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The note [1] by Bakry and Emery contains an important criteriom with
which to check whether a diffusion semigroup is hypercomtractive. Although
Bakry and Emery’s interest in their criterion stems from its remarkable ability
to give ‘‘best constants’ in certain finite dimemsional examples, what will
concern us here is its equally remarkable ability to handle some infinite
dimensional situatioms,

We begin by recalling their criteriom in the setting with which we will
be dealing. Let il be a connected, compact, N-dimensional smooth manifold with
Riemannian metric g. Let % be a smooth function on M and define the
differential operator L by

Lf = 1/2exp(3)div(exp(-F)grad(£)), £&C (M),
and the probability measure m by
m(dx) = exp(-3(x))A(dx)/[exp(-3(y))r(dy),

‘'where A denotes the Riemann measure on M associated with the metric g. DNext,
use {Pt: t > 0} to denote the diffusion semigroup determined by L. The

following facts about (P,: t > 0} are easy to check:

1) {Pt: t > 0} on C(M) is a strongly continmous, conservative

Markov semigroup uader which CT(M) is invarianmt.

ii) {Pt: t > 0} is m—reversible (i.e. Pt is symmetric in

L3(m) for eachk t > 0) and ][Ptf - [fam ] —> 0 as t—>= for each

cQen
f&€C(M). In particular, for 2ll t > O and p & [0,=),

I\Ptll =1
L? (m) —rL? (m)

and there is a unique strongly continuous semigroup [Ft:.t > 0} om L3(m)

such thatlstf = Ptf for all t > 0 and £ &€C(M).,

As a comsequence, note that, for each f&€L3(m), t—>(f - Ptf.f) /t is

L3 (m)
a non—negative, non~increasing function and that, therefore, the Dirichlet form
given by

E(£.8) = 1B (¢ _p £,5) /t
£v0 AL




exists (as an element of [0,=]) for each £ $L3(m).

Theorem (Bakry and Emery): Denote by H, the (covariant) Hessian teasor

?
of & (i.e. H;(X.Y) = YoY3 —”W‘Y§ for X,YeM(T(M))) and let Ric be the Ricci

curvature on (M,z). If, as quadratic forms, Ric + H_ >, ag for some a > 0,

3

~then the logarithmic Sobolev ineguality :

9

(L.S.) [f3logf2dm ¢ 4/a €(£,£) + I} £1]° logll £ 12 , fel3(m)
L3 (m) L3 (m)

and, therefore, the hypercontriactive estimates :

I P, it =1,
(H.C.) L? (m) —>L%(m) .
1<¢p<q<=and t> 0 with e®*" > (q - 1)/(p - 1)

hold.

Remark : Actually, Bakry and Emery’s result is somewhat more refined
than the one just stated., However, the refinement seems to become less and less
significant as N becomes large. Since we are interested here in what happens as
N—>=, the stated result will suffice.

Remark : Several aunthors (e.g. O. Rathauns [4]) have ‘observed that a
logarithmic Sobolev inequality implies a gap in the spectrum of L . To be
precise, (L.S.) implies that:

(S.6G.) N £~ ftaml] { 2/a £(£.6), £feL3(m),
L3(m)

or, equivalently,

(S.6.") N P.g- [eam )l L exp(=2a/8)1 £, £eLli(m).
L2 (m) L2 ()

¥e now turn to the application of the Bakéy—Emery result to infinite
dimensional diffusions. For the sake of definitemess, let d > 2 anad V) 1 be
given, and, for a 3 1, set

A
¥ o= sH'E,
n
= \). = aax a3 Diamannian
vhere ﬁ\n (keZ : x| 1giév,kil ¢ 2}, and give ¥ the prodoct Riemanaiaz

structure which it inherits from the standard structure on Sd. Let Rk

be the natural projection map from Hn onto the kth sphere Sd, and, for X &

Y“(T(Mn)), set X(k) = (nk),x. Noting, as was dome in [1], that on Sd

the Ricci curvature is equal to (d - 1) times the metric, we see that the

3



Ricci curvature Ricﬂ

and the metric 8, on Mn satisfy the same relationship.

Finally, let EaaCm(Mn) be given and define the operator Ln' the measure

L the semigroup [P:: t > 0}, and the Dirichlet form E.q accordingly. As

an essentially immediate consequence the the Bakry—Emery theorem, we have the

following.
Theorem :

m%fxx)ISE
x,2e\
n

where + 77— [0,=) satisfies

Assume that for all X

(TM )):
n

vx - NxEy

Yrx) ¢ (I -e)d - 1)

xkez”>

for some Q0 (g (1. Set a = ¢£(d - 1).

(L.S.)_ [flogf3dm ¢ (4/a) € _(£,£) + I\ £ 112
n n n

for feL’(mn) and

e -
(5.C.)_
a

In particular,

(5.6.) e - Jeam ]l
L3 (m
and
(s.6.0)_ NPYf - [eam I <
L3*(m )
.3
Proof : Simply observe

on Hy (as a quadratic form) in temrms of
n

To complete our program, seat L
and, for F&T , demots be T

(Thus, in the notation used before, =
&, -

.
set of derivations from «J into itself.

(fom, :
L‘

potential J = {IF : FEF )}, wherse:

L?(m ) —>LY(m )
: 2 n
1{p<qg<¢®and t > 0 with exp(at) ) (q - 1)/(p - 1).

< (2/a) € (£, 6),
) n
n

exp(-at/2) 1 £ ]

k =
gec”(sHTy, T= LB, : FeF ), and ler T(TOL)) be the

Then:

logh £ )12 .
L3(m ) L2(m )
hed n

=1'

feLl3(m ),
n

’ feL’(m ).
L3{(m ) 2
n

that, by Younmg’s inequality, the bound

g can be dominatasd by [\ v/l
2z
v

(shH?

, F= (FeZ® : cazd(F) < =},

the natural projection of ¥_ omto (Sd)F.

N
Sd) n.) Next,

and M = ( set
a

Tre)

¥e now suppose that we are given 2

s




i) for each Fe*+, IFéﬁvF, and for each ke,Zv there are only 2

finite number of F> k for which JF is not identically zero,

ii) there is a comstant B ¢ = such that

S 1x®rol ¢ 012N, k7 e xemTor ),
F k |
iii) there is a vy : Zv-*>[0,w) such that

} v(k) ¢ =

o)
and keZ

2 IHJ. % Ay v =)D S TSk
F2(xa} T :
for all kx,2eZ” and XeM(T(M ).
Set H_ = E T and define L_ on T by
Fok .
Lf=1/2 } exp(Hk)divk(exp(—Hk)gradkf)
xeZ”
? and “grad

directions of the kth spherse.

b »

where " div x refer to the corresponding operations in the

k

Iz order to describe the measzre m_, we will need to introduce the
concept of a Gibbs state amnd this, in turm, requires us to develop a little

more notation. For m ) 1 and x,y<Y_, define Qn(x!y)& ¥_ by
2 if ks[&n
Q_(zxly), =
“n x

7 if Xed\

(It will be convenisnt, and should cause 20 confusion, for us to sometimes

consider x<—9Qn(xly). for fizxed ys¥_, as 2 fanction on Hn and y-‘>Qn(xly).
<
1

. . d .
for fized xeigﬂ as a functiom on (S) .) Define

in(zly) = 2 J?°Qn(xly)
Fnj\n# @

and let mn(-!y) denote the probability zeasure on Mn associated with & (- [y),
2




We will say that a probability measare m_ on x'r(qu is a Gibbs state with potential

ZS‘_ and will write mm&):)'(’?') if, for each n ) 1, y—»mn('ly) is a regular

‘conditional probability distribution of m_ given o(x,: ke-1\°n).

The following lemma summarizes some of the reasonably familiar facts
about the sort of situation described above (cf. [2] and [3]).

'
Lemma : There is exactly one conservative Markov semigroup (Pt: t > 0}

on C(M@) such that

- T N :
CJ -
PLf- £ = Jo PIL_fdt, fe.

Moreover, if, for each n ) 1, Sne CQ(MQ) and the associated operator Ln are
giv.en, and if [Ln(feQn(- !y))‘](x)—-)me(x) uniformly in x,ye¢M_ for every fe%,
then the associated semigroups {Pt: t > 0} have the property that

[PyfeQ_ (- Iy)1(x)—>Pt(x) |
uwniformly in (t,x,y)e [0,T]xM xM_ for every T > 0 and £eC(M_). Finally:
JO(°T) is a non—empty, compact, comvex set; mmeﬁa(“;) if and omnly if it is a
[P:: t > O}-reversidle ﬁeasnte; for each m_e (<3°) there is a y €M_ such that
mn(- ]y)~)m@; and m_ is an ‘extreme point of JI(<¥) if and only if P:f _

[fam_ in L3(m_) for each feC(M).

Theorem : Referring to the situation described above, assume that

DrE) ¢ - -1

keZ” }
for some Q0 <(£< 1. Then JO(°F) contains precisely ome element 'ma, and if

6@ is the Dirichlet form determined by {P:: t > 0} on L*(m_), then,
for feli(m_):

(L.S.)_ [f*logf*dm_ (& 4/a€_(£,6) + I £11*  1oghel®
Li(m_) Li(m_)

where @« = £(d - 1). In particular,

hes l =1,
L’ (@) —L%a )

1 <{p<qg<{=and t > 0 with et »{q=-1)/(p—-1),

(E.C.)_




(s.G.) e - Sedm ]l L& 2a £ _(£,£), feli(m),

-3 N

Li(m )
and
(s.6.r),  Nple - [eam 1l < expl-at/2) N £l , £TLim ).
L (a ) Li(m )
Proof : Let m_<0(77) be given and choose and fix y<&M_ so
thatm S m (-ly)=>m . Set $ =3 (-ly) and define L_ and (P°: t > 0}
= n » n a a t

accordingly. It is easy to check that the hypotheses of the previous theorem
are satisfied for each n. In particular, (H.C.)n holds for all 2 > 1.

Moreover, the preceding lemma allows us to conclude that

23 il
L?(m_) —»LYa )

¢ 222 et
, Lp(mn)-——’Lq(mn) ) ‘
for all 1 <{ p < q <= and t > 0. Hence, we now know that (H.C.)_ holds.

Since (L.S.)_, (S.G.)_, and (S.G.")_ all follow from (B.C.)_, it remains only
to che;k the uniqueness of m_. Bng, by the lemma, if there were two oOr more
elements of 30(°T), then there would be ome for which (S.G.')_ would zot kold.
Since we have just seen that (S.G.')_ holds for every element of J3(77), the

proof is completse.

Remark : For those who are uninitiated into the mysteries of Gibbs
states and related infinite dimemsiomal anmalysis, it may zot be immediately
apparent just what the preceding theorem accomplishes. The point is that, as
~opposed to the finmite dimemsiomal counterparts, 20t even qualitative versions o
the assertions made in it are obvious when one is dealing witkh infimite
dimensional situwatioms. Iz particular, whem ¥ = 1, it will not be trume, for
general poteamtials 5, that 2O(°T) contains only ome element or that a zap i
the spectrum of L will exist, Indeed, these properties are reasonably
hard to prove by any procedure, and so it is pleasing that tkey come, iz the
situation just treated, as a dividend of the Bakry—Emery criteriom.
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