due to periodicity of its mean and auto-correlation

function Rf(t), even though the embedded sequence is WSS. By taking the Fourier transform of

both sides,

(5.15)Sg(f) = Sx(f) Sf(f)

Note that the PSD of the random sequence is periodic with period 1 /T:

SX(f) = Y R,[] exp(-j27rflT)
1=-c o

For a purely random sequence { x[i] }, it can be shown that:

R[l = { Var [x[i]] + p 2

L2

1 =0

1 0

(5.16)

(5.17)
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Then,

S (f) = Var[x[i] + V
2 Y exp(-j27rfIT)

Using Poisson's sum formula [97],

S&(f) = Var[xi]] + 1 2 (f -- )

(5.18)

(5.19)

Finally, the PSD of g(t) consists of both continuous and periodic, discrete components:

Sg(f) =Var x[i] Sf(f) -
V2

f2 (5.20)00- F( (f - )

where F(f) = Tf(t)}.

Case 2: Zero Mean, Wide-Sense-Stationary Sequence

Set Vt = 0. Then eqn.(5.20) simplifies to:

Sg (f) = Var [x[i]] Sf(f) (5.21)

The zero-mean condition holds for symmetric PAM signal constellation sets. The PSD of g (t)

now depends only on the shape of a deterministic pulse f(t).

Case 3: Non-Zero Mean, Cyclo-Stationary Sequence

In a spread-spectrum modulated signal, the embedded pseudo random code sequence has pe-

riod P; hence, the sequence itself is cyclo-stationary:

E [x[i]] = 0

E [x[ilx[j]] = R.[i; i - j]

=iRx[i + kP; i - j]

Rewriting eqn.(5.13) with above modification,

(5.22)

Rx[i;i - j] f(t - iT) f(t + -t - jT) dt
jT2 00 0

T -T/2 _=(Oj -)

00 00 f T/2-iT

= 00 i 0 ZT R[i;l]J
1~=-0T/2--T

f(t)f(t+T-lT) dt

R.[i; I] Rf(T - IT)

Rx[i;l] Rf(T - IT)

R[t]Rf(T-tT)

I1

T

L~00

t=-00 i=1

(5.23)
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where R,J] is the time-average of a periodic statistical auto-correlation function of a cyclo-

stationary sequence {x[i }. Hence, R[t] is analogous to the time-average correlation function

Rf(t) of the deterministic pulse f(t). By taking Fourier transforms on both sides of eqn. (5.23),

Sg(f) = Sx(f) Sf(f) (5.24)

where Sx(f) = .F{R[11]. Since the sequence is periodic, it is not a truly random sequence over

the entire time span. However, within a period P, it is approximately random. We can deduce

the expression for the PSD of g(t) -similar to eqns. (5.17)-(5.20)- by substituting R,[t] in

place of Rx[t].

Case 4: Zero Mean, Cyclo-Stationary Sequence

When the zero-mean condition is invoked, the PSD of g (t) is a function of f(t) only. For a

zero-mean pseudo-random binary sequence, we have already shown that its time-average auto-

correlation function is equal to its statistically averaged auto-correlation function.

5.3 Nyquist Criterion for Zero Interference

In the previous section, we show that the power spectral density Sg(t) of a data modulated

signal g (t) is a product of the PSD's of the deterministic common pulse f(t) and the embedded

random sequence {x[i]}. If the mean value of the sequence is zero, we remove the dependence

of Sg (t) on {xm[i]}. The simplest way of achieving a zero-mean discrete sequence is by selecting

code symbols from a symmetric (balanced) constellation set such as

S ={ -SM -SM_1 ... -S2 -S1 S1 S2 ... sM- SM

where each bipolar pair -s, and s, are equally likely. The equally likely condition of a symmet-

ric pair is guaranteed by scrambling 3 the sequence. In fact, this technique is almost always used

in practice for spectral shaping. By imposing the zero-mean condition for the data sequence,

we have effectively compartmentalize two optimization tasks in signal design: spectral shaping

via the PSD of g(t) for channel matching, and the design and construction of an embedded

sequence {xm[i]} with low correlation properties. The latter is already covered in Chapter 4.

As we stated earlier, if the PSD of a transmitted signal is larger than the channel bandwidth,

the received signal is severely distorted. The main objective of spectral shaping is to transmit

pulses at the highest possible rate with no intersymbol interference. Nyquist and others have

studied this problem extensively. We summarize their key results:

3 As an example, consider the 4-PAM set f-s2 - Si Si S2} = {00 01 10 I1l. If a binary sequence has consecutive

Ts such as ... 11111 ... then the symbol sz is more likely than -sz. This imbalance can be ameliorated by mod-2

addition of this binary sequence with a pseudo-random binary sequence.

5.3 Nyquist Criterion for Zero Interference



5.3.1 Single-Carrier Nyquist Criterion

If a linearly modulated baseband signal

00

g (t = x[i) f (t - aT)
i=-00

is the input to a linear time-invariant channel with impulse response c(t), the output is

00
Y x[i] r(t- iT)

where r(t) = g(t) * c(t). After baseband filtering at the receiver with impulse response h(t),
the output is

00
Yx R] P (t - T

i=-00

where

p(t) =r(t) *h(t) = f (t) * c(t) * h(t)

Its samples at the symbol rate are

00
Sx[i]p(jT-iT)

i=-oo

The pulse p(t) is Nyquist -i.e., it satisfies the Nyquist criterion- if

p[(j-i)T] =6 j (5.25)

At sampling instant iT, the only data symbol detected is x[i]. This is the zero intersymbol

interference condition. Equivalently p (t) is Nyquist if

00

P+(M - P(f - jfo) = T (5.26)
j==-00

where f= 1/IT. In words if the sum of the Fourier transform of p (t) and its aliased copies has

a flat spectrum, p(t) is Nyquist. The above results are still valid if g(t) is fc carrier-modulated

and transmitted through a passband channel with impulse response

cp(t) = 91{c(t) exp(27Tfct)}

and carrier-demodulated at the receiver such that the output is r(t). Hence, we interpret a

pulse that satisfies eqn. (5.25) as single-carrier Nyquist or s-Nyquist for short.

It is obvious that a pulse with a brick-wall frequency response THf (f) is Nyquist. The aliased
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PJ(f)

P(f+fc) P(f) P(f -f)

f 0 f f
2 2

Figure 5.3: Fourier transform of sinc pulse and its aliased copies

Fourier transform P+(f) is plotted in Fig. 5.3. By observation, we deduce immediately that the

Fourier transform must be an even function. It is clear that the sinc function is the only Nyquist

pulse with the minimum baseband bandwidth of f./2 Hz, implying that the maximum symbol

rate through a linear time-variant channel with baseband bandwidth W Hz is 2W pulses per

second. If we allow pulses with bandwidth larger than f./2 Hz, then there are infinitely many

Nyquist pulses. The wider its bandwidth, the less spectrally efficient is the Nyquist pulse. For

pulses whose bandwidth is strictly limited to the range [f 0/2, f0], we need consider spectral

overlap from an adjacent aliased transform only. Eqn. (5.26) becomes:

P(f) + P(f - fo) = T 0 < f < fo (5.27)

By defining the excess bandwidth fr = (fo/2 + Ae) and using the fact that p(t) is real:

P + ) + P (f- ) = T IAeJ < (5.28)

If p(t) has linear phase Op(f) = -K f (K is a delay constant):

P(f) = IP(f)Ie-9P

The Nyquist criterion depends only on the shape of the amplitude response:

P( + A) + P( - ) =T 1el < (5.29)

Since P(f) is even we need consider the shape on one side only, say 0 < f < f 0 . Graphically,

the amplitude condition is shown in Fig. 5.4. It can be broken into four parts: the gain T, even

term Pe(f), odd term P0 (f) and dc bias Pdc(f)

|P(f)| = T Pe(f) + Po (f - + PdC(f) f > 0

221
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Specifically,

Pe(f) = 0.5

PO(f) = -PO(-f)

Pdc(f) = 0.5

ftIfl < -* - fT2

Ift < fr

IfI < -* + fr2

The amplitude of the odd function is normalized such that

P0(± i ) = 0.5

Outside their specified intervals, Pe(f) and PO(f) are undefined.

I i P0(f)f/

_______________________________': --

L+fr

11 Vi2

\\-f.
2

f f
2

Figure 5.4: Amplitude response of Nyquist pulse in four parts

A good example is a family of pulses collectively known as raised-cosine pulses with Fourier

(5.30)

(5.31)

(5.32)

4

fr V
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transform:
T

T 7/f - f 0/2\
1PRCMf) =I - sin 7

0

f
IwI< - fr2

f - foI< fr2

Mf>I > + fr2

The roll-off factor r = 2fr/fo ranges from 0 (sinc pulse) to 1 (fully raised cosine). For a fully

raised cosine function with fr = f./2, Pe(f) is non-existent. It is easily deduced from eqn.

(5.33) IPFRc(f)I = cos2 (j7)f(5.34)
2f o

The plot of P+(f) for a fully raised cosine function is shown in Fig. 5.5. The symbol rate is now

W samples per second -half the rate of sinc pulse.

Note that both sinc and raised cosine pulses are strictly bandlimited; i.e., they have infinite

I,(f)

(fP(f) P(f - 0

0 f f

Figure 5.5: Fourier transform of fully raised cosine pulse and its aliased copies

length. It is true that raised cosine pulses are less susceptible to sampling rate and timing errors

because of faster delay rate (l/t 3). However, any truncation by windowing leads to regrowth

of sidelobes, and the Nyquist condition is no longer satisfied. A plot of P+(f) of a truncated sinc

pulse is shown in Fig. 5.6.

PF(f)

-f. f. f

Figure 5.6: Fourier transform of truncated sinc pulse and its aliased copies

(5.33)

5.3 Nyquist Citerion for Zero Interference 223



224 Chapter 5: Time-Bandlimited Pulse Design

5.3.2 Multi-Carrier Nyquist Criterion

If the sum of K independent, linearly modulated baseband signal

K K oo

9k(t) xkf k(t - iT)
k=1 k=1 i=-oo

is the input to a linear time-invariant channel with impulse response c(t), the output is

K oo

Y Yxk~i Tk(t - JT)
k=1 i=-o

where rk(t) = gk(t) * c(t). After baseband filtering at the receiver with impulse response h.(t),

the output is
K Lo

YTxkR Pkn,(t- T
k=1 i=-oo

where

Pkn(t) = Tk(t) * hn(t) = fk(t) * c(t) * h,(t)

Its samples at the symbol rate are

K oo

T T _xkRi pkn(jT - JT)
k=1 i=-oo

The pulse pkf(t) is Generalized Nyquist or g-Nyquist -i.e., it satisfies the Generalized Nyquist

criterion- if
K oo

Z T Pkn[(j - i)T] = ijj 5 kn (5.35)
k=1 i=-oo

If only
K oo

± T Pkn[(j~) =I
k=1 i=-oo

then at a sampling instant iT the detected data symbols are T~K _ xk[i]. The desired symbol

is x,[i]. This is inter-channel interference (ICI) -i.e., intersymbol interference from current

symbols xk[il, i 7 n of other parallel channels. If only

K oo
T YI Pkn [(j -i)]= k
k=1 i=-oo

At a sampling instant iT the detected data symbols are K__-
0 

x,[i]. The desired symbol is

x,[O]. This is inter-symbol interference (ISI) -i.e., intersymbol interference from past and pos-

siblyfuture symbols xn[j], j , i of the same channel. Finally if

K cc

k - Pkn[(j - i)T] A 6i 6 kn
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then the desired symbol x,[i suffers from ISI, ICI and interference from the past and future

symbols from other parallel channels

K oo

k=1 j=-oo
k6n j$i

This is inter-block interference (IBI). A Fourier transform condition analogous to the single-

carrier case of eqn. (5.26) is
00

Pkfl+(f) = Pk(f - jfO) = T kn (5.36)
j =-00

In words pkn(t) is g-Nyquist if it is single-carrier Nyquist and the sum of its Fourier transform

and its aliased copies is zero for k = n. The second condition states that the Fourier transform

of pkn(t) must be zero for k ,4 n. Note that a single-carrier Nyquist condition is a necessary

but not a sufficient prerequisite for multi-carrier Nyquist condition. Consider the following for

k n:

Pkn(f) = .F{PkT(t)}

= kFfk(t) * c(t) * pn(t)

= F{rk(t) * Pn(t)}

= Rk(f) - Pn(f)

Since the kth transmit and nth receive filters have non-zero frequency responses Pkf(w) = 0 if

and only if Rk(w) = 0 or Rk(w) and P,(w) do not overlap. The former condition Rk(w) = 0
is not acceptable since the kth receiver must be able to detect its transmitted symbols {xkli] }.
The latter condition -the non-overlapping of Rk(w) and P,(w)- is possible only if Rk(w)

is carrier-modulated or P,(w) is a passband filter response, or both. The design of g-Nyquist

pulses is postponed until we first describe the connection between zero ISI condition and the

orthogonality principle.

5.3.3 Orthogonality Criterion

It is well-known that in AWGN channel, the optimal receive filter has an impulse response

that matches the received pulse:

Hk(f) = Tljk(t)] = R* (f)

Writing the Fourier transform of a linearly modulated signal as

K ooi_ T xk[i] Rk(f) exp(-j27tfiT)
k-1i

5.3 Nyquist Criterion for Zero Interference
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The output of the nTh matched filter is:

K

XTOII T.(f 1+ Yx[i] IR,(f)12 exp(-j27mfiT) -+ j T Xk[i] Rk(f) Rnjf)
i5A~O k i

exp(-j27rfiT)

The first term on the RHS is the desired symbol. For the g-Nyquist condition to hold,

K

Rnf)1 2 exp(-j27rfiT) -+ j Rk(f) R*(f) exp(-j27-fiT) = 0

k54n

Equivalently,
K

rn(t - iT) m(t) +
i 0 k=1

k:/ni

rk(t - iT) r,(t) = 0 (5.37)

That is, the received pulse for the nth channel must be orthogonal to its past and future (time-

shifted) pulses (i.e., the zero ISI condition)

i#o

Tn(t - iT) r,(t) = 0 (5.38)

and also be orthogonal to pulses from other channels (i.e., zero ICI and IBI conditions)

ft
T n

rk(t - iT) r,(t) = 0 (5.39)

The implication of above results is that the design pulses that satisfy the g-Nyquist criterion is

equivalent to the construction of a set of mutually orthogonal received pulses (time functions).

We next describe two types of g-Nyquist orthogonal pulses.

Sinc-type Pulses

Consider the following two pulses, both with a brick-wall amplitude response. For conve-

nience, assume the phase of R1 (f) is zero.

c
R1(f) =

0

C ej02( M
R2(f)=

0

IfI < 1/T

IfI > 1/T

IfI < 1/T

IfI > 1/T
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" Ri

R1

R3

7-7 R4 7

Figure 5.7: Frequency response of sinc-type g-Nyquist pulses

where

7r/2
02(f)=

_-r/2

0 < f < l/T

-1/T < f < 0

Both pulses are illustrated in Fig. 5.7. We immediately deduce that

R,(f - jf.) R*(f - if.) = 0
j=-oo

T R(f-jfo)R2 (f-ifo)=0
j=-oo

Since both pulses have brick-wall non-overlapping amplitude response, they satisfy the single-
carrier Nyquist criterion:

_I. Rm(f-f) =2C2 -if 0 2

Similarly,

5.3 Nyquist Criterion for Zero Interference
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It can be shown that the resulting g-Nyquist pulse is

p12(t) = Y -P1 2 (f)} =c 2 (Cos T

From the figure we see that R, (f) and R2 (f) are identical to two-dimensional Walsh codes. It

is then apparent that the design of sinc-type pulses (Walsh functions) that meet the g-Nyquist

criterion is straightforward: For n orthogonal pulses, define their phase responses such that

their frequency responses are equivalent to the shape of n-dimensional Walsh codes. The only

drawback is these pulses are not practical; they have steep (brick-wall) amplitude response and

jumps in phase response.

Chang Pulses

If excess bandwidth is allowed, there are numerous pulse shapes that satisfy the g-Nyquist

criterion. We detail a class of r = (fr = f0 /2), infinite-length, orthogonal and carrier-

modulated pulses first proposed by R. Chang. It is assumed that the center frequencies of

carriers are

(5.40)

f1 == (i+ j - 0.5)fo i E Z+, j E N

The carrier frequency separation is f.. For all carrier modulated pulses (any i)

IR(f)12 = Ci + Qi(f)

is composed of a DC bias term

Ci=0.5 if - fil < fo

P0 (f - f- f 0/2)
and Qi(f) =

-P 0 (f - fi + f 0/2)

The odd function Po(f) is defined in eqn. (5.31). It is

about fi ± f 0 /2.

If - fil < fo

If - fil > fo

f i< f < f i+ f

fi-fo < f < fj

seen that Qi(f) is even about f1 and odd

Qi(fi+ f) = Qi(fi - f)

Qi(f ±f) = Q(f± t f)

0 < f < ft

f{= fitfo/2

I Ri(f)I eiei(f)
Ri(f)=

0

where

(5.41)

Chapter 5: Time-Bandlimited Pulse Design



The phase has a linear term plus a sinusoid

Oi(f) = k7r + k sin 27r k E N, ke E 2Z+2f o fo

fi T2  f3  f4

Figure 5.8: Bandwidth of single- and multi-carrier modulated raised cosine pulses

Compared to Eqns. (5.30)-(5.32), the above pulse is equivalent to a fully raised-cosine func-
tion except for a frequency translation by fi. It is no surprise that an example of the squared
amplitude of a carrier modulated g-Nyquist pulse is

R(f) 12 = Ci + Qi(f) = cos 2 ( 7 f (5.42)

which is a frequency translated, fully raised-cosine pulse [cf. eqn. (5.34)]. If there are N
carriers the total bandwidth is (N + 1 )f0 . The symbol rate per channel is

Rs= N )fo (5.43)

where 1/N is the roll-off factor of multi-carrier modulated signal. Compared to a single-carrier
raised cosine pulse with r > 1/N, the multi-carrier modulation format is more bandwidth
efficient. In summary, the overlapping concatenation of N frequency-shifted fully-raised cosine
waveforms has a higher bandwidth efficiency than a single-carrier modulated raised cosine
waveform with roll-off factor r > 1/N. Furthermore, because each sub-carrier in a multi-carrier
modulated waveform has full roll-off factor (r =1) its decay is smoother. The bandwidths of
both single- and multi-carrier modulated waveforms are shown in Fig. 5.8.

5.4 Perfect Reconstruction Criterion

In the last section, it is shown that the' bandwidth of a multi-carrier modulated signal is
smaller that of a single-carrier modulated signal given that both achieve the same symbol rate

5.4 Perfect Reconstruction Criterion 229



with zero ISI. However, in both cases of sinc-type and Chang pulses, the pulse length is infinite.

If it is truncated, the zero ISI condition no longer holds. The important question is: "Can we

design pulses that are g-Nyquist with finite length?" The answer is two-fold:

* If the pulse duration is symbol-time limited, there exists no g-Nyquist pulses regardless of

pulse shaping -not counting the rectangular pulse.

" If the pulse duration is longer than T, but still finite, then there exists a class of time-

overlapped functions that satisfy the g-Nyquist criterion.

Such time overlapped pulses have recently been discovered by H. Malvar. His research is con-

cerned with filter bank analysis-synthesis techniques that are alias- and distortion-free. In signal

processing applications such as speech coding and image compression, a signal is analyzed by

a bank of bandpass filters, then sub-sampled, then over-sampled, and finally regenerated by a

bank of synthesis filters. (See Fig. 5.22 for a block diagram illustration.) The condition where

the original signal is recovered without any loss in information is called Perfect Reconstruction

criterion, or simply PR condition. In this section we describe the relation between PR and g-

Nyquist criteria. This bridge will aid us in the design of finite-length, time-overlapped g-Nyquist

pulses. First, we review basic concepts in sampling.

5.4.1 Sampling Theorem Revisited

The sampling theorem for deterministic signals states that a baseband signal g (t) that is

strictly bandlimited to W Hz -i.e., its Fourier transform G (f) is zero for all frequencies IfI >

W- is uniquely determined by its uniformly sampled values { g [nTs] } if Ts -. If g (t)

is a periodic power signal generated by concatenating symbol-time-limited pulses g,(t), the

sampling theorem is still applicable by replacing the Fourier transform G(f) with the power

spectral density IG,(f)12 /T. For a random process its sample function is a power signal and

its Fourier transform may not exist. In this case, the spectral content is measured in terms of

its power spectral density. A random process is said to be bandlimited to W Hz if its power

spectral density (if it exists) Sg(f) = 0 for If I > W. Similar to the Dirichlet's conditions for the

deterministic signal, the PSD only exists for certain random processes. In fact, it is necessary

that the process is wide-sense stationary. This is the well-known Weiner-Khinchine relation [68].

However, for a cyclo-stationary random process its average PSD can be computed. We can now

restate the sampling theorem for random processes:

Theorem 5.1 (Sampling Theorem) A baseband random process strictly bandlimited to W Hz if

its (average) power spectral density is zero for all frequencies If I > W. A sample function g(t) is

uniquely determined by its uniformly sampled values { g [nTS] } if TS K _.
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The minimum sampling rate f. = 2W is the Nyquist rate. By using time-shifted sinc functions

as orthogonal basis functions, g (t) can be synthesized as follows:

00

g(t) = g(nT) sinc[2W(t-nTs)] (5.44)
n=-00

For a linearly modulated signal

00

g(t) = x[i]f(t - iT)
i=-0o

Its uniform samples are

00

g (nTs) = j x[i]f (nTs - iT)
i=-00

Substituting in eqn. (5.44):

00 00

g(t) = x[i] jf (nTs - iT) sinc [2W(t - nTs)
i=-00 fl-oo

At Nyquist rate T, = 1/2W

00 00

= > x[i] f( -iT) sinc(2Wt - n)
i=-00 n=-00

We know from eqn. (4.74) that the time-shifted sinc functions sinc(2Wt-n) and sinc(2Wt-n')

are orthogonal if (n - n') is a non-zero integer. Furthermore, since the common pulse *(t) has

duration T, its 2WT samples - as n varies from 0 to 2WT - 1 for i = 0- are sufficient for

synthesis. Recall that the dimension D = 2WT. This implies that instead of transmitting a pulse

x[i]f(t) every T sec., we can send a discrete sequence of length 2WT:

f 1(0) f(I) f ... f 2WT -2) f(2WT- 1)1
x~)-f 0 2W 2W (2W 2W

every T sec. To summarize, we review the sampling theorem to emphasize the fact that there

is an equivalent representation of the continuous-time filter output in terms of its discrete-

time uniform samples. Hence some insights can be gained in the construction of orthogonal

g-Nyquist continuous-time waveforms by studying their corresponding discrete-time sequences.

We do so in the next section.
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in-phase

baseband carrier modulator

filterno 1A
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.. X[-1] x[O] x[1]. IM _ M _ o[7~] ++ sn
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quadrature phase

baseband carrier modulator 1
filter
f[n]

sin[2 nfn]

Discrete-time I/Q data modulator of complex-valued code sym-
Figure 5.9: bols x[j] = (xj}1, xQ DW) with pulse shaping FIR filter f [n]

5.4.2 Equivalent Discrete-time Representations

The continuous-time I/Q modulator of Fig. 3.15 can be replaced with its discrete-time

version as shown in Fig. 5.9. All discrete-time functional blocks such as delay tap, decimator,

interpolator, circular convolution are thoroughly discussed in digital signal processing texts;

For continuity, we briefly review their application in multi-carrier modulated communication

system framework.

m Serial-to-Parallel Conversion: In Fig. 5.9, the input stream of code symbols is split into

odd and even symbols for in-phase and quadrature channel modulation. For multi-carrier

modulation with M channels, a 1-to-M S/P converter must be devised. In discrete-time,

a cascade of delay taps (denoted by a unit of Z-inverse z-1) and M-down-samplers fulfill

this function. This is illustrated in Fig. 5.10.

If x[n] is the input to a unit-delay tap, its output is

In general, the kth output of a delay chain is

xk)[] = zk{x[n]} = x[n -k]

If x[n] is the input to an M-downsampler or decimator, the output is

11 (0) [Ti =I M fx[n I = x[nM]
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1
2
3 Z

___ z- 1I L ,0

M

Figure 5.10: Discrete-time serial-parallel converter

When cascaded, the kth output of each delay-decimator tap is

Ii()[n] =1 M{x[n - k]} = x[nM - k]

Figure 5.11 illustrates serial-to-parallel conversion of a data stream for M = 4 parallel

channels.

original 4
sequence

after 1
unit delay

after 2
units delay

after 3
units delay

time units

Figure 5.11: Cascade of delay and downsampling for serial-to-parallel conversion

* Delta Modulation: S/P conversion results in M parallel streams of phase-shifted code

symbols. However, the time interval of a block of M code symbols must be the same



before and after S/P conversion. That is, the symbol rate of each output channel must

be reduced by m; equivalently, zero symbols must be inserted between two consecutive

code symbol outputs in each channel. This function is achieved by M-up-sampling or

interpolation. This is illustrated in Figure 5.12.

If x[n] is the input to an interpolater, its output is

ij[tn] =T M{x[n} {x[n/M]
0

nmod M = 0

otherwise

A cascade of M down- and up-sampling (see Fig. 5.13) is equivalent to modulation by a

periodic train of impulses of period M:

Cascaded output:

where

00
bm[n]= T > [n3 -rM]

r=-oo {1

0

nmodM=0

otherwise

_ 4

4

Figure 5.12: S/P conversion with upsampling for input-output rate matching
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6M[n]

Figure 5.13: Discrete-time delta modulator

E Transmit Pulse Shaping: For convenience, we relabel the S/P converted output in kth

channel as:

Um[f] = (T M)(U M)z-m{x[nI]}

x[n -m ] (n-m)modM=O

0 otherwise

The transmit filter output is

No-1

gmn] = fm[k] i m[n - k]
k=0

where hm[n] is the impulse response of a LTI causal filter of length (window) N,. A

block diagram of a generic multi-channel discrete-time modulator is shown in Fig. 5.14.

For a special class of multi-carrier modulation format, each passband filter is equivalent

to a cascade of low-pass filter and frequency translator (i.e., carrier modulator). This is

illustrated in Fig. 5.15.

2 g~n]

-1
M _ 1\M fM21n]

Figure 5.14: A block diagram of a generic discrete-time multi-channel modulator

N Complex Carrier Modulation: In the continuous case, the filter output g,(t) is frequency
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carrier 1

IM tM f0[n] _X

1 IM M f0[n] Xsn

Figure 5.15: M-channel carrier-modulated communication system: transmitter

translated by an in-phase (cosine) or quadrature (sine) IF carrier time functions such that

s1(t) = gi(t) cos(27tf t)

sQ(t) = gQ(t) sin(27rf.t)

From eqn. (3.5) it is understood that both in-phase and quadrature channels utilize the

same baseband pulse-shaping filter f(t):

gs(t) = f(t - jTs) xs[j = I,Q

An equivalent discrete-time IF carrier modulation in the kth channel can be expressed as:

SkIfh = 9kI[nl] cOS 27n]

skQ[n] = 9kQ[n] sin [27kT

where

gks=n]= f(t-jTs)xksi[j] s=IQ

An alternative description of discrete-time carrier modulation uses discrete-time Fourier

carriers

Wk[n] = exp j 27rkn

The respective inverse carriers are

W-[nJ = exp[ - j2 ]

236



The resulting Fourier-carrier modulated signal is

SkIT1] = (xk n * f n]) WMn]

Since transmitted signals must be real, it is required in each block of M code symbols

Xk[l] = x*M-k[n] (5.45)

Note that for M even x[= x*j] and xM/2[r] = x*M/2[n], implying that the code

symbols in the first and last channels must be real. (There are only M/2 distinct carriers.)

The final transmit signal is
M-1

sin] = Skfn]
k=O

Expanding,

(xkin] * fin] e j27kn/M

(xkn * fIn] e j2kn/M * finn]) ej27ckn/M

M-1
2

-TL (~xkI] * finn])

k=0O

M

e j2 7kn/M+ T ( x-M-kITn]
k=1

*f in]) ej2n(M)

Using the relation of eqn. (5.45):

- xoin +XM/ 2 ine ie

Further manipulation leads to

M _I
2

T1
k=1

(xkH e j27kn/M + X* In] -j2nkn/M) } In]

= 'jXke[n]
k=0

cos 1 - Xko[nl] sin (2Mn * 2 ffrn]

where the even and odd components of the complex code symbols

XkInfl = XkeT] + jxkon]

are given by

XkeIT] =

XkoIT ,

Xknl + x*kin1
2

Xk In] - X*_ In]

2j

M-1

k=0

L-1

k=O
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In summary, the Fourier carrier modulated signal is equivalent to I/Q modulation with

the constraint of eqn. (5.45)

sHn =L (Xk[n] * f[n]) exp (2M
k=O

= {Xe[n] cos (M) -Xko[n] sin (2M * 2 f[In] (5.46)
k=0

U Real Carrier Modulation: As described above, multiplication by inverse discrete Fourier

transform is equivalent to complex I/Q data modulation. As an alternative, real mod-

ulation uses in-phase cosine carriers only. The transmit signal with cosine modulation

is
M-1

s[n] = (xk[n] * f In]) cos ( kn) (5.47)
k=O

Note that two cosine carriers are orthogonal when their separation is only 7r/M, com-

pared to Fourier carriers where the minimum separation for orthogonality is 27/M. Both

modulation schemes are equivalent in the sense that the number of transmitted code sym-

bols per interval T, is the same for a fixed bandwidth: the cosine carrier modulated signal

has twice the number of carriers, each modulated by a real code symbol, whereas the

Fourier modulated signal has half the number of carriers, each with in-phase and quadra-

ture components carrying even and odd real code symbols, respectively. In the above

cosine modulation format, the first channel has zero frequency. These functions

E'[n] = cos M (5.48)

are known as Type-I discrete cosine transforms (DCT-I). Other variations (types II, III and

IV) are envisaged by offsetting the first carrier in time or frequency or both:

EQ[n] = cos [ (k + )n] (5.49)

EI"[ni] = cos -k (L + ) (5.50)

EIj[n] = cos (k + n + (5.51)

It is straightforward to show that for each type, the set of cosine functions are mutually

orthogonal. The first four cosine basis functions of each type are plotted in Figs. 5.16 and

5.17.

Referring to eqns. (5.41) and (5.42), we comment that Chang pulses are continuous-time

equivalent of Type II or IV cosine functions.
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o M 0 M

0 M 0 M

Figure 5.16:
First four basis functions (k = 0, 1 2,3) of type I DCT. Due to zero
offsets in time and frequency, it is the only DCT with odd or even
symmetry about the mid-point.

o M

0 M

0 M

0 M

First four basis functions of type IV DCT. Unlike types I and III,
Figure 5.17: there is no non-oscillating (DC) basis in type II and lV DCTs.
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5.4.3 Discrete-time Generalized Nyquist Criterion

A block diagram of a transmitter of a general multi-channel communication system is de-

picted in Fig. 5.14. This is the discrete-time model where the input and output of every func-

tional block are discrete-time sequences. Before transmission, it is understood that the transmit
sequence g[n] must be D/A converted. For the special case of multi-carrier modulation as de-

picted in Fig. 5.15, a single prototype lowpass filter fo[n] suffices when combined with various
IF carrier modulators. At the receiving end, the demodulation and detection blocks are mirror

images of the transmitter. This is depicted in Fig. 5.18. (For convenience we omit the subscript

"0" when denoting prototype filters.)

carrier 1

Xh[n]--
carrier 2

r(t) -

* carrier M -

X h[n]

detector

Figure 5.18: M-channel carrier-modulated communication system: receiver

Historically, communication systems are studied in the continuous-time domain. Therefore

we are interested in designing transmit and receiver filter with impulse responses h(t) and f(t)

such that the transmission rate is maximized and the receive filter outputs in each channel are
ISI-free. Due to Shannon's capacity theorem, achievable information rate is a function of the
received signal-to-noise ratio. In AWGN channel it is known that the SNR of the receive filter
is maximized when the transmit and receiver filters f(t) and h(t) are a matched pair; i.e., F(f)
is a complex-conjugate of H(f). This is the matched filter realization. The ISI-free condition is

the generalized Nyquist criterion. In practice, it may not be possible to design filter responses
that meet both criteria.

First, we discuss the Nyquist criterion in the discrete-time domain. Matched filter realization
will be dealt with once we introduce time-overlapped pulses. We already know from Sec.5.3.3
that sinc-type pulses (whose Fourier transforms resemble Walsh codes) are g-Nyquist. If excess
bandwidth is allowed, Chang pulses are g-Nyquist with each data channel containing a cosine
carrier modulated signal. The drawback is both pulses are infinite in length, thus requiring IIR
filters at both the transmitting and receiving sides. Any truncation or shortening of filter lengths
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leads to non-zero ISI. Analogous to the conventional continuous-time Nyquist condition, we can

derive the g-Nyquist criterion for discrete-time sequences. We detail step-by-step, starting with

the input stream of code symbols x[ri:

U Delayed Decimation:

-jOITn] = x~rtM]

-Y1 n] = X[rtM - 1]

1Jk~fl] = x[rtM - ki

m After interpolation:

00

g[n]= Y x[n] S[n - rM]
r=-00

00

gi[n] = x[n]
r=-00

00

gk[n] =T x[n]

r=-oo

00

g M- [n] = > x[n]
T=-00

5[n - 1 -rM]

6[n - k - rM]

S[n - M +1 - rM]

M Transmit Filter Output:

so~in=
1=-00

00

1=-00

r=-oo

fo[t] go[n - 1

0o
Tf ORlx[n - 16 I[n - I - TM]

r=-0o

fo n - TMIx[TM]
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00

si[nl] = fi[n-1-rMlx[rM+1]
r=-oo

00

Sk[n] = f>[1 - k - rM]x[rM + k]
r=-oo

SM\4-1 nl _ M-1[_[--M+1-rM]x[-rM+M-1
r=-CO

M Transmitter Output:

M-1

s[nT]= Sk[1+k]

k=0
M-1 00

Y Y fk[n -- rM]x[rM+k]
k=O r=-00

For consistency, each elemental output sk[n] is time-advanced by k units since it is delayed

by the same amount during decimation. Assuming the channel is ideal with no delay:

c[n] = 6[n], the received signal rn] = s[rn].

0 Receive Filter Output:

vo[n =

M-1

k=0

M-1

Vi [mn]=
k=O

ho[1] s[n - 11

T=-00

T x[rM
T=-00

00

+k] T
t=-o0

00

+ k] T
t=-00

ho[t] fk[ - I - rM]

hlI[t] f kT-- - M]

M-1 o 00

vM-1n] = T T x[rMr+-k] T hM-[1f0[n -I-rM]

k=0 r=-o0 t=-o0
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By separating code symbols in the zeroth block of the first channel:
00 00

x[0] T hoW --n1foWt [ x[rM T ho[n - 1] fo[1 - rM]
t=-oo r:AO l1=-00

M-1 o
+ T x[k] Y ho[n -] f k1]

k=1 1=-00
M-1 00

+ T Y x[TM + k] Y ho[n -t] fkR - rM] (5.52)
k=1 rkO t=-oo

The first term is the desired symbol. The second term is ISI from past and future code

symbols in the same channel. The third term is ICI due to current symbols from other

parallel channels. The fourth term is IBI due to past and future code symbols -i.e.,

symbols in another block- from other parallel channels. If the receive filter in each

channel matches the corresponding transmit filter, and if fk[-] is an FIR filter of length

N,:
likITL] = f*[Nw- I -]

Since the filter tap weights are real,

hkr[n] = fk[Nw - 1 - n] (5.53)

Note that the receive matched filter h(t) is also FIR. If the transmit pulses are orthogonal,

Y f[1 fn4l - rMI] = 6k - n] 6[r] (5.54)
t==o

then the system meets the generalized Nyquist criterion. This is the discrete-time equiva-

lent of eqn. (5.39).

5.4.4 Multi-Rate Filter Bank Design

We next describe the close relationship between the g-Nyquist criterion and Perfect Recon-

struction Criterion. A block diagram of a multi-channel filter bank is depicted in Fig. 5.19. We

briefly review the main properties of multi-channel filter bank. It is essentially a reverse process

of a multi-channel communication system. As the name suggests, the system consists of a bank

of M analysis and synthesis filters. An input signal is analyzed by passband filters hk(t) at center

frequencies fk and bandwidth Bk. This is called sub-band processing. We are only interested in

a class of uniform-bandwidth, critically sampled and carrier-modulated filter bank:

n Uniform Bandwidth: The bandwidths of all M bandpass filters are equal.

For real modulation with cosine carriers,

Bk - +
NAI
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input h,[n] -4

x[n]

8 parallel

[n] _ LM -- -- outputs

Figure 5.19: Sub-band processing with M-channel filter bank: analysis

where e is the excess bandwidth.

For complex modulation with Fourier carriers,

27r

With real modulation the carrier spacing is approximately 7r/M. Over the entire frequency

range [0,27r], 2M filters are required. With complex modulation, the carrier spacing is

27r/M, resulting in M bandpass filters.

N Center Frequencies: If the zeroth channel has a lowpass filter such that the center frequen-

cies of the carriers are

fk = 2rk k E ZE~~I complex modulation
M (5.55)

fk -7 k k E Z2M-1 real modulation
M

This is known as even stacking. In odd stacking, every filter is bandpass with center fre-

quencies

f'k = 2rk + -) k E ZM~1 complex modulation
M 2 (5.56)

fk = M k + 2 k E Z2M-1 real modulation

Both odd- and even-stacked frequency bands are illustrated in Fig. 5.20. It is important

to note that for even stacking the center frequencies of all bands are non-zero; i.e., each
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band is a frequency translation (carrier modulation) of a baseband signal. This differ-
ence between odd and even stacking becomes critical when the carriers themselves are
complex-valued, as we shall see in Sec. 5.4.7.

odd

(a)

f f2  f3  f4

even

(b)
I I I

ft f2  f3  f4

Figure 5.20: (a) odd and (b) even stacking of bandpass filters

" Critical Sampling: The filter output in each channel of an M-channel filter bank is critically

sampled if an M-down sampler follows each filter. Decimation does not discard useful

information; it only removes redundant information growth. It is well known that by

proper design of a bank of analysis and synthesis filters, the original sequence x[n] can be

reconstructed from downsampled sequences. This is the Perfect Reconstruction condition.

* Carrier Modulation: All passband filters are derived from a single prototype filter h[n]. For

k ;> I

hk[n] =h[n] cos k 11 real modulation

(5.57)

hk[n] =h[n] exp k + 1 complex modulation

where 1 = 0 for even stacking and 0.5 for odd stacking.

In general, the sub-sampled filter outputs are processed (e.g., compressed) for transmission or

storage. At the other end, the original signal x[n] is reconstructed or synthesized from stored or

received samples in M sub-carriers. The synthesis operation consists of up-sampling followed

by synthesis filtering with impulse responses fk[n], and finally the summation of sub-samples

to reconstruct (a possibly) aliased and distorted version ln] of the original signal. Comparing

a multi-channel filter bank in Fig. 5.19 with a multi-channel communication system in Fig.
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5.15, we notice that both systems are identical with the roles of analysis and synthesis filters

reversed. We next follow the functional blocks of a carrier-modulated filter bank step-by-step:

* Analysis Filter Output:

-Ykl n X[n] * hk n] x[r] hk[n - r] (5.58)

" After decimation:

SkIIJk[nM] x[r] hk[nM - T1 (5.59)

Assume there is no further processing such that Sk[n] = rk[n] for all k.

r,[n]-- T M f 1[n]

r[] T M _ _f [n]-

parallel output

inputs

rj n]T Mn

Figure 5.21: Sub-band processing with M-channel fiter bank: synthesis

* After interpolation:

Vk[nl] x[r] h[nr] mod M = 0 (5.60)
0 otherwise

" Synthesis Filter Output:

9k[n] = Vk[] f [n - 1]

xVkRM] fln - hA] (5.61)

-~x[] hk[IM -rTIf kITn- LMI
T.
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n Reconstructed Signal:

M-1

= Y T x[r] hk[IM - rI fk[fl - IM]
k=O I r

(5.62)

The original signal x[n] is recovered if there is no distortion or aliasing. This is known as

the Perfect Reconstruction Criterion:

M-1
Yj T ,[hkM - TIk[n - lM]

k=O I

= 5[n - r - D]

where D is an arbitrary time delay.
Substituting the PR condition of eqn. (5.63) in eqn. (5.62)

Z~x[n - D

5.4.5 Key Observations

When the analysis and synthesis blocks of a critically decimated, uniformly modulated M

channel filter bank are put side by side, we observe the complete system as shown in Fig. 5.22.

A

input

x[n]

hI[n]

hjn] J M

hjn] -M

h[n] 4M

I As

Ql)
U
0)

C-q

0Z

1l)

f [n]

----TM -- f 2 [n] ---

-- T M ~ ~-f [n ]

output

R4n]

Figure 5.22: Standard form of an M-channel filter bank system

Without any signal processing of the channel sequences, it is possible to design a bank of

analysis and synthesis filters such that the output 9[n] is a delayed copy of the input x[n]; i.e.,

k[n] = x[n - D] for some arbitrary delay D. We know this condition as Perfect Reconstruction.

Let's assume this is indeed the case; furthermore, we reconfigure the filter bank system along

the dashed line A - A' such that the analysis filter outputs are treated as parallel inputs to this

(5.63)

5.4 Perfect Reconstruction Citerion 247



new system. This new configuration is illustrated in Fig. 5.23. It is assumed that the "channel"

(the link between x[n] and k[n]) is an ideal delay line. For the special case as depicted in

Fig. 5.24 where bandpass filters are frequency translations of the lowpass prototype filter, the

resulting reconfigured system is very similar to the multi-carrier communication system of Figs.

5.15 and 5.18, except for minor details which we discuss next.

A

-f M f 1[n]

M --- TM - f 2[n]

input ,M T M - fjn]

T M f fn]-
x[n] =x[n-i]

-- -- h1[n] -

----h [n] ~-

hj[n]

h[n]

output

A'

Figure 5.23: Reconfigured form of an M-channel filter bank system

carrier 1

carrier 2

output

Figure 5.24: Reconfigured form of an M carrier modulated filter bank system

Parallel-to-Serial Conversion

In a communication receiver the first stage is the carrier demodulator. Next, the baseband

signal is matched filtered, sampled and its output is quantized. (A quantizer is also called a

carier 1

carrier 2

SM T f~n] carrier 3

input M f[n] X

carrier M

248
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hard limiter.) These steps are illustrated in Fig. 5.18. As a final step, the decoded symbols must

be parallel-to-serial converted. The P/S conversion process is similar to S/P conversion with

the interpolator replacing the decimator, and the order of delay and sampling reversed. This is

depicted in Fig. 5.25.

1
2
3

M

Cn

0

CO

-1
TIM

-1

Figure 5.25: Parallel-to-Serial conversion in discrete time

By combining the parallel-to-serial converter with the M-channel filter bank receiver, and

the inclusion of a delay chain at the input side for serial-to-parallel conversion, we can finally

construct the complete multi-carrier communication system depicted in Fig. 5.26.

carier

i'M f[n] X carrier 2

TM f[n] ar 3

T M f[n] X

carrier M

',jM -,TM f[n] X

chc[n]

channel

carrier 1

carrier 2 _Moutput

carier 3

X h[n] TM

carrier M -

z

h h[n] Tj- 1M

Figure 5.26: Detailed description of multi-carrier communication system

Note that the cascade of a bank of samplers, hard limiters, interpolators and two delay

chains (as depicted in Fig. 5.27) is transparent to the overall operation of the complete system.

The proof is straightforward:

Let the output samples of the first analysis filter h, [n] be

... al ... a2... a3 ... -- (5.64)

such that there are (M - 1) irrelevant samples exist between ac and ac+1 for some i. Similarly,
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the output samples of the second analysis filter h2[n] can b expressed as

(5.65)

... albIc 1 ... a2...al xxxxx a 2xxxxx a3...

... b xxxxx b2 xxxxx b3 ...

1. . Cl xxxxx C2 xxxxx C3... . . . cdle, . .. C2 ..

x - irrelevant samples

M Z 
Z ' I

-1 Z-1

z _

Figure 5.27: Transparency of the cascaded block of expander and delay chains

Here it is also understood that (M - 1) samples exist between bi and bj+1 for some i. Other

filter outputs are also labelled in a similar fashion. In the theory of matched filtering, only

the output sample where the signal-to-noise ratio is maximum is significant. The sampler is

synchronized such that its periodic samples occur at time instants where the SNR is maximum.

Using this information, the outputs of parallel samplers are

... a, a2 C3 ...

and so on. Of course, the samplers perform the same function as decimators. Next these
samples are quantized to one of the possible elements of the discrete signal constellation set.

For the binary antipodal set, there are only two elements: +1 and -1. In this case, the quantizer

is a zero threshold detector; i.e., any value greater than zero is quantized to +1 and other values

less than or equal to zero are decoded as -1. As the final step, the decoded symbols must be

parallel-to-serial converted before any other processing takes place. The output sequence of the

first interpolator is

... 00 al 00 ... 00 12 00 ... 00 3 00 ...

Likewise, the output sequence of the second interpolator can be expressed as

... 00b 1 00 ... 00b 2 0000 ... b300 ...
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Notice that there exists (M - 1) zero-valued samples between every pair of non-zero samples.

Note also that the above sequences are not exactly identical to the analysis filter output se-

quences of eqns. (5.64) and (5.64). The output stream of the parallel-to-serial converter is

... aibaci... a2b2C2 ... a3b3C3-.

This sequence can also be considered as the input information sequence of a general M carrier-

modulated communication system. After passing through the delay chain, the parallel samples

are

... albici... a2b2C2 ... a3b3C3--..

... bacid,... b2C2cd2 ... b3C3d3-.

...cidle 1 ... c2d2e2 ...c3d 3e 3 ...

and so on. When the above parallel sequences are compared with the analysis filter output

sequences of eqns. (5.64) and (5.64), they differ in the irrelevant positions. For example,

the output of the first analysis filter has (M - 1) irrelevant samples between al and a2 that

resulted from matched filter detection of channel 1. In contrast, the first output sequence of

the delay chain has (M- 1) samples b1c1 di ... (between a, and a2 ) which are, in fact, relevant

information samples of the remaining (M - 1) channels. However, due to decimation, the

output sequences of the parallel downsamplers are

. .a, a2 a3 ...

.. b, b2 b3 ...

and so on. Thus the overall operation of the cascaded block (samplers, quantizers, P/S con-

verter plus the delay chain) is transparent. In summary, we show that a carrier-modulated

M-channel filter bank analysis-synthesis processing system with perfect reconstruction is equiva-

lent to an M-carrier modulated communication system with zero generalized ISL This implies that

the design and construction of transmit and receive filter pairs that result in g-Nyquist pulses is

equivalent to the design of analysis-synthesis filter bank that has perfect reconstruction prop-

erty. This subject is discussed in the next section when we evaluate prototype lowpass filter

designs. As a digression, we next give a brief treatment on actual implementation of multi-

channel filter bank systems.

5.4.6 Polyphase Decomposition and Fast Computation

Throughout this chapter, our focus has been the description of continuous-time signal pro-

cessing in terms of equivalent discrete-time sequences. Next, we introduce an important discrete-

time domain concept known as the Perfect Reconstruction Construction; afterwards we describe
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in detail its relationship to a continuous-time phenomenon called the zero-ISI Nyquist criterion.

We have purposely omitted any discussion on the feasibility and computational complexity of

a multi-carrier modulated communication system, mostly because this topic is treated thor-

oughly any standard text on multi-rate digital signal processing. We should, however, point out

that the virtues of multi-carrier communication techniques (in terms of bandwidth efficiency)

have been known for several decades. In the past the construction of multi-carrier modulators,
frequency oscillators, and high-Q bandpass filters -for a large number of carriers/channels-

was a formidable task. Furthermore, the orthogonality property that leads to zero ISI is only

guaranteed when carrier frequencies and phases can be generated precisely without any er-

ror, jitter or time drift. All these issues were solved once the multi-carrier modulated signal is

first generated in the discrete-time domain, followed by D/A conversion and analog RF carrier

modulation. By applying certain novel mathematical results such as the noble identities and

polyphase decomposition, it is possible to swap the order of filtering and up/down-sampling.

This step further facilitates fast computation of carrier-modulated signals by using Fast-Fourier

transform (FFT) and its inverse as carrier modulators and demodulators. For the special case of

modulation and demodulation involving only in-phase cosine carriers, efficient and fast compu-

tation of channel samples is possible by using discrete-cosine transform (DCT) and its inverse.

For an interested reader, we refer to the text by Malvar [82] which contains a set of computer

codes for real-time FFT and DCT implementation.

real carriers

complex carriers

0 7r/2 3tr/2 2ir

Figure 5.28: Bandwidth of real vs.complex carrier modulated signals

5.4.7 Bandwidth of Real vs. Complex Carrier Modulated Signals

One peculiarity about multi-carrier modulation in discrete-time domain is the fact that the

resulting signal is still in baseband. Hence, when a complex carrier modulator such as a block
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of inverse FFT is used for M-channel modulation, only half of M channels are modulated by

distinct carriers. In fact there exists M/2 complementary-conjugate pairs of channels -one

modulated by the in-phase (cosine) carrier and the other by the quadrature (sine) carrier. This

fact has already been noted when we are studying Fourier (complex) and cosine (real) carriers.

At first glance this does not appear to be of any significance. In terms of bandwidth efficiency,

both complex and real carrier modulated signals have the same PSD width. As illustrated in Fig.

5.28, the PSD width of a data modulated signal is the same whether data is modulated onto

both carriers (in-phase and quadrature) or only onto the in-phase carrier. However, in order

to maintain channel orthogonality in multi-carrier communication, the complex carriers must

be spaced apart by twice the separation of real carriers. Since two the amount of independent

information is carried on complex carriers, both schemes have the same information rate. Now,

this is where the discrete modulation based on Fourier carriers becomes significant. In Fourier

modulation via inverse DFT, the complex carriers are equal to complex (complementary-pair)

roots on the unit circle for even M. Examples are shown in Fig. 5.29 for M = 4 and 8.

7r/2 7T/2
37T/4 7T/4

7T 0 7T 0

57T/

37r/2 3r/2

M=4 M=8

Figure 5.29: Complex roots of unity as complex carriers

Note that both roots 0 and el are real carrier pairs; thus this (real in-phase) carrier (whose

center frequency is zero) can only carry real data. For non-spread spectrum modulated com-

munications, this is a non-issue (in decreased spectral efficiency) when M is large. However,

for channelization coding in spread-spectrum modulated communications, parallel channel or-

thogonality can no longer be maintained since two chips are missing in the quadrature branch.

Therefore, code-division multiplexing with multi-carrier complex modulation cannot be im-

plemented with DFT and IDFT blocks. Of course, this situation does not arise when center

frequencies of all distinct carriers are non-zero (as in DCT II and IV based carriers) or when all

carriers are real and carry real data only -such is the case for any DCT based multi-channel

discrete modulation.
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5.5 Prototype Window Design

The PR condition of eqn. (5.63) gives a clue on the design of analysis and synthesis filters

for an M-channel filter bank. The task however still seems formidable due to the number

of parameters involved. Fortunately, the PR condition is simplified considerably when every

channel filter is a modulated version of a prototype filter f En] or h[n].

Analysis filter: hkfn] = h[rT] mk[n]

Synthesis filter: hk In] = p In] m*[n]

where Mk[n] denotes the modulating carrier function for the kth channel.

For Fourier-based complex modulation,

hkln] = h[n] ep ( j 2 n)
M (5.66)

f [n] = f rn] exp (7Mn)

For cosine-based real modulation,

hklnl = h[n] COS (7tkT1)M (5.67)
7rkn)f kln] = f In] cos ( M /

Of course, it is understood that in both cases we can substitute carriers with frequency offset.

By further stipulating that for each channel the analysis-synthesis filter be a matched-filter pair

f k~n] = h*[Nw - 1 - n] (5.68)

we can rewrite the PR condition of eqn. (5.63) for complex modulation as

M-l
TiY hkIlM - r]fk1n - 1JMI

k=0 I

Sfk[n -tM]fk[Nw- 1 -tM+r] L exp (j2nk j)
I k=O

For a prototype synthesis filter whose length Nw is equal to block length M

fO[n - lM) fk[M -1 - IM +r] exp(- k En -ri)
I k=0

For t : 0, the prototype filter taps have weight zero. Thus we need to consider only the case

1= 0.

fkn k[M + T] eXp -T]
k=O
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We know that for n =r the summation of all complex roots of unity is zero. Therefore, by

setting rT = r the PR condition implies

M fk[nl fk[M + n = 1 for n e ZM-l (5.69)

The above result states that the square of every tap weight of the prototype synthesis filter must

be unity. We immediately deduce that a train of impulses (a rectangular window)

f [n] = h[n] = 1 n tE Z- (5.70)
0 otherwise

is a valid prototype filter that satisfies the PR condition. This filter is, however, far from practical

due to its sinc-type infinite bandwidth. If this prototype filter f(t) is used for multi-carrier

modulation and transmitted through a bandlimited channel, the channel output will be severely

distorted, and the g-Nyquist condition is violated.

5.5.1 Time-Limited Pulses

In discrete-time signal processing literature, the shaping of a generic pulse such as the

impulse train of length M is known as windowing. The windowed function of length M

fw(t) = f(t) w(t)

is a product of an impulse train of length M and a windowfunction. Popular windows are Ham-

ming (raised sinusoidal function), Bartlett (triangular function) and Kaiser (modified zeroth-

order Bessel function). The frequency response is several windowed functions are plotted in

Fig. 5.30.

Among is four windows the shaping amount is the greatest for the Blackman function. It

is no surprise that its first sidelobe is much lower than those of other windows. It is evident

from the plots that the sidelobe levels are lowered at the expense of a wider mainlobe. We

provide another example where the free parameter Lx of the Kaiser function is varied. The

resulting time windows and their corresponding frequency plots are shown in Fig. 5.31. The

first sidelobe level drops from -13 dB for c = 0.5 to -38 dB for c = 5 at the expense of a wider

mainlobe. This is a by-product of energy conservation. We mention this topic of windows in

brief to remark that such pulse shaping techniques do not satisfy the generalized Nyquist or PR

criteria. We can also deduce from eqn. (5.69) the following:

* In a complex (Fourier) carrier modulated, M-channel filter bank, any shaping of a rectan-

gular prototype window of block length M does not meet the PR condition. Equivalently,
in a multi-carrier modulated communication system, shaping of a symbol-time limited
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Frequency response of various windows for length M = 32. Among the four win-

dows, Bartlett (triangular) has the least smoothest transition. On the other hand,
the Hamming window (raised sinusoidal) has very low sidelobes. Its mainlobe

width is ~ n/4. The Blackman window with the largest shaping has the lowest first

sidelobe at -60 dB. However, its mainlobe width is the widest among the windows.

rectangular transmit pulse does not meet the g-Nyquist criterion. A vigorous proof of this

statement is not given here. Its derivation is fairly straightforward. The reader can also

refer to the text by Vaidyanathan [148] for a proof.

0 In single-carrier modulation format, it is known that communication is most efficient

when data is carried in both in-phase and quadrature sub-channels. There is no expan-

sion in transmission bandwidth. As an example, QAM is always preferred over PAM since

the former is twice the spectral efficiency as the latter. It is also known that in passband

PAM, the spectrum of the modulated signal is symmetric about the carrier frequency ±f,

because the PAM signal set consists of real time functions only. That is, the same infor-

mation is contained in either the upper (or equivalently, lower) sidelobe of the transmit
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Figure 5.31: Kaiser windows of length M = 32 and corresponding frequency plots

modulated passband signal. In analog communication, this is called single-sideband mod-

ulation. It is shown in any undergraduate text on communication theory that the gener-

ation of a single-sideband modulated signal involves the use of a Hilbert transformer in

baseband or a passband filtering with a steep cut-off -both techniques difficult to realize

in practice. In most cases, its alternative double-sideband modulation format is preferred

due to its simpler transmitter design. Interestingly, in multi-carrier modulation format,

a sub-channel can be real (cosine) carrier modulated with real data symbols, or complex

(Fourier) carrier modulated with complex data symbols. It is straightforward to see that

both methods have the same spectral efficiency. As described in Chapter 4 Sec. 4.8, the

frequency separation between Fourier carriers is double the spacing of cosine carriers if

mutual orthogonality among carriers is maintained in both formats. Therefore, multi-

carrier modulation with cosine functions is analogous to frequency-division multiplexing

of single-sideband modulated signals -without the added complexity of sharp passband

filters or baseband Hilbert transformers.
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5.5.2 Time-Band-Limited Pulses

Up to this point, we have considered both symbol-time-limited finite-length pulses and

infinite-length pulses as candidates for multi-carrier modulated waveforms. The goal is to

design pulse shapes that meet the generalized Nyquist criterion when transmitted through a

bandlimited channel. We show that infinite length pulses such as sinc-type pulses are impracti-

cal. A more practical raised-cosine pulses that were devised by Chang are g-Nyquist only when

the receiver filter length is infinite. Any truncation of Change pulses would violate the g-Nyquist

constraint. In practice, the class of truncated Change pulses may be a viable option if their in-

duced ISI can be tolerated. For that matter, we showed that fully raised-cosine (Chang) pulses

with multi-carrier modulation format is more spectrally efficient than raised cosine pulses with

roll-off factor r and single carrier modulation if the number of sub-carriers (channels) N > 1 /r.

Next we state that in a complex-carrier modulated M-channel communication system with

transmit pulses of length M, no pulse shaping can meet the g-Nyquist criterion. We obtain

valuable insights into the design of finite-length pulses that meet g-Nyquist by studying M-

channel analysis-synthesis filter bank system. Most important of all, we derive the PR criterion

applicable to an analysis-synthesis filter pair that turns out to be equivalent to the g-Nyquist

criterion for a transmit-receive filter pair. It is then shown that for a carrier-modulated filter

bank, the PR condition depends only on the design of the impulse response (tap weights) of a

prototype lowpass FIR filter. The impulse response of this prototype filter can be used as the

prototype transmit pulse shape in multi-carrier modulation. As a side bonus, the transmit and

receiver FIR filters are also a matched filter pair.

The remaining work in this chapter is the design of such prototype pulse shapes that meet

the g-Nyquist and PR criteria. We define these pulses as time-overlapped (TO) functions due

to their pulse length of 2KM. That is, these TO pulses are finite-length but much longer than

the block length M. They were introduced by Henrique Malvar and their unique properties are

thoroughly covered in his text and several other journal articles [81, 82]. When K = 1 (i.e.,
pulse length of 2M), the time-overlapped pulses are called modulated lapped transform (MLT)

functions. For K G Z2 they are collectively known as extended lapped transform (ELT) functions.

* Modulated Lapped Transform Functions:

Prototype Window:

p[n] = sin n + 2M (5.71)

Synthesis Filters:

2 1)PTJ o M+1) (7
]xn] = Pd Vn M Cos (k + 2 2 M (5.72)
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m Extended Lapped Transform Functions:

Prototype Window:

p~n] =- + cs 7 + (5.73)

Synthesis Filters:

fkln] = pln] COS k + D nT,+ M +1) r(5.74)

Note that both MLT and ELT functions use the same carrier function. In fact, by comparing
the above equation with eqn. (5.51) we see that the carrier function is a translated type IV
discrete cosine transform function: El + -]. It is straightforward to show that MLT and
ELT synthesis functions meet the Generalized Nyquist Criterion of eqn. (5.54) and the Perfect
Reconstruction Criterion of eqn. (5.63). Prototype windows are plotted in Fig. 5.32.

0 63 0 63

(a) (b)

Figure 5.32: Prototype windows for (a) MLT (b) ELT functions

Both are symmetric (even) functions about its mid-point, implying that only half the tap
weights of the FIR filter are involved in the prototype pulse design. The resulting MLT and
ELT synthesis functions -precisely the first four- are plotted in Figs. 5.34 and 5.36. It is
apparent that the passband synthesis functions are neither odd or even about its mid-point. This
characteristic is due to modulation of a symmetric prototype function with a type IV discrete-
time cosine function that has offsets in both time and frequency parameters. In Fig. 5.33 we
plot the first two MLT synthesis functions fo(t) and f1 (t) of length 64 and their symbol-time
shifted versions. It is rather difficult to see graphically but all four waveforms are mutually
orthogonal. This is the most fascinating property of time-overlapped pulses, applicable to both
MLT and ELT, that all basis/synthesis functions satisfy all three types of orthogonality. We split
both f0 [n] and f1 [n] at midpoint and relabel them as follows for n c [0, L - 1]:

fo+[n] = fo[n], fo-[n] = fo[n + L], f 1+[n] = f1 [n], f 1 _[n] = f1 [n + L]
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1. Conventional Orthogonality: Two synthesis functions f[n] and fj [n] of length M = 2L are

orthogonal over a symbol-time correlation window [0, L).

f0 [n]I f1[In]

2. Self Orthogonality: A synthesis function fi[n] and its symbol-time shifted version fj[n + L]

are also orthogonal over a correlation window [L, 2L).

f 0+[n] If o-[n] f 1+[n] I-- f 1

3. Overlap Orthogonality: A synthesis function f[n] and another synthesis function with a

delay or advance equal to the symbol-time fj [n ± L] are also orthogonal. Both leading and

lagging time offsets must be considered since the synthesis functions are neither odd or

even.
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Figure 5.33: Orthogonality of MLT synthesis functions and their time offset versions
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Notes and References

The Sampling Theorem is credited to C. E. Shannon, which appeared in [127], "Commu-

nications in the presence of noise." It was not discussed in his more well-known classic work

[128]. Prior to Shannon, other researchers, H. Nyquist [93], E. T. Whittaker [159], J. M. Whit-

taker [160] and V A. Kotel'nikov [65] have studied sampling of band-limited signals. They

all considered sampling of deterministic signals. An extension to wide-sense stationary ran-

dom processes was studied by Balakrishnan [5, 6]. For non-stationary processes, the works by

Zakai [167], Piranashvilli [103] and Gardner [38] are cited. The sampling of linearly mod-

ulated waveforms for zero intersymbol interference was studied by Nyquist [93]. He proved

that transmission at Nyquist rate is possible using sinc pulses with an ideal frequency response.

R. Chang [17] showed that transmission speeds arbitrarily close to the Nyquist rate can be

achieved using non-sinc like pulses with a gradual roll-off. These pulses satisfy the generalized

Nyquist criterion of Schnidman [124]. However, both sinc and Chanc pulses are infinite-length

in time. The notion of dimension for a band-limited signal over a window of T sec was proposed

by Shannon [127]. The discrete-time analog of Nyquist criterion is the Perfect Reconstruction

(PR) condition. Various forms of the PR condition were offered by A. Croisier, D. Esteban and C.

Galand [26] and Smith and Barwell [132]. A special class of PR waveforms with good spectral

properties is the family of time-overlapped (TO) pulses, first reported by Cassereau [14] where

the pulse length is twice the symbol interval. H. Malvar [81, 82] extended this work by consid-

ering TO pulses longer than two symbol intervals. Since TO pulses have very-low out-of-band

leakage, we also coin them time-bandlimited (TB) pulses.
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6

MULTI-RATE TRANSMISSION SCHEMES

Summary

For a band-limited channel, communication at a higher information rate invariably requires

the use of multi-level signal constellation sets. This paradigm is the norm in digital subscriber

loop (DSL) applications over a narrow-band twisted-pair telephone (TPT) channel. It also ap-

plies to long-haul over-the-horizon microwave (LOM) links. However, the majority of wireless

systems including cellular networks adopt binary antipodal signal sets. The contributing fac-

tors may be power efficiency of linear amplification for constant-amplitude signals, receiver

complexity constraint, limited energy source (of battery) for hand-held devices, higher spec-

tral efficiency of binary modulation in low SNR operating region, and difficulty in tracking and

locking of rapid fluctuation in received signal frequency, amplitude and phase. We observe sev-

eral differences between cellular radio propagation (CRP) channel and the above mentioned

twisted-pair telephone and microwave links.

" The frequency response of a TPT channel is highly frequency-selective (time dispersive)

but relatively stationary. Therefore, channel state information can be accurately measured

and relayed back through a feedback channel during channel set-up. Detection of a two-

dimensional multi-level signal is feasible due to accurate estimation of channel gain and

phase-coherent demodulation. Most of these attributes cannot be sustained in cellular

radio since the channel is both time- and frequency-selective.

" Compared to cellular radio, a LOM channel is line-of-sight. In fact, the microwave tow-

ers are raised high enough that several Fresnel zones are free of any obstruction. Both

transmitter and receiver are immobile. A large amount of signal processing complexity



and power consumption is tolerated at the receiver. These conditions may not be appli-

cable to a CRP channel. In densely populated areas, no LOS path exists in cellular radio;

reception from diffracted and scattered paths is the norm. Furthermore, power efficiency

of receiver signal processors and RF transmit amplifier of a mobile unit must be tightly

controlled to improve battery life.

N Both TPT and LOM channels are single-user links; i.e., the physical medium itself -the

copper wire or RF band- is not shared among many users. Hence, neither channel is

interference- or transmit power-limited. In cellular radio an increase in transmit power

at a base site may cause excessive interference at neighboring cells -reducing the signal-

to-interference ratio (SIR) of receivers in neighboring cells at the expense of a higher SIR

in the target cell. As a result the overall capacity of the entire network may be reduced.

If data modulation is limited to binary antipodal signal set, we know that there is a linear

relationship between the bit rate Rb = I/Tb and signal dimension D = WTb. In conventional

FDM, the forward-link composite channel consists of a sum of M logical channels, each channel

of bandwidth W/M. Similarly in conventional TDM, a logical channel (which is a time-slot)

is a slice of duration Tb/M of the entire frame of length Tb. A logical channel's information

rate can be increased by transmitting a higher-dimensional signal via a larger bandwidth or

time-slot. This is equivalent to the assignment of multiple frequency bands or time-slots, with

each acting as a low-rate binary communication (logical) channel. In CDM where the actual

transmission (chip) rate is independent of the information-bearing data rate, an interesting

situation arises: For a fixed bandwidth (i.e, constant chip rate) it is possible to communicate at

higher information rates by reducing the ratio between transmit bandwidth W and information

bit rate Rb. This ratio

PG = - (6.1)
Rb

which we defined earlier as "dimension" of binary signals is known as the processing gain. The

relation between the optimal PG and cellular capacity in information-theoretic sense -in which

unconstrained Gaussian signals are assumed- has already been addressed in Chapter 3. Here

we are concerned with a comparative BER analysis between two binary, multi-rate CDM trans-

mission techniques: one where all (low-rate) channels maintain the same PG, and the other

where each channel has a different PG to suit its respective information rate. The outcome of

this analysis is consequential for the following reason: We stated in Chapter 3 that the transmis-

sion and reception of orthogonal multiple code channels per user can be replaced with a single

code channel of reduced spreading -without having any effect on the achievable rate region

of CDM. This conclusion guarantees that the scalability and complexity of a CDM receiver is on

'The power efficiency of a fixed base site is a non-issue. Indeed, the power efficiency of RF transmit amplifiers

for mobile handsets is also not relevant to our thesis. We are only concerned with reception of CDM signals.
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par with that of TDM; i.e., the receiver complexity is independent of the information rate. In

this chapter, our goal is also prove that this conclusion is still applicable under practical settings

with linear modulation-demodulation of binary signal sets through an AWGN channel with or

without multipath fading.

As it turns out, methodologies used for BER computation of CDM signals themselves require

further scrutiny for their accuracy. Historically, spread-spectrum modulated (SSM) communi-

cations systems -both single-user and multiple-access- are measured in terms of their ability

to suppress unwanted interference or jamming signals. Moreover, for certain secure military

applications, the processing gain may be in excess 1000 such that the PSD of a spread-spectrum

modulated signal is hidden below the noise level. Under such conditions it is accurate to assume

the received signal is composed of the desired SSM signal and undesired disturbance -which

is a combination of unwanted interference and additive thermal noise. This disturbance is tra-

ditionally modelled as an AWGN process. We denote the one-sided PSD of this disturbance

by

DO =IO-+NO

where 1, and N0 are one-sided PSDs of interference and noise processes, respectively. Since

a Gaussian distribution is completely specified by its first and second moments (i.e., mean

and variance), we only need to compute the mean of the desired signal and the variance of

the disturbance to compute the BER. From signal detection theory we know that the BER of an

antipodal binary spread-spectrum modulated signal is expressed in terms of a single parameter:

the ratio of signal energy-to-disturbance PSD Lb/Do. Specifically (as detailed in the body),

BER = Pe = Q Q 2PG SDR)

where Q(-) is the standard Gaussian complementary cumulative distributive function (CDF).

The ratio Eb/Do is related to the signal-to-disturbance power ratio (SDR) as follows:

SDR - _ _- - -Rb -Lb
DOW D.W Do PG

If interference dominates over thermal noise, then the BER is a function of signal-to-interference

power ratio (SIR) only:

PeQ( 2 PG1)

Then a reduction in PG by M can be compensated by increasing the transmit power of the SSM

signal by the same factor -implying that the information rate of an SSM signal can be increased

by reducing the processing gain without any degradation in BER. Related to this conjecture are

three important questions:
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* What is the role of PG in multi-user broadcast plus interference (composite) channel

setting? What is the minimum PG that a traffic channel must maintain for reliable com-

munication?

m In a composite channel model, how does a high-rate channel with reduced spreading

affect (i.e., interfere) with other users in the system, even if its own BER is unaffected by

a lower PG?

m Under what conditions can we safely apply various Gaussian approximations in evaluat-

ing the BER? The Gaussian approximation, whenever it is valid, is desired because full

knowledge of the statistical distribution of the disturbance is no longer required in BER

analysis. Furthermore, it gives valuable insights into the effect of various system parame-

ters on the overall system performance.

We attempt to answer the above questions in the remainder of this chapter. In brief, our

findings are as follows:

N The resulting BER of CDM signalling is a function of many system parameters, includ-

ing the signature sequences of both target and interfering users. We must therefore be

aware that the exact BER itself is averaged over all possible combination of signature

sequences. For this reason, it is assumed that all signature sequences are iid bipolar, sym-

metric Bernoulli random processes and the resulting BER applies to CDM signalling with

random binary sequences.

* For CDM signalling via an ideal channel perturbed by AWGN alone, it is shown that BER

results based on the standard Gaussian approximation (SGA) -the simplest in mathe-

matical form- are optimistic when the interference population is low -for a fixed Eb/No

(not Eb/IO or SIR). For a fixed number of interferers, the SGA-based BER deviates consid-

erably from the exact plot as S/N. increases. On the other hand, the approximate BER

curve based on improved Gaussian approximation -the most complex in mathematical

form- is slightly more pessimistic than the exact curve as the interference population

increases. For low interference population it gives very accurate results. Unlike SGA,
its accuracy is immune to S/NO variation. The BER curves based on conditional Gaus-

sian approximation -with slight increase in complexity over SGA- closes the wide gap

between exact and SGA based approximate curves. It still suffers from slight optimistic

outcomes and susceptibility to Eb/N Q variation.

* This gap between the exact and approximate BER is narrowed when the channel under-

goes flat fading. The choice of the statistical distribution of fading amplitude has little

effect on this gap. Thus far we have implicitly assumed that the target receiver is a simple
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linear, single-user matched filter based CDM decoder without any interference cancella-

tion mechanism. For frequency selective fading channels, it is no longer meaningful to

simply analyze the accuracy of various Gaussian approximations; we must also define the

type of receiver structure since its decoding complexity influences BER curves.

" Based on exact BER curves, the performance of two target high-rate CDM users, parallel-

channel, single-gain (PC-SG) and single-channel, reduced-gain (SC-RG) are almost iden-

tical; SC-RG user has a slightly lower BER for low interference population. This is likely

due to the Gaussianity effect of larger interference population as observed by PC-SG user,

even though the total interference power (variance) is the same in both cases. If the tar-

get receiver is low rate single-channel, single-gain, no measurable difference in observed

in its exact BER curve when a PC-SG user is replaced by a SC-RG user. Therefore, for

all practical purposes, we can accept that both high rate users affect other low rate CDM

users in the system equally.

* For all three Gaussian approximations the value of spreading gain N c plays a minor role in

their accuracies. Thus, the resulting approximate BER curves of SC-SG, PC-SG and SC-RG

CDM users in AWGN channel -with or without flat fading- can be used for comparative

system analysis with high level of confidence.

* The exact BER computation of CDM signalling and Rake combining in frequency-selective

fading environment is rather difficult. On one hand we know how to compute the exact

BER of multi-channel signalling and optimal maximum ratio combining -this is straight-

forward textbook material. On the other hand, we run into two thorny issues when

we try to generalize the analytical results of multi-channel signalling to CDM domain:

First, in CDM signal reception, the output of parallel channel receivers are correlated

due to non-orthogonality of signature sequences assigned to parallel channels. The Rake

receiver, compared to the optimal maximum-ratio combiner, is sub-optimal unless self-

induced noise among parallel channel outputs is eliminated. Second, in CDM signalling,

the received signal is perturbed by non-white, non-Gaussian disturbance -a combination

of thermal noise and multi-user interference (MUI). Therefore, earlier analytical results

based on AWGN can no longer be applied in a straightforward manner. Accurate statistical

modelling of MUI become a critical issue.

* In wideband CDM signalling the resulting resolvable parallel channels are channel in-

duced -not an elaborate system design as in other diversity systems based on space,

time and frequency The relative time delays between parallel channels is dependent on

the channel impulse response. The maximum relative delay is the channel delay spread.

in conventional Rake combining, any received signal whose arrival time is outside the



correlation window is treated as undesirable inter-symbol interference (ISI). Therefore,

for a fixed delay spread, it is more likely that reception of SC-RG CDM signal generates a

higher amount of ISI than PC-SG CDM user, resulting in higher BER for an SC-RG CDM

channel.

0 If the arrival epochs of resolvable paths are within the correlation window, the resulting

self-interference between any two Rake finger outputs is correlated. In PC-SG CDM with

M parallel channels, correlated self-interference is composed of a single auto-correlation

term and (M - 1) cross-correlation terms. In SC-RG, self-interference results from a

single auto-correlation term. Since we assume signature sequences are random Bernoulli

processes, their auto- and cross-correlation values for non-zero time offsets are the same.

Based on this model, both PC-SG and SC-RG CDM channels have comparable BER curves.

6.1 Multi-Rate Transmission Techniques

It is known that the code sequence that achieves capacity of a single-user discrete-time

Gaussian channel is Gaussian distributed with unconstrained amplitude levels. In practice,

the signal amplitude set is constrained to a finite symmetric set such as the M-PAM set. For

a continuous-time AWGN channel, capacity-achieving waveforms have brick-wall frequency

response with unconstrained Gaussian amplitudes. Here it is understood that the waveforms

are sample functions of a random process, and a brick-wall frequency response refers to a flat

"white" transmit power spectral density within the channel bandwidth W. We know that sinc

pulses have a flat frequency response; they also attain the highest symbol rate of 2W samples

per second through an ideal bandlimited channel of W Hz. If the single-user AWGN capacity

is C' bits per second, we can determine the number of optimal bits per symbol through such

channel as

Cs/2W

In practice, the achievable rate R (in bits per second) is less than C1, mostly due to non-ideal

coding and decoding. The actual symbol rate is also less than 2W samples per second due

to pulse shaping (and consequential excess bandwidth). Hence, the target number of bits per

symbol is
R (6.2)

(2 - r)W

where r is the excess bandwidth roll-off factor. (The excess bandwidth is rW.) For a fully raised

cosine pulse, the bit-to-symbol ratio is R/W. From Shannon's capacity formula, it is immediate

that for SNR=1 (0 dB), CS/W = 1. It is then deduced that for low SNR, R/W - 1. This is the

power-limited channel. For high SNR, R/W > 1. By pumping a larger amount of power into a
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signal of W Hz, the bit rate can be increased considerably. For high SNR,

CS/W ~ log SNR

i.e., an exponential increase in power is required for a linear increase in capacity. This is

the well-known rate penalty incurred by a bandwidth-limited channel for communication at a

higher information rate. For a twisted-pair bandlimited telephone channel with a small usable

bandwidth, pumping a high-power signal is the only option for a high bit rate. In contrast, a

communication satellite with its constrained transmit power and large transmission bandwidth

is most efficient when its operating point is in a very low SNR region.

The propagation channel of a terrestrial radio system is considered band-limited since the

RF bandwidth is a scarce resource that is generally allocated by a regulatory body such as

the Federal Communications Commission (FCC) in the United States. Due to frequency re-

use, the CRP channel is also power-limited. In terrestrial broadcast services such as radio

and television, power constraint is imposed by a regulatory body to limit the interference of

a broadcast signal in a city into a neighboring city or town where another station may be

using the same RF bandwidth. Likewise a high-density cellular radio network is effectively an

interference-limited system, and regulation of transmit power at each base site is necessary

to maximize the overall network capacity. We already know that in a low SNR region (i.e., a

system with large interference level) the capacity is (approximately) linearly proportional to

SNR. For this reason, many researchers have argued that it is counter-productive to transmit

signals from a large amplitude set (e.g., M-PAM set with large M) through a cellular radio

channel. Of course if a receiver demands a bite rate R > W, then the selection of a large

amplitude set may be the only option.

In code-division multiplexed signal transmission, R/W < 1 due to spectral spreading. In-

terestingly it is possible to increase the information bit rate R -to a certain extent- without

migrating to a higher signal constellation set. For example, with the binary antipodal set {1 , -1 }

the information (bit) rate R = Rb is increased by reducing the processing gain2 as long as

R/W < 1. Note that if the bit rate is increased by N -i.e., PG is reduced by N- then the trans-

mit power must be increased by the same factor N to maintain the same bit energy-to-noise

density (Eb/N 0) regardless of the bit rate. This begs the question: "Which scheme is the most

spectrally efficient for higher transmission rates?"

" a single-channel transmission mode with a fixed signal set (e.g., binary antipodal set) and

reduced processing gain?, or

* parallel-channel transmission mode with a fixed signal set and no reduction in processing

2See our interpretation of (the difference between) processing gain P,, and spreading gain SG (or spreading

factor SF) on page 42.
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Figure 6.1: Code-division multiplexing of four standard-rate channels

gain? This is the power splitting option where an N-fold increase in the bit rate is achieved

by transmitting N low-bit-rate channels in parallel; or

U a single channel transmission with a larger signal amplitude set and a fixed processing

gain?

We do not address the third question regarding higher-order signal constellation sets. This

topic is beyond the scope of our analysis. This subject has been studied for both non-spread

spectrum and spread spectrum modulated signal sets [125] [126], and it is widely accepted that

for the same information rate, non-binary transmission mode is inferior to binary signalling in

an AWGN channel with or without multi-user interference and multipath fading. We focus on

three binary transmission schemes:

1. Standard single-rate transmission which we will call single-channel, single gain (SC-SG)

mode. This is illustrated in Fig. 6.1 for four channels. To emphasize Walsh modulation,

we omit spectrum spreading due to PN spreading.

2. A higher-rate, parallel-channel transmission mode with identical spreading gain in every

channel, which we define as multi-channel, single-gain (PC-SG) mode. In the literature it

is also known as Multi-Code (MC) transmission. It is illustrated in Fig. 6.2.

3. A higher-rate, single channel transmission mode with reduced spreading gain, which we

define as single-channel, reduced-gain (SC-RG) mode. In the literature this mode of trans-

mission is also known as Variable Spreading Gain (VSG) or Orthogonal Variable Spreading
Factor (OVSF). It is illustrated in Fig. 6.3.
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Code-division multiplexing of a high rate user using two standard-rate channels.
Figure 6.2: A higher-rate input sequence is split into M (=2 in the case) parallel low-rate

streams such that the same SF ((=4 in the case) is maintained in all channels.

a I m--

a4

Code-division multiplexing of a high rate user using a reduced gain channel. A
higher-rate input sequence is Walsh modulated using the same code sequence

Figure 6.3: ai= [a 1 a11] =[1111] as standard CDM. This operation is equivalent to Walsh
modulation with a mother code a11 = [11] of reduced SF (=2 in this case). The
other child code a2 is no longer permitted for Walsh modulation due to code
blocking. See Chapter 7 for details.
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The low SNR condition R/W < 1 stipulates that the processing gain PG > I - Its actual value

can vary in the range (1, Nmax]. When bit rate Rb is increased by, say N, we can either pump

more power into a single channel (by reducing PG by N) or split the power among N parallel

channels with each maintaining the same PG. A question of interest is whether an increase in

transmit power by a factor N compensates for a reduction in PG by the same factor such that

the bit-error probability at the receiving end remains unchanged. This will be addressed in

subsequent sections. We first begin with the preliminaries: a CDM system model and spread

spectrum modulated signal design.

6.1.1 System Model

The functional blocks of a code-division multiplexed transmitter are depicted in Fig. 6.4.

The baseband section consists of a bank of channel encoders, data and spread-spectrum mod-

ulators. For our analysis, we ignore the channel encoder block since we are not interested in

bandwidth expansion due to error-control coding. All BER analyses presented in this chapter

are for (channel) uncoded bits.

H1

channel
information m encoder

source rate r

H2

information mf12 channel

source 
encoder

sourcerate r

4

0

S HK

channel 

H

information MK encoder XK level
s(uD rD sh ift

source rate r

level
shift

level
shift RF

carrier
modulator

baseband g(t) s(t)
A sffilter Xt

Aocos(2Tfo t)

Figure 6.4: Channel multiplexing in CDM base transmitter

If the information sequence of user k

Xklj] = ( ... X[-2, Xk[- 2], X[-1], X[Ol, XkIl], Xk[2],
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is binary-valued with elements from the finite set F 2 , then orthogonal modulation is equivalent

to binary modulo-2 addition

Vk[m] = Xk[j] D Hk[kT]

where -k[mn] is the kth row of an (N x N) Hadamard matrix and m is the time index. Equiva-

lently, 7 -kn[m] is treated as a periodic3 Hadamard code sequence of period N. We use different

time indices (j for the data Xk[jl and m for the Hadamard sequences) to emphasize different

clock rates such that

. _ m

which implies that every data bit is modulo-2 added to a Hadamard sequence of length N. If

the bit rate is denoted by Rb, the clock rate of a train of Hadamard sequences is R, = NRb.

Similarly, spread spectrum modulation is written as

Bk[n] = Vk[Th] ( PIn]

where P[n] is a cell specific, periodic pseudo-random noise sequence with clock rate R, = nRb

and period P. The ratio k, = Rc/R, = n/N is bandwidth expansion due to spectrum spreading.

The period of the superimposed orthogonal sequence Bk[n] is

Nc = ke N (6.3)

Alternatively we can combine orthogonal and PN modulation into a single binary operation:

Bk[m] = Xk[j] e AInT]

where the superimposed orthogonal sequence is defined as

Akn] = P[n] G Hk[ml

Both interpretations will be useful in the following sections. Before linear combining of parallel

SS-modulated sequences, every sequence must first be level-shifted. Following our convention,

we denote the antipodal equivalents of all Galois binary sequences (labelled in upper-case

letters) by their respective lower-case letters:

Xkrl]l -) xkjrt

AkIn] - xk[n]

p[n] - prn]

Bk[n] -- bkln]

3 1t is understood that the spreading and modulating discrete-time sequences (PN and Hadamard) are periodic.

For example, for a Hadamard sequence, k [m - Hk [tN + ml for t c Z.
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Following our convention as stated on page 186, the antipodal equivalent of a Hadamard se-

quence 7-k [m] is denoted by Wk[m]:

wk[m] = 2ik[m] - 11x N

If we wish to express a periodic Walsh sequence with the same chip rate, the modified sequence

is labelled as

such that the superimposed orthogonal sequence of user k is

ak[n] = [In] -p[n]

A linearly data modulated signal for an input data sequence ck[i] can be expressed as

9k(t) = kci] f(t - iT)

where T = 1 /R. For a spread spectrum modulated signal,

Nc -1

f(t)= > i*(t - ITC) (6.4)
1=0

where the chip rate R, = 1 /T, and

Nc

Ckli] = Xk[i] Yj Qk[J -+ iNc]
j=0

Equivalently,

ck Xk ak[i ] (6.5)

The expression for a spread-spectrum modulated signal becomes

(i+1)Nc -1

9k(t) = Txk[i] Y3 ak[r1(t - iT - rTc) (6.6)
i r=iNc

Using the relation T = N Tc,

(i+1)Ne -1

= Xk[i] akIr] * t - [iN c +r] T, (6.7)
i r=iNc

An equivalent and simpler -nonetheless less revealing- expression is

=3 bkW *(t - ITc) (6.8)
t
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This expression is useful and adequate when we model interfering signals from neighboring
base sites. The sum of all (K, + 1) users is

Kc Kc

g(t) = gk(t) = [j(t - ITc) T bkUN] (6.9)
O I k=O

ANT
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three clases
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- synthesizer

rass 1: rate c rate R

clockI

Figure 6.5: Data and carrier modulation in CDM transmitter

Each data and spread-spectrum modulated baseband signal belongs to one of the following
three. classes:

class 1: standard rate channel with processing gain N 1 and bit rate R

class 2: higher rate channel with processing gain N2 = N 1 and bit rate MR

corresponding to single-gain M parallel channel transmission mode

class 3: standard rate channel with processing gain N3 = N 1/M and bit rate R

corresponding to variable-gain single channel transmission mode

We wish to evaluate the following:

1. The BER of a class 1 user when M class 1 signals plus other interfering signals are present
in the system.

2. The BER of a class 1 user when class 2 plus other interfering signals are present in the
system. This result will be compared with the BER from Step 1 to determine if a higher
rate (PC-SG) signal worsens the reception quality of a standard rate (SC-SG) user.

3. The BER of a class 1 user when class 3 plus other interfering signals are present in the
system. This result will be compared with the BER from Step 1 to determine if a higher
rate (SC-RG) signal worsens the reception quality of a standard rate (SC-SG) user.
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4. The BER of a higher rate class 2 user when other interfering signals are present in the

system.

5. The BER of a higher rate class 3 user when other interfering signals are present in the

system. This result will be compared to the BER from Step 4 to determine if PC-SG and

SC-RG transmission modes are comparable in BER performance.

For class 2 multi-rate reception, the receiver decodes M parallel low-rate orthogonal chan-

nels. It is assumed the information in each of the M parallel channels is independently coded

and modulated such that joint decoding of all M parallel channels offers no advantage over

autonomous decoding of each channel separately. It is plausible that joint encoding of data

in M parallel channels may be beneficial, especially in a multipath fading environment where

self-interference among these channels exists. (See Sec. 6.5 for an interesting discussion on

optimal combining techniques.) We, however, will not consider such option. This assumption

is critical since it implies that we need not evaluate Steps 2 and 4; the reception of a class 1

signal or a channel of class 2 signal are indistinguishable. In short, we are concerned only with

the interfering effects of the same- and reduced-spreading gain channels on a low- or high-rate

user.

6.2 BER Analysis of Single-Carrier CDM Channels

If a single IF or RF carrier is used for frequency translation, the transmit signal is

s(t) = /2P g (t) cos (2fot)

Kc_

TLSk(t)

k=0

where Pt is the transmit power and the carrier modulated signal in each channel can be ex-

pressed as

(j+1)N,,-l

sk(t) = 2Pt cos (27tfot) Y xk[j] T a[r] t - [jN c + r]T)
j r=jNc*

the subscript * 1, 2, 3 describes the class. Rewriting each class signal explicitly,

* Class 1: Single Channel, Single Gain (SC-SG)

(j+1)Nc -1

Sk(t) = cos (27rfot) Txk[j] T a[r]lip t - [jN, + r]T) (6.10)
j r=jN,
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0 Class 2: Parallel Channels, single Gain (PC-SG)

M

Sk T skm(t)

M=1

where

Skm(t) = 2PtiCos (2Tfot) Xkm[j]

(j+1)Nc -1

ak1mk[r] * (t - [jNc +r] Tc) (6.11)
r=jNc

It is understood that the parallel channels use mutually orthogonal code sequences

(j+l)Nc-l

Yj
r=jNc

a2k[rl a21 r] c [k - ]

N Class 3: Single Channel, Reduced Gain (SC-RG)

Sk(t) = V2MPt cos (27rf t) Xk xkj]

(j+1) (Nc /M) -1

r=jNc/M
ak[rl t- jNc

\M

In all cases, the bit energy Eb = PTb is the same. (Tb is the bit duration.) As a check, we can

compute the power in each class. For class 1,

Transmit Power = J s (t) dt
T O j

= 2Pt I + cos 47rf Ot *2(t) dt

PtlJ '* 2 (t) dt + r cos (47f ot) 4 2 (t) dt

Due to symmetry the second term is approximately zero for f. > 1/T, and the expression

simplifies to

Transmit Power = Pit

where we assume that the chip pulse is normalized for unit power:

- JO.*2 (t) dt=1
TC

It is straightforward to check that for a single channel with reduced gain

( 2MI)
2

Pt 3 = 2 Pti =MPt

+ r] Tc) (6.12)
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For a class 2 channel,

M M

Pt2 = 5s(t) dt = J ski(t)skf(t) dt = skm(t) dt
M-n=1

The double summation is broken into diagonal and off-diagonal terms, and each of the latter

terms equals zero since the parallel codes are mutually orthogonal. Therefore, Pt2 = M Pi.

Assuming the channel is LTI with unity gain and the receiver front-end thermal noise is

modelled as zero-mean AWGN with one-sided PSD equal to N0 , the received signal can be

expressed as

r(t) = so(t) + -n(t) + I(t)

By convention the target signal is denoted as so(t), irrespective of the class. The interfering

signal I(t) is

IMt = Ls" t1- + Ls - + + s (t -- r

i=1 i=1 i=1

where J, denotes the number of interfering signals belonging to class c. Each interfering signal

is classified by a parenthesized superscript. Since the broadcast signal of each site is the sum

of time-synchronized signals from parallel channels, they do not cause any interference at the

receiver after SS demodulation. In the above equation we are referring to interference from

broadcast signals of neighboring cells. Delayed replicas of the target signal (i.e., multipath

components) are dealt with later in Sec. 6.5.

6.2.1 STD-CDM Interference Channels

We first consider a multi-cell CDM network in which every interfering channel has the same

standard information rate. Therefore J2 = J3 = 0 and the target signal so(t) belongs to one

of three possible classes. For convenience we label the number of interferers as J by dropping

the subscript '1'. We first consider the ideal AWGN channel model. A block diagram of a CDM

receiver for user 0 detailing the most important functional units is depicted in Fig. 6.6.

At the target receiver the received IF signal is

r(t) = so(t) + si(t - -ti) + n(t) (6.13)
i=1

We note that the above expression of a received signal in a multi-cell forward link model is

identical to that of uplink reception of a CDMA signal in chip asynchronous mode with J multi-

access interfering users. The two significant differences are
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Figure 6.6: Carrier, spread-spectrum and data demodulation in a CDM receiver

1. The number of interfering signals J, which is equal to the number of neighboring base

sites with strong interference power levels, may be much smaller than the number of

interfering signals in a typical CDMA uplink model.

2. In uplink CDMA each interfering signal si(t) is binary data and spread-spectrum modu-

lated while in our model, si(t) represents a broadcast compound signal -which itself is

a linear sum of many elemental binary data and spread-spectrum modulated signals. As

we shall see, this fact becomes significant when we consider the BER accuracy of various

Gaussian approximation methods.

After IF demodulation,

T(t) 0cos (27rf 0t)

go(t) 1 + cos47tfot] + g (t -T) [cos 4i + cos (47tfot + 4)] + z(t)

where

z(t) = - n(t) cos 27rfot
P0

and the relative phase offset

4) = -27rf 0ri

In our derivation we did not include an absolute carrier phase term Ok for each interfering

signal, simply for the sake of clarity. Otherwise, the phase-offset term can be rewritten as

4)k = OGk - 27tf otk

After removing double frequency terms by low-pass filtering

y t) = go(t) + cos40gi(t-ri) + n(t) cos 27rfot + z(t)
i=Y MP 0ot ~i-Cs4ig~
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We assume the most general scenario of code and phase asynchronism. (The reader is referred

to page 171 in Chapter 4 for classification of time synchronism.) Rewriting in terms of discrete-

time sequences and common chip pulse

= bo[1*(t - Tc) + L@iL bi[1t]1*(t -T -- tTc) + z(t)
1 i=1 1

where

Pj = aj cos $c Pi c

P0 cX0

Each received power level Pi is related to its respective channel gain ci as follows:

Pi= K Pt

If the channel is ideal, ci = 1 for all i E NJ. If we assume every channel induces attenuation

only, then the gain cvi is treated as a constant in the range (0,1) with cO > cxj for all i = 0. In the

most general case of signal fading, each ax is a RV assuming one of possible fading amplitude

PDFs listed in Chapter 2.

By setting -rj = q1Tc + Aj, and after chip pulse baseband matched filtering

=(m+1)Tc
m] = TC

y(t)*(t - mTc)dt

J

= bo[m] T + P b[1 - q p, + bi[ - q - ,+ z[M]

where the Gaussian noise sample is

2 (m+)T
Z[P = J7

o TC

n(t) cos 2nf ot*(t - mTc)dt

It is straightforward to show that

E [z[mTl z[n] =0 m # nVar[z[mT] - 2

(6.14)
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After despreading for the target zeroth bit,

Nc-1
Y= Yi ij[m] ao[m]

= XO[0] N c Tc

J NC -l

+ L PgiP* T bjI
i=1 1=0
Nc -1

+ Y zi[m] ao[ml
mTV-O

- qd ao[l] + 0* T bj[I - qj - 1] aO[l]
1=0

Y = xo[O] Tb + I + 11

where p, and 0* are aperiodic auto-correlation pair of common chip pulse

nience, we omit their dependence on A1. The interference vector is

(6.15)

4(t). For conve-

(6.16)

The "cross-sequence" terms are

J[R] = bi[R - q Jj aO[l] Jl] = b[ - qi - 11 ao[l] (6.17)

The noise term

1 = j z[m] ao[m]
m=O

is readily shown to be Gaussian distributed with zero mean and variance

(6.18)

2 N o Tc No Tb

Note that the interference vector is a function of the following parameters:

" The total number of interferers J, which is a function of the cellular topology. For example,

in a hexagonal configuration there are 6k (6,12,18,24, ... ) kth-tier cells surrounding the

target cell.

" The propagation delay vector

in which each component -1 is a function of the (possibly diffracted) distance between

the interfering site and the target user modulo Tb. Since each signal path of an interferer

traverses through a different path, the set F consists of mutually independent RVs.
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" The relative phase-offset vector

(D = N, $ 2, . -. , J

in which each component 41 is relative phase difference between interferer i and the

target user's phase (4o = 0) modulo 27r. It is a function of the propagation delay T' and

the absolute carrier phase 0j. Since 'r and Oj are independent, we immediately deduce

that the relative phase offset 4)i and T1 are also independent. Since the absolute phases

from each site are independent, the set D consists of mutually independent RVs. Their

derived function set { cos ck} appears in eqn. (6.16).

* Since Tj = qjTc+ A, the chip offset qj is a discrete RV with an integer support [0, Nc - 1];

the chip delay Aj is a real RV with support [0, Tc). Each RV Tj and its equivalent set

{ Aj, qi} are interchangeable. For each path i, Aj and qj are independent.

* The spreading factor N ,, which is a function of the class of a target user.

* The continuous-time aperiodic auto-correlation function set {p P, P* } is a function of

the shape of common chip pulse 4p(t) and the chip delay Aj. These two functions are

uncorrelated since their correlation windows do not overlap. We already know that the

set of chip delays {At} consists of independent RVs. Therefore, two function sets of

independent RVs, {p*(A), 0p(Al)} and {p* (A), 0*(Aj)} are mutually independent.

* Both cross-sequence terms (,J[] and 1j] are functions of the discrete chip offset qj. For

uncluttered notation, their dependency on qj has been omitted in above expressions. Both

are functions of the target and interfering user's signature sequences { ao [1], b[1] }. Since

jl] and &[l] are functions of { ao[W], bi[t], qi} only, they are independent of R* for each

path i.

" The relative power gain a1 = \Pj/Po is a function of both the channel gain ci and

the transmit power level Ptj of each interfering signal; i.e., it is a function of M. Since

propagation paths are independent, the set { cx} consists of mutually independent RVs.

Likewise the set {a4} consists of mutually independent RVs. For each path i, the channel

parameter set Cj = {Ti, cpi, oc} consists of mutually independent RVs. Furthermore, the

vector C = { Ci} consists of mutually independent RVs.

Lumping all above relevant terms we define the set of two mutually independent RVs for each

interferer i

Gi= {C, bi[t] (6.19)

such that

G={G, G2 , ... , Gj
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is the set of independent RVs that depends only on the channel state and interfering users'

signature sequences. The target user's signature set ao[l] is common to all interferers. The

power term Pi is a function of a deterministic quantity M (class related) of the interferer while

the number N, depends on the class of the target user.

6.2.2 Exact BER Computation

Before we derive the exact BER of received symbol Y in eqn. (6.15), we briefly review basic

detection principles. If no interference is present, eqn. (6.13) reverts to the standard signal

detection problem, perturbed in independent, zero-mean additive noise process

r(t) = so(t) + n(t)

Its equivalent vector form by geometrical projections (along orthonormal basis functions) is

eqn. (6.15) without the interference vector

where so(t) = ± Af(t) and f(t) is the only orthonormal basis function for 2-PAM binary signals.

Assuming data bit +1 is sent, it is straightforward to show that for white noise with PSD u.2:

E[Y + ]=A Var [Y + = 02 (6.20)

where u.2 is the variance of -i. The noise samples at bit sampling times are uncorrelated. If the

noise process n(t) is Gaussian, then the noise samples mutually independent. If the received

bits are ISI-free, the BER for a train of bit sequence is the same as that of one-bit (one-shot)

transmission. Then the conditional probability of error is

Pel+ Q )

where the complementary cumulative distribution function (CDF) of a standard Gaussian RV is

Q(x) = -Fx(x) = eu2 du (6.21)

where the RV X - Af(O, 1). Since we know that the energy of data symbol so(t) -carrying one

bit of information- is ESb = A2, and using the expression o-2 = N ./2 for the noise variance, the

bit-error probability of a stream of equally likely memoryless input bits is

Pe+ =el- = e = No
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Equivalently, using the following relation between the baseband signal power P and the bit rate

Rb and the maximum Nyquist symbol rate R, through an ideal channel of W Hz,

Sb=PRb RS=Rb=2W

Here it is assumed that its symbol rate R, equals the bit rate Rb since the symbol so(t) carries

one bit of information every T sec. After substitutions, the bit-error probability can be expressed

as

Pe = Q /SNR) SNR = P/K (6.22)

where .A = (N 0W) is the noise power. If the noise is not Gaussian distributed, all above expres-

sions still hold, except for the Q-function which is replaced by another suitable complementary

CDF function. With the interference inclusive, the received symbol is

Y=±A+I+r- A=xO[O]Tb

Conditioned on a particular set of values W = {ao[1I, G} for the interference vector I, the

conditional error probability can still be expressed as

Pew = Q( )

where

E [YW;+] = A* = A + LI Var [Y W;+ =(*) 2 = N o/2 (6.23)
i=1

which leads to an average bit-error probability by conditioning on all possible statistical out-

comes of the interference vector:

P=J Q (SNR*) fw(x) dx SNR* =( ) (6.24)

where fw(x) is the joint pdf of all J interfering signal parameters. As an alternative, we can

compute the exact BER by first determining the joint pdf of the disturbance RV D = (I + 11)

and then deriving its complementary CDF function. Since the noise and interference terms are

statistically independent, we can write the pdf of D as

fD = fn * fI

Whichever option we choose to compute the BER, it is tantamount that we derive the joint

pdf of the interference vector I. First, we note that each interference term Ii is a function

of Gi. Using our knowledge of the mutually independent set G, the joint pdf of the sum of

interferences I is the linear convolution of the marginal pdfs all components:
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Equivalently, in terms of the moment-generating functions (MGF)

M,= M 1 ,- M 12 ... MIJ

If all the components are iid, the MGF simplifies to (M1) j. All that remains is to derive an

expression of the marginal pdf of each interference term -which we do so next. First, we

expand an interference term in eqn. (6.16):

NC -1 N, -1

Ij = ai cos 4ipi, * T [J] + , [ Ti ]} (6.25)
1=0O 1=0

In order to proceed, we assume that every signature sequence is an independent bipolar, sym-

metric Bernoulli process such that

E [bi[] bjim] = 6it m (*)

ao[t] ao[rn] = m(**)

Since the discrete-time sequences are binary antipodal, the value of their element-wise products

-Jl] and $j[]- are either 1 or -1. Therefore, the product terms are bipolar Bernoulli RVs

(see Appendix 2B). Since both outcomes of each RV are equally likely, both RVs are symmetric.

Their respective summations

N, -1

R g= T (l] (6.26)
1=0

N, -1

= i4[] (6.27)
1=0

are symmetric bipolar Binomial RVs, and it can be shown that they are statistically independent.

The proof is as follows. The correlation of the sums is

Nr-1 Nr-1

E [R 1 Z E[(1[])(R[ (6.28)
=0 m=0

The diagonal terms are zero by (*). Similarly, the off-diagonal terms are also zero by (**). We

see that each interference term

I Q aj cos 1{ p, R + gK}

can be expressed in terms of the power gain RV aQ, a derived function cos 4i of phase offset

RV two bipolar Binomial RVs, and two derived functions p4[ and Pf, of the chip delay Aj.

All terms are mutually independent. Note that other RVs Tj and qj are no longer relevant
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because we have assumed the sequences are Bernoulli processes. If instead we are dealing with

deterministic (known) sequences, they exact values of 4 and Rg can be determined for a

given qj.

In order to derive explicit closed-form expression for the pdf of f 1 we assume the following:

1. The phase offset 4)i is uniformly distributed in the range [0, 27r). We know from Papoulis

[97] that the pdf of Rf . cost is an inverse sinusoidal function:

Jul < I

f R, (u) = { U/ _ 2 [

0 Jul ;> 1

2. The power gain a1 = VPj/Po is treated as a deterministic quantity. This assumption is

valid if we interpret the channel gain cxj as path loss due to distance propagation. (See

Chapter 2, Section 2.1 for details.) If we choose to include signal fading in the model,

then oci is a RV with one of the possible fading distributions outlined in Appendix 2A. We

defer the BER analysis of fading models to subsequent sections.

3. Chip delay Ai is uniformly distributed in the range [0, Tc).

4. The chip pulse is rectangular and chip-time limited; thus the expressions for the auto-

correlation functions simplify to

A' p = Tc - = Tc - Ai

For the sake of completeness we next derive an alternative expression as proposed by Morrow

[89]. First, we manipulate the second summation term as follows

N,-1

T bj[1 - qj - 1] ao[t]
1=O

Nc -1

Ne[xt + bp[ - q - 1 ao[ ] ao[ - 1] co[t - 1]
t=1

Next, define the partial autocorrelation function of length 1

00[1; 1, 0 = ao[l] ao[R - 1]



For convenience, let's abbreviate it to 00[t]. The summation further simplifies to

N, -1

= i[0] + [ bj[1 - qi - 1] 00[t] ao[ - 1]
1-=1

N, -1

= $1[0] + T [t - 1] 00[1]
t=1

By a change of variables V = - 1

N, -2

=- o0 + T i[t'l 00 [1 + 1]
l'=O

We can also rewrite the first summation term as

N, -2

j[N c- 1]+ T [i]
t=o

By combining the two summation terms

N, -2

=4 g i[ 1] + 0g, Zi[o] + Y W[{] 00[+ + 11 P + P* ,
1=0

For a set of integers in the range NN- 2 , let's define

U {1Jt IOoR + 1] = ao~t]aoRt

and its complement

Uc= { tI o[t+ 11 = ao[t] ao[t

+1] =1}

+1]= ]

such that

U U Uc = NNc-2 = {0, 1,2, ... , Nc-2}

and

U+U'=Nc- 1

where the cardinalities U = |U and U' = IUC1. Rewriting the interference term of eqn. (6.25),

i p, i[N

=i fpi{P iN

+ (P* + )L t]+ (Pii'-i) Y
ICU tEUC

+ C1, f + ,

JR]}

where the even and odd periodic auto-correlation functions are defined as

CI, = Pit±1) + ) P = ) 0
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For rectangular chip-time-limited pulses

C*= Tc +=z Tc - 2A

Note that the RVs

f2= ((i[W (' = 2 1[]
ICU lEUc

are independent, symmetric bipolar Binomial RVs. Similarly, [N, - 1] and JO] are a pair of

mutually independent symmetric, bipolar Bernoulli RVs. Furthermore, it is easily seen that all

four terms (, fi', 4[Nc - 1] and (1[O] are mutually independent. For rectangular chip-time-

limited pulses, the original expression for each interference term is

Ij = aj cos c (Tc - Ai) R(. + Ai R}

After above transformations, it can be rewritten as

aQ cos { (Tc - Aj) 4i[Nc - 1] + Aj ([] + TC i + (Te - 2Aj) j'}

Note that in the original form both Binomial RVs R c and Rg are of length (N c -1). When their

PMFs are conditioned, we must consider all N 2 distinct outcomes. In the transformed form, the

Binomial RVs (2 and f2' have lengths that are dependent according to the relation U + U' =

Nc - 1. For an arbitrary case where the length of Q = x, then the length of (2' = N, - 2 - x.

The total number of possible outcomes is (x + 1) + (N c - 1) - x = N c. Since the value of x

spans from 0 to N c - 2, the total number of PMF conditioning equals N c(N c - 1). By including

the number of conditioning for Bernoulli RVs 4[Nc - 1] and &t0], we conclude that there is no

difference in the amount of computational complexity between the original and transformed

expressions.

6.3 Various Gaussian Approximations

As the name implies, every Gaussian approximation technique is a convenient tool (with re-

duced computational complexity) that computes an approximate BER of a desired CDM re-

ceived signal perturbed by multi-user interference and zero-mean additive white Gaussian

noise. In each variation the interference vector I is modelled as a Gaussian RV to various

degrees of conditioning. The conditioning parameters are

1. channel variables: relative propagation delay ri, carrier phase offset cK, channel gain ftj

(mostly due to path loss)

2. system design parameter: the spreading factor Nc
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3. system design parameters: statistical or deterministic correlation of signature sequences

{ b[1]} of interference signals plus the target user's signature sequence ao[l1

Since the impulse response of a cellular radio channel is time-varying random process, its vari-

able set Ci = {T, ck, cq} is a random vector. Therefore, we can only meaningfully measure

the average BER of a CDM signal in which the expectation is over the joint pdf of C. Fortunately,

the random RVs in the set C are mutually independent and the averaging of BER is achieved by

taking successive expectations over each marginal distribution of Ti, 4j and cq, respectively:

V- = J j'JPe( W, (DI ) f r(u) f D(v) f ,(w) du dv dw

The remaining problem is the analysis of signature sequences and their correlation properties.

In a multiple-access channel model where a single receiver jointly decodes CDMA signals from

many scattered sources, it is prudent to assume that the signature sequences are deterministic

-since the same signature sequences must be regenerated for despreading. In this model a

deterministic value of bracketed terms in eqn. (6.16) can be computed; or as an alternative, we

can derive some tight bounds. This has been the paradigm of early research activity in CDMA

BER analysis. For the broadcast model where the target receiver has no knowledge of the

signature sequences of interfering users, it is more meaningful to assume their sequences are

random with certain statistical distributions. The most popular model assumes an interfering

signature sequence as a stream of independent, symmetric and bipolar Bernoulli RVs. This may

be due to its simplicity and a good statistical fit between a Bernoulli random sequence and a

practical binary PN sequence. (See Chapter 4, Sec. 4.6 for details.) Therefore, in every Gaussian

approximation technique that we cover next, it is assumed that every signature sequence is a

symmetric, bipolar Bernoulli random process.

From the perspective of system analysis, the Gaussian approximation of the interference I

is very attractive because we have a ton of knowledge in communications theory, specifically to

signal detection in additive Gaussian noise. We know that the BER is a non-linear function of a

single parameter: the signal-to-noise power ratio SNR, or equivalently, the ratio of bit energy to

noise spectral density Eb/NO. [In fact, we know that the BER Pe = Q (SNiR). ] Complexity of

numerical computation is low. However, in the past averaging of the Q-function (say, over the

RV 0) is cumbersome because the conditioning RV -the signal-to-noise ratio SNR- appears in

the limit on the integral

Q = Q( SNR(0)) f ,(u) du = J J e-- fe(u) dv du
f 2fSNR"(, 

)

Here the bar over Pe denotes statistical average. In order to reduce the computational complex-

ity, it is desirable to perform statistical averaging over SNR(0) (resulting in SNR) rather than

over Pe. As we shall see in this section:

6.3 Various Gaussian Approximations



" The Standard Gaussian Approximation (SGA) measures the average bit-error rate Pe by

first computing the mean of SDR over all random parameters W = {C, bi[], ao[] }. Then

Pe =Q(V SDR)

* The Conditional Gaussian Approximation (CGA) measures the average bit-error rate P, in

two steps: First, it determines conditional Ve {cIN} by computing the conditional mean

of SNDR over all random parameters {Ti, ci, b[11, ao[] }, except for the random phase

ck. Second, the BER is averaged over the PDF of phase $j.

Pe= Q( SDR) f(u) du

Note that the above is a vector integral; i.e., the averaging is performed successively over

the PDF of each independent RV ji. The merit of singling out the phase term in CGA is

explained later in this section.

* The Improved Gaussian Approximation (IGA) measures the average bit-error rate Pe in

two steps: First, it computes the SDR averaged over signature sequences {bj[] } and

ao[I]. Second, the average BER is computed by averaging over the channel random vector

C. Hence,

Pe=Q( SDR f,(u)du

Note that IGA measures an approximate BER since averaged SDR (averaged over the

statistics of signature sequences) is not conditionally Gaussian. The exact average BER is

computed by averaging over all random parameters W of the interference vector I:

Re= j Q R)fw(u) du

Before we give a thorough discussion on each Gaussian approximation method, we wish to

point out that nowadays computational complexity that arises from statistical averaging of the

Q-function is no longer relevant. Due to faster and more efficient mathematical tools (see Sec.

6.6.5) and powerful computing machines, the exact BER can be computed with moderate effort.

However, we are still interested in various Gaussian approximation schemes because we gain

some insights into the effect of different random parameters and their intertwined relationships

on the overall performance of a CDM system.

6.3.1 Standard Gaussian Approximation (SGA)

Referring to eqn.(6.15),

Y = xo0 Tb + (I +1])
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we can combine the interference plus noise term as the disturbance D that disrupts the recep-

tion of the desired signal. Then it is easy to show that conditioned of the set of RVs C = { Ci}
where Ci = {f1, Li, cet}:

E[YC;+] =Tb=E[Y +] (6.29)

Note the conditioning difference in the above with that of eqn. (6.23). Here the spread-

spectrum sequences are treated as a stream of independent (symmetric and bipolar) Bernoulli

RVs such that
Nc-l N, -1

E[Ij Ci;+ = p E [bj[1- q]] ao[l] + Y E [bi[-- q1 - 1Q] ao[l] 0
1=0 1=0

Using compact notations of eqns.(6.26) and (6.27), we can compute the conditional variance

of the disturbance

Var [D C;+] =

Ej~ p*R , + P*R , p*Rq + OPRn C 9

The off-diagonal terms (i # j) equal zero according to (*), which simplifies the expression to

E a (cos cI)2 P ,2 + p , R ±2 + } p* CJ + U, (6.30)

By virtue of the relation in (*) and the symmetry and bipolarity of the desired user's sequence

(**), the third term in the bracket (after averaging) is zero. If we treat the power gains ai as

constants among all interferers (with the reference cxo = 1), then aj = ci for all interfering

signals. For the sake of simplicity we further assume cxi = a. Averaging over the set of iid

uniformly distributed phase 4) c [0, 7T)

X2 J o2R~
Var [D Ti;+1 = 2JE ,i + P 1i Ti + 0

Note that
N, -1 N, -1

E [R 2 E[[b[t- qd ao[1[bj[m - q] ao[Tl]] = N,

by virtue of (*) and (**). Similarly, E [2 N. Averaging over the uniformly distributed RV

Ti E [0, Tb), and after some grungy steps

VarD +1 - 2N +-1 i )T ( (Tc -Ai) 2d() + o 2
2 =1 i=O +

_2Nc 1 2 NcTT3 + No Tb (6.31)
2 Tb 3 2 P

S Tb +NoTb
3N 2 P0
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The average received signal-to-disturbance power ratio can be expressed as

T 2
SDR(cx) =

3Nc 2 Po

(6.32)

where the target user's received bit energy 9b = PO Tb. Without any interference, the above

expression reverts to the conventional Gaussian model with SNR = 2sb/N ". A more insightful

expression of SDR is in terms of the received chip energy Sc = Sb/Nc:

SDR(o) = N &

-c2 JSc/3 + N 0 /2

For each chip detection, spread-spectrum modulation with a spreading factor SF = N c offers a

power gain of Nc over other interfering signals, but has no effect on additive Gaussian noise.

Note that the effective chip energy of each interferer is Sc/ 3 . This reduction in the total num-

ber of interference by a factor of 3 is a direct result of chip and phase asynchronism. It is

straightforward to show that

" if all interfering chip pulses are aligned, this factor is reduced to 2. This scenario applies

to both bit and code synchronism.

* If only the phase offsets are all equal to zero (assuming there is chip asynchronism), this

factor reduces to 2/3.

" if all interfering chip pulses are aligned and the phase offset is zero for all signals, this

factor is reduced to 1. This condition of chip and phase synchronism is highly unlikely in

a multi-cell interference setting. However, it perfectly mimics the broadcast model where

code and phase synchronism occurs. Therefore, it is important that codes with very low

cross-correlation properties be chosen in a broadcast setting. For that matter orthogonal

codes are optimal.

The Standard Gaussian Approximation (SGA) uses the signal-to-disturbance ratio SDR(cr),

averaged over all the statistics of the channel {Ti, < k} plus the interference signals {b[1] } and

the desired user's sequence ao[l] to compute the bit-error rate:

Pe= Q (SDR( c)) (6.33)

If we wish to treat the channel gains {cxi} as RVs, then the above error probability can be

averaged over their statistics. As obvious from our derivation, the accuracy of SGA depends on



the validity of the Gaussianity of the interference vector I. That is, the Gaussian approximation

of I rests on the applicability of the Central Limit Theorem (CLT) which states (loosely according

to Feller [34]) that the cumulative distribution function (CDF) of a sum of J independent, well-

behaved RVs approaches that of a Gaussian RV for large J. All elemental RVs in the sum are

well-behaved if none has a variance much larger than the rest. In a general setting it is not

necessary that the RVs have the same distribution, but it is sufficient to guarantee the well-

behaved stipulation. Rewriting the interference vector explicitly

J J NC-1 N,-]

I = Ii = L aj cos ( j p* bj[1 - qd] ao[t] + P* bj[t - qj - 1] ao[l]
i=1 i=1 1=0 1=0

we can deduce the following:

* For large J, the CLT guarantees that the interference vector I is approximately Gaussian

distributed as long as every interfering term I. is well-behaved; i.e., there is no term with

a dominantly large ct. The numerical value of the spreading factor N, or the statistical

distributions of the embedded RVs oc, $1, T and {bi[] } are less critical.

" For the special case of chip and phase synchronism (see page 171 in Chapter 4 for classifi-

cation of time synchronism), j) 0, p* = Tc and cos cK = 1, and the interference vector

simplifies to
Nc-1

I=2Ii= ociTc Y bj[1 - q - 1] ao[t]
i=1 i=1 1=0

If all interfering signals are well-behaved, i.e., if power control guarantees that c? -~X 2

for all i, then I is a nested summation of (Nc- J) symmetric, bipolar Bernoulli RVs. Note

that the symmetry condition implies that the resulting Binomial RV I has zero mean and

its pdf is symmetric about the origin. It is well known that a Binomial pdf approximates

a Gaussian bell curve. However, since the Binomial RV has finite support (in contrast

to a Gaussian RV with infinite support), the approximation in CDF is more accurate

for large lengths. If, however, there exists a dominant interferer with a large ca, the

Gaussian approximation fails because the well-behaved stipulation of the CLT is violated

-irrespective of the length (Nc- J) of the Binomial RV4 It has been shown by other re-

searchers by computer simulation plots that the SGA fails when interfering power levels

are non-uniform. Note that for chip and phase synchronism with power control, it is a

large value of the product (Nc - J) that attains the accuracy of the standard Gaussian

approximation model, and not the value of each term Nc or J.
4 The near-far effect in which a high-power interfering signal overpowers the desired signal is subtle in a multi-

user environment. As we have seen in the BER expression based on SGA, it is the total power from all interfering

signals that is critical, not the power level of a particular interferer. However, the BER based on SGA is less accurate

(i.e., more optimistic than the actual value) when a dominant interfering signal exists.
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" If there is chip synchronism only, the interference vector is

J J N,-1

1= j I = Tc L ai cos4 4 Y b[1 - qi - 1] a0[1]
i=1 i=1 t=O

Each Binomial RV in the inner summation has a shorter length (N ) and it is weighted by

two other RVs oc and cos cfi. Since ( cos 4) 2 < 1, it has minimal effect on the variance of

each interference term Ii, under the condition that the channel power gains oq are well

controlled. However, we know that if $j is uniformly distributed in [0, 7), its function

cos cij has a arc-sine density function. Therefore, if X is a symmetric, bipolar Binomial RV,

the resulting RV X cos 4) is no longer Binomial. In fact, its density function is no longer

symmetric or bell-shaped. Furthermore, it is well-known that the sum of independent

RVs whose PDFs are smooth and symmetric approximate the Gaussian CDF and its bell-

shaped PDF faster as the number of terms in the sum grows. We conclude that with phase

asynchronism, a large value of J (along with power control) is necessary for the accuracy

of the standard Gaussian approximation model. Note that in this situation, the value of

N, is of less significance.

* Finally, we note that based on the observation from the previous case, the role of the

spreading factor Nc is quite limited in affecting the accuracy of the standard Gaussian

approximation model. For the typical case of chip asynchronism and power control, the

high value of N, cannot compensate for a low number of interferers (small J). This

situation, where the SGA fails and the resulting BER becomes optimistic- has been noted

by many researchers who have plotted the SGA-based BER for various values of N. As

for as we are concerned, it implies that the standard Gaussian model will not detect any

difference in BER between a class 2, high-rate (PC-SG) target user (with a fixed N ,) and

a class 3, high-rate (SC-RG) target user (with a reduced N ).

6.3.2 Conditional Gaussian Approximation (CGA)

In the previous section we hinted that the product

Vi = Xi cos cj

in which Xj is a bipolar symmetric Binomial RV and 4ji is a uniformly distributed RV, has an

asymmetric distribution. Therefore, the joint pdf of the sum of several Vi's:

V1 +V 2 + V3 +...

which is the convolution of the marginal pdfs, does not resemble a "bell-shaped" curve that

typifies the Gaussian density function -unless the number of terms in the sum is very large.
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Based on this knowledge, we can afford to compute average SNR without averaging over the

distribution of the phase vector 0. From the previous section,

Var [D C;+ = E af (cosc#)2{ ,p ,i + p2,

Again, assuming the channel gain aj is a fixed parameter X, and using the randomness property

of the signature sequences according to (*) and (**),

2 E(cos ,)2 P2 + p2, C] + U

Averaging over iid propagation delays {'t} and after some massaging

Var [D D;+]
2 c2T2 J

3 Nc i.(o~)
which leads to the following expression for average SDR( x, (D):

SDR(x, CD) =
(E N cEc

3 2 cos2D + N0/2

i
cos2 (D = Lj( cos k)2

i=1

Assuming the phase offsets are iid with a uniform PDF,

Q _Di f(, O)_J 27T 2 . 27r Q ( $C= DR ( T
4= 2=O-0 ~Xj

d41 d4 2 ... d j

6.3.3 Improved Gaussian Approximation (IGA)

In the previous section we showed that the average BER based on conditional Gaussian approx-

imation as

Pe = Q ( SDR (, C)) f .,(u) du

If we condition the interference vector I over the statistics of {bi[] } and ao[1] only, the average

BER based on the improved Gaussian approximation is

S DR(C)) fc(u) du

the conditional signal-to-disturbance ratio is

T 2
SDR(C) = 2N, Z + o2

R } Ci]

+N 
Tb

+2 PO

(6.34)
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where

Z A Var[I I C] E af (cos q)) 2P + p} Ci
i=1 .i

From probability theory we know that if a RV g is a function of another RV X, the mean of g

can be computed in two ways:

E[g(X)] =Jufg(u)du= g(x)fx(x)dx

Some authors coin this equivalence the Law of Expectation. Using this analogy, we can rewrite

the average BER as

Ve= Q Tb fz(u) du (6.35)

Explicit derivation of the above integral can be found in [89],[74]. In a more general setting,

we can compute the variance of I by conditioning over the statistics of ao[t] only. Note that

Nc-1 Nc-1

E [ICi;+] = Pi p T1 E [b[l - qi) ao[1] + T E [bi[l - i -1] ao[1] = 0
1=0 1=0

as long as either b[1] or a0 [1] is treated as a symmetric, bipolar Bernoulli process. In this case

the conditional variance is

Z' Var[IjC, bj[1]

= E a? (cosi)2 {2 + P2 R2 + 2 pepe 0t[]; l - qj, Nc - 1] Ci, bi[1]

The above equation is almost identical to eqn.(6.30) except for the third (cross-product) term.

It can be shown that

N, -I Nc -1 -j 
it= E [P*pI Ci Y Y E [ao[ o[l] bi[t - qibi[t -- qj- 1] Cibi[I]

10 r=O

= E [P*O cj E b [ - qdbj[l - qj - 1] Cj, bi[]

= E[piio 4 j i[1; I - qj, N c - 1] Ci, bd[l]

The off-diagonal terms vanish due to (**). Unlike eqn. (6.28), the diagonal terms do not vanish

since the condition (*) does not hold. Unless the signature sequence bi[t] is memoryless, the

partial auto-correlation term E 1i[1;l - qi, N c - I]bi ] # 0. We know from Chapter 4 that
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all periodic PN sequences have memory (initial states). Hence, for known PN sequences, the

conditioning of the variance of I over { Ci, bjR] } is a formidable task. If the PN sequences are

unknown at the target receiver, we must then supply statistical properties (such as auto- and

cross-correlation) in order to evaluate the conditional variance of I. We therefore stress an

important fact that the randomness (Bernoulli) property of the signature sequences simplifies

the derivation of all Gaussian approximation techniques considerably. Otherwise, without such

closed-form expressions for the average BER, it is rather difficult to deduce any meaningful

insights into the role of channel parameters {Ti, ck, ao} on the BER performance in AWGN

channel. The numerical results of above Gaussian approximation schemes are presented in

Sec. 6.6.5. Next, we analyze the BER performance when the channel induces multipath and

fading.

6.4 BER Analysis in Flat Fading Channel

If the channel induces signal fading, the received signal as expressed in eqn.(6.13) can be

rewritten as

rtM = ao so(t) + L 0(i si(t - Ti) + n(t)

After demodulation and despreading the target zeroth bit is

Y = ao xo[0] Tb + I +1' (6.36)

The explicit expression of the interference vector I is still the same as eqn.(6.16). The Gaussian

noise term 11' is zero mean with variance

2 N 0 Tb
' = 2 Pt,

Note that this noise term ri' (without normalization by co) is not the same as -q. However, they

are related:
7 2 2 NoTb 2 2

2 =O

It is straightforward to show that applying SGA

E[Y {cj};-+ = coTb (6.37)

Var[D {xi};+ = T+ 2 (6.38)
3Nc oci + O9'

such that the signal-to-disturbance ratio conditioned on fading amplitudes is

SDR({i}) N, c &c
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Note that .' denotes the transmit chip energy, which is identical for all users in the network. At

the target receiver 0, the received chip energy of an interferer i is Scj = c?.'. After conditioning

on fading statistics, the average BER based on SGA is

P=e f J = Q SDR({oc})) dco dox, ... doc, (6.39)

In compact form

Pe = J (2)f .(u) du

where the channel gain vector

a ={f xo, al,...,lx

We can readily derive the average BER based on CGA

Pe = Tel(g)f ,(u) du

where the fade-conditioned BER P;(A) is similar to the expression in eqn.(6.34) except the

conditional SDR is
N c 0o 2s'

SDR (2, (D) = 2S' C N0d c~cos 2 P+ 2

Similarly, we can derive the BER based on IGA

ve jPi(2)f,(u) du

where the fade-conditioned BER PI(x) is similar to the expression in eqn.(6.35) except for a

slight modification

II()[Q( o(oT0 fz(u) du

\NcZ+ u,)

In Chapter 2 we noted that the PDFs of fading power (amplitude squared) tend to have skewed

shapes. We also noted that scaling of a Binomial RV by cos 2 4 destroys the symmetry of Bi-

nomial PDE Here we have an interesting situation where every interference term Ih is scaled

by both cos2 4)i and a?. Without explicit derivation of the resulting PDF, it is difficult to spec-

ulate on the Gaussianity of each interference term's PDE On the other hand, the signal mean

E [Y~ Io; +] itself (scaled by cco) is a random variable. Averaging the conditional BER over the

PDF of oco tends to "smoothen" the plot; i.e., several authors have shown that the inaccuracy

gap between the exact conditional BER and those based on Gaussian approximations is nar-

rowed by conditioning over xoo. Regardless of the accuracy of Gaussian methods, we note that

CDM BER analysis with flat fading is interesting only in academic sense since most RF channels

for wideband CDM communications are frequency-selective.
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6.5 BER Analysis in Frequency Selective Fading Channel

Before we analyze BER performance of CDM signal in frequency selective fading, we briefly
review the requirement and merit of diversity combining. If the same signal s(t) is transmitted
over L logical channels, the output of logical channel i is

si(t) = s(t) * fi(t)

where fi(t) is the transmit filter response of channel i. This type of communication is called
multi-channel. The received complex5 baseband signal can be expressed as

L
r(t) = ot e- st(t -rdt) + Ti(t) (6.40)

The baseband receiver, as shown in Fig. 6.7 consists of a bank of L matched filters. We will coin
each component receiver a "finger." The total number of channels L is called the diversity order.
Initially assume the set of channel gains and carrier phase offsets { oct, CK} as fixed parameters
known or can be estimated accurately by the receiver.

s(t)

fl(t) s1(t)

0

It) s(t

common
channel r(t)

j0

0

-X MF

~0

S
0
C.)

0
U2

C)
0

0.

Ce
0en
'2

Figure 6.7: Diversity combining of multi-channel signal

The sampled output of finger i can be expressed as

Qi[n]= 91 [ J j eli r(t)s(t - -r) dt]

= Es + T Z i cos(4i - 41) Ct(t) + Zi[n]

sFor our analysis, we assume s(t) carries binary information, implying it is real.

(6.41)



where S is the symbol energy. The periodic cross-correlation 6 function is

C1i(T) =f sl(t - tt)st(t - Ti) dt T = T -= Tj - Tt

With a slight abuse in notation, we omit the subscripts by shortening the index to T instead of

Ti. The additive noise sample is

z[n] = 91 [oieAi n(t)si(t - Ti) dt (6.42)
Jt=nT+-rj

For convenience we drop the brackets by considering the zeroth sample. Rewriting:

Qi = Ocfss +Si+zi

The second term is the self-induced (SI) noise generated at the output of finger i:

Si = Y LcicI cos(fi - (N) Cd(T) (6.43)

The logical channels can be separated in frequency (FDM mode) or time (TDM mode). By

careful design (as we detailed in Ch. 4, Sec. 4.8) the cross-correlation function can be set to

equal zero. If the additive noise process is Gaussian, then the finger outputs { Qi are Gaussian

RVs. If the noise process is white, then the outputs are uncorrelated. Finally, if n(t) is AWGN,

the outputs are iid Gaussian RVs. The combined output of the fingers (assuming SI noise is

zero) is
L L L

Q= Qt=Es, LX + Z Z = Zt (6.44)
t=1 t=1 t=1

from which
L

E[Q] = s oC Var [Q] =Var [z]
1=1

It is well known that for multi-channel communication, this type of diversity combining receiver

-where each finger "matches" not only the waveform si(t) but also the gain Oj and phase shift

cI- maximizes the output signal-to-noise ratio if the outputs (i.e., noise samples) are inde-

pendent. Furthermore, if the noise samples are Gaussian, it has been shown to be optimal -in

minimum BER sense. Assume n(t) is zero-mean AWGN with one-sided PSD of N.. The noise

samples z1 , z2 , ... at finger outputs are mutually independent with zero mean and variance

N0
Var [zi] = 2tf EN

6 It is true that both s (t) and s (t) are channelized versions of the same signal s(t). For current interest, when

we use the term "cross" in defining the correlation function, we are referring to two output signals from different

channels.
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The signal-to-noise ratio of the combiner output is

L

SNRQ = X?

Since Q is a Gaussian RV, the BER is

Pe Q( SNRO)

If the channels subject no attenuation and the transmit power is split among channels such

that cc? E is the signal energy in channel i, then Li If = 1. The BER under this scenario

is the same as single-channel communication with transmit energy S. Thus, multi-channel

communication offers no advantage over its single-channel counterpart. Of course, it is well

known that multi-channel communication is used to improve overall link quality in a case where

any or all of the component channels are not reliable at all times -i.e., each is susceptible to

high bit error rates due to noise, interference or signal fading. In single-channel communication

with (flat) fading, the conditional BER (conditioned on fading amplitude ca) is

Pl"C -2 2s

Averaging over the fade statistic, the average BER is

P() =fQ( U22N f.(u)du

For example, if ca is a Rayleigh RV with mean-squared value E [2] =2

2 1+No

On the other hand, in multi-channel communication with iid fade amplitudes, it can be shown

that

W L - I + k) [I L
Pe = (I - TT)] C[L; TT] C [L; FT] = kI + 2 T

k=O

For the purpose of comparison, in high SNR region where t> 1,

(S) , (M) - ( L (2L - 1)
Pe ~ -(i Pe ~ L2 L (6.45)

It is apparent that when compared to single-channel mode, the BER of a multi-channel signal

falls faster at a steeper slope that is directly proportional to the number of channels L. In the

limit 7

P m Q ( ) as L -+ oo

7The BER does not approach 0 as L -* oo since energy is conserved; i.e., the energy per channel is S /L.



6.5.1 Rake Receiver

In spread-spectrum modulated communication via a multipath fading channel, each path

can be modelled as a distinct logical channel with independent fade statistic { o, )j$, t }. His-

torically, a multipath diversity combiner for spread-spectrum modulated signal is called a Rake

receiver. We briefly outline several important properties of the Rake combiner. The background

material is referenced mostly from tutorial papers by Turin [143], [146].

T

r 1(t)

r2t)

r3(t) 3m

---I- -- --

Q1 Q2Q Q4 Q1 Q2 Q3  Q

Figure 6.8: Resolvable replicas of a SS modulated signal and their sampling instants

Fig.6.8 illustrates the arrival times of Lr = 4 replicas of the transmit signal. Set TC = 0. The

relative delays of other paths are T2 < T3 < -4 and resolvable (Tj+j - T' ;> Tc). The first Rake

finger is locked to the signal in path 1 and so on. At this point we ignore interference from

neighboring sites. Using eqn. (2.16) we can express the received signal as

L, (t)

r(t; -) = ci(t) e-i i(t) s (r - i(t)) + T(t) (6.46)
i=1

After matched filtering the sampled output of finger 1, denoted by Q 1 is:

Qi 91 Ci (t) ej (l t) T T(t; T) S (T - TI (t) ) dT]

L,

= Es + -Sn+1 (6.47)
i=2
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where the noise sample at the output of finger i is

iii= 911 xie i 1 T (t)s(t -Ti) dt] (6.48)

The self-induced noise from other paths is

T

= cX 04 cos(41 - 4j) Cs(mi)

Before proceeding, we point out several striking differences between the conventional multi-

channel communication system versus SSM communication in multipath fading by comparing

eqns. (6.40)-(6.43) with (6.46)-(6.49):

" Time-Varying Diversity Order: In multi-channel communication, the number of channels L

is a fixed design parameter. In multipath fading, the number of resolvable paths Lr(t) is a

time-varying random process that depends on the characteristics of propagation medium.

" Auto- vs. Cross-Correlation: In multi-channel communication, the transmit signal si(t)

in each logical channel i can be carefully constructed to reduce or even eliminate self-

induced noise. In SSM communication, si(T) = s(T - Tj) is a delayed replica of the

transmit s(t) in which the delay parameter ti(t) itself is time-varying. It is rather difficult

to design signature waveforms that induce little or no self-noise for any arbitrary Ti. If

finger outputs {Qj} contain SI noise, the maximum-ratio combining (MRC) method is no

longer optimal.

" Independence of Gaussian Noise Samples: In multi-channel communication, SI noise is

measured in terms of periodic cross-correlation function Cij(T). In contrast, SI noise at

the output of a Rake finger is a function of the periodic auto-correlation function C,(Ti).

As we have elaborated in Chapter 4 during the discussion on superimposed sequences,

Cs (tuj) is ultimately a function of the partial auto-correlation function of the embedded

discrete superimposed sequence of period NP when NpT > T. As stated earlier, it is

rather difficult to design signature waveforms with small C,(Ti) for an arbitrary Ti. The

consequences are as follows. From eqn.(6.42) we can determine the cross-correlation of

two Gaussian noise samples

E [zi[n]zj[rT]] = cxic;j cos(f c-p )

J n +)T+ - Ti T E _n (u )rn (v)] s (u - T i)s (v - Tj) du dv
u s-=nT+ 4j sv-=nT+(t-

= mia, cos($i - ( j) 2o'+)+r si(t - -ci)sj (t - -c) dt
2 t=nT+-rj



Since the noise samples have zero mean, any two of them are uncorrelated (i.e., indepen-

dent for Gaussian samples) if E[zi[nzi[m]] = 0, a condition guaranteed by C (tu) = 0.

In FDM or TDM mode, it is possible to construct channel signals s)i(t) and sj(t) that are

disjoint in frequency (in terms of their Fourier transforms) or time overlap for an offset

Ti-Tj. For a Rake receiver, we can derive an analogous expression for the cross-correlation

of two Gaussian noise samples. We see that

(n+1 )T+tj

E ll[r]Tnj[n1] = 0 if and only if J s(t -ri)s(t - Tj) dt = 0
ft=nT+-rj

which is unattainable for an arbitrary n and random ti and t3 . This implies that the Rake

finger noise samples are correlated and the MRC scheme is no longer optimal.

Ignoring SI noise, the output of Rake finger 1 is

Qi =al26s+ TI

After combining outputs of Rake fingers, the combiner output is

L, LQ=Xi

= j cXf + r where i- = n
i=1 i=1

Conditioned on the fading amplitudes o, it can be shown that the signal-to-noise ratio of at the

output of a Rake receiver is

NOLSNR(oc=- . x

This is equivalent to the standard form of the output SNR of a maximal-ratio combiner with

Lr-branch diversity. However, in a practical setting, we must deal with non-ideal conditions

that are encountered in CDM signalling over wideband multipath fading channel:

0 Longer Delay Spread: In Fig. 6.8 the relative delays are purposely chosen so that all

are resolvable and their sampling instants are contained in the symbol interval T; i.e.,

the delay spread (AT)d < T. This defines the under-spread condition. Ideally we wish to

construct signature waveforms with zero periodic autocorrelation C,(Ti) = 0 for a relative

delay -ri as small as possible 8. If the minimum -ri that affords zero auto-correlation is the

chip duration T,, then Tc is known as the Rake combiner's time resolution. Thus a Rake

8 The reasoning is that the finer the time resolution, the higher number of scattered transmit energy components

the Rake receiver is able to gather. From eqn.(6.45) we know that the larger L, moves the BER curve away from

the single-channel bound towards the AWGN channel bound.
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receiver is said to resolve multiple signal paths with a time resolution of T. If the delay
spread is larger than the symbol duration - the over-spread condition- such that the
relative delay of a multipath signal ti > T, the channel induces intersymbol interference
(ISI). Theoretically, the replica with delay ti > T can still be used in Rake combining as
long as the sampling instants do not overlap. We illustrate such a scenario in Fig. 6.9 for
path 5. However, in practice a Rake finger is a tap-delay line filter where each delay unit
equals Tc. If T = Nc T, the filter consists of N, delay taps. Thus, the weight of a multipath
signal outside a window of T cannot be tapped for signal combining. It is known from
Chapter 2 that the delay spread (At)d is a time-varying positive variable that depends
only on the characteristics of the propagation medium, whereas the symbol duration T
(or equivalently, the symbol rate R) is a design parameter which can be chosen freely
by the network designer. The relation between (At)d and T becomes critical when we
compare two multi-rate schemes: PC-SG and SC-RG.

T

r () I I
r4(t) T

r5(t) 5

Q1Q2 Q3 Q4 Q1 Q2 p35 Q

Figure 6.9: Intersymbol interference caused by a multipath signal with delay r5 > T

* Non-zero partial correlation: In spread-spectrum modulated communication the transmit

signal

s(t) = x[j] f(t - jT)

is data modulated and in the special case where bit- and code-synchronism are equivalent

(T = NpTc), its periodic autocorrelation in eqn.(6.49) must be expressed in terms of the
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two aperiodic autocorrelation functions:

T

s (,) s (- - rj) d-rJ T

=x[-1]] x[0 f (t) f (t - ti) dt + x[0] f(T) f (T-t) dT

= tRf(Ti) + f(Ti)

Depending on the sign (the product of x[-1] and x[O]) the overall autocorrelation value

may no longer be zero regardless of the type of signature waveform used. Furthermore,

if s(t) is modulated by a long PN sequence such that N. > N,, the periodic autocorrela-

tion must be expressed in terms of the discrete-time partial autocorrelation function. By

applying eqn.(4.36),

TCs(ti) ={ s(t) s('r- ti) dit

Ob=l; 0, N] p(A) + Obt- 1;0,Nc] P*(A)

where Tr = (iTc + A) and

s(t) = b[j]b(t - jTc)
j=-00

Recalling our discussion in Chapter 4 on spread-spectrum modulated waveforms, each is

generated by modulating an antipodal discrete, periodic PN sequence with a periodic train

of common chip pulses. We know that maximum-length (ML) PN codes have a normalized

periodic autocorrelation C(T) equal to -1/Np for T > T,, where Nv is the code period.

However, we are now dealing with the partial auto-correlation of the embedded sequence.

Regardless of the type PN sequence used, it is very unlikely that ObEL; 0, Nc] - 0 for any

arbitrary chip delay 1. Therefore, we should be aware that each Rake finger output suffers

from self-induced noise from other paths. In time and frequency diversity systems, the

independence constraint for zero cross-correlation is guaranteed by assigning frequency

bands that are separated by at least the coherence bandwidth, and time slots that are

separated by more than the coherence time of the channel. The zero self-interference

condition is satisfied by assigning non-overlapping frequency bands or time-slots. In both

cases the ISI issue is non-existent since the diversity branches are purposely generated by

the system designer to combat signal degradation due to fading.

6.5.2 Correlated and Uncorrelated Multipath Interference

In the literature, several authors have distinguished SI noise into two categories: correlated

and uncorrelated self-interference. When path delay Tij between two received replicas is less
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than symbol duration T, the SI noise generated at the output of finger i or j is said to be
correlated. This scenario is illustrated in Fig. 6.11. In contrast, when rij > T as depicted in
Fig. 6.10, the self-interference is uncorrelated. Note the difference between correlatedness of
SI noise from the ISI-causing self-noise as illustrated in Fig. 6.9:

Correlated SI noise :

Uncorrelated SI noise :

ISI-causing SI noise :

Tij = Tj

11i > T

T > T for any path i

I T
~ IJ

x[0] I
I

x[ 1] x[2] I
x[1] I

I
x[O] I

Figure 6.10: Uncorrelated self-interference when path delay m1i > T

We immediately deduce that if SI noise samples between paths i and j are uncorrelated, then at
least path i causes ISI. On the other hand, if the signal in path i causes ISI, its self-interference
may or may not be correlated with replicas from other paths. Referring to Fig. 6.9, we see that
paths 4 and 5 have correlated self-interference while paths 3 and 5 are uncorrelated. We now
explain the correlatedness.

T.

jk

x[-1] x[0] x[1]

x[i]

1---
I

I

I
x[-i]

.

I I

x[O]I
x[-1]

I
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Figure 6.11: Correlated self-interference when path delay 1ij < T
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- Ti < T assuming -rj > -ri

3
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Correlated Self-Interference (C-SI)

The SI noise at the output of finger i can be written as

Si = i x[-] i(Thj) + x[0] Ri(tij) + Pik x[-1 k(Tik)

where the aperiodic auto-correlation functions are

i(1ri) = s(t)s(t - Tij)dt = Rj(-ij)
Jt=0

+ x[0 Ri(Tik) }

Ri(Tij) =

For short-hand we will use

@ij = i cj cos(4 - k), x[-] =x[-11,

Factoring out the data bits,

Si = x[-] {ij Ri(rij) +

Similarly for fingers j and k:

Si =x[-] {jk~j(Tjk)}

Pik Ri(Tik) } + x[0] {j R (ti ) +

+x[O] { jRt(ti3 )+P kRi(Tjk)

Sk = x[-] - + x[O] {BikRi(Tik) +iPjkRj(Tik) +x[+]

Pik Ri(ik) }+ x[+ -

+ x[+] {i i( ij)

Pi I(rti) + PjA(' jk)

Note that in each finger t, the terms associated with data bit x[0] are "overlapping" or "corre-

lated" since the same auto-correlation functions also appear in other finger outputs. Similarly,

terms associated with x[-] are correlation between signals in path 1 with other time delayed

paths (paths whose delays Tk > t). In contrast, terms associated with x[+] are correlation

between signals in path t with other time advanced paths (paths whose delays Ti < fT). Hence,

in general,we can express the SI noise at the output of an arbitrary path 1 as

st= Pit x[O] Ri(Til) + x[+] i(T)}
i<t

+ ±>3 {x[0] R1(-tk) - x[--] R(Tlk)
k>e

Alternatively, with an abuse in notation:

(6.50)S x[] 3j Rj ( ) + x[+] Pit ki( ) + x[-] >3 Otk&t(T)
jkl -1i

x[+] = x[1]
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where it is understood that

T= Tjt for 1>j and t=j for 1t<j

It is interesting to note that the first summation term is identical to the input of a synchronous

decorrelator receiver (see the text by Verdu [149] for details) for multi-user detection, except

in our case

1. We are dealing with auto- (instead of cross-) correlation functions. To a lesser importance,

the correlation functions in the Rake receiver are aperiodic, whereas in a decorrelator they

are periodic.

2. In our case each correlation function is scaled by a fade statistic st5.
3. The transmit data vector of length L

x[0] = [x[O], x[O], ... , x[0]

is an L-fold repetition of the transmit data bit x[O], whereas in a decorrelator the data

vector consists of independent data bits from L different users:

u[0] = UU01, U2 [0], .. ., UL[0]1

such that the input (column) vector of a decorrelator can be expressed as

Y = u[O] Cs + z

where Cs is the (normalized) periodic cross-correlation vector and z is the Gaussian noise

vector. Ignoring the second and third summation terms in eqn.(6.50) the output vector

of a Rake receiver can be written as

Q = x[0] Rs +ij

where

Q 1, Q~f2) ... ) Lj = I11, 112, .--, 71L

For maximum ratio diversity combining with coherent detection, the Rake receiver must accu-

rately estimate channel statistics { cx, j, 'ri} for each finger. Thus, we can assume that the set

of scaling factors f{@ 5} is known to the receiver. The receiver also has full knowledge of the auto-

correlation values of its signature sequence. In essence the correlation matrix R, is known to

the Rake receiver. Referring to linear multi-user CDMA detection schemes we can multiply the
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output vector Q with a suitable matrix to either decorrelate or minimize the mean-squared error.

Before we execute this step we must first deal with the two summation terms in eqn.(6.50). It

is apparent that both terms can be treated as ISI from past and future data bits and thus can be

removed by decision-feedback equalization.

To summarize, in this section on correlated self-interference (C-SI) we emphasize the fact

that the Rake receiver with coherent MRC is far from optimum, mainly due to non-zero auto-

correlation of replicas from different paths. All references that we come across that address C-SI

as undesirable noise and no attempt is made to remove it by de-correlation or decision-feedback

equalization.

Uncorrelated Self-Interference (U-SI)

When 'ri > T, signal in path j causes ISI to output signal in finger i. If we assume the Rake

receiver has tap-delay line implementation and thus cannot correlated with signal paths outside

the symbol time correlation window, then U-SI must be treated as unwanted noise.

Correlated and Uncorrelated Channel Interference (CI)

In multipath fading model, the output of each Rake finger suffers not only SI from delayed repli-

cas of its own signal, but also from delayed replicas in other parallel channels. We define this

type of interference as channel interference. Depending on the value of each propagation delay

(relative to T), CI is either correlated or uncorrelated with the desired symbol time window.

For correlated CI, since each receiver has no knowledge of the signature sequences of other

channels, no interference cancellation -analogous to the de-correlator proposed for correlated

SI- is possible. Therefore, CI is treated as unwanted noise at Rake finger outputs.

6.5.3 Gaussian Approximation of Multi-User Interference

Thus far, we have classified four types of intra-cell interference: correlated and uncorre-

lated self-interference (C-SI and U-SI), and correlated and uncorrelated channel interference.

The latter two have the same effect as unwanted noise and we collectively call them as CI. The

only parameter common to all types of intra-cell interference is the propagation delay set {T}

-which is known or can be estimated with good accuracy by each Rake receiver. Therefore,

the contribution of each unwanted noise -in terms of energy- can be computed deterministi-

cally from periodic auto- or cross-correlation of desired signal and unwanted noise signal. For

this step, the receiver must have complete knowledge of actively assigned Walsh code chan-

nels. Alternatively, such knowledge of assigned codes is not necessary if it plans to treat CI as

unwanted noise.



6.6 Comparative Analysis of BER Curves of Target CDM Users

When we introduce inter-cell interference, their arrival times are not known and random to

the target receiver. If an inter-cell arrival time falls within the correlation window, it contributes

one unit of unwanted noise. If its arrival time falls outside the window, it contributes one unit

of unwanted noise to the next target data bit. That is, for inter-cell interference, it makes no

difference what its absolute arrival time epoch is relative to the correlation window. Thus,

we assume the unwanted noise contributed by each inter-cell interferer is indistinguishable

from an intra-cell channel interference contributed by another parallel active code channel.

If there exists -on average- K, actively assigned forward link code channels per cell, the

total number of interfering channels J, in each Rake finger input is (K, - 1 + KJ). If J, is

large, the accuracy of Gaussian approximation of total CI is improved. Since we know that BER

averaged over the statistic of fading amplitude improves the accuracy of GA, we will measure

total interference power (variance) using SGA. (We did not measure any improvement in BER

accuracy by substituting CGA or IGA in place of SGA.)

6.6 Comparative Analysis of BER Curves of Target CDM Users

In eqn. (6.17) we treat each interfering signal as an arbitrary pseudo-random sequence

not known to the target receiver. When each interferer's information bit xjtm] is modulated

with a superimposed orthogonal sequence adrn], the resulting sequence is another superim-

posed orthogonal sequence bjn] of chip rate R. The spreading gain -and the corresponding

information rate- affects the receive power level P1 only Therefore, our derived formulae and

other analytical results from previous sections still apply to multi-rate PC-SG and SC-RG CDM

channels. The only difference is that for a higher-rate SC-RG CDM target user, its spreading

gain N, is reduced -which subsequently affects the values of cross-correlation terms (41] and

j[]) and the noise term -q. To maintain fairness in comparative study, its power gain Pi [see

eqn. (6.14)] must be re-scaled such that its bit energy Eb (and thus, Eb/N 0 ) is the same as the

bit energy of a standard SC-SG CDM channel or a component low rate channel in a PC-SG CDM

high rate channel.

6.6.1 AWGN Only Channel

Our goal in this section is to determine the accuracy of BER curves that are generated using

various Gaussian approximation methods. As a benchmark we also include the exact (average)

BER curve, computed according to eqn.(6.24). In particular, we are interested in the accuracy

of Gaussian approximations as system parameters such as channel bandwidth (or equivalently,
the spreading gain N,), the interference population J and link quality (measured in Lb/N O)

are varied. Eight BER curves -as shown in Figs. 6.12-6.15- are presented. The four plots
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measure exact and approximate BERs based on Gaussian approximations as a function of inter-

ference population J for

1. narrow bandwidth, high signal-to-noise ratio: N, = 64, Eb/NO = 12 dB.

2. wide bandwidth, high signal-to-noise ratio: Nc=256, Eb/N 0,=12 dB.

3. narrow bandwidth, low signal-to-noise ratio: N c=64, Lb/N Q=5 dB.

4. wide bandwidth, low signal-to-noise ratio: N, =64, Eb/N o=5 dB.

6.6.2 Flat Fading Channel

Similar to the AWGN channel model, we analyze the effects of system parameters -the

spreading gain N c, the interference population J and link quality Lb/N O on BER in flat fading

Gaussian channel. Two BER curves -as shown in Figs. 6.16-6.17- are presented where the

pdf of fading amplitude is Rayleigh. The two plots measure exact and approximate BERs based

on Gaussian approximations as a function of interference population J for

1. narrow bandwidth, high signal-to-noise ratio: N c=64, Sb/N Q=12 dB.

2. wide bandwidth, high signal-to-noise ratio: N,=256, Sb/NO=1 2 dB.

6.6.3 Frequency Selective Fading Channel

Two BER plots in frequency selective fading, both with three resolvable paths, are shown in

Figs. 6.18-6.19. In the first plot, the relative delays are selected such that in one pair of plots,

only correlated self-noise is observed while in the other pair, both correlated and uncorrelated

SI are observed. The second plots are similar except that time delays that generate ISI are used.

6.6.4 Comments on BER plots

From BER plots in AWGN, we deduce that SGA is optimistic while the reverse is true for IGA.

Of course, the gap between IGA and exact BER curve is much smaller. This gap shrinks in flat

fading model. There is little gap between the exact curve and all other Gaussian approximation

curves. As we have seen from these BER plots in AWGN, flat fading and frequency selective

fading, the difference between PC-SG CDM and SC-RG CDM is barely noticeable in almost

all cases. However, when taking into account seamless multi-rate provisioning and reduced

receiver complexity, single-channel CDM with reduced gain is the preferred option.
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6.6 Comparative Analysis of BER Curves of Target CDM Users
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PC-SG (C-SI)

SC-RG (C-SI)

PC-SG (U-SI)

SC-RG (U-SI)

SNR (dB)

Frequency selective Rayleigh fading-BER of wideband, high SNR
Figure 6.18: CDM signalling as a function of signal-to-noise power ratio SNR.

N= 256, Eb/N. = 12 dB. Non ISI case.

0 SC-RG (ISI)

PC-RG (no ISI)

PC-SG (ISI)

SC-RG (no ISI)

SNR (dB)

Frequency selective Rayleigh fading-BER of wideband, high SNR
Figure 6.19: CDM signalling as a function of signal-to-noise power ratio SNR.

Nc = 256, Eb/N 0 = 12 dB. ISI case.



6.6 Comparative Analysis of BER Curves of Target CDM Users

6.6.5 Comments on Numerical Methods for CDM BER Analysis

When dealing with and manipulating the standard Gaussian cumulative distribution func-

tion (CDF) or its complementary Q function, the most difficult part is its lower limit x:

I 0 U2
Q(x) = -J exp -) du

v'2-tx (_2

which is also the indexing parameter. When we average the Q function over x, the resulting

equation in closed form is often difficult to derive except for certain probability density func-

tions. For numerical computation, it tends to be unsteady since the extent of x is unbounded,

at least toward infinity. However, we are fortunate that a few years ago, J. W Craig derived an

alternative integral form of the Q function

1 f 7t/
2  U2

Q(x) = - exp - ) dO
7r 2 sin 2o

It is clear that this is definite integral where the indexing parameter x is no longer a limit. This

new form only works for x > 0. Since the standard Gaussian pdf is symmetric, this is a simple

constraint that can be dealt with easily In all our numerical computations, including computer-

generated BER plots, this simpler integral of the Q function was used. Details on this form and

its variations are detailed in the text by Simon and Alouini [131].
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Notes and References

In the following, we highlight only certain authors/researchers and their work(s) that can

be considered as pioneering or had a profound impact on the advancement of CDM/CDMA

technologies.

Among texts that treat topics in spread-spectrum communications, the collaborative work

of M. K. Simon et al. [129] is considered the "Bible." It thoroughly covers all aspects of

both direct-sequence and frequency-hopped SS communication systems. This includes such

applications as anti-jamming and low-intercept military applications, ranging and location (GPS

type) commercial applications as well as historical account of SS systems. Its only lack is in

the area of multi-user communication with SS modulating codes. Other excellent books that

cover similar topics but with a different flavor are those by Dixon [30] and Holmes [54]. The

latter emphasizes on coherent reception of direct-sequence SS modulated signals. The earliest

analytical work on phase-coded (direct-sequence) SS modulation/demodulation for multi-user

communication can be attributed to M. Pursley [109]. It measures (the approximate) bit-

error rate of a spread-spectrum multi-access (SSMA) signal through an AWGN channel in a

multi-user environment using the received signal-to-ratio (SNR) as the benchmark. These two

articles may been have the first to propose the standard or simplified Gaussian approximation

method. The sequel [110] computes various bounds for the BER based on the correlation

properties on signature sequences. However, it appears the idead of SS modulated signals for

multi-user communication was popularized by a tutorial by R. Pickholtz et al. [102] -based

on the number of times it's been cited in future published articles. Subsequent articles by M.

Pursley and his students ([112],[89], [74], [39]) extend his earlier results by modifying the

standard Gaussian approximation method to better approximate the exact BER. In particular,
Morrow and Lehnert proposed the improved Gaussian approximation in [89].

Spread-spectrum multiple access with superimposed orthogonal sequences was first pro-

posed by K. S. Gilhousen of Qualcomm Inc. The best source to study Qualcomm's CDMA ar-

chitecture (besides the official U.S. Interim Standard-95 documents [61]) is the text by one

of its founders A. J. Viterbi [154]. Before the introduction of Qualcomm's Walsh code based

CDM, SSMA systems assume the assignment of non-orthogonal pseudo-random SS sequences.

This is the main reason earlier works have put so much emphasis on the design and correlation

properties of PN sequences and the resulting BER. In Qualcomm's CDM where the Walsh code

length N(= 64) is much less than the period of the PN sequence Np(= 32767), the spread-

spectrum modulating sequence can be conveniently modelled as a random Bernoulli sequence.

This model opens the door for CDMA BER analysis with random spreading sequences. The

auto- and cross-correlation of random sequences can now be expressed in terms of their statis-

tical properties rather than in terms of deterministic values or bounds based on a pair of known,
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deterministic PN sequences. The number of articles in this area is far too many to list here. We

only cite a journal article by Fong et al. [35] since it is one of a limited few that compares the

BER performance of superimposed orthogonal CDM versus conventional PN sequence based

CDM.

The inclusion of signal fading in a CDM/CDMA system model results in a more realistic BER

analysis since almost all CDM/CDMA systems communicate over the wireless link. The analysis

of a flat fading model is straightforward; furthermore, it is more of academic value than practi-

cal significance since a typical wideband spread-spectrum signal undergoes frequency selective

fading. Optimal diversity combining of multipath signals was first proposed by D. G. Brennan

[11]. It was made accurate by R. Price [105]. He and P Green [106] successfully coined the

term "Rake" receiver for such multipath combiner. The multipath combining and SNR enhance-

ment of a Rake receiver was popularized by G. Turin [143]-[146]. His insightful amalgamation

of theory and practice for wireless multipath fading channels highlights the diversity combining

effect of SSMA signals, similar to that attained by time, frequency or antenna diversity scheme.

The universal standardization of third-generation wireless standards based on wideband

CDMA fostered the study of BER analysis for multi-rate schemes. Among the many published

works, we attribute Chih-Lin I et al. [58],[59], [42] of AT&T as the inventors of multi-code

(parallel-channel, single-gain) transmission mode. Its counterpart the single-code, reduced-

gain mode is patented by K. S. Gilhousen of Qualcomm [41]. Based on standard Gaussian

approximation, Ottoson and Svensson [95] showed that both schemes are comparable in BER

analysis. Ramakrishna and Holtzman confirmed that the equality of both multi-rate schemes

holds under the improved Gaussian approximation model. Both studies focus on AWGN chan-

nels. By contrast M. Fan et al. [31] used an exact model to analyze the bit-error rate of a

chip-synchronous CDMA system and showed slight differences between multi-code and OVSF

schemes -and their dependence on received SNR and user population. They then showed

that both schemes are equal in a flat-fading model due to the averaging effect of the fading

amplitude. The significance of inter-path interference on the BER in CDMA was first pointed

out by Chan [16]. As a follow-up, the performance of a CDMA system in a multipath fading en-

vironment with the inclusion of self-interference was studied by Cheun [19]. In his analysis the

standard Gaussian approximation is used. Subsequent analysis by Hwang and Lee [57] showed

that the Gaussian approximation breaks down as the spreading factor is reduced. Based on

similar arguments, Zhang et al. [168] claim that multi-code outperforms OVSF in a multipath

fading channel.

As far as we know, combining methods that reduce inter-path interference or inter-path

interference plus Gaussian noise -as proposed in this chapter- have not appeared elsewhere.

In fact, these procedures are very similar to linear de-correlator and MMSE detection methods

[149] that have been proposed for joint detection of multi-user CDMA signals.
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Appendix 6A

Linear Transformation of Multi-Code Signals

By observing Fig. 6.4 it is obvious that the level-shifted baseband sequence (before pulse

shaping) can be expressed as

pIn] -v[m]

where p[n] is the common (cell-specific) periodic, level-shifted PN sequence, and the Walsh

modulated data sequence can be expressed as

v[in] = Lx[ J .wk[M] (6.51)
k=1 .- -.

Here Wk[m] denotes the mth element of the k th Walsh code. In terms of the Walsh matrix WN,

wk[m] = wkm E WN

is the kmth entry (kth row and mtl column) of the Walsh matrix. For a block of input data

sequence

[1X 1[li), X2 [i]> - - - )xN6.52)

of length N, v[m] is the sum of all Walsh codes (of length N), each code wk[M] weighed by its

corresponding data symbol xk[il. In the above equations, we purposely use different indices m

and n for the Walsh and PN sequences to highlight the fact that their clock are not necessarily

the same. In matrix notation, the Walsh modulated sequence of eqn. (6.51) can be written as

v = x - WN (6.53)

where the vector x is an input data block of length N as given in eqn. (6.52). The Walsh matrix

WN [WT W ... WN]

is expressed in terms of its orthogonal row vectors {wk}. The superscript T denotes vector

transposition. Note that in multiple-channel, single-gain (PC-SG) transmission, the modulating

matrix M consists of a subset of orthogonal vectors of the Walsh matrix:

M= - WT W ... WT

where M is an M-byN matrix consisting of any M orthogonal row vectors from WN. We assume

there are M < N parallel CDM channels per user.
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Constant-Amplitude Signals

It is apparent that the Walsh modulated sequence, which is also the linear combination of
N antipodal binary sequences, is no longer binary. In fact it is a multi-level sequence where its
elements

vj[m] E S = {so, s,..., sM} (6.54)

belongs to a constellation set S such that its elements

si = 2i- M i E NM

Note that the subscript j in vj [m] denotes the index of the component of the vector v and not a
user's index. For example, if M = 4 the constellation set is

S4 = { - 4, -2, 0, 2, 4}

It is easy to see that when M is odd, the multi-level signal set is equivalent to (M + 1)-ary pulse
amplitude modulation set SpAm.

Table 6.1: Possible outputs of a Walsh modulated sequence

Ix [ vimi] lIndex ITi T2  Index]
0000 (4, 0, 0, 0)

0001 (2,2,2,-2) / 1 (2,2,2,2) 0
0010 (2, -2, 2, 2) / 4 (2, -2, 2, -2) 5
0011 (0, 0, 4, 0)

0100 (2,2, -2, 2) / 2 (2, 2, -2, -2) 3
0101 (0,4,0,0)

0110 (0,0,0,4)

0111 (-2,2,2,2) / 8 (-2, 2,2, -2) 9
1000 (2, -2, -2, -2) / 7 (2, -2,1-2, 2) 6
1001 (0, 0, 0, -4)

1010 (0, -4, 0, 0)

1011 (-2, -2, 2, -2) / 13 (-2, -2, 2, 2) 12

1100 (0, 0, -4, 0)

1101 (-2, 2, -2, -2) / 11 (-2, 2, -2, 2) 10
1110 (-2, -2 -2, 2) / 14 (-2, -2, -2, -2) 15
1111 (-4,0,0,0)
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To further elaborate the multi-level properties of v[m], we consider the (4 x 4) Walsh matrix:

1 1 1 1+ + + +

W4=[ + (6.55)
1 1 1 -1 + + - -

By assigning alternating (±/-) weights in the summation of Walsh codes, all 16 possible output

sequences of v[m] can be generated. They are shown in Table 6.1 for M = N = 4. The first

column lists all 16 possible input vectors. The input sequence is X = (X[1], X[2], X[31, X[4l)

and the mapping for level-shifting is

X[]=0->1, X[]=1->-1

The second column lists the resulting Walsh modulated vectors. The third column checks the

resulting vector (from the same row) whose elements vj c 2D 2 = {-2, 2}. Such a vector is called

constant-amplitude. Let T denote a set of constant amplitude, length-4 vectors whose elements

are from the set 2D 2 . It is immediate that T consists of 16 entries, some of which belong to

the subset T1 c T of valid Walsh output sequences. The remaining complementary vectors in

the set T2 c T are listed in the fifth column. Note that T1 and T2 are mutually exclusive and

exhaustive subsets of T; i.e., T, = (T2 )' where the superscript "c" denotes the complement.

For convenience, we also list the equivalent decimal value of each binary vector of T in the

columns 4 and 6. For example, the decimal value of (-2, -2, -2,2) -> (1, 1, 1, 0) is 14. Using

this notation, we can state that

T1 = {1, 2, 4, 7, 8, 11, 13, 14}

T2= {0, 3, 5, 6, 9, 10, 15}

We also define the domain set S 1 consisting on input vectors whose corresponding range is T1 .

When expressed in decimal format,

SI = {1, 2, 4, 7, 8, 11, 13, 14}

It is seen that TI = S1 and (SI)c = T2. It is no coincidence that exactly half of all possible

Walsh modulated vectors (those in TI) are constant-amplitude. Due to equal energy constraint,

a vector with an element ±4 must contain three zeroes. By permutation, there exists eight

such vectors and the remaining eight are constant-amplitude. This issue of constant-amplitude

signal design to not directly related to our study of CDM transmission in the downlink. This is

due to the fact that the linearly combined signal in a CDM transmitter is always multi-level -

independent of the type of multi-rate transmission scheme used, PC-SG or SC-RG. Furthermore,
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the issue of power amplifier linearity and its efficiency is not critical at the base site. However, if

multi-code (PC-SG) transmission were to be used in the uplink mobile handset, the amplitude

fluctuation of the transmit signal can cause unwanted signal distortion and spectral leakage. For

that matter, we are interested in particular cases where a Walsh modulated sequence retains

the constant-amplitude property.

Precoding

In the above fairly simple example, N = M = 4. We would like to be able to understand

the partitioning of the sets T, and T2 for larger values of N and M. This information is useful

when measuring the peak-to-average amplitude ratio of the Walsh modulated signal. (A higher

peak-to-average amplitude ratio may require less power-efficient linear amplifiers [24].) It has

been shown in [157] that a constant-amplitude Walsh modulated sequence of length 4 can be

constructed for a block of 3-bit input sequence by appending a fourth data bit that satisfies

the "parity-check" equation. This coding technique is known as precoding. The technique is

straightforward: For every 3-bit input sequence

(X[i], X[i+ 1], X[i+ 2])

a parity-check X[i+ 3] that satisfies the following equation

X[i + 3 = X[e] E X[i + 1] e X[i + 2 (6.56)

is appended such that their corresponding Walsh modulated sequence v[n] is constant-amplitude.

The over-bar denotes binary (modulo-2) complement. In terms of antipodal sequences, the

parity-check equation is

x[i+ 3]= -(x[i] - x[i+ 1] -x[i +2]) (6.57)

In order to generate constant-amplitude vectors, we know that the valid input vectors must

belong to Si. By observing Table 6.1. we note that the first three bits (X[i], X[i + 11, X[i + 2])

of vectors in S1 span all possible 3-bit patterns from [000] to [111]. The only requirement now

is to devise a boolean relationship that results in the fourth bit being equal to X[i + 3]. It can be

deduced that the fourth bit is an inverted sum of the first three. By iteration, it has been shown

by Wada et al. [157] that for any complete set of Walsh codes of length N = 4n for M E- Z,
a block of input sequence of length 3 m can be appended with parity-check bits such that the

resulting Walsh modulated sequence is constant-amplitude. The drawback of precoding is that

the effective bit rate is reduced by a factor of (3 / 4 )m. Furthermore, if a single CDM channel

carries a bit rate of R bps, then possible multiple bit rates of PC-SG transmission, combined

with precoding, are limited to 3' R bps.

325



Walsh Code Symmetry

The construction of the parity-check equation in eqn. (6.56) is straightforward since it is

based on the observation of all possible input vectors in Table 6.1. In the section we present

an alternative observation that takes into account the "symmetric" structure of a Walsh matrix.

For the (2 x 2) matrix

W 2 = (6.58)

All possible outputs are

[+0] [-0] [0 +1 [0-]

It is apparent that the construction of constant-amplitude vectors is not possible. Next, consider

the (4 x 4) matrix

W4 =(6.59)

Note that w 4 [1] and w 4 [3] (as well as w 4 [2] and w 4 [4]) siblings9 . All possible sums of w 4[11] and

w 4 [3] are

[++ 00] [00 ++] [-- 00] [00 - -]

It is obvious that the above sums are identical to those in eqn. (6.6.5) when Walsh chips are

treated as square waveforms; i.e., with (++)" in place of (+). Similarly, for w 4 [2] and w4[4] all

possible sums are

[+- 00] [00 +-- [-+ 001 [00 -+

They are also identical to the sums in eqn. (6.6.5) when the basic unit (+-) is substituted

for (+). In every summation we notice that the "zero" output occurs in either the first or the

second half of the vector, depending on the values of the input sequence. This result is an innate

property of recursive Walsh codes since a pair of children codes (xx and xx) are generated by a

mother code (x) by concatenation and inversion. We now have enough knowledge to construct

the parity-check equation of a precoder:

1. We first freely choose any pair of sibling Walsh codes. Their data modulated sum intro-

duces a zero vector in the beginning or latter half of the output vector.

2. We then choose another pair of sibling codes. One of them is data modulated while the

other is parity-checked such that it inserts the zero vector in the opposite half. Thus, the

sum of all data modulated vectors is constant-amplitude.

91n general, IVN [k] and WN [k I N/21 are siblings. See Ch. 4, Sec. 4.5.3 for a discussion on the tree structure of

Walsh codes.
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It is easy to see that the above construction is valid for the sum of any four Walsh codes of

arbitrary length N. The above procedure for M = 4 parallel channels can be generalized for

M = 16 and higher M = 4m, m > 2. For the (16 x 16) matrix, it can be shown that the sums of

siblings are (assuming the weights are all 1's)

V1 = w 1 6 [1] -w 1 6 [9] = [ ++ , +++++, , 00000001

V2 = w16[2] + w16 [10] = [+-, +-, +-, +-, 000000001

V3 = w 16 [3] + w16[11 = [++, -- , ++, -- , 000000001

V4 = w 1 6 [4] + w6112 = [+-, -+, +-, -+, 000000001

V5 = w16[51 + w16 [13] = [++, ++, , , 00000000]

V6 = w 16[6] + w16[14] = [+-, +-, -+, -+, 00000000]

V7 = w 167] + Wi16 [15] = [++, -- , -- , ++, 00000000]

V8 = w1 6[8] +w 1 16] = [+-, -+, -+, +-, 00000000

We did not show the outcome of the sum for other input combinations. It is, however, straight-

forward to see that the effect of different input sequences (e.g. +-, -- , -+) is t change the

signs or swap the zero vector (from second half to first half) or a combination of both. Note

that on the first half, we have created a Walsh matrix of length 8. Note also that sk and sk+4

are sibling pairs. Their sums are

S i = V1 + v5 = [++, ++, 00, 00, 00000000]

S2 = V2 + v6 = [+-, +-, 00, 00, 00000000]

S3 = V3 + V7 = [++, -- , 00, 00, 00000000]

S4 = V4 + V8 = [+-, -+, 00, 00, 00000000]

We now have enough knowledge to construct the parity-check equation of a precoder:

1. We first freely choose two input bits for any pair of sibling Walsh codes. For convenience,
we choose the first sibling pair w16[1] and W16[9]. Depending on the value of the 2-bit
input sequence (say, [xl x2]), the zero vector (say Z) will lie in the first or second half
of the modulated vector. Let the kh output vector of a pair of siblings be Vk. (For easy

tractability, we will give an example by letting vi = [x x 0 0], i.e., the zero vector lies in

the second half. The symbol "x" denotes any non-zero vector.)

2. The input bits [x 3 x4] for the next pair of siblings W16[5] and w 16 [13] are freely chosen.

Here we have two different outcomes: its zero vector (say, Z2) lies in the same half as Z1,
or it lies in the other half. We consider only the first case where both zero vectors ZI, and

Z 2 lie in the same half. The algorithm for the other case follows along the same reasoning.
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(In our example v5 = [x X 0 0].) Their sum si = (vI + v5 ) now has a zero vector Z3 (of

length 4) either in the first or the second "quarter." (In our example, set s, = [x 0 0 0].) In

order to maintain constant-amplitude output, the next sum S2 must have a zero vector in

the same half as Z 1, and another zero vector (of length 4) in the other quarter of Z 3 . For

the next set of siblings, say W16 [2] and w16 [101, two input bits [x 5 x 6] are freely chosen. If

the output v2 has a zero vector Z4 in the same half as Z1 , then its complementary sibling

pair must be modulated such that their sum S2 has a zero vector in the other quarter of Z3 -

Let's assume this is the case. Then the sibling pair wi[3] and w 16 [11] are modulated by

two parity-check bits. Hence, we have completed constant-amplitude output in one-half

of the final output.

3. The next pair of siblings, w16[4] and w16[12] (and similarly for its complementary pair

w 16 [5] and w16[13]) must have corresponding zero vectors Z5 and Z6 in the other half of

Z 1. To satisfy this constraint, only one of two input bits is free. Let's denote these free

input bits by x 7 and x8 .

4. For the next set of siblings W16[6] and W16[14], only one of two input bits is free since its

zero vector lies in the same half as Z5 . Denote this bit as xg. Their sum S3 = V3 + v7 has a

zero vector Z 7 in one of the two possible quarters.

5. For the last remaining pair of siblings w 16 [7] and w 1 6[15] and its complementary pair

w 16[8] and w 16 [16], all four input bits must be parity-check such that their sum S4 has a

zero vector in the same half as Z5 and another zero vector in the other quarter of Z7 . This

step completes the constant-amplitude property on the other half.

Thus far we have showed precoding procedures that result in constant-amplitude output

vectors. In particular we give modulation algorithms for 4- and 16-parallel PC-SG trans-

mission modes. Procedures for other transmission rates where the number of parallel

channels equals M = 4n can be derived analogously. We now address the question of

whether other rates besides M = 4n for feasible for PC-SG constant-amplitude transmis-

sion. We use M = 8 as an example. For the (8 x 8) matrix, it can be shown that the sums

of siblings are (assuming the weights are all 1's)

V1 = w8[1] + w 8 [5] = [ +++, 00001

V2 = w 8 [21 + W8[6] = [+ - +-, 0000]

V3 = W8[3] + w 8[7] = [+ + 00001

V4 = w 8[4] - ws[81 = [+ - -+, 00001

It is obvious that the sum of two output vectors listed above does not result in a constant-

amplitude vector. Thus the precoding procedure is not possible for M = 8.
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Appendix 6A - Linear Transformation of Multi-Code Signals

Linear Parity-Check Coding

Based on above discussions on precoding, we witness some other interesting properties of

Walsh modulated sequences as tabulated in Table 6.1. Note that each of the remaining eight

input vectors of (Si) I in column 1 has the same first three bits as a vector v in T1. For example,

[0000] and [0001] have the same first three bits. We also notice that for every vector v in T1, there

exists a complementary (constant-amplitude) vector u that belongs to T2. (The complement

of v (in column 3) is listed in the same row in column 5.) For example, [2,2,2,2] E T2 is the

complement of [2, 2, 2, -2]. It may then be possible to linearly map every input vector x1 E (Si )C
to a vector u1 c T2. It can be seen from columns 3 and 5 that all vectors in the sets Ti and T2

have the same weight distribution. We also observe that any vector U of T2 can be generated

from a three-bit input vector Y using the following matrix equation:

U =Yogy (6.60)

where
1 0 0 1

Gp 0 1 0 1 (6.61)

0 0 1 1_

is the generator matrix of a linear, systematic parity-check code. The symbol D denotes vector

multiplication in binary Galois field GF(2). (The truth tables of GF(2) arithmetic is given in

Table 4.1.) We know immediately that due to the linearity of block coding, the output vector

U E T2. Furthermore, any precoded Walsh modulated sequence can be generated using the

same parity-check generator matrix by modifying the modulating Walsh matrix:

W *= w T wi TWT - T 6.2

such that the fourth row vector is sign-inverted. For any three-bit input vector Y, we denote the

output of a linear block code with a generator matrix g by

Q = Y OGp

Its level-shifted antipodal sequence is denoted as q. It is straightforward to show that

v= q -W*

is a precoded, Walsh modulated sequence of T1. The orthogonal modulating matrix is the

modified Walsh matrix of eqn. (6.62). If we, however, repeat the above steps with another

orthogonal matrix (the identity matrix I), it is readily shown that

v = q -2IN
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the output vector v E T2 . Since precoding involves inversion of the sum of three input bits, its

coding operation is non-linear; that is, the output vector cannot be expressed as in terms of an

input vector and a generator matrix. However, as shown above, by modifying the conventional

Walsh matrix, we show that precoding is in fact a parity-check encoding followed by orthogonal

modulation. We then show that parity-check encoding followed by another orthogonal (iden-

tity) matrix results in a dual code. Since the (code) vectors from both sets T1 and T2 have the

same weight distribution, their (Euclidean or Hamming) distance properties are also the same.

(0,2)

(-2,0) (2,0)

- __ -El

(0, -2)
U rotated vector

(a) (b)

Figure 6.20: Constellation of Walsh modulated output (a) original (b) n/4 rotated

Relation between OVSF and Multi-Code Transmission Schemes

For a special case where the number of parallel channels M = 2m the multi-level output

vector can be rotated such that the resulting sequence is antipodal and constant-amplitude. We

first describe this technique for the simplest case of M = 2 and later generalize it for larger M.

For the purpose of illustration we assume M = N. For a 2-bit input sequence, all four possible

Walsh modulated output vectors are shown in Fig. 6.20(a) as points in a two-dimensional

constellation. The (x, j) basis vectors are (1, 0) and (0,1). This constellation resembles that of

4-QAM or QPSK. It is well known that by n/4 rotation along the origin, the new signal points

become constant-amplitude. This is illustrated in Fig. 6.20(b). It is equivalent to 7r/4-QPSK set.

The 7r/4 (clockwise) rotation matrix R2 is

R2= = X2 (6.63)

A rotation matrix belongs to a special class of square matrices known as orthonormal matrices.

A higher-order rotation matrix can be generated recursively according to the following rule:

R2N~ XN XN

/2N XN X
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All orthonormal matrices Q satisfy the following identity:

QT =Q- 1

That is, an inverse exists and it is equal to its transpose. For reflection matrices T such as the

recursive Walsh matrix, we already know that it satisfies another equality:

TTT = T-'=kT

where k is a normalization constant. We will set k = 1 since the matrix can always normalize

the original reflection matrix such that T 1 = T. Note that for a rotation matrix, R # kR-.

We see immediately that the Walsh matrix (due to its reflective property) can be used for both

parallel channel modulation and demodulation. Another reflection matrix is the identity matrix.

We now show that the reflection property also applies to the product matrix of Walsh and

rotation matrices

P 2 = W2 R2

I I ] = 2 _ ]
1 1 1 -1 0 -1

For an arbitrary N = 2 m it can be shown by induction using eqn. (6.63) that the product matrix

PN is an alternating identity matrix JN such that

D2N =x/2 JN ON
ION JN

where ON is an (N x N) zero matrix and

J2=
0 -1

At the demodulator the inverse of the product matrix is

J-1 = (W - R) _= R- - W

= RT. WT = (W - R)T jT

Since J is diagonal, it is also a reflection matrix (J-1 = J). Note that in general, for two arbitrary

orthonormal matrices,

Q - Q2 r s o (W - R)

Based on above results, a rotated, Walsh modulated output vector can be expressed as

SR = x -W- R



where x is a level-shifted antipodal binary input sequence. If we replace the rotation matrix by

a normalized Walsh matrix (a reflection matrix), the reflected output is

S-= x- W- T
1 1= X -W -W -7N x*W*W x

This, in fact, is the output of OVSF modulation. The reflected output along the dashed line

m-n is depicted in Fig. 6.21.

(0,2)

(-2,0) (2,0)

~-0
(0,-2)

0 reflected vector

(a) (b)

Figure 6.21: Constellation of Walsh modulated output (a) original (b) reflected

If the channel and its induced additive noise are transparent to orthogonal transformations such

as rotation and reflection, both OVSF and multi-code transmission modes have the same system

performance. Note that an orthogonal transformation does not change the distance property of

a signal set. An example of a transparent channel is the ideal AWGN channel since the Gaussian

noise process is spherically symmetric (or rotationally invariant). We illustrate this model in

Fig. 6.22.

discrete wideband channel inverse inverse

Walsh orthogonal PN PN orthogonal Walsh
mapping transform spread despread transform mapping

- analog wideband aX T w

p[n] n(t) p[n]

Modified model of a SSM communication system with the inclusion
of linear orthogonal transformations
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7

RESOURCE ALLOCATION ALGORITHMS

Summary

In Chapter 3 we show that a resource allocation policy based on code-division multiplexing

provided several advantages over time and frequency sharing. The equivalence of orthogonal

CDM to TDM and FDM schemes in terms of achievable rate region is predicated upon the

assignment of many parallel orthogonal code channels to each receiver in a broadcast setting.

In Chapter 6 it is proven that it may not be necessary after all to use parallel binary orthogonal

code channels; instead, a single binary orthogonal code with variable spreading and duty cycle

suffices for an arbitrary rate transmission. Bit-error-rate analysis of uncoded binary data in

Chapter 6 shows that both single and multiple code channel schemes are equivalent in the sense

that one can be substituted in place of the other without affecting the BER of the designated

receiver or other interfering receivers in the system. Therefore, it is concluded that CDM with

single binary code channels is the preferred option due to its simpler, and readily scalable

receiver design structure.

In this chapter it will be shown that there is a catch to this equivalence. The BER analysis

is a measure of the link quality per channel. It does not measure the overall throughput of the

system. The throughput of single-channel, reduced gain CDM scheme (SC-RG CDM) can still be

smaller than its alternative parallel-channel, single gain CDM (PC-SG CDM) if a condition called

orthogonal code blocking is not removed. Code blocking is a code assignment constraint that

occurs only when recursive orthogonal codes are used as signature sequences. It is irrelevant

when the set of orthogonal codes are non-recursive. However, it is also important to note

that recursive orthogonal codes facilitate seamless multi-rate data transmission. Details on the

nature of code blocking and procedures for its removal are presented in this chapter.



There are two alternative methods of removing code blocking: horizontal and vertical code

reassignments. Both involve the release of an assigned binary code and reassignment of another

binary code. Hence, this is a (code) scheduling task that must be handled by a broadcaster in

coordination with its target receivers. If the newly assigned code is a relative of the released

code, we call such procedure vertical reassignment. If the reassigned code is a sibling, the

procedure is called horizontal reassignment. We show that the former is suited for bursty data

connections where a large ratio of peak-to-average transmission rate is tolerated. The latter

scheme supports zero latency; thus, it is the preferred option for delay-sensitive constant-rate

applications such as voice and live video. In practice, the central controller (the broadcaster)

in a CDM based communication system must adopt a single resource allocation policy that

efficiently handles both bursty and constant-bit-pipe connections. The implication is that the

chosen reassignment policy may need to support both horizontal and vertical reassignments

at the same time. Such a procedure will be called combined reassignment policy. It becomes

apparent that SC-RG CDM with combined reassignment is not only equivalent to PC-SG CDM

in terms of system throughput, but is also the preferred multi-rate transmission scheme due to

its natural ability to support statistical multiplexing of mixed (bursty and constant rate) data

channels.

We summarize the main results below:

* OVSF code blocking is unique only to recursive orthogonal codes. We wish to eliminate

code blocking for two reasons: First, in a single-channel multi-rate CDM system with

constant rate connections, the network capacity is reduced by as much as 25% (due to

code blocking) compared to an alternative CDM multi-rate system that employs parallel

orthogonal code channels. We, however, do not promote parallel channel CDM (multi-

code CDM) due to its increased receiver complexity for multi-rate reception. Second,
with a large capacity penalty due to code blocking in SC-CDM, a competing multiplexing

scheme such as TDM may seem more appropriate for multi-rate communication.

" Horizontal code reassignment is ideal for constant rate, delay-intolerant connections. We

devise a code reassignment algorithm that is optimal in minimizing the number of reas-

signments. The algorithm prefers over-population of the code tree.

* Vertical code reassignment is ideal for bursty connections that are delay tolerant. We

propose an efficient algorithm that maximizes bandwidth utilization and also guarantees

finite bounded delay. The algorithm prefers under-population of the code tree.

* In order for a SC-CDM based system to support both constant rate and bursty connections,
OVSF codes must be reassigned both horizontally and vertically. At first glance it appears

these assignment policies are in conflict since one prefers under-population while the
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other desires over-population. We prove otherwise by describing a combined assignment
strategy that affords statistical multiplexing of mixed-rate channels -a provision that is
not readily adaptable in a parallel channel CDM based system.

layer Walsh codes
number

1 [ ]2 [x _X] 3 4 3 AW

branch
numbers 1 2 3 4 5 6 7 a 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 W16

Figure 7.1: Binary tree structure of OVSF codes

0 T 2T

1 -1

F ___ F -1(a)

F--L -- F -(b)

Similarity between two Walsh coded sequences. Each se-
Figure 7.2: quence cannot be decoded uniquely since one Walsh code

is an ancestor of the other

7.1 Orthogonal Variable Spreading Factor Codes

The properties of recursive binary orthogonal codes of variable length are already discussed
in Chapter 4. A quick review is given here. Fig. 7.1 shows an orthogonal variable spreading
factor (OVSF) code tree with 16 leaves. All (16+8+4+2) =30 nodes in the tree are valid OVSF
codes. The topmost code is the root code. From the root code [X], its two children codes -
[XX] and [XX]- can be generated by concatenation. If [X] is a vector of length n, we assume
[X] E (D2) n; i.e., an OVSF code is antipodal binary-valued. All OVSF codes in the same row are

called cousin codes. All codes linking code A to the root code (inclusive) through the shortest

path are called ancestor codes of A. All codes branching from an OVSF code are its descendant

codes. The relatives of a code comprise of both its descendants and ancestors. (A warning
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about our convention: A cousin code is not a relative!) Two codes are orthogonal if and only if

one is not a descendant of the other. Thus, a code and its relatives are not orthogonal. Once

a particular code is assigned (to a receiver), simultaneous use of its descendant or ancestor

code(s) is not allowed because the encoded sequences may be indistinguishable. An example is

shown in Fig. 7.2 where a binary data sequence (+1, -1) is encoded (or modulated) using two

different Walsh codes. The top waveform (labelled (a)):

(+1, -1, -1, +1 , -1, +1, +1, -1)

is the resulting encoded sequence modulated by a Walsh code W 4 (4) = (+1, -1, -1, +1). The

encoded sequence spans over an interval [0, 2T]. The bottom waveform, labelled (b):

(+1, -1, -1, +1)

uses a shorter length Walsh code W 2 (2). A shorter length code supports a higher data rate,

and this is the reason why the encoded sequence spans only over the interval [0, T]. We see

immediately that within the interval [0, T], both waveforms (a) and (b) are identical. In essence,

the most important property of OVSF codes is the constraint that only mutually orthogonal

codes can used for simultaneous data transmission and channel multiplexing.

Another insightful interpretation of OVSF codes is its equivalence to binary prefix-free codes

when [X] E F 2 . By definition a binary code is prefix-free if its prefix is not the same as another

valid binary code. Because OVSF codes are generated recursively, a code and its relatives have

the same prefix. In our example, W 2 (1) @ [X] = 0 and W 2 (12) # [X] = 1,

W2 (1) 0 (0) W4 (2) (01 ) W8(4) <= (011)

Note that in binary prefix-free code construction, a child code is tagged either '0' or '1'. (Cau-

tionary note: Binary prefix-free codes described here are "conventional" type. See page 191

for a different description based on binary Hadamard sequences.) Since they all have the same

prefix, they are not mutually orthogonal. However, Walsh codes that are not relatives, for ex-

ample, W 4 (4) 0 (11) and W 2 (1) 0 (0) are orthogonal. If we label each node in the binary tree

by an binary vector over F 2 , we see that the assignment of OVSF codes for channel multiplexing

is equivalent to the construction of variable-length binary prefix-free codes. (Prefix-free codes

are discussed in [22]).

If the maximum spreading gain is Nmx and the information rate of a leaf code is R bps,

the chip rate is Nmax R cps (chips per second). Equivalently, each information bit {+1, -11 is

mapped to a leaf code A or its inverse X of length Nimax. Since two binary orthogonal codes

of length 2L are generated from their parent code of length L, OVSF codes are called "recur-

sive." It is this recursive property of OVSF codes that allows a code channel to support variable

transmission rates. Since the underlying communication system uses a single chip rate for



337

transmission, we deduce immediately that the parent code of a leaf supports information rate

of 2R bps. By going one step further, we know that the grandparent code of a leaf code supports

an information rate of 4R bps and so on. In general, an OVSF code channel can vary its data

rate by powers of 2 by sliding vertically to its relative code. There is no change in information

rate if the sliding is horizontal.

2 21

12 3 4 W4

2 3 4 5 6 7 8

[ 6 7 8 9 10 11 12 13 14 15 16 6

blocked massigned
code -code

Figure 7.3: OVSF code blocking

7.1.1 Code Blocking in OVSF-CDM

In parallel channel-single gain CDM (PC- SG CDM), k mutually orthogonal leaf codes are

allocated to a receiver requesting an information rate of kR bps. In OVSF-code-based single

channel-CDM (SC-CDM), the system may not be able to support the same rate even though k

leaf codes are vacant. Consider the example shown in Fig. 7.3. Assume the system is code-

limited; i.e., it can support a maximum capacity of Nmax R bps with Nmax leaves, and each leaf

supports R bps. If codes W8 (1), W16(3) and W16(5) are already assigned, the "used" capacity in

the left sub-tree is 4R bps, and the unused capacity is (8 -4) = 4R bps. However, codes W4(1),

W4 (2), W8 (2) and W8(3) are blocked by their respective descendant codes. Only W8 (4) of rate

2R is available for assignment, even though the free capacity in the sub-tree is 4R. As a result,

a new connection requesting 4R bps is blocked in SC-CDM. In PC-CDM the call is supported by

assigning leaves W 16 (4), W 16(6), W 16(7) and W 16(8).

8 Definition We define OVSF code blocking as the condition that a new connection cannot be

supported although the system has excess capacity to support the requested information rate.

7.2 Dynamic Assignment of OVSF Codes

It is important to note that code blocking only occurs in higher layer codes. It is evident

from the code tree (Fig. 7.3) that the higher the requested data rate, the larger the blocking

7.2 Dynamic Assignment of OVSF Codes



probability. Overall, the system throughput of SC-RG CDM will be much less than that of PC-SG
CDM due to code blocking. For practical reasons a resource allocation policy that requires a
single-channel receiver design -regardless of the information rate- is desired. Our immediate
concern is to develop a procedure where SC-RG CDM can maintain the same system throughput
as PC-SG CDM with some modifications to its code assignment policy. In the following sections,
we propose two very different alternatives that remove code blocking completely. They both
require the release and reassignment of OVSF codes while the connection is active; i.e., they
are make-before-break options where information transfer is uninterrupted.

2 W2

12 3 4 W4

2 3 4 5 6 7 8

[ 6 7 8 9 10 11 12 13 14 15 16 1 6

Figure 7.4: Complete overpopulation of OVSF sub-tree

7.2.1 Horizontal Reassignment

The code blocking case in the left sub-tree of Fig. 7.3 can be removed if the active channel
with W16(5) releases its assigned code, and it is reassigned the vacant W16 (4). Now, W4(2) of
rate 4R is available for a new connection. The new topology of the sub-tree, as shown in Fig.
7.4, is called completely overpopulated. The assigned codes are packed as densely as possible.
Coding blocking does not occur when a (sub) tree is completely overpopulated. Because the
code sliding is horizontal, all active channels retain their information rates after code reassign-
ments. It is easy to see that this policy is suitable for applications that require constant bit-rate
connections with zero latency. The optimality criterion is the minimization of the number of dis-
turbances (i.e., the number of code reassignments) to active channels such that a new call with
its requested rate can be supported. We present such an optimal horizontal code assignment
algorithm in Sec. 7.3.

7.2.2 Vertical Reassignment

Let us revisit the code blocking case in the left sub-tree of Fig. 7.3. Without horizontal
reassignments, a user requesting rate 4R has two options: it must be content with an assigned
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7.2 Dynamic Assignment of OVSF Codes
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Figure 7.5: Vertical reassignment of OVSF codes

code W 8 (4) of 2R, or it can be assigned a parent code W 4 (1) of 8R with 50% duty cycle for an

average rate of 4R. The latter approach has immediate consequences on the rest of the system

with active channels. All remaining active channels must also slide their assigned codes to their

respective parent codes. This scenario is shown in Fig. 7.5. Obviously, this is a combination

of vertical code sliding and time sharing. In the extreme case (Fig. 7.6) where each active

channel slides to the root code, the resulting policy is clearly time-division multiplexing. A

major drawback of TDM is its large peak-to-average information rate ratio, resulting in a large

delay gap between information bursts. It is clear that CDM with vertical code sliding and time-

sharing is a compromise between CDM with horizontal reassignment (no latency) and TDM

(maximum latency). Its attractive features are the complete removal of code blocking and

reduced complexity in code scheduling since no code swapping is involved; instead, a receiver

needs to adjust its correlation window in accordance with the information rate. In Sec. 7.4,

we describe an efficient vertical reassignment algorithm that minimizes latency and backlog of

information packets.

11 (1)

new user se us r
user 1 2 3

time frame -

use r

12

user

2 3 4

1 2 4 6 7 8
user user

Figure 7.6: Extreme case of vertical reassignment: time-division multiplexing
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Figure 7.7: complete Under-population of OVSF sub-tree

7.2.3 Combined Reassignment

In the horizontal reassignment policy, code reassignments take place only once when a new

call arrives. This is the call-by-call basis reassignment. In vertical reassignment, the time shar-

ing operation takes place in every time frame. Because of the burstiness of information packets

from each information source, the reassignment strategy must be preformed dynamically on a

packet-by-packet basis. It is also possible to combine both horizontal and vertical reassignment

policies. The benefits of this synergic approach is in the reduction of horizontal reassignments

(reduction in control signal overhead), statistical multiplexing capability (maximizing total ca-

pacity) and increased smoothness (less choppiness) of information transfer (bounded latency).

The downside is an increase in complexity for code scheduling -mainly due to conflicting ob-

jectives in desirable topology configurations for vertical and horizontal reassignment policies.

Let us elaborate further. In horizontal reassignment policy, the optimality criterion is to support

a new call with the minimum number of reassignments for active channels. The ideal topol-

ogy of a code tree is complete overpopulation where assigned codes are all concentrated in

a portion of the tree such that the rate of a vacant code is maximized. (This is illustrated in

Fig. 7.4.) For vertical reassignments, the opposite is desired; i.e., a completely underpopulated

code tree (see Fig. 7.7) has the smallest peak-to-average information rate ratio. The ultimate

goal of a combined assignment policy is to strike a balance between horizontal and vertical

reassignments.

It is foreseen that future mobile communications systems must be able to support all kinds

of mobile data applications that are bursty, steady, delay-sensitive etc. A CDM broadcaster that

supports only one -but not both- reassignment policy is not viable in practice. A simple, but not

very efficient, option is to partition the code tree into two sub-trees. One sub-tree is dedicated

to constant-bit rate connections (with horizontal reassignment policy) while the other sub-tree
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supports vertical sliding with time-sharing. We notice immediately that the peak information

rate of a connection is reduced by tree partitioning. Moreover, an active channel must relin-

quish its active channel and queue for a new channel once its mode of information transfer is

changed in nature, say from constant to bursty rate connection. We can do better than a simple

tree partitioning. This topic is further discussed in Sec. 7.5.

7.3 DCA Algorithm for Constant-Rate Channels

For constant-rate connections that demand zero latency, the only dynamic code assignment

(DCA) policy is horizontal reassignment. The algorithm involves three steps:

1. A check on the system capacity to see if a new connection with its requested rate can be

supported by reassigning OVSF codes for ongoing connections. If not, the new connection

is blocked.

2. If there is enough excess capacity, the target OVSF code must be evaluated. Based on the

requested information rate, we are required to only search for sibling codes from a single

layer of the tree. The code that minimizes the number of reassignments is our target code.

3. Once the target code is determined, we must reassign all of its actively assigned descen-

dant codes. This step may trigger the reassignment of OVSF codes in other parts of the

tree.

7.3.1 Optimal Dynamic Code Assignment Algorithm

Our goal is to design an algorithm that minimizes the number of necessary reassignments of

occupied codes to support a new connection. This is our chosen optimality criterion. We have

selected this criterion because it causes the least amount of interruption to ongoing connections.

If another optimality criterion is desired -such as overpopulation of a code tree, then the

resulting reassignment algorithm will be very different from what we propose here. The key

idea underlying our optimal algorithm is to associate a costfunction with each candidate branch,

and to assign the root code of a minimum-cost branch to the new call. (A xR branch has an

OVSF code of rate xR as its root code.) The cost function is only defined when there is excess

system capacity, i.e., when the capacity-test equation (7.2) is a strict inequality -before the

new call is accepted.

9 Definition Under the assumption that the system has excess capacity, the cost of reassigning an

occupied code C is defined as the minimum number of code reassignments (including C itself)

necessary to reassign C to some other branch D and subsequent reassignments of all active

descendant codes in branch D.
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Cost of reassigning a 4R code. In (a), the cost is 1 since there is an

Figure 7.8: empty branch. In (b), the total cost is 3 since two leaves (each of

cost 1) must also be reassigned.

Since the reassignment of a leaf code of rate R results in no additional code reassignments but

itself, by definition its cost is 1. Fig. 7.8 illustrates the cost of reassigning a 4R code. As can

be seen from the figure, the cost depends on the topology of other branches. When there is

an immediate vacancy in another branch, the cost is only 1 (Fig. 7.8(a)). The cost is 3 for the

topology in Fig. 7.8(b). It is equally useful to measure the cost function of a branch; this is the

sum of costs of reassigning all active codes contained in the branch. We see immediately that

the maximum cost of any 2R branch is 2, that of any 4R branch is 4 and so on. The challenge

of implementing an optimal algorithm lies in searching for a minimum-cost branch efficiently.

This is because the cost of reassigning an occupied code in one branch is a function of the cost of

reassigning codes in other branches. A straightforward implementation of the algorithm using

the cost function would compute the cost of all branches using a recursive procedure. This

would require an exponential amount of computations because the procedure must be iterated

for descendant codes as well. Fortunately, several key observations (Theorems 7.2 and 7.3)

regarding the optimality of code reassignment can help us significantly reduce the complexity

of searching for a minimum-cost branch. Before we present an efficient search algorithm for a

minimum-cost branch, we first outline the steps in the execution of our optimal DCA algorithm:

1) Check if the new call with rate kR bps can be supported, i.e. its requested rate is within

the system capacity (Theorem 7.1). If so, go to Step 2. If not, block the call.

2) Find a minimum-cost branch where the root code supports rate kR bps. (Theorem 7.2

ensures that there is no need to search for branches with higher root code rates.) This step
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can be achieved by using, for example, an optimal topology search algorithm described

later in this section.

3) Once a minimum-cost branch is found, the root code of the branch is assigned to the

new call. If the branch is empty, the root code is assigned to the call and the process is

complete. Otherwise, it is necessary to reassign the (occupied) descendant codes of the

branch as described in step 4.

4) Reassign to another branch the code with the highest data rate among the descendant

codes first. If there are more than one descendant code with the highest data rate, it can

be chosen arbitrarily among them. (This procedure is sufficient to maintain optimality of

the algorithm. See Theorem 7.3.)

5) To reassign a code (with the highest data rate among the descendant codes), go back to

Step 2 by treating it as a new call requesting its rate. The above algorithm guarantees

that a code is assigned to a minimum-cost branch in each iteration. It can be proven that

the resulting total number of code reassignments is always minimum.

Capacity Test: Code-limited Case

Let R bps be the data rate supported by a leaf code. The code tree consists of N leaves.

Then, in an idealized code-limited (single-cell) case, the system capacity is equal to NmtaxR

bps, where Nmax = 2 m, m E Z+. This is based on the assumption that all assigned codes

are mutually orthogonal, and there is no multiple access interference among them. Thus, the

system has N ,tX parallel single-user channels, each channel supporting a data rate of R bps. If

L is the total number of users in the system and ki = 2i, nr c Z+, is the rate factor of user Mi

whose assigned data rate is kjR bps, then we must have:

L
ki Nmax (7.1)

Rewriting (7.1):
L

2--i < 1 (7.2)

where the integer rj = m - ni. Since each assigned OVSF code in a CDM system is equivalent

to a prefix-free binary code, the capacity check (7.2) is simply an alternate form of Kraft's

inequality. We now state the following:

Theorem 7.1 If the requested data rate of an incoming call is within the system capacity, i.e. it

satisfies Kraft's inequality, (7.1) or (7.2), the call can be supported by code reassignments.
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Proof of Theorem 7.1: It is well known [22] that given a set of integers rj, i E Z, satisfying

Kraft's inequality, prefix-free binary codes of code lengths rT can be constructed. From (7.2),

OVSF codes with data rates kiR bps can then be constructed correspondingly. M

Capacity Test: Interference-limited Case

An ideal code-limited CDM system is meaningful in a single or isolated cell wireless envi-

ronment. However, in a multiple-cell wireless environment, multiple-access interference from

neighboring cells must also be taken into account when computing the system (or cell) capacity.

As a result, the capacity is less than N mQXR bps [40]. In this case, the capacity test using Kraft's

inequality is modified as follows:
L

2-T < (7.3)
i=1

where D > 1 is the effective reuse number of a CDM system in a multiple-cell environment.

For example, if the total number of codes that can be supported in the forward link of a CDM

system is 44 (out of 64) [40], D equals 64/44. In a code-limited case, we assume that the rate

factor of user Mi (of rate kjR bps) is ki. In a multiple-cell environment, the rate factor ki must

also take into account the additional interference from users in neighboring cells.

Theorem 7.2 In step 2 of the above DCA algorithm, to assign a code of rate kR bps, it is sufficient

to consider only branches of root code rate kR bps to maintain optimality of the algorithm.

The proof is given in Appendix 7.A.

Consider the example shown in Fig. 7.8. Assume that a second-layer code needs assignment.

There are 8 second-layer branches (indexed 1 through 8 from left to right). Theorem 7.2 states

that branches 7 and 8 need not be considered as possible candidates because their root (parent)

code in third-layer branch 4 is already occupied. In order to assign a code with branch number

7 or 8, we must first reassign the parent code. It is more costly to reassign a higher layer code

than other lower layer descendent codes (leaf codes in this case). Among the second-layer

branches, 4 and 5 can also be eliminated from the candidate pool because both are already

assigned.

Theorem 7.3 In step 4 of the DCA algorithm, reassigning a code with the highest data rate among

the descendant codes first is sufficient to maintain optimality of the algorithm.

The proof is given in Appendix 7.B.

When a minimum-cost branch is located, all its occupied descendant codes (if any) must

be reassigned. It is of course possible to reassign leaf codes first. However, all leaf code reas-

signments have a cost of 1, and the new branch numbers can be chosen arbitrarily. Erroneous
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selection of new branch numbers for leaf codes (or lower layer codes in general) can lead
to higher costs for higher layer codes that need reassignments. Theorem 7.3 states that the
minimum cost criterion is maintained if a code with the highest data rate is reassigned first.

7.3.2 Minimum-Cost Branch Search Procedures

To complete the description of our code reassignment algorithm, we present several algo-
rithms that search for a minimum-cost branch. It is important to stress that any of the fol-
lowing searches can be used to locate a target branch. Some searches will indeed identify the
minimum-cost branch while others will not. Regardless of the selected search procedure, the
reassignment algorithm completely removes code blocking. As we shall see next, searches that
locate a branch with the minimum cost are generally more complex.

Exhaustive Search

In an exhaustive search algorithm, the cost of every candidate branch is computed. This
would require computing the cost of reassigning every (occupied) descendant code contained
in a branch. Since reassigning a code to another branch would involve reassigning codes of that
branch and other branches, a chain reaction type of reassignments occurs. The cost function
must be computed recursively. The complexity of such recursive computations can be pro-
hibitively large if the target code is of high information rate. The exhaustive search method,
by its nature, does locate a minimum-cost branch at the cost of complexity. It also does not
exploit some topological properties of binary sub-trees. We next describe two search methods
that are far more efficient by taking into account the locations and patterns of assigned codes
in a branch.

1/1 2/3 3/6

Figure 7.9: Code pattern description for 8R branches

Code Pattern Search

In a majority of cases, branches with more descendant codes and/or occupied capacity will
have a higher cost. This property is exploited in the code-pattern search algorithm. First, we

7.3 DCA Algorithm for Constant-Rate Channels 345



define the code pattern A/B of a branch, which is defined in terms of A, the total number of

occupied descendant codes and B, their occupied capacity. For example, three different code

patterns of 8R branches in Fig. 7.9 are denoted as 1/1, 2/3 and 3/6, respectively. In most cases,

a branch with code pattern A/B has a smaller cost than a branch with code pattern C/D if

a) A < C or
b) A = C and B < D
Since the code pattern of each branch is very easy to compute, an efficient heuristic search

algorithm is simply to pick the branch with the smallest code pattern (based on lexicographical

order). All possible code patterns for candidate 4R and 8R branches are shown in Figs. 7.22-

7.29. The code pattern description for branches with higher code rate factors (16R and beyond)

can be constructed in a similar fashion. The code pattern search method does not always yield

a minimum-cost branch. This is mainly because the code pattern does not uniquely characterize

the locations and the composition of the codes within a branch. It is possible for two branches

with the same code pattern to have different costs. This occurs when one is underpopulated

while the other is overpopulated. In the following, we describe an optimal search algorithm

that makes use of the code pattern of a branch as well as the code structure within a branch.

3/6 (222) 3/6 (114)

Figure 7.10: Extended code pattern description for 8R branches

Topology Search

In order to describe the code structure, we would extend the code pattern description of a

branch. Let us use an example to illustrate this. When two branches (say, 3/6) have the same

code pattern but different descendant codes, an extension such as 3/6(114) or 3/6(222), de-

scribing the descendant code composition, is used. This is illustrated in Fig. 7.10. An extension

to a code pattern is crucial in the search of minimum-cost branch because two branches with

the same code pattern but different code composition do not necessarily have the same cost.

(See Appendix 7.C for tables listing cost comparison between any two branches.) A branch can

be characterized completely using a grid pattern. A grid pattern is a sequence of numbers and

X's, where the numbers represent the code rate factor of assigned codes in a branch and X's

show the locations of vacant R codes. Examples of grid patterns are shown in Fig. 7.11. Note
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2/2 2/2 5/7 3/7
XX11 1X1X X11122 X124

Figure 7.11: Grid pattern description for 8R branches

the significance of grid patterns. It shows two branches with the same code pattern (and code

composition), but the cost of reassigning a 2R code into the 1X1X branch is twice that of the

XX1i branch.

The topology search is considered as an extension to the code pattern search because it still

uses the extended code pattern A/B of a branch to first locate a possible minimum-cost branch.

Afterwards, a cost comparison table, such as Table 7.3 or 7.4, is used to check if further testing

of the branch is required. Tables 7.3-7.7 in Appendix 7.C outline a list comparison tests of

cost for all possible 4R and 8R branches. The key idea is that given two branches, one can

determine which one has a smaller cost without actually measuring the exact cost of each one.

Branches that require further tests are marked by # in the tables. The required tests for each

branch are also marked by *. The tables are computed by searching for all possible branches

with unique extended code patterns, and comparing the costs of these branches in each case.

Note that the topology search method is very efficient since the tables can be computed off-line.

Although we have only described the method for the cases of 4R and 8R codes, it can be easily
generalized to include branches of higher code rate factors. Thus, our topology search method

is not only optimal, but also computationally efficient for moderately high code rate factors.

The complexity of a DCA scheme depends mainly on the type of search algorithm used to lo-

cate a minimum-cost branch. Once a branch is selected, the algorithm must also specify a list

of codes that must be reassigned along with their respective branch numbers. Several options

are available to a system designer.

(1) If fast computational time is a premium, the code pattern search algorithm can be used

to locate a minimum-cost branch. The search involves off-line table look-up only. Since

this algorithm is generally not optimal in locating a minimum-cost branch, the number of

code reassignments may be higher.

(2) If computational time is not critical, optimal topology search algorithm can be used to

minimize the number of reassignments. Compared to code pattern search, this algorithm

uses extra comparison tests to identify a minimum-cost branch.
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(3) Regardless of the search algorithm used for a minimum-cost branch, it may take several

time slots to reassign descendant codes error-free (by using receiver acknowledgments).

However, fast connection time for a new call is still possible. This is achieved by assigning

a lower rate vacant code in the minimal-cost branch to the new call. Once all occupied

codes in the branches have been reassigned, the rate indicator (layer number) is used to

adjust the data rate.

7.3.3 Simulation Model and Results

In the preceding two sections, we outlined various schemes of implementing a spectral-

efficient and cost-effective OVSF-CDM system. The complexity and the task of reassigning OVSF

codes is located on the central controller's (base station's) side. By simulation, we first analyze

the loss in spectral efficiency of an OVSF-CDM system that does not apply DCA. Second, we

measure the total number of codes that must be reassigned if DCA is activated. The flow chart

of the simulation program is shown in Fig. 7.12. The simulation uses the following parameters:

" Call arrival process is Poisson with mean arrival rate A = 1 ~ 16 calls/unit time (Fig.

7.13), 4 ~ 64 calls/unit time (Fig. 7.15).

* Call duration is exponentially distributed with a mean value of 1 /t = 0.25 units of time.

* Maximum spreading factor Nmax = 64 (Fig. 7.13), 256 (Fig. 7.15).

* Possible OVSF code rates: R, 2R, 4R and 8R.

* Capacity test: code-limited.

* DCA scheme: optimal and sub-optimal search algorithms.

An outline of the simulation program is as follows:

1) Input parameters such as call arrival rate, duration, code rate distributions are entered.

2) For each new call, the capacity check (7.2) is performed. If the call cannot be supported,

the call is dropped. Otherwise, one of the reassignment subroutines is executed.

3) If the call rate is 8R, the 8R subroutine assigns a code to the new call. If descendant codes

need to be reassigned, it is directed to other reassignment subroutines.

4) If the call rate is 4R, 2R or R, the execution is similar to Step 3.

5) Once the reassignment is complete, the last step is to record the number of blocked calls

and the number of reassigned codes.

6) The process is repeated by returning to Step 2.
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enter arrival
rate, call dur.

enter rate %
R, 2R, 4R, 8R

generate
new call

< capacitynnocheck

yes discard ca~l

8R 4R 2R R

yes yes yes
esce dn esce idn esce n

no
no no

if call is reassigned
increment blocked call
record the number of

reassigned codes

Flow chart of Proposed DCA algorithm

The algorithm can be extended to include reassignments of 16R codes and
beyond. Note that reassignments occur only after a new call is initiated. As
an alternative, reassignments can occur after a call terminates.
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Figure 7.15: Plot of blocking probability vs. traffic load for Nm. = 256.
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Figures 7.13 and 7.15 show plots of code blocking probability, i.e. probability of calls that

would be blocked if DCA is not implemented, versus traffic load A/[t (average service rate

average call duration). We have chosen Nmax = 64 and 256 to reflect the values chosen for

IS-95 and W-CDMA standards [114, 28]. The total number of accepted calls (calls that satisfy

the capacity constraint) is 1000 (Nmx = 64) and 4000 (Nmax = 256) for each traffic load

simulated. The number of codes that must be reassigned to support the accepted calls are

shown in Figs. 7.14 and 7.16. Each point on a curve in the figures represents the average

value over 10 simulations. The simulation shows that both the blocking probability and the

number of code reassignments are the largest when the code rates are uniformly distributed.

The (R, 2R, 4R, 8R) = (10, 40, 40, 10) distribution has the second largest blocking rate. Its

number of code reassignments is, however, less than that of (40, 10, 10, 40) distribution.

These results are expected because in (10, 40, 40, 10) distribution, calls of rate 2R and 4R have

a higher probability of satisfying the capacity check of (7.2), and also getting blocked without

reassignments. The number of code reassignments in (10, 40, 40, 10) is less than (40, 10, 10,

40) because, in general, it costs more to reassign a higher-layer code (in this case, 8R).

By using the blocking probabilities and the code rate distribution, we can calculate the loss

in spectral efficiency of an OVSF-CDM system if codes are not reassigned. For example, if the

blocking probability is PB (the percentage of calls blocked due to code blocking) for a certain

traffic load, the loss in spectral efficiency -y is:

loss in capacity due to code blocking

= PB capacity without code blocking (7.4)
2S2+4S4 +858

PB 1 + 2P2 + 4P4 + 8P 8

where Pi is the percentage of calls of rate iR over the duration of simulation. Thus,

P1 +P 2 +P 4 +P 8 = 1

Si is the percentage of rate iR among calls that are subject to code blocking:

Si-
P2 + P4 + P8

As an example, for a rate distribution of (25, 25, 25, 25):

2 x1+4xi+2x l4x!+x

j(1 +2+4+8)

The plots in Figs. 7.13-7.16 were generated using the sub-optimal code pattern search

(CPS) algorithm. Table 7.1 lists the loss in spectral efficiency without DCA for several different

code rate distributions. The fourth column of the table shows the average number of code

reassignment per accepted call if DCA is implemented using CPS algorithm.
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Table 7.1: Loss in spectral efficiency due to OVSF code blocking
(Code Pattern Search Algorithm)

Nmcax [traffic load (R, 2R, 4R, 8R) j spectral efficiency loss reassigned codes per call

64 4 (10,40,40,10) 0.17 0.19

64 4 (40,10,10,40) 0.18 0.21

64 4 (25,25,25,25) 0.21 0.24

64 4 (40,40,10,10) 1 0.19 0.17

256 16 (10,40,40,10) 0.19 0.22

256 16 (40,10,10,40) 0.19 0.26

256 16 (25,25,25,25) 0.22 0.39

256 16 (40,40,10,10) 0.21 0.21

Similar results generated by using the optimal code pattern plus topology search algorithm

are tabulated in Table 7.2. As expected, the number of reassignments is less with the optimal

scheme -however, little difference, if any, is observed in spectral efficiency loss.

Table 7.2: Loss in spectral efficiency due to OVSF code blocking
(Code Pattern plus Topology Search Algorithm)

Nmax traffic load (R, 2R, 4R, 8R) spectral efficiency loss reassigned codes per call

64 4 (10,40,40,10) 0.18 0.10

64 4 (40,10,10,40) 0.18 0.14

64 4 (25,25,25,25) 0.20 0.16

64 4 (40,40,10,10) 0.20 0.12

256 16 (10,40,40,10) 0.19 0.15

256 16 (40,10,10,40) 0.19 0.18

256 16 (25,25,25,25) 0.21 0.27

256 16 (40,40,10,10) 0.21 0.13

7.4 DCA Algorithm for Bursty-Rate Channels

By reassigning OVSF codes horizontally, the data rate of each code channel is unchanged.

This method is useful in applications where constant bit-rate connections are required. It also

applies to delay-sensitive connections. It, however, has several drawbacks.

m First, the number of simultaneous connections that horizontal DCA supports is hard-
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limited -also known as dimension-limited since the system can support a maximum of

Nmax connections, which is equal to the number of leaves in an OVSF binary code tree.

* Second, for each horizontal reassignment, the base transmitter must send control infor-

mation to a designated receiver to request a switch to its newly assigned code, which

is a cousin Walsh code. This process requires transmission of control signalling as over-

head and coordination between transmitter-receiver pairs. Furthermore, reassignments

are required whenever the system experiences code blocking.

* Third, it cannot support statistical multiplexing since a connection does not release its

assigned code even if it is idle.

These three issues can be resolved as follows:

* Virtual Codes: Hard limitation of parallel orthogonal codes is addressed by assigning vir-

tual orthogonal codes. By assigning virtual codes, the total number of forward link chan-

nels is no longer dependent on maximum spreading gain Nmax. The specifics of this topic

are covered in Sec. 7.6.2.

" Vertical Reassignment: In vertical reassignment, the length (dimension) of a Walsh code

-as opposed to a newly assigned cousin Walsh code- must be specified in accordance

with information-bearing data rate. The frequency of reassignment does not depend on

incoming/outgoing call traffic statistic, but is rather a design parameter. As a result, rate

adaptation is possible at a finer time frame level.

" Statistical Multiplexing: Statistical multiplexing is afforded by combining vertical reas-

signments with time sharing. Information packets from each source are queued in par-

allel buffers (see Fig. 7.17). In each time frame, packets at the head of the queue from

selected channels are multiplexed and transmitted according to some quality-of-service

(QoS) control mechanism.

It is obvious that this procedure is suitable only for information content that is delay-

tolerant. Since our goal is information transfer via parallel OVSF-CDM code channels, the

chosen QoS criterion is bounded latency (i.e., finite buffer size) in all parallel channels and

maximization of total network capacity. We propose a heuristic algorithm based on the concept

of credit-reward system. An outline of this algorithm is as follows:

(1) Each user i is assigned a leaf code. Let's denote its requested rate by kjR.

(2) Each user i is tracked by its "credit" and "usage" denoted by Ci and U&, respectively.

Initially, Cj = 0 for all users. In the beginning of every time frame, Cj is increment by ki.

In one time frame, if transmission of information is possible at its requested average rate,
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Figure 7.17: Buffer queues in parallel OVSF-CDM channels

its usage U4 is said to be k units. At the end of every time frame, Ci is reduced by U-the
amount of information transferred per time frame.

(3) After one time frame, the balance BI of user i is:

If the balance Bi reaches the "overdraft" limit Bmin at the beginning of each time frame,
no information is transferred for user i. On the other hand, in order not to favor a user
that has been idle for a long period, we also put a "credit limit" Cm.. on the maximum
amount of credit that each user can accumulate. Thus, the maximum value of Bj is Cmcz,.

The value of overdraft limit Bm must be chosen carefully to maximize the system capacity.
The credit limit Cmax protects users against unbounded delays. In most cases, these values
are chosen on a trial-and-error basis by simulating various traffic models with different rate
distributions. In this short review we have not addressed the role of call admission for new
connections. Note that the balance Bi is a measure of buffer size. We wish to control the call
admission policy for new connections -thus increasing the network capacity- while choosing
efficient values for Cmc and Cm such that the balance B1 is bounded by a some pre-set finite
value. A detailed discussion of DCA using vertical reassignment is given in Reference [64]. It
is shown therein that all requested rates are met on average by vertical DCA. The transfer of

information is, however, very choppy-with the leaf codes suffering the worst. Since choppi-
ness is equivalent to increased latency, it is not a desirable outcome for certain delay-sensitive

applications. The reference also covers the merits and efficiency of vertical DCA.
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buffe
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7.5 DCA Algorithm for Mixed-Rate Channels

One disadvantage of SC-RG CDM compared to PC-SG CDM is its limitation of information

rates to certain quantized levels, kR bps where k = 21, n E N. It is shown in [28] that infor-

mation rates between the quantized levels can be achieved by varying the rate from one time

slot to another. Of course, we already know that any arbitrary rate can be supported by vertical

reassignments with time sharing. Our interest here is the support of arbitrary rates to receivers

in combination with dynamic horizontal reassignments. An important distinction between the

combined DCA and vertical DCA schemes is that in the latter, transmission of information at

a non-zero minimum rate is supported. In combined DCA, each channel has a maximum and

a minimum ( 0) information rate provisioning, with the average rate located somewhere in

between. Equivalently the channel is less choppy since the peak-to-average rate ratio is reduced

considerably. It appears that there is much to gain by combining horizontal and vertical reas-

signment strategies in any resource allocation policy that removes code blocking. However, we

have hinted that the design of an efficient algorithm that incorporates combined OVSF code re-

assignments is not an easy matter. The difficulty arises from conflicting optimization strategies

in the algorithms that use either the horizontal or vertical code reassignments, but not both. In

horizontal DCA, the goal is to pack assigned codes tightly as possible by reassignments. This

is the overpopulation strategy. In contrast, vertical DCA prefers codes that are spread out such

that large duty cycles are maintained for all active channels. This is the underpopulated case.

We next describe reassignment strategies of our combined DCA:

Ca

branch Bi

C

Figure 7.18: Reassignment of leaf codes to another branch

* Horizontal Reassignments for Reduced Choppiness: In vertical DCA, each user i is classified

by its maximum R(max) and minimum R(min) rate requirements. Initially, user i is

assigned a leaf code, say c1 . The spreading gain of the assigned OVSF code ci may be

reduced such that its ancestor code, say ca supports a rate Rca Rj(max). Let ca be the

root code of a branch, say B1 . Note that any of the leaf codes not equal to ci in branch

Bi can be used in the initial assignment phase of user i, without affecting the maximum

supported rate. If there exists another user, say j that is assigned another leaf code ci in

356 Chapter 7: Resource Allocation Algorithms



branch Bi, its impact on user i -and vice versa- is the likelihood of increased choppiness

in their data rates. This choppiness can only be removed by reassigning horizontally a leaf

code to either user i or j, with the requirement that the new leaf code belong to another

branch. This situation is illustrated in Fig. 7.18.

" Horizontal Reassignments for Minimum-rate Guarantee: In order to meet the minimum

rate requirement of user i, an OVSF code cm whose rate R,, > Rj(min) must be as-

signed. Initially user i is assigned a leaf code cj, and later reassigned to an ancestor code,

preferably cm. Let us assume Bm is a branch whose root code is cm. For this step we

must reassign horizontally all users whose assigned codes are the leaf codes of branch

Bm. Since we know a priori the minimum rate Rj(min) of user i before establishing a con-

nection, we can perform a minimum-cost search procedure (i.e., the optimal horizontal

DCA) for a code whose rate is greater or equal to Rj(min).

* Modification of Horizontal DCA Algorithm: For a user with a bursty connection, its assigned

root code (whose rate > Ri(max)) in a branch can also be shared with other users. For

constant rate connections with 100% duty cycle, no code sharing is allowed. Therefore,

when searching for a minimum-cost branch, all branches whose root code is assigned

to bursty users no longer qualify as candidates. Similarly, when a new bursty user de-

mands a channel with its requested {Rt(max), Ri(min)}, the best candidate branches are

those whose root codes are shared by other bursty users. To meet its demand, it may be

necessary to carry out horizontal reassignments as detailed in the previous two steps.

To summarize, four different types of horizontal reassignments exist in combined DCA:

1. Leaf codes of bursty connections in a branch are reassigned to reduce rate choppiness.

2. Codes for any type of connection -either bursty or fixed rate- are reassigned to meet

the minimum rate request of a bursty connection.

3. Codes of constant-rate connections are reassigned to meet the maximum rate request of

a bursty connection.

4. Codes of constant-rate connections are reassigned to support a new connection.

We emphasize that our proposed scheme is equivalent to dynamic partitioning of branches such

that bursty connections share codes within a branch. For a fixed rate connection, it is assigned

the root code of a branch for the entirety of its connection. It is clear that our proposed com-

bined DCA scheme is more efficient that static partitioning of the entire OVSF tree into two

sub-trees, where each sub-tree is for bursty or fixed rate connections only We, however, do not

include a viable admission policy for both bursty and fixed-rate connections since this is a sep-

arate issue from the code scheduling and reassignment policies. In practice, it is likely that the

7.5 DCA Algorithm for Mixed-Rate Channels 357



cellular network operator will offer several classes of QoS for bursty and fixed rate connections
with different price ranges.

7.6 System Requirements for Code Reassignment

In terms of hardware complexity single channel-VG-CDM is preferred over parallel channel
SG-CDM since the former requires a single decoder at the mobile terminal regardless of the in-
formation rate. In the ITU's 3G wideband CDMA standard, each traffic channel in the forward
(base-to-mobile) link is time-slotted. Both control information and user data bits are time-
multiplexed in each time slot. See Fig. 7.19 for an illustration. In SC-RG CDM, a user's data
rate can be varied every time slot by adjusting the rate field (indicating the transmitted data
rate) that is embedded in the control information. However, the standard does not specifically
address the procedure of resource allocation, i.e., OVSF code assignment for rate adaptation
and packet switching on a time-slot basis.

In this section, we propose the necessary protocols for the implementation of a code schedul-
ing scheme that dynamically assigns OVSF codes to mobile users on a time-slot basis such that
the total throughput of the system is maximized while an average data rate guarantee to pro-
vided to each mobile user. By using a dynamic traffic scheduler, our protocol supports per-

connection guaranteed rates, while allowing high degrees of burstiness with small backlogs.
This is achieved without the need for a mobile user to overbook its required rate, thereby max-
imizing the system throughput. Since the required control signalling to implement our scheme
is based on the 3G W-CDMA standard, our results are directly applicable to systems using this
standard. Even when OVSF codes are optimally assigned, the system capacity may be under-
utilized because the maximum number of OVSF codes is hard-limited. This is true when at least
one channel has a low duty-cycle; i.e., it remains inactive most of the time. For such a case, we
propose a new protocol -which is not included in the 3G W-CDMA standard- that soft-limits
the number of active users by permitting many users to share a common OVSF code.

slot slot N

corntrol user data

power control
potcode

rate information
OVSF code number

Figure 7.19: Time-division multiplexing of control and data channels within a time-slot.
This is the chosen format in ITU's 3G W-CDMA standard.

I
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7.6 System Requirements for Code Reassignment

7.6.1 Control Signalling for Horizontal Reassignments

In order to inform the user of a newly assigned OVSF code, some type of control channel

signaling is necessary. Two possible options are in-band and out-of-band control channel sig-

naling. An in-band control channel signaling mode (see Fig. 7.19) has already been proposed

for third-generation CDMA systems [28], where the pilot signal, transmit power control, rate

information and other control signals are time-multiplexed with the user data. (From Fig. 7.1

we know that the layer number conveys the rate information. The branch and layer numbers

are sufficient parameters to identify a unique OVSF code.) We can modify the W-CDMA header

such that not only the rate information but also the branch number can be included in the

header of a time slot. By time slotting, the new protocol supports horizontal reassignment of

OVSF codes on a dynamic basis.

In order for the Walsh generator at the receiving end to switch from one code to another,

the encoding of data with the newly assigned code can be delayed for a number of time slots.

Fig. 7.20 illustrates an example where the branch number of a reassigned OVSF code is em-

bedded in slot 1. The data mapping using this code, however, does not begin until slot k. Other

demodulation and detection functions such as carrier recovery, code acquisition, symbol time

synchronization and pseudo-noise (PN) code despreading need not be altered. Power control

signaling also remains the same since another code from the same layer is reassigned.

slot 1 slot 2 slot k slot k 4-1 slot N

data data d ata data data

control header
(including new branch number)

data encoded using
reassigned code

Figure 7.20: Delay of encoded data for Walsh code switching

Ultimately, our goal is to modify the control channel protocol without increasing the num-

ber of bits in the control header for relaying code reassignment information to the receiver.

Expanding the portion of the control header -while keeping the length of a time slot fixed-

reduces data throughput. One option is to use the rate information field to relay both the layer

number (rate) and branch number (code), but not at the same time. In IMT-2000 W-CDMA

standard [28], seven layers -corresponding to spreading factors 256, 128, 64, 32, 16, 8 and

4- are specified . Therefore, three bits (before error control coding and spreading) -say from

1 to 7- are sufficient to indicate the data rate or layer number. The unused three-bit pattern

"000" can be used as a flag to signal the mobile that the control header in future time slots con-

tains (reassigned) code information. Since there are at most 256 branch numbers in IMT-2000
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systems, 8 bits (which can be transmitted over three time slots) are necessary to relay the code

assignment information. An alternative to in-band control signaling is the use of cell-specific
common control signalling channels such as paging and broadcast channels. It is foreseen in the
future that mobile handsets will be capable of parallel channel (multi-code) reception. If the
handset is equipped with at least two baseband receiving units, one can be used to decode infor-
mation data while the other monitors control signals such as code reassignment. Regardless of
the scheme selected for control channel signaling, in-band or out-of-band, an acknowledgment
mechanism from mobiles can be included to insure that every receiver is tuned to its reassigned
orthogonal code.

layer
number

I1 X X 2 [x _x] 3

1 2 3 4 2

leaf codes 1 2 3 4 5 6 7 8 1

0

virtual codes

1 2 1 2

Figure 7.21: Generation of virtual codes for bursty connections

7.6.2 Control Signalling for Vertical Reassignments

We stated earlier that the W-CDMA standard already supports vertical reassignments by
inclusion of a rate field on the control header. This protocol implicitly assumes that each user is
assigned at least a leaf code, guaranteeing Rj(min) = R. We however can foresee applications
where 0 < R(min) < R. In such situations, the system capacity will be under-utilized since
there is no statistical multiplexing of code rates. In essence, we wish to assign virtual codes

to each bursty user such that the number of active -but not necessarily receiving- users is
much larger than the number of leaf codes. This is illustrated in Fig. 7.21. Conceptually, this
protocol is equivalent to TDM where the number of receivers is potentially much larger than
the number of time-slots in a single frame. To implement such a protocol, the control header of
the W-CDMA time-slot must be modified to include the identification of a virtual code.
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Notes and References

Most of the material come from two sources [86],[64]. Although both algorithms can be

used in single- and multi-carrier based CDM systems, these references focus only on the for-

mer. This is because no such multi-carrier CDM system is operational to date. In CDM two

important issues in networking are the support of variable data rates and bounded latency. In

[86] a horizontal code reassignment scheme is proposed for constant-rate, delay sensitive code

channels. Since horizontal reassignment of an OVSF code does not change its supported data

rate, both rate and delay requirements are satisfied. The only drawback of this scheme is that

a code channel is not released until a call is completed. For most non-voice applications, a user

is "on" only for a short burst, and remains idle for a long duration. For a user to be "on" at all

times, it must be assigned a virtual code channel. For such a connection, better use of system

capacity is possible by statistical multiplexing. This is the underlying concept of the algorithm

proposed in [64]. Here, the code reassignments are vertical. The algorithm is well-suited for

bursty and delay-tolerant connections. Since a code channel can be time-shared by many users

(though not simultaneously), the system no longer suffers from a "code or dimension limit."

Its main drawback is data choppiness, i.e. a large value in the ratio of its peak to average data

rate. Both algorithms can be used in ITU W-CDMA standards [28] with minor or little modifi-

cation in control channel signalling. Finally, by combining horizontal and vertical reassignment

schemes, we can eliminate several drawbacks that exist in each scheme. The combined code

reassignment scheme presented in this chapter is new; it covered in [86, 64] and has yet to

appear in any public domain archives.

An important topic not addressed in this chapter is variable rate support by combining

OVSF-CDM with multi-code CDM. It is foreseen in the future that mobile handsets will have

the capability of simultaneously decoding two or more parallel CDM channels. Since each

parallel channel can carry increased data rate by reducing its spreading gain, there is greater

flexibility -from a transmitter's point of view- in offering variable rates when OVSF- and

multi-code CDM schemes are combined. Furthermore, the reassignment algorithms -for the

removal of code blocking- are somewhat simplified because reassignments of higher layer

codes are less probable; i.e., a high rate channel request can be split into two or more low rate

channel requests via multi-code parallel encoding and decoding. It is likely that with combined

transmission schemes, the instantaneous transmission rates will be less choppy when using

vertical code reassignment algorithm.
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Appendix 7A

Proof of Theorem 7.2

It suffices to show that given any procedure A of reassigning a code C to a branch K: with an

occupied root code D of a higher rate than C, we can derive another procedure B of reassigning

C to another branch with less cost. In procedure A, D needs to be reassigned to the root code of

another branch Q. There is an empty sub-branch K' of K with its unoccupied root code being

an immediate descendant of D. In Q, consider its left sub-branch Qi and right sub-branch

Q2. Since D is reassigned to the root code of Q, the occupied codes of Qi and Q2 need to be

reassigned to other branches. Let Q' be the subset of codes in Qi that are reassigned to K'

and Q' be the subset of codes in Q, that are reassigned to other branches. Similarly, let Q' be

the subset of codes in Q2 that are reassigned to K' and Q" be the subset of codes in Q2 that

are reassigned to other branches. Let Q' be the set of codes other than Q' and Q' that are

reassigned to A'. Let Q" be all other reassigned codes in procedure A. The cost of procedure A

is therefore

2+ Q I1 +IQ'+ IQ1+ + +2Q l

where the cardinality IQ'J denotes the number of codes in Q'. (The first term above is due to

the reassignment of C and D alone.) We now derive a procedure B that reassigns code C to

branch Q2 with cost 1 less than the above, but without reassigning D. In procedure B, the codes

in Q', Q', and Q' are all reassigned to branch Qi. This is possible because Q, has the same

capacity as K'. The codes in Q', Q', and Q" are reassigned to other branches as in procedure

A. The code C is reassigned to a code in Q2. The cost of procedure B is therefore at most

1 ++ IQ + Q(|+ Q1l +IQ /\I
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Appendix 7B

Proof of Theorem 7.3

Before we prove theorem 3, we state the following simple fact:

Lemma 7.1 Let C(T) be the minimum cost of a branch in set T Then

C(T') 5 C(T) for any T' D T

The proof is trivial since by adding more branches, the reassignment of codes into these branches

cannot increase the cost of reassigning codes into existing branches.

Let the two occupied codes (of the same branch) that must be reassigned be ci and c2 , and

R2 < R1, where Ri is the data rate of code c1 .

The theorem uses the following idea: Given a procedure of reassigning c2 before cI, we can

always derive another procedure of reassigning ci before c 2 with equal or less cost.

* Case 1: We first consider the case where

(a) c2 is reassigned first, say to code ck, and

(b) during the reassignment of ci, c2 is not reassigned.

In this case, ci cannot be reassigned to the mother code of ck, say cm, which has the

same rate as ci because of code blocking by c2. So ci needs to be reassigned to other

branches excluding cm; let C denote such cost of reassigning ci. Now let us reassign ci

first by reserving code ck for c2 and do not consider code ck in the reassignment of ci; let

C' denote such cost of reassigning ci. Observe that the branch with ck as the root code

is a subset of the branch with cm as the root code. Thus by Lemma 7.1, C' < C. In other

words, we show that in this case reassigning ci first will yield a lower or equal cost.

* Case 2: We next consider the case where

(a) c2 is reassigned first, say to code ck, and

(b) during the reassignment of ci, c2 is reassigned to another code c(.

Let So denote the state (i.e. locations of all occupied codes) of the code tree initially

before c2 is reassigned the first time. Let S1 denote the state of the code tree after c2 is

assigned to code ck. During the process of reassigning c1 from state S1, c2 is reassigned

from code ck to code c(. Now let us repeat the above code reassignment procedures from

state So to state Si except that c 2 is not reassigned to ck. By keeping ck unoccupied,

we repeat the same code reassignment procedures above to reassign ci from state Si.

Afterwards, we assign c2 to c'. Note that the code reassignment is identical for every

code as in the above procedures except for c2 . It is reassigned from its original location in

state So to c' directly without being reassigned to ck, reducing the cost by 1. Therefore,

in this case, we also show that by reassigning cI first will yield a lower cost. L
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Appendix 7C

Code Patterns

In selecting the optimal reassignment policy, we need to determine the branch with the
minimum cost. As a first step, we denote every branch B by its code pattern x/-U, where x is the

number of assigned codes and y is the rate-sum of assigned codes in branch B. By definition, a
leaf code has rate 1. Branch B with code pattern x/y belongs to group x. In Appendix 7D we
tabulate a comparative listing of the relative costs of branches. It is true that a code pattern is

not a complete description of assigned codes in a branch. As shown below, two branches with

2/3 2/3

the same code pattern have different topologies. The left branch is over-populated, while the

right is an example of an under-populated branch. The left branch can support 4R code without

any reassignment. In contrast, the cost is 1 in the right branch to support a new connection of

rate 4R.

1/1 1/2

A
3/3

A
2/2

A
2/4

2/3

A
3/4

Figure 7.22: Code patterns for 4R branches

1/1 1/2 1/4

Figure 7.23: Code patterns for 8R branches in group 1
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2/2 2/3

2/4 2/5 2/6

Figure 7.24: Code patterns for 8R branches in group 2

3/3

3/6 (114)

3/4

3/6 (222)

3/5

3/7

Figure 7.25: Code patterns for 8R branches in group 3

4/4 4/5

4/6 4/7 (1114) 4/7 (2221)

Figure 7.26: Code patterns for 8R branches in group 4
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5/5 5/6 5/7

Figure 7.27: Code patterns for 8R branches in group 5

6/6 6/7 7/7

Figure 7.28: Code patterns for 8R branches in groups 6 and 7

2/8

4/8 (2222)

3/8

5/8 (22211)

4/8 (1124)

5/8 (.11114)

6/8 7/8

Figure 7.29: Code patterns for 8R branches in group 8
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Appendix 7D

Cost Comparison Tables

In the following it is assumed that there is extra capacity to support a channel of designated

rate. Since it takes one reassignment to move a code of rate R, its cost is set to 1. For a

2R branch, the cost is either 1 or 2, depending on the vacancy of another 2R branch in the

remaining portion of the tree. For 4R branches, seven possible patterns exist as shown in Fig.

7.22. It is clear that 1/1 has the lowest cost (of 1) among them. Next is 1/2. The reasoning

is as follows: If 1/2 is a candidate for reassignment, it implies 1/1 branches do not exist in the

remaining part of the tree. If there exists 2/2 or another 1/2, then 1/2 has a cost of 1. (2/2

has a vacant 2R.) If no 1/2 or 2/2 exists, then there must be at least two 4R branches of 2/3 or

3/3, or one of each. (Otherwise, the system capacity is exceeded and a channel of 4R cannot

be supported.) The cost of 2/2 is now 2 since the 2R code in its branch and an R code from

2/3 or 3/3 need reassignment. Note that 1/2 < 2/2 because the cost of 2/2 is always 2. If

the candidate branch is 2/3, then there must exist at least three 3/3 branches. (Both 2/4 and

3/4 have full loads; all fully loaded are excluded in cost comparison.) In this case, both 2/3

and 3/3 have a cost of 3. Since a tie is not allowed, we arbitrarily set 2/3 < 3/3. Using this

methodology, the cost comparison tables of higher-level branches such as 8R and 16R can be

generated. The process is tedious but the reasoning is straightforward.

Table 7.3: Cost comparison of 4R branches

1/1 < 1/2, 2/2, 2/3, 3/3, 2/4, 3/4

1/2 < 2/2, 2/3, 3/3, 2/4, 3/4

2/2 < 2/3, 3/3, 2/4, 3/4

2/3 < 3/3, 2/4, 3/4

Table 7.4: Cost comparison of 8R branches in groups 1 & 2

1/1 < 1/2

1/2 < 1/4

1/4 < 2/2

2/2 < 2/3

2/3 < 2/4

2/4 < 2/5,2/6,3/3
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Table 7.4 (contd.): Cost comparison of 8R branches in groups 1 & 2

2/5 > 3/4 unless 3/4 is overpopulated with grid 211XXXX

2/5 < 3/5

2/5 < both 3/6's, 3/7

2/6 < 3/3 if there are vacant 4R and 2R

i.e., there exists branch 3/4 or 4/4 with vacant 4R

2/6 < 3/4 if there are vacant 4R and 2R

i.e., 4/4 with vacant 4R or 3/4 with 21 1XXXX

2/6 < 3/5 if 4R is vacant in another branch

2/6 < 3/6(411)

2/6 = 3/6(222)

2/6 < 3/7

2/6 < 4/4 unless 4/4 is iXiXiXiX,
and no vacant 2R in other branches

2/6 < 4/5, 4/6, 4/7

2/8 < all 3's if there are 2 vacant 4R

Table 7.5: Cost comparison of 8R branches in group 3

3/3 < all 3, 4, 5, 6, 7

3/4 < 3/5

3/4 < 3/6(411) unless 3/6 grid is 41X1X and

there is no vacant 2R in other branches

AND 3/4 grid is 211XXXX

3/4 < 3/6(222), 3/7, 4, 5, 6, 7

3/5 < 3/6(411), 3/6(222), 3/7

3/5 < 4/4 unless 4/4 grid is iXiXiXiX

and there are no other vacant 2R

3/5 < 4/5 unless 4/5 grid is 21X1X1X

and there are no other vacant 2R

3/5 < 4/6, 4/7, 5, 6, 7
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Table 7.5 (contd.): Cost comparison of 8R branches in groups 3

3/6(411) < 3/6(222)

3/6(411) < 3/7

3/6(411) < 4/4 if 4/4 has a vacant 4R

3/6(411) < 4/5

3/6(411) < 4/6

3/6(411) < 4/7(4111), 4/7(2221), 5/5

3/6(411) < 5/6 unless 3/6 grid is 411XX

and there are no other vacant 2R

3/6(411) < 5/7, 6, 7

3/6(222) < 3/7

3/6(222) < 4/4 if 4/4 has vacant 4R and 2R

3/6(222) < 4/5

3/6(222) < 4/6 if there are 3 vacant 2R in other branches

3/6(222) < 4/7(4111), 4/7(2221), 5/5

3/6(222) < 5/6 unless there are no vacant 2R

3/6(222) < 5/7,6,7

3/7 > 4/5, 4/6

3/7 < 4/7(4111)

3/7 = 4/7(2221)

3/7 < 5/5 unless 5/5 grid is 1X1X111X, and there

are less than 2 vacant 2R in other branches

3/7 < 5/7, 6,7

3/8 < 4/4 if there are 2 vacant 2R

3/8 < 5/5 if 5/5 grid is 11111XXX, and

there are 2 vacant 2R in other branches

3/8 < 5/6, 5/7, 6, 7 if there are 2 vacant 2R
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Table 7.6: Cost comparison of 8R branches in group 4

4/4 < all 4, 5, 6, 7

4/5 < 4/6, both 4/7's, 5, 6, 7

4/6 < 4/7(4111), 4/7(2221)

4/6 < 5/5 unless there is no vacant 2R

4/6 < 5/6 unless 5/6 grid is 211X1X and

AND 4/6 grid is 2211XX

4/6 < 5/7, 6, 7

4/7(2221) < 4/7(4111)

4/7(2221) < 5/5 if there are 3 vacant 2R

4/7(2221) < 5/6 if there are 3 vacant 2R

4/7(2221) < 5/7

4/7(2221) < 6/6 if there is at least one vacant 2R

4/7(2221) < 6/7, 7/7

4/7(4111) > 5/5

4/7(4111) > 5/6

4/7(4111) = 5/7

4/7(4111) < 6/6 if there are 2 vacant 2R in other branches

4/8(4211) < all other patterns

4/8(2222) < 4/7(4111) if there are 4 vacant 2R

Table 7.7: Cost comparison of 8R branches in groups 5, 6 and 7

5/5 < all 5, 6, 7

5/6 < 5/7, 6, 7

5/7 < 6/6 if there are 2 vacant 2R

5/7 < 6/7, 7/7

5/8(41111) > all other patterns

5/8(22211) > all other patterns

6/6 < 6/7, 7/7

6/7 < 7/7

6/8 > all other patterns

7/7 < 7/8



Appendix 7E

Example of Horizontal Reassignments

* assigned code vacant code

Figure 7.30: CDM code tree with 64b leaves

The code tree consists of 64 leaves. Each leaf code has rate R. The target rate is 8R. As

shown in Fig. 7.30, the assigned and vacant codes are shaded black and gray, respectively. The

total available capacity is found to be 17R by summing the rates of vacant (gray) codes. The

following notation is used to label branches and codes: Bj(j) and Ci(j) are the branch and code

of rate i with index j (from left to right, with leftmost set to 1) respectively. Among the target

branches of 8R, B8(2), B8 (7) and B8 (8) are not candidates since they are fully loaded. B8(2) is

an assigned code while B8 (7) and B8 (8) are children of an assigned code B16(4). After removing

branches that are not in contention, the new topology of the tree is shown in Fig. 7.31. From

Figs. 7.24 and 7.25, the code patterns of remaining 8R branches are:

BR~

Figure 7.31: New topology of tree with 8R candidate branches
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B 8 (1) = 3/4 (underpopulated)

B8(3) = 2/5

B8 (4) = 3/5 (underpopulated)

B8 (5) = 4/4 (severely underpopulated)

B8 (6) = 2/5

From Tables 7.4-7.7, the cost comparisons are:

B8(1) < B8 (3)

B8(3) = B8(6)

B8(6) < B8 (5)

B8 (5) < B8 (4)

Note that because B8 (5) is severely underpopulated and there are no other vacant 2R branches,

its cost is lower than B 8 (4). The minimum-cost branch is B 8 (1). Its descendants C 2 (2), C1 (6)

and C1 (8) must be reassigned. After removing B8 (1), the resulting topology with 2R target

branches is shown in Fig. 7.32. Next, fully loaded 2R branches are removed, resulting in the

final topology of Fig. 7.33. At this point, the reassignment is straightforward. A vacant 2R

branch with the lowest index is chosen. The complete reassignments to vacate 8R branch C8 (1)

are:

C2 (2) -+ C2 (11)

C1 (6) -> C 1(24)

C1(8) -+ C1(25)

For the sake of simplicity, we choose an example where the reassignment is not nested; that is,

the reassignment of descendant codes - C2 (2), C 1 (6) and C1 (8) - does not lead to reassign-

ment of codes in other branches. If our example is modified such that the target 8R branch has

a descendant code of rate 4R, then it is necessary in the next step to find a minimum cost 4R

branch. This step may result in reassignments of 2R and R codes from other branches. This is

an example of nested reassignment.
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2R

Figure 7.32: New topology of tree with 2R candidate branches

2R

Figure 7.33: Final topology of tree with 2R candidate branches

8R

Figure 7.34: Reassignment of descendant codes of 8R branch
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CONCLUSION

There is no denying that future wireless systems and applications will dominate every aspect

of our daily lives at home and in business environment. It is likely that most users -nomadic or

otherwise- will embrace the ubiquity concept -any time, anywhere- of mobile computing.

In the near future we will also demand wireless infrastructure to provide "any type" of appli-

cation, including non-voice services such as streaming/live video, high-resolution imaging and

other bandwidth hungry services, and at the same time, maintaining a certain guaranteed level

of QoS as user population grows. Unfortunately, current wireless systems are not designed to

handle heavy traffic loads. We have witnessed voice quality degradation (due to low SIR) in

IS-95 CDMA network during busy peak usage hours. Similarly, we have suffered from dropped

or busy/blocked calls using a GSM handset due to capacity saturation at hotspots. This matter

is similarly evident in public Wi-Fi IEEE 802.11x wireless Ethernet coverage areas where the

throughput dramatically falls when many users are accessing the network.

In this monograph we set out to achieve two major objectives:

m Learn current and future trends in wireless applications and services, and understand how

current IG and 2G networks fail or fall short in addressing such needs.

m Based on lessons learned, design a robust and efficient cellular wireless network that

can meet the ever-growing appetite for bandwidth-hungry applications by using the most

efficient signal transmission and detection methods

7.6.3 Topics Covered

In the following we give a summary of topics that were addressed, and in most cases,

resolved:

* When we tried to compare the efficacy of 2G networks, particularly the dominant net-

works of GSM and IS-95, we encounter difficulty in completeness and fairness. For exam-
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ple, wireless systems are duplex communication infrastructures. The uplink and downlink

performance must be measured separately for frequency-division duplexed systems such

as these. Therefore, we quickly limit our scope to cover only downlink communication

where there is greater potential for high rate transmission needs (per channel) and like-

lihood of traffic congestion. Now, we ask ourselves, do we compare downlinks of GSM

versus IS-95? Rather, should we study the pros and cons of TDM- and CDM-based net-

works? We also quickly realize channel multiplexing in the downlink of a cellular wireless

network is a two-fold process: primary sharing of total resources among cells within the

network, and secondary sharing of allocated bandwidth among forward link channels

per autonomous cell. It is complete only after we specify every network configuration in

terms of inter- and intra-cell multiplexing schemes. Thus, GSM has FDM/TDM structure

while IS-95 is FDM/CDM.

* First, we measure the capacity and simultaneously achievable rate regions of various cel-

lular multiplexing schemes: FDM/FDM, FDM/TDM, FDM/CDM, etc. We observe that all

intra-cell orthogonal channel multiplexing techniques, TDM, FDM and orthogonal CDM

(O-CDM) have the same ARR. The optimal scheme -superposition coding and successive

interference cancellation- which dominates over the orthogonal schemes is not pursued

as a viable candidate due to its receiver complexity, double feedback requirement and

partial understanding in the design of superposition codes. The more pressing issue is

the ARR among various inter-cell channel multiplexing schemes. Here, there is no clear

winner. Depending on background noise levels and amount of interference from neigh-

boring cells and propagation loss, FDM may have a larger ARR than N-CDM with SIC, or

vice versa. it became apparent that in measuring the efficiency of a cellular broadcast net-

work, we must take into account the joint ARR when an inter-cell channel multiplexing

technique is paired with an intra-cell channel multiplexing technique. We notice immedi-

ately that the only two viable candidates for inter-cell channel multiplexing are FDM and

N-CDM. The former is preferred if we wish to maintain inter-cell channel orthogonality

for channel separation (zero cross-correlation), whereas the latter applies non-orthogonal

coding with non-zero but controlled amount of cross-correlation. In inter-cell FDM, in-

terference arises from distant (co-channel) cells that reuse the same frequency band. The

only interference suppression mechanism is propagation path loss. In inter-cell N-CDM,

every neighboring cell is an interferer. It uses information-independent coding (and to

a lesser extent, propagation loss) to suppress interference. We then measure the ARR

of two cellular broadcast networks based on these paradigms -FDM/ODM versus N-

CDM/O-CDM. The winner is N-CDM/O-CDM.

m Next, we design and construct two type of signature code sequences suitable for inter- and
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intra-cell channel multiplexing, respectively. For N-CDM, conventional pseudo-random

codes were used. For O-CDM, we studied both recursive and non-recursive orthogonal

codes. When combined, the resulting signature sequences are known as superimposed.

By computing statistical correlation properties, we prove that superimposed signature

sequences maintain the same randomness characteristics of random PN codes when the

code length is long. Furthermore, the choice of orthogonal codes -recursive or non-

recursive- has little effect on overall correlation property of the superimposed sequence.

Over a shorter window of Nc, superimposed codes still remain orthogonal when used

as broadcast codes. For seamless multi-rate transmission, recursive orthogonal binary

codes are preferred. Hence, by taking into account all the factors listed thus far, our

chosen resource allocation policy is N-CDM/O-CDM with PN spreading sequences for

Inter-cell channelization and binary, superimposed, recursive orthogonal codes for intra-

cell channelization.

m All the operations listed so far can be implemented in discrete-time domain. Both data-

and spread-spectrum modulation are considered discrete-time signal processing schemes.

After level-shifting and discrete-to-analog conversion, the impulse samples must be shaped

via a baseband lowpass prototype filter for waveform generation, after which the pulse

stream is frequency translated to RF by carrier modulation. As is well known, pulse shap-

ing and carrier modulation are analog signal processing techniques that must be jointly

optimized. For carrier modulation, we have two choices: single versus multiple carriers.

In single-carrier case, a pulse shape that either minimizes out-of-band power leakage or

results in zero ISI at the output of receive filter or both is preferred. Zero ISI for single-

carrier modulated signal is known as conventional or single-carrier Nyquist criterion. For

multi-carrier case, the role of pulse shaping is more important since the amplitude and

phase response of chosen pulse determines the amount of inter-carrier and inter-block in-

terference -besides ISI. A pulse that causes no distortion at the receiver output (zero ISI,

zero ICI and zero IBI) is said to meet the generalized Nyquist criterion. In particular, we

are interested in g-Nyquist pulses that are finite in length; i.e., they can be synthesized and

analyzed using FIR filters. Such pulses do exist; we coin them time-overlapped pulses. By

using such pulses along with a bank of properly spaced cosine carriers, we showed that

the resulting multi-carrier modulated signal is g-Nyquist and more bandwidth efficient

than a similarly designed single-carrier modulated signal with Nyquist pulse shaping.

Therefore, the baseband output sequence -which is the sum of binary superimposed,

recursive orthogonal, data modulated sequences- must be serial-to-parallel converted

and shaped via a bank of identical baseband filters, each with time-overlapped impulse

response. Each parallel channel is modulated by a cosine carrier of identical phase. The

sum of parallel output channels is the final composite broadcast signal.



" After describing various signal processing stages of a transmitter, from data modulation

of information symbols to the generation of output RF analog waveform, we must carry

out the detection operations at the receiving end. In particular, we studied bit-error rate

analysis of binary data and spread-spectrum modulated CDM signalling in a multi-user

interference environment. We considered BERs for both low- and high-rate CDM data

channels with a common chip rate. For high rate CDM data transmission, we compared

the performance of parallel-channel single gain scheme against single-channel reduced

gain scheme. For all practical purposes, their BER performance are comparable. From the

receiver's perspective, SC-RG CDM is preferred for lower receiver complexity.

* We then point out that for variable rate transmission, SC-RG CDM and PC-SG CDM are

comparable on a per-channel basis. When overall network capacity is measured, a CDM

network that supports SC-RG CDM channels may have much lower spectral efficiency due

to a scheduling constraint known as code blocking. To eliminate code blocking completely,

we propose two different strategies based on reassignments of signature codes in active

CDM component channels. We also devise an algorithm that supports multiplexing of

both constant bit rate and bursty logical channels.

7.6.4 Topics not Covered

* When studying the composite channel for cellular broadcasting, we did not address vari-

ation in ARR of various channel multiplexing schemes when the transmission medium

induces multipath fading. Furthermore, we did not cover the severity of different fading

distributions on the ARR.

" When we studied superimposed orthogonal codes, less emphasis was placed on the con-

struction and selection of PN sequences for inter-cell channel multiplexing. It is likely

that when superimposed, certain sequences offer better auto- and cross-correlation val-

ues than other alternatives. This is a subject outside of our scope and expertise.

* Our summary on multipath fading applies mainly to single-carrier modulated signals. For

multi-carrier modulation, we must take into account the correlation of channel impulse

responses among sub-bands that make up the entire bandwidth.

* Related to correlated multipath fading is performance analysis of multi-carrier modu-

lated signals. We propose multi-carrier modulation with time-overlapped pulses since

this combination offers higher spectral efficiency in power spectrum width (compared to

single-carrier modulated signal) plus zero distortion (i.e., satisfying the g-Nyquist crite-

rion.) We, however, did not measure the BER performance of such signals. Therefore, we
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were not able to report an unbiased BER comparison between single- and multi-carrier

modulated CDM signalling.

7.6.5 Topics of Interest

* As we pointed out in Chapters 3 and 6, CDM discrete-time sequences can be spread in

time of frequency or in both domains. When spread in time, the resulting signal is the

conventional single-carrier direct-sequence CDM signal. When spread in frequency, it is

commonly known as multi-carrier CDM signal. other equivalent terms are OFDM-CDM

and multi-tone CDM. By spreading in both time and frequency domains, we can generate

a hybrid CDM signal whose sub-carrier bandwidth is larger than that of OFDM-CDM, but

much smaller than the total bandwidth of single-carrier CDM signal. Since Walsh code

lengths exist for powers of 2, the total number of sub-carriers can vary as 2, 4, 8 16, 32,

64 and so on. it would be interesting to measure the BER performance of hybrid CDM

signalling for a given multipath fading channel response as the number of sub-carriers to

varied.

* In discussing zero correlation zones, we briefly mentioned that such codes do exist for

inter-cell channel multiplexing that results in zero auto or cross-correlation over a finite-

length window known as correlation zone. Since assigned signature codes are super-

imposed, it would be interesting to study this topic further, and analyze if such zero

correlation zones exist for superimposed orthogonal binary sequences.

* In describing OVSF code reassignment strategies, we hinted that in the future, handsets

may have increased processing power to decode several parallel CDM channels simulta-

neously. If this were the case, the total requested rate can be split among parallel CDM

channels, with each channel supporting variable rate through OVSF-CDM. Under such

circumstances, there is more flexibility in assigning and reassigning codes to remove code

blocking and statistical multiplexing. The design and synthesis of an efficient resource

allocation policy that can assign, say k, parallel channels at once to every receiver is of

great interest, for both academic and practical purposes.
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SYMBOLS & NOTATIONS

U Non-subscripted Letters

......... speed of light

........ generic distance between a transmitter and a receiver

... ...... dimension of signal set

......... number of information sources in the network

... ...... number of interfering single-rate CDM users

.. ...... 1) constraint length of a convolutional code

2) shaping parameter of Ricean probability density function

......... number of independent channels in multi-channel diversity combining

........ 1) generic number of users (sinks or sources) in the network

2) number of parallel channels in a high-rate PC-SG CDM channel

3) number of bits per symbol

......... length of an orthogonal (Walsh) code

.... .... period of a generic discrete-time signature sequence

... ..... 1) number of receivers in the network

2) generic number of symbols or waveforms per second (symbol rate)

......... roll-off factor of a practical Nyquist pulse

......... number of information sinks in the network

...... .. 1) number of transmitters in the network

2) generic time duration of a symbol or waveform (in sec.)

......... generic (passband) bandwidth

381

d..

D..

I .. .

J ...

K..

L...

M.

N..

P..

R..

r...

S ...

T ..

W ...

c ....
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M Non-subscripted Symbols

A ............. wavelength (typically in meters) of continuous-time RF signal,

A = c/f, where c is the speed of light

-y ............ exponent of propagation loss, typically as power of distance: dY

T ............. propagation delay

Oc ......... ... 1) fixed attenuation 2) free parameter in a fading pdf

P ............ free parameter in a fading pdf

-v ............ .Doppler frequency shift

* Calligraphic Symbols

Ci

CO

Cs

Sc .............

ED .. .........

S ...........

M4 ...........

-R F ...........

R NC .........

.RNT .........

U i . ... .. .. .. . .

V ............

X ...........

balance of channel i in OVSF-CDM multiplexing

accrued credit of channel i in OVSF-CDM multiplexing

capacity region of optimal channel multiplexing scheme

capacity region where every channel has single-user capacities

generic symbol for energy of pulse, symbol or sequence

bit energy

energy of a common chip pulse

energy per dimension

symbol energy, same as S

message book

ARR of any ODM (FDM, TDM or O-CDM) scheme

ARR of naive CDM scheme

ARR of naive TDM (simple time sharing) scheme

usage of channel i in OVSF-CDM multiplexing

symbol code book of broadcaster

symbol code book of generic source
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U Subscripted Letters and Symbols

Bd

cij

fc

fo ............

RN ..........

Ii ... .. .......

kc ............

Mi ...........

Lc ...........

N eff ..........

Nmax .........

N o . . . . . . . . . ..

N r .... ...... .

generic amplitude of transmit signal of user i

coherence bandwidth

Doppler spread

OVSF code with layer no. i and branch no. j

generic passband RF carrier frequency

passband carrier frequency of it' channel

generic passband IF carrier frequency

(N x N) Hadamard orthogonal matrix

with entries from Galois field F2

1) ith source in the network

2) interference sample from neighboring site

number of mobiles in a cell

excess spreading factor; equal to N c/N

message from source i

propagation loss as the ratio of receive and transmit powers

number of chips in a data symbol, equal to T/TC

effective reuse number

maximum spreading factor

one-sided Gaussian noise PSD

frequency reuse number

period of a discrete-time pseudo-random sequence
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U Subscripted Letters and Symbols (contd.)

Pe ............

PG ..........

Pr ............

Pt ............

Tc ...-..--. ....-.

Ri ............

Rmax .........

Rs ............

Si ............

Ts ............

W c ...........

Wm ..........

WN ..........

W sS ..........

W tot .........

P i ............

(At)d ........

(At)c .........

6 ij ...........

IN............

oi ............

bit error probability

processing gain, same as PG

receive power

transmit power

rate of an information-dependent channel code

ith receiver in the network

maximum bit rate per channel supported by system

pulse rate; if pulse width is Tc, Rp =R,

symbol rate, interchangeable with R

ith sink in the network

ith transmitter in the network

pulse width; inverse of the pulse rate Rp

symbol duration, interchangeable with T

cell bandwidth

mobile bandwidth

(N x N) Walsh orthogonal matrix with entries from integer ring D2

bandwidth of spread-spectrum modulated signal

total bandwidth allocated to entire network

relative channel power gain of interfering user i

delay spread

coherence time

Kronecker delta function, same as 6[i - j]
6ij= 1 for i = j and zero elsewhere

relative carrier phase offset of interfering user i

absolute carrier phase of interfering user i

relative propagation delay offset of interfering user i
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* Discrete-time Sequences

aj [n] ......... superimposed orthogonal modulating sequence of user/channel j

bj[n] ......... data and spread-spectrum modulated sequence of user/channel j

fi[n] ......... 1) impulse response of transmit/synthesis filter in channel i

of multi-carrier/filter bank system

fo[n] ......... 1) impulse response of prototype transmit/synthesis lowpass filter

of multi-carrier/filter bank system

hi[n] ......... 1) impulse response of receive/analysis filter in channel i

of multi-carrier/filter bank system

ho[n] ......... 1) impulse response of prototype receive/analysis lowpass filter

of multi-carrier/filter bank system

s [n] .......... discrete-time transmit sequence

equivalent to s(t) in continuous-time

X [n] ......... Galois-binary data sequence of user j

xj [n] ......... antipodal-binary data sequence of user j

5 [n] .......... discrete-time impulse sequence

6[0] = 1 and zero elsewhere

5[i - j] ....... Kronecker delta function, same as 6 ij

5[i - j] = 1 when i = j and zero elsewhere

M[n] ........ discrete-time periodic impulse sequence of period M

6[kM] = 1 for all integer k and zero elsewhere

Oj [1; i, d] ..... (un-normalized) partial cross-correlation of two discrete sequences

with chip offset 1, starting position i and length d

&j [t; i, d] ..... (un-normalized) partial auto-correlation of a discrete sequence

with chip offset 1, starting position i and length d

1 [; i, d] ..... (normalized) partial cross-correlation of two discrete sequences

with chip offset 1, starting position i and length d

0 j[; i, d] ..... (normalized) partial auto-correlation of a discrete sequence

with chip offset 1, starting position i and length d
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U Continuous-time Functions

c(t) ....

c(t; T)

Cjj (r) .

Cj (T) ...

cP(t) ...

cP(t; -) .

f(t) ....

.. .... linear time-invariant baseband channel impulse response

...... linear time-variant baseband channel impulse response

...... continuous-time periodic cross-correlation function

. ..... continuous-time periodic auto-correlation function

.. .... linear time-invariant passband channel impulse response

.. .... linear time-variant passband channel impulse response

.. .... 1) baseband transmit filter impulse response

2) synthesis prototype filter in a multi-channel filter bank

..... . output of baseband transmit filter f(t)

usually it is already data (and spread-spectrum) modulated

...... output of baseband transmit filter fk(t) of kth user/channel

...... 1) baseband receive filter impulse response

2) analysis prototype filter in a multi-channel filter bank

...... number of resolvable multipaths, same as Lr(t)

.... .. number of unresolvable multipaths

...... complex Gaussian noise in-phase component

...... complex Gaussian noise quadrature component

..... . LTV channel auto-correlation function

- -- -- delay spread function

.. .... continuous-time aperiodic cross-correlation function

with [0, t] window of periodic waveforms

.. .... continuous-time aperiodic cross-correlation function

with [-, T] window of periodic waveforms

...... continuous-time aperiodic auto-correlation function

with [0, -I window of a periodic waveform

. ..... continuous-time aperiodic auto-correlation function

with [T, Tj window of a periodic waveform

...... baseband received signal

g (t)

gk(t) .. .

h(t) ....

L(t) ....

Lu(t) ...

ni(t)

nrQ(t)

Rc(t;T)

R c(-r)

Rij (T)..

r(t) ....

Symbols & Notations386



387

N Continuous-time Functions (contd.)

rP(t) .........

s(t) ..........

Sk(t) .........

Sc(f; t) .......

U (x) .........

v(t) ..........

x(t) ..........

Mj(t) ..........

T (t) . . . .. .. ..

(t) .......

Oij(T; Ti, Tf) ...

E8j(T; Tj, Tf)

pij (T) ........

pj(') ........

Pj (-) ... .. ....

*(t).......

(t) .......

passband received signal

sum of carrier and data-modulated signals k Sk(t)

carrier and data-modulated signal of ktI user/channel

LTV scattering function, Fourier transform of Rc (t; T)

unity function; equal to 1 for x > 0

baseband receive signal after carrier demodulation

output of discrete-to-continuous time (D/C) delta modulator

output of baseband receive filter h(t)

arrival time delay in nth resolvable path relative to zeroth path

channel (amplitude) gain in nth resolvable path

continuous-time (un-normalized) partial cross-correlation function

with offset t and [Ti, Tf] window

continuous-time (un-normalized) partial auto-correlation function

with offset - and [Ti, Tf] window

continuous-time (normalized) partial cross-correlation function

with offset t and [Ti, Tf] window

continuous-time (normalized) partial auto-correlation function

with offset t and [Ti, Tf] window

continuous-time aperiodic cross-correlation function

of finite-length waveforms with [0, ] window

continuous aperiodic CCF of finite-length waveforms with [r, T] window

continuous-time aperiodic auto-correlation function

of a finite-length waveform with [0, T] window

continuous aperiodic ACF of finite-length waveform with [r, T] window

continuous-time impulse function

Doppler spread function

impulse response of transmit chip filter
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N Mathematical Operators

*'............

*'............

'' .........

'- ..........

E[.] ........

Var[.].......

continuous-time convolution

discrete-time linear convolution

modulo-2 addition (exclusive-OR operation)

real addition

modulo-2 multiplication

real multiplication, same as 'x'

element-wise vector multiplication

Fourier transform

inverse Fourier transform

statistical mean

statistical variance

real part of expression in brackets

........ the set of all real numbers between m and n

(both inclusive and n > m), same as m < x < n

....... the set of all real numbers between m and n

(inclusive of n and n > m), same as m < x < n

....... the set of all real numbers between m and n

(inclusive of m and n > m), same as m < x < n

........ the set of all real numbers between n and n

(both exclusive and n > m), same as m < x < n

the set of all all integer multiples of M, same as ±M N

{..., -2M -M, 0, M, 2M, ... }

N Limits and Inequalities

[In'T].

(in, n]

[in, n)

M
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M Poly-lined Symbols for Number Sets

Z+

-Z

2Z4

Zi.

-Z

±Z

±Z

N.

Ni

-N

F 2

D .D

........... the set of all integers

............ {i, i+ 1, i + 2, ... , oo} for integer i > 0

--....-.-.... the set of all positive integers, same as ZI

+......... .. the set of all negative integers, same as Z-

..--..-.. the set of all positive even integers

... ........ {i, i+ 1, i+ 2, ... , n, both i and n are positive integers

........... 1,2, ... , i- i ,i same as ZI

.......... -1,-2, ... , -i+1, i}

S .......... { - ,- i + I,. . 1 ,. . - ,i

.......... the set of all positive and negative integers, excluding zero

........ ... the set of all natural numbers

same as ZO or {0, Z+}

........... 0{ ,1, 2, ... , i-1, i}

same as Zi or {0, Zi}

i .......... 0 - 1,-2 ... , -i+ I, -ij

same as -Zi or {0, -Z}

i.......... -i, -i + I, ..., - 1, 0, 1, ..., 1 -1, i}
same as tZi

.. ...... binary Galois field {0, 1}

same as ZI
0

........... antipodal binary set { - 1, 1}

same as ±Z1

.......... antipodal M-ary set (M is even and every element is odd)

S- (M - 1), -(M - 3), ... , -1, 1, ... , (M - 3), (M - 1)

........... the set of all odd integers

........... the set of all positive odd integers
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U Parameterized Functions

F(cX) .................

f(r) ......... .....

F(r) .............

gamma function

generic expression for a probability density function,

generally the time variable t is not used for indexing

generic expression for a cumulative distribution function

U Notations for Probability Density Functions

X ~F( ,3 ) ..........

X _~ (LoU2 ) .........

X ~ x2(T) ............

X X x (T, (y2) ... .. ....

x ~ 2 (T, y2, ,2) .....

X ~ x(n) .............

X ~ x(n, 07) . ........

X ~ x(n, .2p t2) ......

R _ x(c, 72) ..........

R - X(2, 072) .. . .. .. .. .

R - X 2(2, U2, 2) ... . .

R ~ q(q, n) ........ ..

Y ~ bB(p) ... . .. . .. . ..

V ~ bBin(n, p) ... .. . .

X ~ F(a, P) ......... .

gamma pdf with free parameters a and P

Gaussian pdf with mean x and variance a 2

standard chi-squared pdf with r degrees of freedom

central chi-squared pdf with r degrees of freedom and o.2

non-central chi-squared pdf with r degrees of freedom

standard chi pdf with n degrees of freedom

central chi pdf with n degrees of freedom and o-2

non-central chi pdf with n degrees of freedom

one-sided Gaussian pdf with o.2

Rayleigh pdf with u 2

Rice or Nakagami-n pdf

Nakagami-q pdf with f2

bipolar Bernoulli pdf with Pr(Y = 1) = p

bipolar Binomial pdf with Pr(V = 1) = p

gamma pdf with free parameters ca and P
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M Acronyms

A C ..................

A CF .................

AF ................

AFD .................

ARR .................

AWGN ...............

BER ....... ......

BT ...................

CC ..................

CCF .................

CDMA ...............

C I ...................

CW ..................

DCT .................

D FT .................

DS-CDM .............

ELT ..................

FDM ................

FDMA ... ..........

FF ...................

FFT ....... ...........

FH-CDM .............

FSF ..................

IB I ...................

auto-correlation

auto-correlation function

amount of fading (a measure of fading severity)

average fade duration

(simultaneously) achievable rate region

additive white Gaussian noise

bit-error rate; same as Pe

bandwidth-time period product as a measure of excess bandwidth

cross-correlation

cross-correlation function

code-division multiple access

channel interference (which occurs at Rake finger output

due to non-ideal cross-correlation between parallel channels)

continuous-wave (unmodulated) signal

discrete cosine transform

discrete Fourier transform

direct-sequence CDM, same as phase-coded SSM

extended lapped transform

frequency-division multiplexing

orthogonal-division multiple access

flat fading

fast computation of discrete samples of DFT

frequency-hopped CDM

frequency selective fading

interblock interference

(i.e., ISI from past symbols in other sub-carriers/channels)
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* Acronyms (contd.)

ICI ................

iid ...................

I/O ..................

I/Q ..................

I-SI ..................

ISI ...................

LCR .................

LO S .................

LT I ..................

LTV ..................

M L ..................

M LT .................

M SK .................

N-TDM ..............

N-CDM ..............

N-CDMA .............

O-CDM ...........

ODM .... ..........

OFDM ...............

O-QPSK .............

OVSF ......... ....

PC-SG ...............

PDF ........... ..

inter-channel or inter-carrier interference

(i.e., ISI from current symbols in other sub-carriers/channels)

independent, identically distributed (random variables)

input-output device (e.g., communication channel)

in-phase and quadrature modulation format

ISI causing self interference

intersymbol interference

level-crossing rate

line-of-sight

linear time-invariant

linear time-varying

maximal-length (pseudo-random sequence)

modulated lapped transform

minimum shift keying modulation

naive time-division multiplexing

naive code-division multiplexing

naive code-division multiple access

orthogonal code-division multiplexing

its use as a collective representation of TDM, FDM and O-CDM

orthogonal-division multiplexing

orthogonal frequency-division multiplex

a multi-carrier modulation format in digital domain

offset quadrature shift keying modulation

orthogonal variable spreading factor

parallel-channel, single-gain CDM transmission

also known as multicode-CDM/CDMA

probability density function
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E Acronyms (contd.)

PG...

PN..

PSD.

QPSK

RF ...

SC-RG

SC-SG

SDR.

SF ...

SNR.

SI ...

SIC..

SIR..

U-SI.

SHF.

SSM

TDM

TDMA

TH-CD

UHF.

VHF

WSS

WSSU

................ processing gain, same as PG

................ pseudo-noise sequence

.. .............. power spectral density

....... ......... quadrature shift keying modulation

................ radio frequency

............... single-channel, reduced-gain CDM transmission

also known as OVSF-CDM/CDMA or VSG-CDMA

... ............ single-channel, single-gain CDM transmission

also known as conventional CDM/CDMA

.. .............. signal-to-disturbance power ratio

disturbance is the sum of interference and Gaussian noise

................ spreading factor, same as spreaing gain, denoted by N,

.......... ...... signal-to-noise power ratio

............ .... self-induced noise or self interference (that exists at

Rake finger output due to non-ideal auto-correlation)

................ successive interference cancellation

...... .......... signal-to-interference ratio

.... ............ uncorrelated self interference

.. .............. super-high frequency range (3 - 30 GHz)

................ spread-spectrum modulation/multiplexing

. ............... time-division multiplexing

... ............ time-division multiple access

M ............. time-hopped CDM

................ ultra-high frequency range (300 - 3,000 MHz)

................ very-high frequency range (30 - 300 MHz)

................ wide-sense stationary (random process)

S .............. wide-sense stationary, uncorrelated scattering radio channel
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