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The note (11 by Bakry and Emery contains an important criterion with'
which to check whether a diffusion semigroup is hypercontractive. Although
Bakry and Emery's interest in their criterion stems from its remarkable ability
to give "best constants" in certain finite dimensional examples, what will
concern us here is its equally remarkable ability to handle some infinite
dimensional situations.

We begin by recalling their criterion in the setting with which we will
be dealing. Let ! be a connected, compact, N-dimensional smooth manifold with
Riemannian metric g. Let 3 be a smooth function on M and define the
differential operator L by

Lf = l/2exp(i)div(exp(-1)grad(f)), f C (M);

and the probability measure m by

m(dx) = exp(-i(x))X(dx)/fexp(-.(y))X(dy),

where X denotes the Riemann measure on M associated with the metric g. Next,
use {Pt: t > O} to denote the diffusion semigroup determined by L. The

following facts about (Pt: t > 01 are easy to check:

i) (P : t > 0} on C(M) is a strongly continuous, conservative

Markov semigroup under which C (M) is invariant.

ii) {Pt: t > O} is m-reversible (i.e. Pt is symmetric in

L2(m) for each t > 0) and 1! Ptf - ffdmtl C()-->O as t-> for each

fe C(M). In particular, for all t > 0 and pe [O,-),

t Lp () __Pp (m)

and there is a uniqmue strongly continuous semigroup (Pt: t > O}) on L1 (m)

such that Pt f = Pt f for all t > 0 and f EC(M).

As a consequence, note that, for each f SL2(m), t--(f - Ptf,f) /t is
L2(m)

a non-negative, non-increasing function and that, therefore, the Dirichlet form
given by

tf f ) I fim1( (f - P f,f) /t
t~~~i0(a



exists (as an element of [0,,]) for each f .L1 (m).

Theorem (Bakry and Emery): Denote by H1 the (covariant) Hessian tensor

of ? (i.e. H (X,Y) = IoYI -'7 Y1 for I,Ysr(T(M))) and let Ric be the Ricci

curvature on (M,g). If, as quadratic forms, Ric -H; >,ag for some a ) 0,

then the logarithmic Sobolev inequalit7 :

(L.S.) /fflogfdm < 4/a E(f,f) + I tf 1 2 logll f i1 2 , f L<(m)
Lz(m) LI(m)

and, therefore, the hv7ercontractive estimate :

li P II = I,
(H.C.) t Lp(m) > Lq(m)

1 < p < q < * and t > 0 with ea t >/(q - 1)/(p - 1)
hold.

Remark : Actually, Bakry and Emery's result is somewhat more refined
than the one just stated. However, the refinement seems to become less and less
significant as N becomes large. Since we are interested here in what happens as
N-->-., the stated result will suffice.

Remark : Several authors (e.g. O. Rathaus [4j) have 'observed that a
logarithmic Sobolev inequality implies a eaD in the svectrum of L . To be
precise, (L.S.) implies that:

(S.G.) I1 f - ffdm Il < 2/a E(f,f), f L(m),
L'(m)

or, equivalently,

(S.G.') fI Ptf - ffdm: 11 < exp(-2a/t)l1 f Il , fe L(m).
Lz(m) L'(m)

We now turn to the application of the Bak/r7-Emer7 result to infinite
dimensional diffusions. For the sake of definiteness, let d > 2 and v), 1 be
given, and, for n >/ 1, set

=4 (Sd )AnM =(S)

h ereiX =A ti Z( 2: Ik I _ max Ikl [I n and give HM the product =ie-annia
aheIe i<n

structure which it inherits from the standard structure on S . Let k

th d
be the natural projection map from MH onto the k sphere S , and, for IS

(T()), set I = ( . Noting, as was dne i 1, that onSd
(T(he)), set I = (). Noting, as wa1) ts done in etric], at on S the

the Ricci curvature is eqnal to (d - 1) times the metric, we see that the



Ricci curvature Ric and the metric gn on M satisfy the same relationship.

Finally, let 1 SC (M ) be given and define the operator L , the measnrea m Tn T

m, the semigroup (Pt: t > 0}, and the Dirichlet form £ accordingly. As
n t

an essentially immediate consequence the the Bakry-Emery theorem, we have the
following.

Theorem : Assume that for all l (T(.M )):
a

IH (x x)[ ,< ~ -e(k - )1x() I x I I

where 7 : Z"-> [o0,) satisfies

y ¥(k) .< (1 - S) (d - 1)

k Z
for some 0 <( < 1. Set a = E(d - 1). Then:

(L.S.)I ff-logf2dm < (4/a) E (f,f) + h) f 112 log1) f 12
L2(m) L 2(m)

a afor f EL2(m ) and lIC) LP (m )--,Lq(m )1 < p < q < - and t > 0 with exp(at) > (q - 1)/(p - 1).

In particular,

(S.G.) 11 f - ffdm U < (2/a) (ff), fc L(m ),
a L2(m a I

and

(S.G.') 11 Pf - ffdm 1I 4 exp(-at/2){ 1 f l , f SL(m )'n t f n i
a aLI(m) L2 (m)

Proof : Simply observe that, by Young's inequality, the bound

on H{ (as a quadratic form) in terms of can be dominated by 1\ yl

To complete our program, set 31 = (Sd)Z , = FE Z : card(F) <( o,

and, for' Fe* , denote be xF the natural projection of M;! onto (S ) .

d An
(Thus, in the notation used before, = ak} and . = (Sd) ) Next, set

F = UfS:~ : C d)F ) =. = : F1 1.}, and let r(T(.M ) be the

set of derivations from & into itself. We now suppose that we are given a

potential3 = (JF: Fe. , where:

F ~ ~ ~ _ __
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i) for each Fe-, IJFF and for each ke Z there are only a
F F'

finite number of Fa k for which JF is not identically zero,

ii) there is a constant B < - such that

! (k)IFI , B II X 11. 1 c- Z and I-E (T((M)),
F k F

iii) there is a y : Z-[ tO,) such that

kcZ~and

1 F( X Y )i

F_ tk,(}

for all , ii Z and I Er(T(Mm).

Set. = 2 and define LM on by

F3 k

Lf = 1/2 exp(Hk) divk(exp(-Hk) gradkf)

k*Zv

where' div" and $gradk refer to the corresponding operations in the

th
directions of the kI schere.

In order to describe the measure m , we ;vill need to introduce the

concept of a Gibbs state and this, in turn, requires us to develop a little

more notation. For n >/ 1 and x,7Y-M,' define Q (x!y)C ,M by

Q (x7y) = if -,
n.z s ' 7 k if ki'..ZN

(It will be convenient, and should cause no confusion, for us to sometines

consider x-- Q ( y), for fixed vs M, as a function on H and ,--Q (17) .

for fixed -x.U , as a function on (Sd ) ) Define

i1(x!7) = F 'rQ e(x7y)
d let 7 denote the robabiit easre on ated with 

and let = (. 17) denote the probability measure on v{ associated with m (. [I).
a a n



We will say that a probability measure m on M is a Gibbs state with potential

- and will -write m .J'O(T) if, for each a > 1, y-mn (' y) is a regular

conditional probability distribution of m. given a(xk: ks jc ).

The following lemma summarizes some of the reasonably familiar facts
about the sort of situation described above (cf. [21 and [31).

Lemma : There is exactly one conservative Markov semigroup {Pt: t > 0}

on C(M) such that

PTf - f PL fdt, fE d:.
0

Moreover, if, for each a >, 1, · e C (I ) and the associated operator L aren a a

given, and if [L (foQ (- {y) )l()-- -Lf (x) uniformly in x,y e M for every f e',

then the associated semigroups (Pn: t > 0O have the property that

[P foQn. () y) (x)-> P f(x)

uniformly in (t,x,y)e [O,T]xM xM for every T > 0 and fsC(M). Finally:

~(t') is a non-empty, compact, convex set; m 69) ("') if and only if it is a

(Pt: t > O}-reversible measure; for each m -a9)(~) there is a y GM such that

m (. Iy)-->m ; and mD is an extreme point of ~(=~) if and only if Ptf --
na~ t

ffdm, in L2 (m ) for each f¢-C(M ).

Theorem : Referring to the situation described above, assume that

7t(~) < (1 -£)(d - 1)

k;ZY
for some 0 < £ < 1. Then .3(~Y) contains precisely one element me, and if

£ is the Dirichlet form determined by (Pt: t > O} on L2 (m), then,

for f L2 (m):

(L.S.) ff2 logfdm¥ ,< 4/a E.(f,f) + II f j12 logll f 1 2

L2(m) Lz(m)

where a = S(d - 1). In particular,

II Pt 11 =1,
(H. C.) LP (m) -L q (m)

1 ( p < q ( - and t > O with eat > (q - 1)/(p - 1),



(S.G.) 1l f - ffdmtl t1 /a c(f.f), f - L(m ),
L (m )

and

(S.G.') 1 Ptf f- fdm 11 exp(-at/2)Il f f1 (m).
L (m ) LZ(m)

Proof : Let m ¢J(C') be given and choose and fix y igM so

that ma m (t y)->m . Set 4i = (. ly) and define L and (Pt: t > 0}

accordingly. It is easy to check that the hypotheses of the previous theorem

are satisfied for each a. In particular, (H.C.) holds for all n >, 1.

Moreover, the preceding lemma allows us to conclude that

11P 11
t LP(m )-LQ(= )

li$a IIPI

t LP(m ) Lq( m )-

an a

for all 1 < p < q < " and t > 0. Hence, we now know that (H.C.) holds.

Since (L.S.) , (S.G.), and (S.G.') all follow from (H.C.) , it remains only7

to check the uniqueness of m . But, by the lemma, if there were two or more

elements of .%(C'), then there would be one for which (S.G.') -would not hold.

Since we have just seen that (S.G.') holds for every element of "('7'), the

proof is complete.

Remark : For those who are uninitiated into the mysteries of Gibbs

states and related infinite dimensional analysis, it may not be immediately

apparent just what the preceding theorem accomplishes. The point is that, as

opposed to the finite dimensional counterparts, not even aualitative versions of

the assertions made in it are obvious when one is dealing with infinite
dimensional situations. In particular, when V = 1, it will not be true, for

general potentials 4 , that -( .) contains only one element or that a gap in

the spectrum of L0 will exist. Indeed, these properties are reasonably

hard to prove by any procedure, and so it is pleasing that they come, in the
situation just treated, as a dividend of the Bakry-Eme=7 criterion.
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